WO2020199979A1 - 搜索空间时域位置确定方法、装置及通信设备 - Google Patents

搜索空间时域位置确定方法、装置及通信设备 Download PDF

Info

Publication number
WO2020199979A1
WO2020199979A1 PCT/CN2020/080887 CN2020080887W WO2020199979A1 WO 2020199979 A1 WO2020199979 A1 WO 2020199979A1 CN 2020080887 W CN2020080887 W CN 2020080887W WO 2020199979 A1 WO2020199979 A1 WO 2020199979A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
search space
time domain
monitoring period
parameter information
Prior art date
Application number
PCT/CN2020/080887
Other languages
English (en)
French (fr)
Inventor
王磊
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020217032832A priority Critical patent/KR20210132199A/ko
Priority to EP20785060.3A priority patent/EP3941131B1/en
Priority to US17/600,064 priority patent/US20220191722A1/en
Publication of WO2020199979A1 publication Critical patent/WO2020199979A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method, device and communication equipment for determining a position in a search space in time domain.
  • the time domain position of the search space in the mobile communication system in the related technology is determined by the protocol predefined (that is, the terminal needs blind detection in each subframe subframe) or configured through the radio resource control signaling RRC signaling (for each search space Configure different cycles and offsets).
  • RRC signaling for each search space Configure different cycles and offsets.
  • RRC signaling can be used to flexibly configure different monitoring periods for the search space, such as slot-level (slot level) monitoring periods and symbol-level (symbol level) monitoring periods, and the search space can be configured with periods
  • the carrier interval is 120kHz, so 8 slots can be included in the 1ms time range.
  • the search space does not require a per-slot monitoring period.
  • the USS terminal specific search space
  • the search space configuration method in the 5G system is used, the RRC signaling overhead will be increased.
  • the purpose of the present disclosure is to provide a method, a device and a communication device for determining a search space time domain position, so as to solve the problem of increased signaling overhead or insufficient flexibility in a search space time domain position determination solution in related technologies.
  • embodiments of the present disclosure provide a method for determining a temporal position in a search space, which is applied to a communication device, and includes:
  • the terminal parameter information includes: the terminal identity identifier UE ID or the cell radio network temporary identifier C-RNTI corresponding to the terminal; the search space monitoring period of the terminal is a fixed value.
  • the determining the search space time domain location corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal includes:
  • the determining the search space time domain resource number corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal includes:
  • T index represents the search space time domain resource number
  • N represents the search space monitoring period of the terminal
  • N is a positive integer greater than or equal to 1
  • A represents the terminal parameter information.
  • the search space time domain resource number includes at least one of a slot number, a subframe number, and a wireless subframe number.
  • the search space time domain resource number is a relative time number or an absolute time number.
  • the relative time number is a number within a preset time period.
  • the absolute time number is a time number in the system.
  • the terminal parameter information is consistent with the numbering manner of the search space time domain resource number.
  • the method before determining the search space time domain position corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal, the method further includes:
  • the preset parameters of the terminal include at least one of the type of the terminal, the service type supported by the terminal, and the terminal capability of the terminal.
  • the search space monitoring period of the terminal is configured through a network or predefined through a protocol.
  • the embodiment of the present disclosure also provides a communication device, including a memory, a processor, and a computer program stored on the memory and capable of running on the processor; the processor implements the following steps when the program is executed by the processor:
  • the terminal parameter information includes: the terminal identity identifier UE ID or the cell radio network temporary identifier C-RNTI corresponding to the terminal; the search space monitoring period of the terminal is a fixed value.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • T index represents the search space time domain resource number
  • N represents the search space monitoring period of the terminal
  • N is a positive integer greater than or equal to 1
  • A represents the terminal parameter information.
  • the search space time domain resource number includes at least one of a slot number, a subframe number, and a wireless subframe number.
  • the search space time domain resource number is a relative time number or an absolute time number.
  • the relative time number is a number within a preset time period.
  • the absolute time number is a time number in the system.
  • the terminal parameter information is consistent with the numbering manner of the search space time domain resource number.
  • the processor is further configured to:
  • the preset parameters of the terminal include at least one of the type of the terminal, the service type supported by the terminal, and the terminal capability of the terminal.
  • the search space monitoring period of the terminal is configured through a network or predefined through a protocol.
  • the embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the above-mentioned search space temporal position determination method are realized.
  • the embodiment of the present disclosure also provides an apparatus for determining a temporal position in a search space, which is applied to a communication device, and includes:
  • the first determining module is configured to determine the search space time domain position corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal;
  • the terminal parameter information includes: the terminal identity identifier UE ID or the cell radio network temporary identifier C-RNTI corresponding to the terminal; the search space monitoring period of the terminal is a fixed value.
  • the first determining module includes:
  • the first determining submodule is configured to determine the search space time domain resource number corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal.
  • the first determining submodule includes:
  • the first determining unit is configured to determine the search space time domain resource number corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal by using formula one;
  • T index represents the search space time domain resource number
  • N represents the search space monitoring period of the terminal
  • N is a positive integer greater than or equal to 1
  • A represents the terminal parameter information.
  • the search space time domain resource number includes at least one of a slot number, a subframe number, and a wireless subframe number.
  • the search space time domain resource number is a relative time number or an absolute time number.
  • the relative time number is a number within a preset time period.
  • the absolute time number is a time number in the system.
  • the terminal parameter information is consistent with the numbering manner of the search space time domain resource number.
  • it also includes:
  • the second determining module is configured to determine the search space monitoring of the terminal according to preset parameters of the terminal before determining the search space time domain position corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal cycle;
  • the preset parameters of the terminal include at least one of the type of the terminal, the service type supported by the terminal, and the terminal capability of the terminal.
  • the search space monitoring period of the terminal is configured through a network or predefined through a protocol.
  • the search space time domain position determination method determines the search space time domain position corresponding to the terminal according to terminal parameter information and the terminal's search space monitoring period; wherein, the terminal parameter information includes: terminal identity The UE ID or the radio network temporary identification C-RNTI of the cell corresponding to the terminal; the search space monitoring period of the terminal is a fixed value; the search space time domain position can be implicitly determined, and configuration through RRC signaling is no longer required, or The terminal side performs blind detection in each subframe, which reduces the RRC signaling overhead, while ensuring flexibility and reducing the complexity of the terminal side; it solves the problem that the search space time domain position determination solution in the related technology will increase the signal. The problem of cost or insufficient flexibility.
  • Figure 1 is a schematic diagram of a slot level offset in a search space configuration period in the related art
  • FIG. 2 is a schematic flowchart of a method for determining a temporal position in a search space according to an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of the structure of a communication device according to an embodiment of the disclosure.
  • FIG. 4 is a schematic structural diagram of an apparatus for determining a position in a search space in a time domain according to an embodiment of the disclosure.
  • the present disclosure provides a search space time domain position determination method applied to a communication device, as shown in FIG. 2, including:
  • Step 21 Determine the search space time domain location corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal;
  • the terminal parameter information includes: the terminal identity identifier UE ID or the cell radio network temporary identifier C-RNTI corresponding to the terminal; the search space monitoring period of the terminal is a fixed value.
  • the communication device may be a terminal or a network-side device.
  • This solution includes a solution for determining a time-domain listening position in a search space on the terminal side or a solution for determining a time-domain transmission position in a search space on the network side, which is not limited here.
  • the search space time domain position determination method determines the search space time domain position corresponding to the terminal according to terminal parameter information and the terminal’s search space monitoring period; wherein the terminal parameter information includes: terminal The identity identifier UE ID or the cell radio network temporary identifier C-RNTI corresponding to the terminal; the search space monitoring period of the terminal is a fixed value; it can realize the implicit determination of the search space time domain position, and no longer need to configure through RRC signaling , Or the terminal side performs blind detection in each subframe, which reduces RRC signaling overhead, while ensuring flexibility and reducing the complexity of the terminal side; it solves the problem of the search space time domain position determination solution in the related technology. Increase signaling overhead or insufficient flexibility.
  • the determining the search space time domain position corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal includes: determining the search space corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal Time domain resource number.
  • the determining the search space time-domain resource number corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal includes: adopting formula one to determine the search space monitoring period of the terminal according to the terminal parameter information and the search space monitoring period of the terminal.
  • the search space time domain resource number includes at least one of a time slot number, a subframe number, and a wireless subframe number.
  • the search space time domain resource number is a relative time number or an absolute time number.
  • the relative time number may be a number within a preset time period.
  • the absolute time number may be a time number in the system.
  • the numbering manner of the terminal parameter information and the search space time domain resource number may be consistent, such as the start number, the number of intermediate interval numbers, etc., which are not limited here.
  • the method further includes: determining the search space monitoring period of the terminal according to preset parameters of the terminal.
  • the preset parameters of the terminal include at least one of the type of the terminal, the type of service supported by the terminal, and the terminal capabilities of the terminal.
  • the type can be a work area type, that is, the type is divided according to the work area of the terminal (such as air, ground, sea, etc.), but it is not limited to this.
  • the search space monitoring period of the terminal is configured through a network or predefined through a protocol.
  • Pre-defining through an agreement can be understood as an agreement between the network and the terminal and other parties through an agreement, and all relevant parties know relevant information.
  • the method for determining the position in the search space in the time domain provided by the embodiment of the present disclosure will be further described below, and the communication device takes a terminal as an example.
  • the embodiments of the present disclosure provide a method for determining the time domain position of a search space, which involves: all terminals monitor the search space at a fixed period; the time domain position of the terminal search space is based on the terminal ID or the wireless cell corresponding to the terminal.
  • the network temporary identifier C-RNTI is implicitly determined.
  • the search space monitoring period of the terminal is fixed and has N slots.
  • the specific time domain position of the search space is determined by the terminal identity identifier UE ID (or the C-RNTI corresponding to the terminal) and the monitoring period N, where N Is a positive integer greater than or equal to 1.
  • the following uses the UE ID and N to determine the specific time domain location of the search space monitored by the terminal as an example:
  • the T may be a slot or other time domain resource units such as subframe suframe, radio subframe radio frame, etc.
  • the time domain resource T number is a relative time number or an absolute time number:
  • the relative time number is the number within the preset time period, such as the number of the slot within 1ms, or the number of the subframe within a radio frame;
  • the absolute time number is a time number in the system.
  • the absolute time number of the slot is determined according to the mutual inclusion relationship of the numbers of the radio frame and/or subframe in which it is located.
  • a radio frame contains R subframes
  • radio frame, subframe, and slot are numbered starting from 0, but it is not limited to this.
  • search space monitoring periods can be preset
  • the different types of terminals can be divided according to the working area of the terminal, such as air terminals (such as 8 time slots), ground terminals (such as 4 time slots), surface terminals (such as 10 time slots), etc.;
  • the different types of terminals can be distinguished according to the types of supported services, for example, terminals that only support data services, terminals that only support voice services, terminals that support different types of services, etc.;
  • the different types of terminals can be distinguished according to the terminal capabilities reported by the terminal.
  • the network side can determine the transmission time domain position of the search space in the same manner as the terminal side, and it will not be repeated here.
  • the network side only sends the downlink control channel of UE#1 in slots 0, 8, 16, 32..., etc., and the network side only sends UE#2 in slots 1, 9, 17, 33... etc.
  • the network side only sends the downlink control channel of UE#3 in slots 2, 10, 18, 34, etc., and the network side only sends the UE in slots 3, 11, 19, 35.... etc. #4 downlink control channel.
  • the terminal also tries to detect and receive its own physical downlink control channel PDCCH in the corresponding slot described above.
  • a radio frame contains R subframes
  • T index p ⁇ R ⁇ S+r ⁇ S+m.
  • the calculation of the absolute time number of the subframe is the same.
  • the radio frame, subframe, and slot are numbered starting from 0.
  • Example 3 The USS search space period N is different for different types of terminals.
  • the different types of terminals are judged at least according to the following rules:
  • the different types of terminals can be divided according to the working area of the terminal, such as air terminals, ground terminals, and sea terminals.
  • the search space monitoring period of the air terminal is N1
  • the monitoring period of the ground terminal is N2
  • the monitoring period of the maritime terminal is N3, see the following table;
  • the different types of terminals can be distinguished according to the types of supported services, for example, terminals that only support data services, terminals that only support voice services, and terminals that support different service types.
  • the monitoring period of the search space of terminals supporting voice services is N1
  • the monitoring period of terminals not supporting voice services but only supporting Internet services is N2, see the following table;
  • the different types of terminals can be distinguished according to the terminal capabilities reported by the terminal. Specifically, the search space monitoring period is matched according to the capabilities reported by the terminal. See the following table.
  • Example 4 The methods described in Example 1 and Example 3 (or Example 2 and Example 3) above can be combined as an implementation solution, that is, the search space listening period is determined according to the terminal type first, and then the method described in Example 1 or 2 is determined. The actual monitoring time domain location of the search space.
  • Example 5 As in Examples 1 to 4, the preferred method is applied to USS. However, the above method can also be applied to the shared search space CSS, which is not limited here.
  • the solution provided by the embodiments of the present disclosure can implicitly determine the actual time-domain monitoring position of the search space through the T number, without directly indicating the actual time-domain monitoring position of the search space through signaling, or the terminal side Blind detection is performed in each subframe; it can reduce RRC signaling overhead, while ensuring flexibility and reducing terminal side complexity.
  • the embodiment of the present disclosure also provides a communication device, as shown in FIG. 3, including a memory 31, a processor 32, and a computer program 33 stored on the memory 31 and running on the processor 32;
  • the processor 32 implements the following steps when executing the program:
  • the terminal parameter information includes: the terminal identity identifier UE ID or the cell radio network temporary identifier C-RNTI corresponding to the terminal; the search space monitoring period of the terminal is a fixed value.
  • the communication device in the embodiment of the present disclosure may also include a transceiver capable of receiving and sending functions, which is not limited herein.
  • the communication device determines the search space time domain position corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal; wherein, the terminal parameter information includes: the terminal identification UE ID or The cell radio network temporary identifier C-RNTI corresponding to the terminal; the search space monitoring period of the terminal is a fixed value; the search space time domain position can be implicitly determined, and configuration through RRC signaling is no longer required, or the terminal is in Blind detection is performed in each subframe, which reduces RRC signaling signaling overhead, while ensuring flexibility and reducing the complexity of the terminal side; it solves the problem that the search space time domain position determination solution in related technologies will increase signaling overhead or The problem of insufficient flexibility.
  • the terminal parameter information includes: the terminal identification UE ID or The cell radio network temporary identifier C-RNTI corresponding to the terminal; the search space monitoring period of the terminal is a fixed value; the search space time domain position can be implicitly determined, and configuration through RRC signaling is no longer required, or the terminal is in Blind detection is performed in
  • the processor is specifically configured to determine the search space time domain resource number corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal.
  • the search space time domain resource number includes at least one of a time slot number, a subframe number, and a wireless subframe number.
  • the search space time domain resource number is a relative time number or an absolute time number.
  • the relative time number may be a number within a preset time period.
  • the absolute time number may be a time number in the system.
  • the terminal parameter information is consistent with the numbering manner of the search space time domain resource number.
  • the processor is further configured to: before determining the search space time domain position corresponding to the terminal according to terminal parameter information and the search space monitoring period of the terminal, determine the terminal according to preset parameters of the terminal The search space monitoring period of the terminal; wherein the preset parameters of the terminal include at least one of the type of the terminal, the service type supported by the terminal, and the terminal capability of the terminal.
  • the search space monitoring period of the terminal is configured through a network or predefined through a protocol.
  • the implementation embodiments of the above-mentioned search space time domain position determination method are all applicable to the embodiments of the communication device, and the same technical effect can also be achieved.
  • the embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the above-mentioned search space temporal position determination method are realized.
  • implementation embodiments of the foregoing search space time domain position determination method are all applicable to the embodiment of the computer-readable storage medium, and the same technical effect can also be achieved.
  • the embodiment of the present disclosure also provides an apparatus for determining a temporal position in a search space, which is applied to a communication device, as shown in FIG. 4, including:
  • the first determining module 41 is configured to determine the search space time domain location corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal;
  • the terminal parameter information includes: the terminal identity identifier UE ID or the cell radio network temporary identifier C-RNTI corresponding to the terminal; the search space monitoring period of the terminal is a fixed value.
  • the apparatus for determining the search space time domain position determines the search space time domain position corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal; wherein the terminal parameter information includes: the terminal The identity identifier UE ID or the cell radio network temporary identifier C-RNTI corresponding to the terminal; the search space monitoring period of the terminal is a fixed value; it can realize the implicit determination of the search space time domain position, and no longer need to configure through RRC signaling , Or the terminal side performs blind detection in each subframe, which reduces RRC signaling overhead, while ensuring flexibility and reducing the complexity of the terminal side; it solves the problem of the search space time domain position determination solution in the related technology. Increase signaling overhead or insufficient flexibility.
  • the first determining module includes: a first determining sub-module configured to determine the search space time domain resource number corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal.
  • the search space time domain resource number includes at least one of a time slot number, a subframe number, and a wireless subframe number.
  • the search space time domain resource number is a relative time number or an absolute time number.
  • the relative time number may be a number within a preset time period.
  • the absolute time number may be a time number in the system.
  • the terminal parameter information is consistent with the numbering manner of the search space time domain resource number.
  • the apparatus for determining the search space time domain position further includes: a second determining module, configured to determine the search space time domain position corresponding to the terminal according to the terminal parameter information and the search space monitoring period of the terminal, Determine the search space monitoring period of the terminal according to the preset parameters of the terminal; wherein the preset parameters of the terminal include the type of the terminal, the type of service supported by the terminal, and the terminal capabilities of the terminal At least one of them.
  • the search space monitoring period of the terminal is configured through a network or predefined through a protocol.
  • implementation embodiments of the foregoing search space time domain position determination method are all applicable to the embodiments of the search space time domain position determination apparatus, and the same technical effect can also be achieved.
  • the modules/submodules/units may be implemented by software so as to be executed by various types of processors.
  • an identified executable code module may include one or more physical or logical blocks of computer instructions, for example, it may be constructed as an object, process, or function. Nevertheless, the executable code of the identified module does not need to be physically located together, but can include different instructions stored in different bits. When these instructions are logically combined together, they constitute a module and implement the requirements of the module. purpose.
  • the executable code module may be a single instruction or many instructions, and may even be distributed on multiple different code segments, distributed in different programs, and distributed across multiple memory devices.
  • operational data can be identified within the module, and can be implemented in any suitable form and organized in any suitable type of data structure. The operating data may be collected as a single data set, or may be distributed in different locations (including on different storage devices), and at least partly may only exist as electronic signals on the system or network.
  • the module can be realized by software, considering the level of related hardware technology, the module can be realized by software. Without considering the cost, those skilled in the art can build the corresponding hardware circuit to realize the corresponding function.
  • the hardware circuits include conventional very large-scale integration (VLSI) circuits or gate arrays, and related semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very large-scale integration
  • Modules can also be implemented with programmable hardware devices, such as field programmable gate arrays, programmable array logic, programmable logic devices, etc.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • units, modules, sub-units and sub-modules can be implemented in one or more application specific integrated circuits (ASIC), digital signal processors (Digital Signal Processing, DSP), and digital signal processing equipment (DSP Device).
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSP Device digital signal processing equipment
  • DSPD Digital Signal Processing
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • general-purpose processors controllers, microcontrollers, microprocessors, and Disclosure of the described functions in other electronic units or combinations thereof.
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种搜索空间时域位置确定方法、装置及通信设备,其中,搜索空间时域位置确定方法包括:根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值。

Description

搜索空间时域位置确定方法、装置及通信设备
相关申请的交叉引用
本申请主张在2019年3月29日在中国提交的中国专利申请No.201910250589.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种搜索空间时域位置确定方法、装置及通信设备。
背景技术
相关技术中的移动通信系统中搜索空间的时域位置通过协议预定义确定(即在每个子帧subframe内终端均需要盲检)或者通过无线资源控制信令RRC signaling进行配置(为每个搜索空间配置不同的周期以及偏移offset)。当搜索空间的周期较大,且不需要不同周期时,通过RRC进行配置会带来额外的信令开销。
具体地,5G系统中可通过RRC signaling灵活的为搜索空间配置不同的监听周期,例如slot-level(时隙等级)监听周期以及symbol-level(符号等级)监听周期,且可以为搜索空间配置周期内的slot级别offset,如图1所示,监听周期P=5slot,Offset=2slot。
在卫星通信系统中,载波间隔采用120kHz,因此1ms时间范围内可包含8个slot。考虑到卫星系统中业务类型较为简单,且传播时延较大,搜索空间不需要per slot(每个时隙)的监听周期。但是如果全部终端的USS(终端特定搜索空间)均采用固定的监听周期且监听位置相同,则会增加blocking(阻塞)概率。另一方面,如果沿用5G系统中的搜索空间配置方法,将会增加RRC信令开销。
由上可知,相关技术中的搜索空间时域位置确定方案会增加信令开销或不够灵活。
发明内容
本公开的目的在于提供一种搜索空间时域位置确定方法、装置及通信设备,解决相关技术中搜索空间时域位置确定方案会增加信令开销或不够灵活的问题。
为了解决上述技术问题,本公开实施例提供一种搜索空间时域位置确定方法,应用于通信设备,包括:
根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;
其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值。
可选地,所述根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置,包括:
根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号。
可选地,所述根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号,包括:
采用公式一,根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号;
其中,所述公式一为:mod(T index,N)=mod(A,N);
mod表示求余运算,T index表示所述搜索空间时域资源编号,N表示所述终端的搜索空间监听周期,且N为大于或等于1的正整数,A表示所述终端参数信息。
可选地,所述搜索空间时域资源编号包括时隙编号、子帧编号和无线子帧编号中的至少一种。
可选地,所述搜索空间时域资源编号为相对时间编号或者绝对时间编号。
可选地,所述相对时间编号为预设时间段内的编号。
可选地,所述绝对时间编号为系统内的时间编号。
可选地,所述终端参数信息与搜索空间时域资源编号的编号方式一致。
可选地,在根据终端参数信息和终端的搜索空间监听周期,确定所述终 端对应的搜索空间时域位置之前,还包括:
根据所述终端的预设参数,确定所述终端的搜索空间监听周期;
其中,所述终端的预设参数包括所述终端的类型、所述终端所支持的业务类型和所述终端的终端能力中的至少一种。
可选地,所述终端的搜索空间监听周期通过网络进行配置或者通过协议进行预定义。
本公开实施例还提供了一种通信设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述程序时实现以下步骤:
根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;
其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值。
可选地,所述处理器具体用于:
根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号。
可选地,所述处理器具体用于:
采用公式一,根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号;
其中,所述公式一为:mod(T index,N)=mod(A,N);
mod表示求余运算,T index表示所述搜索空间时域资源编号,N表示所述终端的搜索空间监听周期,且N为大于或等于1的正整数,A表示所述终端参数信息。
可选地,所述搜索空间时域资源编号包括时隙编号、子帧编号和无线子帧编号中的至少一种。
可选地,所述搜索空间时域资源编号为相对时间编号或者绝对时间编号。
可选地,所述相对时间编号为预设时间段内的编号。
可选地,所述绝对时间编号为系统内的时间编号。
可选地,所述终端参数信息与搜索空间时域资源编号的编号方式一致。
可选地,所述处理器还用于:
在根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置之前,根据所述终端的预设参数,确定所述终端的搜索空间监听周期;
其中,所述终端的预设参数包括所述终端的类型、所述终端所支持的业务类型和所述终端的终端能力中的至少一种。
可选地,所述终端的搜索空间监听周期通过网络进行配置或者通过协议进行预定义。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的搜索空间时域位置确定方法的步骤。
本公开实施例还提供了一种搜索空间时域位置确定装置,应用于通信设备,包括:
第一确定模块,用于根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;
其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值。
可选地,所述第一确定模块,包括:
第一确定子模块,用于根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号。
可选地,所述第一确定子模块,包括:
第一确定单元,用于采用公式一,根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号;
其中,所述公式一为:mod(T index,N)=mod(A,N);
mod表示求余运算,T index表示所述搜索空间时域资源编号,N表示所述终端的搜索空间监听周期,且N为大于或等于1的正整数,A表示所述终端参数信息。
可选地,所述搜索空间时域资源编号包括时隙编号、子帧编号和无线子帧编号中的至少一种。
可选地,所述搜索空间时域资源编号为相对时间编号或者绝对时间编号。
可选地,所述相对时间编号为预设时间段内的编号。
可选地,所述绝对时间编号为系统内的时间编号。
可选地,所述终端参数信息与搜索空间时域资源编号的编号方式一致。
可选地,还包括:
第二确定模块,用于在根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置之前,根据所述终端的预设参数,确定所述终端的搜索空间监听周期;
其中,所述终端的预设参数包括所述终端的类型、所述终端所支持的业务类型和所述终端的终端能力中的至少一种。
可选地,所述终端的搜索空间监听周期通过网络进行配置或者通过协议进行预定义。
本公开的上述技术方案的有益效果如下:
上述方案中,所述搜索空间时域位置确定方法通过根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值;能够实现隐式确定搜索空间时域位置,不再需要通过RRC signaling进行配置,或者终端侧在每个子帧内进行盲检,减少了RRC signaling信令开销,同时保证了灵活性并降低了终端侧复杂度;很好的解决了相关技术中搜索空间时域位置确定方案会增加信令开销或不够灵活的问题。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中的为搜索空间配置周期内的slot级别offset示意图;
图2为本公开实施例的搜索空间时域位置确定方法流程示意图;
图3为本公开实施例的通信设备结构示意图;
图4为本公开实施例的搜索空间时域位置确定装置结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开针对相关技术中搜索空间时域位置确定方案会增加信令开销或不够灵活的问题,提供一种搜索空间时域位置确定方法,应用于通信设备,如图2所示,包括:
步骤21:根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;
其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值。
通信设备可为终端或网络侧设备,本方案包括终端侧的搜索空间时域监听位置的确定方案或者网络侧的搜索空间时域发送位置的确定方案,在此不作限定。
本公开实施例提供的所述搜索空间时域位置确定方法通过根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值;能够实现隐式确定搜索空间时域位置,不再需要通过RRC signaling进行配置,或者终端侧在每个子帧内进行盲检,减少了RRC signaling信令开销,同时保证了灵活性并降低了终端侧复杂度;很好的解决了相关技术中搜索空间时域位置确定方案会增加信令开销或不够灵活的问题。
其中,所述根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置,包括:根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号。
具体地,所述根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号,包括:采用公式一,根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号; 其中,所述公式一为:mod(T index,N)=mod(A,N);mod表示求余运算,T index表示所述搜索空间时域资源编号,N表示所述终端的搜索空间监听周期,且N为大于或等于1的正整数,A表示所述终端参数信息。
本公开实施例中,所述搜索空间时域资源编号包括时隙编号、子帧编号和无线子帧编号中的至少一种。
其中,所述搜索空间时域资源编号为相对时间编号或者绝对时间编号。
具体地,所述相对时间编号可为预设时间段内的编号。所述绝对时间编号可为系统内的时间编号。
本公开实施例中,所述终端参数信息与搜索空间时域资源编号的编号方式可一致,比如起始号码、中间间隔号码个数等,在此不作限定。
进一步地,在根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置之前,还包括:根据所述终端的预设参数,确定所述终端的搜索空间监听周期;其中,所述终端的预设参数包括所述终端的类型、所述终端所支持的业务类型和所述终端的终端能力中的至少一种。
类型可为工作区域类型,即根据终端的工作区域(比如空中、地面、海面等)进行类型划分,但并不以此为限。
其中,所述终端的搜索空间监听周期通过网络进行配置或者通过协议进行预定义。通过协议进行预定义可理解为网络与终端等各方通过协议进行约定,各个相关方均知晓相关信息。
下面对本公开实施例提供的所述搜索空间时域位置确定方法进行进一步说明,通信设备以终端为例。
针对上述技术问题,本公开实施例提供了一种搜索空间时域位置确定方法,其中涉及:所有终端采用固定的周期监听搜索空间;终端搜索空间的时域位置根据终端ID或终端对应的小区无线网络临时标识C-RNTI隐式确定。
具体的:
1、终端的搜索空间监听周期固定且为N个slot,搜索空间(监听或发送)的具体时域位置通过终端身份标识UE ID(或终端对应的C-RNTI)和监听周期N确定,其中N为大于等于1的正整数。以下以通过UE ID和N确定终端监听的搜索空间的具体时域位置为例:
假设终端的监听周期为N个时域资源,且终端的ID为UE ID,则终端需要监听下行控制信道(即搜索空间)的时域资源T编号需要满足mod(T index,N)=mod(UE ID,N);
其中,所述T可为slot,亦可为子帧suframe、无线子帧radio frame等其他时域资源单位,所述时域资源T编号为相对时间编号或者绝对时间编号:
(1)相对时间编号为预设时间段内的编号,例如1ms内的slot的编号,或者1个radio frame内subframe的编号;
(2)绝对时间编号为系统内的时间编号,例如所述资源为slot时,根据其所处的radio frame和/或subframe的编号相互包含关系,确定slot的绝对时间编号。例如一个radio frame包含R个subframe,一个subframe包含S个slot,假设radio frame的编号为p,subframe在radio frame内的编号为r,slot在subframe内的编号为m,则上述公式所使用的T index=p×R×S+r×S+m。subframe绝对时间编号的计算同理,在此不再赘述。
此处假设radio frame,subframe,slot均从0开始编号,但并不以此为限。
2、不同类型的终端的搜索空间监听周期不同(可预设置),比如:
(1)所述不同类型的终端可根据终端工作区域进行划分,例如空中终端(比如8时隙),地面终端(比如4时隙),海面终端(比如10时隙)等;
(2)所述不同类型的终端可根据支持的业务类型进行区分,例如仅支持数据data业务的终端,仅支持语音业务的终端,支持不同业务类型的终端等;
(3)所述不同类型的终端可根据终端上报的终端能力进行区分。
在此说明,网络侧可采用与终端侧相同的方式确定搜索空间的发送时域位置,在此不再赘述。
下面对本公开实施例提供的方案进行举例说明。
示例1:在卫星通信系统中,假设UE#1,UE#2,UE#3,UE#4的USS的监听周期均为N个slot,在此例中假设N=8,且UE#1~4具有不同的UE ID,假设其UE ID分别为0,1,2,3,其对应的USS分别表示为USS#1,USS#2,USS#3,USS#4;USS#1~4的时域监听slot在系统内的绝对编号应当满足如下条件:
USS#1的监听slot:mod(slot index,8)=mod(0,8),即slot 0,8,16,32….
USS#2的监听slot:mod(slot index,8)=mod(1,8),即slot 1,9,17,33….
USS#3的监听slot:mod(slot index,8)=mod(2,8),即slot 2,10,18,34….
USS#4的监听slot:mod(slot index,8)=mod(3,8),即slot 3,11,19,35….
相应地,网络侧只在slot 0,8,16,32….等slot内发送UE#1的下行控制信道,网络侧只在slot 1,9,17,33….等slot内发送UE#2的下行控制信道,网络侧只在slot 2,10,18,34….等slot内发送UE#3的下行控制信道,网络侧只在slot 3,11,19,35….等slot内发送UE#4的下行控制信道。相对应地,终端也在上述对应的slot尝试检测接收自身的物理下行控制信道PDCCH。
在计算slot的绝对时间编号时,需要根据radio frame,subframe以及slot的相互包含关系进行确定,具体取决于系统的帧结构设计。例如一个radio frame包含R个subframe,一个subframe包含S个slot,假设radio frame的编号为p,subframe在radio frame内的编号为r,slot在subframe内的编号为m,则上述公式所使用的T index=p×R×S+r×S+m。subframe绝对时间编号的计算同理。此处假设radio frame,subframe,slot均从0开始编号。
示例2:如示例1所述,假设在1ms内包含8个slot(即监听周期N=8),且在计算USS监听位置时采用的slot编号为1ms内的相对时间编号,此时,slot的编号范围为0,1,2,3,4,5,6,7;则基于此假设,USS#1~4的时域监听slot在每个subframe中的编号应当满足如下条件:
USS#1的监听slot:mod(slot index,8)=mod(0,8),即slot 0;
USS#2的监听slot:mod(slot index,8)=mod(1,8),即slot 1;
USS#3的监听slot:mod(slot index,8)=mod(2,8),即slot 2;
USS#4的监听slot:mod(slot index,8)=mod(3,8),即slot 3;
示例3:不同类型的终端的USS搜索空间周期N不同。所述不同类型的终端,至少根据如下规则进行判断:
所述不同类型的终端可根据终端工作区域进行划分,例如空中终端,地面终端,海面终端等。具体地,空中终端的搜索空间监听周期为N1,地面终端的监听周期为N2,海上终端的监听周期为N3,参见下表;
所述不同类型的终端可根据支持的业务类型进行区分,例如仅支持data 业务的终端,仅支持语音业务的终端,支持不同业务类型的终端。具体地,支持语音业务的终端搜索空间监听周期为N1,不支持语音业务仅支持互联网internet业务的终端监听周期为N2,参见下表;
所述不同类型的终端可根据终端上报的终端能力进行区分,具体地,根据终端上报的能力,匹配搜索空间监听周期,参见下表。
终端类型 搜索空间监听周期
Type(类型)1 N1
Type2 N2
Type3 N3
示例4:如上示例1和示例3(或者示例2和示例3)所述方法可结合作为一种实现方案,即首先根据终端类型确定搜索空间监听周期,其次根据示例1或2所述方法确定该搜索空间实际的监听时域位置。
示例5:如示例1~4,较优的所述方法应用于USS。但如上方法也可应用于共享搜索空间CSS,在此不作限定。
由上可知,本公开实施例提供的方案可通过T编号隐式的确定搜索空间实际的时域监听位置,而不需要通过信令直接的指示搜索空间实际的时域监听位置,或者终端侧在每个子帧内进行盲检;能够减少RRC signaling信令开销,同时保证灵活性并降低终端侧复杂度。
本公开实施例还提供了一种通信设备,如图3所示,包括存储器31、处理器32及存储在所述存储器31上并可在所述处理器32上运行的计算机程序33;所述处理器32执行所述程序时实现以下步骤:
根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;
其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值。
本公开实施例中的通信设备还可包括具备收发等功能的收发机,在此不作限定。
本公开实施例提供的所述通信设备通过根据终端参数信息和终端的搜索 空间监听周期,确定所述终端对应的搜索空间时域位置;其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值;能够实现隐式确定搜索空间时域位置,不再需要通过RRC signaling进行配置,或者终端侧在每个子帧内进行盲检,减少了RRC signaling信令开销,同时保证了灵活性并降低了终端侧复杂度;很好的解决了相关技术中搜索空间时域位置确定方案会增加信令开销或不够灵活的问题。
其中,所述处理器具体用于:根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号。
具体地,所述处理器具体用于:采用公式一,根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号;其中,所述公式一为:mod(T index,N)=mod(A,N);mod表示求余运算,T index表示所述搜索空间时域资源编号,N表示所述终端的搜索空间监听周期,且N为大于或等于1的正整数,A表示所述终端参数信息。
本公开实施例中,所述搜索空间时域资源编号包括时隙编号、子帧编号和无线子帧编号中的至少一种。
其中,所述搜索空间时域资源编号为相对时间编号或者绝对时间编号。
具体地,所述相对时间编号可为预设时间段内的编号。所述绝对时间编号可为系统内的时间编号。
本公开实施例中,所述终端参数信息与搜索空间时域资源编号的编号方式一致。
进一步地,所述处理器还用于:在根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置之前,根据所述终端的预设参数,确定所述终端的搜索空间监听周期;其中,所述终端的预设参数包括所述终端的类型、所述终端所支持的业务类型和所述终端的终端能力中的至少一种。
其中,所述终端的搜索空间监听周期通过网络进行配置或者通过协议进行预定义。
其中,上述搜索空间时域位置确定方法的所述实现实施例均适用于该通 信设备的实施例中,也能达到相同的技术效果。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的搜索空间时域位置确定方法的步骤。
其中,上述搜索空间时域位置确定方法的所述实现实施例均适用于该计算机可读存储介质的实施例中,也能达到相同的技术效果。
本公开实施例还提供了一种搜索空间时域位置确定装置,应用于通信设备,如图4所示,包括:
第一确定模块41,用于根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;
其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值。
本公开实施例提供的所述搜索空间时域位置确定装置通过根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值;能够实现隐式确定搜索空间时域位置,不再需要通过RRC signaling进行配置,或者终端侧在每个子帧内进行盲检,减少了RRC signaling信令开销,同时保证了灵活性并降低了终端侧复杂度;很好的解决了相关技术中搜索空间时域位置确定方案会增加信令开销或不够灵活的问题。
其中,所述第一确定模块,包括:第一确定子模块,用于根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号。
具体地,所述第一确定子模块,包括:第一确定单元,用于采用公式一,根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号;其中,所述公式一为:mod(T index,N)=mod(A,N);mod表示求余运算,T index表示所述搜索空间时域资源编号,N表示所述终端的搜索空间监听周期,且N为大于或等于1的正整数,A表示所述终端参数信息。
本公开实施例中,所述搜索空间时域资源编号包括时隙编号、子帧编号 和无线子帧编号中的至少一种。
其中,所述搜索空间时域资源编号为相对时间编号或者绝对时间编号。
具体地,所述相对时间编号可为预设时间段内的编号。所述绝对时间编号可为系统内的时间编号。
本公开实施例中,所述终端参数信息与搜索空间时域资源编号的编号方式一致。
进一步地,所述的搜索空间时域位置确定装置,还包括:第二确定模块,用于在根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置之前,根据所述终端的预设参数,确定所述终端的搜索空间监听周期;其中,所述终端的预设参数包括所述终端的类型、所述终端所支持的业务类型和所述终端的终端能力中的至少一种。
其中,所述终端的搜索空间监听周期通过网络进行配置或者通过协议进行预定义。
其中,上述搜索空间时域位置确定方法的所述实现实施例均适用于该搜索空间时域位置确定装置的实施例中,也能达到相同的技术效果。
需要说明的是,此说明书中所描述的许多功能部件都被称为模块/子模块/单元,以便更加特别地强调其实现方式的独立性。
本公开实施例中,模块/子模块/单元可以用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同位里上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到相关硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的相关半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,单元、模块、子单元和子模块可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述的是本公开的可选的实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述原理前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (22)

  1. 一种搜索空间时域位置确定方法,应用于通信设备,包括:
    根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;
    其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值。
  2. 根据权利要求1所述的搜索空间时域位置确定方法,其中,所述根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置,包括:
    根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号。
  3. 根据权利要求2所述的搜索空间时域位置确定方法,其中,所述根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号,包括:
    采用公式一,根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号;
    其中,所述公式一为:mod(T index,N)=mod(A,N);
    mod表示求余运算,T index表示所述搜索空间时域资源编号,N表示所述终端的搜索空间监听周期,且N为大于或等于1的正整数,A表示所述终端参数信息。
  4. 根据权利要求2或3所述的搜索空间时域位置确定方法,其中,所述搜索空间时域资源编号包括时隙编号、子帧编号和无线子帧编号中的至少一种。
  5. 根据权利要求2或3所述的搜索空间时域位置确定方法,其中,所述搜索空间时域资源编号为相对时间编号或者绝对时间编号。
  6. 根据权利要求5所述的搜索空间时域位置确定方法,其中,所述相对时间编号为预设时间段内的编号。
  7. 根据权利要求5所述的搜索空间时域位置确定方法,其中,所述绝对 时间编号为系统内的时间编号。
  8. 根据权利要求1所述的搜索空间时域位置确定方法,其中,所述终端参数信息与搜索空间时域资源编号的编号方式一致。
  9. 根据权利要求1所述的搜索空间时域位置确定方法,其中,在根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置之前,还包括:
    根据所述终端的预设参数,确定所述终端的搜索空间监听周期;
    其中,所述终端的预设参数包括所述终端的类型、所述终端所支持的业务类型和所述终端的终端能力中的至少一种。
  10. 根据权利要求1所述的搜索空间时域位置确定方法,其中,所述终端的搜索空间监听周期通过网络进行配置或者通过协议进行预定义。
  11. 一种通信设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述程序时实现以下步骤:
    根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;
    其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值。
  12. 根据权利要求11所述的通信设备,其中,所述处理器具体用于:
    根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号。
  13. 根据权利要求12所述的通信设备,其中,所述处理器具体用于:
    采用公式一,根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域资源编号;
    其中,所述公式一为:mod(T index,N)=mod(A,N);
    mod表示求余运算,T index表示所述搜索空间时域资源编号,N表示所述终端的搜索空间监听周期,且N为大于或等于1的正整数,A表示所述终端参数信息。
  14. 根据权利要求12或13所述的通信设备,其中,所述搜索空间时域 资源编号包括时隙编号、子帧编号和无线子帧编号中的至少一种。
  15. 根据权利要求12或13所述的通信设备,其中,所述搜索空间时域资源编号为相对时间编号或者绝对时间编号。
  16. 根据权利要求15所述的通信设备,其中,所述相对时间编号为预设时间段内的编号。
  17. 根据权利要求15所述的通信设备,其中,所述绝对时间编号为系统内的时间编号。
  18. 根据权利要求11所述的通信设备,其中,所述终端参数信息与搜索空间时域资源编号的编号方式一致。
  19. 根据权利要求11所述的通信设备,其中,所述处理器还用于:
    在根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置之前,根据所述终端的预设参数,确定所述终端的搜索空间监听周期;
    其中,所述终端的预设参数包括所述终端的类型、所述终端所支持的业务类型和所述终端的终端能力中的至少一种。
  20. 根据权利要求11所述的通信设备,其中,所述终端的搜索空间监听周期通过网络进行配置或者通过协议进行预定义。
  21. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1至10任一项所述的搜索空间时域位置确定方法的步骤。
  22. 一种搜索空间时域位置确定装置,应用于通信设备,包括:
    第一确定模块,用于根据终端参数信息和终端的搜索空间监听周期,确定所述终端对应的搜索空间时域位置;
    其中,所述终端参数信息包括:终端身份标识UE ID或所述终端对应的小区无线网络临时标识C-RNTI;所述终端的搜索空间监听周期为固定值。
PCT/CN2020/080887 2019-03-29 2020-03-24 搜索空间时域位置确定方法、装置及通信设备 WO2020199979A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217032832A KR20210132199A (ko) 2019-03-29 2020-03-24 검색 공간 시간 영역 위치 확정 방법, 장치 및 통신 기기
EP20785060.3A EP3941131B1 (en) 2019-03-29 2020-03-24 Method and apparatus for determining time domain position of search space
US17/600,064 US20220191722A1 (en) 2019-03-29 2020-03-24 Method and apparatus for determining time-domain position of search space, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910250589.3 2019-03-29
CN201910250589.3A CN111757482B (zh) 2019-03-29 2019-03-29 一种搜索空间时域位置确定方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2020199979A1 true WO2020199979A1 (zh) 2020-10-08

Family

ID=72664970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080887 WO2020199979A1 (zh) 2019-03-29 2020-03-24 搜索空间时域位置确定方法、装置及通信设备

Country Status (5)

Country Link
US (1) US20220191722A1 (zh)
EP (1) EP3941131B1 (zh)
KR (1) KR20210132199A (zh)
CN (1) CN111757482B (zh)
WO (1) WO2020199979A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023059085A1 (ko) 2021-10-06 2023-04-13 솔브레인 주식회사 전해액 및 이를 포함하는 이차전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716274A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 下行控制信息的传输方法和装置
CN108401526A (zh) * 2018-01-26 2018-08-14 北京小米移动软件有限公司 信息配置方法及装置、时频位置的确定方法及装置和基站
WO2018230965A2 (ko) * 2017-06-16 2018-12-20 한국전자통신연구원 통신 시스템에서 광대역 캐리어 지원을 위한 대역폭 설정 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106572533B (zh) * 2015-10-10 2020-09-11 中兴通讯股份有限公司 寻呼处理方法及装置
CN110582974B (zh) * 2017-05-05 2022-10-14 苹果公司 在新空口(nr)中支持灵活的pdcch监视
EP3484057B1 (en) * 2017-11-09 2021-01-06 Comcast Cable Communications, LLC Csi transmission with multiple bandwidth parts
US10863570B2 (en) * 2018-01-09 2020-12-08 Comcast Cable Communications, Llc Beam selection in beam failure recovery request retransmission
US20220124820A1 (en) * 2019-02-15 2022-04-21 Lg Electronics Inc. Method for terminal to perform random access channel procedure in wireless communication system, and device for same
EP3716698A1 (en) * 2019-03-28 2020-09-30 Yunjung Yi Cross-carrier scheduling activation for a dormant cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716274A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 下行控制信息的传输方法和装置
WO2018230965A2 (ko) * 2017-06-16 2018-12-20 한국전자통신연구원 통신 시스템에서 광대역 캐리어 지원을 위한 대역폭 설정 방법
CN108401526A (zh) * 2018-01-26 2018-08-14 北京小米移动软件有限公司 信息配置方法及装置、时频位置的确定方法及装置和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3941131A4 *

Also Published As

Publication number Publication date
KR20210132199A (ko) 2021-11-03
CN111757482A (zh) 2020-10-09
EP3941131A4 (en) 2022-05-11
US20220191722A1 (en) 2022-06-16
EP3941131A1 (en) 2022-01-19
EP3941131B1 (en) 2023-06-28
CN111757482B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US11825491B2 (en) Method for monitoring PDCCH, terminal and network device
JP7171761B2 (ja) リンク回復方法および装置
TWI759406B (zh) 傳輸下行控制訊息的方法、終端設備和網路設備
US11516769B2 (en) Method performed by user equipment, and user equipment
US11082161B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
US20220232478A1 (en) Communication method and apparatus
US20210337406A1 (en) Information determination method and signal receiving method and apparatus
US20220086659A1 (en) Dci transmission method, terminal, and network-side device
US11395312B2 (en) Method, terminal, and non-transitory computer readable medium for downlink data transmission based on scheduling of physical downlink shared channels (PDSCHs)
US20210167828A1 (en) Csi reporting method and apparatus
US20210345249A1 (en) Communications method and apparatus
US20220022113A1 (en) Interference randomization method and apparatus
US20190200328A1 (en) Method for transmitting data, terminal device and network device
WO2020199979A1 (zh) 搜索空间时域位置确定方法、装置及通信设备
WO2020042920A1 (zh) 信息传输方法、网络设备及终端
US11502809B2 (en) Method and apparatus of indicating synchronization signal block, method and apparatus of determining synchronization signal block, base station, user equipment and storage medium
US20210337477A1 (en) Communication method and apparatus
US11265102B2 (en) Downlink control channel detection method, downlink control channel transmission method, network side device and user equipment
WO2020194264A1 (en) Methods and nodes for downlink intra-ue pre-emption
CN115039486A (zh) 波束失败恢复的方法和装置
US11991541B2 (en) Link failure recovery method and apparatus
WO2020200004A1 (zh) 信号传输方法、装置及设备
US20240032059A1 (en) Physical downlink control channel repetition method and apparatus, and user equipment
TWI809261B (zh) 信號傳輸方法、網路設備、終端及電腦可讀存儲介質
CN116419148A (zh) Prs测量方法、装置、ue及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032832

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020785060

Country of ref document: EP

Effective date: 20211012