WO2020200171A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2020200171A1
WO2020200171A1 PCT/CN2020/082111 CN2020082111W WO2020200171A1 WO 2020200171 A1 WO2020200171 A1 WO 2020200171A1 CN 2020082111 W CN2020082111 W CN 2020082111W WO 2020200171 A1 WO2020200171 A1 WO 2020200171A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
srs
network device
resource
Prior art date
Application number
PCT/CN2020/082111
Other languages
English (en)
French (fr)
Inventor
张莉莉
张洪利
马淑玲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2021011945A priority Critical patent/MX2021011945A/es
Priority to KR1020217035160A priority patent/KR20210138769A/ko
Priority to EP20782248.7A priority patent/EP3952400A4/en
Priority to JP2021558693A priority patent/JP2022528099A/ja
Priority to BR112021019532A priority patent/BR112021019532A2/pt
Publication of WO2020200171A1 publication Critical patent/WO2020200171A1/zh
Priority to US17/489,478 priority patent/US20220022073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • Dynamic time division duplex also called flexible duplexing or duplexing flexibility, refers to the ability to adaptively allocate upper and lower levels according to the distribution of uplink and downlink services. Run resources, thereby effectively improving system resource utilization.
  • Cross-link interference can also be called hetero-link interference, that is, interference between links in different directions.
  • CLI cross-link interference
  • the uplink transmission of the second terminal or the third terminal under the second network device will cause a CLI to the downlink reception of the first terminal under the first network device.
  • This kind of CLI can be called a terminal Interference (UE-to-UE); on the other hand, the downlink transmission of the first network device will generate a CLI for the uplink reception of the second network device.
  • This CLI can be called base station to base station (gNB-to-gNB) Interference.
  • Dynamic CLI is different from the previous same link interference. It has the characteristics of serious interference and large impact, rapid changes in direction, and no mature mechanism to solve it. Therefore, it is urgent to propose a method for the system to know the degree of cross-link interference.
  • the embodiments of the present application provide a communication method and device, which can measure the degree of cross-link interference.
  • an embodiment of the present application provides a communication method, which may be executed by a first terminal, or executed by a component (such as a chip system) in the first terminal.
  • the method includes: a first terminal receives at least one first sounding reference signal (sounding reference signal, SRS) sent by at least one second terminal, and obtains information about a measurement result of at least one second terminal according to the at least one first SRS, Send one or more measurement results to the network device.
  • the measurement result is used to characterize the signal strength of the first SRS sent by the second terminal; the first SRS is used to detect cross-link interference CLI, and the first SRS occupies the first resource.
  • SRS sounding reference signal
  • the communication method provided in this application can be applied to a communication system with CLI.
  • a communication system with CLI for example, the flexible duplex system mentioned above, or the integrated access and backhaul system (IAB). It can also be applied to a remote interference management (RIM) system.
  • RIM remote interference management
  • it can be applied to the communication system shown in Figures 1a and 1b.
  • the first terminal after a certain second terminal sends the first SRS, if the first terminal can monitor the first SRS of the second terminal, the first terminal can measure the signal strength of the first SRS, Then the measurement result of the first SRS is obtained. In addition, the first terminal may also report the measurement result to the network device, so that the network device can obtain the measurement result of a different second terminal. In this way, in the follow-up, the network device may learn the CLI degree of different second terminals to the first terminal based on one or more measurement results, and perform some CLI-reducing operations.
  • the network device can learn which second terminal is specifically interfering with the first terminal according to the second indication information corresponding to the measurement result.
  • the first terminal measures a certain first SRS, and feeds back the second indication information of the first SRS to the network equipment, including but not limited to the first SRS sequence, or the first SRS sequence set, or the first SRS sequence.
  • the network device can determine the sender of the first SRS.
  • the first terminal measures a certain first SRS, and feeds back the resource identifier of the first SRS to the network device, so that the network device can know which terminal is the second terminal that uses the resource to send the first SRS, and then the network The device can determine the source of interference that generates the CLI to the first terminal.
  • the information of the one or more measurement results includes indication information of the one or more measurement results, and/or second indication information
  • the second indication information is the one or more The multiple measurement results respectively correspond to the indication information of the second terminal.
  • the above method further includes: the first terminal obtains first indication information, the first indication information is used to instruct the first terminal to send the largest N measurement results among the measurement results of at least one second terminal, or The smallest N measurement results, N is an integer greater than or equal to 1.
  • the first terminal sending one or more measurement results to the network device includes: the first terminal sends N measurement results to the network device according to the first indication information.
  • the above method further includes: the first terminal obtains first indication information, where the first indication information is used to instruct the first terminal to send at least one measurement result of the second terminal to the largest N measurement results, respectively Or the second indication information corresponding to the smallest N measurement results, where N is an integer greater than or equal to 1.
  • the second indication information is used to indicate the second terminal corresponding to the measurement result.
  • the first terminal sending information about one or more measurement results to the network device includes: the first terminal sends second indication information corresponding to the N measurement results to the network device according to the first indication information.
  • the above method further includes: the first terminal obtains first indication information, where the first indication information is used to instruct the first terminal to send the largest N measurement results among the measurement results of at least one second terminal, and The largest N measurement results respectively correspond to the second indication information.
  • N is an integer greater than or equal to 1.
  • the first terminal sending information about one or more measurement results to the network device includes: the first terminal sends the N measurement results to the network device according to the first indication information, and sending the N measurement results corresponding to the N measurement results. 2. Instruction information.
  • the above method further includes: the first terminal obtains first indication information, the first indication information is used to instruct the first terminal to send the smallest N measurement results among the measurement results of the at least one second terminal, and The smallest N measurement results respectively correspond to the second indication information.
  • N is an integer greater than or equal to 1.
  • the first terminal sending information about one or more measurement results to the network device includes: the first terminal sends the smallest N measurement results to the network device according to the first indication information, and sending the N measurement results to the network device respectively.
  • the second instruction information includes: the first terminal sends the smallest N measurement results to the network device according to the first indication information, and sending the N measurement results to the network device respectively.
  • the network device can roughly learn the CLI situation between the first terminal and other terminals based on the measurement result of the strongest CLI, so as to perform some CLI reduction operations to reduce the CLI between the first terminal and other terminals. It can be seen that only part of the measurement results are reported, which reduces the signaling overhead for reporting the measurement results.
  • the above method further includes: the first terminal obtains first indication information, the first indication information is used to instruct the first terminal to send at least one measurement result of the second terminal that is greater than or equal to a first threshold J measurement results of, and/or send second indication information corresponding to the J measurement results respectively, where J is a positive integer.
  • the first terminal sending information about one or more measurement results to the network device includes: the first terminal sends the measurement result of at least one second terminal to the network device according to the first indication information, which is greater than or equal to the first threshold And/or send the second indication information corresponding to the J measurement results respectively.
  • the above method further includes: the first terminal obtains first indication information, the first indication information is used to instruct the first terminal to send at least one measurement result of the second terminal that is less than or equal to a second threshold W measurement results of W measurement results, and/or send second indication information corresponding to the W measurement results respectively, and W is a positive integer.
  • the first terminal sending information about one or more measurement results to the network device includes: the first terminal sends to the network device the measurement result of at least one second terminal that is less than or equal to the second threshold value according to the first indication information W measurement results, and/or send second indication information corresponding to the W measurement results respectively.
  • the first terminal sends information about one or more measurement results to the network device, including:
  • the first terminal sends the first measurement result to the network device, and/or sends the second indication information corresponding to the first measurement result.
  • the first A terminal sends a second measurement result to the network device, and/or sends second indication information corresponding to the second measurement result respectively.
  • the difference between the second measurement result and the first measurement result is greater than or equal to the preset difference.
  • the first terminal when the difference between the second measurement result and the first measurement result is large, the first terminal will report the second measurement result for the same second terminal.
  • the first SRS can be measured multiple times for the same second terminal, which can improve the accuracy of the first SRS measurement result of the second terminal.
  • measurement results with similar values usually indicate that the position and signal quality of the second terminal have not changed or changed little.
  • the measurement result of the first SRS obtained from the second terminal may be redundant information.
  • the network device may not need this redundant information to make decisions. Therefore, in the embodiment of the present application, the first terminal only reports the second measurement result that is significantly different from the first measurement result. In this way, it is possible to prevent the first terminal from reporting redundant measurement results with similar values and reduce signaling. Overhead.
  • the method further includes: the first terminal obtains configuration information, where the configuration information is used to indicate at least one of the following:
  • the sequence or sequence set of the first SRS includes at least one sequence
  • the second indication information of the first SRS includes the resource indication information of the first SRS, or one or more of the first SRS sequence.
  • the second indication information for reporting the first SRS includes: the second indication information is reported in a one-to-one correspondence with one or more measurement results. That is, when a certain measurement result is reported, the second indication information corresponding to the measurement result is also reported.
  • the second indication information for reporting the first SRS includes: the second indication information and one or more measurement results are reported independently. That is, the measurement result can be reported separately, or the second indication information can be reported separately.
  • the method further includes: the first terminal sends first capability information to the network device, the first capability information indicates capability information for measuring CLI, and the first capability information includes at least one of the following: The number of first SRS that can be monitored in a time unit, whether the first terminal can monitor consecutive symbols, the maximum number of symbols that the first terminal can monitor in a time unit, and the maximum consecutive symbols that the first terminal can monitor in a time unit number.
  • the first terminal can measure the first SRS without exceeding its own capabilities. Improve the probability of successfully measuring the first SRS.
  • the method further includes: the first terminal reports third capability information, the third capability information is used to indicate the multiplexing relationship between the second resource and the first resource for transmitting the first SRS, and the multiplexing relationship It includes at least one of time division multiplexing and frequency division multiplexing, and the second resource is a resource used for data transmission.
  • the network device when the network device receives the above-mentioned third capability information, when configuring the first resource and the second resource for the terminal, it will reasonably configure the resources according to the resource reuse relationship supported or not supported by the terminal to reduce the first resource and the second resource. The probability of the second resource conflict.
  • the present application provides a communication method applied to a first terminal or a component in the first terminal.
  • the method includes: the first terminal sends second capability information to the network device.
  • the second capability information indicates the capability of the first terminal to report the measurement result.
  • the second capability information is used to indicate the number of measurement results that the first terminal can report to the network device, and the measurement results include measurement results for at least one first SRS.
  • the present application provides a communication method, which is applied to a first terminal or a component in the first terminal.
  • the method includes: a first terminal receives a first sounding reference signal SRS from a second terminal, the first SRS is used to detect cross-link interference CLI, and the first SRS occupies a first resource.
  • the first terminal determines the timing offset according to the first resource, and adjusts the time for receiving the first SRS based on the timing offset. In this way, the first terminal receives the first SRS at the adjusted time for receiving the first SRS.
  • the first terminal determining the timing offset according to the first resource includes:
  • the first terminal obtains the geographic location information of the second terminal according to the first resource, where the first resource has a corresponding relationship with the geographic location information; the first terminal obtains the first terminal based on the geographic location information of the first terminal and the geographic location information of the second terminal.
  • a distance, the first distance is the distance between the first terminal and the second terminal; the first terminal obtains the timing offset according to the first distance.
  • the method also includes:
  • the first terminal receives the first reference signal from the network device, and obtains the geographic location information of the first terminal according to the first reference signal receiving power (reference signal receiving power, RSRP) corresponding to the first reference signal.
  • the first RSRP is used for Characterize the received power of the first reference signal to the first terminal; or, obtain the geographic location information of the first terminal according to the first reference signal receiving quality corresponding to the first reference signal, and the first RSRQ is used to characterize The signal quality of the first reference signal arriving at the first terminal.
  • the method also includes:
  • the first terminal sends fourth capability information to the network device, and the fourth capability information is used to characterize the accuracy requirements for the measurement result.
  • the accuracy requirement is higher than the accuracy threshold.
  • the present application provides a communication method, which is applied to a network device or a component in a network device (such as a chip system).
  • the method includes: a network device receives information about one or more measurement results from a first terminal, the information about the one or more measurement results includes the one or more measurement results, and/or the one or more measurement results The results respectively correspond to the second indication information.
  • the measurement result is used to characterize the signal strength of the first SRS sent by the second terminal, and the first SRS occupies the first resource.
  • the above method also includes:
  • the network device sends first indication information to the first terminal, where the first indication information is used to instruct the first terminal to send the largest N measurement results among the measurement results of at least one second terminal and/or the largest N measurement results, respectively
  • the corresponding second indication information, or the smallest N measurement results and/or the second indication information corresponding to the smallest N measurement results, N is an integer greater than or equal to 1.
  • the network device receiving information about one or more measurement results from the first terminal includes: the network device receiving N measurement results from the first terminal and/or second indication information corresponding to the N results respectively.
  • the network device sends first indication information to the first terminal, where the first indication information is used to instruct the first terminal to send at least one measurement result of the second terminal that is greater than or equal to the first threshold. Measurement results, and/or sending the second indication information corresponding to the J measurement results, where J is a positive integer.
  • the information about the one or more measurement results that the network device receives from the first terminal includes: the network device receives from the first terminal J measurement results that are greater than or equal to the first threshold among the measurement results of at least one second terminal, And/or receiving second indication information corresponding to the J measurement results respectively.
  • the network device sends first indication information to the first terminal, and the first indication information is used to instruct the first terminal to send W that is less than or equal to the second threshold in the measurement results of at least one second terminal. Measuring results, and/or sending second indication information corresponding to the W measuring results respectively, where W is a positive integer.
  • the network device receiving information about one or more measurement results from the first terminal includes: the network device receiving from the first terminal W measurement results that are less than or equal to the second threshold among the measurement results of at least one second terminal, And/or, receiving second indication information corresponding to the W measurement results respectively.
  • the network device receives one or more measurement results from the first terminal, including:
  • the network device receives the first measurement result from the first terminal, and/or receives the second indication information corresponding to the first measurement result.
  • the network device receives the second measurement result from the first terminal, and/or receives the second indication information corresponding to the second measurement result, the second measurement result and the first The difference of a measurement result is greater than or equal to the preset difference.
  • the method further includes: the network device sends configuration information to the first terminal, where the configuration information is used to indicate at least one of the following:
  • the sequence or sequence set of the first SRS includes at least one sequence
  • the second indication information of the first SRS includes the resource indication information of the first SRS, or one or more of the first SRS sequence.
  • the method further includes: the network device sends first capability information to the first terminal, the first capability information indicates capability information for measuring CLI, and the first capability information includes at least one of the following: The number of first SRS that can be monitored in a time unit, whether the first terminal can monitor consecutive symbols, the maximum number of symbols that the first terminal can monitor in a time unit, and the maximum consecutive symbols that the first terminal can monitor in a time unit number.
  • the method further includes: the network device receives third capability information from the first terminal, where the third capability information is used to indicate a multiplexing relationship between the second resource and the first resource for transmitting the first SRS,
  • the multiplexing relationship includes at least one of time division multiplexing and frequency division multiplexing, and the second resource is a resource used for data transmission.
  • this application provides a communication method applied to a network device or a component in the network device.
  • the method includes: the network device configures the second terminal to send the first resource of the first SRS, and notifies the first terminal of the first resource.
  • the preset geographic area may be divided into P (P is a positive integer) sub-areas. Among them, each sub-region corresponds to a geographic location information.
  • the geographic location information may be, for example, the identification, code, number, etc. of the sub-region.
  • the above method further includes: the network device sends a first reference signal to the first terminal, and receives a first reference signal received power RSRP corresponding to the first reference signal from the first terminal, and obtains based on the RSRP The geographic location information of the first terminal.
  • the first RSRP is used to characterize the received power of the first reference signal to the first terminal.
  • the network device sends the first reference signal to the first terminal, and receives the first reference signal reception quality RSRQ corresponding to the first reference signal from the first terminal, and obtains the geographic location of the first terminal based on the RSRQ. location information.
  • the first RSRQ is used to characterize the signal quality of the first reference signal arriving at the first terminal.
  • the above method further includes: the first terminal sends fourth capability information to the network device, and the fourth capability information is used to characterize the accuracy requirements for the measurement result.
  • the accuracy requirement is higher than the accuracy threshold.
  • the present application provides a communication method, which is applied to a network device or a component in the network device.
  • the method includes: the network device receives second capability information from the first terminal.
  • the second capability information indicates the capability of the first terminal to report the measurement result.
  • the second capability information is used to indicate the number of measurement results that the first terminal can report to the network device, and the measurement results include measurement results for at least one first SRS.
  • the present application provides a communication method, which is applied to a second terminal or a component in the second terminal.
  • the method includes: a second terminal acquires a first resource for sending a first sounding reference signal SRS, and sends the first SRS to the first terminal on the first resource.
  • the second terminal queries the corresponding relationship between the geographic location and the first resource according to its own geographic location to learn the first resource for sending the first SRS.
  • the present application provides a communication device, which may be the first terminal or a component in the first terminal in any of the foregoing aspects.
  • the device includes a transceiver and a processor.
  • the transceiver is configured to receive at least one first sounding reference signal SRS sent by at least one second terminal.
  • the processor is configured to obtain information about the measurement result of at least one second terminal according to the at least one first SRS.
  • the transceiver is also used to send one or more measurement results to the network device.
  • the measurement result is used to characterize the signal strength of the first SRS sent by the second terminal; the first SRS is used to detect cross-link interference CLI, and the first SRS occupies the first resource.
  • the processor is further configured to obtain first indication information, and the first indication information is used to instruct the first terminal to send the largest N measurement results and/or all the measurement results of at least one second terminal.
  • the largest N measurement results respectively correspond to the second indication information, or the smallest N measurement results and/or the smallest N measurement results respectively correspond to the second indication information, and N is an integer greater than or equal to 1.
  • it may be to obtain the first indication information pre-configured in the terminal. It may also be that the processor controls the transceiver to receive the first instruction information issued by the network device.
  • the processor for controlling the transceiver to send one or more measurement results to the network device includes: controlling the transceiver to send N measurement results and/or the N results to the network device according to the first indication information Corresponding to the second indication information respectively.
  • the processor is further configured to obtain first indication information, where the first indication information is used to instruct the first terminal to send at least one measurement result of the second terminal that is greater than or equal to the first threshold. Measurement results, and/or sending the second indication information corresponding to the J measurement results, where J is a positive integer.
  • the processor for controlling the transceiver to send one or more measurement results to the network device includes: controlling the transceiver to send the measurement result of at least one second terminal to the network device according to the first indication information. J measurement results of the first threshold value and/or sending second indication information corresponding to the J measurement results respectively.
  • the processor is configured to obtain first indication information, and the first indication information is used to instruct the first terminal to send at least one W measurement results of the second terminal that are less than or equal to the second threshold.
  • the measurement result, and/or the second indication information corresponding to the W measurement results respectively, W is a positive integer.
  • the processor for controlling the transceiver to send one or more measurement results to the network device includes: controlling the transceiver to send the measurement result of at least one second terminal to the network device according to the first indication information.
  • the processor is used to control the transceiver to send one or more measurement results to the network device, including:
  • control the transceiver At the first time, control the transceiver to send the first measurement result and/or the second indication information corresponding to the first measurement result to the network device, and at the second time of the preset period of time with the first time interval, control the transceiver to the network device
  • the device sends the second measurement result and/or the second indication information corresponding to the second measurement result respectively.
  • the difference between the second measurement result and the first measurement result is greater than or equal to the preset difference.
  • the processor is also used to obtain configuration information, and the configuration information is used to indicate at least one of the following:
  • the sequence or sequence set of the first SRS includes at least one sequence
  • the second indication information of the first SRS includes the resource indication information of the first SRS, or one or more of the first SRS sequence.
  • the transceiver is also used to send first capability information to the network device.
  • the first capability information indicates the capability information used to measure the CLI, and the first capability information includes at least one of the following: The number of first SRSs that can be monitored on a time unit, whether the first terminal can monitor consecutive symbols, the maximum number of symbols that the first terminal can monitor on a time unit, the maximum number of consecutive symbols that the first terminal can monitor on a time unit .
  • the transceiver is also used to report third capability information.
  • the third capability information is used to indicate the multiplexing relationship between the second resource and the first resource for transmitting the first SRS.
  • the multiplexing relationship includes At least one of time division multiplexing and frequency division multiplexing, and the second resource is a resource used for data transmission.
  • the present application provides a communication device, which may be a first terminal or a component in the first terminal.
  • the device includes a processor and a transceiver.
  • the transceiver is used to send the second capability information to the network device.
  • the second capability information indicates the capability of the first terminal to report the measurement result.
  • the second capability information is used to indicate the number of measurement results that the first terminal can report to the network device, and the measurement results include measurement results for at least one first SRS.
  • the present application provides a communication device, which may be a first terminal or a component in the first terminal.
  • the device includes a processor and a transceiver.
  • the transceiver is configured to receive the first sounding reference signal SRS from the second terminal, the first SRS is used to detect cross-link interference CLI, and the first SRS occupies the first resource.
  • the processor is configured to determine a timing offset according to the first resource, and adjust the time for receiving the first SRS based on the timing offset.
  • the transceiver is further configured to receive the first SRS at the adjusted time for receiving the first SRS.
  • the processor configured to determine the timing offset according to the first resource, includes:
  • the first distance is obtained according to the geographic location information of the first terminal and the geographic location information of the second terminal.
  • a distance is the distance between the first terminal and the second terminal; the timing offset is acquired according to the first distance.
  • the transceiver is also used to receive the first reference signal from the network device.
  • the processor is further configured to obtain geographic location information of the first terminal according to the first reference signal received power RSRP corresponding to the first reference signal, where the first RSRP is used to characterize the received power of the first reference signal to the first terminal. Or, it is used to obtain the geographic location information of the first terminal according to the first reference signal reception quality RSRQ corresponding to the first reference signal.
  • the first RSRQ is used to characterize the signal quality of the first reference signal arriving at the first terminal.
  • the transceiver is also used to send fourth capability information to the network device, and the fourth capability information is used to characterize the accuracy requirements for the measurement results.
  • the accuracy requirement is higher than the accuracy threshold.
  • this application provides a communication device, which may be a network device or a component in a network device (such as a chip system).
  • the device includes a processor and a transceiver.
  • the transceiver is used to receive one or more measurement result information from the first terminal.
  • the measurement result is used to characterize the signal strength of the first SRS sent by the second terminal, and the first SRS occupies the first resource.
  • the transceiver is further configured to send first indication information to the first terminal, and the first indication information is used to instruct the first terminal to send the largest N measurement results among the measurement results of at least one second terminal And/or the second indication information corresponding to the N measurement results, or the smallest N measurement results and/or the second indication information corresponding to the N measurement results, where N is an integer greater than or equal to 1.
  • the transceiver configured to receive one or more measurement results from the first terminal, includes: being configured to receive N measurement results from the first terminal and/or second indication information corresponding to the N measurement results respectively.
  • the transceiver is also used to send first indication information to the first terminal, and the first indication information is used to instruct the first terminal to send at least one measurement result of the second terminal that is greater than or equal to the first threshold.
  • the transceiver used for receiving one or more measurement results from the first terminal, includes: receiving from the first terminal J measurement results that are greater than or equal to a first threshold value among the measurement results of at least one second terminal and/or The J measurement results respectively correspond to the second indication information.
  • the transceiver is also used to send first indication information to the first terminal.
  • the first indication information is used to instruct the first terminal to send at least one measurement result of the second terminal that is less than or equal to the second threshold.
  • the W measurement results of the limit value and/or the second indication information corresponding to the W measurement results respectively, W is a positive integer.
  • the transceiver is used to receive one or more measurement results from the first terminal, including: receiving from the first terminal W measurement results that are less than or equal to the second threshold value among the measurement results of at least one second terminal and/or The W measurement results respectively correspond to second indication information.
  • the transceiver configured to receive one or more measurement results from the first terminal, includes: being configured to receive the first measurement result and/or the first measurement result from the first terminal at the first time
  • the second indication information respectively corresponding to the measurement results is received from the first terminal at a second time of a preset period from the first time interval, and/or the second indication information respectively corresponding to the second measurement results.
  • the difference between the second measurement result and the first measurement result is greater than or equal to the preset difference.
  • the transceiver is also used to send configuration information to the first terminal, and the configuration information is used to indicate at least one of the following:
  • the sequence or sequence set of the first SRS includes at least one sequence
  • the second indication information of the first SRS includes the resource indication information of the first SRS, or one or more of the first SRS sequence.
  • the transceiver is further configured to send first capability information to the first terminal, the first capability information indicates capability information for measuring CLI, and the first capability information includes at least one of the following: The number of first SRS that can be monitored in a time unit, whether the first terminal can monitor consecutive symbols, the maximum number of symbols that the first terminal can monitor in a time unit, and the maximum consecutive symbols that the first terminal can monitor in a time unit number.
  • the transceiver is also used to receive third capability information from the first terminal, and the third capability information is used to indicate the multiplexing relationship between the second resource and the first resource for transmitting the first SRS,
  • the multiplexing relationship includes at least one of time division multiplexing and frequency division multiplexing, and the second resource is a resource used for data transmission.
  • this application provides a communication device, which may be a network device or a component in a network device.
  • the device includes a processor and a transceiver.
  • the processor is configured to configure the first resource for the second terminal to send the first SRS.
  • the transceiver is used to notify the first terminal of the first resource.
  • the transceiver is further configured to send the first reference signal to the first terminal and receive the first reference signal received power RSRP corresponding to the first reference signal from the first terminal.
  • the processor is further configured to obtain geographic location information of the first terminal based on the RSRP.
  • the first RSRP is used to characterize the received power of the first reference signal to the first terminal.
  • the transceiver is further configured to send the first reference signal to the first terminal, and receive the first reference signal reception quality RSRQ corresponding to the first reference signal from the first terminal.
  • the processor is further configured to obtain geographic location information of the first terminal based on the RSRQ.
  • the first RSRQ is used to characterize the signal quality of the first reference signal arriving at the first terminal.
  • the transceiver is also used to send fourth capability information to the network device, and the fourth capability information is used to characterize the accuracy requirements for the measurement results.
  • the accuracy requirement is higher than the accuracy threshold.
  • this application provides a communication device, which may be a network device or a component in a network device.
  • the device includes a processor and a transceiver.
  • the transceiver is used to receive second capability information from the first terminal.
  • the second capability information indicates the capability of the first terminal to report the measurement result.
  • the second capability information is used to indicate the number of measurement results that the first terminal can report to the network device, and the measurement results include measurement results for at least one first SRS.
  • this application provides a communication device, which may be a second terminal or a component in the second terminal.
  • the device includes a processor and a transceiver.
  • the processor is configured to obtain the first resource for sending the first sounding reference signal SRS.
  • the transceiver is configured to send the first SRS to the first terminal on the first resource.
  • the processor is configured to query the correspondence between the geographic location and the first resource according to the geographic location of the first terminal, so as to learn the first resource for sending the first SRS.
  • the information of the one or more measurement results includes indication information of the one or more measurement results, and/or second indication information, the second indication information Is the indication information of the second terminal corresponding to the one or more measurement results respectively.
  • the second indication information includes resource indication information of the first SRS, or one or more of the first SRS sequence.
  • the second indication information corresponding to one or more measurement results is used to indicate the first SRS corresponding to the measurement result.
  • the first terminal reports K measurement results from the second terminal in the first cell, and reports 1 measurement result from the second terminal in the second cell.
  • I and K may be the same or different.
  • the first terminal may set different upper limits for the number of measurement results for different cells.
  • the measurement result reported by the first terminal is the measurement result of at least one second terminal in the measurement result greater than or equal to the result threshold, and the H measurement results with the largest measurement result, H is Positive integer.
  • reporting the measurement result includes simultaneously reporting the second indication information of the measured first SRS.
  • the second indication information of the first SRS includes resource indication information of the first SRS, or a combination of one or more of the first SRS sequence.
  • the resource indication information of the first SRS includes: the first SRS resource identifier or the first SRS resource index, or the first SRS collective resource identifier, or one or more of the first SRS collective resource index combination. That is, sending one or more measurement results to the network device includes sending the measurement results while also reporting the second indication information of the measured first SRS.
  • the first SRS set includes one or more first SRSs, and the first SRS set resource identifier may be used to transmit all resource identifiers of the multiple first SRSs.
  • the configuration information can be used to instruct the first terminal to report some other information while reporting the measurement result.
  • a message can carry information such as resources and sequences related to the first terminal.
  • the root sequences of the first SRS of different second terminals are different.
  • the root sequences of the first SRS of different second terminals are the same, and the cyclic shifts of the first SRS of different second terminals differ by a first offset value.
  • the resources occupied by the first SRS are different from the resources for downlink transmission, and the resources occupied by the first SRS are different from the resources for uplink transmission.
  • Downlink transmission includes PDCCH, or PDSCH, or synchronization signal (synchronization signal, SS), or physical broadcast channel (physical broadcast channel, PBCH); uplink transmission includes at least one of PUCCH, or PUSCH, or PRACH, or second SRS .
  • the second SRS is not an SRS used to detect CLI.
  • the uplink transmission and the downlink transmission may also be other forms of uplink transmission or downlink transmission.
  • the network device when configuring the uplink transmission or the downlink transmission, the network device considers whether the uplink transmission or the downlink transmission overlaps with the first SRS. If overlap occurs, the network device either configures a certain resource for uplink transmission or downlink transmission, or configures it for transmission of the first SRS. To avoid conflicts between uplink or downlink transmission and the first SRS on the same resource.
  • the terminal behavior as follows.
  • the resources occupied by the first SRS are the same as some resources in the downlink transmission resources, or the resources occupied by the first SRS are the same as some resources in the uplink transmission resources, on the same resources, the first SRS is detected by the terminal and the downlink transmission is The terminal discards, or the downlink transmission is detected by the terminal and the first SRS is discarded by the terminal, or the first SRS is detected by the terminal and the uplink transmission is discarded by the terminal, or the uplink transmission is detected by the terminal and the first SRS is discarded by the terminal.
  • this application provides a communication device for implementing the function of the first terminal in any of the above aspects, or for implementing the function of the second terminal in any of the above aspects, or for implementing any of the above aspects The function of the network equipment.
  • this application provides a communication device that has the function of implementing the communication method of any one of the above aspects.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer-executable instructions, and when the communication device is running, the processor executes the computer-executable instructions stored in the memory to enable the The communication device executes the communication method according to any one of the above aspects.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the communication method according to any one of the foregoing aspects according to the instruction.
  • inventions of the present application provide a communication device.
  • the device may be a chip system.
  • the chip system includes a processor and a memory for implementing the functions of the methods described in any of the above aspects.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • a communication device which may be a circuit system, the circuit system includes a processing circuit, and the processing circuit is configured to execute the communication method according to any one of the foregoing aspects.
  • an embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method in any of the foregoing aspects.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a computer, cause the computer to execute the method of any one of the foregoing aspects.
  • an embodiment of the present application provides a system.
  • the system includes a first terminal, a second terminal, and network equipment in any aspect.
  • FIG. 1a is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 1b is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the application.
  • Figure 4 is a schematic diagram of a scenario provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 10 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • "at least one” generally refers to one or more.
  • “Multiple” usually means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • the communication method provided in the embodiments of the present application can be applied to a communication system with CLI.
  • a communication system with CLI For example, the flexible duplex system mentioned above, or the integrated access and backhaul system (IAB). It can also be applied to a remote interference management (RIM) system.
  • RIM remote interference management
  • FIG. 1a which is an exemplary architecture of a communication system to which the embodiments of this application are applicable.
  • the communication system includes network equipment and terminal equipment. Among them, FIG. 1a exemplarily shows three terminal devices (ie UE1 to UE3) and two network devices (ie base station 1 and base station 2).
  • the aforementioned terminal device can be connected to the network device through an air interface to receive network services.
  • the aforementioned network equipment is mainly used to implement wireless physical layer functions, resource scheduling and wireless resource management, wireless access control, mobility management functions, or other functions.
  • Any one of the first terminal, the second terminal or the third terminal in this application can be replaced with a network device, that is, the first network device, the second network device or the third network device.
  • the first terminal, the second terminal or the third terminal in this application are terminal devices respectively.
  • the “obtaining” in this application includes: pre-configuration in the terminal/network device, or configuration by the network device to the terminal.
  • the “configured” or “configured” in this application may mean that the network device is configured to the terminal through signaling, where the signaling may be at least one of RRC signaling, MAC signaling or physical layer signaling.
  • the above-mentioned network device may refer to a device with a wireless transceiving function, may also refer to a chip system set in the device, or other forms.
  • the network equipment includes but is not limited to: access point (AP) in the Wi-Fi system, such as home wireless router, wireless relay node, wireless backhaul node, transmission and reception point, TRP or transmission point, TP), eNB, macro base station, micro base station, high frequency base station, new radio base station (New radio eNB), radio network controller (RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), and can also be a 5G system , Such as gNB in NR, or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panel of a base
  • the gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the gNB may also include a radio unit (RU).
  • CU implements part of the functions of gNB
  • DU implements part of the functions of gNB.
  • CU implements the functions of radio resource control (radio resource control, RRC), packet data convergence protocol (PDCP) layer and service discovery application profile (SDAP) layer
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service discovery application profile
  • DU implements wireless link
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • a CU can be divided into network equipment in an access network (radio access network, RAN), or a CU can be divided into network equipment in a core network (core network, CN), which is not limited here.
  • the aforementioned terminal equipment may be a user equipment with a wireless transceiver function or a chip system set in the user equipment.
  • the foregoing terminal equipment may also be referred to as a station (STA), user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile Device, user terminal, wireless communication device, user agent or user device.
  • STA station
  • UE user equipment
  • the above-mentioned terminal equipment includes, but is not limited to: mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in transportation safety, wireless terminals in smart cities, and sensor equipment, such as monitoring Terminal etc.
  • VR virtual reality
  • AR augmented reality
  • FIG. 1a is only a simplified schematic diagram of an example for ease of understanding, and only shows terminal equipment and network equipment (such as a base station).
  • the wireless communication system may also include other network devices (such as core network devices) or other terminal devices, which are not shown in FIG. 1a.
  • the foregoing communication system may be applied to LTE, or a 5G network or other similar networks currently under development, or other networks in the future, which is not specifically limited in the embodiment of the present application.
  • the network device and the terminal device in the above-mentioned communication system may correspond to different names. Those skilled in the art can understand that the name does not limit the device itself.
  • the terminal and network device in the embodiment of the present application may be implemented by different devices.
  • the terminal and network device in the embodiment of the present application can be implemented by the communication device in FIG. 2.
  • Fig. 2 shows a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • the communication device 200 includes at least one processor 201, a communication line 202, a memory 203, and at least one transceiver 204.
  • the memory 203 may also be included in the processor 201.
  • the processor 201 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 202 may include a path to transmit information between the aforementioned components.
  • the transceiver 204 is used to communicate with other devices.
  • the transceiver may be a module, a circuit, a bus, an interface, or other device capable of implementing communication functions, and is used to communicate with other devices.
  • the transceiver may be an independently set transmitter, which may be used to send information to other devices, and the transceiver may also be an independently set receiver, which is used to receive information from other devices.
  • the transceiver may also be a component that integrates the functions of sending and receiving information. The embodiment of the present application does not limit the specific implementation of the transceiver.
  • the memory 203 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 202. The memory can also be integrated with the processor.
  • the memory 203 is used to store computer-executed instructions used to implement the solution of the present application, and the processor 201 controls the execution.
  • the processor 201 is configured to execute computer-executable instructions stored in the memory 203, so as to implement various methods provided in the following embodiments of the present application.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, instructions, computer programs or other names, which are not specifically limited in the embodiments of the present application.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2.
  • the communication device 200 may include multiple processors, such as the processor 201 and the processor 207 in FIG. 2. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication device 200 may further include an output device 205 and an input device 206.
  • the output device 205 communicates with the processor 201 and can display information in a variety of ways.
  • the output device 205 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 206 communicates with the processor 201 and can receive user input in a variety of ways.
  • the input device 206 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • Figure 2 shows an exemplary structure diagram of a communication device. It should be understood that the illustrated communication device is only an example, and in actual applications the communication device may have more or fewer components than those shown in FIG. 2, and two or more components may be combined, Or it can have different component configurations.
  • the aforementioned communication device 200 may be a general-purpose device or a special-purpose device, and the embodiment of the present application does not limit the type of the communication device 200.
  • the terminal or the access network device may be a device with a structure similar to FIG. 2.
  • the communication method provided by the embodiment of the present application will be described below in conjunction with the communication system shown in FIG. 1a and FIG. 1b.
  • the following description mainly takes the network equipment as the base station as an example, and here is a unified statement, and will not be repeated here.
  • the communication method provided by the embodiment of the present application includes the following steps:
  • the second terminal sends the first SRS to the first terminal.
  • the first terminal receives at least one SRS sent by at least one second terminal.
  • the first SRS is used to detect CLI, and the first SRS occupies the first resource.
  • the first terminal generally refers to a terminal that may be interfered.
  • the first terminal may also be referred to as an interfered terminal.
  • the second terminal refers to a terminal that may generate CLI to the first terminal.
  • the second terminal may also be referred to as an interfering terminal.
  • the roles of the first terminal and the second terminal may be interchanged.
  • UE2 and UE3 perform uplink transmission.
  • UE2 and UE3 may generate CLI for UE1.
  • UE1 may be referred to as the first terminal
  • UE2 and UE3 may be referred to as second terminals.
  • UE1 may be referred to as the second terminal, and correspondingly, UE2 and UE3 that may be interfered by the uplink transmission of UE1 may be referred to as the first terminal.
  • UE1 and UE2 may be UEs to which neighboring cells belong.
  • UE1 and UE2 may be UEs belonging to the same cell.
  • the first SRS refers to the SRS used to detect CLI.
  • An interfering terminal sends the first SRS on the first resource.
  • the interfered terminal monitors the first SRS, and after receiving the first SRS, measures the signal strength of the first SRS to obtain the measurement result of the first SRS.
  • the measurement result may be a layer 3 (layer 3, L3) measurement result, that is, the L3 measurement result is obtained by filtering the signal strength of the first SRS measured.
  • the filtering can be layer 3 filtering, and the parameters used for layer 3 filtering can be configured.
  • measuring the signal strength of the first SRS may be a layer 1 (layer 1, L1) measurement result.
  • first terminal can monitor the first SRS from one or more second terminals, and then determine the signal strength of the corresponding first SRS.
  • two second terminals send the first SRS to the first terminal as an example.
  • the first terminal obtains information about the measurement result of the at least one second terminal according to the at least one first SRS.
  • the measurement result is used to characterize the signal strength of the first SRS sent by the second terminal.
  • the first terminal monitors the first SRS from one or more second terminals, it can measure the signal strength of each first SRS to obtain measurement results of different second terminals.
  • the measurement result of a certain second terminal characterizes the signal strength of the first SRS sent by the second terminal, and can also characterize the CLI interference degree of the second terminal to the first terminal.
  • the stronger the signal strength of the first SRS sent by the second terminal that is, the greater the value of the measurement result, indicates that the CLI interference of the second terminal to the first terminal is more severe.
  • the first terminal when the first terminal measures the signal strength of the first SRS, the first terminal may measure the RSRP of the first SRS, and use the RSRP of the first SRS as the measurement result of the first SRS.
  • the first terminal measures the RSSI of the first SRS, and uses the RSSI of the first SRS as the measurement result of the first SRS.
  • other indicators may also be used as the measurement result of the first SRS. I will not list them all here.
  • the specific index used by the first terminal as the measurement result may be indicated by the network device through configuration information. Or, the first terminal determines which index to use as the measurement result according to its own pre-configuration rule. For a detailed introduction of which indicator the first terminal uses as the measurement result, please refer to the following text.
  • the measurement result may be derived, filtered or calculated by the first terminal on the measurement sampling of the first SRS in the first time period.
  • the measurement result may be the average value of the measurement samples of the first SRS in the first time period, for example, the average value of the measurement samples of the first SRS in the first time period weighted according to different parameters.
  • the first time period set for the measurement of the first SRS may be configured.
  • the measurement result may also be derived, filtered or calculated by the first terminal on the measurement sampling of the first SRS in the second time period.
  • the measurement result may be the ratio of the measurement samples of the first SRS in the second time period that are greater than the fourth threshold value, for example, 100 samples of the first SRS measurement in the second time period, there is If 60 are greater than the fourth threshold, the measurement result is expressed as 60%.
  • the second time period set for the measurement of the first SRS may be configured.
  • the first time period and the second time period may be the same or different.
  • the fourth threshold value can be configured.
  • the information of the one or more measurement results includes indication information of the one or more measurement results, and/or second indication information.
  • the indication information of the measurement result is information indicating the measurement result
  • the terminal device may directly report the measurement result or the index of the measurement result or the identifier of the measurement result or other information indicating the measurement result.
  • the embodiment of this application mainly reports the measurement result as an example. It is understandable that as long as the terminal can finally inform the network device of the relevant information of the measurement result, so that the network device can obtain the measurement result, it should be described in the solution of the embodiment of this application. Within the scope of protection.
  • the second indication information is indication information of the second terminal corresponding to the one or more measurement results respectively. That is, the second indication information can be used to distinguish different second terminals.
  • the second indication information includes resource indication information of the first SRS, or one or more of the first SRS sequence or the first SRS sequence set.
  • the second indication information may also be other information that can distinguish different second terminals. The detailed description of the second indication information can be found below.
  • the first terminal obtains first indication information.
  • the first indication information is used to indicate information for the first terminal to report the measurement result.
  • the first indication information indicates the number of measurement results reported by the first terminal and at least one of the characteristics of the reported measurement results.
  • the first indication is pre-configured in the first terminal, or the first indication information is configured to the first terminal by the network device.
  • the order of steps 303 and 301, 302 is not limited, and can be sequential or simultaneous.
  • the first terminal may first obtain the first indication information, and then receive the first SRS from the second terminal, and measure the measurement result of the first SRS. It may also be that the first SRS is received from the second terminal first, and then the first indication information is obtained.
  • the feature of the reported measurement result may include: the reported measurement result is the RSRP of the first SRS, or the reported measurement result is the RSSI, or the reported measurement result is the RSRP and RSSI of the first SRS.
  • the first terminal sends information about one or more measurement results to the network device according to the first indication information.
  • the network device receives information about one or more measurement results from the first terminal.
  • the first terminal after a certain second terminal sends the first SRS, if the first terminal can monitor the first SRS of the second terminal, the first terminal can measure the signal strength of the first SRS, Then, information about the measurement result of the first SRS is obtained. In addition, the first terminal may also report the measurement result information to the network device, so that the network device can obtain the measurement results of different second terminals. In this way, in the follow-up, the network device may learn the CLI degree of different second terminals to the first terminal based on one or more measurement results, and perform some CLI-reducing operations.
  • the network device can learn which second terminal is specifically interfering with the first terminal according to the second indication information corresponding to the measurement result.
  • the first terminal measures a certain first SRS, and feeds back the second indication information of the first SRS to the network device, including but not limited to the first SRS sequence, or the first SRS sequence set, or the first SRS sequence.
  • the network device can determine the sender of the first SRS.
  • the first terminal measures a certain first SRS, and feeds back the resource identifier of the first SRS to the network device, so that the network device can know which terminal is the second terminal that uses the resource to send the first SRS, and then the network The device can determine the source of interference that generates the CLI to the first terminal.
  • the first indication information is configured by the network device as an example.
  • the implementation process of the first indication information pre-configured in the terminal please refer to the following description, and the embodiment of the present application will not focus on the description.
  • S303 may be specifically implemented as:
  • the first terminal receives first indication information from the network device.
  • the first indication information is used to instruct the first terminal to send information about the largest N measurement results among the measurement results of at least one second terminal.
  • the first indication information is used to instruct the first terminal to send the largest N measurement results among the measurement results of at least one second terminal and/or the second indication information corresponding to the largest N measurement results, or
  • the smallest N measurement results and/or the smallest N measurement results respectively correspond to the second indication information.
  • N is an integer greater than or equal to 1. That is, the first terminal may report the largest N measurement results, or report the second indication information corresponding to the largest N measurement results, or report the largest N measurement results and the largest N measurement results at the same time.
  • the measurement results respectively correspond to the second indication information.
  • Instruction information When a similar description appears later, the principle can be found here.
  • the value of N may be the same as the number of measurement results of at least one second terminal. That is, the first terminal monitors several measurement results, and reports all the measurement results. In this way, the network device receives all the measurement results. Since all the measurement results can fully and accurately reflect the first SRS signal strength of different second terminals, the network device can learn the comprehensive and accurate information between the first terminal and the different second terminals. CLI situation. Furthermore, based on the precise CLI situation, some CLI reduction operations are performed.
  • the value of N may be less than the number of measurement results of at least one second terminal. Only part of the measurement results are reported, which reduces the signaling overhead for reporting the measurement results.
  • the N measurement results are the largest N measurement results among the measurement results of at least one second terminal, that is, the feature of the reported measurement result is the largest measurement result.
  • N is an integer greater than or equal to 1.
  • the value of N can be pre-configured in the terminal by the manufacturer according to regulations, or N is sent to the terminal by the network device, and the terminal stores the value of N.
  • the number of measurement results of at least one second terminal is greater than or equal to N, and the first terminal sends N measurement results to the network device.
  • the first terminal monitors five first SRSs from different second terminals, and the measurement results of the five first SRSs are in order: measurement result 3 (corresponding to the SRS of UE3)> measurement result 2 ( SRS corresponding to UE2)>Measurement result 5 (SRS corresponding to UE5)>Measurement result 4 (SRS corresponding to UE4)>Measurement result 1 (SRS corresponding to UE1), assuming the value of N is 3, then the first The terminal reports the measurement results of UE3, UE2, and UE5 to the network equipment respectively.
  • the network device can roughly learn the CLI situation between the first terminal and other terminals based on the measurement result of the strongest CLI, so as to perform some CLI reduction operations to reduce the CLI between the first terminal and other terminals. It can be seen that only part of the measurement results are reported, which reduces the signaling overhead for reporting the measurement results.
  • S304 can be specifically implemented as the following steps:
  • the first terminal sends information about N measurement results to the network device according to the first indication information.
  • the network device receives information about N measurement results from the first terminal.
  • S303 may be specifically implemented as S3032 as follows:
  • the first terminal receives first indication information from the network device.
  • the first indication information is used to instruct the first terminal to send information about J measurement results that are greater than or equal to the first threshold in the measurement results of at least one second terminal, and the information about the J measurement results includes information about the J measurement results. Indication information and/or second indication information, where the second indication information is indication information of the second terminal corresponding to the J measurement results, and J is a positive integer.
  • the one or more measurement results reported by the first terminal are information about J measurement results.
  • J is a positive integer, and J is sent to the first terminal by the network device, or is pre-configured in the first terminal.
  • the J measurement results reported by the first terminal are J measurement results of the measurement results of at least one second terminal that are greater than or equal to the first threshold. In this way, only part of the measurement result is reported, which can reduce the signaling overhead of reporting the measurement result. For example, if the first terminal monitors 5 first SRSs from other terminals, and the value of J is 3, the first terminal reports 3 measurement results that are greater than or equal to the first threshold.
  • the first terminal reports a measurement result that is greater than or equal to the third threshold value.
  • the first terminal reports the largest one or M measurement results.
  • One or M are configured by the network device or pre-configured in the first terminal. M is a positive integer.
  • the above-mentioned threshold values may all be pre-configured in the terminal, or they may all be sent to the terminal by the network device. Or, some thresholds are pre-configured in the terminal, and some are configured by network equipment.
  • the N measurement results reported in the process shown in Figure 7 may be lower than the preset first threshold.
  • the UE can be instructed to report greater than or equal to Information about J measurement results of the first threshold value.
  • the number of measurement results that are greater than or equal to the first threshold value among the measurement results actually obtained by the UE is not enough J, only the measurement results that are greater than or equal to the first threshold value may be reported. The meaning of insufficient is less than.
  • the network device knows the second terminal that has a more severe CLI for the first terminal, so that the network device can formulate an interference reduction strategy based on the most severe CLI situation. Or, report the smallest J measurement results, so that the network device can learn which second terminals have a low CLI degree to the first terminal, and further, it is not necessary to perform other operations on the interference of these second terminals.
  • S304 can be specifically implemented as the following S3042:
  • the first terminal sends information about J measurement results that are greater than or equal to the first threshold in the measurement results of at least one second terminal to the network device according to the first indication information.
  • the information of the J measurement results includes indication information and/or second indication information of the J measurement results, and the second indication information is the indication information of the second terminal corresponding to the J measurement results.
  • S303 may be specifically implemented as the following S3033:
  • the first terminal receives first indication information from the network device.
  • the first indication information is used to instruct the first terminal to send information about W measurement results that are less than or equal to the second threshold value among the measurement results of at least one second terminal.
  • the information of the W measurement results includes indication information of the W measurement results and/or second indication information, the second indication information is the indication information of the second terminal corresponding to the W measurement results, and W is a positive integer .
  • the first terminal reports W measurement results. In this way, signaling overhead can be reduced.
  • the number of measurement results of at least one second terminal is less than W.
  • the first terminal may report all measurement results of at least one second terminal.
  • the first terminal may randomly select (for example, select the smallest) W measurement results from the measurement results of at least one second terminal, and Report W measurement results.
  • the first terminal may not report any measurement result.
  • the embodiment of the present application does not specifically limit the number of measurement results reported by the first terminal.
  • S304 may be specifically implemented as the following S3043:
  • the first terminal sends information about W measurement results that are smaller or equal to the second threshold value among the measurement results of at least one second terminal to the network device according to the first indication information.
  • the information of the W measurement results includes indication information of the W measurement results and/or second indication information, and the second indication information is the indication information of the second terminal corresponding to the W measurement results.
  • the above S304 may also be implemented as the following steps:
  • the first terminal sends the information of the first measurement result to the network device.
  • the information of the first measurement result includes the first measurement result and/or second indication information corresponding to the first measurement result.
  • the first terminal sends the information of the second measurement result to the network device, that is, sends the second measurement result and/or the second measurement result corresponding to the first measurement result. Instructions.
  • the difference between the second measurement result and the first measurement result is greater than or equal to the preset difference.
  • the first time has no correlation with the first time period
  • the second time has no correlation with the second time period
  • the difference between the second measurement result and the first measurement result is greater than or equal to the preset difference. That is, when reporting two measurement results, the first terminal only reports the second measurement result after determining that the difference between the second measurement result and the first measurement result is greater than or equal to the preset difference.
  • the time interval between the two reports can be pre-configured, or sent by the network device to the first terminal.
  • the preset difference value may be pre-configured or sent by the network device to the first terminal.
  • the two measurement results may be information of the measurement results of the first SRS for the same second terminal. That is, it is possible to measure the first SRS multiple times for the same second terminal, and periodically report multiple measurement results.
  • the difference between the two measurement results is greater than or equal to the preset difference, which refers to the second measurement
  • the result is larger than the first measurement result, and the difference between the second measurement result and the first measurement result is equal to the preset difference.
  • the second measurement result is larger than the first measurement result, and the difference between the second measurement result and the first measurement result is greater than the preset difference.
  • the difference between the two measurement results is greater than or equal to the preset difference, or the second measurement result is smaller than the first measurement result, and the difference between the second measurement result and the first measurement result is equal to The preset difference.
  • the second measurement result is smaller than the first measurement result, and the difference between the second measurement result and the first measurement result is greater than the preset difference. That is, when the difference between the second measurement result and the first measurement result is large, the first terminal will report the second measurement result for the same second terminal.
  • the first SRS can be measured multiple times for the same second terminal, which can improve the accuracy of the first SRS measurement result of the second terminal. Further, measurement results with similar values usually indicate that the position and signal quality of the second terminal have not changed or changed little.
  • the measurement result of the first SRS obtained from the second terminal may be redundant information.
  • the network device may not need this redundant information to make decisions. Therefore, in the embodiment of the present application, the first terminal only reports the second measurement result that is significantly different from the first measurement result. In this way, it is possible to prevent the first terminal from reporting redundant measurement results with similar values and reduce signaling. Overhead.
  • the two measurement results may be information of the measurement results of the first SRS for different second terminals.
  • UE1 sends the measurement result of the first SRS of UE2 to the network device
  • the UE sends the first SRS measurement result of UE3 to the network device.
  • SRS measurement results the difference between the two measurement results is greater than or equal to the preset difference, which can mean that the measurement result of UE3 is greater than the measurement result of UE2, and the interpolation between the measurement result of UE3 and the measurement result of UE2 is greater than or equal to the preset Difference.
  • the measurement result of UE3 is smaller than the measurement result of UE2, and the difference between the measurement result of UE3 and the measurement result of UE2 is greater than or equal to the preset difference.
  • the first terminal, the second terminal, and the network device may configure the first SRS through some interaction procedures, so that the first terminal can measure the first SRS.
  • the interaction process includes the following steps:
  • the first terminal sends first capability information to the network device.
  • the network device receives the first capability information from the first terminal.
  • the first capability information indicates capability information used to measure CLI.
  • the first capability information includes at least one of the following: the number of first SRSs that the first terminal can monitor in a time unit, whether the first terminal can monitor consecutive symbols, the maximum number of symbols that the first terminal can monitor in a time unit, and the The maximum number of consecutive symbols that a terminal can monitor in a time unit.
  • the time unit may be a slot.
  • a time unit includes a slot, or includes multiple slots, or includes a duration, and a duration includes any one or a combination of one or more time slots.
  • step S1101 is optional, that is, this step may not be executed, and the following steps are continued.
  • the first terminal may also report the first capability information to an operation management (OAM) system.
  • OAM operation management
  • the first terminal sends second capability information to the network device.
  • the network device receives the second capability information from the first terminal.
  • the second capability information indicates the capability of the first terminal to report the measurement result.
  • the second capability information is used to indicate the number of measurement results that the first terminal can report to the network device, and the measurement results include measurement results for at least one first SRS.
  • the measurement result of the first SRS characterizes the signal strength of the first SRS sent by the second terminal, and can also characterize the CLI interference degree of the second terminal to the first terminal.
  • the second capability information may also be referred to as the reporting capability of the first terminal.
  • the measurement results may also include other types of measurement results.
  • it may include the measurement result of RSRP, or the measurement result of RSRQ, or the measurement result of received signal strength indicator (RSSI).
  • the first terminal uses the second capability information to enable the network device to learn the number of RSRP measurement results that the first terminal can report, and/or learn the number of measurement results for RSRQ, and/or learn the number of measurement results for RSSI
  • the network device performs related configuration for the first terminal according to the number of measurement results that can be reported by the first terminal.
  • step S1102 is optional, that is, there may be no such step, and the following steps are continued.
  • the first terminal sends third capability information to the network device.
  • the network device receives the third capability information from the first terminal.
  • the third capability information is used to indicate a multiplexing relationship between the second resource and the first resource for transmitting the first SRS, and the multiplexing relationship includes at least one of time division multiplexing and frequency division multiplexing.
  • Frequency division multiplexing is specifically: the first resource and the second resource are the same in the time domain resource, and the frequency domain resource is adjacent or non-overlapping; or, there is a partial overlap on the time domain resource, and the frequency domain resource is adjacent Or do not overlap.
  • the time division multiplexing is specifically: the first resource and the second resource are the same in frequency domain resources, and the time domain resources are adjacent or non-overlapping; or, there is a partial overlap on the frequency domain resources, and the time domain resources are adjacent or Does not overlap.
  • the first resource is a resource used to transmit the first SRS.
  • the second resource is the resource used for data transmission.
  • Data transmission includes any one or more of the following: physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH), physical random access channel (PRACH) ), physical downlink control channel (PDCCH), channel state indicator reference signal (CSI-RS), physical uplink control channel (PUCCH), physical side link Control channel (physical sidelink control channel, PSCCH), or physical sidelink shared channel (PSSCH), physical sidelink feedback channel (physical sidelink feedback channel, PSFCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • CSI-RS channel state indicator reference signal
  • PUCCH physical uplink control channel
  • PSCCH physical side link Control channel
  • PSSCH physical sidelink shared channel
  • PSFCH physical sidelink feedback channel
  • the data transmission can also be other forms of data transmission.
  • the third capability information indicates the multiplexing relationship between the first resource and the second resource, and may indicate which multiplexing relationship or multiplexing relationships exist between the first resource and the second resource.
  • the multiplexing relationship can be supported by the first terminal.
  • the third capability information indicates that the first resource and the second resource are time division multiplexed.
  • the third capability information indicates which multiplexing relationship or multiplexing relationships cannot exist between the first resource and the second resource, that is, which multiplexing relationship or multiplexing relationships are not supported by the first terminal.
  • the third capability information indicates that the first resource and the second resource cannot be frequency division multiplexed, or the time-frequency resource cannot be included (such as overlapping) between the first resource and the second resource, or, There must be no overlap in time-frequency resources between the first resource and the second resource.
  • the network device when the network device receives the above-mentioned third capability information, when configuring the first resource and the second resource for the terminal, it will reasonably configure the resources according to the resource reuse relationship supported or not supported by the terminal to reduce the first resource and the second resource. The probability of the second resource conflict.
  • the resources occupied by the first SRS are different from resources for downlink transmission, and the resources occupied by the first SRS are different from resources for uplink transmission.
  • Downlink transmission includes PDCCH, or PDSCH, or synchronization signal (synchronization signal, SS), or physical broadcast channel (physical broadcast channel, PBCH); uplink transmission includes at least one of PUCCH, or PUSCH, or PRACH, or second SRS .
  • the second SRS is not an SRS used to detect CLI.
  • the uplink transmission and the downlink transmission may also be other forms of uplink transmission or downlink transmission.
  • the network device when configuring the uplink transmission or the downlink transmission, the network device considers whether the uplink transmission or the downlink transmission overlaps with the first SRS. If overlap occurs, the network device either configures a certain resource for uplink transmission or downlink transmission, or configures it for transmission of the first SRS. To avoid conflicts between uplink or downlink transmission and the first SRS on the same resource.
  • the terminal behavior as follows.
  • the resources occupied by the first SRS are the same as some resources in the downlink transmission resources, or the resources occupied by the first SRS are the same as some resources in the uplink transmission resources, on the same resources, the first SRS is detected by the terminal and the downlink transmission is The terminal discards, or the downlink transmission is detected by the terminal and the first SRS is discarded by the terminal, or the first SRS is detected by the terminal and the uplink transmission is discarded by the terminal, or the uplink transmission is detected by the terminal and the first SRS is discarded by the terminal.
  • the network device configures the resource for uplink transmission and for transmitting the first SRS.
  • the network device may instruct the first terminal to detect uplink transmission first when detecting on the resource, and not to detect the first SRS, that is, to discard the first SRS.
  • the first terminal preferentially detects the first SRS and does not detect uplink transmission.
  • step S1103 is optional, that is, there may be no such step, and the following steps are continued.
  • the first terminal obtains the third capability information through preset acquisition.
  • the first terminal may first send the first capability information to the network device, and then send the second capability information to the network device.
  • the first terminal may also send the third capability information to the network device first, and then send the first capability information to the network device, and so on.
  • Any one of the first capability information, the second capability information, or the third capability information may be placed in a MAC packet or a data packet by the terminal and sent to the network device.
  • the first terminal obtains configuration information.
  • the first terminal obtains configuration information from the network device.
  • the configuration information is pre-configured in the first terminal.
  • a part of the configuration information is received from the network device, and another part of the configuration information is preset.
  • the network device determines configuration information based on at least one of the foregoing capability information of the first terminal (for example, the second capability information).
  • the network device may also determine the configuration information based on its own policy, and send the configuration information to the first terminal.
  • the embodiment of the present application does not limit the manner in which the network device determines the configuration information.
  • the configuration information is used to indicate at least one of the following:
  • the reported measurement result is RSRP, or RSSI, or RSRP and RSSI.
  • the measurement result is used to characterize the signal strength of the first SRS.
  • the measurement result used as the signal strength characterization of the first SRS is RSRP, or RSSI, or RSRP and RSSI.
  • RSRP can be replaced with SRS-RSRP or CLI-RSRP.
  • RSSI can be replaced with SRS-RSSI or CLI-RSSI.
  • the available first resource refers to a resource available for the interfering terminal to send the first SRS.
  • a resource pool can be pre-defined, and the resource pool is the first available resource.
  • the available first resource information includes the starting time slot (slot) position of the resource pool, the number of slots, the position of the orthogonal frequency division multiplexing (OFDM) symbol starting in a slot, and the number of symbols Number, the initial physical resource block (PRB) position, or the number of PRBs, the initial resource element (resource element, RE) position, or one or a combination of the number of REs. Any one or more of the number of slots, the number of symbols, and the number of PRBs may be continuous or non-continuous.
  • the first terminal when the first terminal acts as an interfering terminal, it can select the resource for sending the first SRS from the available first resources (that is, the aforementioned resource pool).
  • the configured first resource refers to the resource used by the interfering terminal to send the first SRS.
  • the information of the configured first resource includes the starting slot position, the number of slots, the starting OFDM symbol position in a slot, the number of symbols, the starting PRB position, the number of PRBs, the starting RE position, or the RE One or more combinations of numbers. Any one or more of the number of slots, the number of symbols, the number of PRBs, and the number of REs may be continuous or non-continuous.
  • the reference information used to measure RSSI (which can be understood as used to transmit RSSI) includes reference subcarrier spacing (subcarrier spacing, SCS), which is used to measure the starting slot position of RSSI, and the number of slots used to measure RSSI.
  • SCS reference subcarrier spacing
  • Used to measure the starting OFDM symbol position of RSSI used to measure the number of RSSI symbols, used to measure the starting PRB position of RSSI, used to measure the number of RSSI PRBs, used to measure the starting RE position of RSSI, or One or more combinations of the number of REs used to measure RSSI. Any one or more of the number of slots, the number of symbols, the number of PRBs, and the number of REs may be continuous or non-continuous.
  • the subcarrier interval on the active (bandwidth partial, BWP) where the first terminal is located may be different from the reference subcarrier interval used for RSSI measurement.
  • the symbols and bandwidths defined by different subcarrier intervals may be different. Exemplarily, it is assumed that the sub-carrier interval on the active BWP is 20 kHz, and the reference sub-carrier interval used for RSSI measurement is 40 kHz.
  • the network device configures the first terminal to detect 4 symbols when measuring RSSI (that is, the symbols used for RSSI measurement), when the first terminal measures RSSI, the reference subcarrier interval used for RSSI measurement is doubled (by 20kHZ To 40kHZ), the first terminal actually detects 2 symbols.
  • the number of symbols configured by the network device for RSSI measurement is an odd number, then the first terminal derives the result from the relationship between the active BWP subcarrier interval and the reference subcarrier interval used for RSSI measurement
  • the actual measurement symbol may not be an integer. Therefore, it is necessary to re-determine the actual measurement symbol and bandwidth of the terminal.
  • the actual measurement symbol is determined by the round-down or round-up method.
  • the UE is configured by the network device to measure 7 symbols, but the reference subcarrier interval used for RSSI measurement is twice the active BWP subcarrier interval. Then, in this situation, the UE is actually configured to measure 3.5 symbols.
  • the UE actually measures 3 symbols.
  • the UE actually measures 4 symbols. It can also be said that when the symbol or the number of symbols defined by the reference subcarrier interval used to measure RSSI does not meet the requirement of activating the integer symbol defined by BWP SCS, the UE can determine the actual measured value by rounding up or down. The number of symbols to meet the integer symbol requirement for BWP SCS activation.
  • the UE can also calculate any one of the integer RB/RE by referring to the above method. As a possible implementation, it may be rounding down the symbol, rounding up RB/RE, or rounding up the symbol, rounding down RB/RE, or other rounding the way.
  • the rounding method can be configured or preset in the terminal.
  • the reference information used to measure the RSRP can be configured independently of the reference information used to measure the RSSI, and the two do not affect each other.
  • the configured transmission resources may have the following relationships.
  • the first SRS used to measure RSRP occupies resource 1 and the occupancy resource 2 used to measure RSSI, and resource 1 and resource 2 may partially overlap or not overlap. It can also overlap completely.
  • the occupied resources in this application can be replaced with used resources.
  • the number of RSSI and RSRP that the first terminal can report may be different or the same. It can be flexibly configured according to actual application scenarios.
  • each sequence set contains at least one sequence.
  • each root sequence set includes at least one root sequence.
  • the first SRS to be transmitted/measured can be obtained by performing cyclic shift based on the configured root sequence.
  • the root sequence is randomly selected from the root sequence set, and the first SRS to be transmitted is obtained through cyclic shift.
  • each sequence set contains at least one root sequence.
  • the first SRS to be transmitted/measured can be obtained based on the configured root sequence and cyclic shift.
  • the root sequence is randomly selected from the root sequence set, and the first SRS to be transmitted is obtained through cyclic shift.
  • the resource indication information includes a resource or resource set used for transmission.
  • the resource used for transmission can be represented by a resource identifier (index/ID), such as SRS resource index;
  • a resource set can be represented by a resource set identifier (index/ID), such as SRS set resource index or SRS resource set index.
  • rate matching for the first terminal refers to repeating or puncturing the uplink or downlink information transmitted by the first terminal to match the carrying capacity of the physical channel, and the transmission of uplink or downlink information.
  • the rate is up to standard.
  • rate matching please refer to the prior art, which will not be repeated here.
  • the first terminal sends information in a retransmission or puncturing manner to match the carrying capacity of the physical channel.
  • the information reported for the measurement result includes both the measurement result and the second indication information.
  • Reporting the measurement result includes simultaneously reporting the second indication information of the measured first SRS.
  • the second indication information of the first SRS includes resource indication information of the first SRS, or a combination of one or more of the first SRS sequence.
  • the resource indication information of the first SRS includes: the first SRS resource identifier or the first SRS resource index, or the first SRS collective resource identifier, or one or more of the first SRS collective resource index combination. That is, sending one or more measurement results to the network device includes sending the measurement results while also reporting the second indication information of the measured first SRS.
  • the first SRS set includes one or more first SRSs, and the first SRS set resource identifier may be used to transmit all resource identifiers of the multiple first SRSs.
  • the configuration information can be used to instruct the first terminal to report some other information while reporting the measurement result.
  • a message can carry information such as resources and sequences related to the first terminal.
  • the measurement result corresponds to the second indication information in the reported message one-to-one.
  • the measurement result information only contains the second indication information. Reporting the measurement result only reports the measured second indication information of the first SRS that meets the measurement result requirement. Wherein, meeting the measurement result requirement means meeting the first indication information requirement.
  • the second indication information of the first SRS includes resource indication information of the first SRS, or a combination of one or more of the first SRS sequence.
  • the resource indication information of the first SRS includes: the first SRS resource identifier or the first SRS resource index, or the first SRS collective resource identifier, or one or more of the first SRS collective resource index combination. That is, sending one or more measurement results to the network device includes sending the measurement results while also reporting the second indication information of the measured first SRS.
  • the first SRS set includes one or more first SRSs, and the first SRS set resource identifier may be used to transmit all resource identifiers of the multiple first SRSs.
  • the configuration information can be used to instruct the first terminal to report only some other information when reporting the measurement result.
  • the measurement result itself is not directly reported, and information such as resources and sequences related to the first terminal may be carried.
  • the measurement result corresponds to the second indication information one to one.
  • the information of measurement results only includes measurement results.
  • the configuration information may also be used to indicate the manner in which the first terminal reports the measurement result.
  • the method of reporting measurement results includes the number of reported measurement results and the characteristics of the reported measurement results.
  • the method for reporting the measurement result is at least one or a combination of the following, the first terminal reports according to the method for reporting the measurement result indicated by the configuration information.
  • the method for reporting measurement results may be at least one or a combination of the following:
  • Manner 1 The first terminal reports information of N measurement results according to the method flow shown in FIG. 7.
  • Method 2 Different thresholds can be set, and the measurement results to be reported can be judged based on the different thresholds. That is, the first terminal reports the measurement result information according to the method flow shown in FIG. 8.
  • Manner 3 The first terminal reports information about W measurement results according to the method flow shown in FIG. 9.
  • Manner 4 The first terminal reports information about K measurement results from the second terminal in the first cell, and reports information about 1 measurement result from the second terminal in the second cell.
  • I and K are both positive integers, and I and K may be the same or different.
  • the first terminal may set different upper limits for the number of measurement results for different cells.
  • the measurement result reported by the first terminal is the H measurement results of which the measurement result of at least one second terminal is greater than or equal to the result threshold, and the measurement result is the largest, and H is a positive integer.
  • Manner 6 The first terminal reports information about different measurement results at preset time intervals. That is, report the measurement results according to the process shown in Figure 10.
  • Manner 7 The first terminal reports the second indication information of the first SRS.
  • the reporting of the second indication information of the first SRS includes reporting the second indication information corresponding to the measurement result while reporting the measurement result. That is, the second indication information and the measurement result are reported in one-to-one correspondence.
  • the network device obtains the measurement results and knows which terminal the measurement results correspond to interference from .
  • the first SRS collection resource identifier/first SRS collection resource index of the two first SRSs are reported at the same time, so that the network device knows the measurement result while acquiring the measurement result It corresponds to the interference from which terminal.
  • the network device when reporting two measurement results, report the resource identifiers/resource indexes and collective resource identifiers/SRS collective resource indexes of the two first SRSs at the same time, that is, report the resource identifiers of the two first SRSs at the same time And the first SRS collective resource identifier, or, report the resource identifiers of the two first SRSs and the first SRS collective resource index at the same time, or report the resource indexes of the two first SRSs and the first SRS collective resource at the same time Index, or report the respective resource indexes of the two first SRSs and the first SRS set resource identifier at the same time.
  • the network device knows which terminal the interference from the measurement result corresponds to while acquiring the measurement result.
  • the network device obtains the measurement result and knows which terminal the measurement result corresponds to interference from.
  • the second indication information for reporting the first SRS includes: the second indication information is reported in a one-to-one correspondence with one or more measurement results.
  • reporting two measurement results when reporting two measurement results, report the respective resource identifiers/resource indexes and sequences of the two first SRSs at the same time, so that the network device obtains the measurement results and knows which terminal the measurement results correspond to Interference.
  • the same piece of configuration information may be used to report the sequence or sequence set of the first SRS and the second indication information.
  • Two pieces of configuration information may be used to report the sequence or sequence set of the first SRS and the second indication information respectively.
  • the embodiments of this application do not limit this.
  • the reporting of the second indication information of the first SRS includes reporting only the second indication information, so that the network device does not need to obtain the measurement result but can learn which terminal has the strongest or weakest interference.
  • the first terminal may also adopt other methods to report the measurement results and report other numbers of measurement results, and the reported measurement results may also have other features, which are not listed here in the embodiment of the application.
  • N, J, M, K, I, and H are any one or more of the first threshold value or the second threshold value.
  • the first terminal may also directly report according to any one or a combination of the foregoing measurement results. That is, the first terminal does not need to obtain the configuration information issued by the network device to learn the manner of reporting the measurement result, or the first terminal directly reports according to preset settings.
  • the meaning of reporting in this application is sending data information from the terminal to the network device, and the data information includes any one or more of the measurement result and the second indication information of the measurement result.
  • the first terminal directly reports according to method 1, or the first terminal directly reports according to methods 1 and 6, or the first terminal directly reports according to methods 2 and 6.
  • step S1104 is optional, that is, there may be no such step, and the following steps are continued.
  • the first terminal obtains the configuration information through preset settings.
  • the network device configures the first SRS of the second terminal.
  • the network device configures the first SRS of the second terminal based on the aforementioned at least one type of capability information (such as the first capability information).
  • the first capability information may also be called measurement capability.
  • the first terminal is UE1
  • the second terminals are UE2 and UE3 as an example
  • the method for the network device to configure the first SRS of the second terminal is described as follows.
  • the network device learns that the number of first SRSs that UE1 can monitor in one time slot is P based on the first capability information reported by UE1, and P is an integer greater than or equal to 1. In this way, the network device configures the number of first SRSs that can be sent by the second terminal to be less than or equal to P. For example, if the number of first SRSs that UE1 can monitor in a time slot is 8, and UE2 and UE3 multiplex a time slot, the network equipment can configure UE2 to transmit at most 2 first SRS in one time slot. The device configures UE3 to transmit at most 6 first SRSs in the same time slot.
  • the network equipment can configure UE2 to transmit at most 8 first SRS in one time slot, and the network equipment configures UE3 to transmit at most in the same time slot 8 first SRS. In this way, no matter whether UE2 and UE3 multiplex the same time slot to transmit the first SRS, in a time slot, UE2 or UE3 can transmit at most 8 first SRS, which does not exceed the number of the first SRS monitored by UE1 in a time slot. Upper limit.
  • the network device learns that UE1 can monitor continuous symbols based on the first capability information reported by UE1, and accordingly, the network device configures UE2 to send the first SRS on the continuous symbols. Or, the network device configures UE3 to send the first SRS on consecutive symbols. Or, if UE2 and UE3 multiplex the same time slot to send the first SRS, the network device may allocate multiple consecutive symbols to UE2 and UE3 for sending the first SRS.
  • the network device learns based on the first capability information reported by UE1 that the maximum number of symbols that UE1 can monitor in a time slot is L, and L is an integer greater than or equal to 1. In this way, if UE2 and UE3 multiplex the same time slot to transmit the first SRS, the network device can configure UE2 to use at most L1 symbols in a time slot to transmit the first SRS, and configure UE3 to use at most in one time slot L2 symbols transmit the first SRS, and L1+L2 is less than or equal to L.
  • L1 symbols overlap with L2 symbols L1+L2 can be greater than L, as long as L1 is less than or equal to L, and L2 is less than or equal to L.
  • UE2 and UE3 do not transmit the first SRS in the same time slot, it can also be ensured that the maximum number of symbols used to transmit the first SRS in a time slot does not exceed the number that UE1 can monitor.
  • the network device learns the maximum number of consecutive symbols that UE1 can monitor in one time slot based on the first capability information reported by UE1. In this way, the number of consecutive symbols configured by the network device for UE2 or UE3 for transmitting the first SRS is less than or equal to the maximum number of consecutive symbols.
  • the number of first SRSs that can be monitored by the first terminal in one time unit may include the number of first SRSs that can be monitored on the first time unit and the number of first SRSs that can be monitored on the second time unit.
  • the network device learns that UE1 is in a time slot based on the first capability information reported by UE1
  • the number of first SRSs that can be monitored is R
  • the number of first SRSs that can be monitored in X time slots is S.
  • R is an integer greater than or equal to 1
  • S is an integer greater than or equal to 1.
  • the network device configures the number of first SRSs that the second terminal can send in one slot to be less than or equal to R, and the network device configures the number of first SRSs that the second terminal can send in X slots to be less than or equal to S .
  • the network device can configure UE2 The network device configures UE3 to transmit at most 6 first SRS in the same time slot; and the network device can configure UE2 to transmit at most 6 first SRS in the same time slot.
  • Send 8 first SRSs and the network device configures UE3 to send at most 24 first SRSs in the same X time slots.
  • the network equipment can configure UE2 to transmit at most 8 first SRS in one time slot, and the network equipment configures UE3 to transmit at most in the same time slot 8 first SRS.
  • the network equipment can configure UE2 to transmit at most 32 first SRSs in one time slot, and the network equipment configures UE3 to transmit the first SRS in another X time slots. Up to 32 first SRSs are sent in the slot.
  • UE2 and UE3 can transmit at most 8 first SRS, which does not exceed the number of the first SRS monitored by UE1 in a time slot.
  • Upper limit Regardless of whether UE2 and UE3 multiplex the same X time slots to transmit the first SRS, in X time slots, UE2 or UE3 can transmit at most 32 first SRS, which does not exceed the number of first SRS monitored by UE1 in X time slots The upper limit.
  • the network device may not configure the first SRS of the second terminal based on the first capability information reported by the first terminal. For example, the network device configures the first SRS of the second terminal according to its own decision.
  • the network device does not configure any data transmission or reception on one or more symbols before or after the symbol used to transmit the first SRS (that is, the SRS used to detect CLI), so that the terminal can perform Correct rate matching.
  • the symbols can also be configured in other ways, and some bits are retransmitted or punctured to achieve rate matching.
  • the distances between different interfering terminals (that is, the second terminal) and the interfered terminal (that is, the first terminal) are different, so the arrival times of the first SRS of different second terminals may not be aligned with the first terminal.
  • the (cyclic shift, CS) interval between the two first SRSs is small, it is difficult for the first terminal to distinguish which second terminal the two first SRSs come from, and thus it is difficult for the specific interference source to be determined.
  • the root sequences of the first SRS of the two second terminals are different.
  • the resources of the two second terminals are the same, which may mean that one or more of the time domain resources, frequency domain resources, and space domain resources of the two second terminals are the same.
  • different first SRSs can be distinguished according to different root sequences, and the second terminal from which the different first SRSs come from can be determined, so as to accurately determine the interference source.
  • the root sequences of the first SRS of the two second terminals are the same, and the cyclic shifts of the first SRS of the two second terminals are different Difference by the first offset value.
  • the first offset value can be expressed as among them, Is the maximum number of cyclic shifts when configuring the first SRS.
  • the maximum number of cyclic shifts can be 12 or 8, or other preset values.
  • the first offset value can also be configured as a parameter in another format.
  • the first offset value may be set based on the configuration of the SRS port (port).
  • the SRS port can be understood as an antenna port for transmitting SRS.
  • the first offset value changes accordingly.
  • it can be set based on the symbol interval, and can also be set based on the relative distance between UEs.
  • the first offset value is U is a configurable parameter.
  • U represents the number of SRS ports.
  • U is a positive integer.
  • U can also be a parameter related to the number of SRS ports.
  • U can be obtained from the number of SRS ports according to a certain operation rule. Taking U as the number of SRS ports as an example, when the number of SRS ports is 1, the first offset value is When the number of SRS ports is 2, the first offset value is In this way, when the above-mentioned difference between CSs is greater than or equal to the first offset value, it can be ensured that when a receiving terminal device is reached through different distances between terminal devices, the CS will not be indistinguishable due to the distance difference.
  • the difference between CSs is less than or equal to the second offset value.
  • the second offset value can be expressed as Where V is a configurable parameter.
  • the OAM configures the first SRS of the second terminal according to the first capability information.
  • the embodiment of the present application does not limit the execution sequence between the foregoing S1101-S1105.
  • the first terminal may report each capability information at the same time. It is also possible to report the first capability information first, and then report the second capability information and the third capability information.
  • the network device may send configuration information to the first terminal, or may first deliver the configuration information to the first terminal, and then receive one or more pieces of capability information of the first terminal. Or even if one or more capability information of the first terminal is not received, the configuration information is directly delivered to the first terminal.
  • timing synchronization is required. That is to say, the base station needs to know when to receive information from the terminal or when to send information to the terminal. The terminal also needs to know when to receive the information from the base station, or when to send it to the base station. Send information so that it can be sent and received at the correct timing.
  • the uplink transmission of UE1 should be d1/c earlier than the reference time, and the downlink reception of UE1 should lag d2/c.
  • d1 is the distance between UE1 and base station 1.
  • the uplink sending and downlink receiving timing of UE2 can refer to the corresponding timing of UE1. In order to facilitate timing synchronization between the UE and the base station.
  • Solution 1 The terminal transmits the first SRS while transmitting the physical uplink shared channel (PUSCH), that is, the timing advance (TA) for transmitting the first SRS is equal to the TA value for transmitting the PUSCH.
  • PUSCH physical uplink shared channel
  • TA timing advance
  • the transmission of the PUSCH and the transmission of the first SRS may occupy the same time-frequency resources, and the terminal may not be able to demodulate the PUSCH correctly and lose useful data.
  • Solution 2 In this method, it is necessary to assume that the distance between UE1 and UE2 is very close, so the distance d shown in Figure 1a can be ignored.
  • UE2 sends the first SRS after the reference time d2/c, and UE1 detects the first SRS at the reference time d1/c.
  • UE2 will send a time lag of d2/c, which is equivalent to the symbol used to transmit the first SRS will be shifted back accordingly.
  • the first SRS was originally transmitted through the 7th symbol in the first time slot. Now, the transmission time needs to be delayed by d2/c. Correspondingly, it may be transmitted through the first symbol of the next time slot (second).
  • the first SRS may have been configured to transmit PUSCH, resulting in a conflict between the first SRS and PUSCH on this symbol, which is not conducive to the terminal's demodulation of the PUSCH.
  • the timing synchronization method includes the following steps:
  • the second terminal acquires the first resource for sending the first sounding reference signal SRS.
  • the preset geographic area may be divided into P (P is a positive integer) sub-areas. Among them, each sub-region corresponds to a geographic location information.
  • the geographic location information may be, for example, the identification, code, number, etc. of the sub-region. P can be pre-configured in the terminal or configured by network equipment. Different geographical location information corresponds to different resources.
  • the aforementioned first resource may be a time domain resource, a frequency domain resource, a space domain resource, a code domain resource, and so on.
  • the embodiment of the application does not specifically limit the type of the first resource.
  • the second terminal uses different resources to send the first SRS, which can mean sending the first SRS through different time domain resources, or sending the first SRS through different frequency domain resources, or sending through different spatial resources
  • the first SRS may also refer to sending the first SRS through different code domain resources. Taking resources as an example of time domain resources, when the second terminal is located in sub-area 1, the first SRS is transmitted through the 6th symbol in a time slot, and when the second terminal is located in sub-area 2, it is transmitted through the 7th symbol in a time slot.
  • the symbol sends the first SRS.
  • the resource as an airspace resource as an example, when the second terminal is located in subarea 1, the first SRS is transmitted through the first antenna port, and when the second terminal is located in subarea 2, the first SRS is transmitted through the second antenna port.
  • the first resource is a resource pre-configured in the terminal, that is, the first resource is a pre-configured resource based on geographic location information of the second terminal. For example, a corresponding relationship between resources and geographic location information is pre-configured in the terminal.
  • the second terminal sends the first SRS, it can query the correspondence and determine which resource should be used to send the first SRS at the current geographic location according to the correspondence.
  • the second terminal receives an SRS configuration message from the network device, where the SRS configuration message is used to indicate the first resource corresponding to the geographic location information of the second terminal.
  • the network device indicates the first resource to the second terminal in at least one of the following ways.
  • the SRS configuration message is a broadcast message.
  • the network device periodically sends broadcast messages.
  • the second terminal receives the broadcast message from the network device, and determines, according to the broadcast message, the resources available for sending the first SRS in the current geographic location.
  • the broadcast message carries the correspondence between geographic location information and resources.
  • the corresponding relationship may include the relationship between multiple geographic location information and multiple resources.
  • the corresponding relationship may be ⁇ geographic location information 1-resource 1; geographic location information 2-resource 2; ... geographic location Q-resource Q ⁇ .
  • the corresponding relationship can also be in other formats, such as a table format.
  • the embodiment of the application does not limit the format of the correspondence relationship.
  • the second terminal receives and stores the corresponding relationship. Subsequently, when the second terminal needs to send the first SRS, it queries the corresponding relationship to learn the resource corresponding to the current geographic location, and uses the corresponding resource to send the first SRS.
  • Manner 2 Before sending the first SRS, the second terminal sends an SRS resource request to the network device, and the SRS resource request is used to request to send the first resource of the first SRS.
  • the SRS resource request of the second terminal includes the current geographic location information of the second terminal.
  • the network device configures the corresponding first resource for the second terminal according to the current geographic location information of the second terminal, and sends an SRS configuration message to the second terminal to indicate the first resource corresponding to the current geographic location of the second terminal .
  • the SRS resource request sent by the second terminal may not carry the current geographic location information of the second terminal.
  • the network device After receiving the SRS resource request from the second terminal, the network device first determines the current geographic location of the second terminal, and then configures the first resource for the second terminal based on the current geographic location.
  • the second terminal may use the following method to obtain the current geographic location of the second terminal: the network device sends a second reference signal to the second terminal, and after receiving the second reference signal, the second terminal obtains the second reference signal corresponding to the second reference signal. Two RSRP, and obtain the geographic location information of the second terminal based on the second RSRP. The second RSRP is used to characterize the received power of the second reference signal reaching the second terminal. Alternatively, after receiving the second reference signal, the second terminal obtains the second RSRQ corresponding to the second reference signal, and obtains the geographic location information of the second terminal based on the second RSRQ. The second RSRQ is used to characterize the signal quality of the second reference signal arriving at the second terminal.
  • the network device may use the following method to obtain the current geographic location of the second terminal: the network device sends a second reference signal to the second terminal, and after receiving the second reference signal, the second terminal obtains the second RSRP corresponding to the second reference signal, And send the second RSRP to the network device. In this way, the network device obtains the geographic location information of the second terminal based on the received second RSRP. Alternatively, after receiving the second reference signal, the second terminal obtains the second RSRQ corresponding to the second reference signal, and sends the RSRQ to the network device. In this way, the network device obtains the geographic location information of the second terminal based on the received second RSRQ.
  • the second terminal or the network device may also use other methods to determine the current geographic location of the second terminal, which is not limited in this application.
  • the second terminal uses the first resource to send the first SRS.
  • the first terminal receives the first SRS from the second terminal.
  • the first terminal may also send fourth capability information (also called measurement accuracy capability) to the network device.
  • the fourth capability information is used to characterize the accuracy requirements for the measurement results.
  • the accuracy requirement is high, that is, it is stipulated that the measurement result of the first SRS by the first terminal is within the preset deviation range, and the accuracy requirement is low, that is, the measurement result of the first terminal on the first SRS may not be within the preset deviation range.
  • the network device configures based on the fourth capability information. For example, the network device instructs the first terminal to perform the following S503 and subsequent procedures to adjust the receiving timing and receive the first SRS at the correct time , To ensure that the measurement results of the first SRS are more accurate. If the accuracy requirement is low, the first terminal may not perform the following steps of adjusting the receiving timing.
  • the first terminal may also determine whether to perform the following S503 and subsequent procedures based on the accuracy requirements of the measurement result.
  • S503 The first terminal determines a timing offset according to the first resource.
  • S503 can be specifically implemented as the following steps:
  • the first terminal obtains geographic location information of the second terminal according to the first resource.
  • the first terminal can determine the geographic location information of the second terminal according to the first resource for sending the first SRS.
  • the corresponding relationship may be pre-configured in the first terminal.
  • the corresponding relationship may be ⁇ geographic location information 1-resource 1; geographic location information 2-resource 2; ... geographic location Q-resource Q ⁇ .
  • the corresponding relationship may be stored in other devices other than the aforementioned network device (such as a base station).
  • the first terminal needs to query the corresponding relationship, the first terminal obtains the corresponding relationship from the device storing the corresponding relationship.
  • the embodiment of the present application does not limit the specific implementation manner for the first terminal to obtain the geographic location information of the second terminal.
  • the first terminal monitors the first SRS from the second terminal, and the first SRS is sent on the 6th symbol of a time slot, then the first terminal can determine the geographic location of the second terminal according to the corresponding relationship. position.
  • the first terminal obtains a first distance according to its own geographic location information and the geographic location information of the second terminal, where the first distance is the distance between the first terminal and the second terminal.
  • the manner in which the first terminal obtains its own geographic location information can refer to the manner in which the second terminal obtains its own geographic location information, which will not be repeated here.
  • the first terminal obtains the timing offset according to the first distance.
  • S504 Adjust the time for receiving the first SRS based on the timing offset.
  • UE2 sends the first SRS d2/c before the reference time, and UE1 detects the first SRS after the reference time (d1-d)/c.
  • the transmission timing of UE2 is different from the detection (reception) timing of UE1 by (d2+d1-d)/c.
  • UE2 can also send the first SRS at other timings. At this time, as long as the UE's receiving timing is different from the UE2's transmitting timing (d2+d1-d)/c, it can ensure that the signal strength of the first SRS measured by UE1 is close The signal peak value of the first SRS, thereby improving the accuracy of the measurement result.
  • S505 Receive the first SRS at the adjusted time for receiving the first SRS.
  • the first terminal determines the timing offset based on the first resource of the first SRS of a certain second terminal, and adjusts the time for receiving the first SRS based on the timing offset. In this way, the first terminal receives the first SRS at the adjusted time. Since the first SRS can be received at a relatively accurate time, the measured signal strength of the first SRS may be closer to the signal peak value of the first SRS, so that the measurement result for the first SRS is more accurate.
  • pre-configuration/pre-configuration/pre-setting mentioned in the embodiments of the present application may be configured through OAM, configured through a network device, or configured in a terminal.
  • the network element in the embodiment of the present application includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiments of the present application may divide the network elements into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • Fig. 12 shows a schematic block diagram of a communication device provided in an embodiment of the present application.
  • the communication device may be the aforementioned first terminal or second terminal or network device.
  • the communication device 700 may exist in the form of software, or may be a chip that can be used in equipment.
  • the communication device 700 includes: a processing unit 702 and a communication unit 703.
  • the communication unit 703 may also be divided into a sending unit (not shown in FIG. 12) and a receiving unit (not shown in FIG. 12).
  • the sending unit is used to support the communication device 700 to send information to other network elements.
  • the receiving unit is used to support the communication device 700 to receive information from other network elements.
  • the communication device 700 may further include a storage unit 701 for storing program codes and data of the communication device 700, and the data may include but not limited to raw data or intermediate data.
  • the processing unit 702 may be used to support the first terminal to perform S302 in FIG. 3, S5031 in FIG. 6, etc., and/or other solutions used in the solutions described herein. process.
  • the communication unit 703 is used to support communication between the first terminal and other network elements (such as the aforementioned network devices, etc.), for example, to support the first terminal to execute S301 and S304 in FIG. 3, and S502 in FIG.
  • the sending unit is configured to support the first terminal to send information to other network elements.
  • the first terminal is supported to execute S304 in FIG. 3, etc., and/or other processes used in the solution described herein.
  • the receiving unit is used to support the first terminal to receive information from other network elements.
  • the first terminal is supported to perform S301 in FIG. 3, etc., and/or other processes used in the solution described herein.
  • the processing unit 702 may be used to support the second terminal to perform S501 in FIG. 5, etc., and/or other processes used in the solution described herein.
  • the communication unit 703 is used to support communication between the second terminal and other network elements (for example, the aforementioned network equipment, etc.), for example, to support the second terminal to perform S301 in FIG. 3 and so on.
  • the sending unit is configured to support the second terminal to send information to other network elements.
  • the second terminal is supported to perform S301 in FIG. 3, etc., and/or other processes used in the solution described herein.
  • the receiving unit is used to support the second terminal to receive information from other network elements, and/or other processes used in the solution described herein.
  • the processing unit 702 may be used to support the network device to perform other processes for determining the first resource and/or for the solution described herein.
  • the communication unit 703 is used to support communication between the network device and other network elements (such as the aforementioned first terminal, etc.), for example, to support the network device to perform S304 in FIG. 3 and so on.
  • the network device may perform S304 in FIG. 3 and so on.
  • the processing unit 702 may be a controller or the processor 201 or the processor 207 shown in FIG. 2, for example, a central processing unit (CPU), a general-purpose processor, or digital signal processing ( Digital Signal Processing, DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any of them combination. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 703 may be the transceiver 204 shown in FIG. 2 or may be a transceiver circuit or the like.
  • the storage unit 701 may be the memory 203 shown in FIG. 2.
  • a person of ordinary skill in the art can understand that: in the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media. Available media can be magnetic media (for example, floppy disks, hard drives, tapes), optical media (for example, Digital Video Disc (DVD)), or semiconductor media (for example, Solid State Disk (SSD)), etc.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network devices (such as terminal devices). )on. Some or all of the units can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,涉及通信技术领域,能够在交叉链路干扰场景中测量干扰程度。该方法包括:第一终端接收至少一个第二终端发送的至少一个第一探测参考信号SRS,并根据至少一个第一SRS,获得至少一个第二终端的测量结果的信息,向网络设备发送一个或多个测量结果的信息。其中,测量结果用于表征第二终端发送的第一SRS的信号强度;第一SRS用于检测交叉链路干扰CLI,第一SRS占用第一资源。该方法可应用于交叉链路干扰场景中。

Description

通信方法及装置
本申请要求于2019年03月30日提交中国国家知识产权局、申请号为201910254174.3、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
动态(dynamic)时分双工(time division duplex,TDD),亦可称为灵活双工(flexible duplexing)或双工灵活性(duplexing flexibility),是指能够根据上下行业务的分布自适应地分配上下行资源,进而有效提高系统资源利用率。
通常,动态TDD存在交叉链路干扰(cross-link interference,CLI)问题。交叉链路干扰也可以称之为异向链路干扰,即不同方向的链路之间的干扰。如图1a所示,一方面,第二网络设备下的第二终端或第三终端的上行发送会对第一网络设备下的第一终端的下行接收造成CLI,这种CLI可称为终端之间(UE-to-UE)的干扰;另一方面,第一网络设备的下行发送会对第二网络设备的上行接收产生CLI,这种CLI可称为基站到基站(gNB-to-gNB)的干扰。
参见图1b,在一个具有多个网络设备的超密集组网中,不同的网络设备之间可能有无线回传(backhaul),当网络设备与终端设备之间的接入链路和网络设备之间的回传链路共存时,也会发生上述CLI。
动态的CLI不同以往的同链路干扰,它具有干扰严重且影响大、方向变化快、并且没有成熟机制来解决等特点。因此,亟待提出一种使得系统获知交叉链路干扰程度的方法。
发明内容
本申请实施例提供一种通信方法及装置,能够测量交叉链路干扰程度。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种通信方法,该方法可以由第一终端执行,或者,由第一终端中的组件(比如芯片系统)执行。该方法包括:第一终端接收至少一个第二终端发送的至少一个第一探测参考信号(sounding reference signal,SRS),并根据至少一个第一SRS,获得至少一个第二终端的测量结果的信息,向网络设备发送一个或多个测量结果的信息。其中,测量结果用于表征第二终端发送的第一SRS的信号强度;第一SRS用于检测交叉链路干扰CLI,第一SRS占用第一资源。
本申请提供的通信方法可以应用于存在CLI的通信系统中。比如,上述提及的灵活双工系统,或者,综合接入和回传系统(integrated access and backhaul system,IAB)。还可以应用在远程干扰管理(remote interference management,RIM)系统中。比如,可应用于图1a和图1b所示的通信系统中。
本申请实施例提供的通信方法,某一第二终端发送第一SRS之后,若第一终端可以监听到该第二终端的第一SRS,则第一终端可以测量该第一SRS的信号强度,进而 得到该第一SRS的测量结果。并且,第一终端还可以将测量结果上报至网络设备,使得网络设备能够获取到不同第二终端的测量结果。如此,在后续,网络设备可以基于一个或多个测量结果获知不同第二终端对第一终端的CLI程度,并执行一些降低CLI的操作。
此外,网络设备在不获取测量结果的情况下,可以根据测量结果对应的第二指示信息获知对第一终端产生干扰的具体是哪些第二终端。比如,第一终端测量某一第一SRS,并向网络设备反馈该第一SRS的第二指示信息,包括但不限于该第一SRS序列,或者该第一SRS序列集合,或者,该第一SRS的资源标识中的至少一个时,网络设备能够确定该第一SRS的发送端。比如,第一终端测量某一第一SRS,并向网络设备反馈该第一SRS的资源标识,由此,网络设备可以知道使用该资源发送第一SRS的第二终端是哪一终端,进而网络设备可确定对第一终端产生CLI的干扰源。
在一种可能的设计中,所述一个或多个测量结果的信息包含所述一个或多个测量结果的指示信息,和/或第二指示信息,所述第二指示信息为所述一个或多个测量结果分别对应的第二终端的指示信息。
在一种可能的设计中,上述方法还包括:第一终端获得第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中最大的N个测量结果,或者最小的N个测量结果,N为大于或等于1的整数。
相应的,第一终端向网络设备发送一个或多个测量结果包括:第一终端根据第一指示信息,向网络设备发送N个测量结果。
在一种可能的设计中,上述方法还包括:第一终端获得第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中最大的N个测量结果分别对应的第二指示信息,或者最小的N个测量结果分别对应的第二指示信息,N为大于或等于1的整数。
其中,第二指示信息用于指示测量结果对应的第二终端。
相应的,第一终端向网络设备发送一个或多个测量结果的信息,包括:第一终端根据第一指示信息,向网络设备发送N个测量结果分别对应的第二指示信息。
在一种可能的设计中,上述方法还包括:第一终端获得第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中最大的N个测量结果,以及最大的N个测量结果分别对应的第二指示信息。N为大于或等于1的整数。
相应的,第一终端向网络设备发送一个或多个测量结果的信息,包括:第一终端根据第一指示信息,向网络设备发送N个测量结果,以及发送这N个测量结果分别对应的第二指示信息。
在一种可能的设计中,上述方法还包括:第一终端获得第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中最小的N个测量结果,以及最小的N个测量结果分别对应的第二指示信息。N为大于或等于1的整数。
相应的,第一终端向网络设备发送一个或多个测量结果的信息,包括:第一终端根据第一指示信息,向网络设备发送最小的N个测量结果,以及发送这N个测量结果分别对应的第二指示信息。
如此,由于当某一第二终端的测量结果越大时,该第二终端对第一终端的CLI程 度通常越强。网络设备基于CLI程度最强的测量结果就可以大致获知第一终端和其他终端之间的CLI情况,以便于执行一些降低CLI的操作,以降低第一终端和其他终端之间的CLI。可见,仅上报部分测量结果,使得上报测量结果的信令开销有所降低。
在一种可能的设计中,上述方法还包括:第一终端获得第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果,和/或,发送所述J个测量结果分别对应的第二指示信息,J为正整数。
相应的,第一终端向网络设备发送一个或多个测量结果的信息包括:第一终端根据第一指示信息,向网络设备发送至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果,和/或,发送所述J个测量结果分别对应的第二指示信息。
如此,仅上报部分测量结果,能够降低上报测量结果的信令开销。
在一种可能的设计中,上述方法还包括:第一终端获得第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中小于或等于第二门限值的W个测量结果,和/或,发送所述W个测量结果分别对应的第二指示信息,W为正整数。
相应的,第一终端向网络设备发送一个或多个测量结果的信息包括:第一终端根据第一指示信息,向网络设备发送至少一个第二终端的测量结果中小或等于第二门限值的W个测量结果,和/或,发送所述W个测量结果分别对应的第二指示信息。
在一种可能的设计中,第一终端向网络设备发送一个或多个测量结果的信息,包括:
在第一时间,第一终端向网络设备发送第一测量结果,和/或,发送所述第一测量结果对应的第二指示信息,在与第一时间间隔预设时段的第二时间,第一终端向网络设备发送第二测量结果,和/或,发送所述第二测量结果分别对应的第二指示信息。其中,第二测量结果与第一测量结果的差值大于或等于预设差值。
也就是说,当第二次测量结果与第一次测量结果的差异较大,第一终端才会上报针对同一第二终端的第二次测量结果。采用上述方法,针对同一第二终端可以测量多次第一SRS,可提升该第二终端的第一SRS的测量结果的准确性。进一步的,数值相近的测量结果通常说明第二终端的位置、信号质量等未发生变化,或者变化不大,此种情况下,获取道第二终端的第一SRS的测量结果可能是冗余信息,网络设备可能并不需要该冗余信息来进行决策。因此,在本申请实施例中,第一终端仅上报与第一次测量结果相差较大的第二次测量结果,如此,能够避免第一终端上报数值相近的冗余测量结果,降低了信令开销。
在一种可能的设计中,方法还包括:第一终端获取配置信息,配置信息用于指示下述至少一项:
第一SRS的序列或者序列集合,序列集合包含至少一个序列;
上报第一SRS的第二指示信息,第一SRS的第二指示信息包括第一SRS的资源指示信息,或第一SRS序列中的一种或多种。
所述上报第一SRS的第二指示信息包含:所述第二指示信息与一个或多个测量结果一一对应上报。即上报某一测量结果时,同时上报该测量结果对应的第二指示信息。
如此,当上报两个测量结果时,同时上报一些其他信息,从而使得网络设备获取 到该测量结果的同时知道测量结果对应的是来自哪个终端的干扰。
当然,所述上报第一SRS的第二指示信息包含:所述第二指示信息与一个或多个测量结果独立上报。即可以单独上报测量结果,也可以单独上报第二指示信息。
在一种可能的设计中,方法还包括:第一终端向网络设备发送第一能力信息,第一能力信息指示用于测量CLI的能力信息,第一能力信息包括以下至少一个:第一终端在一个时间单元上能够监听的第一SRS数目、第一终端是否能够监听连续符号、第一终端在一个时间单元上能够监听的最大符号数目、第一终端在一个时间单元上能够监听的最大连续符号数目。
如此,可保证第二终端发送的第一SRS与第一终端的能力匹配,即第一终端可以在不超出自身能力范围的情况下测量第一SRS。提升成功测量第一SRS的概率。
在一种可能的设计中,方法还包括:第一终端上报第三能力信息,第三能力信息用于指示第二资源与传输第一SRS的第一资源之间的复用关系,复用关系包括时分复用和频分复用中的至少一种,第二资源为用于数据传输的资源。
如此,当网络设备收到上述第三能力信息时,在为终端配置第一资源和第二资源时,会根据终端支持或不支持的资源复用关系,合理进行资源配置,降低第一资源和第二资源发生冲突的概率。
第二方面,本申请提供一种通信方法,应用于第一终端或第一终端中的组件。该方法包括:第一终端向网络设备发送第二能力信息。第二能力信息指示第一终端用于上报测量结果的能力。第二能力信息用于指示第一终端能够向网络设备上报的测量结果的数目,测量结果包括针对至少一个第一SRS的测量结果。
第三方面,本申请提供一种通信方法,该方法应用于第一终端,或者第一终端中的组件。该方法包括:第一终端接收来自第二终端的第一探测参考信号SRS,第一SRS用于检测交叉链路干扰CLI,第一SRS占用第一资源。第一终端根据第一资源确定定时偏移,并基于定时偏移调整接收第一SRS的时间。如此,第一终端在调整后的接收第一SRS的时间接收第一SRS。
在一种可能的设计中,第一终端根据第一资源确定定时偏移,包括:
第一终端根据第一资源获取第二终端的地理位置信息,其中,第一资源与地理位置信息存在对应关系;第一终端根据第一终端的地理位置信息和第二终端的地理位置信息获取第一距离,第一距离为第一终端和第二终端之间的距离;第一终端根据第一距离获取定时偏移。
在一种可能的设计中,方法还包括:
第一终端接收来自网络设备的第一参考信号,并根据第一参考信号对应的第一参考信号接收功率(reference signal receiving power,RSRP),获取第一终端的地理位置信息,第一RSRP用于表征第一参考信号到达第一终端的接收功率;或者,根据第一参考信号对应的第一参考信号接收质量(reference signal receiving quality),获取第一终端的地理位置信息,第一RSRQ用于表征第一参考信号到达第一终端的信号质量。
在一种可能的设计中,方法还包括:
第一终端向网络设备发送第四能力信息,第四能力信息用于表征对测量结果的精度要求。
在一种可能的设计中,精度要求高于精度阈值。
第四方面,本申请提供一种通信方法,应用于网络设备或网络设备中的组件(比如芯片系统)。该方法包括:网络设备从第一终端接收一个或多个测量结果的信息,所述一个或多个测量结果的信息包括所述一个或多个测量结果,和/或所述一个或多个测量结果分别对应的第二指示信息。其中,测量结果用于表征第二终端发送的第一SRS的信号强度,第一SRS占用第一资源。
在一种可能的设计中,上述方法还包括:
网络设备向第一终端发送第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中最大的N个测量结果和/或所述最大的N个测量结果分别对应的第二指示信息,或者最小的N个测量结果和/或所述最小的N个测量结果分别对应的第二指示信息,N为大于或等于1的整数。
相应的,网络设备从第一终端接收一个或多个测量结果的信息,包括:网络设备从第一终端接收N个测量结果和/或所述N个结果分别对应的第二指示信息。
在一种可能的设计中,网络设备向第一终端发送第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果,和/或发送所述J个测量结果分别对应的第二指示信息,J为正整数。
相应的,网络设备从第一终端接收一个或多个测量结果的信息包括:网络设备从第一终端接收至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果,和/或接收所述J个测量结果分别对应的第二指示信息。
在一种可能的设计中,网络设备向第一终端发送第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中小于或等于第二门限值的W个测量结果,和/或发送所述W个测量结果分别对应的第二指示信息,W为正整数。
相应的,网络设备从第一终端接收一个或多个测量结果的信息,包括:网络设备从第一终端接收至少一个第二终端的测量结果中小或等于第二门限值的W个测量结果,和/或,接收所述W个测量结果分别对应的第二指示信息。
在一种可能的设计中,网络设备从第一终端接收一个或多个测量结果,包括:
在第一时间,网络设备从第一终端接收第一测量结果,和/或,接收所述第一测量结果对应的第二指示信息。
在与第一时间间隔预设时段的第二时间,网络设备从第一终端接收第二测量结果,和/或,接收所述第二测量结果对应的第二指示信息,第二测量结果与第一测量结果的差值大于或等于预设差值。
在一种可能的设计中,该方法还包括:网络设备向第一终端发送配置信息,配置信息用于指示下述至少一项:
第一SRS的序列或者序列集合,序列集合包含至少一个序列;
上报第一SRS的第二指示信息,第一SRS的第二指示信息包括第一SRS的资源指示信息,或第一SRS序列中的一种或多种。
在一种可能的设计中,方法还包括:网络设备向第一终端发送第一能力信息,第一能力信息指示用于测量CLI的能力信息,第一能力信息包括以下至少一个:第一终端在一个时间单元上能够监听的第一SRS数目、第一终端是否能够监听连续符号、第 一终端在一个时间单元上能够监听的最大符号数目、第一终端在一个时间单元上能够监听的最大连续符号数目。
在一种可能的设计中,方法还包括:网络设备从第一终端接收第三能力信息,第三能力信息用于指示第二资源与传输第一SRS的第一资源之间的复用关系,复用关系包括时分复用和频分复用中的至少一种,第二资源为用于数据传输的资源。
第五方面,本申请提供一种通信方法,应用于网络设备或网络设备中的组件。该方法包括:网络设备配置第二终端发送第一SRS的第一资源,并通知第一终端该第一资源。
其中,第一资源与第二终端的地理位置信息存在对应关系。多个地理位置信息,分别对应多个第一资源。第二终端处于不同地理位置,第二终端发送第一SRS的第一资源不同。作为一种可能的实现方式,可以将预设地理区域划分为P(P为正整数)个子区域。其中,每一子区域对应一个地理位置信息。地理位置信息比如可以为子区域的标识、代码、编号等。
在一种可能的设计中,上述方法还包括:网络设备向第一终端发送第一参考信号,并接收来自第一终端的第一参考信号对应的第一参考信号接收功率RSRP,基于该RSRP获取第一终端的地理位置信息。第一RSRP用于表征第一参考信号到达第一终端的接收功率。
在一种可能的设计中,网络设备向第一终端发送第一参考信号,并接收来自第一终端的第一参考信号对应的第一参考信号接收质量RSRQ,基于该RSRQ获取第一终端的地理位置信息。其中,第一RSRQ用于表征第一参考信号到达第一终端的信号质量。
在一种可能的设计中,上述方法还包括:第一终端向网络设备发送第四能力信息,第四能力信息用于表征对测量结果的精度要求。
可选的,精度要求高于精度阈值。
第六方面,本申请提供一种通信方法,应用于网络设备或网络设备中的组件。该方法包括:网络设备从第一终端接收第二能力信息。第二能力信息指示第一终端用于上报测量结果的能力。第二能力信息用于指示第一终端能够向网络设备上报的测量结果的数目,测量结果包括针对至少一个第一SRS的测量结果。
第七方面,本申请提供一种通信方法,应用于第二终端或第二终端中的组件。该方法包括:第二终端获取发送第一探测参考信号SRS的第一资源,并在第一资源上向第一终端发送第一SRS。
可选的,第二终端根据自身的地理位置查询地理位置与第一资源的对应关系,以获知发送第一SRS的第一资源。
第八方面,本申请提供一种通信装置,该装置可以为上述任一方面中的第一终端或第一终端中的组件。该装置包括:收发器、处理器。收发器,用于接收至少一个第二终端发送的至少一个第一探测参考信号SRS。处理器,用于根据至少一个第一SRS,获得至少一个第二终端的测量结果的信息。收发器,还用于向网络设备发送一个或多个测量结果。其中,测量结果用于表征第二终端发送的第一SRS的信号强度;第一SRS用于检测交叉链路干扰CLI,第一SRS占用第一资源。
在一种可能的设计中,处理器,还用于获得第一指示信息,第一指示信息用于指示 第一终端发送至少一个第二终端的测量结果中最大的N个测量结果和/或所述最大的N个测量结果分别对应的第二指示信息,或者最小的N个测量结果和/或所述最小的N个测量结果分别对应的第二指示信息,N为大于或等于1的整数。具体的,可以为获得预配置在终端终端的第一指示信息。还可以是处理器控制收发器接收网络设备下发的第一指示信息。
相应的,处理器,用于控制收发器向网络设备发送一个或多个测量结果包括:用于根据第一指示信息,控制收发器向网络设备发送N个测量结果和/或所述N个结果分别对应的第二指示信息。
在一种可能的设计中,处理器,还用于获得第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果,和/或发送所述J个测量结果分别对应的第二指示信息,J为正整数。
相应的,处理器,用于控制收发器向网络设备发送一个或多个测量结果包括:用于根据第一指示信息,控制收发器向网络设备发送至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果和/或发送所述J个测量结果分别对应的第二指示信息。
在一种可能的设计中,处理器,用于获得第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中小于或等于第二门限值的W个测量结果,和/或所述W个测量结果分别对应的第二指示信息,W为正整数。
相应的,处理器,用于控制收发器向网络设备发送一个或多个测量结果包括:用于根据第一指示信息,控制收发器向网络设备发送至少一个第二终端的测量结果中小或等于第二门限值的W个测量结果和/或所述W个测量结果分别对应的第二指示信息。
在一种可能的设计中,处理器,用于控制收发器向网络设备发送一个或多个测量结果,包括:
在第一时间,控制收发器向网络设备发送第一测量结果和/或第一测量结果分别对应的第二指示信息,在与第一时间间隔预设时段的第二时间,控制收发器向网络设备发送第二测量结果和/或所述第二测量结果分别对应的第二指示信息。其中,第二测量结果与第一测量结果的差值大于或等于预设差值。
在一种可能的设计中,处理器,还用于获取配置信息,配置信息用于指示下述至少一项:
第一SRS的序列或者序列集合,序列集合包含至少一个序列;
上报第一SRS的第二指示信息,第一SRS的第二指示信息包括第一SRS的资源指示信息,或第一SRS序列中的一种或多种。
在一种可能的设计中,收发器,还用于向网络设备发送第一能力信息,第一能力信息指示用于测量CLI的能力信息,第一能力信息包括以下至少一个:第一终端在一个时间单元上能够监听的第一SRS数目、第一终端是否能够监听连续符号、第一终端在一个时间单元上能够监听的最大符号数目、第一终端在一个时间单元上能够监听的最大连续符号数目。
在一种可能的设计中,收发器,还用于上报第三能力信息,第三能力信息用于指示第二资源与传输第一SRS的第一资源之间的复用关系,复用关系包括时分复用和频 分复用中的至少一种,第二资源为用于数据传输的资源。
第九方面,本申请提供一种通信装置,可以为第一终端或第一终端中的组件。该装置包括:处理器和收发器。收发器,用于向网络设备发送第二能力信息。第二能力信息指示第一终端用于上报测量结果的能力。第二能力信息用于指示第一终端能够向网络设备上报的测量结果的数目,测量结果包括针对至少一个第一SRS的测量结果。
第十方面,本申请提供一种通信装置,可以为第一终端,或者第一终端中的组件。该装置包括:处理器和收发器。收发器,用于接收来自第二终端的第一探测参考信号SRS,第一SRS用于检测交叉链路干扰CLI,第一SRS占用第一资源。处理器,用于根据第一资源确定定时偏移,并基于定时偏移调整接收第一SRS的时间。收发器,还用于在调整后的接收第一SRS的时间接收第一SRS。
在一种可能的设计中,处理器,用于根据第一资源确定定时偏移,包括:
用于根据第一资源获取第二终端的地理位置信息,其中,第一资源与地理位置信息存在对应关系;根据第一终端的地理位置信息和第二终端的地理位置信息获取第一距离,第一距离为第一终端和第二终端之间的距离;根据第一距离获取定时偏移。
在一种可能的设计中,收发器,还用于接收来自网络设备的第一参考信号。
处理器,还用于根据第一参考信号对应的第一参考信号接收功率RSRP,获取第一终端的地理位置信息,第一RSRP用于表征第一参考信号到达第一终端的接收功率。或者,用于根据第一参考信号对应的第一参考信号接收质量RSRQ,获取第一终端的地理位置信息。第一RSRQ用于表征第一参考信号到达第一终端的信号质量。
在一种可能的设计中,收发器,还用于向网络设备发送第四能力信息,第四能力信息用于表征对测量结果的精度要求。
在一种可能的设计中,精度要求高于精度阈值。
第十一方面,本申请提供一种通信装置,可为网络设备或网络设备中的组件(比如芯片系统)。该装置包括:处理器和收发器。收发器,用于从第一终端接收一个或多个测量结果的信息。其中,测量结果用于表征第二终端发送的第一SRS的信号强度,第一SRS占用第一资源。
在一种可能的设计中,收发器,还用于向第一终端发送第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中最大的N个测量结果和/或所述N个测量结果分别对应的第二指示信息,或者最小的N个测量结果和/或所述N个测量结果分别对应的第二指示信息,N为大于或等于1的整数。
收发器,用于从第一终端接收一个或多个测量结果,包括:用于从第一终端接收N个测量结果和/或所述N个测量结果分别对应的第二指示信息。
在一种可能的设计中,收发器,还用于向第一终端发送第一指示信息,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果和/或所述J个测量结果分别对应的第二指示信息,J为正整数。
收发器,用于从第一终端接收一个或多个测量结果包括:用于从第一终端接收至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果和/或所述J个测量结果分别对应的第二指示信息。
在一种可能的设计中,收发器,还用于向第一终端发送第一指示信息,第一指示 信息用于指示第一终端发送至少一个第二终端的测量结果中小于或等于第二门限值的W个测量结果和/或所述W个测量结果分别对应的第二指示信息,W为正整数。
收发器,用于从第一终端接收一个或多个测量结果,包括:用于从第一终端接收至少一个第二终端的测量结果中小或等于第二门限值的W个测量结果和/或所述W个测量结果分别对应的第二指示信息。
在一种可能的设计中,收发器,用于从第一终端接收一个或多个测量结果,包括:用于在第一时间,从第一终端接收第一测量结果和/或所述第一测量结果分别对应的第二指示信息,在与第一时间间隔预设时段的第二时间,从第一终端接收第二测量结果和/或所述第二测量结果分别对应的第二指示信息。第二测量结果与第一测量结果的差值大于或等于预设差值。
在一种可能的设计中,收发器,还用于向第一终端发送配置信息,配置信息用于指示下述至少一项:
第一SRS的序列或者序列集合,序列集合包含至少一个序列;
上报第一SRS的第二指示信息,第一SRS的第二指示信息包括第一SRS的资源指示信息,或第一SRS序列中的一种或多种。
在一种可能的设计中,收发器,还用于向第一终端发送第一能力信息,第一能力信息指示用于测量CLI的能力信息,第一能力信息包括以下至少一个:第一终端在一个时间单元上能够监听的第一SRS数目、第一终端是否能够监听连续符号、第一终端在一个时间单元上能够监听的最大符号数目、第一终端在一个时间单元上能够监听的最大连续符号数目。
在一种可能的设计中,收发器,还用于从第一终端接收第三能力信息,第三能力信息用于指示第二资源与传输第一SRS的第一资源之间的复用关系,复用关系包括时分复用和频分复用中的至少一种,第二资源为用于数据传输的资源。
第十二方面,本申请提供一种通信装置,可以为网络设备或网络设备中的组件。该装置包括:处理器和收发器。处理器,用于配置第二终端发送第一SRS的第一资源。收发器,用于通知第一终端该第一资源。
在一种可能的设计中,收发器,还用于向第一终端发送第一参考信号,并接收来自第一终端的第一参考信号对应的第一参考信号接收功率RSRP。处理器,还用于基于该RSRP获取第一终端的地理位置信息。第一RSRP用于表征第一参考信号到达第一终端的接收功率。
在一种可能的设计中,收发器,还用于向第一终端发送第一参考信号,并接收来自第一终端的第一参考信号对应的第一参考信号接收质量RSRQ。处理器,还用于基于该RSRQ获取第一终端的地理位置信息。其中,第一RSRQ用于表征第一参考信号到达第一终端的信号质量。
在一种可能的设计中,收发器,还用于向网络设备发送第四能力信息,第四能力信息用于表征对测量结果的精度要求。
可选的,精度要求高于精度阈值。
第十三方面,本申请提供一种通信装置,可以为网络设备或网络设备中的组件。该装置包括:处理器和收发器。收发器,用于从第一终端接收第二能力信息。第二能 力信息指示第一终端用于上报测量结果的能力。第二能力信息用于指示第一终端能够向网络设备上报的测量结果的数目,测量结果包括针对至少一个第一SRS的测量结果。
第十四方面,本申请提供一种通信装置,可以为第二终端或第二终端中的组件。该装置包括:处理器和收发器。处理器,用于获取发送第一探测参考信号SRS的第一资源。收发器,用于在第一资源上向第一终端发送第一SRS。
可选的,处理器,用于根据第一终端的地理位置查询地理位置与第一资源的对应关系,以获知发送第一SRS的第一资源。
在上述任一方面的一种可能的设计中,所述一个或多个测量结果的信息包含所述一个或多个测量结果的指示信息,和/或第二指示信息,所述第二指示信息为所述一个或多个测量结果分别对应的第二终端的指示信息。
其中,第二指示信息包括第一SRS的资源指示信息,或第一SRS序列中的一种或多种。其中,一个或多个测量结果所对应的第二指示信息用于表示与该测量结果所对应的第一SRS。
在上述任一方面的一种可能的设计方式中,第一终端上报来自第一小区中第二终端的K个测量结果,上报来自第二小区中第二终端的I个测量结果。其中,I、K可以相同,也可以不同。也就是说,针对不同小区中的第二终端,第一终端针对不同小区可设置不同的测量结果数目上限。
在上述任一方面的一种可能的设计中,第一终端上报的测量结果为至少一个第二终端的测量结果中测量结果大于或等于结果阈值,且测量结果最大的H个测量结果,H为正整数。
在上述任一方面的一种可能的设计中,上报测量结果包括同时上报所测量的第一SRS的第二指示信息。其中,第一SRS的第二指示信息包括第一SRS的资源指示信息,或第一SRS序列中的一种或多种的组合。本申请实施例中,第一SRS的资源指示信息包括:第一SRS资源标识或第一SRS资源索引,或第一SRS集合资源标识,或第一SRS集合资源索引中的一种或多种的组合。即,向网络设备发送一个或多个测量结果包括在发送测量结果的同时,也上报所测量的第一SRS的第二指示信息。第一SRS集合包括一个或多个第一SRS,第一SRS集合资源标识,可以使用于传输多个第一SRS的全部资源的标识。
也就是,通过配置信息可以指示第一终端在上报测量结果同时,还上报其他一些信息。如此,通过一条消息,可以携带第一终端相关的资源、序列等信息。
在上述任一方面的一种可能的设计中,不同第二终端的第一SRS的根序列不同。
在上述任一方面的一种可能的设计中,不同第二终端的第一SRS的根序列相同,且不同第二终端的第一SRS的循环移位之间相差第一偏移量值。
作为上述任一方面的一种可能的设计,第一SRS占用的资源不同于下行传输的资源,且第一SRS占用的资源不同于上行传输的资源。下行传输包括PDCCH、或PDSCH、或同步信号(synchronization signal,SS)、或物理广播信道(physical broadcast channel,PBCH);上行传输包括PUCCH、或PUSCH、或PRACH、或第二SRS中的至少一项。其中,第二SRS不是用于检测CLI的SRS。当然,上行传输和下行传输还可以为其他形式的上行传输或下行传输。
也就是说,网络设备在配置上行传输或下行传输时,考虑上行传输或下行传输是否与第一SRS产生重叠。若产生重叠,则网络设备将某一资源要么配置成用于上行传 输或下行传输,要么配置成用于传输第一SRS。以避免在同一资源上出现上行或下行传输与第一SRS的冲突。
或者,定义终端行为如下。当第一SRS占用的资源与下行传输的资源中部分资源相同,或第一SRS占用的资源与上行传输的资源中部分资源相同,在相同的资源上,第一SRS被终端检测且下行传输被终端丢弃,或者,下行传输被终端检测且第一SRS被终端丢弃,或者,第一SRS被终端检测且上行传输被终端丢弃,或者,上行传输被终端检测且第一SRS被终端丢弃。
第十五方面,本申请提供一种通信装置,用于实现上述任一方面中第一终端的功能,或用于实现上述任一方面中第二终端的功能,或用于实现上述任一方面中网络设备的功能。
第十六方面,本申请提供一种通信装置,该装置具有实现上述任一方面中任一项的通信方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第十七方面,提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述任一方面中任一项的通信方法。
第十八方面,提供一种通信装置,包括:处理器;处理器用于与存储器耦合,并读取存储器中的指令之后,根据指令执行如上述任一方面中任一项的通信方法。
第十九方面,本申请实施例提供了一种通信装置,该装置可以为芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述任一方面所描述方法的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第二十方面,提供一种通信装置,该装置可以为电路系统,电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的通信方法。
第二十一方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方面的方法。
第二十二方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上述任一方面的方法。
第二十三方面,本申请实施例提供了一种系统,系统包括任一方面的第一终端、第二终端和网络设备。
附图说明
图1a为本申请实施例提供的通信系统的架构示意图;
图1b为本申请实施例提供的通信系统的架构示意图;
图2为本申请实施例提供的通信装置的结构示意图;
图3为本申请实施例提供的通信方法的流程示意图;
图4为本申请实施例提供的场景示意图;
图5为本申请实施例提供的通信方法的流程示意图;
图6为本申请实施例提供的通信方法的流程示意图;
图7为本申请实施例提供的通信方法的流程示意图;
图8为本申请实施例提供的通信方法的流程示意图;
图9为本申请实施例提供的通信方法的流程示意图;
图10为本申请实施例提供的通信方法的流程示意图;
图11为本申请实施例提供的通信方法的流程示意图;
图12为本申请实施例提供的通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
此外,本申请实施例中,“至少一个”通常是指一个或者多个。“多个”通常是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例提供的通信方法可以应用于存在CLI的通信系统中。比如,上述提及的灵活双工系统,或者,综合接入和回传系统(integrated access and backhaul system,IAB)。还可以应用在远程干扰管理(remote interference management,RIM)系统中。参见图1a,为本申请实施例所适用的一种通信系统的示例性架构。该通信系统包括网络设备和终端设备。其中,图1a示例性的示出了三个终端设备(即UE1至UE3)和两个网络设备(即基站1和基站2)。上述终端设备可以通过空口连接到网络设备,以便接收网络服务。上述网络设备主要用于实现无线物理层功能、资源调度和无线资源管理、无线接入控制、移动性管理功能,或者其他功能。本申请中第一终端,第二终端或第三终端中的任何一个都可以替换为网络设备,即第一网络设备,第二网络设备或第三网络设备。本申请的第一终端,第二终端或第三终端分别为终端设备。
本申请中所述“获得”包含:预配置在终端/网络设备中,或者,由网络设备配置给终端。本申请中所述“配置”或“被配置”可以是网络设备通过信令配置给终端,其中信令可以是RRC信令,MAC信令或物理层信令中至少一种。
其中,上述网络设备可以指具有无线收发功能的设备,也可以指设置于该设备中的芯片系统,或其他形态。该网络设备包括但不限于:Wi-Fi系统中的接入点(access point,AP),如家用无线路由器、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP),eNB、宏基站、微基站、高频基站、新型无线电基站(New radio eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU),还可以为5G系统,如NR中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节 点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层和服务发现应用规范(service discovery application profile,SDAP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
上述终端设备可以为具有无线收发功能的用户设备或设置于该用户设备中的芯片系统。示例性的,上述终端设备也可以称为站点(station,STA)、用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。上述终端设备包括但不限于:手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、传感器类设备,如监控终端等。
应理解,图1a仅为便于理解而示例的简化示意图,仅示出了终端设备和网络设备(比如基站)。在本申请实施例中,该无线通信系统中还可以包括其他网络设备(比如核心网设备)或者还可以包括其他终端设备,图1a中未予以画出。
上述通信系统可以应用于LTE,或者目前正在制定的5G网络或者其他类似的网络中或者未来的其它网络中,本申请实施例对此不作具体限定。其中,在不同的网络中,上述通信系统中的网络设备和终端设备可能对应不同的名字,本领域技术人员可以理解的是,名字对设备本身不构成限定。
并且,本申请描述的系统架构及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
可选的,本申请实施例中的终端、网络设备可以通过不同的设备实现。例如,本申请实施例中的终端、网络设备可通过图2中的通信设备来实现。图2所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备200包括至少一个处理器201,通信线路202,存储器203以及至少一个收发器204。其中,存储器203还可以包括于处理器201中。
处理器201可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路202可包括一通路,在上述组件之间传送信息。
收发器204,用于与其他设备通信。在本申请实施例中,收发器可以是模块、电路、总线、接口或者其它能实现通信功能的装置,用于与其他设备通信。可选的,该收发器可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该收发器也可以为独立设置的接收器,用于从其他设备接收信息。该收发器也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对收发器的具体实现不做限制。
存储器203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路202与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器203用于存储用于实现本申请方案的计算机执行指令,并由处理器201来控制执行。处理器201用于执行存储器203中存储的计算机执行指令,从而实现本申请下述实施例提供的各个方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码、指令、计算机程序或者其它名称,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备200可以包括多个处理器,例如图2中的处理器201和处理器207。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备200还可以包括输出设备205和输入设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备206和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
如图2所示为通信设备的示例性结构图。应该理解的是,图示通信设备仅是一个范例,并且在实际应用中通信设备可以具有比图2中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。
上述的通信设备200可以是一个通用设备或者是一个专用设备,本申请实施例不限定通信设备200的类型。终端或者接入网设备可以为具有图2类似结构的设备。
以下结合图1a和图1b所示的通信系统,说明本申请实施例提供的通信方法。下文主要以网络设备为基站为例进行说明,在此统一声明,下文不再赘述。
参见图3,本申请实施例提供的通信方法包括如下步骤:
S301、第二终端向第一终端发送第一SRS。
相应的,第一终端接收至少一个第二终端发送的至少一个SRS。其中,第一SRS用于检测CLI,第一SRS占用第一资源。
在本申请实施例中,第一终端通常指可能被干扰的终端,在本文中,第一终端也可称为被干扰(interfered)终端。第二终端指可能对第一终端产生CLI的终端,在本文中,第二终端也可称为干扰(interfering)终端。在不同的通信场景中,第一终端和第二终端的角色可能互换。比如,在图1a中,UE2和UE3进行上行发送,此时,UE2和UE3可能对UE1产生CLI。相应的,UE1可称为第一终端,UE2和UE3可称为第二终端。在其他通信场景中,比如,UE1进行上行发送,则UE1可称为第二终端,相应的,可能被UE1的上行发送干扰的UE2、UE3可称为第一终端。典型的,UE1和UE2可以为相邻小区各自所属的UE。但是在一些特殊情形,例如全双工场景中,UE1和UE2可以为同一小区所属的UE。
在本申请实施例中,第一SRS指的是用于检测CLI的SRS。某一干扰终端在第一资源上发送第一SRS。被干扰终端监听该第一SRS,并在接收到该第一SRS后,测量该第一SRS的信号强度,得到该第一SRS的测量结果。可选的,该测量结果可以为层3(layer3,L3)测量结果,即对测量该第一SRS的信号强度进行过滤得到L3测量结果。其中,过滤可以是层3过滤,进行层3过滤所用的参数都可以被配置。可选的,测量该第一SRS的信号强度可以为层1(layer 1,L1)测量结果。
容易理解的是,不同的第二终端均可以发送第一SRS,第一终端可以监听来自一个或多个第二终端的第一SRS,进而判定相对应的第一SRS的信号强度。图3中以两个第二终端向第一终端发送第一SRS为例。
S302、第一终端根据至少一个第一SRS,获得至少一个第二终端的测量结果的信息。
其中,测量结果用于表征第二终端发送的第一SRS的信号强度。
容易理解的是,第一终端监听到来自一个或多个第二终端的第一SRS之后,可以测量每一第一SRS的信号强度,以获取不同第二终端的测量结果。其中,某一第二终端的测量结果表征该第二终端发送的第一SRS的信号强度,还可以表征该第二终端对第一终端的CLI干扰程度。并且,第二终端发送的第一SRS的信号强度越强,即测量结果的数值越大,说明第二终端对第一终端的CLI干扰程度越严重。可选的,第一终端测量第一SRS的信号强度,可以是第一终端测量第一SRS的RSRP,并将第一SRS的RSRP作为第一SRS的测量结果。或者,第一终端测量第一SRS的RSSI,并将第一SRS的RSSI作为第一SRS的测量结果。或者,还可以是将第一SRS的RSRP以及RSSI均作为第一SRS的测量结果。或者,还可以将其他指标作为第一SRS的测量结果。这里不再一一列举。第一终端具体使用哪一指标作为测量结果,可以由网络设备通过配置信息来指示。或者,由第一终端根据自身预配置规则确定使用哪一指标作为测量结果。第一终端使用哪一指标作为测量结果的详细介绍可参见后文。
可选的,测量结果可以是第一终端在第一时间段对第一SRS的测量取样进行推导,过滤或计算所得。具体的,测量结果可以是所述第一时间段内对第一SRS的测量取样的平均值,例如,为所述第一时间段对第一SRS的测量取样根据不同的参数进行加权的平均值。其中,对第一SRS的测量所设置的所述第一时间段可以被配置。
可选的,测量结果还可以是第一终端在第二时间段对第一SRS的测量取样进行推导,过滤或计算所得。具体的,测量结果可以是所述第二时间段内对第一SRS的测量取样大于第四门限值的比例,例如,为所述第二时间段对第一SRS的测量取样100个,有60个大于第四门限值,则该测量结果表示为60%。其中,对第一SRS的测量所设置的所述第二时间段可以被配置。所述第一时间段和所述第二时间段可以相同或不同。所述第四门限值可以被配置。
所述一个或多个测量结果的信息包含所述一个或多个测量结果的指示信息,和/或第二指示信息。
其中,测量结果的指示信息为指示测量结果的信息,终端设备可以直接上报测量结果或者测量结果的索引或者测量结果的标识或者其他指示测量结果的信息。本申请实施例主要以上报测量结果为例进行说明,可以理解的是,只要是终端最终能够将测量结果的相关信息告知网络设备,使得网络设备获知测量结果,就应当在本申请实施例方案的保护范围内。
所述第二指示信息为所述一个或多个测量结果分别对应的第二终端的指示信息。即第二指示信息可以用于区分不同的第二终端。可选的,所述第二指示信息包括第一SRS的资源指示信息,或第一SRS序列或第一SRS序列集合中的一种或多种。当然,第二指示信息还可以是其他能够区分不同第二终端的信息。第二指示信息的详细介绍可参见下文。
S303、第一终端获得第一指示信息。
其中,第一指示信息用于指示第一终端上报测量结果的信息。可选的,第一指示信息指示第一终端上报测量结果的数目,所上报测量结果的特征中的至少一项。
可选的,第一指示预配置在第一终端中,或者,第一指示信息由网络设备配置给第一终端。
其中,其中步骤303与301,302顺序不限定,可以先后或同时。示例性的,第一终端可以先获取第一指示信息,再从第二终端接收第一SRS,并测量第一SRS的测量结果。也可以是先从第二终端接收第一SRS,再获取第一指示信息。
可选的,所上报测量结果的特征可以包含:上报的测量结果为第一SRS的RSRP,或者上报的测量结果为RSSI,或者上报的测量结果为第一SRS的RSRP及RSSI。
S304、第一终端根据第一指示信息,向网络设备发送一个或多个测量结果的信息。
相应的,网络设备从第一终端接收一个或多个测量结果的信息。
本申请实施例提供的通信方法,某一第二终端发送第一SRS之后,若第一终端可以监听到该第二终端的第一SRS,则第一终端可以测量该第一SRS的信号强度,进而得到该第一SRS的测量结果的信息。并且,第一终端还可以将测量结果的信息上报至网络设备,使得网络设备能够获取到不同第二终端的测量结果。如此,在后续,网络设备可以基于一个或多个测量结果获知不同第二终端对第一终端的CLI程度,并执行一些降低CLI的操作。
此外,网络设备在不获取测量结果的情况下,可以根据测量结果对应的第二指示信息获知对第一终端产生干扰的具体是哪些第二终端。比如,第一终端测量某一第一SRS,并向网络设备反馈该第一SRS的第二指示信息,包括但不限于该第一SRS序列, 或者该第一SRS序列集合,或者,该第一SRS的资源标识中的至少一个时,网络设备能够确定该第一SRS的发送端。比如,第一终端测量某一第一SRS,并向网络设备反馈该第一SRS的资源标识,由此,网络设备可以知道使用该资源发送第一SRS的第二终端是哪一终端,进而网络设备可确定对第一终端产生CLI的干扰源。
如下说明当第一指示信息不同时,第一终端上报测量结果的方式不同,即上述S303和S304的具体实现。其中,如下各个流程中均以第一指示信息由网络设备配置为例,对于第一指示信息预配置在终端中的实现流程,可参见下文描述,本申请实施例不再重点描述。
在一些实施例中,参见图7,S303可以具体实现为:
S3031、第一终端从网络设备接收第一指示信息。
其中,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中最大的N个测量结果的信息。换句话说,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中最大的N个测量结果和/或所述最大的N个测量结果分别对应的第二指示信息,或者最小的N个测量结果和/或所述最小的N个测量结果分别对应的第二指示信息。N为大于或等于1的整数。也就是说,第一终端可上报最大的N个测量结果,或者,上报最大的N个测量结果分别对应的第二指示信息,或者,同时上报最大的N个测量结果和所述最大的N个测量结果分别对应的第二指示信息。或者,上报最小的N个测量结果,或者,上报最小的N个测量结果分别对应的第二指示信息,或者,同时上报最小的N个测量结果以及所述最小的N个测量结果分别对应的第二指示信息。后文出现类似描述时,其原理可参见这里。
可选的,N值可以与至少一个第二终端的测量结果数目相同。即第一终端监听到几个测量结果,就上报全部的测量结果。如此,网络设备接收全部测量结果,由于全部测量结果可以全面、精准的反映不同第二终端的第一SRS信号强度,所以,网络设备能够获知全面、精准的第一终端与不同第二终端之间的CLI情况。进而,基于精准的CLI情况,执行一些降低CLI操作。
可选的,N值可以小于至少一个第二终端的测量结果数目。仅上报部分测量结果,使得上报测量结果的信令开销有所降低。
可选的,N个测量结果为至少一个第二终端的测量结果中最大的N个测量结果,即上报测量结果的特征为最大的测量结果。N为大于或等于1的整数。其中,N值可以由厂商根据规定预配置在终端中,或者,N由网络设备发送给终端,终端存储N值。作为一种可能的实现方式,至少一个第二终端的测量结果数目大于或等于N,第一终端向网络设备发送N个测量结果。示例性的,第一终端监听到5个来自不同第二终端的第一SRS,这5个第一SRS的测量结果的大小依次为:测量结果3(对应UE3的SRS 3)>测量结果2(对应UE2的SRS 2)>测量结果5(对应UE5的SRS 5)>测量结果4(对应UE4的SRS 4)>测量结果1(对应UE1的SRS 1),假设N取值为3,则第一终端向网络设备分别上报UE3、UE2、UE5的测量结果。
如此,由于当某一第二终端的测量结果越大时,该第二终端对第一终端的CLI程度通常越强。网络设备基于CLI程度最强的测量结果就可以大致获知第一终端和其他终端之间的CLI情况,以便于执行一些降低CLI的操作,以降低第一终端和其他终端之 间的CLI。可见,仅上报部分测量结果,使得上报测量结果的信令开销有所降低。
S304可以具体实现为如下步骤:
S3041、第一终端根据第一指示信息,向网络设备发送N个测量结果的信息。
相应的,网络设备从第一终端接收N个测量结果的信息。
在另一些实施例中,参见图8,S303可以具体实现为如下S3032:
S3032、第一终端从网络设备接收第一指示信息。
其中,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果的信息,J个测量结果的信息包括J个测量结果的指示信息和/或第二指示信息,所述第二指示信息为所述J个测量结果对应的第二终端的指示信息,J为正整数。
可选的,第一终端上报的一个或多个测量结果为J个测量结果的信息。J为正整数,J由网络设备发给第一终端,或者预配置在第一终端中。具体的,第一终端上报的J个测量结果为至少一个第二终端的测量结果中测量结果大于或等于第一门限值的J个测量结果。如此,仅上报部分测量结果,能够降低上报测量结果的信令开销。比如,第一终端监听到5个来自其他终端的第一SRS,J取值为3,则第一终端上报大于或等于第一门限值的3个测量结果。在一种情况中,若大于或等于第一门限值的测量结果数目小于J,比如,仅存在1个大于或等于第一门限值的测量结果,则第一终端设备可以仅上报该1个测量结果。或者,第一终端上报该1个测量结果,再从其余4个测量结果中选取2个最大的测量结果,上报该2个最大的测量结果。在另一情况中,若不存在大于或等于第一门限值的测量结果,则第一终端可以不上报测量结果。或者,随机选取J=3个测量结果进行上报。在另一情况中,当大于或等于第一门限值的测量结果的个数大于J个时,第一终端只上报J个测量结果。或者,第一终端上报大于或等于第一门限值的全部测量结果。
当然,还可以设置其他门限值,比如第三门限值。可选的,第一终端上报大于或等于第三门限值的测量结果。可选的,当不存在大于或等于第三门限值的测量结果时,第一终端上报最大的一个或者M个测量结果。1个或者M个由网络设备配置或者预先配置在第一终端中。M为正整数。
可选的,上述门限值均可以预配置在终端中,或者,均由网络设备发给终端。或者,某些门限值预配置在终端中,某些由网络设备配置。
区别于图7所示的测量结果上报方式,图7所示流程中上报的N个测量结果可能低于预设的第一门限值,通过图8所示流程,可以指示UE上报大于或等于第一门限值的J个测量结果的信息。当UE实际测量所得的测量结果中大于或等于第一门限值的测量结果个数不够J个时,可以只上报大于或等于第一门限值的测量结果。其中不够的含义为小于。
如此,仅发送一部分测量结果,可以降低信令开销。并且,可以发送最大的J个测量结果,使得网络设备获知对第一终端CLI程度较严重的第二终端,以便于网络设备根据最严重CLI情况制定降低干扰的策略。或者,上报最小的J个测量结果,使得网络设备可以获知哪些第二终端对第一终端的CLI程度较轻,进而,可以不对这些第二终端的干扰进行其他操作。
S304可以具体实现为如下S3042:
S3042、第一终端根据第一指示信息,向网络设备发送至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果的信息。所述J个测量结果的信息包括J个测量结果的指示信息和/或第二指示信息,所述第二指示信息为所述J个测量结果对应的第二终端的指示信息。
在另一些实施例中,参见图9,上述S303可以具体实现为如下S3033:
S3033、第一终端从网络设备接收第一指示信息。
其中,第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中小于或等于第二门限值的W个测量结果的信息。所述W个测量结果的信息包括W个测量结果的指示信息和/或第二指示信息,所述第二指示信息为所述W个测量结果对应的第二终端的指示信息,W为正整数。
示例性的,若至少一个第二终端的测量结果数目大于W,则第一终端上报W个测量结果。如此,可降低信令开销。在一种情况下,至少一个第二终端的测量结果数目小于W,此时,第一终端可上报至少一个第二终端的全部测量结果。在一种情况下,若不存在小于或等于第二门限值的测量结果,则第一终端可从至少一个第二终端的测量结果中随机选取(比如选取最小的)W个测量结果,并上报W个测量结果。或者,若不存在小于或等于第二门限值的测量结果,第一终端可以不上报任何测量结果。本申请实施例对第一终端上报测量结果的数目不做具体限定。
上述S304可以具体实现为如下S3043:
S3043、第一终端根据第一指示信息,向网络设备发送至少一个第二终端的测量结果中小或等于第二门限值的W个测量结果的信息。所述W个测量结果的信息包括W个测量结果的指示信息和/或第二指示信息,所述第二指示信息为所述W个测量结果对应的第二终端的指示信息。
在另一些实施例中,参见图10,上述S304还可以实现为如下步骤:
S3044、在第一时间,第一终端向网络设备发送第一测量结果的信息。第一测量结果的信息包括第一测量结果和/或所述第一测量结果对应的第二指示信息。
S3045、在与第一时间间隔预设时段的第二时间,第一终端向网络设备发送第二测量结果的信息,即发送第二测量结果和/或所述第一测量结果分别对应的第二指示信息。第二测量结果与第一测量结果的差值大于或等于预设差值。
本申请中第一时间与第一时间段没有相关关系,第二时间与第二时间段没有相关关系。
也就是说,上报不同测量结果的时刻存在时间间隔。作为一种可能的实现方式,第二测量结果与第一测量结果的差值大于或等于预设差值。也就是说,当上报两次测量结果时,第一终端只有在确定第二次的测量结果与第一次测量结果的差值大于或等于预设差值之后,才上报第二次测量结果。
两次上报的时间间隔,即预设时段可以为预配置,或者,由网络设备发给第一终端。预设差值可以为预配置,或者,由网络设备发给第一终端。
其中,两次测量结果可以是针对同一第二终端的第一SRS的测量结果的信息。也就是说,可以对同一第二终端测量多次第一SRS,并周期性上报多次的测量结果。以 UE1为第一终端,UE2为第二终端为例,在UE1周期性上报UE2的测量结果的过程中,两次测量结果的差值大于或等于预设差值,指的是第二次测量结果比第一次测量结果大,并且,第二次测量结果与第一次测量结果的差值等于预设差值。或者,第二次测量结果比第一次测量结果大,且,第二次测量结果与第一次测量结果的差值大于预设差值。或者,两次测量结果的差值大于或等于预设差值,还可以是第二次测量结果比第一次测量结果小,且,第二次测量结果与第一次测量结果的差值等于预设差值。或者,第二次测量结果比第一次测量结果小,且,第二次测量结果与第一次测量结果的差值大于预设差值。也就是说,当第二次测量结果与第一次测量结果的差异较大,第一终端才会上报针对同一第二终端的第二次测量结果。采用上述方法,针对同一第二终端可以测量多次第一SRS,可提升该第二终端的第一SRS的测量结果的准确性。进一步的,数值相近的测量结果通常说明第二终端的位置、信号质量等未发生变化,或者变化不大,此种情况下,获取道第二终端的第一SRS的测量结果可能是冗余信息,网络设备可能并不需要该冗余信息来进行决策。因此,在本申请实施例中,第一终端仅上报与第一次测量结果相差较大的第二次测量结果,如此,能够避免第一终端上报数值相近的冗余测量结果,降低了信令开销。
或者,两次测量结果可以是针对不同第二终端的第一SRS的测量结果的信息。以第一终端为UE1,第二终端为UE2、UE3为例,在第一时间,UE1向网络设备发送UE2的第一SRS的测量结果,在第二时间,UE向网络设备发送UE3的第一SRS的测量结果。这种情况下,两次测量结果的差值大于或等于预设差值,可以指UE3的测量结果比UE2的测量结果大,且UE3的测量结果与UE2的测量结果的插值大于或等于预设差值。或者,也可以指UE3的测量结果比UE2的测量结果小,且UE3的测量结果与UE2的测量结果的差值大于或等于预设差值。
在另一些实施例中,第一终端、第二终端和网络设备之间可以通过一些交互流程来配置第一SRS,以便于第一终端测量第一SRS。具体的,参见图11,交互流程包括如下步骤:
S1101、第一终端向网络设备发送第一能力信息。
相应的,网络设备从第一终端接收第一能力信息。
其中,第一能力信息指示用于测量CLI的能力信息。第一能力信息包括以下至少一个:第一终端在一个时间单元上能够监听的第一SRS数目、第一终端是否能够监听连续符号、第一终端在一个时间单元上能够监听的最大符号数目、第一终端在一个时间单元上能够监听的最大连续符号数目。时间单元可以是时隙(slot)。一个时间单元包含一个slot,或者包括多个slot,或者包括一个持续时间duration,一个duration包括一个或多个时隙中任何一个或多个的组合。
作为另一个实施例,S1101步骤为可选项,即可以不执行该步骤,继续下述步骤。
在另一些实施例中,第一终端还可以向运维管理(operation administration management,OAM)系统上报第一能力信息。
S1102、第一终端向网络设备发送第二能力信息。
相应的,网络设备从第一终端接收第二能力信息。第二能力信息指示第一终端用于上报测量结果的能力。第二能力信息用于指示第一终端能够向网络设备上报的测量 结果的数目,测量结果包括针对至少一个第一SRS的测量结果。第一SRS的测量结果表征该第二终端发送的第一SRS的信号强度,还可以表征该第二终端对第一终端的CLI干扰程度。关于第一SRS的测量结果的详细介绍可参见下文。此外,下文再提及测量结果时,通常指的是针对第一SRS的测量结果,在此统一说明,下文不再赘述。
可选的,第二能力信息也可称为第一终端的上报能力。
其中,测量结果还可以包括其他类型的测量结果。比如,可以包括RSRP的测量结果,或者,RSRQ的测量结果,或者,接收信号强度指示(received signal strength indicator,RSSI)的测量结果。也就是说,第一终端通过第二能力信息,使得网络设备获知第一终端能够上报的针对RSRP的测量结果数目,和/或,获知针对RSRQ的测量结果数目,和/或,获知针对RSSI的测量结果数目,和/或,获知能上报的第一SRS的测量结果数目。进而,网络设备根据第一终端能够上报的测量结果数目为第一终端进行相关配置。
作为另一个实施例,S1102步骤为可选项,即可以没有该步骤,继续下述步骤。
S1103、第一终端向网络设备发送第三能力信息。
相应的,网络设备从第一终端接收第三能力信息。
其中,第三能力信息用于指示第二资源与传输第一SRS的第一资源之间的复用关系,复用关系包括时分复用,或频分复用中至少一种。频分复用具体为:第一资源与第二资源在时域资源上相同,频域资源上相邻或不重叠;或者,时域资源上有部分重叠(overlap),频域资源上相邻或不重叠。时分复用具体为:第一资源与第二资源在频域资源上相同,时域资源上相邻或不重叠;或者,频域资源上有部分重叠(overlap),时域资源上相邻或不重叠。
第一资源为用于传输第一SRS的资源。第二资源为用于数据传输的资源。数据传输包括下述任何一种或多种:物理下行共享信道(physical downlink shared channel,PDSCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、物理随机接入信道(physical random access channel,PRACH)、物理下行控制信道(physical downlink control channel,PDCCH)、信道状态指示参考信号(channel state indicator reference signal,CSI-RS)、物理上行控制信道(physical uplink control channel,PUCCH)、物理侧行链路控制信道(physical sidelink control channel,PSCCH)、或物理侧行链路共享信道(physical sidelink shared channel,PSSCH)、物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)。当然,数据传输还可以是其他形式的数据传输。
需要说明的是,第三能力信息指示第一资源和第二资源之间的复用关系,可以是指示第一资源和第二资源之间具有哪一种或哪几种复用关系,该资源复用关系可以被第一终端支持。比如,第三能力信息指示第一资源和第二资源之间为时分复用。或者,第三能力信息指示第一资源和第二资源之间不能具有哪一种或哪几种复用关系,即第一终端不支持哪一种或几种资源复用关系。比如,第三能力信息指示第一资源和第二资源之间不能为频分复用,或者,第一资源和第二资源之间在时频资源上不能有包含(比如重叠)关系,或者,第一资源和第二资源之间在时频资源上不能有重叠。
如此,当网络设备收到上述第三能力信息时,在为终端配置第一资源和第二资源时,会根据终端支持或不支持的资源复用关系,合理进行资源配置,降低第一资源和第二资源发生冲突的概率。
在一些实施例中,第一SRS占用的资源不同于下行传输的资源,且第一SRS占用的资源不同于上行传输的资源。下行传输包括PDCCH、或PDSCH、或同步信号(synchronization signal,SS)、或物理广播信道(physical broadcast channel,PBCH);上行传输包括PUCCH、或PUSCH、或PRACH、或第二SRS中的至少一项。其中,第二SRS不是用于检测CLI的SRS。当然,上行传输和下行传输还可以为其他形式的上行传输或下行传输。
也就是说,网络设备在配置上行传输或下行传输时,考虑上行传输或下行传输是否与第一SRS产生重叠。若产生重叠,则网络设备将某一资源要么配置成用于上行传输或下行传输,要么配置成用于传输第一SRS。以避免在同一资源上出现上行或下行传输与第一SRS的冲突。
或者,定义终端行为如下。当第一SRS占用的资源与下行传输的资源中部分资源相同,或第一SRS占用的资源与上行传输的资源中部分资源相同,在相同的资源上,第一SRS被终端检测且下行传输被终端丢弃,或者,下行传输被终端检测且第一SRS被终端丢弃,或者,第一SRS被终端检测且上行传输被终端丢弃,或者,上行传输被终端检测且第一SRS被终端丢弃。
以网络设备配置上述任一上行传输为例,在同一资源上,网络设备将该资源配置成用于上行传输和用于传输第一SRS。并且,网络设备可以指示第一终端在该资源上检测时,优先检测上行传输,不检测第一SRS,即丢弃第一SRS。或者,第一终端优先检测第一SRS,不检测上行传输。
作为另一个实施例,S1103步骤为可选项,即可以没有该步骤,继续下述步骤。S1103步骤为可选项时,第一终端获取第三能力信息为通过预先设置获取。
本申请实施例不限制S1101至S1103之间的执行顺序,示例性的,第一终端可以先向网络设备发送第一能力信息,再向网络设备发送第二能力信息。第一终端还可以先向网络设备发送第三能力信息,再向网络设备发送第一能力信息,等。
所述第一能力信息,第二能力信息或第三能力信息中任何一个都可以由终端置放于MAC包或者数据包中发给网络设备。
S1104、第一终端获取配置信息。
可选的,第一终端从网络设备获取配置信息。或者,配置信息预先配置在第一终端中。或者配置信息的一部分从网络设备接收,配置信息的另一部分预先设置。
作为一种可能的实现方式,网络设备基于第一终端的上述能力信息中的至少一个(比如第二能力信息)确定配置信息。当然,网络设备还可以基于自身策略确定配置信息,并向第一终端发送配置信息。本申请实施例对网络设备确定配置信息的方式不做限定。
在一些实施例中,配置信息用于指示下述至少一项:
1、上报的测量结果为RSRP,或者RSSI,或者RSRP及RSSI。测量结果用于表征第一SRS的信号强度。
本申请中,作为第一SRS的信号强度表征的测量结果为RSRP,或者RSSI,或者RSRP及RSSI。其中,RSRP可以替换为SRS-RSRP,也可以替换为CLI-RSRP。RSSI可以替换为SRS-RSSI,也可以替换为CLI-RSSI。
2、可用的第一资源的信息或者配置的第一资源的信息。
可选的,可用第一资源指的是干扰终端发送第一SRS可使用的资源。在一种可能的实现方式中,可以预先规定资源池,资源池即为可用第一资源。可用的第一资源的信息包括资源池的起始时隙(slot)位置,slot个数,在一个slot中起始的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号位置,符号个数,起始的物理资源块(physical resource block,PRB)位置,或PRB个数,起始的资源元素(resource element,RE)位置,或RE个数的一种或者多种的组合。其中slot个数,符号个数,PRB个数中任何一种或者多种可以是连续的或者非连续的。
可选的,网络设备也可以限制第一资源的最小PRB数目。比如COMB=2时,设置第一资源占用的PRB数目不小于8个,COMB=4时,设置PRB数目不小于16个。
如此,后续,当第一终端作为干扰终端时,其可在可用的第一资源(即上述资源池)中选取用于发送第一SRS的资源。
可选的,配置的第一资源指的是干扰终端发送第一SRS所使用的资源。配置的第一资源的信息包括起始slot位置,slot个数,在一个slot中起始的OFDM符号位置,符号个数,起始的PRB位置,PRB个数,起始的RE位置,或RE个数的一种或者多种的组合。其中slot个数,符号个数,PRB个数,RE个数中任何一种或者多种可以是连续的或者非连续的。
3、用于测量RSSI的参考信息。
其中,用于测量RSSI(可以理解为用于传输RSSI)的参考信息包括参考子载波间隔(subcarrier spacing,SCS),用于测量RSSI的起始slot位置,用于测量RSSI的slot个数,用于测量RSSI的起始OFDM符号位置,用于测量RSSI的符号个数,用于测量RSSI的起始PRB位置,用于测量RSSI的PRB个数,用于测量RSSI的起始RE位置,或用于测量RSSI的RE个数的一种或者多种的组合。其中slot个数,符号个数,PRB个数,RE个数中任何一种或者多种可以是连续的或者非连续的。
当用于RSSI测量的参考子载波间隔被配置后,第一终端所在的激活(active)带宽部分(bandwidth partial,BWP)上的子载波间隔可能不同于用于RSSI测量的参考子载波间隔。不同子载波间隔定义的符号和带宽可能不同。示例性的,假设active BWP上的子载波间隔为20kHZ,用于RSSI测量的参考子载波间隔为40kHZ。则当网络设备将第一终端配置成在测量RSSI时检测4个符号(即用于RSSI测量的符号)时,第一终端测量RSSI时,由于用于RSSI测量的参考子载波间隔加倍(由20kHZ至40kHZ),则第一终端实际检测2个符号。
在一种情况中,网络设备配置用于RSSI测量的符号个数为奇数个,那么,第一终端根据active BWP的子载波间隔与用于RSSI测量的参考子载波间隔之间的关系推导所得的实际测量符号可能不是整数。因此,需要重新确定终端的实际测量符号和带宽。
作为一种可能的实现方式,采用下取整或者上取整方式确定实际测量符号。比如,UE被网络设备配置为测量7个符号,但是用于RSSI测量的参考子载波间隔是active BWP子载波间隔的二倍。那么,在这种情形下,UE实际是被配置测量3.5个符号。可选的,对3.5进行下取整后,则UE实际测量3个符号。或者,对3.5上取整后,则UE实际测量4个符号。也可以说,当用于测量RSSI的参考子载波间隔定义的符号或符号个数不满足激活BWP SCS定义的整数符号的要求时,UE可以通过向上取整或向下取整 方式确定实际测量的符号数,以满足激活BWP SCS的整数符号要求。
此外,当用于RSSI测量的参考子载波间隔定义的RB,或RB个数,或PRB,或PRB个数,或RE,或RE个数中的至少一个不满足激活BWP SCS定义的整数RB/RE时,UE也可以参照上述方法计算出整数RB/RE中任何一者。作为一种可能的实现方式,可以是对符号进行下取整,对RB/RE进行上取整,或者,对符号进行上取整,对RB/RE进行下取整,或者,采取其他取整方式。所述取整方式可以被配置或预先设置在终端。
4、用于测量RSRP的参考信息。
其中,可参见配置的第一资源的信息。这里不再赘述。
需要说明的是,用于测量RSRP的参考信息可以与上述用于测量RSSI的参考信息分别独立配置,两者互不影响。所配置的传输资源可以有下述几种关系,比如,用于测量RSRP的第一SRS占用资源1,用于测量RSSI的占用资源2,且资源1和资源2可以部分重叠,或者不重叠,也可以完全重叠。本申请中占用资源可以替换为使用资源。
此外,第一终端能够上报RSSI和上报RSRP的数目可以不同,也可以相同。可以根据实际应用场景灵活配置。
5、用于发送/测量的第一SRS的序列(sequence)、序列集合或者资源指示信息中
的至少一项。其中,每一序列集合包含至少一个序列。
具体的,指的是第一SRS的根序列或者根序列集合,每一根序列集合包含至少一个根序列。如此,可以基于配置的根序列进行循环移位得到需发送/需测量的第一SRS。或者,从根序列集合中随机选取根序列,并通过循环移位得到需发送的第一SRS。
具体的,指的是第一SRS的根序列、循环移位、根序列集合、或者循环移位集合中任何一种或多种的组合。每一根序列集合包含至少一个根序列。如此,可以基于配置的根序列和循环移位得到需发送/需测量的第一SRS。或者,从根序列集合中随机选取根序列,并通过循环移位得到需发送的第一SRS。
具体的,资源指示信息包含用于传输的资源或资源集合。用于传输的资源可以通过资源标识(index/ID)来表示,如SRS resource index;资源集合可以通过资源集合标识(index/ID)来表示,如SRS set resource index或者SRS resource set index。
6、是否为第一终端做速率匹配。
其中,为第一终端做速率匹配指的是,针对第一终端传输的上行或下行信息进行重发(repeated)或者打孔(punctured),以匹配物理信道的承载能力,上行或下行信息的传输速率达标。关于速率匹配的详细介绍可参见现有技术,这里不再赘述。如此,后续,若需做速率匹配,则第一终端使用重发或打孔方式发送信息,以匹配物理信道的承载能力。
7、上报测量结果的信息既包含测量结果,还包含第二指示信息。
上报测量结果包括同时上报所测量的第一SRS的第二指示信息。其中,第一SRS的第二指示信息包括第一SRS的资源指示信息,或第一SRS序列中的一种或多种的组合。本申请实施例中,第一SRS的资源指示信息包括:第一SRS资源标识或第一SRS资源索引,或第一SRS集合资源标识,或第一SRS集合资源索引中的一种或多种的组合。即,向网络设备发送一个或多个测量结果包括在发送测量结果的同时,也上报所测量的第一SRS的第二指示信息。第一SRS集合包括一个或多个第一SRS,第一SRS集合资源标识,可以使用于传输多个第一SRS的全部资源的标识。
也就是,通过配置信息可以指示第一终端在上报测量结果同时,还上报其他一些信息。如此,通过一条消息,可以携带第一终端相关的资源、序列等信息。所述测量 结果与第二指示信息在上报的消息中一一对应。
8、测量结果的信息只包含第二指示信息。上报测量结果只上报所测量的满足测量结果要求的第一SRS的第二指示信息。其中,满足测量结果要求即满足第一指示信息要求。其中,第一SRS的第二指示信息包括第一SRS的资源指示信息,或第一SRS序列中的一种或多种的组合。本申请实施例中,第一SRS的资源指示信息包括:第一SRS资源标识或第一SRS资源索引,或第一SRS集合资源标识,或第一SRS集合资源索引中的一种或多种的组合。即,向网络设备发送一个或多个测量结果包括在发送测量结果的同时,也上报所测量的第一SRS的第二指示信息。第一SRS集合包括一个或多个第一SRS,第一SRS集合资源标识,可以使用于传输多个第一SRS的全部资源的标识。
也就是,通过配置信息可以指示第一终端在上报测量结果时,只上报其他一些信息。如此,并不直接上报测量结果自身,可以携带第一终端相关的资源、序列等信息。所述测量结果与第二指示信息一一对应。
9、测量结果的信息只包含测量结果。
在另一些实施例中,配置信息还可用于指示第一终端上报测量结果的方式。上报测量结果的方式包括上报测量结果的数目,以及上报测量结果的特征。当上报测量结果的方式为如下至少一种或多种的组合时,第一终端根据配置信息所指示的上报测量结果的方式进行上报。具体的,上报测量结果的方式可以为如下至少一种或多种的组合:
方式1:第一终端按照图7所示方法流程上报N个测量结果的信息。
方式2:可以设置不同门限值,并基于不同门限值判断需上报的测量结果。即第一终端按照图8所示方法流程上报测量结果的信息。
方式3:第一终端按照图9所示方法流程上报W个测量结果的信息。
方式4:第一终端上报来自第一小区中第二终端的K个测量结果的信息,上报来自第二小区中第二终端的I个测量结果的信息。其中,I、K均为正整数,I、K可以相同,也可以不同。也就是说,针对不同小区中的第二终端,第一终端针对不同小区可设置不同的测量结果数目上限。
方式5:第一终端上报的测量结果为至少一个第二终端的测量结果中测量结果大于或等于结果阈值,且测量结果最大的H个测量结果,H为正整数。
方式6:第一终端按照预设时间间隔上报不同的测量结果的信息。即按照图10所示流程上报测量结果。
方式7:第一终端上报第一SRS的第二指示信息。
所述上报第一SRS的第二指示信息包括在上报测量结果的同时,上报测量结果对应的第二指示信息。即第二指示信息与测量结果一一对应上报。
可选的,当上报两个测量结果时,同时上报这两个第一SRS各自的资源标识/资源索引,从而使得网络设备获取到该测量结果的同时知道测量结果对应的是来自哪个终端的干扰。
可选的,当上报两个测量结果时,同时上报这两个第一SRS各自的第一SRS集合资源标识/第一SRS集合资源索引,从而使得网络设备获取到该测量结果的同时知道测量结果对应的是来自哪个终端的干扰。
可选的,当上报两个测量结果时,同时上报这两个第一SRS各自的资源标识/资源索引以及集合资源标识/SRS集合资源索引,即同时上报这两个第一SRS各自的资源标 识以及第一SRS集合资源标识,或者,同时上报这两个第一SRS各自的资源标识以及第一SRS集合资源索引,或者,同时上报这两个第一SRS各自的资源索引以及第一SRS集合资源索引,或者,同时上报这两个第一SRS各自的资源索引以及第一SRS集合资源标识。从而使得网络设备获取到该测量结果的同时知道测量结果对应的是来自哪个终端的干扰。
可选的,当上报两个测量结果时,同时上报这两个第一SRS各自的序列,从而使得网络设备获取到该测量结果的同时知道测量结果对应的是来自哪个终端的干扰。
所述上报第一SRS的第二指示信息包含:所述第二指示信息与一个或多个测量结果一一对应上报。
可选的,当上报两个测量结果时,同时上报这两个第一SRS各自的资源标识/资源索引以及序列,从而使得网络设备获取到该测量结果的同时知道测量结果对应的是来自哪个终端的干扰。
可选的,可以采用同一条配置信息上报第一SRS的序列或者序列集合和第二指示信息。与可以采用两条配置信息分别上报第一SRS的序列或者序列集合和第二指示信息。本申请实施例对此不进行限制。
可选的,所述上报第一SRS的第二指示信息包括只上报第二指示信息,从而使得网络设备并不需要获取测量结果但能获知哪个终端的干扰最强或者最弱。
当然,第一终端还可以采取其他方式来上报测量结果,上报其他数目的测量结果,并且,上报的测量结果还可以具备其他特征,本申请实施例在此不再一一列举。
上述N、J、M、K、I、H的值,第一门限值,或第二门限值中任意一者或多者。
可选的,第一终端除了根据网络设备的配置信息进行上报,第一终端也可以根据上述上报测量结果的方式中的任何一种或者多种的组合直接进行上报。即,第一终端不需要获取网络设备下发的配置信息来获知上报测量结果的方式,或者,第一终端根据预先设置直接上报。本申请中上报的含义为从终端向网络设备发送数据信息,该数据信息包括测量结果以及对测量结果的第二指示信息中任何一种或多种。
例如,第一终端直接根据方式1上报,或者第一终端直接根据方式1以及6上报,或者第一终端直接根据方式2以及6上报。
作为另一个实施例,S1104步骤为可选项,即可以没有该步骤,继续下述步骤。S1104步骤为可选项时,第一终端获取配置信息为通过预先设置获取。
S1105、网络设备配置第二终端的第一SRS。
在一些实施例中,网络设备基于上述至少一种能力信息(比如第一能力信息)配置第二终端的第一SRS。
可选的,第一能力信息也可以称之为测量能力。
如下以时间单元为时隙,第一终端为UE1,第二终端为UE2、UE3为例,对网络设备配置第二终端的第一SRS的方法进行说明。
可选的,网络设备基于UE1上报的第一能力信息获知UE1在一个时隙中能够监听的第一SRS数目为P,P为大于或等于1的整数。如此,网络设备将第二终端能够发送的第一SRS数目配置为小于或等于P。比如,UE1在一个时隙中能够监听的第一SRS数目为8,且UE2、UE3复用一个时隙,则网络设备可以将UE2配置成在一个时隙中 最多发送2个第一SRS,网络设备将UE3配置成在同一个时隙中最多发送6个第一SRS。或者,UE2、UE3不在同一时隙中发送第一SRS,则网络设备可以将UE2配置成在一个时隙中最多发送8个第一SRS,网络设备将UE3配置成在同一个时隙中最多发送8个第一SRS。这样一来,无论UE2、UE3是否复用同一时隙发送第一SRS,在一个时隙中,UE2或UE3最多发送8个第一SRS,不超出UE1在一个时隙中监听第一SRS数目的上限。
可选的,网络设备基于UE1上报的第一能力信息获知UE1能够监听连续符号,相应的,网络设备将UE2配置成在连续符号上发送第一SRS。或者,网络设备将UE3配置成在连续符号上发送第一SRS。或者,若UE2、UE3复用同一时隙发送第一SRS,则网络设备可以将连续的多个符号分配给UE2、UE3,用于发送第一SRS。
可选的,网络设备基于UE1上报的第一能力信息获知UE1在一个时隙上能够监听的最大符号数目为L,L为大于或等于1的整数。如此,若UE2、UE3复用同一时隙发送第一SRS,则网络设备可以将UE2配置成在一个时隙中最多使用L1个符号发送第一SRS,将UE3配置成在一个时隙中最多使用L2个符号发送第一SRS,并且,L1+L2小于或等于L。当然,当L1个符号与L2个符号有重叠时,L1+L2可以大于L,只要保证L1小于或等于L,并且L2小于或等于L。类似的,UE2、UE3不在同一时隙中发送第一SRS时,也能够保证,在一个时隙中用于发送第一SRS的最大符号数目不超出UE1能够监听的数目。
可选的,网络设备基于UE1上报的第一能力信息获知UE1在一个时隙上能够监听的最大连续符号数目。如此,网络设备为UE2或UE3配置的用于发送第一SRS的连续符号的数目小于或等于该最大连续符号数目。
可选的,第一终端在一个时间单元上能够监听的第一SRS数目可以包括在第一时间单元上能够监听的第一SRS数目以及在第二时间单元上能够监听的第一SRS数目。当第一时间单元为一个slot,第二时间单元为一个持续时间duration(该duration等于X个slot,X为正整数)时,网络设备基于UE1上报的第一能力信息获知UE1在一个时隙中能够监听的第一SRS数目为R,并且在X个时隙中能够监听的第一SRS数目为S。R为大于或等于1的整数,S为大于或等于1的整数。如此,网络设备将第二终端在一个slot中能够发送的第一SRS数目配置为小于或等于R,网络设备将第二终端在X个slot中能够发送的第一SRS数目配置为小于或等于S。比如,UE1在一个时隙中能够监听的第一SRS数目为8,在X个slot中能够发送的第一SRS数目为32,且UE2、UE3复用一个时隙,则网络设备可以将UE2配置成在一个时隙中最多发送2个第一SRS,网络设备将UE3配置成在同一个时隙中最多发送6个第一SRS;并且,网络设备可以将UE2配置成在X个时隙中最多发送8个第一SRS,网络设备将UE3配置成在相同的X个时隙中最多发送24个第一SRS。或者,UE2、UE3不在同一时隙中发送第一SRS,则网络设备可以将UE2配置成在一个时隙中最多发送8个第一SRS,网络设备将UE3配置成在同一个时隙中最多发送8个第一SRS。或者,UE2、UE3不在同样的X个时隙中发送第一SRS,则网络设备可以将UE2配置成在一个时隙中最多发送32个第一SRS,网络设备将UE3配置成在另X个时隙中最多发送32个第一SRS。这样一来,无论UE2、UE3是否复用同一时隙发送第一SRS,在一个时隙中,UE2或UE3最多发送8个第一 SRS,不超出UE1在一个时隙中监听第一SRS数目的上限。无论UE2、UE3是否复用同样的X个时隙发送第一SRS,在X个时隙中,UE2或UE3最多发送32个第一SRS,不超出UE1在X个时隙中监听第一SRS数目的上限。
在另一些实施例中,网络设备可以不基于第一终端上报的第一能力信息配置第二终端的第一SRS。比如,网络设备根据自身决策配置第二终端的第一SRS。
在另一些实施例中,网络设备在用于传输第一SRS(即用于检测CLI的SRS)的符号之前或之后的一个或多个符号上不配置任何数据传输或接收,从而使得终端能进行正确的速率匹配。当然,也可以采取其他方式配置符号,重发或打孔一些比特,进而实现速率匹配。
通常,不同的干扰终端(即第二终端)与被干扰终端(即第一终端)之间的距离不同,所以,不同第二终端的第一SRS到达第一终端的时间可能不对齐。当两个第一SRS的(cyclic shift,CS)间隔较小时,第一终端难以区分这两个第一SRS分别来自哪个第二终端,进而难以判断具体的干扰源。
为了解决上述问题,在另一些实施例中,当两个第二终端的资源相同时,这两个第二终端的第一SRS的根序列不同。两个第二终端的资源相同,可以指两个第二终端的时域资源、频域资源、空域资源中一个或多个相同。如此,可以根据不同根序列区分不同的第一SRS,并判断不同第一SRS分别来自哪一第二终端,进而精确的判断干扰源。
在另一些实施例中,当两个第二终端的资源相同时,这两个第二终端的第一SRS的根序列相同,且这两个第二终端的第一SRS的循环移位之间相差第一偏移量值。
可选的,第一偏移量值可以表示为
Figure PCTCN2020082111-appb-000001
其中,
Figure PCTCN2020082111-appb-000002
为配置第一SRS时最大循环移位的数目。该最大循环移位的数目可以为12或者8,或者别的预设的值。
可选的,第一偏移量值也可以配置为其他格式的参数。在一种方式中,可以基于SRS端口(port)的配置设置第一偏移量值。SRS端口可以理解为发送SRS的天线端口。当SRS端口为不同设置时,第一偏移量值相应变化。在另一种方式中,可以基于符号间隔来设置,还可以基于UE间相对距离来设置。
具体的,第一偏移量值为
Figure PCTCN2020082111-appb-000003
U为可配置的参数,在一个示例中,U表示SRS端口数目,此时,U为正整数。当然,U还可以是与SRS端口数目有关系的参数,比如,可以依据一定运算规则由SRS端口数目得到U。以U为SRS端口数目为例,当SRS端口数目为1时,第一偏移量值为
Figure PCTCN2020082111-appb-000004
当SRS端口数目为2时,第一偏移量值为
Figure PCTCN2020082111-appb-000005
如此,上述当CS之间相差大于或者等于第一偏移量值时,可以保证通过不同的终端设备间距离到达一个接收的终端设备时,不会因为距离差导致CS无法区分。
在另一些实施例中,CS之间相差小于或者等于第二偏移量值。可选的,第二偏移量值可以表示为
Figure PCTCN2020082111-appb-000006
其中V为可配置的参数。上述当CS之间相差小于或者等于第二偏移量值时,可以保证通过不同的终端设备间距离到达一个接收的终端设备时,对CS之间相差的要求不会太高,从而可用的SRS不致太少。
在另一些实施例中,OAM根据第一能力信息配置第二终端的第一SRS。
需要说明的是,本申请实施例对上述S1101-S1105之间的执行顺序不进行限制。示例性的,第一终端可以同时上报各个能力信息。也可以先上报第一能力信息,再上报第二能力信息、第三能力信息。网络设备可以接收某一或多个能力信息后,向第一 终端发送配置信息,也可以先向第一终端下发配置信息,再接收第一终端的某一或多个能力信息。或者即使不接收第一终端的某一或多个能力信息,直接向第一终端下发配置信息。
通常,终端与基站进行通信时,需进行定时同步。也就是说,基站需知道在哪一接收时机接收来自终端的信息,或者在哪一时机向终端发送信息,终端也需知道在哪一时机接收来自基站的信息,或则在哪一时机向基站发送信息,以便于在正确的收发时机收发信息。参见图4,以基站收发下行消息的时间为基准时间,UE1的上行发送相对于基准时间应提前d1/c,UE1的下行接收应滞后d2/c,d1为UE1与基站1之间的距离。类似的,UE2的上行发送和下行接收时机可参考UE1的相应时机。以便于UE和基站之间的定时同步。
现有技术中,针对CLI中的定时同步,提出两种解决方法。解决方法一,终端在传输物理上行共享信道(physical uplink shared channel,PUSCH)的同时传输第一SRS,即传输第一SRS的定时提前量(timing advance,TA)等于传输PUSCH的TA值。如此,虽然能够进行上下行定时同步,但是,传输PUSCH和传输第一SRS可能占用相同的时频资源,终端很可能无法正确解调PUSCH,丢失有用的数据。解决方法二,这种方法中,需假设UE1、UE2的距离很近,因此可以忽略图1a所示中的距离d。UE2在基准时间d2/c之后发送第一SRS,UE1在基准时间d1/c检测该第一SRS。在该方法中,UE2将发送时间滞后d2/c,相当于用于传输第一SRS的符号也会相应后移。比如,原本通过第一个时隙中的第7个符号传输第一SRS,现在,需要将发送时间滞后d2/c,相应的,可能通过下一时隙(第二个)的第一个符号传输第一SRS。但是,该第二个时隙的第一个符号很可能已被配置成用于传输PUSCH,导致在该符号上第一SRS和PUSCH的冲突,不利于终端解调PUSCH。
为了解决上述技术问题,本申请实施例还提供一种定时同步方法,参见图5,该定时同步方法包括如下步骤:
S501、第二终端获取发送第一探测参考信号SRS的第一资源。
其中,第一资源与第二终端的地理位置信息存在对应关系。多个地理位置信息,分别对应多个第一资源。第二终端处于不同地理位置,第二终端发送第一SRS的第一资源不同。作为一种可能的实现方式,可以将预设地理区域划分为P(P为正整数)个子区域。其中,每一子区域对应一个地理位置信息。地理位置信息比如可以为子区域的标识、代码、编号等。P可以预配置在终端中,或者由网络设备配置。不同地理位置信息对应不同的资源。
上述第一资源可以是时域资源、频域资源、空域资源、码域资源等。本申请实施例不对第一资源的类型做具体限制。对应于不同地理位置信息,第二终端发送第一SRS的资源不同,可以指通过不同时域资源发送第一SRS,也可以指通过不同频域资源发送第一SRS,或者,通过不同空域资源发送第一SRS,也可以指通过不同码域资源发送第一SRS。以资源为时域资源举例,第二终端位于子区域1时,通过一个时隙中的第6个符号发送第一SRS,第二终端位于子区域2时,通过一个时隙中的第7个符号发送第一SRS。以资源为空域资源为例,第二终端位于子区域1时,通过第一天线端口发送第一SRS,第二终端位于子区域2时,通过第二天线端口发送第一SRS。
可选的,第一资源为预配置在终端中的资源,即第一资源为基于第二终端地理位置信息的预配置资源。比如,终端中预配置有资源与地理位置信息的对应关系。如此,第二终端发送第一SRS时,可以查询该对应关系,并根据该对应关系确定在当前地理位置应该使用哪一资源发送第一SRS。
可选的,第二终端从网络设备接收SRS配置消息,该SRS配置消息用于指示第二终端的地理位置信息对应的第一资源。具体的,网络设备通过如下至少一种方式向第二终端指示第一资源。
方式1:SRS配置消息为广播消息。具体的,网络设备周期性发送广播消息。第二终端从网络设备接收广播消息,并根据广播消息确定在当前地理位置发送第一SRS可使用的资源。其中,广播消息携带地理位置信息与资源的对应关系。该对应关系可以包括多个地理位置信息和多个资源的关系,比如,对应关系可以为{地理位置信息1-资源1;地理位置信息2-资源2;…地理位置Q-资源Q}。当然,对应关系还可以是其他格式,比如表格格式。本申请实施例对对应关系的格式不做限定。第二终端接收并存储该对应关系。后续,第二终端需发送第一SRS时,查询该对应关系,以获知当前地理位置对应的资源,并使用对应的资源发送第一SRS。
方式2:第二终端发送第一SRS之前,向网络设备发送SRS资源请求,SRS资源请求用于请求发送第一SRS的第一资源。
可选的,在方式2中,第二终端的SRS资源请求包括第二终端的当前地理位置信息。如此,网络设备根据第二终端的当前地理位置信息,为第二终端配置对应的第一资源,并向第二终端发送SRS配置消息,用于指示第二终端的当前地理位置对应的第一资源。
或者,第二终端发送的SRS资源请求也可以不携带第二终端的当前地理位置信息。网络设备在接收到来自第二终端的SRS资源请求之后,先确定第二终端的当前地理位置,再基于该当前地理位置为第二终端配置第一资源。
其中,第二终端可以采用如下方法获取第二终端的当前地理位置:网络设备向第二终端发送第二参考信号,第二终端在接收到第二参考信号之后,获取第二参考信号对应的第二RSRP,并基于第二RSRP获取第二终端的地理位置信息。其中,第二RSRP用于表征第二参考信号到达第二终端的接收功率。或者,第二终端在接收到第二参考信号之后,获取第二参考信号对应的第二RSRQ,并基于第二RSRQ获取第二终端的地理位置信息。其中,第二RSRQ用于表征第二参考信号到达第二终端的信号质量。
网络设备可以采用如下方法获取第二终端的当前地理位置:网络设备向第二终端发送第二参考信号,第二终端在接收到第二参考信号之后,获取第二参考信号对应的第二RSRP,并向网络设备发送该第二RSRP。如此,网络设备基于接收的第二RSRP获取第二终端的地理位置信息。或者,第二终端在接收到第二参考信号之后,获取第二参考信号对应的第二RSRQ,并向网络设备发送该RSRQ。如此,网络设备基于接收的第二RSRQ获取第二终端的地理位置信息。
当然,第二终端或网络设备还可以采用其他方式确定第二终端的当前地理位置,本申请对此不进行限制。
S502、第二终端使用第一资源发送第一SRS。
相应的,第一终端从第二终端接收第一SRS。
可选的,第一终端还可以向网络设备发送第四能力信息(也可称为测量精度能力)。第四能力信息用于表征对测量结果的精度要求。精度要求高,即规定第一终端对第一SRS的测量结果在预设偏差范围内,精度要求低,即第一终端对第一SRS的测量结果可以不在预设偏差范围内。容易理解的是,若精度要求高,网络设备基于第四能力信息进行配置,比如网络设备指示第一终端执行如下S503以及后续流程,以调整接收定时(timing),在正确的时机接收第一SRS,以保证对第一SRS的测量结果更为准确。若精度要求低,则第一终端可以不执行如下调整接收定时的步骤。
当然,第一终端还可以基于对测量结果的精度要求自身判断是否执行如下S503以及后续流程。
S503、第一终端根据第一资源确定定时偏移。
作为一种可能的实现方式,参见图6,S503可具体实现为如下步骤:
S5031、第一终端根据第一资源获取第二终端的地理位置信息。
其中,上文已指出,第一资源与地理位置信息存在对应关系。基于此对应关系,第一终端可以根据发送第一SRS的第一资源确定第二终端的地理位置信息。该对应关系可以预配置在第一终端中。比如,对应关系可以为{地理位置信息1-资源1;地理位置信息2-资源2;…地理位置Q-资源Q}。当然,该对应关系可以存储在除上述网络设备(比如基站)外的其他设备中,第一终端在需查询对应关系时,从存储该对应关系的设备中获取该对应关系。本申请实施例对第一终端获取第二终端地理位置信息的具体实现方式不做限定。在一个示例中,第一终端监听到来自第二终端的第一SRS,该第一SRS在一个时隙的第6个符号上发送,则第一终端根据对应关系,可以确定第二终端的地理位置。
S5032、第一终端根据自身的地理位置信息和第二终端的地理位置信息获取第一距离,第一距离为第一终端和第二终端之间的距离。
其中,第一终端获取自身的地理位置信息的方式可参见上述第二终端获取自身的地理位置信息的方式,这里不再赘述。
S5033、第一终端根据第一距离获取定时偏移。
参见图4,以第一终端为UE1,第二终端为UE2为例,UE1与UE2之间的距离为d。则定时偏移可以采用如下公式计算:t=d/c,其中,t为定时偏移,c为无线电信号的传播速度,/为除法运算符。
S504、基于定时偏移调整接收第一SRS的时间。
也就是,在调整接收时机时,能够考虑第一终端和第二终端之间的第一距离的影响。可选的,参见图4,UE2在基准时间之前d2/c发送第一SRS,UE1在基准时间之后(d1-d)/c检测该第一SRS。UE2的发送时机和UE1的检测(接收)时机相差(d2+d1-d)/c。
当然,UE2还可以在其他时机发送第一SRS,此时,只要UE的接收时机与UE2的发送时机相差(d2+d1-d)/c,就能够保证UE1测量的第一SRS的信号强度接近该第一SRS的信号峰值,从而提升测量结果的准确性。
S505、在调整后的接收第一SRS的时间接收第一SRS。
本申请实施例提供的通信方法,第一终端基于某一第二终端的第一SRS的第一资源,确定定时偏移,并基于该定时偏移,调整接收该第一SRS的时间。如此,第一终端在调整后的时间接收该第一SRS。由于能够在较为准确的时间接收第一SRS,所以,测出的第一SRS的信号强度可能更接近该第一SRS的信号峰值,使得针对第一SRS的测量结果更为准确。
需要说明的是,本申请实施例中所提及的消息或信息的名称,或者消息中参数的名称等仅仅是示例性的,在实际中,还可能为其他的名称。
需要说明的是,本申请实施例中提及的预配置/预先配置/预先设置等,可以是通过OAM配置,或者通过网络设备配置,或者,配置在终端中。
可以理解的是,本申请实施例中的网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对网元进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图12示出了本申请实施例中提供的通信装置的一种示意性框图,该通信装置可以为上述的第一终端或者第二终端或网络设备。该通信装置700可以以软件的形式存在,还可以为可用于设备的芯片。通信装置700包括:处理单元702和通信单元703。可选的,通信单元703还可以划分为发送单元(并未在图12中示出)和接收单元(并未在图12中示出)。其中,发送单元,用于支持通信装置700向其他网元发送信息。接收单元,用于支持通信装置700从其他网元接收信息。
可选的,通信装置700还可以包括存储单元701,用于存储通信装置700的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
若通信装置700为上文提及的第一终端,处理单元702可以用于支持第一终端执行图3中的S302,图6中的S5031等,和/或用于本文所描述的方案的其它过程。通信单元703用于支持第一终端和其他网元(例如上述网络设备等)之间的通信,例如支持第一终端执行图3中的S301、S304,图6中的S502等。可选的,在将通信单元划分为发送单元和接收单元的情况下,发送单元,用于支持第一终端向其他网元发送信息。比如支持第一终端执行图3中的S304等,和/或用于本文所描述的方案的其它过程。接收单元,用于支持第一终端从其他网元接收信息。比如,支持第一终端执行图3中的S301等,和/或用于本文所描述的方案的其它过程。
若通信装置700为上文提及的第二终端,处理单元702可以用于支持第二终端执行图5中的S501等,和/或用于本文所描述的方案的其它过程。通信单元703用于支持第二终端和其他网元(例如上述网络设备等)之间的通信,例如支持第二终端执行 图3中的S301等。可选的,在将通信单元划分为发送单元和接收单元的情况下,发送单元,用于支持第二终端向其他网元发送信息。比如支持第二终端执行图3中的S301等,和/或用于本文所描述的方案的其它过程。接收单元,用于支持第二终端从其他网元接收信息,和/或用于本文所描述的方案的其它过程。
若通信装置700为网络设备,处理单元702可以用于支持网络设备执行确定第一资源,和/或用于本文所描述的方案的其它过程。通信单元703用于支持网络设备和其他网元(例如上述第一终端等)之间的通信,例如支持网络设备执行图3中的S304等。可选的,可以参见上文将通信单元划分为发送单元和接收单元。
一种可能的方式中,处理单元702可以是控制器或图2所示的处理器201或处理器207,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理(Digital Signal Processing,DSP),应用专用集成电路(Application Specific Integrated Circuit,ASIC),现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元703可以是图2所示的收发器204、还可以是收发电路等。存储单元701可以是图2所示的存储器203。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备(例如终端设备)上。可以根据实际的需要选择其中的部分或者全部单元来 实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (47)

  1. 一种通信方法,其特征在于,包括:
    第一终端接收至少一个第二终端发送的至少一个第一探测参考信号SRS,所述第一SRS用于检测交叉链路干扰CLI,所述第一SRS占用第一资源;
    所述第一终端根据所述至少一个第一SRS,获得至少一个第二终端的测量结果的信息,所述测量结果用于表征第二终端发送的第一SRS的信号强度;
    所述第一终端向网络设备发送一个或多个测量结果的信息。
  2. 根据权利要求1所述的通信方法,其特征在于,所述一个或多个测量结果的信息包含所述一个或多个测量结果的指示信息,和/或第二指示信息,所述第二指示信息包括所述第一SRS的资源指示信息。
  3. 根据权利要求2所述的通信方法,其特征在于,所述第一SRS的资源指示信息为所述第一SRS的资源标识。
  4. 根据权利要求1至3中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一终端获得第一指示信息,所述第一指示信息用于指示第一终端发送所述至少一个第二终端的测量结果中最大的N个测量结果的信息,或者最小的N个测量结果的信息,所述N为大于或等于1的整数;
    所述第一终端向网络设备发送一个或多个测量结果的信息,包括:
    所述第一终端根据所述第一指示信息,向所述网络设备发送所述N个测量结果的信息。
  5. 根据权利要求1至3中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一终端获得第一指示信息,所述第一指示信息用于指示第一终端发送所述至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果的信息,J为正整数;
    所述第一终端向网络设备发送一个或多个测量结果的信息,包括:
    所述第一终端根据所述第一指示信息,向所述网络设备发送所述至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果的信息。
  6. 根据权利要求1至3中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一终端获得第一指示信息,所述第一指示信息用于指示第一终端发送所述至少一个第二终端的测量结果中小于或等于第二门限值的W个测量结果的信息,W为正整数;
    所述第一终端向网络设备发送一个或多个测量结果的信息,包括:
    所述第一终端根据所述第一指示信息,向所述网络设备发送所述至少一个第二终端的测量结果中小或等于第二门限值的W个测量结果的信息。
  7. 根据权利要求1至6中任一项所述的通信方法,其特征在于,所述第一终端向网络设备发送一个或多个测量结果的信息,包括:
    在第一时间,所述第一终端向所述网络设备发送第一测量结果的信息;
    在与第一时间间隔预设时段的第二时间,所述第一终端向所述网络设备发送第二测量结果的信息,所述第二测量结果与所述第一测量结果的差值大于或等于预设差值。
  8. 根据权利要求1至7中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一终端获取配置信息,所述配置信息用于指示下述至少一项:
    所述第一SRS的序列、序列集合或者资源指示信息中的至少一项,所述序列集合包含至少一个序列;
    上报所述第一SRS的第二指示信息。
  9. 根据权利要求1至8中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一终端向所述网络设备发送第一能力信息,所述第一能力信息指示用于测量CLI的能力信息,所述第一能力信息包括以下至少一个:所述第一终端在一个时间单元上能够监听的第一SRS数目、所述第一终端是否能够监听连续符号、所述第一终端在所述一个时间单元上能够监听的最大符号数目、所述第一终端在所述一个时间单元上能够监听的最大连续符号数目。
  10. 根据权利要求1至9中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一终端向所述网络设备发送第三能力信息,所述第三能力信息用于指示第二资源与传输第一SRS的第一资源之间的复用关系,所述复用关系包括时分复用和频分复用中的至少一种,所述第二资源为用于数据传输的资源。
  11. 根据权利要求10所述的通信方法,其特征在于,所述数据传输包括以下至少一种:物理下行共享信道PDSCH、物理下行控制信道PDCCH、信道状态指示参考信号CSI-RS。
  12. 根据权利要求10或11所述的通信方法,其特征在于,所述第一终端接收至少一个第二终端发送的至少一个第一SRS,包括:
    当所述第三能力信息指示不支持所述第二资源与所述第一资源之间频分复用且所述第一资源与所述第二资源中部分时域资源相同,在所述相同的时域资源上,所述第一终端接收至少一个第二终端发送的至少一个第一SRS。
  13. 根据权利要求10或11所述的通信方法,其特征在于,
    当所述第三能力信息指示不支持所述第二资源与所述第一资源之间频分复用时,所述第一资源与所述第二资源在时域上不重叠。
  14. 根据权利要求1至11中任一项所述的通信方法,其特征在于,所述第一终端接收至少一个第二终端发送的至少一个第一探测参考信号SRS,包括:
    当所述第一资源与上行传输的资源中部分资源相同,在所述相同的资源上,所述第一终端接收至少一个第二终端发送的至少一个第一SRS。
  15. 根据权利要求1至11中任一项所述的通信方法,其特征在于,所述第一资源与上行传输的资源在时域上不重叠。
  16. 根据权利要求1至15中任一项所述的通信方法,其特征在于,所述第一终端根据所述至少一个第一SRS,获得至少一个第二终端的测量结果的信息,包括:
    所述第一终端测量所述第一SRS的信号强度;
    所述第一终端对所述第一SRS的信号强度进行层3过滤得到层3测量结果,其中,所述层3过滤所用的参数由所述网络设备配置。
  17. 根据权利要求1至16中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一终端接收所述网络设备配置的第三门限值;
    所述第一终端向网络设备发送一个或多个测量结果的信息,包括:
    所述第一终端向所述网络设备发送大于或等于所述第三门限值的测量结果。
  18. 一种通信方法,其特征在于,包括:
    网络设备从第一终端接收一个或多个测量结果的信息,所述一个或多个测量结果的信息包括所述一个或多个测量结果的指示信息,和/或第二指示信息,所述第二指示信息包括第一SRS的资源指示信息;
    其中,所述测量结果用于表征第二终端发送的第一SRS的信号强度,所述第一SRS占用第一资源。
  19. 根据权利要求18所述的通信方法,其特征在于,所述第一SRS的资源指示信息为所述第一SRS的资源标识。
  20. 根据权利要求18或19所述的通信方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端发送第一指示信息,所述第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中最大的N个测量结果的信息,或者最小的N个测量结果的信息,所述N为大于或等于1的整数;
    所述网络设备从第一终端接收一个或多个测量结果的信息,包括:
    所述网络设备从所述第一终端接收所述N个测量结果的信息。
  21. 根据权利要求18或19所述的通信方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端发送第一指示信息,所述第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果的信息,J为正整数;
    所述网络设备从第一终端接收一个或多个测量结果的信息,包括:
    所述网络设备从所述第一终端接收至少一个第二终端的测量结果中大于或等于第一门限值的J个测量结果的信息。
  22. 根据权利要求18或19所述的通信方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端发送第一指示信息,所述第一指示信息用于指示第一终端发送至少一个第二终端的测量结果中小于或等于第二门限值的W个测量结果的信息,W为正整数;
    所述网络设备从第一终端接收一个或多个测量结果的信息,包括:
    所述网络设备从所述第一终端接收至少一个第二终端的测量结果中小或等于第二门限值的W个测量结果的信息。
  23. 根据权利要求18至22中任一项所述的通信方法,其特征在于,所述网络设备从第一终端接收一个或多个测量结果,包括:
    在第一时间,所述网络设备从所述第一终端接收第一测量结果的信息;
    在与第一时间间隔预设时段的第二时间,所述网络设备从所述第一终端接收第二测量结果的信息,所述第二测量结果与所述第一测量结果的差值大于或等于预设差值。
  24. 根据权利要求18至22中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端发送配置信息,所述配置信息用于指示下述至少一 项:
    所述第一SRS的序列或者序列集合,所述序列集合包含至少一个序列;
    上报所述第一SRS的第二指示信息,所述第一SRS的第二指示信息包括所述第一SRS的资源指示信息,或所述第一SRS序列中的一种或多种。
  25. 根据权利要求18至24中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述网络设备从所述第一终端接收第一能力信息,所述第一能力信息指示用于测量CLI的能力信息,所述第一能力信息包括以下至少一个:所述第一终端在一个时间单元上能够监听的第一SRS数目、所述第一终端是否能够监听连续符号、所述第一终端在所述一个时间单元上能够监听的最大符号数目、所述第一终端在所述一个时间单元上能够监听的最大连续符号数目。
  26. 根据权利要求18至25中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述网络设备从所述第一终端接收第三能力信息,所述第三能力信息用于指示第二资源与传输第一SRS的第一资源之间的复用关系,所述复用关系包括时分复用和频分复用中的至少一种,所述第二资源为用于数据传输的资源。
  27. 根据权利要求26所述的通信方法,其特征在于,所述数据传输包括以下至少一种:物理下行共享信道PDSCH、物理下行控制信道PDCCH、信道状态指示参考信号CSI-RS。
  28. 根据权利要求26或27所述的通信方法,其特征在于,所述方法还包括:
    当所述第三能力信息指示不支持所述第二资源与所述第一资源之间频分复用时,所述网络设备配置所述第一资源与所述第二资源在时域上不重叠。
  29. 根据权利要求18至28任一项所述的通信方法,其特征在于,所述方法还包括:所述网络设备配置所述第一资源与上行传输的资源在时域上不重叠。
  30. 根据权利要求18至29中任一项所述的通信方法,其特征在于,所述方法还包括:所述网络设备为所述第一终端配置层3过滤所用的参数;
    所述网络设备从第一终端接收一个或多个测量结果的信息,包括:
    所述网络设备从第一终端接收层3测量结果,所述层3测量结果为所述测量结果的指示信息,且是根据所述层3过滤所用的参数得到的。
  31. 根据权利要求18至30中任一项所述的通信方法,其特征在于,所述方法还包括:所述网络设备为所述第一终端配置第三门限值;
    所述网络设备从第一终端接收一个或多个测量结果的信息,包括:
    所述网络设备从第一终端接收大于或等于所述第三门限值的测量结果。
  32. 一种通信方法,其特征在于,包括:
    第一终端从网络设备获取配置信息,所述配置信息指示用于测量交叉链路干扰CLI的接收信号强度指示RSSI的参考信息,所述用于测量CLI的RSSI的参考信息包括以下至少一个:参考子载波间隔,用于测量RSSI的符号个数,用于测量RSSI的起始正交频分复用OFDM符号,用于测量RSSI的物理资源块PRB个数,用于测量RSSI的起始PRB;所述用于测量RSSI的起始OFDM符号和/或符号个数满足根据激活带宽部分BWP 子载波间隔和所述参考子载波间隔间的关系得到的整数符号;所述用于测量RSSI的起始PRB和/或PRB个数满足根据所述激活BWP子载波间隔和所述参考子载波间隔间的关系得到的整数PRB;
    所述第一终端根据所述配置信息获得一个或多个测量结果的信息;
    所述第一终端向所述网络设备发送一个或多个测量结果的信息;
    其中,所述测量结果为用于测量CLI的RSSI的测量结果。
  33. 根据权利要求32所述的通信方法,其特征在于,所述一个或多个测量结果的信息包含所述一个或多个测量结果的指示信息,和/或第二指示信息,所述第二指示信息包括资源指示信息。
  34. 根据权利要求33所述的通信方法,其特征在于,所述资源指示信息为用于测量RSSI的资源标识。
  35. 根据权利要求32至34中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一终端获得第一指示信息,所述第一指示信息用于指示第一终端发送所述RSSI的测量结果中最大的N个测量结果的信息,或者最小的N个测量结果的信息,所述N为大于或等于1的整数;
    所述第一终端向网络设备发送一个或多个测量结果的信息,包括:
    所述第一终端根据所述第一指示信息,向所述网络设备发送所述N个测量结果的信息。
  36. 根据权利要求32至34中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一终端接收所述网络设备配置的第三门限值;
    所述第一终端向网络设备发送一个或多个测量结果的信息,包括:
    所述第一终端向所述网络设备发送大于或等于所述第三门限值的测量结果。
  37. 根据权利要求32至36中任一项所述的通信方法,其特征在于,
    当所述激活BWP上的子载波间隔小于所述用于RSSI测量的参考子载波间隔时,所述用于测量RSSI的符号个数为所述用于RSSI测量的参考子载波间隔除以所述激活BWP上的子载波间隔所得数值的倍数。
  38. 一种通信方法,其特征在于,包括:
    网络设备向第一终端发送配置信息,所述配置信息指示用于测量交叉链路干扰CLI的接收信号强度指示RSSI的参考信息,所述用于测量CLI的RSSI的参考信息包括以下至少一个:参考子载波间隔,用于测量RSSI的符号个数,用于测量RSSI的起始正交频分复用OFDM符号,用于测量RSSI的物理资源块PRB个数,用于测量RSSI的起始PRB;所述用于测量RSSI的起始OFDM符号和/或符号个数满足根据激活带宽部分BWP子载波间隔和所述参考子载波间隔间的关系得到的整数符号;所述用于测量RSSI的起始PRB和/或PRB个数满足根据所述激活BWP子载波间隔和所述参考子载波间隔间的关系得到的整数PRB;
    所述网络设备接收来自所述第一终端的一个或多个测量结果的信息;
    其中,所述测量结果为用于测量CLI的RSSI的测量结果。
  39. 根据权利要求38所述的通信方法,其特征在于,所述一个或多个测量结果的信息包含所述一个或多个测量结果的指示信息,和/或第二指示信息,所述第二指示信息包括资源指示信息。
  40. 根据权利要求39所述的通信方法,其特征在于,所述资源指示信息包括用于测量RSSI的资源标识。
  41. 根据权利要求38至40中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述网络设备向所述第一终端发送第一指示信息,所述第一指示信息用于指示第一终端发送所述RSSI的测量结果中最大的N个测量结果的信息,或者最小的N个测量结果的信息,所述N为大于或等于1的整数;
    所述网络设备接收来自第一终端的一个或多个测量结果的信息,包括:
    所述网络设备接收来自所述第一终端的所述N个测量结果的信息。
  42. 根据权利要求38至40中任一项所述的通信方法,其特征在于,所述方法还包括:
    所述网络设备为所述第一终端配置第三门限值;
    所述网络设备接收来自第一终端的一个或多个测量结果的信息,包括:
    所述网络设备接收来自所述第一终端的大于或等于所述第三门限值的测量结果。
  43. 根据权利要求38至42中任一项所述的通信方法,其特征在于,
    当所述激活BWP上的子载波间隔小于所述用于RSSI测量的参考子载波间隔时,所述用于测量RSSI的符号个数为所述用于RSSI测量的参考子载波间隔除以所述激活BWP上的子载波间隔所得数值的倍数。
  44. 一种通信装置,其特征在于,包括:处理器、存储器、总线和收发器;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置执行如权利要求1-17中任意一项所述的通信方法,或者,使得所述装置执行如权利要求18-31中任意一项所述的通信方法,或者,使得所述装置执行如权利要求32-37中任意一项所述的通信方法,或者,使得所述装置执行如权利要求38-43中任意一项所述的通信方法。
  45. 一种通信装置,其特征在于,所述装置用于执行权利要求1-17任一所述的通信方法,或者,所述装置用于执行权利要求18-31任一所述的通信方法,或者,所述装置用于执行权利要求32-37任一所述的通信方法,或者,所述装置用于执行权利要求38-43任一所述的通信方法。
  46. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1-17中任一项所述的通信方法被实现,或者,如权利要求18-31中任一项所述的通信方法被实现,或者,如权利要求32-37中任一项所述的通信方法被实现,或者,如权利要求38-43中任一项所述的通信方法被实现。
  47. 一种通信系统,其特征在于,包括如权利要求1-17中任一项所述的第一终端和如权利要求18-31中任一项所述的网络设备,或者,所述系统包括如权利要求32-37中任一项所述的第一终端和如权利要求38-43中任一项所述的网络设备。
PCT/CN2020/082111 2019-03-30 2020-03-30 通信方法及装置 WO2020200171A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2021011945A MX2021011945A (es) 2019-03-30 2020-03-30 Metodo de comunicacion y aparato de comunicaciones.
KR1020217035160A KR20210138769A (ko) 2019-03-30 2020-03-30 통신 방법 및 장치
EP20782248.7A EP3952400A4 (en) 2019-03-30 2020-03-30 COMMUNICATION METHOD AND DEVICE
JP2021558693A JP2022528099A (ja) 2019-03-30 2020-03-30 通信方法及び通信装置
BR112021019532A BR112021019532A2 (pt) 2019-03-30 2020-03-30 Método de comunicação e aparelho de comunicações
US17/489,478 US20220022073A1 (en) 2019-03-30 2021-09-29 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910254174.3A CN111770509B (zh) 2019-03-30 2019-03-30 通信方法及装置
CN201910254174.3 2019-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/489,478 Continuation US20220022073A1 (en) 2019-03-30 2021-09-29 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020200171A1 true WO2020200171A1 (zh) 2020-10-08

Family

ID=72664708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082111 WO2020200171A1 (zh) 2019-03-30 2020-03-30 通信方法及装置

Country Status (8)

Country Link
US (1) US20220022073A1 (zh)
EP (1) EP3952400A4 (zh)
JP (1) JP2022528099A (zh)
KR (1) KR20210138769A (zh)
CN (2) CN112867031A (zh)
BR (1) BR112021019532A2 (zh)
MX (1) MX2021011945A (zh)
WO (1) WO2020200171A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246847A1 (zh) * 2021-05-28 2022-12-01 北京小米移动软件有限公司 干扰测量方法、干扰处理方法及其装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835476B (zh) * 2019-04-22 2022-12-06 华为技术有限公司 通信方法与装置
US10924959B2 (en) * 2019-05-02 2021-02-16 Qualcomm Incorporated User equipment measurement for cross-link interference
US11902816B2 (en) * 2021-10-12 2024-02-13 Qualcomm Incorporated Adaptive cross-link interference measurement and reporting framework
WO2023115282A1 (zh) * 2021-12-20 2023-06-29 北京小米移动软件有限公司 一种测量方法、装置、设备及可读存储介质
US20230198642A1 (en) * 2021-12-22 2023-06-22 Qualcomm Incorporated Measurement resource for measuring a received signal strength indicator
CN116419415A (zh) * 2021-12-28 2023-07-11 中兴通讯股份有限公司 通信方法、网络设备及存储介质
WO2023155586A1 (zh) * 2022-02-18 2023-08-24 华为技术有限公司 侧行链路信道接入方法及通信装置
EP4348910A1 (en) * 2022-04-24 2024-04-10 ZTE Corporation Interference coordination and management in wireless communication
WO2024031277A1 (zh) * 2022-08-08 2024-02-15 北京小米移动软件有限公司 一种测量方法及其装置
CN116489802B (zh) * 2023-06-21 2023-09-29 中国电信股份有限公司 传输配置的调整方法、装置、计算机设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219068A1 (zh) * 2017-05-27 2018-12-06 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站
WO2019029464A1 (zh) * 2017-08-07 2019-02-14 华为技术有限公司 用于灵活双工系统的数据传输方法及设备
CN109391995A (zh) * 2017-08-07 2019-02-26 华为技术有限公司 一种干扰测量方法、终端设备及网络设备

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932797B (zh) * 2011-08-09 2017-05-10 中兴通讯股份有限公司 Srs与pucch的协调传输方法及系统
KR102065082B1 (ko) * 2012-02-29 2020-01-10 삼성전자 주식회사 이동통신 시스템에서 반이중(half duplex)전송을 지원하는 단말과 관련된 채널 송수신 방법 및 장치
US9398480B2 (en) * 2012-11-02 2016-07-19 Telefonaktiebolaget L M Ericsson (Publ) Methods of obtaining measurements in the presence of strong and/or highly varying interference
WO2014142122A1 (ja) * 2013-03-13 2014-09-18 シャープ株式会社 基地局、端末、通信システム、通信方法および集積回路
US20170265190A1 (en) * 2016-03-10 2017-09-14 Nokia Technologies Oy Method, apparatus, and computer program product for user equipment capability indication of parallel processing
US11012204B2 (en) * 2016-06-08 2021-05-18 Lg Electronics Inc. Communication method of using full duplex in NR
US10608856B2 (en) * 2016-06-16 2020-03-31 Samsung Electronics Co., Ltd. Transmission of reference signals in a communication system
US10687330B2 (en) * 2016-07-21 2020-06-16 Qualcomm Incorporated Techniques for communicating on an uplink in a shared radio frequency spectrum band
CN108282879B (zh) * 2017-01-06 2022-11-18 中兴通讯股份有限公司 数据传输方法及装置
CN109088683B (zh) * 2017-06-14 2020-12-29 中国移动通信有限公司研究院 一种用户终端间交叉链路干扰测量的方法、用户终端和传输接收点
US11425734B2 (en) * 2017-08-10 2022-08-23 Ntt Docomo, Inc. User equipment and reference signal transmission method
EP3665845A1 (en) * 2017-08-11 2020-06-17 Apple Inc. Mobile communication system, mobile device, user equipment, network node, nodeb, circuits, apparatuses, methods machine readable media and computer programs for mobile devices, user equipment, network nodes, and nodebs
CN109391973B (zh) * 2017-08-14 2022-06-07 中国移动通信有限公司研究院 一种交叉链路干扰测量方法、设备和计算机可读存储介质
US11838151B1 (en) * 2017-11-09 2023-12-05 Verana Networks, Inc. Wireless mesh network
US11076286B2 (en) * 2018-06-21 2021-07-27 Qualcomm Incorporated Beam-switching capability indication in wireless networks that utilize beamforming
US10833905B2 (en) * 2018-08-10 2020-11-10 Huawei Technologies Co., Ltd. Methods for UE-specific RS multiplexing
CA3118076A1 (en) * 2018-11-01 2020-05-07 Sharp Kabushiki Kaisha User equipments, base stations, and methods
US20200153579A1 (en) * 2018-11-09 2020-05-14 Mediatek Inc. Enhancement Of Sounding Reference Signal In Mobile Communications
US20220124531A1 (en) * 2019-02-04 2022-04-21 Apple Inc. Cross-link interference (cli) measurement reporting
US20230072049A1 (en) * 2019-02-15 2023-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Timing alignment for wireless device to wireless device measurements
WO2020166818A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서, 사용자 장치에 의하여, srs를 송신하는 방법 및 장치
US20220159662A1 (en) * 2019-03-22 2022-05-19 Apple Inc. Cross-link interference (cli) radio resource management (rrm) measurement
WO2021064472A1 (en) * 2019-10-01 2021-04-08 Lenovo (Singapore) Pte. Ltd. Determining a time to perform an update
US11930532B2 (en) * 2020-10-16 2024-03-12 Samsung Electronics Co., Ltd Beam management and beam failure recovery in new radio-unlicensed at 60 Gigahertz

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219068A1 (zh) * 2017-05-27 2018-12-06 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站
WO2019029464A1 (zh) * 2017-08-07 2019-02-14 华为技术有限公司 用于灵活双工系统的数据传输方法及设备
CN109391995A (zh) * 2017-08-07 2019-02-26 华为技术有限公司 一种干扰测量方法、终端设备及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952400A4
ZTE: "UE-to-UE measurement as an enabler for CLI mitigation schemes", 3GPP DRAFT; R1-1715563, 21 September 2017 (2017-09-21), Nagoya, Japan, pages 1 - 7, XP051329077 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246847A1 (zh) * 2021-05-28 2022-12-01 北京小米移动软件有限公司 干扰测量方法、干扰处理方法及其装置

Also Published As

Publication number Publication date
CN111770509B (zh) 2024-04-12
EP3952400A4 (en) 2023-04-19
EP3952400A1 (en) 2022-02-09
BR112021019532A2 (pt) 2021-12-07
JP2022528099A (ja) 2022-06-08
KR20210138769A (ko) 2021-11-19
US20220022073A1 (en) 2022-01-20
CN111770509A (zh) 2020-10-13
CN112867031A (zh) 2021-05-28
MX2021011945A (es) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020200171A1 (zh) 通信方法及装置
JP7318069B2 (ja) 搬送波感知による共用スペクトルにおけるlte波形を送信するための方法及び装置
KR102578986B1 (ko) 비면허 스펙트럼 상에서 채널 상태 정보 측정 구성 및 보고를 위한 방법 및 장치
CN107534963B (zh) 具有载波选择、切换和测量的通信
US11032717B2 (en) Method and apparatus for improving coexistence performance by measurements in wireless communication systems
JP7370868B2 (ja) 端末、無線通信方法及びシステム
WO2015106715A1 (zh) 信号传输方法和装置
JP2018504838A (ja) 非ライセンス無線周波数帯域における時間分割lte送信のための方法及び装置
US10609624B2 (en) Apparatus and method for discovery reference signal aligned scheduling
WO2019159297A1 (ja) ユーザ端末及び無線通信方法
EP2739114A1 (en) Method and device for implementing synchronization and perception between user equipment
WO2020166041A1 (ja) ユーザ端末及び無線通信方法
JP2016536846A (ja) 情報伝送方法、基地局、およびユーザ機器
US20230156488A1 (en) Transmission Method and Apparatus, Communication Device, and Terminal
US20230095844A1 (en) Beam failure recovery method and apparatus, and device
WO2021062689A1 (zh) 一种上行传输的方法及装置
EP4090128A1 (en) Method for acquiring signal quality information, and device and system
WO2020031345A1 (ja) ユーザ端末及び無線通信方法
RU2792032C1 (ru) Способ связи и аппаратура связи
WO2019220641A1 (ja) ユーザ端末及び無線通信方法
KR20180108351A (ko) 비면허대역 통신을 위한 다양한 dl전송 구조하에서의 데이터/제어채널의 할당 및 수신 방법, 장치 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021019532

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217035160

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020782248

Country of ref document: EP

Effective date: 20211029

ENP Entry into the national phase

Ref document number: 112021019532

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210929