WO2020200004A1 - 信号传输方法、装置及设备 - Google Patents

信号传输方法、装置及设备 Download PDF

Info

Publication number
WO2020200004A1
WO2020200004A1 PCT/CN2020/081072 CN2020081072W WO2020200004A1 WO 2020200004 A1 WO2020200004 A1 WO 2020200004A1 CN 2020081072 W CN2020081072 W CN 2020081072W WO 2020200004 A1 WO2020200004 A1 WO 2020200004A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
energy
saving signal
different
beams
Prior art date
Application number
PCT/CN2020/081072
Other languages
English (en)
French (fr)
Other versions
WO2020200004A9 (zh
Inventor
王加庆
郑方政
高秋彬
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910330382.7A external-priority patent/CN111769924B/zh
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020217033624A priority Critical patent/KR20210138089A/ko
Priority to US17/600,570 priority patent/US20220174604A1/en
Priority to EP20783757.6A priority patent/EP3952477A4/en
Publication of WO2020200004A1 publication Critical patent/WO2020200004A1/zh
Publication of WO2020200004A9 publication Critical patent/WO2020200004A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a signal transmission method, device and equipment.
  • the current terminal In high-frequency communication, in order to meet the requirements of coverage or throughput, the current terminal first performs beam scanning based on SSB (Synchronization Signal Block). After the terminal determines the receiving beam, it uses PRACH (Physical Random Access Channel), which is a physical random access channel. The preamble sequence carried by the (incoming channel) implicitly reports the selected beam information to the base station, and the base station sends necessary configuration information for the terminal on the beam reported by the terminal.
  • SSB Synchron Generation
  • PRACH Physical Random Access Channel
  • the power saving signal is sent in a high frequency band, it also faces the problem of multi-beam transmission.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the purpose of the present disclosure is to provide a signal transmission method, device and equipment to solve the problem of how to transmit energy-saving signals based on beams.
  • embodiments of the present disclosure provide a signal transmission method applied to a network device, including:
  • the transmission beam is a beam corresponding to the transmission resource of the energy-saving signal
  • the energy saving signal is transmitted on the at least one transmission beam.
  • configuring at least one transmitting beam includes:
  • configuring at least one transmitting beam includes:
  • configuring at least one transmitting beam includes:
  • At least one transmission beam is configured for each transmission resource.
  • At least two transmission resources are configured, including:
  • At least two transmission resources are configured through high-level signaling.
  • the energy saving signal is an energy saving signal based on a physical downlink control channel; the method further includes:
  • a reference signal is configured for the transmission beam, where different transmission beams correspond to different reference signals.
  • different reference signals corresponding to different transmission beams include one of the following:
  • the sequences of the reference signals corresponding to different transmit beams are the same, but the patterns are different;
  • the sequences of the reference signals corresponding to different transmission beams are different, and the patterns are the same;
  • Different transmit beams correspond to different reference signal sequences and different patterns.
  • transmitting the energy-saving signal on the at least one transmitting beam includes:
  • transmitting the energy-saving signal on the at least one transmitting beam includes:
  • the energy-saving signal is transmitted through different transmission beams of the at least two transmission beams, and the different first time units correspond to different transmission beams.
  • the method further includes:
  • At least two second time units are configured, and different second time units correspond to different transmission resources.
  • At least two second time units are configured, including:
  • At least two second time units are configured through high-level signaling, physical layer signaling, or pre-appointment.
  • transmitting the energy-saving signal on the at least one transmitting beam includes:
  • the energy-saving signal is sent through at least one transmission beam corresponding to the transmission resource.
  • the terminal is configured with a priori information for the terminal to detect the transmission beam on a time unit, where the time unit includes a first time unit or a second time unit.
  • the prior information configured for the terminal to be used for the terminal to detect the transmission beam on the time unit includes:
  • the terminal is configured with a priori information for the terminal to detect the transmission beam on a time unit.
  • embodiments of the present disclosure also provide a signal transmission method applied to a terminal, including:
  • the transmission beam includes one transmission beam
  • Receiving the energy-saving signal sent by the network device on at least one sending beam includes:
  • the transmission beam includes at least two transmission beams, and the at least two transmission beams correspond to the same energy-saving signal;
  • the method further includes:
  • determining the target transmission beam selected by the network device among the at least two transmission beams includes:
  • the transmission beam corresponding to the reference signal is the target transmission beam selected by the network device among the at least two transmission beams.
  • the receiving the energy-saving signal sent by the network device on at least one sending beam includes:
  • the energy-saving signals sent on the respective corresponding transmission beams are received through at least two receiving beams.
  • the receiving the energy-saving signal sent by the network device on at least one sending beam includes:
  • At least two first time units respectively receiving energy saving signals sent by the at least two transmission beams, and different first time units correspond to different transmission beams;
  • Determining the target transmission beam selected by the network device among the at least two transmission beams includes:
  • the transmission beam corresponding to the energy-saving signal is a target transmission beam selected by the network device among the at least two transmission beams.
  • the receiving the energy-saving signal sent by the network device on at least one sending beam includes:
  • the transmission resource is a resource corresponding to the energy saving signal.
  • the method further includes:
  • the terminal After the target energy-saving signal is successfully demodulated and decoded, the terminal is instructed to execute a target event, and the target event includes: waking up the receiver or entering a sleep mode.
  • the embodiments of the present disclosure also provide a network device, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor;
  • the transmission beam is a beam corresponding to the transmission resource of the energy-saving signal
  • the energy saving signal is transmitted on the at least one transmission beam.
  • the processor further implements the following steps when executing the program:
  • the processor further implements the following steps when executing the program:
  • the processor further implements the following steps when executing the program:
  • At least one transmission beam is configured for each transmission resource.
  • the processor further implements the following steps when executing the program:
  • At least two transmission resources are configured through high-level signaling.
  • the energy saving signal is an energy saving signal based on a physical downlink control channel; the processor further implements the following steps when executing the program:
  • a reference signal is configured for the transmission beam, where different transmission beams correspond to different reference signals.
  • different reference signals corresponding to different transmission beams include one of the following:
  • the sequences of the reference signals corresponding to different transmit beams are the same, but the patterns are different;
  • the sequences of the reference signals corresponding to different transmission beams are different, and the patterns are the same;
  • Different transmit beams correspond to different reference signal sequences and different patterns.
  • the processor further implements the following steps when executing the program:
  • the processor further implements the following steps when executing the program:
  • the energy-saving signal is transmitted through different transmission beams of the at least two transmission beams, and the different first time units correspond to different transmission beams.
  • the processor further implements the following steps when executing the program:
  • At least two second time units are configured, and different second time units correspond to different transmission resources.
  • the processor further implements the following steps when executing the program:
  • At least two second time units are configured through high-level signaling, physical layer signaling, or pre-appointment.
  • the processor further implements the following steps when executing the program:
  • the energy-saving signal is sent through at least one transmission beam corresponding to the transmission resource.
  • the processor further implements the following steps when executing the program:
  • the terminal is configured with a priori information for the terminal to detect the transmission beam on a time unit, where the time unit includes a first time unit or a second time unit.
  • the processor further implements the following steps when executing the program:
  • the terminal is configured with a priori information for the terminal to detect the transmission beam on a time unit.
  • the embodiments of the present disclosure also provide a network device, including:
  • the first configuration module is configured to configure at least one transmission beam; the transmission beam is a beam corresponding to the transmission resource of the energy-saving signal;
  • the sending module is configured to send the energy saving signal on the at least one sending beam.
  • the first configuration module includes:
  • the first configuration unit is used to configure a transmission beam through high-level signaling or physical layer signaling.
  • the first configuration module includes:
  • the second configuration unit is used to configure at least two transmission beams through high-layer signaling or physical layer signaling.
  • the first configuration module includes:
  • a third configuration unit configured to configure at least two transmission resources, where the transmission resources are resources corresponding to the energy-saving signal
  • the fourth configuration unit is configured to configure at least one transmission beam for each transmission resource.
  • the third configuration unit is specifically configured to configure at least two transmission resources through high-level signaling.
  • the energy saving signal is an energy saving signal based on a physical downlink control channel; the network equipment further includes:
  • the second configuration module configures a reference signal for the transmission beam, where different transmission beams correspond to different reference signals.
  • different reference signals corresponding to different transmission beams include one of the following:
  • the sequences of the reference signals corresponding to different transmit beams are the same, but the patterns are different;
  • the sequences of the reference signals corresponding to different transmission beams are different, and the patterns are the same;
  • Different transmit beams correspond to different reference signal sequences and different patterns.
  • the sending module includes:
  • a selection unit configured to select a target transmission beam from the at least one transmission beam
  • the first sending unit is configured to send the energy saving signal on the target sending beam.
  • the sending module includes:
  • a second sending unit configured to send the energy-saving signal through the same sending beam in the at least two sending beams on at least two first time units;
  • the third sending unit is configured to send the energy-saving signal through different sending beams of the at least two sending beams on at least two first time units, and the different first time units correspond to different sending beams.
  • the third configuration module is configured to configure at least two second time units, and different second time units correspond to different transmission resources.
  • the third configuration module includes:
  • the fifth configuration unit is used to configure at least two second time units through high-level signaling, physical layer signaling or pre-appointment.
  • the sending module includes:
  • the fourth sending unit is configured to send the at least one transmission beam corresponding to the transmission resource on at least two second time units and on the respective transmission resources corresponding to the at least two second time units. Energy saving signal.
  • the fourth configuration module is configured to configure the terminal with a priori information for the terminal to detect the transmission beam on a time unit, where the time unit includes a first time unit or a second time unit.
  • the fourth configuration module includes:
  • the sixth configuration unit is used to configure the terminal with a priori information for the terminal to detect the transmission beam on the time unit through high-level signaling, physical layer signaling or pre-appointment.
  • an embodiment of the present disclosure further provides a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and running on the processor;
  • the transmission beam includes one transmission beam; the processor further implements the following steps when executing the program:
  • the transmission beam includes at least two transmission beams, and the at least two transmission beams correspond to the same energy-saving signal; the processor further implements the following steps when executing the program:
  • the processor further implements the following steps when executing the program:
  • the transmission beam corresponding to the reference signal is the target transmission beam selected by the network device among the at least two transmission beams.
  • the processor further implements the following steps when executing the program:
  • the energy-saving signals sent on the respective corresponding transmission beams are received through at least two receiving beams.
  • the processor further implements the following steps when executing the program:
  • At least two first time units respectively receiving energy saving signals sent by the at least two transmission beams, and different first time units correspond to different transmission beams;
  • the transmission beam corresponding to the energy-saving signal is a target transmission beam selected by the network device among the at least two transmission beams.
  • the processor further implements the following steps when executing the program:
  • the transmission resource is a resource corresponding to the energy saving signal.
  • the processor further implements the following steps when executing the program:
  • the terminal After the target energy-saving signal is successfully demodulated and decoded, the terminal is instructed to execute a target event, and the target event includes: waking up the receiver or entering a sleep mode.
  • an embodiment of the present disclosure also provides a terminal, including:
  • the receiving module is used to receive the energy-saving signal sent by the network device on at least one transmitting beam.
  • the transmitting beam includes a transmitting beam
  • the receiving module includes:
  • the first receiving unit is configured to receive, on a receiving beam corresponding to the sending beam, the energy saving signal sent by the network device on the sending beam.
  • the transmission beam includes at least two transmission beams, and the at least two transmission beams correspond to the same energy-saving signal; the terminal further includes:
  • the beam determination module is configured to determine the target transmission beam selected by the network device in the at least two transmission beams after receiving the energy saving signal sent by the network device on the at least one transmission beam.
  • the beam determination module includes:
  • the first detection unit is configured to detect the reference signal corresponding to the transmission beam, and different transmission beams correspond to different reference signals;
  • the first beam determining unit is configured to, when a reference signal is detected, determine that a transmission beam corresponding to the reference signal is a target transmission beam selected by the network device among the at least two transmission beams.
  • the receiving module includes:
  • the second receiving unit is configured to receive the energy-saving signal sent on the respective corresponding transmitting beams through at least two receiving beams on the same first time unit.
  • the receiving module includes:
  • a third receiving unit configured to respectively receive energy-saving signals sent by the at least two transmission beams on at least two first time units, and different first time units correspond to different transmission beams;
  • the beam determination module includes:
  • the second detection unit is configured to perform signal detection on the at least two transmission beams based on a pre-appointment, a base station configuration, or a random selection method;
  • the second beam determining unit is configured to, when an energy-saving signal is detected, determine that the transmission beam corresponding to the energy-saving signal is a target transmission beam selected by the network device among the at least two transmission beams.
  • the receiving module includes:
  • the fourth receiving unit is configured to respectively receive the transmission resources corresponding to the at least two second time units by the network device on at least two second time units, and transmit beams on at least one corresponding to the transmission resource.
  • the transmission resource is a resource corresponding to the energy saving signal.
  • the terminal further includes:
  • a demodulation and decoding module configured to demodulate and decode the target energy-saving signal corresponding to the target transmission beam
  • the indication module is configured to instruct the terminal to execute a target event after the target energy-saving signal is successfully demodulated and decoded.
  • the target event includes: waking up the receiver or entering a sleep mode.
  • embodiments of the present disclosure also provide a computer-readable storage medium on which a calculation program is stored, and when the computer program is executed by a processor, the steps of the signal transmission method as described above are implemented.
  • At least one transmission beam is configured; the transmission beam is a beam corresponding to the transmission resource of the energy-saving signal; and the energy-saving signal is transmitted on the at least one transmission beam.
  • the transmission of energy-saving signals based on beams ensures that subsequent terminals can execute corresponding events according to the instructions of the received energy-saving signals, so as to achieve the purpose of saving terminal power.
  • FIG. 1 is one of the schematic flowcharts of the signal transmission method according to the embodiment of the disclosure.
  • FIG. 2 is a second schematic diagram of a flow chart of a signal transmission method according to an embodiment of the disclosure
  • FIG. 3 is a structural block diagram of a network device according to an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of modules of a network device according to an embodiment of the disclosure.
  • FIG. 5 is a structural block diagram of a terminal according to an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of modules of a terminal according to an embodiment of the disclosure.
  • FIG. 1 it is a schematic flowchart of a signal transmission method provided by an embodiment of the present disclosure, which is applied to network equipment and includes:
  • Step 101 Configure at least one transmission beam; the transmission beam is a beam corresponding to a transmission resource of an energy-saving signal;
  • the network device configures at least one transmission beam for each transmission resource of the energy-saving signal, that is, configures one or more transmission beams.
  • the transmission resource of the energy-saving signal specifically refers to the transmission resource of the energy-saving signal.
  • the energy-saving signal transmission resource refers to the time and frequency of transmitting the energy-saving signal, but other resources, such as code division resources and space resources, are not excluded.
  • Step 102 Send the energy-saving signal on the at least one transmission beam.
  • the energy-saving signal is sent on at least one transmission beam through the transmission resource corresponding to the energy-saving signal.
  • At least one transmission beam is configured; the transmission beam is a beam corresponding to the transmission resource of the energy-saving signal; and the energy-saving signal is transmitted on the at least one transmission beam.
  • the transmission of the energy-saving signal of the beam ensures that subsequent terminals can execute corresponding events according to the instructions of the received energy-saving signal, so as to achieve the purpose of saving terminal power.
  • step 101 may include:
  • a transmission beam is configured for the transmission resource of the energy-saving signal through high-level signaling or physical layer signaling.
  • the network equipment (such as the base station) can be configured semi-statically through RRC (Radio Resource Control, Radio Resource Control) signaling or a pre-appointed way for the terminal to statically configure a terminal-specific UE-specific or a terminal group-specific UE group-specific
  • the energy-saving signal transmission resource after which, a transmission beam is configured for the energy-saving signal through RRC signaling.
  • the energy saving signal is a sequence-based energy saving signal. Of course, other forms of energy saving signals are not excluded.
  • step 101 may include:
  • At least two sending beams are configured for the transmission resources of the energy-saving signal through high-level signaling or physical layer signaling.
  • step 101 may include:
  • At least two transmission resources are configured through high-level signaling.
  • At least one transmission beam is configured for each transmission resource.
  • high-level signaling may include high-level RRC signaling or MAC CE.
  • the physical layer signaling may include physical layer PDCCH signaling.
  • the network device may first configure multiple transmission resources, and after the multiple transmission resources are configured, at least one transmission beam is configured for each transmission resource of the multiple transmission resources.
  • the network device can also configure a transmission resource A. After configuring the transmission resource A, configure at least one transmission beam for the transmission resource A; then, configure a transmission resource B. After the transmission resource B is configured, set the transmission beam Transmission resource B is configured with at least one sending beam, and so on, until n transmission resources are configured, and at least one sending beam is configured for each transmission resource.
  • the energy saving signal is an energy saving signal based on the physical downlink control channel PDCCH, and the method may further include:
  • a reference signal is configured for the transmission beam, where different transmission beams correspond to different reference signals.
  • the different reference signals corresponding to the different transmission beams include one of the following:
  • the sequences of the reference signals corresponding to different transmit beams are the same, but the patterns are different;
  • the sequences of the reference signals corresponding to different transmission beams are different, and the patterns are the same;
  • Different transmit beams correspond to different reference signal sequences and different patterns.
  • the sequence of the reference signal is related to the beam information
  • the sequence of the reference signal corresponding to the different transmission beams is different
  • the beam information related to the sequence of the reference information may be different. Specifically, it may be the generation of the reference signal.
  • the beam index information contained in the initial phase of the gold sequence of the sequence is different.
  • the energy-saving signal is a PDCCH-based energy-saving signal
  • the network device configures multiple transmission beams for the transmission resource of the energy-saving signal, that is, CORESET, and configures different DRMS (Demodulation Reference Signals) for different transmission beams.
  • Signal that is, the DRMS configured between different transmitting beams are different.
  • the DRMS pattern of the demodulation reference signal configured between different transmitting beams is different.
  • the transmission beam may include multiple aggregation levels, and the DRMS patterns configured between different aggregation levels are different.
  • step 102 may include:
  • the network device may select a target transmission beam from the at least one transmission beam according to the channel transmission quality of the terminal.
  • the network device obtains the channel transmission quality of the channel environment reported by the terminal, and the network device selects a target transmission beam suitable for the channel transmission quality of the terminal from the at least one transmission beam according to the channel transmission quality of the terminal .
  • the target transmission beam adapted to the channel transmission quality of the terminal that is, the target transmission beam can enable the energy-saving signal sent by the network device to reach the receiver of the terminal with better signal quality.
  • step 102 may include:
  • the energy-saving signal is transmitted through the same transmission beam in the at least two transmission beams.
  • the same transmitting beam is used to transmit energy-saving signals at multiple locations (preferably, multiple first time units).
  • the network device when a network device (such as a base station) obtains the channel quality information reported by the terminal, the network device can use the selected transmission beam (that is, the same transmission beam) among at least two transmission beams to transmit on multiple first time units. Energy saving signal. In this way, the energy saving signal sent by the network device can reach the direction of the receiver of the terminal with better signal quality.
  • step 102 may include:
  • the energy-saving signal is transmitted through different transmission beams of the at least two transmission beams, and the different first time units correspond to different transmission beams.
  • different first time units correspond to different transmission beams, that is, there is a correspondence between the first time unit and the transmission beam.
  • the network device when a network device (such as a base station) fails to obtain the channel quality information reported by the terminal, the network device can use different transmission beams in at least two transmission beams to send energy-saving signals. In this way, it can at least ensure that the terminal receives the energy-saving signal.
  • the transmission resources being the resources corresponding to the energy-saving signal; an embodiment of configuring at least one transmission beam for each transmission resource, as an optional implementation, the method It can also include:
  • At least two second time units are configured, and different second time units correspond to different transmission resources.
  • At least two second time units are configured through high-level signaling, physical layer signaling, or pre-appointment.
  • the transmission time unit ie, the second time unit of the energy saving signal corresponding to each transmission resource is configured.
  • step 102 may include:
  • the energy-saving signal is sent through at least one transmission beam corresponding to the transmission resource.
  • the second time unit is the sum of the time for sending energy-saving signals through the transmission beam and the time for beam switching of the network device. That is to say, the second time unit includes not only the time for sending the energy-saving signal through the sending beam, but also the reserved time for beam switching of the network device.
  • the time of the second time unit is greater than the time of the first time unit in the foregoing embodiment.
  • the network device when the energy-saving signal is a PDCCH-based energy-saving signal, the network device (such as a base station) configures T control resource sets CORESET for the PDCCH-based energy-saving signal, and configures W transmission beams for each CORESET, W ⁇ 1 , And W is a positive integer.
  • the network device can send the same energy-saving signal through respective corresponding transmission beams on different second time units in sequence.
  • the network device can predefine each transmission time unit (that is, the second time unit) as K OFDM symbols, and each K OFDM symbol, the network device passes the corresponding CORESET on a CORESET The sending beam sends an energy saving signal once.
  • the K OFDM symbols include the reserved time for the beam switching of the network equipment.
  • the network device When W>1, that is, when there is more than one transmit beam configured on each CORESET, the network device sends energy-saving signals on the W transmit beams corresponding to the current CORESET in each transmission time unit, that is, K OFDM symbols, or The energy-saving signal is sent on the current CORESET corresponding to greater than or equal to 1 and less than W transmit beams.
  • the energy-saving signals sent on the multiple CORESETs and their corresponding multiple transmitting beams are the same energy-saving signals.
  • the method further includes:
  • the terminal is configured with a priori information for the terminal to detect the transmission beam on a time unit, where the time unit includes a first time unit or a second time unit.
  • this step may specifically include:
  • the terminal is configured with a priori information for the terminal to detect the transmission beam on a time unit.
  • the a priori information of the transmission beam includes at least but not limited to: the correspondence between the time unit and the transmission beam. That is, different time units correspond to different transmission beams, which can be obtained through network device configuration (specifically, semi-static configuration through RRC signaling) or a static configuration pre-appointed with the terminal. In this way, the terminal can detect different beams separately.
  • At least one transmission beam is configured; the transmission beam is a beam corresponding to the transmission resource of the energy-saving signal; and the energy-saving signal is transmitted on the at least one transmission beam.
  • the transmission of the energy-saving signal of the beam ensures that subsequent terminals can execute corresponding events according to the instructions of the received energy-saving signal, so as to achieve the purpose of saving terminal power.
  • FIG. 2 it is a schematic flowchart of a signal transmission method provided by an embodiment of the present disclosure, applied to a terminal, and includes:
  • Step 201 Receive an energy-saving signal sent by a network device on at least one transmission beam.
  • At least one transmission beam includes one or more transmission beams.
  • the network device configures at least one transmission beam for the transmission resource corresponding to the energy-saving signal.
  • the terminal may be notified through high-level signaling or physical layer signaling.
  • the terminal learns at least one sending beam configured by the network device, and for each sending beam, the terminal has a corresponding receiving beam.
  • the energy-saving signal sent by the network device on at least one transmission beam can be received through the receiving beam.
  • the signal transmission method of the embodiment of the present disclosure receives the energy-saving signal sent by the network device on at least one transmission beam. In this way, the transmission of the energy-saving signal based on the beam can be realized, and it is ensured that the terminal can execute corresponding instructions according to the received energy-saving signal. Event, achieve the purpose of saving terminal power.
  • the transmission beam includes one transmission beam
  • step 201 may include:
  • the network device configures a transmission beam for the transmission resource corresponding to the energy-saving signal
  • the terminal learns the transmission beam through the signaling notification of the network device, and the terminal has a corresponding reception beam for the transmission beam. In this way, it is possible to save resources and reduce the complexity of the terminal while ensuring that the terminal accurately receives the energy-saving signal on the receiving beam corresponding to the transmitting beam.
  • the transmission beam includes at least two transmission beams, and the at least two transmission beams correspond to the same energy-saving signal; after step 201, the method may also include:
  • the terminal since the terminal does not know which transmit beam the network device sends the energy-saving signal on, it cannot know which receive beam the terminal can receive the energy-saving signal on, so in order to determine the receive beam that received the energy-saving signal, reduce the power To improve the success rate of demodulating and decoding the energy-saving signal, it is necessary to determine the target transmission beam selected by the network device in the at least two transmission beams.
  • the target transmission beam selected in can specifically include:
  • the detection is performed using simple sequence correlation.
  • the transmission beam corresponding to the reference signal is the target transmission beam selected by the network device among the at least two transmission beams.
  • the transmission beam corresponding to the reference signal is the target transmission beam selected by the network device among the at least two transmission beams.
  • the transmission beam corresponding to the target reference signal in the at least two reference signals is the target transmission beam selected by the network device among the at least two transmission beams.
  • the channel transmission quality corresponding to the target reference signal is greater than the preset threshold.
  • the terminal detects the reference signal and determines that the transmission beam corresponding to the reference signal is the target transmission beam selected by the network device among the at least two transmission beams, and then the target transmission beam corresponding to the target transmission beam
  • the energy-saving signal received by the receiving beam performs demodulation and decoding of the energy-saving signal; otherwise, the demodulation and decoding of the energy-saving signal is not performed. In this way, power consumption can be reduced, and the success rate of demodulating and decoding energy-saving signals can be improved.
  • step 201 may include:
  • the energy-saving signals sent on the respective corresponding transmission beams are received through at least two receiving beams.
  • this implementation manner corresponds to a situation in which the network device side configures at least two transmission beams for the transmission resources of the energy-saving signal, and configures reference signals for the transmission beams, where different transmission beams correspond to different reference signals.
  • the energy-saving signal is an energy-saving signal based on PDCCH
  • the network device configures multiple transmission beams for the energy-saving signal control resource set CORESET, and is different
  • the sending beam is configured with different DRMS, that is, the DRMS configured between different sending beams are different.
  • a network device such as a base station
  • the terminal first receives multiple energy-saving signals corresponding to the transmitted beam, such as a high-frequency analog beam.
  • the terminal is on the same first time unit and passes The N receiving beams receive the energy-saving signals sent by the corresponding N sending beams, where N ⁇ 2, and N is a positive integer.
  • the terminal performs a hypothesis test on the DMRS of the energy-saving signal based on the PDCCH corresponding to each transmitted beam.
  • the test is preferably performed using simple sequence correlation. If the terminal detects the DMRS corresponding to the transmitted beam at the corresponding beam receiving position, The terminal performs complex channel decoding operations.
  • At least two receive beams are used to receive energy-saving signals sent on their corresponding transmit beams.
  • the terminal uses at least two beams to simultaneously receive on the same first time unit. Energy-saving signals sent on the respective corresponding sending beams.
  • the terminal can receive multiple beams at the same first time unit.
  • the terminal is required to have such a capability.
  • the antenna of the terminal has multiple panel panels.
  • step 101 may include:
  • At least two first time units respectively receiving energy saving signals sent by the at least two transmission beams, and different first time units correspond to different transmission beams;
  • determining the target transmission beam selected by the network device in the at least two transmission beams may specifically include:
  • the transmission beam corresponding to the energy-saving signal is a target transmission beam selected by the network device among the at least two transmission beams.
  • this implementation manner corresponds to the configuration of at least two transmission beams on the network device side for the transmission resources of the energy-saving signal.
  • different transmission beams of the at least two transmission beams are used. The situation where the energy saving signal is sent.
  • the network device selects one of the multiple sending beams to send the energy-saving signal in multiple sending time units.
  • the terminal is at different MO (Monitoring occasions) of the energy-saving signal according to the pre-appointment
  • the base station configuration or random selection method respectively detects different transmission beams at multiple MOs.
  • the base station uses RRC signaling semi-static configuration or the static configuration method pre-appointed by the base station and the terminal agrees to different first time units ( For example, the corresponding relationship between different MOs and transmission beams, so that the terminal can detect different beams separately.
  • MO is from the perspective of the terminal, and from the perspective of the network device, that is, the opportunity to send energy-saving signals. Since the two are in a one-to-one correspondence, no distinction is made here.
  • the base station selects a transmission beam according to the channel environment where the UE is located, and transmits the energy-saving signal on multiple transmission opportunities, or the base station transmits energy-saving signals on multiple transmission beams in different first time units (such as multiple energy-saving signal transmission opportunities) signal.
  • the terminal uses different transmission beams to receive energy-saving signals on multiple MOs according to the base station. In other words, the terminal performs hypothesis testing on multiple beam transmission directions on multiple MOs.
  • the direction of the beam detected by the terminal on the MO may be semi-statically configured by the base station RRC signaling or statically configured in a pre-appointed manner, or the base station may randomly select a beam for transmission.
  • the terminal assumes that the base station’s transmit beam is transmit beam 1, and then detects the energy-saving signal; if the index is an even-numbered MO, the terminal assumes the base station’s transmit beam is transmit beam 2, and then detects the energy-saving signal; when there is no transmit beam
  • the terminal can randomly check the transmission beam alternately. For example, the current MO can assume that the transmission beam is 1 or 2, and the next MO can assume that the transmission beam is 2 or 1 for inspection.
  • step 201 may include:
  • the transmission resource is a resource corresponding to the energy saving signal.
  • this implementation manner corresponds to a situation where at least two transmission resources are configured on the network device side, where the transmission resources are resources corresponding to the energy-saving signal; and at least one transmission beam is configured for each transmission resource.
  • the network device (such as a base station) configures T control resources for the PDCCH-based energy-saving signal Collect CORESET, and configure W sending beams for each CORESET, W ⁇ 1, and W is a positive integer.
  • the network device can send the same energy-saving signal through respective corresponding transmission beams on different second time units in sequence.
  • the terminal receives the energy-saving signals sent on different CORESETs and corresponding different beams in the corresponding sending time unit (ie, the second time unit).
  • the terminal detects the DMRS corresponding to the PDCCH on a beam corresponding to different CORESETs, and only performs demodulation and decoding if the DMRS is detected, and does not perform demodulation and decoding if the DMRS is not detected; if the base station detects multiple The DMRS sequence will select a PDCCH-based energy-saving signal corresponding to a DMRS sequence with better channel transmission quality for demodulation and decoding.
  • the method may further include:
  • this step after determining the target transmission beam selected by the network device in the at least two transmission beams, demodulate and decode the target energy-saving signal corresponding to the target transmission beam, and do not demodulate and decode other transmission beams Processing, this can not only reduce terminal power consumption, but also improve the success rate of demodulating and decoding energy-saving signals.
  • the terminal After the target energy-saving signal is successfully demodulated and decoded, the terminal is instructed to execute a target event, and the target event includes: waking up the receiver or entering a sleep mode.
  • the target time includes but is not limited to: waking up the receiver or entering sleep mode.
  • the signal transmission method of the embodiment of the present disclosure receives the energy-saving signal sent by the network device on at least one transmission beam. In this way, the transmission of the energy-saving signal based on the beam can be realized, and it is ensured that the terminal can execute corresponding instructions according to the received energy-saving signal. Event, achieve the purpose of saving terminal power.
  • the embodiment of the present disclosure also provides a network device, including: a transceiver 310, a memory 320, a processor 300, and a program stored in the memory and running on the processor.
  • the processor 300 uses To read the program in the memory 320, the following process is performed:
  • the transmission beam is a beam corresponding to the transmission resource of the energy-saving signal
  • the energy saving signal is transmitted on the at least one transmission beam.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 300 and various circuits of the memory represented by the memory 320 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 310 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 300 is responsible for managing the bus architecture and general processing, and the memory 320 can store data used by the processor 300 when performing operations.
  • the processor 300 further implements the following steps when executing the program:
  • the processor further implements the following steps when executing the program:
  • the processor 300 further implements the following steps when executing the program:
  • At least one transmission beam is configured for each transmission resource.
  • the processor 300 further implements the following steps when executing the program:
  • At least two transmission resources are configured through high-level signaling.
  • the energy saving signal is an energy saving signal based on a physical downlink control channel; the processor 300 further implements the following steps when executing the program:
  • a reference signal is configured for the transmission beam, where different transmission beams correspond to different reference signals.
  • the different reference signals corresponding to the different transmission beams include one of the following:
  • the sequences of the reference signals corresponding to different transmit beams are the same, but the patterns are different;
  • the sequences of the reference signals corresponding to different transmission beams are different, and the patterns are the same;
  • Different transmit beams correspond to different reference signal sequences and different patterns.
  • the processor 300 further implements the following steps when executing the program:
  • the processor 300 further implements the following steps when executing the program:
  • the energy-saving signal is transmitted through different transmission beams of the at least two transmission beams, and the different first time units correspond to different transmission beams.
  • the processor 300 further implements the following steps when executing the program:
  • At least two second time units are configured, and different second time units correspond to different transmission resources.
  • the processor 300 further implements the following steps when executing the program:
  • At least two second time units are configured through high-level signaling, physical layer signaling, or pre-appointment.
  • the processor 300 further implements the following steps when executing the program:
  • the energy-saving signal is sent through at least one transmission beam corresponding to the transmission resource.
  • the processor 300 further implements the following steps when executing the program:
  • the terminal is configured with a priori information for the terminal to detect the transmission beam on a time unit, where the time unit includes a first time unit or a second time unit.
  • the processor 300 further implements the following steps when executing the program:
  • the terminal is configured with a priori information for the terminal to detect the transmission beam on a time unit.
  • the implementation of the present disclosure also provides a network device, including:
  • the first configuration module 401 is configured to configure at least one transmission beam; the transmission beam is a beam corresponding to the transmission resource of the energy-saving signal;
  • the sending module 402 is configured to send the energy saving signal on the at least one sending beam.
  • the first configuration module 401 may include:
  • the first configuration unit is used to configure a transmission beam through high-level signaling or physical layer signaling.
  • the first configuration module 401 includes:
  • the second configuration unit is used to configure at least two transmission beams through high-layer signaling or physical layer signaling.
  • the first configuration module 401 includes:
  • a third configuration unit configured to configure at least two transmission resources, where the transmission resources are resources corresponding to the energy-saving signal
  • the fourth configuration unit is configured to configure at least one transmission beam for each transmission resource.
  • the third configuration unit is specifically configured to configure at least two transmission resources through high-level signaling.
  • the energy saving signal is an energy saving signal based on a physical downlink control channel; the network device of the embodiment of the present disclosure further includes:
  • the second configuration module configures a reference signal for the transmission beam, where different transmission beams correspond to different reference signals.
  • the different reference signals corresponding to the different transmission beams include one of the following:
  • the sequences of the reference signals corresponding to different transmit beams are the same, but the patterns are different;
  • the sequences of the reference signals corresponding to different transmission beams are different, and the patterns are the same;
  • Different transmit beams correspond to different reference signal sequences and different patterns.
  • the sending module 402 includes:
  • a selection unit configured to select a target transmission beam from the at least one transmission beam
  • the first sending unit is configured to send the energy saving signal on the target sending beam.
  • the sending module 402 includes:
  • a second sending unit configured to send the energy-saving signal through the same sending beam in the at least two sending beams on at least two first time units;
  • the third sending unit is configured to send the energy-saving signal through different sending beams of the at least two sending beams on at least two first time units, and the different first time units correspond to different sending beams.
  • the third configuration module is used to configure at least two second time units, and different second time units correspond to different transmission resources.
  • the third configuration module includes:
  • the fifth configuration unit is used to configure at least two second time units through high-level signaling, physical layer signaling or pre-appointment.
  • the sending module 402 includes:
  • the fourth sending unit is configured to send the at least one transmission beam corresponding to the transmission resource on at least two second time units and on the respective transmission resources corresponding to the at least two second time units. Energy saving signal.
  • the fourth configuration module is configured to configure the terminal with a priori information for the terminal to detect the transmission beam on a time unit, where the time unit includes a first time unit or a second time unit.
  • the fourth configuration module includes:
  • the sixth configuration unit is used to configure the terminal with a priori information for the terminal to detect the transmission beam on the time unit through high-level signaling, physical layer signaling or pre-appointment.
  • At least one transmission beam is configured through the first configuration module; the transmission beam is a beam corresponding to the transmission resource of the energy-saving signal; the transmission module transmits the energy-saving signal on the at least one transmission beam, In this way, beam-based transmission of energy-saving signals can be realized, ensuring that subsequent terminals can execute corresponding events according to the instructions of the received energy-saving signals, so as to achieve the purpose of saving terminal power.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the following steps are implemented:
  • the transmission beam is a beam corresponding to the transmission resource of the energy-saving signal
  • the energy saving signal is transmitted on the at least one transmission beam.
  • an embodiment of the present disclosure also provides a terminal, including a memory 520, a processor 500, a transceiver 510, a bus interface, and a program stored in the memory 520 and running on the processor 500,
  • the processor 500 is configured to read the program in the memory 520 and execute the following process:
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 510 may be a plurality of elements, that is, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 530 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the transmission beam includes one transmission beam; the processor 500 further implements the following steps when executing the program:
  • the transmission beam includes at least two transmission beams, and the at least two transmission beams correspond to the same energy-saving signal; the processor 500 further implements the following steps when executing the program:
  • processor 500 further implements the following steps when executing the program:
  • the transmission beam corresponding to the reference signal is the target transmission beam selected by the network device among the at least two transmission beams.
  • processor 500 further implements the following steps when executing the program:
  • the energy-saving signals sent on the respective corresponding transmission beams are received through at least two receiving beams.
  • processor 500 further implements the following steps when executing the program:
  • At least two first time units respectively receiving energy saving signals sent by the at least two transmission beams, and different first time units correspond to different transmission beams;
  • the transmission beam corresponding to the energy-saving signal is a target transmission beam selected by the network device among the at least two transmission beams.
  • processor 500 further implements the following steps when executing the program:
  • the transmission resource is a resource corresponding to the energy saving signal.
  • processor 500 further implements the following steps when executing the program:
  • the terminal After the target energy-saving signal is successfully demodulated and decoded, the terminal is instructed to execute a target event, and the target event includes: waking up the receiver or entering a sleep mode.
  • an embodiment of the present disclosure also provides a terminal, including:
  • the receiving module 601 is configured to receive an energy-saving signal sent by a network device on at least one sending beam.
  • the transmitting beam includes one transmitting beam; in the terminal of the embodiment of the present disclosure, the receiving module 601 includes:
  • the first receiving unit is configured to receive, on a receiving beam corresponding to the sending beam, the energy saving signal sent by the network device on the sending beam.
  • the transmission beam includes at least two transmission beams, and the at least two transmission beams correspond to the same energy-saving signal;
  • the terminal in the embodiment of the present disclosure further includes:
  • the beam determination module is configured to determine the target transmission beam selected by the network device in the at least two transmission beams after receiving the energy saving signal sent by the network device on the at least one transmission beam.
  • the beam determination module includes:
  • the first detection unit is configured to detect the reference signal corresponding to the transmission beam, and different transmission beams correspond to different reference signals;
  • the first beam determining unit is configured to, when a reference signal is detected, determine that a transmission beam corresponding to the reference signal is a target transmission beam selected by the network device among the at least two transmission beams.
  • the receiving module 601 includes:
  • the second receiving unit is configured to receive the energy-saving signal sent on the respective corresponding transmitting beams through at least two receiving beams on the same first time unit.
  • the receiving module 601 includes:
  • a third receiving unit configured to respectively receive energy-saving signals sent by the at least two transmission beams on at least two first time units, and different first time units correspond to different transmission beams;
  • the beam determination module includes:
  • the second detection unit is configured to perform signal detection on the at least two transmission beams based on a pre-appointment, a base station configuration, or a random selection method;
  • the second beam determining unit is configured to, when an energy-saving signal is detected, determine that a transmission beam corresponding to the energy-saving signal is a target transmission beam selected by the network device among the at least two transmission beams.
  • the receiving module 601 includes:
  • the fourth receiving unit is configured to respectively receive the transmission resources corresponding to the at least two second time units by the network device on at least two second time units, and transmit beams on at least one corresponding to the transmission resource.
  • the transmission resource is a resource corresponding to the energy saving signal.
  • a demodulation and decoding module configured to demodulate and decode the target energy-saving signal corresponding to the target transmission beam
  • the indication module is configured to instruct the terminal to execute a target event after the target energy-saving signal is successfully demodulated and decoded.
  • the target event includes: waking up the receiver or entering a sleep mode.
  • the terminal of the embodiment of the present disclosure receives the energy-saving signal sent by the network device on at least one transmission beam through the receiving module. In this way, the transmission of the energy-saving signal based on the beam can be realized, and it is ensured that the terminal can perform corresponding actions according to the instructions of the received energy-saving signal. Event, achieve the purpose of saving terminal power.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the following steps are implemented:
  • the division of the above network equipment and the various modules of the terminal is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned device for implementation.
  • each step of the above method or each of the above modules can be completed by hardware integrated logic circuits in the processor element or instructions in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开提供一种信号传输方法、装置及设备。本公开的信号传输方法:配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;在所述至少一个发送波束上,发送所述节能信号。

Description

信号传输方法、装置及设备
相关申请的交叉引用
本申请主张在2019年4月2日在中国提交的中国专利申请号No.201910263111.4的优先权、及在2019年4月23日在中国提交的中国专利申请号No.201910330382.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信号传输方法、装置及设备。
背景技术
在高频段通信时,为了满足覆盖或者吞吐量的需求,目前终端首先基于SSB(Synchronization Signal Block,同步信号块)进行波束扫描,终端确定接收波束后,通过PRACH(Physical Random Access Channel,物理随机接入信道)承载的前导码Preamble序列隐式向基站汇报所选定的波束信息,基站在终端上报的波束上为终端发送必要的配置信息。
而节能信号power saving signal如果在高频段发送,同样面临多波束发送的问题。与进行数据调度的PDCCH(Physical Downlink Control Channel,物理下行控制信道)或者PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的不同在于,PDCCH/PDSCH可以多次发送,而且该过程中有波束管理与波束恢复机制,而对于power saving signal的发送波束可能随着UE的移动发生变化,但是又缺乏波束恢复机制,所以如何基于波束进行power saving signal的传输,目前还没有解决方案。
发明内容
本公开的目的在于提供一种信号传输方法、装置及设备,用以解决如何基于波束进行节能信号的传输的问题。
为了实现上述目的,本公开实施例提供一种信号传输方法,应用于网络设备,包括:
配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;
在所述至少一个发送波束上,发送所述节能信号。
其中,配置至少一个发送波束,包括:
通过高层信令或者物理层信令,配置一个发送波束。
其中,配置至少一个发送波束,包括:
通过高层信令或者物理层信令,配置至少两个发送波束。
其中,配置至少一个发送波束,包括:
配置至少两个传输资源,所述传输资源为所述节能信号对应的资源;
为每个所述传输资源配置至少一个发送波束。
其中,配置至少两个传输资源,包括:
通过高层信令,配置至少两个传输资源。
其中,所述节能信号为基于物理下行控制信道的节能信号;所述方法还包括:
为所述发送波束配置参考信号,其中,不同的发送波束对应不同的参考信号。
其中,所述不同的发送波束对应不同的参考信号包括以下中的一项:
不同的发送波束对应的参考信号的序列相同,图样不同;
不同的发送波束对应的参考信号的序列不同,图样相同;
不同的发送波束对应的参考信号的序列不同,且图样不同。
其中,在所述至少一个发送波束上,发送所述节能信号,包括:
从所述至少一个发送波束中选择一目标发送波束;
在所述目标发送波束上发送所述节能信号。
其中,在所述至少一个发送波束上,发送所述节能信号,包括:
在至少两个第一时间单元上,通过所述至少两个发送波束中相同的发送波束发送所述节能信号;
或者,
在至少两个第一时间单元上,分别通过所述至少两个发送波束中不同的发送波束发送所述节能信号,不同的第一时间单元对应不同的发送波束。
其中,所述方法还包括:
配置至少两个第二时间单元,不同的第二时间单元对应不同的传输资源。
其中,配置至少两个第二时间单元,包括:
通过高层信令、物理层信令或者预先约定,配置至少两个第二时间单元。
其中,在所述至少一个发送波束上,发送所述节能信号,包括:
在至少两个第二时间单元上,且在所述至少两个第二时间单元各自对应的传输资源上,通过与所述传输资源对应的至少一个发送波束发送所述节能信号。
其中,还包括:
为终端配置用于终端在时间单元上检测发送波束的先验信息,所述时间单元包括第一时间单元或第二时间单元。
其中,为终端配置用于终端在时间单元上检测发送波束的先验信息,包括:
通过高层信令、物理层信令或者预先约定,为终端配置用于终端在时间单元上检测发送波束的先验信息。
为了实现上述目的,本公开实施例还提供一种信号传输方法,应用于终端,包括:
接收网络设备在至少一个发送波束上发送的节能信号。
其中,所述发送波束包括一个发送波束;
接收网络设备在至少一个发送波束上发送的节能信号,包括:
在与所述发送波束对应的接收波束上,接收所述网络设备在所述发送波束上发送的节能信号。
其中,所述发送波束包括至少两个发送波束,所述至少两个发送波束对应相同的节能信号;
接收网络设备在至少一个发送波束上发送的节能信号之后,还包括:
确定网络设备在所述至少两个发送波束中选定的目标发送波束。
其中,确定网络设备在所述至少两个发送波束中选定的目标发送波束,包括:
对所述发送波束对应的参考信号进行检测,不同的发送波束对应不同的 参考信号;
若检测到参考信号,则确定与所述参考信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
其中,所述接收网络设备在至少一个发送波束上发送的节能信号,包括:
在相同的第一时间单元上,通过至少两个接收波束分别接收各自对应的发送波束上发送的节能信号。
其中,所述接收网络设备在至少一个发送波束上发送的节能信号,包括:
在至少两个第一时间单元上,分别接收所述至少两个发送波束发送的节能信号,不同的第一时间单元对应不同的发送波束;
确定网络设备在所述至少两个发送波束中选定的目标发送波束,包括:
基于预先约定、基站配置或随机选择的方式,对所述至少两个发送波束进行信号检测;
若检测到节能信号,则确定与所述节能信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
其中,所述接收网络设备在至少一个发送波束上发送的节能信号,包括:
在至少两个第二时间单元上,分别接收网络设备在所述至少两个第二时间单元各自对应的传输资源上,通过在所述传输资源对应的至少一个发送波束上发送的节能信号,所述传输资源为所述节能信号对应的资源。
其中,确定与所述节能信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束之后,还包括:
对与所述目标发送波束对应的目标节能信号进行解调与解码;
在所述目标节能信号解调与解码成功后,指示终端执行目标事件,所述目标事件包括:唤醒接收机或者进入睡眠模式。
为了实现上述目的,本公开实施例还提供一种网络设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;
配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;
在所述至少一个发送波束上,发送所述节能信号。
其中,所述处理器执行所述程序时还实现以下步骤:
通过高层信令或者物理层信令,配置一个发送波束。
其中,所述处理器执行所述程序时还实现以下步骤:
通过高层信令或者物理层信令,配置至少两个发送波束。
其中,所述处理器执行所述程序时还实现以下步骤:
配置至少两个传输资源,所述传输资源为所述节能信号对应的资源;
为每个所述传输资源配置至少一个发送波束。
其中,所述处理器执行所述程序时还实现以下步骤:
通过高层信令,配置至少两个传输资源。
其中,所述节能信号为基于物理下行控制信道的节能信号;所述处理器执行所述程序时还实现以下步骤:
为所述发送波束配置参考信号,其中,不同的发送波束对应不同的参考信号。
其中,所述不同的发送波束对应不同的参考信号包括以下中的一项:
不同的发送波束对应的参考信号的序列相同,图样不同;
不同的发送波束对应的参考信号的序列不同,图样相同;
不同的发送波束对应的参考信号的序列不同,且图样不同。
其中,所述处理器执行所述程序时还实现以下步骤:
从所述至少一个发送波束中选择一目标发送波束;
在所述目标发送波束上发送所述节能信号。
其中,所述处理器执行所述程序时还实现以下步骤:
在至少两个第一时间单元上,通过所述至少两个发送波束中相同的发送波束发送所述节能信号;
或者,
在至少两个第一时间单元上,分别通过所述至少两个发送波束中不同的发送波束发送所述节能信号,不同的第一时间单元对应不同的发送波束。
其中,所述处理器执行所述程序时还实现以下步骤:
配置至少两个第二时间单元,不同的第二时间单元对应不同的传输资源。
其中,所述处理器执行所述程序时还实现以下步骤:
通过高层信令、物理层信令或者预先约定,配置至少两个第二时间单元。
其中,所述处理器执行所述程序时还实现以下步骤:
在至少两个第二时间单元上,且在所述至少两个第二时间单元各自对应的传输资源上,通过与所述传输资源对应的至少一个发送波束发送所述节能信号。
其中,所述处理器执行所述程序时还实现以下步骤:
为终端配置用于终端在时间单元上检测发送波束的先验信息,所述时间单元包括第一时间单元或第二时间单元。
其中,所述处理器执行所述程序时还实现以下步骤:
通过高层信令、物理层信令或者预先约定,为终端配置用于终端在时间单元上检测发送波束的先验信息。
为了实现上述目的,本公开实施例还提供一种网络设备,包括:
第一配置模块,用于配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;
发送模块,用于在所述至少一个发送波束上,发送所述节能信号。
其中,所述第一配置模块,包括:
第一配置单元,用于通过高层信令或者物理层信令,配置一个发送波束。
其中,所述第一配置模块,包括:
第二配置单元,用于通过高层信令或者物理层信令,配置至少两个发送波束。
其中,所述第一配置模块,包括:
第三配置单元,用于配置至少两个传输资源,所述传输资源为所述节能信号对应的资源;
第四配置单元,用于为每个所述传输资源配置至少一个发送波束。
其中,所述第三配置单元,具体用于通过高层信令,配置至少两个传输资源。
其中,所述节能信号为基于物理下行控制信道的节能信号;所述网络设备还包括:
第二配置模块,为所述发送波束配置参考信号,其中,不同的发送波束对应不同的参考信号。
其中,所述不同的发送波束对应不同的参考信号包括以下中的一项:
不同的发送波束对应的参考信号的序列相同,图样不同;
不同的发送波束对应的参考信号的序列不同,图样相同;
不同的发送波束对应的参考信号的序列不同,且图样不同。
其中,所述发送模块,包括:
选择单元,用于从所述至少一个发送波束中选择一目标发送波束;
第一发送单元,用于在所述目标发送波束上发送所述节能信号。
其中,所述发送模块,包括:
第二发送单元,用于在至少两个第一时间单元上,通过所述至少两个发送波束中相同的发送波束发送所述节能信号;
或者,
第三发送单元,用于在至少两个第一时间单元上,分别通过所述至少两个发送波束中不同的发送波束发送所述节能信号,不同的第一时间单元对应不同的发送波束。
其中,还包括:
第三配置模块,用于配置至少两个第二时间单元,不同的第二时间单元对应不同的传输资源。
其中,所述第三配置模块,包括:
第五配置单元,用于通过高层信令、物理层信令或者预先约定,配置至少两个第二时间单元。
其中,所述发送模块,包括:
第四发送单元,用于在至少两个第二时间单元上,且在所述至少两个第二时间单元各自对应的传输资源上,通过与所述传输资源对应的至少一个发送波束发送所述节能信号。
其中,还包括:
第四配置模块,用于为终端配置用于终端在时间单元上检测发送波束的先验信息,所述时间单元包括第一时间单元或第二时间单元。
其中,所述第四配置模块,包括:
第六配置单元,用于通过高层信令、物理层信令或者预先约定,为终端 配置用于终端在时间单元上检测发送波束的先验信息。
为了实现上述目的,本公开实施例还提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;
接收网络设备在至少一个发送波束上发送的节能信号。
其中,所述发送波束包括一个发送波束;所述处理器执行所述程序时还实现以下步骤:
在与所述发送波束对应的接收波束上,接收所述网络设备在所述发送波束上发送的节能信号。
其中,所述发送波束包括至少两个发送波束,所述至少两个发送波束对应相同的节能信号;所述处理器执行所述程序时还实现以下步骤:
确定网络设备在所述至少两个发送波束中选定的目标发送波束。
其中,所述处理器执行所述程序时还实现以下步骤:
对所述发送波束对应的参考信号进行检测,不同的发送波束对应不同的参考信号;
若检测到参考信号,则确定与所述参考信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
其中,所述处理器执行所述程序时还实现以下步骤:
在相同的第一时间单元上,通过至少两个接收波束分别接收各自对应的发送波束上发送的节能信号。
其中,所述处理器执行所述程序时还实现以下步骤:
在至少两个第一时间单元上,分别接收所述至少两个发送波束发送的节能信号,不同的第一时间单元对应不同的发送波束;
基于预先约定、基站配置或随机选择的方式,对所述至少两个发送波束进行信号检测;
若检测到节能信号,则确定与所述节能信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
其中,所述处理器执行所述程序时还实现以下步骤:
在至少两个第二时间单元上,分别接收网络设备在所述至少两个第二时间单元各自对应的传输资源上,通过在所述传输资源对应的至少一个发送波 束上发送的节能信号,所述传输资源为所述节能信号对应的资源。
其中,所述处理器执行所述程序时还实现以下步骤:
对与所述目标发送波束对应的目标节能信号进行解调与解码;
在所述目标节能信号解调与解码成功后,指示终端执行目标事件,所述目标事件包括:唤醒接收机或者进入睡眠模式。
为了实现上述目的,本公开实施例还提供了一种终端,包括:
接收模块,用于接收网络设备在至少一个发送波束上发送的节能信号。
其中,所述发送波束包括一个发送波束;所述接收模块,包括:
第一接收单元,用于在与所述发送波束对应的接收波束上,接收所述网络设备在所述发送波束上发送的节能信号。
其中,所述发送波束包括至少两个发送波束,所述至少两个发送波束对应相同的节能信号;所述终端还包括:
波束确定模块,用于在接收网络设备在至少一个发送波束上发送的节能信号之后,确定网络设备在所述至少两个发送波束中选定的目标发送波束。
其中,所述波束确定模块,包括:
第一检测单元,用于对所述发送波束对应的参考信号进行检测,不同的发送波束对应不同的参考信号;
第一波束确定单元,用于在检测到参考信号时,确定与所述参考信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
其中,所述接收模块,包括:
第二接收单元,用于在相同的第一时间单元上,通过至少两个接收波束分别接收各自对应的发送波束上发送的节能信号。
其中,所述接收模块,包括:
第三接收单元,用于在至少两个第一时间单元上,分别接收所述至少两个发送波束发送的节能信号,不同的第一时间单元对应不同的发送波束;
所述波束确定模块,包括:
第二检测单元,用于基于预先约定、基站配置或随机选择的方式,对所述至少两个发送波束进行信号检测;
第二波束确定单元,用于在检测到节能信号时,确定与所述节能信号对 应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
其中,所述接收模块,包括:
第四接收单元,用于在至少两个第二时间单元上,分别接收网络设备在所述至少两个第二时间单元各自对应的传输资源上,通过在所述传输资源对应的至少一个发送波束上发送的节能信号,所述传输资源为所述节能信号对应的资源。
其中,所述终端还包括:
解调解码模块,用于对与所述目标发送波束对应的目标节能信号进行解调与解码;
指示模块,用于在所述目标节能信号解调与解码成功后,指示终端执行目标事件,所述目标事件包括:唤醒接收机或者进入睡眠模式。
为了实现上述目的,本公开实施例还提供一种计算机可读存储介质,其上存储有计算程序,该计算机程序被处理器执行时实现如上述所述的信号传输方法的步骤。
本公开的上述技术方案至少具有如下有益效果:
本公开实施例的上述技术方案中,通过配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;在所述至少一个发送波束上,发送所述节能信号,如此,能够实现基于波束的节能信号的传输,保证后续终端能够根据接收到的节能信号的指示执行相应的事件,达到节省终端电量的目的。
附图说明
图1为本公开实施例的信号传输方法的流程图示意图之一;
图2为本公开实施例的信号传输方法的流程图示意图之二;
图3为本公开实施例的网络设备的结构框图;
图4为本公开实施例的网络设备的模块示意图;
图5为本公开实施例的终端的结构框图;
图6为本公开实施例的终端的模块示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1所示,为本公开实施例提供的一种信号传输方法的流程示意图,应用于网络设备,包括:
步骤101:配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;
这里,网络设备为每个节能信号的传输资源均配置至少一个发送波束beam,即配置一个或者多个发送beam。
需要说明的是,节能信号的传输资源具体是指节能信号的发送资源。
这里,节能信号的发送资源是指发送节能信号的时间与频率,但也不排除其他资源,如码分资源和空间资源。
步骤102:在所述至少一个发送波束上,发送所述节能信号。
本步骤中,具体的,通过与节能信号对应的传输资源,在至少一个发送波束上发送该节能信号。
本公开实施例的信号传输方法,通过配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;在所述至少一个发送波束上,发送所述节能信号,如此,能够实现基于波束的节能信号的传输,保证后续终端能够根据接收到的节能信号的指示执行相应的事件,达到节省终端电量的目的。
基于图1所示的实施例,作为一较佳地实现方式,步骤101可包括:
通过高层信令或者物理层信令,配置一个发送波束。
本步骤中,具体的,通过高层信令或者物理层信令,为节能信号的传输资源配置一个发送beam。
其中,较佳地,网络设备(如基站)可通过RRC(Radio Resource Control,无线资源控制)信令半静态配置或者预先约定的方式为终端静态配置终端专用UE specific或者终端组专用UE group specific的节能信号的发送资源,之后,通过RRC信令为该节能信号配置一个发送beam。较佳地,该节能信号为基于序列的节能信号。当然,也不排除其他形式的节能信号。
基于图1所示的实施例,作为一较佳地实现方式,步骤101可包括:
通过高层信令或者物理层信令,配置至少两个发送波束。
本步骤中,具体的,通过高层信令或者物理层信令,为节能信号的传输资源配置至少两个发送beam,也就是多个发送beam。
基于图1所示的实施例,作为一较佳地实现方式,步骤101可包括:
配置至少两个传输资源,所述传输资源为所述节能信号对应的资源;
本步骤中,具体的,通过高层信令,配置至少两个传输资源。
为每个所述传输资源配置至少一个发送波束。
这里,高层信令可包括高层RRC信令或MAC CE。
当然,还可通过物理层信令,配置至少两个传输资源。这里,物理层信令可包括物理层PDCCH信令。
需要说明的是,网络设备可以先配置多个传输资源,配置完该多个传输资源后,再分别为该多个传输资源中的每个传输资源配置至少一个发送beam。
网络设备还可以配置一个传输资源A,配置完该传输资源A后,再为该传输资源A配置至少一个发送beam;接着,再配置一个传输资源B,配置完该传输资源B后,再为该传输资源B配置至少一个发送beam,依次类推,直至配置完成n个传输资源,且为每个传输资源配置至少一个发送beam。
进一步地,所述节能信号为基于物理下行控制信道PDCCH的节能信号,所述方法还可包括:
为所述发送波束配置参考信号,其中,不同的发送波束对应不同的参考信号。
具体的,所述不同的发送波束对应不同的参考信号包括以下中的一项:
不同的发送波束对应的参考信号的序列相同,图样不同;
不同的发送波束对应的参考信号的序列不同,图样相同;
不同的发送波束对应的参考信号的序列不同,且图样不同。
需要说明的是,若参考信号的序列与波束信息相关,这里,不同的发送波束对应的参考信号的序列不同,可以是与参考信息的序列相关的波束信息不同,具体的,可以是产生参考信号的序列的gold序列的初始相位中包含的波束索引beam index信息不同。
在一示例中,节能信号为基于PDCCH的节能信号,网络设备为该节能信号的传输资源,即CORESET配置多个发送beam,并为不同的发送beam配置不同的DRMS(Demodulation Reference Signal,解调参考信号),也就是说,不同的发送beam之间所配置的DRMS不同,具体的,可以是不同的发送beam之间所配置的解调参考信号图样DRMS pattern不同。
这里,一般地,发送beam可包括多个聚合等级,其中,不同的聚合等级之间所配置的DRMS pattern不同。
基于图1所示的实施例,作为一可选地实现方式,步骤102可包括:
从所述至少一个发送波束中选择一目标发送波束;
本步骤中,具体的,网络设备可根据终端的信道传输质量,从所述至少一个发送波束中选择一目标发送波束。
比如,网络设备获取终端上报的终端所处的信道环境的信道传输质量,网络设备根据终端的信道传输质量,从所述至少一个发送波束中选择一与终端的信道传输质量相适应的目标发送波束。
这里,与终端的信道传输质量相适应的目标发送波束,也就是目标发送波束能够使网络设备发送的节能信号以较佳的信号质量到达终端的接收机的方向。
在所述目标发送波束上发送所述节能信号。
基于网络设备通过高层信令或者物理层信令,配置至少两个发送波束的实施例,作为一可选地实现方式,步骤102可包括:
在至少两个第一时间单元上,通过所述至少两个发送波束中相同的发送波束发送所述节能信号。
本步骤中,利用相同的发送波束在多个位置(较佳的,多个第一时间单元)上发送节能信号。
比如,网络设备(如基站)在得到终端上报的信道质量信息时,网络设备可以利用在至少两个发送波束中选定的发送波束(即相同的发送波束)在多个第一时间单元上发送节能信号。这样,能够使网络设备发送的节能信号以较佳的信号质量到达终端的接收机的方向。
作为又一可选地实现方式,步骤102可包括:
在至少两个第一时间单元上,分别通过所述至少两个发送波束中不同的发送波束发送所述节能信号,不同的第一时间单元对应不同的发送波束。
本步骤中,不同的第一时间单元对应不同的发送波束,也就是说,第一时间单元与发送波束之间具有对应关系。
比如,网络设备(如基站)在未得到终端上报的信道质量信息时,网络设备可以利用在至少两个发送波束中不同的发送波束发送节能信号,这样,至少能够保证终端接收到节能信号。
基于网络设备配置至少两个传输资源,所述传输资源为所述节能信号对应的资源;为每个所述传输资源配置至少一个发送波束的实施例,作为一可选地实现方式,所述方法还可包括:
配置至少两个第二时间单元,不同的第二时间单元对应不同的传输资源。
本步骤中,具体的,通过高层信令、物理层信令或者预先约定,配置至少两个第二时间单元。
比如,通过高层RRC信令或MAC CE或者预先约定,配置每个传输资源对应的节能信号的发送时间单元(即第二时间单元)。
基于此,进一步地,步骤102可以包括:
在至少两个第二时间单元上,且在所述至少两个第二时间单元各自对应的传输资源上,通过与所述传输资源对应的至少一个发送波束发送所述节能信号。
需要说明的是,由于基站在不同传输资源上的发送波束不同,第二时间单元为通过发送波束发送节能信号的时间与网络设备波束切换的时间之和。也就是说,第二时间单元除了包括通过发送波束发送节能信号的时间外,还包括预留出的网络设备波束切换的时间。
一般地,第二时间单元的时间大于上述实施例中的第一时间单元的时间。
在一示例中,当节能信号为基于PDCCH的节能信号时,网络设备(如基站)为基于PDCCH的节能信号配置T个控制资源集CORESET,并为每个CORESET配置W个发送beam,W≥1,且W为正整数。
网络设备可依次在不同的第二时间单元,在不同CORESET上通过各自对应的发送波束发送相同的节能信号。
比如,T=2or 3,W=1,网络设备可以预先定义每个发送时间单元(即第二时间单元)为K个OFDM符号,每个K个OFDM符号,网络设备在一个CORESET上通过对应的发送波束发送一次节能信号。
需要注意的是,由于网络设备在不同CORESET上的发送波束不同,K个OFDM符号包括预留出的网络设备波束切换的时间。
当W>1,即每个CORESET上配置的发送波束大于一个时,网络设备在每个发送时间单元,即K个OFDM符号上,依次在当前CORESET对应的W个发送波束上发送节能信号,或者在当前CORESET对应的大于或者等于1且小于W个发送波束上发送节能信号。
需要说明的是,上述在多个CORESET及其对应的多个发送波束上发送的节能信号是相同的节能信号。
进一步地,为了实现上述步骤,并提高终端接收节能信号的准确性,所述方法还包括:
为终端配置用于终端在时间单元上检测发送波束的先验信息,所述时间单元包括第一时间单元或第二时间单元。
具体的,本步骤可具体包括:
通过高层信令、物理层信令或者预先约定,为终端配置用于终端在时间单元上检测发送波束的先验信息。
这里,发送波束的先验信息至少包括但不限于:时间单元与发送波束之间的对应关系。也就是,不同的时间单元对应不同的发送波束,这里,可通过网络设备配置(具体可以是通过RRC信令半静态配置)或者与终端预先约定的静态配置的方式得到。如此,终端可分别针对不同波束进行检测。
本公开实施例的信号传输方法,通过配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;在所述至少一个发送波束上,发送所述节能信号,如此,能够实现基于波束的节能信号的传输,保证后续终端能够根据接收到的节能信号的指示执行相应的事件,达到节省终端电量的目的。
如图2所示,为本公开实施例提供的信号传输方法的流程示意图,应用于终端,包括:
步骤201:接收网络设备在至少一个发送波束上发送的节能信号。
本步骤中,至少一个发送波束beam包括一个或多个发送beam。
需要说明的是,网络设备为节能信号对应的传输资源配置至少一个发送beam,配置完成后,可通过高层信令或者物理层信令通知终端。终端获知网络设备配置的至少一个发送beam,针对每个发送beam,终端都有对应的接收beam。
也就是说,本步骤中,具体的,可通过接收beam,接收网络设备在至少一个发送波束上发送的节能信号。
本公开实施例的信号传输方法,通过接收网络设备在至少一个发送波束上发送的节能信号,如此,能够实现基于波束的节能信号的传输,保证终端能够根据接收到的节能信号的指示执行相应的事件,达到节省终端电量的目的。
基于图2所示的实施例,作为一较佳的实现方式,所述发送波束包括一个发送波束,步骤201可包括:
在与所述发送波束对应的接收波束上,接收所述网络设备在所述发送波束上发送的节能信号。
这里,由于网络设备为节能信号对应的传输资源配置一个发送波束,终端通过网络设备的信令通知获知该发送波束,针对该发送波束,终端具有对应的接收波束。这样,在保证终端在对应该发送波束的接收波束上准确地接收到节能信号的同时,还能够节省资源,降低终端的复杂度。
基于图2所示的实施例,作为一较佳的实现方式,所述发送波束包括至少两个发送波束,所述至少两个发送波束对应相同的节能信号;步骤201之后,所述方法还可包括:
确定网络设备在所述至少两个发送波束中选定的目标发送波束。
需要说明的是,由于终端不知道网络设备在哪个发送波束上发送节能信号,也便无法得知终端能够在哪个接收波束上接收到节能信号,所以为了确定接收到节能信号的接收波束,降低功耗,提升解调解码节能信号的成功率,需要确定网络设备在所述至少两个发送波束中选定的目标发送波束。
基于此,在节能信号为基于PDCCH的节能信号,网络设备为发送波束 配置参考信号的情况下,相应地,作为一可选的实现方式,本步骤,确定网络设备在所述至少两个发送波束中选定的目标发送波束,可具体包括:
对所述发送波束对应的参考信号进行检测,不同的发送波束对应不同的参考信号;
本步骤中,具体的,对每个发送beam对应的基于PDCCH的节能信号的DMRS执行假设检测,较佳的,该检测可利用简单的序列相关性进行。
若检测到参考信号,则确定与所述参考信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
这里,具体的,若仅检测到一个参考信号,则确定与该参考信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
若检测到至少两个参考信号,则确定所述至少两个参考信号中目标参考信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束,较佳的,所述目标参考信号对应的信道传输质量大于预设门限值。
本步骤中,终端检测到参考信号,确定与所述参考信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束,则对在与该目标发送波束对应的目标接收波束接收到的节能信号执行节能信号的解调解码,否则,不执行节能信号的解调解码。如此,能够降低功耗,提升解调解码节能信号的成功率。
这里,在所述发送波束包括至少两个发送波束,所述至少两个发送波束对应相同的节能信号的情况下,作为一可选的实现方式,步骤201可包括:
在相同的第一时间单元上,通过至少两个接收波束分别接收各自对应的发送波束上发送的节能信号。
需要说明的是,该实现方式对应于网络设备侧为节能信号的传输资源配置至少两个发送波束,并为所述发送波束配置参考信号,其中,不同的发送波束对应不同的参考信号的情形。
下面以网络设备侧的方法中的示例为例,继续阐述对应终端侧的行为,即节能信号为基于PDCCH的节能信号,网络设备为该节能信号控制资源集CORESET配置多个发送beam,并为不同的发送beam配置不同的DRMS,也就是说,不同的发送beam之间所配置的DRMS不同。网络设备(如基站) 在选定的beam上发送节能信号,终端首先接收多个发送beam对应的节能信号,例如高频段模拟波束时,较佳的,终端在相同的第一时间单元上,通过N个接收beam接收各自对应的N个发送beam发送的节能信号,其中,N≥2,且N为正整数。
接着,对每个发送beam对应的基于PDCCH的节能信号的DMRS执行假设检验,该检验较佳的利用简单的序列相关性进行,若终端在相应的beam接收位置检测到该发送beam对应的DMRS,终端执行复杂信道译码操作。
这里,在相同的第一时间单元上,通过至少两个接收波束分别接收各自对应的发送波束上发送的节能信号,具体是指终端在同一个第一时间单元上,利用至少两个波束同时接收各自对应的发送波束上发送的节能信号。
需要指出的是,终端在相同的第一时间单元能够接收多个波束,一般来说需要终端具有这样的能力,比如,终端的天线具有多个面板panel。
作为又一可选的实现方式,步骤101可包括:
在至少两个第一时间单元上,分别接收所述至少两个发送波束发送的节能信号,不同的第一时间单元对应不同的发送波束;
进一步可选地,确定网络设备在所述至少两个发送波束中选定的目标发送波束,可具体包括:
基于预先约定、基站配置或随机选择的方式,对所述至少两个发送波束进行信号检测;
若检测到节能信号,则确定与所述节能信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
需要说明的是,该实现方式对应于网络设备侧为节能信号的传输资源配置至少两个发送波束,在至少两个第一时间单元上,分别通过所述至少两个发送波束中不同的发送波束发送所述节能信号的情形。
也就是说,网络设备在多个发送beam中选择一发送beam在多个发送时间单元上发送节能信号,相应地,终端在节能信号的不同MO(Monitoring occasion,检测机会)处,根据预先约定、基站配置或者随机选择的方式,分别在多个MO处分别对不同的发送波束进行检测,比如,基站通过RRC信令半静态配置或者基站与终端预先约定的静态配置方式约定不同第一时间单元 (如不同MO)与发送波束的对应关系,这样终端就能分别针对不同波束进行检测。
需要说明的是,MO是从终端角度来说的,从网络设备的角度来说即节能信号的发送机会,由于二者是完全一一对应关系,在此不做区分。
更具体的,基站为节能信号的发送资源,如可以是基于PDCCH的节能信号对应的CORESET配置M个发送beam,比如M=2。基站根据UE所处的信道环境选择一个发送beam,在多个发送机会发送该节能信号,或者基站在不同的第一时间单元(如多个节能信号发送机会)上在多个发送beam上发送节能信号。终端在多个MO上分别按照基站采用不同的发送波束对节能信号进行接收。也就是说,终端在多个MO上对多个beam发送方向进行假设检验。
这里,终端在MO上所检测beam的方向,可以由基站RRC信令半静态配置或者预先约定的方式静态配置,也可以是基站随机选择一个beam进行发送。
比如说index为奇数的MO,终端假定基站的发送波束为发送波束1,然后检测节能信号;index为偶数的MO,终端假定基站的发送波束为发送波束2,然后检测节能信号;在没有发送波束如何检测的先验信息时,终端可以随机交替对发送波束进行检验,比如当前MO可以假定发送波束为1或者2,下一个MO则假定发送波束为2或者1进行检验。
基于图2所示的实施例,作为一较佳的实现方式,步骤201可包括:
在至少两个第二时间单元上,分别接收网络设备在所述至少两个第二时间单元各自对应的传输资源上,通过在所述传输资源对应的至少一个发送波束上发送的节能信号,所述传输资源为所述节能信号对应的资源。
需要说明的是,该实现方式对应于网络设备侧配置至少两个传输资源,所述传输资源为所述节能信号对应的资源;为每个所述传输资源配置至少一个发送波束的情形。
下面以网络设备侧的方法中的示例为例,继续阐述对应终端侧的行为,即当节能信号为基于PDCCH的节能信号时,网络设备(如基站)为基于PDCCH的节能信号配置T个控制资源集CORESET,并为每个CORESET配 置W个发送beam,W≥1,且W为正整数。网络设备可依次在不同的第二时间单元,在不同CORESET上通过各自对应的发送波束发送相同的节能信号。
相应地,终端在对应的发送时间单元(即第二时间单元)接收不同CORESET及其对应的不同波束上的发送的节能信号。
需要说明的是,从终端节点角度,只要终端在一个CORESET对应的一个波束上解调解码出节能信号即可停止后续的波束扫描。
另一种实现方式,终端在不同的CORESET对应的一个波束上检测PDCCH对应的DMRS,如果检测到DMRS才进行解调解码,如果检测不到DMRS则不执行解调解码;如果基站检测到多个DMRS序列,会在选择一个信道传输质量较佳的DMRS序列对应的基于PDCCH的节能信号进行解调解码。
作为一可选的实现方式,在确定网络设备在所述至少两个发送波束中选定的目标发送波束之后,所述方法还可包括:
对与所述目标发送波束对应的目标节能信号进行解调与解码;
本步骤中,对确定网络设备在所述至少两个发送波束中选定的目标发送波束之后,对该目标发送波束对应的目标节能信号进行解调与解码,对其他发送波束不进行解调解码处理,这样不仅能够降低终端功耗,还能够提升解调解码节能信号的成功率。
在所述目标节能信号解调与解码成功后,指示终端执行目标事件,所述目标事件包括:唤醒接收机或者进入睡眠模式。
本步骤中,需要说明的是,目标时间包括但不限于:唤醒接收机或者进入睡眠模式。
本公开实施例的信号传输方法,通过接收网络设备在至少一个发送波束上发送的节能信号,如此,能够实现基于波束的节能信号的传输,保证终端能够根据接收到的节能信号的指示执行相应的事件,达到节省终端电量的目的。
如3图所示,本公开实施例还提供一种网络设备,包括:收发机310、存储器320、处理器300及存储在存储器上并可在处理器上运行的程序,所述处理器300用于读取存储器320中的程序,执行下列过程:
配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;
在所述至少一个发送波束上,发送所述节能信号。
其中,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器300代表的一个或多个处理器和存储器320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机310可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器300负责管理总线架构和通常的处理,存储器320可以存储处理器300在执行操作时所使用的数据。
可选地,所述处理器300执行所述程序时还实现以下步骤:
通过高层信令或者物理层信令,配置一个发送波束。
可选地,所述处理器执行所述程序时还实现以下步骤:
通过高层信令或者物理层信令,配置至少两个发送波束。
可选地,所述处理器300执行所述程序时还实现以下步骤:
配置至少两个传输资源,所述传输资源为所述节能信号对应的资源;
为每个所述传输资源配置至少一个发送波束。
可选地,所述处理器300执行所述程序时还实现以下步骤:
通过高层信令,配置至少两个传输资源。
可选地,所述节能信号为基于物理下行控制信道的节能信号;所述处理器300执行所述程序时还实现以下步骤:
为所述发送波束配置参考信号,其中,不同的发送波束对应不同的参考信号。
可选地,所述不同的发送波束对应不同的参考信号包括以下中的一项:
不同的发送波束对应的参考信号的序列相同,图样不同;
不同的发送波束对应的参考信号的序列不同,图样相同;
不同的发送波束对应的参考信号的序列不同,且图样不同。
可选地,所述处理器300执行所述程序时还实现以下步骤:
根据终端的信道传输质量,从所述至少一个发送波束中选择一目标发送波束;
在所述目标发送波束上发送所述节能信号。
可选地,所述处理器300执行所述程序时还实现以下步骤:
在至少两个第一时间单元上,通过所述至少两个发送波束中相同的发送波束发送所述节能信号;
或者,
在至少两个第一时间单元上,分别通过所述至少两个发送波束中不同的发送波束发送所述节能信号,不同的第一时间单元对应不同的发送波束。
可选地,所述处理器300执行所述程序时还实现以下步骤:
配置至少两个第二时间单元,不同的第二时间单元对应不同的传输资源。
可选地,所述处理器300执行所述程序时还实现以下步骤:
通过高层信令、物理层信令或者预先约定,配置至少两个第二时间单元。
可选地,所述处理器300执行所述程序时还实现以下步骤:
在至少两个第二时间单元上,且在所述至少两个第二时间单元各自对应的传输资源上,通过与所述传输资源对应的至少一个发送波束发送所述节能信号。
可选地,所述处理器300执行所述程序时还实现以下步骤:
为终端配置用于终端在时间单元上检测发送波束的先验信息,所述时间单元包括第一时间单元或第二时间单元。
可选地,所述处理器300执行所述程序时还实现以下步骤:
通过高层信令、物理层信令或者预先约定,为终端配置用于终端在时间单元上检测发送波束的先验信息。
如图4所示,本公开实施还提供了一种网络设备,包括:
第一配置模块401,用于配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;
发送模块402,用于在所述至少一个发送波束上,发送所述节能信号。
本公开实施例的网络设备,所述第一配置模块401,可包括:
第一配置单元,用于通过高层信令或者物理层信令,配置一个发送波束。
本公开实施例的网络设备,所述第一配置模块401,包括:
第二配置单元,用于通过高层信令或者物理层信令,配置至少两个发送波束。
本公开实施例的网络设备,所述第一配置模块401,包括:
第三配置单元,用于配置至少两个传输资源,所述传输资源为所述节能信号对应的资源;
第四配置单元,用于为每个所述传输资源配置至少一个发送波束。
本公开实施例的网络设备,所述第三配置单元,具体用于通过高层信令,配置至少两个传输资源。
可选地,所述节能信号为基于物理下行控制信道的节能信号;本公开实施例的网络设备,还包括:
第二配置模块,为所述发送波束配置参考信号,其中,不同的发送波束对应不同的参考信号。
可选地,所述不同的发送波束对应不同的参考信号包括以下中的一项:
不同的发送波束对应的参考信号的序列相同,图样不同;
不同的发送波束对应的参考信号的序列不同,图样相同;
不同的发送波束对应的参考信号的序列不同,且图样不同。
本公开实施例的网络设备,所述发送模块402,包括:
选择单元,用于从所述至少一个发送波束中选择一目标发送波束;
第一发送单元,用于在所述目标发送波束上发送所述节能信号。
本公开实施例的网络设备,所述发送模块402,包括:
第二发送单元,用于在至少两个第一时间单元上,通过所述至少两个发送波束中相同的发送波束发送所述节能信号;
或者,
第三发送单元,用于在至少两个第一时间单元上,分别通过所述至少两个发送波束中不同的发送波束发送所述节能信号,不同的第一时间单元对应不同的发送波束。
本公开实施例的网络设备,还包括:
第三配置模块,用于配置至少两个第二时间单元,不同的第二时间单元 对应不同的传输资源。
本公开实施例的网络设备,所述第三配置模块,包括:
第五配置单元,用于通过高层信令、物理层信令或者预先约定,配置至少两个第二时间单元。
本公开实施例的网络设备,所述发送模块402,包括:
第四发送单元,用于在至少两个第二时间单元上,且在所述至少两个第二时间单元各自对应的传输资源上,通过与所述传输资源对应的至少一个发送波束发送所述节能信号。
本公开实施例的网络设备,还包括:
第四配置模块,用于为终端配置用于终端在时间单元上检测发送波束的先验信息,所述时间单元包括第一时间单元或第二时间单元。
本公开实施例的网络设备,所述第四配置模块,包括:
第六配置单元,用于通过高层信令、物理层信令或者预先约定,为终端配置用于终端在时间单元上检测发送波束的先验信息。
本公开实施例的网络设备,通过第一配置模块配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;发送模块在所述至少一个发送波束上,发送所述节能信号,如此,能够实现基于波束的节能信号的传输,保证后续终端能够根据接收到的节能信号的指示执行相应的事件,达到节省终端电量的目的。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;
在所述至少一个发送波束上,发送所述节能信号。
该程序被处理器执行时能实现上述应用于如图1所示的网络设备侧的方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如5图所示,本公开实施例还提供了一种终端,包括:包括存储器520、处理器500、收发机510、总线接口及存储在存储器520上并可在处理器500上运行的程序,所述处理器500用于读取存储器520中的程序,执行下列过 程:
接收网络设备在至少一个发送波束上发送的节能信号。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口530还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
可选地,所述发送波束包括一个发送波束;所述处理器500执行所述程序时还实现以下步骤:
在与所述发送波束对应的接收波束上,接收所述网络设备在所述发送波束上发送的节能信号。
可选地,所述发送波束包括至少两个发送波束,所述至少两个发送波束对应相同的节能信号;所述处理器500执行所述程序时还实现以下步骤:
确定网络设备在所述至少两个发送波束中选定的目标发送波束。
可选地,所述处理器500执行所述程序时还实现以下步骤:
对所述发送波束对应的参考信号进行检测,不同的发送波束对应不同的参考信号;
若检测到参考信号,则确定与所述参考信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
可选地,所述处理器500执行所述程序时还实现以下步骤:
在相同的第一时间单元上,通过至少两个接收波束分别接收各自对应的发送波束上发送的节能信号。
可选地,所述处理器500执行所述程序时还实现以下步骤:
在至少两个第一时间单元上,分别接收所述至少两个发送波束发送的节 能信号,不同的第一时间单元对应不同的发送波束;
基于预先约定、基站配置或随机选择的方式,对所述至少两个发送波束进行信号检测;
若检测到节能信号,则确定与所述节能信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
可选地,所述处理器500执行所述程序时还实现以下步骤:
在至少两个第二时间单元上,分别接收网络设备在所述至少两个第二时间单元各自对应的传输资源上,通过在所述传输资源对应的至少一个发送波束上发送的节能信号,所述传输资源为所述节能信号对应的资源。
可选地,所述处理器500执行所述程序时还实现以下步骤:
对与所述目标发送波束对应的目标节能信号进行解调与解码;
在所述目标节能信号解调与解码成功后,指示终端执行目标事件,所述目标事件包括:唤醒接收机或者进入睡眠模式。
如图6所示,本公开实施例还提供了一种终端,包括:
接收模块601,用于接收网络设备在至少一个发送波束上发送的节能信号。
可选地,所述发送波束包括一个发送波束;本公开实施例的终端,所述接收模块601,包括:
第一接收单元,用于在与所述发送波束对应的接收波束上,接收所述网络设备在所述发送波束上发送的节能信号。
可选地,所述发送波束包括至少两个发送波束,所述至少两个发送波束对应相同的节能信号;本公开实施例的终端,还包括:
波束确定模块,用于在接收网络设备在至少一个发送波束上发送的节能信号之后,确定网络设备在所述至少两个发送波束中选定的目标发送波束。
本公开实施例的终端,所述波束确定模块,包括:
第一检测单元,用于对所述发送波束对应的参考信号进行检测,不同的发送波束对应不同的参考信号;
第一波束确定单元,用于在检测到参考信号时,确定与所述参考信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
本公开实施例的终端,所述接收模块601,包括:
第二接收单元,用于在相同的第一时间单元上,通过至少两个接收波束分别接收各自对应的发送波束上发送的节能信号。
本公开实施例的终端,所述接收模块601,包括:
第三接收单元,用于在至少两个第一时间单元上,分别接收所述至少两个发送波束发送的节能信号,不同的第一时间单元对应不同的发送波束;
所述波束确定模块,包括:
第二检测单元,用于基于预先约定、基站配置或随机选择的方式,对所述至少两个发送波束进行信号检测;
第二波束确定单元,用于在检测到节能信号时,确定与所述节能信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
本公开实施例的终端,所述接收模块601,包括:
第四接收单元,用于在至少两个第二时间单元上,分别接收网络设备在所述至少两个第二时间单元各自对应的传输资源上,通过在所述传输资源对应的至少一个发送波束上发送的节能信号,所述传输资源为所述节能信号对应的资源。
本公开实施例的终端,还包括:
解调解码模块,用于对与所述目标发送波束对应的目标节能信号进行解调与解码;
指示模块,用于在所述目标节能信号解调与解码成功后,指示终端执行目标事件,所述目标事件包括:唤醒接收机或者进入睡眠模式。
本公开实施例的终端,通过接收模块接收网络设备在至少一个发送波束上发送的节能信号,如此,能够实现基于波束的节能信号的传输,保证终端能够根据接收到的节能信号的指示执行相应的事件,达到节省终端电量的目的。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
接收网络设备在至少一个发送波束上发送的节能信号。
该程序被处理器执行时能实现上述应用于如图2所示的终端侧的方法实 施例中的所有实现方式,为避免重复,此处不再赘述。
在本公开的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步 骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (31)

  1. 一种信号传输方法,应用于网络设备,包括:
    配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;
    在所述至少一个发送波束上,发送所述节能信号。
  2. 根据权利要求1所述的方法,其中,配置至少一个发送波束,包括:
    通过高层信令或者物理层信令,配置一个发送波束。
  3. 根据权利要求1所述的方法,其中,配置至少一个发送波束,包括:
    通过高层信令或者物理层信令,配置至少两个发送波束。
  4. 根据权利要求1所述的方法,其中,配置至少一个发送波束,包括:
    通过高层信令,配置至少两个传输资源,所述传输资源为所述节能信号对应的资源;
    为每个所述传输资源配置至少一个发送波束。
  5. 根据权利要求3或4所述的方法,其中,所述节能信号为基于物理下行控制信道的节能信号;所述方法还包括:
    为所述发送波束配置参考信号,其中,不同的发送波束对应不同的参考信号。
  6. 根据权利要求5所述的方法,其中,所述不同的发送波束对应不同的参考信号包括以下中的一项:
    不同的发送波束对应的参考信号的序列相同,图样不同;
    不同的发送波束对应的参考信号的序列不同,图样相同;
    不同的发送波束对应的参考信号的序列不同,且图样不同。
  7. 根据权利要求1所述的方法,其中,在所述至少一个发送波束上,发送所述节能信号,包括:
    从所述至少一个发送波束中选择一目标发送波束;
    在所述目标发送波束上发送所述节能信号。
  8. 根据权利要求3所述的方法,其中,在所述至少一个发送波束上,发送所述节能信号,包括:
    在至少两个第一时间单元上,通过所述至少两个发送波束中相同的发送波束发送所述节能信号;
    或者,
    在至少两个第一时间单元上,分别通过所述至少两个发送波束中不同的发送波束发送所述节能信号,不同的第一时间单元对应不同的发送波束。
  9. 根据权利要求4所述的方法,还包括:
    配置至少两个第二时间单元,不同的第二时间单元对应不同的传输资源。
  10. 根据权利要求9所述的方法,其中,配置至少两个第二时间单元,包括:
    通过高层信令、物理层信令或者预先约定,配置至少两个第二时间单元。
  11. 根据权利要求9所述的方法,其中,在所述至少一个发送波束上,发送所述节能信号,包括:
    在至少两个第二时间单元上,且在所述至少两个第二时间单元各自对应的传输资源上,通过与所述传输资源对应的至少一个发送波束发送所述节能信号。
  12. 根据权利要求8或9所述的方法,还包括:
    为终端配置用于终端在时间单元上检测发送波束的先验信息,所述时间单元包括第一时间单元或第二时间单元。
  13. 根据权利要求12所述的方法,其中,为终端配置用于终端在时间单元上检测发送波束的先验信息,包括:
    通过高层信令、物理层信令或者预先约定,为终端配置用于终端在时间单元上检测发送波束的先验信息。
  14. 一种信号传输方法,应用于终端,包括:
    接收网络设备在至少一个发送波束上发送的节能信号。
  15. 根据权利要求14所述的信号传输方法,其中,所述发送波束包括一个发送波束;
    接收网络设备在至少一个发送波束上发送的节能信号,包括:
    在与所述发送波束对应的接收波束上,接收所述网络设备在所述发送波束上发送的节能信号。
  16. 根据权利要求14所述的方法,其中,所述发送波束包括至少两个发送波束,所述至少两个发送波束对应相同的节能信号;
    接收网络设备在至少一个发送波束上发送的节能信号之后,所述方法还包括:
    确定网络设备在所述至少两个发送波束中选定的目标发送波束。
  17. 根据权利要求16所述的方法,其中,确定网络设备在所述至少两个发送波束中选定的目标发送波束,包括:
    对所述发送波束对应的参考信号进行检测,不同的发送波束对应不同的参考信号;
    若检测到参考信号,则确定与所述参考信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
  18. 根据权利要求16所述的方法,其中,所述接收网络设备在至少一个发送波束上发送的节能信号,包括:
    在相同的第一时间单元上,通过至少两个接收波束分别接收各自对应的发送波束上发送的节能信号。
  19. 根据权利要求16所述的方法,其中,所述接收网络设备在至少一个发送波束上发送的节能信号,包括:
    在至少两个第一时间单元上,分别接收所述至少两个发送波束发送的节能信号,不同的第一时间单元对应不同的发送波束;
    确定网络设备在所述至少两个发送波束中选定的目标发送波束,包括:
    基于预先约定、基站配置或随机选择的方式,对所述至少两个发送波束进行信号检测;
    若检测到节能信号,则确定与所述节能信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束。
  20. 根据权利要求16所述的方法,其中,所述接收网络设备在至少一个发送波束上发送的节能信号,包括:
    在至少两个第二时间单元上,分别接收网络设备在所述至少两个第二时间单元各自对应的传输资源上,通过在所述传输资源对应的至少一个发送波束上发送的节能信号,所述传输资源为所述节能信号对应的资源。
  21. 根据权利要求16所述的方法,其中,确定与所述节能信号对应的发送波束为网络设备在所述至少两个发送波束中选定的目标发送波束之后,所述方法还包括:
    对与所述目标发送波束对应的目标节能信号进行解调与解码;
    在所述目标节能信号解调与解码成功后,指示终端执行目标事件,所述目标事件包括:唤醒接收机或者进入睡眠模式。
  22. 一种网络设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;所述处理器执行所述程序时实现以下步骤:
    配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;
    在所述至少一个发送波束上,发送所述节能信号。
  23. 根据权利要求22所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    通过高层信令或者物理层信令,配置至少两个发送波束。
  24. 根据权利要求22所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    通过高层信令,配置至少两个传输资源,所述传输资源为所述节能信号对应的资源;
    为每个所述传输资源配置至少一个发送波束。
  25. 根据权利要求23或24所述的网络设备,其中,所述节能信号为基于物理下行控制信道的节能信号;所述处理器执行所述程序时还实现以下步骤:
    为所述发送波束配置参考信号,其中,不同的发送波束对应不同的参考信号。
  26. 根据权利要求25所述的网络设备,其中,所述不同的发送波束对应不同的参考信号包括以下中的一项:
    不同的发送波束对应的参考信号的序列相同,图样不同;
    不同的发送波束对应的参考信号的序列不同,图样相同;
    不同的发送波束对应的参考信号的序列不同,且图样不同。
  27. 根据权利要求24所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    配置至少两个第二时间单元,不同的第二时间单元对应不同的传输资源。
  28. 一种网络设备,包括:
    第一配置模块,用于配置至少一个发送波束;所述发送波束为节能信号的传输资源对应的波束;
    发送模块,用于在所述至少一个发送波束上,发送所述节能信号。
  29. 一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
    接收网络设备在至少一个发送波束上发送的节能信号。
  30. 一种终端,包括:
    接收模块,用于接收网络设备在至少一个发送波束上发送的节能信号。
  31. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如权利要求1至13中任一项所述的信号传输方法的步骤,或者如权利要求14至21中任一项所述的信号传输方法的步骤。
PCT/CN2020/081072 2019-04-02 2020-03-25 信号传输方法、装置及设备 WO2020200004A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217033624A KR20210138089A (ko) 2019-04-02 2020-03-25 신호 전송 방법, 장치 및 기기
US17/600,570 US20220174604A1 (en) 2019-04-02 2020-03-25 Signal transmission method, apparatus, and device
EP20783757.6A EP3952477A4 (en) 2019-04-02 2020-03-25 SIGNAL TRANSMISSION METHOD, DEVICE AND DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910263111 2019-04-02
CN201910263111.4 2019-04-02
CN201910330382.7 2019-04-23
CN201910330382.7A CN111769924B (zh) 2019-04-02 2019-04-23 一种信号传输方法、装置及设备

Publications (2)

Publication Number Publication Date
WO2020200004A1 true WO2020200004A1 (zh) 2020-10-08
WO2020200004A9 WO2020200004A9 (zh) 2021-01-28

Family

ID=72664967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081072 WO2020200004A1 (zh) 2019-04-02 2020-03-25 信号传输方法、装置及设备

Country Status (4)

Country Link
US (1) US20220174604A1 (zh)
EP (1) EP3952477A4 (zh)
CN (1) CN116846528A (zh)
WO (1) WO2020200004A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052596A1 (en) * 2015-09-25 2017-03-30 Maruti Gupta Low-power wakeup radio for mobile devices
CN107735975A (zh) * 2015-06-18 2018-02-23 高通股份有限公司 嵌入式唤醒信令
CN109155973A (zh) * 2018-08-13 2019-01-04 北京小米移动软件有限公司 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
CN109219113A (zh) * 2017-07-05 2019-01-15 维沃移动通信有限公司 一种盲检测方法、信号发送方法、相关设备和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10251071B2 (en) * 2014-09-26 2019-04-02 Mediatek Inc. Incremental scheduling for wireless communication system with beamforming
US10841970B2 (en) * 2017-08-11 2020-11-17 Qualcomm Incorporated Beam management for beam-swept wakeup signals
WO2019028825A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated TECHNIQUES AND APPARATUSES USED FOR ALARM SIGNALING IN A MULTI-BEAM SYSTEM
US10548182B2 (en) * 2017-08-21 2020-01-28 Qualcomm Incorporated Beam management for connected discontinuous reception with advanced grant indicator
WO2019183970A1 (zh) * 2018-03-30 2019-10-03 Oppo广东移动通信有限公司 信号传输的方法和设备
US11109223B2 (en) * 2018-06-05 2021-08-31 Qualcomm Incorporated Capability-based determination of a shared data channel TCI state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735975A (zh) * 2015-06-18 2018-02-23 高通股份有限公司 嵌入式唤醒信令
WO2017052596A1 (en) * 2015-09-25 2017-03-30 Maruti Gupta Low-power wakeup radio for mobile devices
CN109219113A (zh) * 2017-07-05 2019-01-15 维沃移动通信有限公司 一种盲检测方法、信号发送方法、相关设备和系统
CN109155973A (zh) * 2018-08-13 2019-01-04 北京小米移动软件有限公司 唤醒方法、唤醒装置、电子设备和计算机可读存储介质

Also Published As

Publication number Publication date
EP3952477A1 (en) 2022-02-09
EP3952477A4 (en) 2022-05-18
WO2020200004A9 (zh) 2021-01-28
US20220174604A1 (en) 2022-06-02
CN116846528A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
US11659527B2 (en) Apparatus for sending information regarding RMSI period
AU2019345821B2 (en) Information determination method and signal receiving method and apparatus
WO2020063308A1 (zh) 一种无线通信网络中的指示波束信息的方法和设备
JP6962519B2 (ja) 無線通信方法および機器
TWI828716B (zh) 傳輸訊號的方法、網路設備及終端設備
CN108135030B (zh) 传输物理控制信道的指示方法及其装置
US11889337B2 (en) Data transmission method and data transmission apparatus
WO2019206111A1 (zh) 一种用于无线通信的方法、装置
TWI736085B (zh) 下行控制資訊dci的傳輸方法、終端和網路側設備
WO2019101018A1 (zh) 一种链路恢复方法、终端设备及网络设备
WO2020042920A1 (zh) 信息传输方法、网络设备及终端
US20220295425A1 (en) Method for sending and receiving signal, terminal and apparatus
WO2018028675A1 (zh) 随机接入信号配置方法、装置、设备、系统和存储介质
WO2021155732A1 (zh) 一种信号传输方法及设备
WO2020200004A1 (zh) 信号传输方法、装置及设备
WO2023125346A1 (zh) 一种随机接入方法、装置、芯片及模组设备
WO2017080489A1 (zh) 一种处理发现消息的方法和装置
TWI809261B (zh) 信號傳輸方法、網路設備、終端及電腦可讀存儲介質
CN113330812B (zh) 一种drs发送方法及装置
US10499365B2 (en) Paging decoding
JP2023513912A (ja) 制御情報を送受信するための方法および装置
WO2020147086A1 (zh) 一种信号传输方法、相关设备及系统
WO2020194264A1 (en) Methods and nodes for downlink intra-ue pre-emption
WO2022151267A1 (zh) 一种监听方法及设备
WO2023151619A1 (zh) 一种监控方法、装置、芯片及模组设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033624

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020783757

Country of ref document: EP

Effective date: 20211102