WO2020199766A1 - 一种同步信号发送和接收的方法及装置 - Google Patents

一种同步信号发送和接收的方法及装置 Download PDF

Info

Publication number
WO2020199766A1
WO2020199766A1 PCT/CN2020/075401 CN2020075401W WO2020199766A1 WO 2020199766 A1 WO2020199766 A1 WO 2020199766A1 CN 2020075401 W CN2020075401 W CN 2020075401W WO 2020199766 A1 WO2020199766 A1 WO 2020199766A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource set
transmission
node
hard
symbol
Prior art date
Application number
PCT/CN2020/075401
Other languages
English (en)
French (fr)
Inventor
刘凤威
邱晶
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910266905.6A external-priority patent/CN111756459B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20782896.3A priority Critical patent/EP3952146B1/en
Publication of WO2020199766A1 publication Critical patent/WO2020199766A1/zh
Priority to US17/487,440 priority patent/US11956803B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to communication technology, in particular to a method and device for determining the transmission resource of a relay node in a wireless communication system.
  • the base station establishes a connection with the core network through optical fiber.
  • the deployment cost of optical fiber is very high.
  • the wireless relay node (RN) establishes a connection with the core network through a wireless backhaul link, which can save part of the fiber deployment cost.
  • the wireless relay node establishes a wireless backhaul link with one or more upper-level nodes, and accesses the core network through the upper-level nodes.
  • the wireless relay node can provide services for multiple subordinate nodes.
  • the upper-level node of the relay node may be a base station or another relay node; the lower-level node of the relay node may be a terminal equipment (user equipment, UE), or another wireless relay node.
  • the relay scheme supported by the new radio (NR) of the 5th generation mobile networks (5th generation mobile networks or 5G) radio access network (RAN) is called an integrated connection.
  • Integrated access and backhaul (IAB) and the integrated access and backhaul relay node is called an IAB node (IAB node).
  • the access link and the backhaul link of the IAB node are used for resource multiplexing in a time division, space division or frequency division manner.
  • TDM time division multiplexing
  • the backhaul link and the access link work at different times, so the IAB node needs to be between the sending and receiving of the backhaul link and the sending and receiving of the access link Switch.
  • the IAB node When switching between the backhaul link and the access link, if there is no need to switch between receiving and sending the power amplifier, the IAB node has the highest resource utilization.
  • the transceiver conversion time of the power amplifier cannot be ignored.
  • the transmission and reception conversion time of the power amplifier has an impact on the symbol resources transmitted on the backhaul link. How to reduce the reduction in spectral efficiency caused by the power amplifier's transceiver conversion is a problem that 5G IAB needs to consider.
  • the embodiments of the present application provide a method and device for determining resources in a relay system, which solves the problem of data transmission conversion between MT (mobile terminal, MT) and DU (distributed unit, DU) of IAB nodes in the relay system , Resulting in excessive overhead at the conversion boundary.
  • a method for determining resources in a relay system for the IAB node to determine the available status of resources on the MT, so as to maximize the use of symbol resources and reduce overhead.
  • the first node receives the resource indication information sent by the superior node, the resource indication information is used to indicate the transmission direction of the first resource set, the first resource set is located between the first hard resource set and the second hard resource set, and the first hard resource set The resource set and the second hard resource set are continuous hard resources; the first node determines the first threshold x and the second threshold y according to the resource indication information; when t 3 -t 1 ⁇ x, and t 2 -t 4 ⁇ At y, the first node determines that the first symbol in the first resource set is available; where t 1 is the end time of the last symbol in the first hard resource set, and t 2 is the start time of the first symbol in the second hard resource set , T 3 is the start time of the first symbol, t 4 is the end time of the first symbol
  • the first threshold x and the second threshold y are different.
  • the determination method is:
  • the first threshold x T TR ;
  • T RT is the transition time from receiving to sending of the first node
  • T TR is the transition time from sending to receiving of the first node
  • the parameters for determining t 3 -t 1 and t 2 -t 4 are different, depending on different scenarios, including:
  • the transmission direction of the first set of downlink transmission resources, t 3 -t 1 and t 2 -t 4 is determined by ⁇ DD, or,
  • t 3- t 1 and t 2- t 4 are determined by ⁇ DD , or,
  • T delta is the timing offset
  • TA offset is the timing advance offset
  • T g is the time difference between the receiving and sending conversion of the access link of the first node.
  • the IAB node may switch from one upper-level node to another for some reason.
  • the other upper-level node has not yet obtained the IAB
  • the necessary parameters of the node to determine the available symbol status. Therefore, the method includes: the first node switches from the first superior node to the second superior node; the first node sends T delta or ⁇ DD to the second superior node.
  • the second upper-level node can determine the symbol status according to the T delta or ⁇ DD reported by the IAB node, thereby maintaining the symbol status of the terminal and improving resource utilization rate.
  • the upper-level node may need some information from the IAB points to determine the available status of the symbols of the first resource set, so the first node reports the ⁇ UU to the upper-level node, or Or the T g .
  • the first node reports the ⁇ UU to the upper-level node, or Or the T g .
  • the second upper-level node can follow the ⁇ UU reported by the IAB node, or Or T g to determine the symbol status, so as to maintain the symbol status of the terminal and improve resource utilization.
  • the upper node may be updated TA, when the TA update, IAB node may need to re- ⁇ UU, and may lead to re-determine available nodes IAB symbol of the first set of resources.
  • the method includes: a first node receives a TA update command sent by a superior node, and the first node updates ⁇ UU according to the TA update command.
  • the TA update is used to keep synchronization between network nodes to avoid interference, and re-determining the available symbols of the first resource set is beneficial to improving the spectrum utilization.
  • a method for determining resources in a relay system for the IAB node to determine the available status of resources on the MT, so as to maximize the use of symbol resources and reduce overhead.
  • the method includes: the second node obtains the first hard resource set and the second hard resource set of the first node, the first hard resource set and the second hard resource set are continuous hard resources, and the second node is the superior node of the first node; The second node determines the first resource set, the first resource set is located between the first hard resource set and the second hard resource set; the second node obtains the first threshold x and the second threshold y; when the start time of the first symbol and When the time difference D h between the end time of the last symbol in the first hard resource set is greater than x, and the time difference D e between the start time of the first symbol in the second hard resource set and the end time of the first symbol is greater than y, the second node determines The first symbol in the first resource set is available; the second node performs data transmission with the
  • the first threshold x and the second threshold y are different.
  • the determination method is:
  • the first threshold x T TR ;
  • T RT is the transition time from receiving to sending of the first node
  • T TR is the transition time from sending to receiving of the first node
  • the second node needs to send resource indication information to the first node, so that the first node can determine the available status of symbols in the first resource on the MT of the first node through the resource indication information . It includes: the second node sends resource indication information to the first node, and the resource indication information is used to indicate the transmission direction of the first resource set.
  • the first node obtains the transmission direction of the first resource set on the MT, thereby determining the status of available symbols according to the transmission direction, so as to improve the spectrum efficiency.
  • the pattern reconfiguration instruction further includes: the updated pattern jump sequence and/or the start time of the pattern configuration information.
  • the second node needs to obtain parameter information of the first node to determine the available status of the symbols on the MT of the first node. Including: the second node receives the ⁇ UU reported by the first node, or Or T g , TA is the timing advance, ⁇ UU is the time difference between the first node's backhaul link uplink transmission frame and the access link uplink reception frame boundary, and T g is the first node's access link transmission and reception conversion time difference .
  • the second node can determine the available status of the symbols in the first resource set through the parameters reported by the first node, so as to improve the spectrum utilization of the backhaul link of the first node.
  • One possible implementation of the second aspect, in different scenarios, and determining D h D e, specifically rely on different scenes, comprises:
  • the transmission direction of the first set of downlink transmission resources, D h, and D e is determined by ⁇ DD, or,
  • the second hard symbol transmission resources on a first downlink transmission direction, the first direction of transmission resources when the downlink transmission is set, D h, and D e is determined by ⁇ DD; or
  • the second hard symbol transmission resources on a first downlink transmission direction, the first direction of transmission resources when the uplink transmission is set, D h, and D e is determined by ⁇ UD;
  • a second hard symbol transmission resources on the first uplink transmission direction, the first direction of transmission resources when the downlink transmission is set, D h, and D e is determined by ⁇ DU;
  • a second hard symbol transmission resources on the first uplink transmission direction, the first direction of transmission resources when the uplink transmission is set, D h, and D e is determined by ⁇ UU;
  • T delta is the timing offset
  • TA offset is the timing advance offset
  • T g is the time difference between the receiving and sending conversion of the access link of the first node.
  • the node number information includes one of the configured node number, cell ID, physical cell ID PCI, radio network temporary identifier RNTI, MAC address, and IP address.
  • the upper-level node may update the TA to achieve more accurate time synchronization, which will cause the second node to send the TA update command to the first node, thereby causing the second node Adjust the parameters and report the parameters so that the second node can determine the available status of the symbols on the first resource set on the MT of the first node.
  • the second node sends a TA update command to the first node, and the TA update command is used by the first node to update ⁇ DD , ⁇ UU , ⁇ UD or ⁇ DU .
  • a first node is provided.
  • the first node is configured to implement the function of the method for determining resources in a relay system provided by any one of the possible implementations of the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the structure of the first node includes a processor, and the processor is configured to support the user equipment to execute the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • the first node may further include a memory and a communication interface, where code and data are stored in the memory, the memory is coupled with the processor, and the communication interface is coupled with the processor or the memory.
  • a second node is provided, and the second node is used to implement the method for determining resources in a relay system provided by the foregoing second aspect or any possible implementation manner of the second aspect.
  • Function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the structure of the second node includes a processor, and the processor is configured to support the network device to execute the relay provided by the foregoing second aspect or any of the possible implementation manners of the second aspect.
  • the network device may further include a memory and a communication interface, the memory stores code required for processing and/or the baseband processor, the memory is coupled with the processor, and the communication interface is coupled with the memory or the processor.
  • a computer-readable storage medium stores instructions which, when run on a computer, cause the computer to execute the first aspect or the first aspect described above.
  • the method for determining resources in a relay system provided by any possible implementation manner, or the method for determining resources in a relay system provided by the foregoing second aspect or any one of the possible implementation manners of the second aspect is performed.
  • Another aspect of this application provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the above-mentioned first aspect or any one of the possible implementations of the first aspect.
  • the method for determining resources in the relay system, or the method for determining resources in the relay system provided by the foregoing second aspect or any one of the possible implementation manners of the second aspect is implemented.
  • a communication system in yet another aspect of the present application, includes a plurality of devices, and the plurality of devices include a first node and a second node; wherein the first node is the first node provided in the above aspects, It is used to support the first node to perform the method for determining resources in the relay system provided by the foregoing first aspect or any one of the possible implementations of the first aspect; and/or, the second node is the first aspect provided by the foregoing aspects.
  • the second node is used to support the second node to execute the method for determining resources in the relay system provided by the second aspect or any one of the possible implementation manners of the second aspect.
  • a device in another aspect of the application, is provided, the device is a processor, an integrated circuit, or a chip, which is used to perform the steps performed by the processing unit of the first node in the embodiment of the present invention, for example, determine the first resource The available status of the set symbol.
  • the device is also used to execute the first node processing or action that has been described in the foregoing other aspects or embodiments, and will not be repeated here.
  • another device is provided.
  • the device is a processor, an integrated circuit, or a chip, and is configured to execute the steps performed by the processing unit of the second node in the embodiment of the present invention.
  • the second node is supported to perform the determination of the available status of the symbols in the first resource set in the foregoing embodiment.
  • the another device is also used to execute the processing or action of the second node that has been described in the foregoing other aspects or embodiments, and will not be repeated here.
  • the device, computer storage medium, or computer program product of the method for resource determination in the relay system provided above are all used to execute the corresponding method provided above. Therefore, the beneficial effects that can be achieved can refer to the above The beneficial effects of the provided corresponding methods will not be repeated here.
  • FIG 1 is an IAB communication system provided by an embodiment of this application.
  • Figure 2 is a frame structure between an IAB node and a donor base station or an upper node provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of resource configuration of an IAB node provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the relationship between the H/S resources of the DU and the available or unavailable resources of the MT provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of the MT of the IAB node performing downlink reception and the DU performing downlink transmission according to an embodiment of the application;
  • FIG. 6 is a schematic diagram of the MT of the IAB node performing uplink transmission and the DU performing downlink transmission according to an embodiment of the application;
  • FIG. 7 is a schematic diagram of the MT of the IAB node performing downlink reception and the DU performing uplink reception according to an embodiment of the application;
  • FIG. 8 is a schematic diagram of the MT of the IAB node performing uplink transmission and the DU performing uplink reception according to an embodiment of the application;
  • FIG. 9 is a flowchart of a method for determining resources provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the available state of one or more symbols in the first resource set after the first hard resource set is determined according to an embodiment of the application;
  • FIG. 11 is a schematic diagram of an available state of one or more symbols in the first resource set before the second hard resource set is determined according to an embodiment of the application;
  • FIG. 12 is a schematic diagram of different transmission states of two consecutive first resource sets on an IAB node MT provided by an embodiment of this application;
  • FIG. 13 is a schematic diagram of a possible structure of a first node provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of a possible logical structure of the first node provided by an embodiment of this application.
  • 15 is a schematic diagram of a possible structure of a second node provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of a possible logical structure of a second node provided by an embodiment of this application.
  • NR considers introducing the IAB solution to further reduce deployment costs and increase deployment flexibility, and thus introduce integrated access and backhaul relays.
  • This application will have integrated access and
  • the relay node for the backhaul is called an integrated access and backhaul node (IAB node) to distinguish the relay of the long term evolution (LTE) system.
  • IAB node integrated access and backhaul node
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of this application is applied.
  • the communication systems mentioned in the embodiments of this application include but are not limited to: narrowband-internet of things (NB-IoT) systems, wireless local access network (WLAN) systems, and LTE systems , Next-generation 5G mobile communication systems or communication systems after 5G, such as NR, device-to-device (D2D) communication systems.
  • NB-IoT narrowband-internet of things
  • WLAN wireless local access network
  • LTE Long Term Evolution
  • Next-generation 5G mobile communication systems or communication systems after 5G such as NR
  • D2D device-to-device
  • An IAB system includes at least one base station 100, and one or more terminal devices (terminals) 101 served by the base station 100, one or more relay nodes IAB node, and one or more terminal devices served by the IAB node 110 111.
  • the base station 100 is generally called a donor next generation node B (DgNB), and the IAB node 110 is connected to the base station 100 through a wireless backhaul link 113.
  • the donor base station is also referred to as a donor node in this application, that is, a Donor node.
  • the base station includes but is not limited to: evolved node B (evolved node base, eNB), radio network controller (RNC), node B (node B, NB), base station controller (base station controller, BSC), Base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home node B, HNB), baseband unit (BBU), eLTE (evolved LTE, eLTE) base station, NR base station (next generation node B, gNB) etc.
  • evolved node B evolved node base, eNB
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC Base transceiver station
  • home base station for example, home evolved NodeB, or home node B, HNB
  • BBU baseband unit
  • eLTE evolved LTE, eLTE
  • NR base station next generation node B, gNB
  • Terminal equipment includes but is not limited to: user equipment (UE), mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile equipment, terminal, wireless communication equipment, user agent, Station (ST), cell phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) station, wireless local access network (WLAN) Personal digital assistant (PDA), handheld devices with wireless communication functions, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in the future 5G network, and public Any of the terminal devices in the public land mobile network (PLMN) network.
  • the IAB node is a specific name of a relay node, which does not limit the solution of this application. It can be one of the above-mentioned base stations or terminal devices with a forwarding function, or it can be an independent device form.
  • the integrated access and backhaul system can also include multiple other IAB nodes, such as IAB node 120 and IAB node 130.
  • IAB node 120 is connected to IAB node 110 through wireless backhaul link 123 to access the network.
  • the IAB node 130 is connected to the IAB node 110 through the wireless backhaul link 133 to access the network, the IAB node 120 serves one or more terminal devices 121, and the IAB node 130 serves one or more terminal devices 131.
  • IAB node 110 and IAB node 120 are both connected to the network through a wireless backhaul link.
  • the wireless backhaul links are all viewed from the perspective of the relay node.
  • the wireless backhaul link 113 is the backhaul link of IAB node 110
  • the wireless backhaul link 123 is IAB node 120. Backhaul link.
  • an IAB node such as 120
  • another IAB node 110 can be connected to another IAB node 110 through a wireless backhaul link, such as 123, to connect to the network
  • the relay node can be connected through multi-level wireless relay nodes To the network.
  • IAB node can generally refer to any node or device with a relay function.
  • the use of IAB node and relay node in this application should be understood to have the same meaning.
  • the lower-level node can be regarded as a UE of the upper-level node.
  • an IAB node in the integrated access and backhaul system shown in Figure 1, an IAB node is connected to an upper-level node.
  • an IAB node such as 120
  • the IAB node 130 in the figure can also be connected to the IAB node 120 through the backhaul link 134, that is, both the IAB node 110 and the IAB node 120 are the upper nodes of the IAB node 130.
  • the name of the IAB node 110, 120, 130 does not limit the scenario or network where it is deployed, and can be any other name such as relay, RN, etc.
  • the use of IAB node in this application is only for the convenience of description.
  • the wireless links 102, 112, 122, 132, 113, 123, 133, 134 can be bidirectional links, including uplink and downlink transmission links.
  • the wireless backhaul links 113, 123, 133, 134 can be used by the upper node to provide services for the lower node, such as the upper node 100 provides wireless backhaul service for the lower node 110.
  • the uplink and downlink of the backhaul link may be separated, that is, the uplink and the downlink are not transmitted through the same node.
  • the downlink transmission refers to higher-level nodes, such as node 100, and lower-level nodes, such as node 110, transmitting information or data
  • uplink transmission refers to lower-level nodes, such as node 110, and upper-level nodes, such as node 100, transmitting information or data.
  • the node is not limited to whether it is a network node or a terminal device.
  • the terminal device can act as a relay node to serve other terminal devices.
  • the wireless backhaul link can be an access link in some scenarios.
  • the backhaul link 123 can also be regarded as an access link for the node 110, and the backhaul link 113 is also the access link of the node 100. link.
  • the link 113 is referred to as a parent BH
  • the link 123 is referred to as a child BH
  • the link 112 is referred to as an access link.
  • the above-mentioned upper-level node may be a base station or a relay node
  • the lower-level node may be a relay node or a terminal device with a relay function.
  • the lower-level node may also be a terminal device.
  • the relay nodes shown in Figure 1, such as 110, 120, and 130, can exist in two forms: one is to exist as an independent access node and can independently manage the terminal equipment connected to the relay node.
  • Relay nodes usually have independent physical cell identifiers (PCI).
  • PCI physical cell identifiers
  • This type of relay usually requires complete protocol stack functions, such as radio resource control (RRC) functions.
  • RRC radio resource control
  • layer 3 relay another form of relay node and Donor node, such as Donor eNB, Donor gNB, belong to the same cell, and user management is managed by the donor base station, such as Donor node.
  • This kind of relay is usually called layer 2 relay.
  • Layer 2 relays usually exist as the DU of the base station DgNB under the NR control and bearer separation (central unit and distributed unit, CU-DU) architecture, and communicate with the CU through the F1-AP (F1 application protocol) interface or tunnel protocol .
  • the tunneling protocol may be, for example, the GTP (general packet radio service tunneling protocol, GTP) protocol, and the F1-AP may be an F1-AP enhanced interface, which will not be repeated.
  • a Donor node refers to a node that can access the core network through this node, or an anchor base station of the wireless access network, through which the anchor base station can access the network.
  • the anchor base station is responsible for receiving data from the core network and forwarding it to the relay node, or receiving data from the relay node and forwarding it to the core network.
  • Upper-level node A node that provides wireless backhaul link resources, such as 110, which is called the upper-level node of IAB node 120.
  • the superior node may also be referred to as an upstream node. It should be understood that the superior node is not limited to the direct superior node that provides wireless backhaul link resources, and includes all nodes that provide wireless backhaul link resources on the link that provides transmission to the donor base station.
  • the direct superior node refers to the node that directly provides transmission resources for the relay node.
  • IAB node 110 is the direct superior node of IAB node 120.
  • Lower-level nodes nodes that use backhaul link resources to transmit data to the network or receive data from the network are called lower-level nodes.
  • 120 is called a subordinate node of the relay node 110
  • the network is a network above the core network or other access networks, such as the Internet, a private network, etc.
  • the subordinate nodes are not limited to the direct subordinate nodes that provide wireless backhaul link resources for them, and include all nodes that provide wireless backhaul link resources on the links that provide transmission to the target node.
  • the direct subordinate node refers to the node that directly provides transmission resources for it.
  • IAB node 120 is the direct subordinate node of IAB node 110.
  • Access link the link between the UE and the IAB node, or between the UE and the IAB donor node (IAB donor).
  • the access link includes a wireless link used when a node communicates with its subordinate nodes.
  • the access link includes an uplink access link and a downlink access link.
  • the uplink access link is also referred to as the uplink transmission of the access link, and the downlink access link is also referred to as the downlink transmission of the access link.
  • Backhaul link the link between the IAB node and the IAB child node (IAB child node), or the link between the IAB node and the IAB parent node (IAB parent node).
  • the backhaul link includes the downlink transmission link of the IAB node and the IAB child node, or the IAB node and the IAB parent node; the backhaul link also includes the uplink transmission link of the IAB node and the IAB child node, or the IAB node and the IAB parent node. link.
  • the data transmission of the IAB node to the parent node of the IAB or the uplink transmission of the child node of the IAB is called the uplink transmission of the backhaul link.
  • the IAB node receives the data transmission of the IAB parent node, or the data transmission to the IAB child node is called the downlink transmission of the backhaul link.
  • the backhaul link between the IAB node and the IAB parent node is also called the parent BH, and the backhaul link between the IAB node and the IAB child node It is called the lower-level backhaul link (child BH).
  • Waveform parameters refer to a set of subcarriers, or parameters of physical subcarriers of a certain bandwidth or part of a carrier. Waveform parameters include at least one of the following parameters: subcarrier spacing, cyclic prefix (CP) length, time Interval (transmission time interval, TTI), symbol length, number of symbols, ⁇ . Among them, ⁇ is an integer greater than or equal to 0, and can take values from 0 to 5. Each ⁇ corresponds to a specific subcarrier interval and CP. The relationship between subcarrier interval and ⁇ is Among them, ⁇ f is the sub-carrier spacing, Hz is the basic unit of frequency, and kHz means kilo Hz, which is kilohertz.
  • Time slot It is the basic time domain unit in NR.
  • a time slot can contain 14 or 12 symbols, depending on the CP length in the waveform parameters used in the time slot. It should be understood that, in some cases, the time slot and the subframe are the same. For example, when the subcarrier interval in the waveform parameter is 15KHz, the time slot and the subframe may be the same. Similarly, time slots should not be limited to the above definitions.
  • mini-slots can also be defined, that is, one or more symbols can also be called a time slot.
  • the time slot in this application includes mini-slot concept.
  • the symbol generally refers to the orthogonal frequency division multiplexing (OFDM) symbol, but it should not be understood as limited to the OFDM symbol, and can also include other waveform symbols, such as the single-carrier orthogonal frequency division multiplexing symbol Wait.
  • One subframe may be, for example, 1 ms, and one subframe may include one or more time slots. When a subframe contains only one slot, the subframe and the slot are the same.
  • the time slot or subframe in the following refers to a time slot or a subframe. In some cases, the subframe and the time slot are the same, and in some cases, the subframe and the time slot are different. Therefore, the time slot or subframe is generally Refers to a basic unit of scheduling, where the time slot can be a mini-slot, which will not be described in detail below.
  • Beam It is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam can be formed by one or more antenna ports, used to transmit data channels, control channels, and sounding signals.
  • a transmit beam can refer to the distribution of signal strength formed in different directions in space after a signal is transmitted by an antenna.
  • the receiving beam may refer to the distribution of the antenna array to strengthen or weaken the reception of wireless signals in different directions in space. It is understandable that one or more antenna ports forming a beam can also be regarded as an antenna port set. In the current NR protocol, the beam can be reflected by the quasi colocation (QCL) relationship of the antenna port (antenna port). Specifically, two signals of the same beam have a QCL relationship with respect to the spatial Rx parameter. , Which is QCL-Type D: ⁇ Spatial Rx parameter ⁇ in the agreement.
  • the beam can be specifically represented by various signal identifiers in the protocol, such as the resource ID of CSI-RS, the time domain index of SS/PBCH, the resource ID of SRS (sounding reference signal, sounding signal), TRS (tracking reference signal) , Tracking signal) resource ID, etc.
  • the above-mentioned antenna port is a logical concept and does not have a one-to-one correspondence with physical antennas.
  • An antenna port is a logical unit formed by one or more physical antennas for transmitting a signal or signal stream.
  • the IAB node includes two main functions, one is a mobile-termination (MT) function, and the other is a distributed unit (DU) function.
  • the IAB node can perform uplink transmission and/or downlink transmission with the superior node on the MT.
  • the IAB node can perform uplink transmission and/or downlink transmission with subordinate nodes on the DU.
  • Figure 2 shows the frame structure between the IAB node and the donor base station or the upper node.
  • Fig. 2 only the frame structure of the DU of the donor base station or the upper node is shown.
  • 210 is a frame structure between donor base stations or an upper node, where 211 is a downlink transmission frame structure, and 212 is an uplink transmission frame structure.
  • 220 is the frame structure of the IAB node MT, and 230 is the frame structure of the IAB node DU.
  • 221 is the frame structure of IAB node MT for downlink transmission
  • 222 is the frame structure of IAB node MT for uplink reception
  • 231 is the frame structure of IAB node DU for downlink transmission
  • 232 is the frame of IAB node DU for uplink reception. structure.
  • Figure 3 is a schematic diagram of the resource configuration of an IAB node in NR.
  • Figure 3 takes time division duplex (TDD) as an example, where the MT resource of the IAB node can be configured as three types: downlink (D), uplink (U), and flexible (F) .
  • the F-type resources can be configured for uplink or downlink transmission, and whether it is used for uplink transmission or downlink transmission depends on the signaling configuration.
  • the DU resource of the IAB node can be configured as downlink, uplink, flexible and unavailable (Null, N) four types. Further, the DU's downlink, uplink, and flexible resources can also be divided into hard (hard, H) resources and soft (soft, S) resources. Among them, the hard resource of the DU indicates the resource that is always available to the DU. The soft resource of the DU indicates that whether the DU is available depends on the indication of the upper-level node (for example, the donor node). In FIG. 3, the upper-level node controls the use of the S resource on the IAB node DU through downlink control information (DCI) in the downlink time slot or subframe.
  • the H resources and S resources are semi-statically configured by the donor base station or upper-level node through RRC, or the donor base station is semi-statically configured through the F1-AP protocol.
  • the MT of the IAB node is connected to the DU of the upper node, and the DU of the IAB node is connected to the MT of the lower node.
  • the IAB node can obtain the resource configuration of its MT resource and DU resource respectively. For example, it may include the transmission direction (D/U/F) of the MT resource and the DU resource, the type of the DU resource (soft/hard), and the location of the NULL resource of the DU.
  • the hard resources of its DU correspond to MT resources (for example, the first and The MT resources corresponding to time slots 6, 7, and 8 are unavailable.
  • the time slot number in FIG. 3 may also be a subframe number or a symbol number. The following description mainly takes a time slot as an example, and will not be repeated.
  • the MT of the IAB node has a total of three types of resources, and the DU of the IAB node has a total of 7 types of resources.
  • the possible transceiver status of the MT of the IAB node and its corresponding DU are as follows The following Table 1 and Table 2 are shown, where Table 1 is the resource configuration situation under various possible resource type combinations of MT and DU in the time division multiplexing scenario.
  • Table 2 shows the resource configuration under various possible resource type combinations of MT and DU in a spatial division multiplexing (SDM) scenario.
  • SDM spatial division multiplexing
  • MT:Tx means that the MT should transmit after being scheduled
  • DU:Tx means DU can be transmitted
  • MT:Rx means that the MT is capable of receiving (if there is a signal that needs to be received);
  • DU:Rx means that the DU can schedule the uplink transmission of the lower node
  • MT:Tx/Rx means that MT should transmit or receive after being scheduled, but transmission and reception do not occur at the same time
  • DU:Tx/Rx means that DU can transmit or receive transmission from lower-level nodes, but transmission and reception do not occur at the same time;
  • IA means that the DU resource is explicitly or implicitly indicated as available
  • INA means that the DU resource is explicitly or implicitly indicated as unavailable
  • MT:NULL means that the MT does not send and does not have to have receiving capabilities
  • DU:NULL means that the DU does not send and does not receive transmissions from lower-level nodes.
  • This application mainly considers TDM scenarios, but the solution of this application can also be extended to scenarios such as SDM, frequency-division multiplexing (FDM), or full-duplex.
  • SDM single-division multiplexing
  • FDM frequency-division multiplexing
  • the MT resource corresponding to the DU hard resource is unavailable.
  • the MT does not perform physical downlink control channel (PDCCH) monitoring on these resources, that is, if the search space overlaps these resources, the MT of the IAB node abandons the overlapped search space monitoring.
  • PDCCH physical downlink control channel
  • the MT may also have other unavailable resources.
  • the upper-level node will continue to use dynamic signaling (for example, downlink control information (DCI)) to dynamically indicate to the IAB node the availability of soft-type resources of its DU resources, for example, the upper-level node uses
  • DCI downlink control information
  • the dedicated DCI or dedicated DCI field indicates the availability of the soft resources of the IAB node.
  • the information contained in the dynamic signaling is called indication information, and the above dedicated DCI or dedicated DCI field can be collectively referred to as indicating DCI .
  • the above dynamic indication can be achieved in a variety of ways.
  • this can be done through explicit instructions.
  • the superior node directly indicates the availability of the soft resource of the DU resource of the IAB node.
  • it can also indicate the transmission of some (for example, F type) soft resources (for example, the DU resources corresponding to the 4th and 5th time slots in Fig. 5).
  • some (for example, F type) soft resources for example, the DU resources corresponding to the 4th and 5th time slots in Fig. 5).
  • the upper-level node indicates whether the MT resource of the IAB node (for example, the available resource of the MT) is released (or whether it is available), and the IAB node determines the soft type resource of its DU resource according to the indication of the upper-level node for the above-mentioned MT resource. Availability.
  • the IAB node When the DU of the IAB node is configured as a hard resource, the IAB node usually performs complete transmission on the time slot configured as a hard resource.
  • the meaning of the complete transmission is that the IAB node considers that all symbols on the time slots configured as hard resources are available.
  • the hard resources of the IAB node can be regarded as resources that are always available. For a DU hard resource, the IAB node can always communicate with subordinate nodes on this resource, regardless of the MT scheduling configuration.
  • part of the periodic signals of the IAB node DU including but not limited to periodic CSI-RS, SRS, are configured by the donor node and notified to the UE or subordinate nodes of the IAB node through RRC signaling. At this time, this part of the periodic signal configured by the donor for the IAB node should be located in the hard resource of the IAB node DU.
  • FIG. 4 is a schematic diagram of the relationship between the H/S resources of the DU and the available or unavailable resources of the MT provided by an embodiment of the application. Take the symbol as an example in Figure 4. Among them, the H symbol indicates hard resources, the S symbol indicates soft resources, A indicates available, and NA indicates unavailable. It should be understood that FIG. 4 is only an example, where the symbols may also be time slots or subframes.
  • Figure 4 shows 7 symbols, among which, symbol 0 and symbol 6 are hard symbols of DU, and DU can always be used.
  • symbol 0 and symbol 6 are hard symbols of DU, and DU can always be used.
  • the resource allocation is performed between the MT and the DU of the IAB node in a TDM manner, and the corresponding MT symbol 0 and symbol 6 are unusable symbols.
  • the symbols 1 to 5 in the figure are the soft symbols of DU. According to Table 1, the corresponding MT should be an available symbol.
  • the MT and DU of the IAB node have different frame boundaries or symbol boundaries when sending or receiving data, which causes the MT resource and DU resource of the IAB node to not be aligned in the time domain.
  • the frame timing (or symbol timing) deviation between the MT and the DU of the IAB node is caused by the transmission delay between the IAB node and the upper node.
  • the deviation T g between the uplink frame reception time of the DU of the IAB node and the downlink frame transmission time may also cause frame timing deviation.
  • the IAB node and the superior node determine the available symbols of the MT of the IAB node, they need not only the resource configuration information of the IAB node DU, but also the frame timing (or symbol timing) deviation information of the MT and the DU of the IAB node.
  • the IAB node does not communicate with the superior node on the unavailable symbol of the MT. Specifically, if part of the symbols of resources such as PDCCH detection, periodic CSI-RS reception, periodic SRS transmission, etc., are located in unavailable symbols of the MT, the MT does not transmit and receive them. In addition, for dynamic scheduling or indication signals, the IAB node MT does not expect it to be located in unavailable symbols of the MT.
  • the dynamic scheduling or indication signals here include but not limited to PDSCH, PDSCH DMRS, PUSCH, PUSCH DMRS, and HARQ-ACK feedback PUCCH . Or, if a dynamically scheduled data channel, such as PDSCH or PUSCH, occupies resources including unavailable symbols, the IAB node and the upper-level node perform rate matching for the unavailable symbols when transmitting this channel.
  • the above technical problems may have different situations in different scenarios in terms of the number of available or unavailable resources on the MT of the IAB node.
  • the embodiments of the present application illustrate possible scenarios and calculation methods for time differences.
  • Figure 5 shows a scenario in which the MT of the IAB node performs downlink reception and the DU performs downlink transmission.
  • DL represents downlink, which will not be repeated.
  • Figure 5(a) shows the hard symbol 501 on the DU of the IAB node for downlink transmission, and the symbols 511 and 512 on the MT for downlink reception.
  • Figure 5(b) shows the downlink receiving of symbols 513 and 514 on the MT of the IAB node, and the hard symbol 502 on the DU for downlink transmission. It should be understood that, in FIG. 5, only symbols are taken as an example, and they may also be subframes or time slots, which will not be described in detail below.
  • ⁇ DD is generally caused by the propagation delay from the upper-level node to the IAB node.
  • ⁇ DD is generally not strictly equal to the propagation delay.
  • the symbol 514 of the IAB node MT extends after the hard symbol 502 of the DU. Therefore, the symbol 514 cannot be used for the downlink transmission of the MT. Since ⁇ DD is mainly caused by propagation delay, and transmitted from the amplifier IAB DU node to the receiving MT, or the MT is received from a certain DU conversion time required for transmission, i.e. corresponding T TR and T RT.
  • To determine whether one or more symbols after the hard symbol 501 of the IAB node DU are available depends on the relationship between ⁇ DD and TTR . Assuming that the end time of the hard symbol 501 of the IAB node DU is t 1 , and the start time of the symbols on the MT, such as symbol 511 or symbol 512, is t 3 , then judging whether the resources on the MT are available depends on t 3 -t 1 and T TR relationship.
  • t 3 -t 1 can be obtained by ⁇ DD .
  • ⁇ DD t 3 -t 1 .
  • the symbol 511 can be used for downlink transmission on the MT. And if ⁇ DD ⁇ T TR , the symbol 511 is not available. If ⁇ DD + T s ⁇ T TR , then the second symbol 512 is not available, where T s is the symbol length, and the size of T s depends on the waveform parameters. ⁇ DD + T s is the interval between the end time of symbol 501 and the start time of symbol 512 interval.
  • Whether one or more resources before the hard symbol 502 of the IAB node DU are available also depends on the relationship between ⁇ DD and TTR . Assuming that the start time of the hard symbol 502 of the IAB node DU is t 2 , and the end time of each symbol on the MT, such as symbol 513 or symbol 514, is t 4 , then judging whether the resource on the MT is available depends on t 2 -t 4 and T RT relationship.
  • the end time of the symbol 514 in FIG. 5(b) is later than the start time of the hard symbol 502 of the IAB node DU, so t 2 -t 4 ⁇ 0, therefore, the symbol 514 cannot be used for MT transmission.
  • T TR and T RT are both greater than zero.
  • Figure 6 shows a scenario where the MT of the IAB node performs uplink transmission and the DU performs downlink transmission.
  • UL in Figure 6 stands for uplink.
  • the resource of the IAB node MT is advanced, and the advanced time is recorded as ⁇ UD , which represents the time difference between the uplink transmission frame of the IAB node MT and the downlink transmission frame of the DU.
  • ⁇ UD represents the time difference between the uplink transmission frame of the IAB node MT and the downlink transmission frame of the DU.
  • the end time of the hard symbol 601 of the IAB node DU in Figure 6(a) is t 1
  • the symbols on the MT such as the start time of the symbol 611 or the symbol 612 is t 3
  • the availability of resources depends on t 3 -t 1 .
  • Figure 7 shows a scenario where the MT of the IAB node performs downlink reception and the DU performs uplink reception. Since the MT and DU of the IAB node are both in the receiving state, there is no conversion time of the power amplifier.
  • TDM scenario only when the MT downlink resource and the DU uplink hard symbol (or resource) directly overlap, it will be regarded as an unavailable resource.
  • SDM scenario even if the two overlap, they may be regarded as available resources.
  • the downlink received frame of the MT has a certain time delay relative to the uplink received frame of the DU, and this time delay is denoted as ⁇ DU .
  • the resource on the MT is available depends on t 2 -t 4 .
  • t 2 -t 4 ⁇ 0 or t 2 -t 4 >0
  • the resource with the end time of t 4 on the MT is available;
  • t 2 -t 4 ⁇ 0 or t 2 -t 4 ⁇ 0
  • the resource with the end time t 4 on the MT is unavailable.
  • both t 3 -t 1 and t 2 -t 4 can be obtained by ⁇ DU .
  • Figure 8 shows a scenario where the MT of the IAB node performs uplink transmission and the DU performs uplink reception.
  • Figure 8(a) shows the DU uplink reception, and the MT performs uplink transmission.
  • Figure 8(b) shows the uplink transmission of the MT and the uplink reception of the DU.
  • the conversion interval is mainly due to the power amplifier turn-on and power amplifier turn-off time required to transmit the MT uplink. Therefore, in Figure 7-1, the switching interval is placed before and after the MT uplink symbol.
  • the time deviation between the uplink transmission frame of the MT and the uplink reception frame of the DU is denoted as ⁇ UU .
  • ⁇ UU the time deviation between the uplink transmission frame of the MT and the uplink reception frame of the DU.
  • the judgment of whether the resource on the MT is available depends on t 2 -t 4 The relationship with T TR .
  • T TR the time of the hard symbol 802 of the IAB node DU
  • the end time of each symbol on the MT such as symbol 813 or symbol 814
  • the judgment of whether the resource on the MT is available depends on t 2 -t 4 The relationship with T TR .
  • both t 3 -t 1 and t 2 -t 4 can be obtained by ⁇ UU .
  • the embodiment of this application defines a first resource set, the first resource set is between the first hard resource set and the second hard resource, and the first hard resource set and the second hard resource set are continuous hard resources .
  • the continuous hard resource means that there are no other hard resources between the first hard resource set and the second hard resource set.
  • the resource here may be a symbol, a time slot or a subframe, which will not be described in detail below. The following description mainly takes symbols as examples.
  • the first resource set may be part or all of the resources between the first hard resource set and the second hard resource. When the first resource set is used for transmission between the MT and the upper node, it may be uplink transmission or downlink transmission.
  • the first hard resource set and the second hard resource set When the first hard resource set and the second hard resource set are used for transmission between the DU of the IAB node and the subordinate node, it may be uplink transmission or downlink transmission. Whether the first resource set, the first hard resource set, or the second hard resource set is used for uplink transmission or downlink transmission depends on scheduling or configuration.
  • the first node determines the first threshold x and the second threshold y.
  • the first node determines the first resource concentration
  • the first symbol is available.
  • t 1 is the end time of the last symbol in the first hard resource set
  • t 2 is the start time of the first symbol in the second hard resource set
  • t 3 is the start time of the first symbol
  • t 4 is the start time of the first symbol. End Time.
  • the first node is an IAB node.
  • the start and end time of a symbol can refer to the start and end time of the transmitted symbol, or the start and end time of the received symbol. It should be understood that the start and end time of the received symbol may refer to the start and end time of the symbol receiving window, and the start time of the received symbol may not include the cyclic prefix (CP, cyclic prefix) of the OFDM symbol.
  • CP cyclic prefix
  • the foregoing first threshold x and the second threshold y have different values in different scenarios. specifically,
  • the first threshold x T TR ;
  • T RT is the conversion time when the MT of the first node receives the DU transmission, or the conversion time when the DU receives the MT transmission
  • T TR is the conversion time from the MT transmission of the first node to the DU reception, or the DU transmission to the MT reception Conversion time.
  • FIG. 9 is a method for determining resources provided by an embodiment of the application. It should be understood that the steps in FIG. 9 do not represent the order of execution, and it does not mean that all steps are necessary.
  • the IAB node and the upper-level node determine the same resources for the backhaul link.
  • the first node is an IAB node
  • the second node is an upper node of the IAB node
  • the second node may be another IAB node or a donor base station.
  • the second node obtains the first hard resource set and the second hard resource set of the first node.
  • the second node may obtain the first hard resource set and the second hard resource set of the first node through the donor base station.
  • the first hard resource set and the second hard resource set are acquired through RRC signaling or an F1-AP interface.
  • the second node may also directly obtain the first hard resource set and the second hard resource set through the first node.
  • the second node may obtain the first hard resource set and the second hard resource set of the first node by sending a resource configuration request to the first node.
  • the first hard resource set and the second hard resource set can be acquired through media access control (MAC) layer signaling (control element, CE), that is, MAC CE.
  • CE media access control
  • the first node sends a resource configuration response to the second node.
  • the resource configuration response includes the first hard resource set and the second hard resource set.
  • the second node may also obtain soft resource configuration information of the first node, and obtain the first hard resource set and the second hard resource set through the soft configuration information. It can be seen from the foregoing embodiment that the second node can determine the available and/or unavailable resources on the MT of the first node according to the hard resources and/or soft resources of the first node.
  • the aforementioned first hard resource set may be one or more symbols, time slots or subframes.
  • the resources in the first hard resource set have the same transmission direction, that is, uplink transmission or downlink transmission of the DU of the first node on the access link.
  • the second hard resource set may be one or more symbols, slots or subframes.
  • the resources in the second hard resource set have the same transmission direction. Therefore, the second node acquiring the first hard resource set and the second hard resource set of the first node includes acquiring the transmission direction information of the first hard resource set and the second hard resource set.
  • the second node determines the first resource set.
  • the first resource set is located between the first hard resource set and the second hard resource set.
  • the first resource set is part or all of the resources between the first hard resource set and the second hard resource set.
  • the first resource set can be one or more symbols, time slots or subframes, and all resources on the first resource set Have the same transmission direction.
  • the first resource set is used for data transmission between the MT of the first node and the DU of the second node. It should be understood that the data transmission in this application includes the transmission of user data and control signaling. The following description mainly takes symbols as examples.
  • the resources between the first hard resource set and the second hard resource set can be divided into one or more first resource sets, each first resource set can have its own transmission direction, and the specific transmission direction is that there is a second node According to the needs of scheduling dynamic allocation. Therefore, after determining the first resource set, the second node notifies the first node of the first resource set through the resource indication information.
  • the resource indication information may be indicated through the PDCCH, specifically, the resource indication information is carried through the DCI in the PDCCH.
  • the PDCCH may include resource indication information of one or more first resource sets.
  • the second node sends resource indication information to the first node.
  • the resource indication information may be carried by higher layer signaling or layer one signaling, for example, resource indication may be performed by DCI.
  • the resource indication information includes one or more of the following information: the starting position of the resource, the quantity of the resource, the transmission direction, and frequency domain information.
  • the frequency domain information may include the starting position of the frequency domain, such as the number of resource blocks (resource block, RB), and/or the number of RBs.
  • the first node determines a first threshold x and a second threshold y according to the resource indication information.
  • the first threshold and the second threshold depend on the transmission direction of the first resource set, and also depend on the transmission direction of the first hard resource set and the second hard resource set.
  • the timing relationship between the resources caused by the different transmission directions of the first hard resource set and the first resource set is as described in FIG. 5 to FIG. 8 in the foregoing embodiment, and will not be repeated here.
  • the first threshold x is the smallest limit that the time difference between the start time of the first symbol and the end time of the last symbol in the first hard resource set is satisfied.
  • the second threshold y is the smallest limit that the time difference between the end time of the first symbol and the start time of the first symbol in the second hard resource set is satisfied.
  • the first symbol is a symbol in the first resource set that needs to determine the available state.
  • the first threshold x T TR ;
  • T RT is the transition time from receiving to sending of the first node
  • T TR is the transition time from sending to receiving of the first node
  • the first node can determine the first threshold x and the second threshold y by looking up a table.
  • the first threshold x and the second threshold y can be determined by using Table 3 below.
  • DU represents the hard resource of the first node DU
  • MT represents the first resource of the first node MT.
  • UL indicates that the transmission direction is uplink reception on the access link
  • DL indicates that the transmission direction is downlink transmission on the access link.
  • UL indicates that the transmission direction is uplink transmission on the backhaul link
  • DL indicates the transmission direction is downlink reception on the backhaul link.
  • the first threshold x and the second threshold y can be determined.
  • the above-mentioned first threshold x and second threshold y may be defined through a protocol.
  • the first threshold x and the second threshold y are defined as the same predefined value, or they may be defined as different predefined values.
  • predefined thresholds can be respectively defined.
  • the first threshold x and the second threshold y may not be zero.
  • the specific definition depends on the protocol definition or other factors, such as the manufacturer's equipment implementation. This application does not restrict specific implementation.
  • the first threshold x and the second threshold y are reported by the first node to the second node.
  • S905 The first node determines the available state of the first symbol.
  • t 1 is the end time of the last symbol in the first hard resource set
  • t 2 is the start time of the first symbol in the second hard resource set
  • t 3 is the start time of the first symbol
  • t 4 is the end of the first symbol. time.
  • the start and end time of the symbol can refer to the start and end time of the transmitted symbol, or the start and end time of the received symbol. It should be understood that the start and end time of the received symbol may refer to the start and end time of the symbol receiving window, and the start time of the received symbol may not include the cyclic prefix (CP, cyclic prefix) of the OFDM symbol.
  • CP cyclic prefix
  • the available symbol set in the first resource set can be determined by finding the first available symbol and the last available symbol in the first resource set.
  • the foregoing first symbol is a symbol in the first resource set whose availability needs to be determined, and the first node may use the foregoing method to determine its availability status for each symbol in the first resource set. Available status includes available and unavailable. The symbol in the available state indicates that it can be used for data transmission between the first node and the second node, and the symbol in the unavailable state indicates that it cannot be used for data transmission between the first node and the second node.
  • the first resource set includes all the resources between the first hard resource set and the second hard resource set
  • the time domain of the first resource set needs to be considered.
  • One or more symbols after the first hard resource set, and one or more symbols in the first resource set before the second resource set in the time domain are considered.
  • the first resource set includes part of the resources between the first hard resource set and the second hard resource set, and the resources are located after the first hard resource set, generally only the first resource set located after the first hard resource set needs to be considered One or more symbols.
  • first resource set includes part of the resources between the first hard resource set and the second hard resource set, and the resource is located before the second hard resource set, generally only one of the first resource set located before the second resource set needs to be considered Or multiple symbols.
  • the last symbol of the first hard resource set or the first symbol of the second hard resource set is a flexible symbol, that is, a symbol whose transmission direction has not been determined.
  • the first node may respectively assume that the flexible symbol is an uplink symbol or a downlink symbol, and respectively determine the availability of the first symbol according to the two assumptions, if and only if the first symbol is under the two assumptions When all symbols are available, the first symbol is determined to be an available symbol.
  • the protocol specifies the assumption of the flexible symbol by the first node or the second node. For example, the flexible symbol is always assumed to be uplink or downlink, and the first node determines the availability of the first symbol based on this assumption.
  • the second node obtains the first threshold x and the second threshold y.
  • the power amplifier transceiver conversion time between the DU and the MT of the first node includes the conversion time from reception to transmission, or the conversion time from transmission to reception, as described above, and will not be repeated.
  • the second node may obtain the power amplifier transmission and reception conversion time between the DU and MT of the first node from the donor base station, for example, obtain the DU and MT of the first node through the RRC protocol or the F1-AP interface message.
  • the power amplifier receiving and sending conversion time between MT.
  • the second node may directly request the first node through the MAC CE to send the power amplifier transceiver conversion time between the DU and the MT of the first node.
  • the first threshold x and the second threshold y may be defined by the protocol. The details are as mentioned above and will not be repeated here.
  • the second node determines the available state of the first symbol.
  • Step S907 is the same as step S905.
  • a specific method of determining the available state of the first symbol refer to the embodiments shown in FIG. 10 and FIG. 11.
  • FIG. 10 is a schematic diagram of an available state of one or more symbols in the first resource set after the first hard resource set is determined. Determining the available status of one or more symbols after the first hard resource set mainly includes two scenarios, that is, the first resource set is uplink transmission and the first resource set is downlink transmission.
  • Figure 10(a) is a scenario where the first resource set is downlink transmission
  • Figure 10(b) is a scenario where the first resource set is uplink transmission.
  • 1010 is the downlink transmission resource of the IAB node DU
  • 1001 is the uplink transmission resource of the DU.
  • the transmission resource can be a symbol, a time slot, or a subframe.
  • the upstream time slot boundary has a certain advance relative to the downstream time slot boundary.
  • 1003 is the end time of the DU uplink transmission resource
  • 1004 is the end time of the DU downlink transmission resource.
  • Figure 10(a) shows two resources 1020 and 1021 of the IAB node MT. Assuming that the numbers of these two resources are 0 and 1, the start time of resource 0 is 1025, and the start time of resource 1 is 1026. 1025 and 1026 is the possible reception time of resource 0 and resource 1, respectively.
  • 1003 and 1004 are the actual end times of 1001 and 1001, respectively. Since 1001 and 1010 are hard resources, their end time is determined.
  • the power amplifier needs to be converted from the transmission of the IAB node's access link to the receiving state of the backhaul link, and a certain conversion delay is required. As mentioned above, no more Repeat. At this time, the time difference between 1025 and 1004 needs to be calculated to determine the available state of the first symbol.
  • the resource 1 of the IAB node MT is similar.
  • the location of resource 0 of the IAB node MT can be determined from the downlink time slot or frame timing of the IAB node DU. Since the end position of the 1010 resource of the IAB node DU is at 1004, the propagation delay can be used to determine the arrival time of the IAB node resource 0 in theory, thereby determining the time difference between 1025 and 1004. However, in practice, due to non-ideal timing, the time difference between 1025 and 1004 may not be strictly equal to the propagation delay between the first node and the second node.
  • the time between 1025 and 1004 is determined by the difference ⁇ DD.
  • ⁇ DD the timing advance configured by the upper-level node for the IAB node
  • T delta the timing offset
  • ⁇ DD TA/2+T delta
  • TA is the timing advance used by the IAB node MT for uplink transmission. It is generally configured by the upper node and has the same meaning as the timing advance used by the UE for uplink transmission.
  • the availability of the first symbol in the first resource set on the IAB node MT is determined by judging the relationship between t 3 -t 1 and the first threshold x status.
  • (t 3 -t 1 ) ⁇ x (or (t 3 -t 1 )>x) it is determined that the resource 1020 is available. If (t 3 -t 1 ) ⁇ x (or (t 3 -t 1 ) ⁇ x), it is determined that the resource 1020 is not available.
  • (t 3 -t 1 ) ⁇ DD .
  • the offset of 1026 relative to 1025 is T s , where T s is the length of a symbol, T The magnitude of s depends on the waveform parameters, and the magnitude of T s is different under different waveform parameters.
  • the specific T s size depends on the protocol definition. It should be understood that if the resource is a time slot, the offset of 1026 relative to 1025 is the size of a time slot. The size of the time slot also depends on the waveform parameters, which can be determined according to the waveform parameters defined in the protocol. Repeat.
  • the time difference between 1026 and 1004 in Fig. 10(a) is T s + ⁇ DD , when T s + ⁇ DD ⁇ x (or T s + ⁇ DD > x), it is determined that the resource 1021 is available. If T s + ⁇ DD ⁇ x (or T s + ⁇ DD ⁇ x), it is determined that the resource 1021 is not available.
  • the symbols in the first resource set in FIG. 10(a) are sequentially numbered 0, 1, ..., k-1, where k is an integer greater than 1.
  • the time difference between the start time of the i-th symbol and 1004 is i*T s + ⁇ DD , when i*T s + ⁇ DD ⁇ x (or i*T s + ⁇ DD >x), then judge The i-th symbol in the first resource set is available. If i*T s + ⁇ DD ⁇ x (or i*T s + ⁇ DD ⁇ x), it is determined that the i-th symbol in the first resource set is not available.
  • 1002 and 1011 are the hard resources of the IAB node DU, where 1002 is the uplink resource, 1011 is the downlink resource, and 1002 is the uplink receiving resource, which has a certain timing advance relative to the downlink sending resource 1011, denoted as T g , that is, T g is the timing deviation between the uplink frame and the downlink frame of the IAB node DU.
  • 1005 and 1006 are the end times of the uplink resource 1002 and the downlink resource 1011, respectively.
  • the resources 1022, 1023, and 1024 are possible transmission times in the first resource set. For example, if the resource 1022 is transmitted, the start time is 1027, if the resource 1023 is transmitted, the start time is 1028, and so on.
  • the first resource set is uplink transmission, it needs to be advanced relative to the uplink time slot or subframe timing during actual transmission.
  • the IAB node DU before the first resource set is downlink transmission, the IAB node does not need to perform power amplifier conversion for the uplink transmission from the hard resource of the UD to the MT. Therefore, if the start time of a certain symbol in the first resource set is later than the end time 1006 of the hard resource 1011 of the DU, the symbol can be used for MT transmission.
  • the symbols in the first resource set in Figure 10(b) are sequentially numbered as 0, 1, ..., k-1, where k is an integer greater than 1.
  • the time difference between the start time of the i-th symbol and 1006 is i*T s- ⁇ UD , when i*T s- ⁇ UD ⁇ 0 (or i*T s- ⁇ UD > 0)
  • the i-th symbol in the first resource set is available. If i*T s- ⁇ UD ⁇ 0 (or i*T s- ⁇ UD ⁇ 0), it is determined that the i-th symbol in the first resource set is not available.
  • the IAB node DU in Fig. 10(b) takes a certain power amplifier conversion time T RT to switch from the uplink reception of the DU to the uplink transmission of the MT.
  • the time difference between the start time of the i-th symbol in the first resource set and 1005 can be obtained as i*T s - ⁇ UU , when i*T s - ⁇ UU ⁇ T RT (or i*T s - ⁇ UU > T RT ), it is determined that the i-th symbol in the first resource set is available. If i*T s- ⁇ UU ⁇ T RT (or i*T s- ⁇ UU ⁇ T RT ), it is determined that the i-th symbol in the first resource set is not available.
  • FIG. 11 is a schematic diagram of determining the available state of one or more symbols in the first resource set before the second hard resource set. Determining the available status of one or more symbols before the second hard resource set mainly includes two scenarios, that is, the first resource set is uplink transmission and the first resource set is downlink transmission.
  • Figure 11(a) is a scenario where the first resource set is downlink transmission
  • Figure 11(b) is a scenario where the first resource set is uplink transmission.
  • 1110 is the downlink transmission resource of the IAB node DU
  • 1101 is the uplink transmission resource of the DU.
  • the transmission resource can be a symbol, a time slot, or a subframe.
  • the upstream time slot boundary has a certain advance relative to the downstream time slot boundary, denoted as T g .
  • 1103 is the start time of the DU uplink transmission resource
  • 1004 is the start time of the DU downlink transmission resource.
  • Figure 11(a) shows two resources 1120 and 1121 of the IAB node MT. Assume that the numbers of these two resources are k-2 and k-1 respectively, the end time of resource k-2 is 1124, and resource k-1 The end time is 1125. If resources 1120 and 1121 are used for transmission, then 1124 and 1125 are the end times of resource k-2 and resource k-1, respectively. Since 1101 and 1110 are hard resources, their start time is determined.
  • the end time of a certain symbol on the IAB node MT is between the start time of 1101, and the symbol is usable.
  • the power amplifier needs to be converted from the reception of the IAB node's backhaul link to the transmission state of the access link, and there is a certain conversion delay T RT .
  • T RT the time difference between 1104 and the end time of the first symbol of the IAB node MT needs to be calculated to determine the available state of the first symbol.
  • each MT resources such as resource k-1 there is a relative frame timing delay ⁇ DD, ⁇ DD is defined above, is omitted.
  • the time difference between the start time of the resource 1110 of the IAB node DU and the end time of the i-th symbol of the MT is t DD
  • the first resource concentration on the IAB node MT can be determined by the relationship between t DD and the second threshold y The available status of the i-th symbol.
  • t DU (ki-1)* T s - ⁇ DD -T g , when t DU ⁇ y (or t DU >y), it is judged that the resource i is available.
  • resources 1102 and 1111 are hard resources of the IAB node DU, where 1102 is an uplink receiving resource, 1111 is a downlink sending resource, the start time of resource 1102 is 1105, and the start time of 1111 is 1106. Similarly, the boundary 1105 of 1102 has a certain advance with respect to the boundary 1106 of 1111, and the advance time is T g .
  • the first resource set of the IAB node MT is uplink transmission.
  • Figure 11(b) shows the last two resources (such as symbols) 1122 and 1123 in the first resource set. The end times of 1122 and 1123 are 1126 and 1127, respectively. .
  • the IAB node MT switches from uplink transmission to DU uplink reception, and the power amplifier switches from the sending state to the receiving state.
  • This transition time is T TR .
  • the available status of the i-th symbol in the first resource set on the IAB node MT can be determined. Assuming that the time difference between the start time of the resource 1102 of the IAB node DU and the end time of the i-th symbol of the MT is t UU , from Fig.
  • the definition of each parameter is as mentioned before, and will not be repeated here.
  • the calculation methods for the first node and the second node in the embodiments described in FIG. 10 and FIG. 11 are the same, and both need to determine the available status of the symbols in the first resource set.
  • the second node In order for the second node to calculate the available status of the symbols (or resources) in the first resource set, the second node needs to obtain the power amplifier conversion time between the IAB node DU and the MT, as described above, and will not be repeated.
  • the second node also needs to obtain the transition time T g from uplink reception to downlink transmission of the IAB node DU, or ⁇ UU , or
  • the first node reports ⁇ UU to the second node, or Or T g .
  • the second node receives the parameter T g reported by the first node, it determines ⁇ UU by the following formula:
  • ⁇ UU TA+TA offset - ⁇ DD -T g
  • the timing of the first node is not configured by the second node through the OTA method.
  • the timing of the first node may be obtained through GPS.
  • the T delta received by the IAB node and the reported T delta 1 have the same signaling format, and the signaling format includes the value range of T delta and T delta 1 and the value granularity.
  • the upper-level node adjusts the downlink transmission timing of the first node DU by adjusting TA or T delta , and the upper-level node can learn the time when the first node completes the downlink transmission timing. Therefore, the upper-level node adopts the new ⁇ DD value by default after the first node completes the timing adjustment.
  • the first node receives the TA update command sent by the superior node, and the first node updates ⁇ UU and/or ⁇ DD according to the TA update command.
  • the upper-level node reports the value of T delta and/or T delta 1 to the donor base station node, where T delta represents the timing adjustment that the upper-level node sends to the first node or is ready to send to the first node value.
  • T delta represents the timing adjustment that the upper-level node sends to the first node or is ready to send to the first node value.
  • the donor base station transmits the updated value of T delta to the superior node, and then the superior node sends the updated value of T delta to the first node.
  • the upper-level node updates the downlink transmission timing for the DU of the first node.
  • the DU of the first node needs to adjust the downlink transmission time to the updated value, and at the same time, the DU of the first node should also adjust the uplink reception. Timing so that T g remains constant.
  • the first node does not adjust the downlink transmission timing of the DU during the downlink time slot transmission process.
  • the adjustment of the DU uplink reception timing is not performed during the uplink time slot reception process. Therefore, optionally, the above adjustment may be performed in the CP range of the first symbol of the time slot.
  • the necessary information includes at least one of the foregoing TA, T delta , T delta 1, TA offset , and T g .
  • the first node obtains the initial timing advance from the second node, and then the second node can update the uplink timing advance of the first node through signaling, and the first node uses the updated uplink timing advance Communicate with the second node.
  • decoding errors may occur in the first node and/or the second node, resulting in different TA values maintained by the first node and the second node.
  • the second node When the TA values maintained by the first node and the second node are different, it may cause the second node to configure the wrong T delta for the first node, or cause the second node to calculate ⁇ DD , ⁇ UD , ⁇ UU , ⁇ DU An error occurred. In order to avoid this situation, it is necessary to provide a mechanism to solve the inconsistency of TA values maintained or stored by the first node and the second node.
  • the first node in order to maintain that the second node can configure the correct T delta for the first node, the first node reports its maintained TA value to the second node or the donor node, which is marked as TA1.
  • This report can be The second node or donor node triggers.
  • the second node or donor node sends a TA report request to the first node, and the first node reports the maintained TA value to the second node or donor node after receiving the TA report request.
  • the first node reports TA1/2 and its corresponding T delta 1 to the second node or donor node.
  • the first node may simultaneously report the TA value or TA/2 used to calculate T delta 1.
  • the second node or donor node triggers the first node to report T delta 1
  • it may also require the first node to report the TA value or TA/2 used to calculate T delta 1.
  • the first node after receiving the MAC CE timing update command sent by the second node, the first node sends a TA confirmation message to the second node through the MAC CE to ensure that the first node and the second node are maintained The same TA. Since the first node needs to return the TA confirmation message at this time, the second node cannot apply the value of the timing advance in the timing update command before receiving the TA confirmation message. To ensure that the first node and the second node can use the correct timing advance at the same time, the activation time can be increased in the timing update command.
  • the activation time may be m time slots/subframes after the current timing update command time slot/subframe starts to use the new timing advance value, m bits are any positive integer.
  • the activation time may also be defined by the protocol.
  • the protocol defines that the new timing advance value is used for m time slots/subframes after receiving the timing update command. The specific implementation of this application is not restricted.
  • the second node may further send a TA update complete message to the first node. If the TA update complete message is supported, the above activation time should be after the TA update complete message.
  • the upper-level node can configure the correct timing offset T delta for the IAB node, and that the ⁇ DD , ⁇ UD , ⁇ UU , ⁇ DU calculated by the second node are consistent with the calculation results of the first node To determine the correct symbol availability status and avoid data transmission errors due to inconsistent symbols.
  • the second node obtains the time deviation between the MT symbol and the DU symbol according to ⁇ DD , ⁇ UD , ⁇ UU , and ⁇ DU .
  • the second node is based on ⁇ DD , ⁇ UD , ⁇ UU , ⁇ DU , and the parameter information of the MT and DU resources of the IAB node, the time deviation between any MT symbol and the DU symbol can be obtained.
  • the specific acquisition or calculation method can be defined by the protocol, or can be reserved for the implementation of the second node .
  • the available status of the symbols in the first resource set can be determined, so that the symbols are utilized to the maximum and the spectrum efficiency is improved. It should be understood that the foregoing determination of the availability status of the symbols in the first resource set does not need to be determined for each symbol. Generally, one or more symbols in the first resource set or one or more symbols in the end may be considered. For example, considering only the 0th to 3rd symbols in the first resource set, the following symbols can be the k-1, k-2, or k-3 symbols, etc. After determining the first and last available symbols , The symbol status between the first and last available symbols are all available.
  • the foregoing embodiment mainly determines the status of the available symbols in the first resource set after the first hard resource of the IAB node DU and/or before the second hard resource.
  • the first resource set may only be a part of the resources between the first hard resource and the second hard resource.
  • this application refers to the resources between the first hard resource and the second hard resource as MT available resources.
  • the MT available resources may include multiple first resource sets. Each first resource set can be scheduled for uplink transmission or downlink transmission. If the transmission states of two consecutive first resource sets are different, that is, one first resource set is uplink transmission, and the other first resource set is downlink transmission, then power amplifiers are also required between the two first resource sets. Send and receive conversion.
  • Fig. 12 is a schematic diagram showing different transmission states of two consecutive first resource sets on the IAB node MT.
  • the IAB node MT is from sending to receiving.
  • Figure 12(b) shows the IAB node MT from receiving to transmitting.
  • 1201 is the downlink transmission resource of the IAB node DU
  • 1202 is the uplink reception resource of the IAB node DU
  • 1203 is the downlink transmission time slot timing of the IAB node DU
  • 1204 is the uplink reception timing of the IAB node DU
  • 1205 is the resource (or resource set) received by the IAB node MT
  • 1206 is the resource (or resource set) sent by the IAB node MT.
  • Figure 12 (a) shows the IAB node MT switching from uplink transmission to downlink reception.
  • the time difference from the start time of the resource 1205 to the end time of the resource 1206 among them The superscript means MT, and the subscript means from uplink transmission to downlink reception.
  • the meanings of other parameters are as mentioned above and will not be repeated.
  • the resource 1206 is available. It should be understood that it is assumed here that the transmission-to-reception conversion time of the power of the IAB node on the MT is equal to the conversion time on the DU. If they are different, T TR should be the conversion time from transmission to reception of the power amplifier on the MT.
  • the downlink reception usually carries control information, it is usually necessary to ensure that the first symbol of the downlink transmission is available.
  • the embodiment shown in FIG. 12 assumes that the first symbols received in the downlink must be guaranteed to be available. in case (or ), the number of symbols i that need to be knocked out on resource 1206 must satisfy (or ).
  • Figure 12(b) shows that the IAB node MT first performs downlink reception on a resource 1215, and then performs uplink transmission on another resource 1216.
  • 1211 is the downlink sending resource of the IAB node DU
  • 1212 is the uplink receiving resource of the IAB node DU.
  • 1213 is the downlink transmission time slot timing of the IAB node DU
  • 1214 is the uplink reception timing of the IAB node DU.
  • the time difference between the start time of the uplink transmission of the MT of the IAB node and the end of the downlink reception among them The superscript indicates MT, and the subscript indicates receiving from downlink to uplink transmission.
  • the meanings of other parameters are as mentioned above, and will not be repeated.
  • the number of knocked-out symbols i must satisfy (or ). Therefore, as long as the total number of symbols knocked out on the resource set 1215 and/or the resource set 1216 meets the above requirements, it is sufficient.
  • whether to delete the symbol at the end of the resource set 1215, or to delete the symbol at the beginning of 1216, or to delete part of the symbols on 1215 and 1216, respectively, may depend on the configuration. For example, it can be indicated in the DCI of the PDCCH.
  • the specific indication can include the number of symbols to be dropped, and it can also include an indication of only dropping the tail of the downlink reception or only the head of the uplink transmission, for example, using one bit to indicate , 1 means that only the tail of the downlink reception is removed, and 0 means that only the head of the uplink transmission is removed.
  • the last symbol of the first hard resource set or the first symbol of the second hard resource set is a flexible symbol, that is, a symbol whose transmission direction has not been determined.
  • the second node may respectively assume that the flexible symbol is an uplink symbol or a downlink symbol, and determine the availability of the first symbol according to the two assumptions, if and only if the first symbol is under the two assumptions When all symbols are available, the first symbol is determined to be an available symbol.
  • the protocol specifies the second node's assumption of the flexible symbol, for example, the flexible symbol is always assumed to be uplink or downlink, and the second node determines the availability of the first symbol based on this assumption.
  • the foregoing embodiment mainly determines the availability of the symbols of the first resource set based on the known configuration of the first hard resource set and/or the second hard resource set.
  • the configuration of the first hard resource set and/or the second hard resource set is implicit configuration.
  • the implicit configuration refers to specifying the available resources between the first hard resource set and the second hard resource set through signaling, and in turn infers the position of the end symbol of the first hard resource set, or the start symbol of the second hard resource set s position.
  • the IAB node receives the MT available resource configuration information sent by the superior node or the host node.
  • the IAB node determines the position of the last available symbol in the first hard resource set in the aforementioned various scenarios according to the MT available resource configuration information; or the IAB node determines the first available symbol in the second hard resource set in the aforementioned various scenarios according to the MT available resource configuration information The position of the symbol.
  • the last symbol in the first hard resource set and/or the first symbol in the second hard resource set can be determined according to the transmission direction of the first resource in the available resources of the MT and the transmission direction of the first hard resource set or the second hard resource set.
  • One symbol. Taking the first resource set for downlink reception and the first hard resource set for downlink transmission as an example, between the start time t 3 of the first available symbol of the first resource set and the end time t 1 of any symbol in the first hard resource set When the time difference therebetween satisfies t 3 -t 1 ⁇ T TR (or t 3 -t 1 >T TR ), and the last symbol of the first hard resource set has the maximum symbol end time t 1 meeting the above conditions.
  • the meanings of the other parameters are as mentioned before, and will not be repeated here.
  • the position of the first symbol in the second hard resource set can be determined.
  • ⁇ information DU acquires ⁇ DD, ⁇ UD, ⁇ UU , similar to [Delta] DU manner to step S907, the here not Repeat it again.
  • the boundary of the first hard resource set can be determined by determining the parameter j.
  • the value of j is determined according to j*T s - ⁇ DD ⁇ x (or j*T s - ⁇ DD >x).
  • the boundary of the second hard resource set can be determined by the parameter j.
  • the symbols on the first hard resource set are all available because the power amplifier of the IAB node does not need to be converted at this time.
  • the symbols between the first resource set and the first hard resource set are available. Therefore, the symbol boundary of the first hard resource set is the symbol before the first symbol of the first resource set.
  • the second hard resource set is uplink reception and the first resource set is downlink reception, according to j*T s - ⁇ DU ⁇ y (or j*T s - ⁇ DU >y) to determine before the second hard resource set
  • the boundary of the second hard resource set can be determined by the parameter j.
  • the first hard resource set When the first hard resource set is downlink transmission and the first resource set is uplink transmission, the first hard resource set cannot be determined according to j*T s - ⁇ UD ⁇ x (or j*T s - ⁇ UD >x). Use the value of the number j of symbols or soft symbols.
  • the boundary of the first hard resource set can be determined by determining the parameter j.
  • the boundary of the first symbol of the second hard resource set is the symbol after the first resource set.
  • the first hard resource set is determined according to j*T s - ⁇ UU +T g ⁇ x (or j*T s - ⁇ UD +T g >x)
  • the boundary of the first hard resource set can be determined by determining the parameter j.
  • the first resource set is determined according to j*T s - ⁇ UU +T g ⁇ y (or j*T s - ⁇ UD +T g >y) 2.
  • the boundary of the second hard resource set can be determined by the parameter j.
  • the number of unusable symbols on the first hard resource set and/or the second hard resource set can be determined.
  • each network element such as the first node and the second node, includes hardware structures and/or software modules corresponding to each function in order to implement the above functions.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application can divide the first node and the second node into functional modules according to the foregoing method examples, for example, can be divided into various functional modules, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. It should be understood that the second node may be an IAB node or a donor base station.
  • FIG. 13 is a schematic diagram of a possible structure of the first node involved in the foregoing embodiment provided by this application.
  • the first node is an IAB node.
  • the first node includes: a transceiver unit 1301 and a processing unit 1302.
  • the transceiver unit 1301 is used to support the first node to perform S903 and S908 in FIG. 9 and to support the first node in the foregoing embodiment to send T delta to the second upper-level node when switching from the first upper-level node to the second upper-level node 1 or ⁇ DD;
  • processing unit 1302, for supporting the first node executes 9 S904, S905, and means for supporting the first embodiment in the points embodiment the received message or a signaling process.
  • the first node further includes: a switching unit 1303, configured to support the first node to switch to the second upper node when switching from the first upper node to the second upper node.
  • the foregoing transceiver unit 1101 may be a transceiver, and the transceiver constitutes a communication interface of the first node. It should be understood that the communication interface may be a software or hardware interface.
  • FIG. 14 is a schematic diagram of a possible logical structure of the first node involved in the foregoing embodiment provided by an embodiment of this application.
  • the first node includes: a processor 1402.
  • the processor 1402 is used to control and manage the actions of the first node.
  • the processor 1402 is used to support the first node to execute S904 and S905 in FIG. 9 in the foregoing embodiment, and use To support the first node in the foregoing embodiment to process the received message or signaling.
  • the first node may further include: a memory 1401 and a communication interface 1403; the processor 1402, the communication interface 1403, and the memory 1401 may be connected to each other or through the bus 1404.
  • the communication interface 1403 is used to support the first node to communicate
  • the memory 1201 is used to store the program code and data of the first node.
  • the processor 1202 calls the code stored in the memory 1201 to perform control and management, and implement various possible methods in the foregoing embodiments.
  • the memory 1401 may or may not be coupled with the processor.
  • the aforementioned processor 1402 and memory 1401 may also be integrated in an application specific integrated circuit, and the application specific integrated circuit may further include a communication interface 1403.
  • the application specific integrated circuit can be a processing chip or a processing circuit.
  • the communication interface 1403 may be a communication interface including wireless transceiving, or a digital signal input after processing the received wireless signal by other processing circuits, or a software or hardware interface for communicating with other modules.
  • the processor 1402, the memory 1401, and the communication interface 1403 may be implemented by chips.
  • the processor 1402, the memory 1401, and the communication interface 1403 may be implemented in the same chip, or may be implemented in different chips. Or any combination of two functions can be implemented in one chip.
  • the processor 1402 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 1404 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus, etc. The bus can be divided into address bus, data bus, control bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • processor 1402, communication interface 1403, and memory 1401 may also be integrated in an integrated circuit, and execute all actions or functions performed by the first node in the foregoing embodiments.
  • FIG. 15 is a schematic diagram of a possible structure of the second node involved in the foregoing embodiment provided by this application.
  • the second node is a relay node or a donor base station.
  • the second node includes: a transceiver unit 1501 and a processing unit 1502. Wherein, the transceiver unit 1501 is used to support the second node to perform S903 and S908 in FIG. 9, and to support the second node to perform the reception T delta 1 or ⁇ DD when the first node switches to the second node in the foregoing embodiment.
  • the second node further includes: a processing unit 1502, a processing unit 1502, configured to support the second node to execute S901, S902, S906, and S907 in FIG. 9 or to process received messages.
  • the foregoing transceiver unit 1501 may be a transceiver, and the transceiver constitutes a communication interface in the second node. It should be understood that the communication interface may be a software or hardware interface.
  • FIG. 16 is a schematic diagram of a possible logical structure of the second node involved in the foregoing embodiment provided by the embodiment of the application.
  • the second node includes: a processor 1602.
  • the processor 1602 is used to control and manage the actions of the second node.
  • the processor 1602 is used to support the second node to execute S901, S902, S906 and S906 in FIG. 9 in the foregoing embodiment. S907, or used to process the received message.
  • the second node may further include: a memory 1601 and a communication interface 1603; the processor 1602, the communication interface 1603, and the memory 1601 may be connected to each other or through the bus 1604.
  • the communication interface 1603 is used to support the second node to communicate, and the memory 1601 is used to store the program code and data of the second node.
  • the processor 1602 calls the code stored in the memory 1601 for control and management.
  • the memory 1601 may or may not be coupled with the processor.
  • the aforementioned processor 1602 and memory 1601 may also be integrated in an application specific integrated circuit, and the application specific integrated circuit may further include a communication interface 1603.
  • the application specific integrated circuit can be a processing chip or a processing circuit.
  • the communication interface 1603 may be a communication interface including wireless transmission and reception, or an interface for a digital signal input after processing the received wireless signal by other processing circuits, or a software or hardware interface for communicating with other modules.
  • the processor 1602, the memory 1601, and the communication interface 1603 may be implemented by chips, and the processor 1602, the memory 1601, and the communication interface 1603 may be implemented on the same chip, or may be implemented on different chips. Or any combination of two functions can be implemented in one chip.
  • the processor 1602 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 1604 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus, etc. The bus can be divided into address bus, data bus, control bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • processor 1602, communication interface 1603, and memory 1601 may also be integrated in an integrated circuit to perform all the actions or functions performed by the second node in the foregoing embodiments.
  • a readable storage medium stores computer execution instructions.
  • a device may be a single-chip microcomputer, a chip, etc.
  • a processor executes the resource determination in FIG. 9 In the method, read the computer execution instruction in the storage medium.
  • the aforementioned readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • a computer program product in another embodiment, includes computer-executable instructions stored in a computer-readable storage medium; at least one processor of the device can be accessed from a computer The reading storage medium reads the computer-executable instruction, and at least one processor executes the computer-executable instruction to make the device implement the steps of the first node and the second node in the method for determining resources in FIG. 9.
  • a communication system is also provided.
  • the communication system at least includes a first node and a second node.
  • the first node may be the first node provided in FIG. 9 for executing the steps of the first node in the method for determining resources provided in FIG. 9; and/or, the second node may be the first node provided in FIG. 9 Two nodes, and are used to perform the steps performed by the second node in the method for determining resources provided in FIG. 9.
  • the communication system may include multiple first nodes and second nodes, or include multiple first nodes and one second node. Through the resource indication information, the first node and the second node can determine the available status of the resource on the backhaul link, and the symbol-level resource determination can avoid resource waste and improve spectrum efficiency.
  • the resource status determined between the first node and the second node is kept consistent by determining the resource, so that communication is performed according to the determined resource. Since the determined resource is symbol-based, the air interface is used to the maximum. Resources, reduce resource waste, and improve spectrum efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种中继系统中资源确定的方法和装置,第一节点通过接收上级节点发送的资源指示信息,确定第一资源集位于第一硬资源集和第二硬资源集之间的符号的可用性,以最大限度提升资源利用率。该方法包括:第一节点接收上级节点发送的资源指示信息,资源指示信息用于指示第一资源集的传输方向,第一资源集位于第一硬资源集和第二硬资源集之间,第一硬资源集和第二硬资源集为连续的硬资源;第一节点根据资源指示信息确定第一阈值x和第二阈值y;当t 3-t 1≥x,且t 2-t 4≥y时,第一节点确定第一资源集中的第一符号为可用;第一节点根据资源指示信息在第一符号上和所述上级节点进行通信。

Description

一种同步信号发送和接收的方法及装置 技术领域
本发明涉及通信技术,具体涉及无线通信系统中中继节点的传输资源确定的方法和装置。
背景技术
随着移动通信技术的不断发展,频谱资源日趋紧张。为了提高频谱利用率,未来的基站部署将会更加密集。此外,密集部署还可以避免覆盖空洞的出现。在传统蜂窝网络架构下,基站通过光纤与核心网建立连接。然而,光纤的部署成本非常高昂。无线中继节点(relay node,RN)通过无线回传链路与核心网建立连接,可节省部分光纤部署成本。
一般情况下,无线中继节点与一个或多个上级节点建立无线回传链路,并通过上级节点接入核心网。无线中继节点可为多个下级节点提供服务。中继节点的上级节点可以是基站,也可以是另一个中继节点;中继节点的下级节点可以是终端设备(user equipment,UE),也可以是另一个无线中继节点。
第五代移动通信(5th generation mobile networks or 5th generation wireless systems,5G)无线接入网(radio access network,RAN)的新空口(new radio,NR)支持的中继方案被称为一体化的接入和回传(integrated access and backhaul,IAB),而一体化的接入和回传的中继节点被称为IAB节点(IAB node)。
在IAB节点的接入链路与回传链路以时分,空分或频分的方式进行资源复用。以时分复用(time division multiplexing,TDM)场景为例,回传链路与接入链路在不同的时刻工作,因此IAB节点需要在回传链路的收发与接入链路的收发之间切换。当回传链路与接入链路之间进行切换时,如果不需要进行功放的接收和发送之间的转换,IAB节点具有最高的资源利用率。然而在实现中,由于功放的开关时间,传输距离,非理想同步等各种因素,回传链路与接入链路之间进行切换时,不能忽略功放的收发转换时间。功放的收发转换时间对回传链路上传输的符号资源产生影响。如何减小由于功放的收发转换造成频谱效率的降低是5G IAB需要考虑的问题。
发明内容
本申请的实施例提供一种中继系统中资源确定的方法及装置,解决了中继系统中IAB节点的MT(mobile terminal,MT)和DU(distributed unit,DU)之间进行数据传输转换时,在转换边界处导致开销过大的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种中继系统中资源确定的方法,用于IAB节点确定MT上资源的可用状态,以最大限度利用符号资源,减小开销。包括:第一节点接收上级节点发送的资源指示信息,资源指示信息用于指示第一资源集的传输方向,第一资源集位于第一硬资源集和第二硬资源集之间,第一硬资源集和所述第二硬资源集为连续的硬资源;第一节点根据资源指示信息确定第一阈值x和第二阈值y;当t 3-t 1≥x,且t 2-t 4≥y时,第一节点确定第一资源集中的第一符号为可用;其中,t 1为第一硬资源集中最后一个符号的结束时间,t 2 为第二硬资源集中第一个符号的开始时间,t 3为第一符号的开始时间,t 4为第一符号的结束时间;第一节点根据资源指示信息在第一符号上和上级节点进行通信。上述技术方案中,通过对确定第一资源集上符号的可用状态,最大限度的利用符号资源,避免以子帧或时隙为单位来避免资源重叠而造成的资源浪费,提升了频谱效率。
在第一方面的一种可能的实现方式中,对不同的场景,第一阈值x和第二阈值y不同,具体的,在不同场景下,其确定方法为:
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,第一阈值x=T TR;或者,
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为上行传输时,所述x=0;或者,
当第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,x=0;或者,
当第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,x=T RT;或者,
当第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,y=T RT;或者,
当第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为上行传输时,y=0;或者,当第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,y=0;或者,
当第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,y=T TR
T RT为第一节点的接收到发送的转换时间,T TR为第一节点的发送到接收的转换时间。
在第一方面的一种可能的实现方式中,在不同场景下,确定t 3-t 1和t 2-t 4的参数不同,具体依赖于不同的场景,包括:
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,t 3-t 1和t 2-t 4由Δ DD确定,
Figure PCTCN2020075401-appb-000001
或者,
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为上行传输时,t 3-t 1和t 2-t 4由Δ UD确定,Δ UD=TA+TA offsetDD;或者,
第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,t 3-t 1和t 2-t 4由Δ DU确定,Δ DU=T gDD;或者,
第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,t 3-t 1和t 2-t 4由Δ UU确定,Δ UU=TA+TA offsetDD-T g;或者,
第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,t 3-t 1和t 2-t 4由Δ DD确定,
Figure PCTCN2020075401-appb-000002
或者,
第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为上行传输 时,t 3-t 1和t 2-t 4由Δ UD确定,Δ UD=TA+TA offsetDD;或者,
第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,t 3-t 1和t 2-t 4由Δ DU确定,Δ DU=T gDD;或者,
第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,t 3-t 1和t 2-t 4由Δ UU确定,Δ UU=TA+TA offsetDD-T g
TA为定时提前量,T delta为定时偏移量,TA offset为定时提前偏移量,T g为所述第一节点的接入链路的收发转换时间差。
在第一方面的一种可能的实现方式中,IAB节点可能由于某种原因从一个上级节点切换到另一个上级节点,在切换到另一个上级节点时,所述另一个上级节点还没有获得IAB节点的必要参数以确定可用符号状态。因此,所述方法包括:第一节点从第一上级节点切换到第二上级节点;第一节点向第二上级节点发送T delta或Δ DD。上述技术方案中,通过向第二上级节点上报T delta或Δ DD,使得第二上级节点可以根据IAB节点上报的T delta或Δ DD来确定符号状态,从而保持终端的符号状态一直,提升资源利用率。
在第一方面的一种可能的实现方式中,上级节点可能需要IAB几点的一些信息来确定第一资源集的符号的可用状态,因此,第一节点向上级节点上报所述Δ UU,或
Figure PCTCN2020075401-appb-000003
或所述T g。上述技术方案中,通过向第二上级节点上报Δ UU,或
Figure PCTCN2020075401-appb-000004
或T g,使得第二上级节点可以根据IAB节点上报的Δ UU,或
Figure PCTCN2020075401-appb-000005
或T g来确定符号状态,从而保持终端的符号状态一直,提升资源利用率。
在第一方面的一种可能的实现方式中,上级节点可能会对TA进行更新,当TA更新时,IAB节点可能需要重新Δ UU,并可能导致IAB节点重新确定第一资源集的可用符号。该方法包括:第一节点接收上级节点发送的TA更新命令,第一节点根据TA更新命令更新Δ UU。上述技术方案中,通过TA更新,使得网络节点间保持同步,避免干扰,重新确定第一资源集的可用符号利于提高频谱利用率。
第二方面,提供一种中继系统中资源确定的方法,用于IAB节点确定MT上资源的可用状态,以最大限度利用符号资源,减小开销。包括:第二节点获取第一节点的第一硬资源集和第二硬资源集,第一硬资源集和第二硬资源集为连续的硬资源,第二节点为第一节点的上级节点;第二节点确定第一资源集,第一资源集位于第一硬资源集和第二硬资源集之间;第二节点获取第一阈值x和第二阈值y;当第一符号的开始时间和第一硬资源集中最后一个符号的结束时间的时间差D h大于x,且第二硬资源集中第一个符号的开始时间和第一符号的结束时间的时间差D e大于y时,第二节点确定所述第一资源集中的所述第一符号为可用;第二节点在第一符号上和第一节点进行数据传输。上述技术方案中,通过对确定第一资源集上符号的可用状态,最大限度的利用符号资源,避免以子帧或时隙为单位来避免资源重叠而造成的资源浪费,提升了频谱效率。
在第二方面的一种可能的实现方式中,对不同的场景,第一阈值x和第二阈值y不同,具体的,在不同场景下,其确定方法为:
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,第一阈值x=T TR;或者,
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为上行传输时,x=0;或者,
第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,x=0;或者,
第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,x=T RT;或者,
第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,y=T RT;或者,
第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为上行传输时,y=0;或者,
第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,y=0;或者,
第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,y=T TR
T RT为所述第一节点的接收到发送的转换时间,T TR为所述第一节点的发送到接收的转换时间。
在第二方面的一种可能的实现方式中,第二节点需要向第一节点发送资源指示信息,以便于第一节点通过资源指示信息确定第一节点的MT上第一资源中符号的可用状态。包括:第二节点向第一节点发送资源指示信息,资源指示信息用于指示第一资源集的传输方向。上述技术方案中,通过向第一节点发送资源指示信息,使得第一节点获取MT上第一资源集的传输方向,从而根据传输方向确定可用符号的状态,以提升频谱效率。
在第二方面的一种可能的实现方式中,图案重配指示还包括:更新的图案跳变序列和/或图案配置信息的起始时间。上述技术方案中,使得对图案跳变序列和/或图案配置信息的重新配置时,各节点的信息保持一致,避免各节点相互不协同带来相互测量时测量不到或不能发现的情况。
在第二方面的一种可能的实现方式中,第二节点需要获取第一节点的参数信息以确定第一节点的MT上符号的可用状态。包括:第二节点接收第一节点上报的Δ UU,或
Figure PCTCN2020075401-appb-000006
或T g,TA为定时提前量,Δ UU为第一节点回传链路上行发送帧相对接入链路上行接收帧边界的时间差,T g为第一节点的接入链路的收发转换时间差。上述技术方案中,第二节点可以通过第一节点上报的参数确定第一资源集中符号的可用状态,提升第一节点的回传链路的频谱利用率。
在第二方面的一种可能的实现方式中,在不同场景下,确定D h和D e,具体依赖于不同的场景,具体包括:
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,D h和D e由Δ DD确定,
Figure PCTCN2020075401-appb-000007
或者,
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为上行 传输时,D h和D e由Δ UD确定,Δ UD=TA+TA offsetDD;或者,
第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,D h和D e由Δ DU确定,Δ DU=T gDD;或者,
第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,D h和D e由Δ UU确定,Δ UU=TA+TA offsetDD-T g;或者,
第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,D h和D e由Δ DD确定;或者,
第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为上行传输时,D h和D e由Δ UD确定;或者,
第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,D h和D e由Δ DU确定;或者,
第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,D h和D e由Δ UU确定;
TA为定时提前量,T delta为定时偏移量,TA offset为定时提前偏移量,T g为所述第一节点的接入链路的收发转换时间差。
在第二方面的一种可能的实现方式中,节点编号信息包括:配置的节点编号,小区标识cell ID,物理小区标识PCI,无线网络临时识别符RNTI,MAC地址,IP地址中的一种。
在第二方面的一种可能的实现方式中,上级节点可能会对TA进行更新,以实现更精确的时间同步,就会导致第二节点向第一节点发送TA更新命令,从而导致第二节点调整参数,并通过上报参数,使得第二节点可以确定第一节点的MT上第一资源集上符号的可用状态。包括:第二节点向第一节点发送TA更新命令,TA更新命令用于第一节点更新Δ DDUU,Δ UD或Δ DU
在本申请的又一方面,提供了一种第一节点,第一节点用于实现上述第一方面的任一种可能的实现方式所提供的中继系统中资源确定的方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,第一节点的结构中包括处理器,该处理器被配置为支持该用户设备执行上述第一方面或第一方面的任一种可能的实现方式所提供的中继系统中资源确定的方法。可选的,第一节点还可以包括存储器和通信接口,该存储器中存储代码和数据,该存储器与处理器耦合,通信接口与处理器或存储器耦合。
在本申请的又一方面,提供了一种第二节点,第二节点用于实现上述第二方面或第二方面的任一种可能的实现方式所提供的中继系统中资源确定的方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,第二节点的结构中包括处理器,该处理器被配置为支持网络设备执行上述第二方面或第二方面的任一种可能的实现方式所提供的中继系统中资源确定的方法的功能。可选的,网络设备还可以包括存储器和通信接口,存储器中存储处理和/或基带处理器所需代码,存储器与处理器耦合,通信接口与存储器或处理器耦合。
本申请的又一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种 可能的实现方式所提供的中继系统中资源确定的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式所提供的中继系统中资源确定的方法。
本申请的又一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所提供的中继系统中资源确定的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式所提供的中继系统中资源确定的方法。
本申请的又一方面,提供一种通信系统,该通信系统包括多个设备,该多个设备包括第一节点、第二节点;其中,第一节点为上述各方面所提供的第一节点,用于支持第一节点执行上述第一方面或第一方面的任一种可能的实现方式所提供的中继系统中资源确定的方法;和/或,第二节点为上述各方面所提供的第二节点,用于支持第二节点执行上述第二方面或第二方面的任一种可能的实现方式所提供的中继系统中资源确定的方法。
在申请的又一方面,提供一种装置,所述装置为一个处理器、集成电路或者芯片,用于执行本发明实施例中由第一节点的处理单元执行的步骤,例如,确定第一资源集中符号的可用状态。所述装置还用于执行前述其它方面或实施例中已经描述的第一节点处理或动作,此处不再赘述。
在申请的又一方面,提供另一种装置,所述装置为一个处理器、集成电路或者芯片,用于执行本发明实施例中由第二节点的处理单元执行的步骤。支持第二节点执行对前述实施例中确定第一资源集中符号的可用状态。所述另一种装置还用于执行前述其它方面或实施例中已经描述的第二节点的处理或动作,此处不再赘述。
可以理解,上述提供的中继系统中资源确定的方法的装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的IAB通信系统;
图2为本申请实施例提供的IAB节点和宿主基站之间或上级节点的帧结构;
图3为本申请实施例提供的IAB节点的资源配置的示意图;
图4为本申请实施例提供的DU的H/S资源与MT的可用或不可用资源的关系示意图;
图5为本申请实施例提供的IAB节点的MT进行下行接收,DU进行下行发送的示意图;
图6为本申请实施例提供的IAB节点的MT进行上行发送,DU进行下行发送的示意图;
图7为本申请实施例提供的IAB节点的MT进行下行接收,DU进行上行接收的示意图;
图8为本申请实施例提供的IAB节点的MT进行上行传输,DU进行上行接收的示意图;
图9为本申请实施例提供的确定资源的方法流程图;
图10为本申请实施例提供的确定第一硬资源集之后的第一资源集中一个或多个符号可用状态的示意图;
图11为本申请实施例提供的确定第二硬资源集之前的第一资源集中一个或多个符号可用状态的示意图;
图12为本申请实施例提供的IAB节点MT上连续两个第一资源集的传输状态不同的示意图;
图13为本申请实施例提供的第一节点的一种可能的结构示意图;
图14为本申请实施例提供的第一节点的一种可能的逻辑结构示意图;
图15为本申请实施例提供的第二节点的一种可能的结构示意图;
图16为本申请实施例提供的第二节点的一种可能的逻辑结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。本申请实施例中的“包括A或B中的一个或多个”可以表示:包括A,包括A和B,包括B这三种情况。本申请实施例中的“包括A、B或C中的一个或多个”可以表示:包括A和B和C,包括A和B,包括A和C,包括B和C,包括A,包括B,包括C这7种情况。
应理解,本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
考虑到未来无线网络的高带宽,NR考虑引入IAB方案以进一步降低部署成本,提高部署灵活性,并由此引入一体化的接入和回传中继,本申请将具有一体化的接入和回传的中继节点称为一体化的接入和回传节点(IAB node)以区分长期演进(long term evolution,LTE)系统的中继。
为了更好地理解本发明实施例公开的一种中继系统中资源确定的方法及装置,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1为本申请实施例所适用的通信系统的结构示意图。
需要说明的是,本申请实施例提及的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、LTE系统、下一代5G移动通信系统或者5G之后的通信系统,如NR、设备到设备(device to device,D2D)通信系统。
在图1所示的通信系统中,给出了一体化的接入和回传IAB系统。一个IAB系统至少包括一个基站100,及基站100所服务的一个或多个终端设备(terminal)101,一个或多个中继节点IAB node,及该IAB node 110所服务的一个或多个终端设备111。通常基站100被称为宿主基站(donor next generation node B,DgNB),IAB node 110通过无线回传链路113连接到基站100。宿主基站在本申请中也称为宿主节点,即,Donor节点。基站包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器 (base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、eLTE(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)等。终端设备包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。IAB node是中继节点的特定的名称,不对本申请的方案构成限定,可以是一种具有转发功能的上述基站或者终端设备中的一种,也可以是一种独立的设备形态。
一体化的接入和回传系统还可以包括多个其他IAB node,例如IAB node 120和IAB node 130,IAB node 120是通过无线回传链路123连接到IAB node 110以接入到网络的,IAB node 130是通过无线回传链路133连接到IAB node 110以接入到网络的,IAB node 120为一个或多个终端设备121服务,IAB node 130为一个或多个终端设备131服务。图1中,IAB node 110和IAB node 120都通过无线回传链路连接到网络。在本申请中,所述无线回传链路都是从中继节点的角度来看的,比如无线回传链路113是IAB node 110的回传链路,无线回传链路123是IAB node 120的回传链路。
如图1所示,一个IAB node,如120,可以通过无线回传链路,如123,连接另一个IAB node 110,从而连接到网络,而且,中继节点可以经过多级无线中继节点连接到网络。应理解,本申请中用IAB node仅仅出于描述的需要,并不表示本申请的方案仅用于NR的场景,在本申请中,IAB node可以泛指任何具有中继功能的节点或设备,本申请中的IAB node和中继节点的使用应理解具有相同的含义。
通常,下级节点可以被看作是上级节点的一个UE。应理解,图1所示的一体化接入和回传系统中,一个IAB node连接一个上级节点。但是在未来的中继系统中,为了提高无线回传链路的可靠性,一个IAB node,如120,可以有多个上级节点同时为一个IAB node提供服务。如图中的IAB node 130还可以通过回传链路134连接到IAB node 120,即,IAB node 110和IAB node 120都为IAB node 130的上级节点。IAB node 110,120,130的名称并不限制其所部署的场景或网络,可以是比如relay,RN等任何其他名称。本申请使用IAB node仅是方便描述的需要。
在图1中,无线链路102,112,122,132,113,123,133,134可以是双向链路,包括上行和下行传输链路,特别地,无线回传链路113,123,133,134可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回传服务。应理解,回传链路的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。所述下行传输是指上级节点,如节点100,向下级节点,如节点110,传输信息或数据,上行传输是指下级节点,如节点110,向上级节点,如节点100,传输信息或数据。所述节点不限于是网络节点还是终端设备,例如,在D2D场景下,终端设备可以充当中继节点为其他终端设备服务。无线回传链路在某些场景下又可以是接入链路,如回传链路123对节点 110来说也可以被视作接入链路,回传链路113也是节点100的接入链路。对于节点110来说,链路113被称为上级回传链路(parent BH),链路123被称为下级回传链路(child BH),而链路112被称为接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的终端设备,如D2D场景下,下级节点也可以是终端设备。
图1所示的中继节点,如110,120,130,可以有两种存在的形态:一种是作为一个独立的接入节点存在,可以独立管理接入到中继节点的终端设备,此时的中继节点通常具有独立的物理小区标识(physical cell identifier,PCI),这种形态的中继通常需要有完全的协议栈功能,比如无线资源控制(radio resource control,RRC)的功能,这种中继通常被称为层3中继;而另一种形态的中继节点和Donor节点,如Donor eNB,Donor gNB,属于同一个小区,用户的管理是由宿主基站,如Donor节点来进行管理的,这种中继通常被称为层2中继。
层2中继在NR的控制和承载分离(central unit and distributed unit,CU-DU)架构下通常作为基站DgNB的DU而存在,通过F1-AP(F1 application protocol)接口或者隧道协议和CU进行通信。其中隧道协议可以是例如GTP(general packet radio service tunneling protocol,GTP)协议,F1-AP可以是F1-AP增强接口,不再赘述。
Donor节点是指通过该节点可以接入到核心网的节点,或者是无线接入网的一个锚点基站,通过该锚点基站可以接入到网络。锚点基站负责接收核心网的数据并转发给中继节点,或者接收中继节点的数据并转发给核心网。
为描述方便,以下解释本申请中用到的基本术语或概念。
上级节点:提供无线回传链路资源的节点,如110,称为IAB node 120的上级节点。上级节点也可以称为上游节点。应理解,上级节点不限于提供无线回传链路资源的直接上级节点,包括所有提供到宿主基站的传输的链路上提供无线回传链路资源的节点。直接上级节点是指为中继节点直接提供传输资源的节点,如,IAB node 110为IAB node 120的直接上级节点。
下级节点:使用回传链路资源向网络进行数据传输,或者接收来自网络的数据的节点称为下级节点。如,120则称为中继节点110下级节点,网络为核心网或者其他接入网之上的网络,如因特网,专网等。类似的,下级节点不限于为其提供无线回传链路资源的直接下级节点,包括所有提供到目标节点的传输的链路上提供无线回传链路资源的节点。直接下级节点是指为其直接提供传输资源的节点,如,IAB node 120为IAB node 110的直接下级节点。
接入链路:UE和IAB node,或UE和IAB宿主节点(IAB donor)之间的链路。或者,接入链路包括某个节点和它的下级节点进行通信时所使用的无线链路。接入链路包括上行接入链路和下行接入链路。上行接入链路也被称为接入链路的上行传输,下行接入链路也被称为接入链路的下行传输。
回传链路:IAB node和IAB子节点(IAB child node),或者IAB node和IAB父节点(IAB parent node)之间的链路。回传链路包括IAB节点和IAB子节点,或IAB节点和IAB父节点的下行传输的链路;回传链路还包括IAB节点和IAB子节点,或IAB节点和IAB父节点的上行传输的链路。IAB节点向IAB父节点进行数据传输,或者接收IAB子节点的上行传输被称为回传链路的上行传输。IAB节点接收IAB父节点的数据传输,或者向IAB 子节点进行的数据传输被称为回传链路的下行传输。为了对UE和IAB节点进行区分,IAB节点与IAB父节点之间的回传链路被又称为上级回传链路(parent BH),而IAB节点与IAB子节点之间的回传链路被称为下级回传链路(child BH)。
波形参数:是指一个子载波集合,或者一定带宽或载波的一部分的物理子载波的参数,波形参数包括以下参数中的至少一种:子载波间隔、循环前缀(cyclic prefix,CP)长度、时间间隔(transmission time interval,TTI)、符号长度、符号数、μ。其中μ是一个大于或等于0的整数,可以取值0到5,每个μ对应一个特定的子载波间隔和CP,子载波间隔和μ的关系为
Figure PCTCN2020075401-appb-000008
其中Δf为子载波间隔,Hz为频率的基本单位,kHz表示kilo Hz,即千赫兹。
时隙:是NR中的基本的时域单元,一个时隙可以包含14或12个符号,依赖于时隙所采用的波形参数中的CP长度。应理解,在有些情况下,时隙和子帧是相同的,例如,当波形参数中的子载波间隔为15KHz的时候,时隙和子帧可以是相同的。同样地,时隙不应局限于上述定义,在有些情况下,还可以定义mini-slot,即,一个或多个符号也可以称为一个时隙,本申请中的时隙包括mini-slot的概念。而符号一般指正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,但是,不应理解为仅限于OFDM的符号,还可以包含其他波形的符号,如单载波正交频分复用的符号等。一个子帧为可以为,例如1ms,一个子帧可以包含一个或多个时隙。当一个子帧仅包含一个时隙时,子帧和时隙相同。下文中的时隙或子帧就是指可以是时隙,也可以是子帧,在有些情况下子帧和时隙相同,而在有些情况下子帧和时隙不同,因此,时隙或子帧泛指一个调度的基本单元,其中的时隙可以是mini-slot,以下不再赘述。
波束:是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束可以由一个或多个天线端口所形成,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指天线阵列对无线信号在空间不同方向上进行加强或削弱接收的分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。在目前的NR协议中,波束可通过天线端口(antenna port)准共址(quasi colocation,QCL)关系体现,具体地,两个同波束的信号具有关于空域接收参数(spatial Rx parameter)的QCL关系,即协议中的QCL-Type D:{Spatial Rx parameter}。波束在协议中具体地可以通过各种信号的标识来表示,例如CSI-RS的资源ID,SS/PBCH的时域索引,SRS(sounding reference signal,探测信号)的资源ID,TRS(tracking reference signal,跟踪信号)的资源ID等。上述天线端口是一个逻辑上的概念,它与物理天线并没有一一对应的关系,天线端口是一个或多个物理天线为发射一个信号或信号流的物理天线形成的逻辑单元。
在NR中,IAB节点包括两个主要功能,一个是移动终端(mobile-termination,MT)功能,另一个是分布式单元(distributed unit,DU)功能。IAB节点在MT上可以和上级节点进行上行传输和/或下行传输。IAB节点在DU上可以和下级节点进行上行传输和/或下 行传输。
图2示出了IAB节点和宿主基站之间或上级节点的帧结构。图2中,仅示出了宿主基站或上级节点的DU的帧结构。图2中,210为宿主基站之间或上级节点的帧结构,其中211为下行传输帧结构,212为上行传输帧结构。220为IAB节点MT的帧结构,230为IAB节点DU的帧结构。其中221为IAB节点MT下行传输时的帧结构,222为IAB节点MT进行上行接收时的帧结构,231为IAB节点DU进行下行发送是的帧结构,232为IAB节点DU进行上行接收时的帧结构。图2中,假定IAB节点DU的帧定时和上级节点的帧定时同步。
图3是NR中IAB节点的资源配置的示意图。图3以时分双工(time division duplex,TDD)为例,其中,IAB节点的MT资源可以被配置为下行(downlink,D),上行(uplink,U),灵活(Flexible,F)三种类型。其中F类型的资源可以被配置为上行或下行传输,具体用于上行传输还是下行传输依赖于信令配置。
IAB节点的DU资源可以被配置为下行,上行,灵活和不可用(Null,N)四种类型。进一步地,DU的下行,上行,灵活三种类型的资源还可以被分为硬(hard,H)资源和软(soft,S)资源。其中,DU的hard资源,表示DU始终可用的资源。DU的soft资源,表示DU是否可用需要依赖于上级节点(例如donor节点)的指示。图3中,上级节点通过在下行时隙或子帧上的下行控制信息(downlink control information,DCI)来对IAB节点DU上的S资源的使用进行控制。而H资源和S资源则是宿主基站或上级节点通过RRC进行半静态配置的,或者宿主基站通过F1-AP协议来进行半静态配置的。
IAB节点的MT与上级节点的DU相连接,而IAB节点的DU与下级节点的MT相连接。在经过半静态(例如,通过RRC信令)的资源配置以后,IAB节点可以分别得到其MT资源和DU资源的资源配置。例如,可以包括MT资源和DU资源的传输方向(D/U/F),DU资源的类型(soft/hard),DU的NULL资源的位置等。
结合图3以及下面的表1可以看出,对于IAB节点,其DU的hard资源(例如,第1、6、7、8时隙对应的DU资源)所对应的MT资源(例如,第1、6、7、8时隙对应的MT资源)为不可用。应理解,图3中的时隙编号也可以是子帧编号或符号编号,以下主要以时隙为例进行说明,不再赘述。
具体地,结合前面的介绍,IAB节点的MT共有三种类型的资源,而IAB节点的DU共有7种类型的资源,两两组合后,IAB节点的MT以及其对应的DU可能的收发状况如下面的表1和表2所示,其中表1为时分复用场景下的MT以及DU的各种可能的资源类型组合下的资源配置情况。表2为空分复用(spatial division multiplexing,SDM)场景下的MT以及DU的各种可能的资源类型组合下的资源配置情况。
表1
Figure PCTCN2020075401-appb-000009
Figure PCTCN2020075401-appb-000010
表2
Figure PCTCN2020075401-appb-000011
Figure PCTCN2020075401-appb-000012
在以上表1和表2中,各标识的含义如下:
“MT:Tx”表示MT在被调度后应进行传输;
“DU:Tx”表示DU可以进行传输;
“MT:Rx”表示MT有能力进行接收(如果有信号需要接收);
“DU:Rx”表示DU可以调度下级节点的上行传输;
“MT:Tx/Rx”表示MT在被调度后应传输或接收,但传输和接收不同时发生;
“DU:Tx/Rx”表示DU可以进行传输或接收下级节点的传输,但传输和接收不同时发生;
“IA”表示DU资源被显式或隐式的指示为可用;
“INA”表示DU资源被显式或隐式的指示为不可用;
“MT:NULL”表示MT不进行发送且不必具有接收能力;
“DU:NULL”表示DU不进行发送且不接收下级节点的传输。
本申请主要考虑TDM的场景,但本申请方案也可扩展至SDM,频分多路复用(frequency-division multiplexing,FDM)或全双工等场景。对于TDM场景,DU的hard资源所对应的MT资源为不可用。
具体地,在MT的不可用资源(例如图5中的第1、6、7、8时隙对应的MT资源)上:
(1)MT不期望上级节点会在这些资源上对其进行调度;
(2)MT不在这些资源上进行参考信号的接收或发送;
(3)MT不在这些资源上进行物理下行控制信道(physical downlink control channel,PDCCH)监测,即如果搜索空间与这些资源出现重合,则IAB节点的MT放弃重合的搜索空间监测。
应理解,除了DUhard资源对应的MT不可用资源,MT还可能具有其余不可用资源。
在上述半静态配置完成后,上级节点会继续通过动态信令(例如,下行控制信息(downlink control information,DCI))为IAB节点动态指示其DU资源的soft类型资源的可用性,例如,上级节点采用专用的DCI或专用的DCI字段对IAB节点的soft资源 的可用性加以指示,为了方便描述,将动态信令包含的信息称为指示信息,将上述专用的DCI或专用的DCI字段可以统称为指示DCI。
上述动态指示可以通过多种方式实现。
在一种实现中,可以通过显式指示的方式进行。
例如,上级节点直接指示IAB节点DU资源的soft类型资源的可用性,此外,还可以同时指示部分(例如F类型)soft资源(例如,图5中第4、5时隙对应的DU资源)的传输方向等。
在另一种实现中,可以通过隐式指示的方式进行。
例如,上级节点指示IAB节点的MT资源(例如MT的可用资源)是否被释放(或者说,是否可用),IAB节点根据上级节点对上述MT资源的指示,确定自身的DU资源的soft类型资源的可用性。
当IAB节点的DU被配置为hard资源时,通常IAB节点在配置为hard资源的时隙上进行完整的传输。所述完整的传输的含义是IAB节点认为被配置为hard资源的时隙上的所有符号都是可用的。此外,IAB节点的hard资源可以被认为始终可用的资源。对于一个DU hard资源,IAB节点始终可以在此资源上与下级节点进行通信,而不用考虑MT的调度配置情况。
在一种实现中,IAB节点DU的部分周期信号,包括但不限于周期性CSI-RS,SRS,由donor节点配置并通过RRC信令通知IAB节点的UE或下级节点。此时,donor为IAB节点配置的这部分周期信号应位于IAB节点DU的hard资源。
图4为本申请实施例提供的DU的H/S资源与MT的可用或不可用资源的关系示意图。图4中以符号为例。其中,H符号表示hard资源,S符号表示软资源,A表示可用,NA表示不可用。应理解,图4仅是一个示例,其中符号也可以是时隙或子帧。
图4给出了7个符号,其中,符号0和符号6为DU的hard符号,DU始终可使用。图4中假设IAB节点的MT和DU之间是以TDM方式进行资源分配的,则对应的MT符号0和符号6为不可用符号。图中的符号1至5为DU的soft符号,根据表1可知,对应的MT应为可用符号。
由图2和图4可知,如果某个时隙或子帧或符号在IAB节点的DU上被配置为hard资源,则在MT上对应的符号不可用。进一步,如果某个IAB节点的DU上的资源被配置为hard资源,则在MT上和该hard资源相重叠的资源不可用。这里资源可以是时隙或子帧或符号,以下不再赘述。
然而,IAB节点的MT和DU在进行数据发送或接收的时候具有不同的帧边界或符号边界,造成IAB节点的MT资源和DU资源在时域不是对齐的。通常,IAB节点的MT和DU的帧定时(或符号定时)偏差是由IAB节点和上级节点之间的传输时延造成的。此外,一些其他因素,例如,IAB节点的DU的上行帧的接收时间与下行帧的发送时间的偏差T g也会造成帧定时偏差。
IAB节点和上级节点在确定IAB节点的MT的可用符号时,不仅需要IAB节点DU的资源配置信息,还需要IAB节点的MT和DU的帧定时(或符号定时)偏差信息。
当IAB节点在DU上进行数据传输和在MT上进行数据传输转换时,在转换边界处,IAB节点的MT上的一个或多个符号不能用于数据传输。为了提高频谱效率,需要尽量减少MT上不可用资源的数量,如何确定哪些资源不可用或可用是本申请解决的问题。
一般情况下,IAB节点不在MT的不可用符号与上级节点进行通信。具体的,若高层配置信号,例如PDCCH检测,周期CSI-RS接收,周期SRS发送等资源的一部分符号位于MT不可用符号,则MT不对其进行收发。此外,对于动态调度或指示信号,IAB节点MT不期望其位于MT不可用符号,这里的动态调度或指示信号包括但不限于PDSCH,PDSCH的DMRS,PUSCH,PUSCH的DMRS,反馈HARQ-ACK的PUCCH。或者,如果动态调度的数据信道,例如PDSCH或PUSCH,占用的资源包括不可用符号,则IAB节点与上级节点在传输此信道时针对不可用符号进行速率匹配。
上述技术问题在不同的场景下,IAB节点的MT上可用或不可用资源的数量会存在不同的情况。本申请实施例说明可能的场景以及时间差的计算方法。
图5示出了IAB节点的MT进行下行接收,DU进行下行发送的场景,图中DL表示下行(downlink),不再赘述。其中包括两种可能的情况,图5(a)是IAB节点的DU上hard符号501进行下行发送,而MT上的符号511和512下行接收。图5(b)是IAB节点的MT上的符号513和514下行接收,而DU上hard符号502进行下行发送。应理解,图5中仅以符号为例,也可以是子帧或时隙,以下不再赘述。
图5(a)中,由于IAB节点DU的hard符号501是处于发送状态,而IAB节点MT上的符号511、符号512为接收状态,因此,IAB节点从DU发送转换到MT接收状态时,功放需要从发送转为接收状态,这个转换需要一定的转换时间,记为T TR。IAB节点的MT下行帧接收时间与DU的下行帧发送时间存在一定的时间偏差,这个时间偏差记为Δ DD,其中下标的第一位表示MT的传输方向,下标的第二位表示DU的传输方向,以下相同,不再赘述。假设TDD系统,上级节点与IAB节点的下行发送一般是同步的,则Δ DD一般由上级节点至IAB节点的传播时延所导致。但在实际中,由于定时的非理想性,Δ DD一般不严格等于传播时延。
类似地,图5(b)中,由于IAB节点MT上的符号513、符号514为接收状态,而IAB节点DU的hard符号502是处于发送状态,因此,IAB节点从MT接收状态转换到DU发送状态时,功放需要从接收转为发送状态,这个转换需要一定的转换时间,记为T RT
从图5(b)可以看出,IAB节点MT的符号514延伸到了DU的hard符号502之后,因此,符号514不可用于MT的下行传输。由于Δ DD主要是由传播时延造成的,而IAB节点的功放从DU发送到MT接收,或者从MT接收到DU发送需要一定的转换时间,即分别对应T TR和T RT
要判断IAB节点DU的hard符号501之后的一个或多个符号是否可用依赖于Δ DD和T TR的关系。假定IAB节点DU的hard符号501的结束时间为t 1,MT上各符号,如符号511或符号512的开始时间为t 3,则判断MT上的资源是否可用依赖于t 3-t 1和T TR的关系。当t 3-t 1≥T TR(或t 3-t 1>T TR)时,则MT上的起始时间为t 3的资源可用;当t 3-t 1<T TR(或t 3-t 1≤T TR)时,则MT上的起始时间为t 3的资源不可用。
应理解,t 3-t 1的取值可以由Δ DD得到。例如,当符号501和符号511的索引连续,例如分别为i和i+1,且两符号的长度相同时,Δ DD=t 3-t 1
例如,当Δ DD≥T TR时,则符号511在MT上可以用于下行传输。而如果Δ DD<T TR时,则符号511不可用。如果Δ DD+T s<T TR,则第二个符号512不可用,其中T s为符号长度,T s大小取决于波形参数,Δ DD+T s为符号501结束时间至符号512开始时间的间隔。
IAB节点DU的hard符号502之前的一个或多个资源是否可用,也依赖于Δ DD和T TR的 关系。假定IAB节点DU的hard符号502的开始时间为t 2,MT上各符号,如符号513或符号514的结束时间为t 4,则判断MT上的资源是否可用依赖于t 2-t 4和T RT的关系。当t 2-t 4≥T RT(或t 2-t 4>T RT)时,则MT上的结束时间为t 4的资源可用;当t 2-t 2<T RT(或t 2-t 4≤T RT)时,则MT上的结束时间为t 4的资源不可用。
例如,图5(b)中符号514的结束时间晚于IAB节点DU的hard符号502的开始时间,因此t 2-t 4<0,因此,符号514不能用于MT的传输。以上假定T TR和T RT都大于0。
应理解,t 2-t 4的取值可以由Δ DD得到。
图6示出了IAB节点的MT进行上行发送,DU进行下行发送的场景。图6中UL表示上行(uplink)。和图5的不同之处在于IAB节点MT的资源被提前了,提前的时间记为Δ UD,表示IAB节点的MT上行发送帧相对DU的下行发送帧之间的时间差。图6所示的场景中,由于MT与DU都是发送状态,因此,功放不需要进行转换,不存在转换时间。在TDM场景下,只有当MT上行符号与DU下行hard符号直接重合时,才会被视作不可用资源。而在SDM场景下,两者即使重合也可能被视作可用资源。
类似地,在TDM场景,假定图6(a)中IAB节点DU的hard符号601的结束时间为t 1,MT上各符号,如符号611或符号612的开始时间为t 3,则判断MT上的资源是否可用依赖于t 3-t 1。当t 3-t 1≥0(或t 3-t 1>0)时,则MT上的起始时间为t 3的资源可用;当t 3-t 1<0(或t 3-t 1≤0)时,则MT上的起始时间为t 3的资源不可用。
应理解,t 3-t 1的取值可以由Δ UD得到。
当DU的hard符号602之前的资源用于MT上行传输时,由于上行传输有一定的提前,因此,一般Δ UD>0,为可用资源。
图7示出了IAB节点的MT进行下行接收,DU进行上行接收的场景。由于IAB节点的MT与DU都是接收状态,因此不存在功放的转换时间。在TDM场景下,只有当MT下行资源与DU上行hard符号(或资源)直接重合时,才会被视作不可用资源。而在SDM场景下,两者即使重合也可能被视作可用资源。
类似于图5,由于IAB节点的MT是下行接收,因此,MT的下行接收帧相对于DU的上行接收帧有一定的时间延迟,这个时间延迟记为Δ DU
假定图7(a)中IAB节点DU的hard符号701的结束时间为t 1,MT上各符号,如符号711或符号712的开始时间为t 3,则判断MT上的资源是否可用依赖于t 3-t 1。当t 3-t 1≥0(或t 3-t 1>0)时,则MT上的起始时间为t 3的资源可用;当t 3-t 1<0(或t 3-t 1≤0)时,则MT上的起始时间为t 3的资源不可用。
假定IAB节点DU的hard符号702的开始时间为t 2,MT上各符号,如符号713或符号714的结束时间为t 4,则判断MT上的资源是否可用依赖于t 2-t 4。当t 2-t 4≥0(或t 2-t 4>0)时,则MT上的结束时间为t 4的资源可用;当t 2-t 4<0(或t 2-t 4≤0)时,则MT上的结束时间为t 4的资源不可用。
在这里,t 3-t 1和t 2-t 4均可以由Δ DU得到。
图8示出了IAB节点的MT进行上行传输,DU进行上行接收的场景。其中图8(a)是DU上行接收,MT进行上行传输。图8(b)是MT进行上行传输,DU上行接收。对于MT上行发送与DU上行接收之间的转换,转换间隔主要是由于发送MT上行需要的功放开启和功放关闭时间。因此,在图7-1中,转换间隔被放置在MT上行符号的前后。
图8(a)中,由于IAB节点DU的hard符号801是处于接收状态,而IAB节点MT上 的符号811、符号812为发送状态,因此,IAB节点从DU接收转换到MT发送状态时,功放需要从接收转为发送状态,这个转换需要一定的转换时间,记为T RT
在这里,MT的上行发送帧相对于DU的上行接收帧有的时间偏差记为Δ UU。图8(a)中假设MT的上行发送帧提前于DU的上行接收帧。
类似地,图8(b)中,由于IAB节点MT上的符号813、符号814为发送状态,而IAB节点DU的hard符号802是处于接收状态,因此,IAB节点从MT发送状态转换到DU接收状态时,功放需要从发送转为接收状态,这个转换需要一定的转换时间,记为T TR
假定图8(a)中IAB节点DU的hard符号801的结束时间为t 1,MT上各符号,如符号811或符号812的开始时间为t 3,则判断MT上的资源是否可用依赖于t 3-t 1和T RT的关系。当t 3-t 1≥T RT(或t 3-t 1>T RT)时,则MT上的起始时间为t 3的资源可用;当t 3-t 1<T RT(或t 3-t 1≤T RT)时,则MT上的起始时间为t 3的资源不可用。
类似地,假定IAB节点DU的hard符号802的开始时间为t 2,MT上各符号,如符号813或符号814的结束时间为t 4,则判断MT上的资源是否可用依赖于t 2-t 4和T TR的关系。当t 2-t 4≥T TR(或t 2-t 4>T TR)时,则MT上的结束时间为t 4的资源可用;当t 2-t 4<T TR(或t 2-t 4≤T TR)时,则MT上的结束时间为t 4的资源不可用。
在这里,t 3-t 1和t 2-t 4均可以由Δ UU得到。
从上述图5到图8的实施例可以看到,在不同场景下,当IAB节点MT上的资源和DU的hard资源间满足一定的关系时,就可以确定IAB节点的MT资源的可用性。
为描述方便,本申请实施例定义第一资源集,第一资源集介于第一硬资源集和第二硬资源之间,且第一硬资源集和第二硬资源集为连续的硬资源。连续的硬资源是指第一硬资源集和第二硬资源集之间没有其他的硬资源。应理解,这里的资源可以是符号、时隙或子帧,以下不再赘述。以下主要以符号为例进行说明。第一资源集可以是第一硬资源集和第二硬资源之间的部分或全部资源。第一资源集用于MT和上级节点之间进行传输时,可以是上行传输或下行传输。第一硬资源集和第二硬资源集用于IAB节点的DU和下级节点之间进行传输时,可以是上行传输或下行传输。第一资源集、第一硬资源集或第二硬资源集具体用于上行传输还是下行传输依赖于调度或配置。
具体地,就一般而言,第一节点确定第一阈值x和第二阈值y,当t 3-t 1≥x,且t 2-t 4≥y时,第一节点确定第一资源集中的第一符号为可用。其中,t 1为第一硬资源集中最后一个符号的结束时间,t 2为第二硬资源集中第一个符号的开始时间,t 3为第一符号的开始时间,t 4为第一符号的结束时间。第一节点为IAB节点。
在本申请中,符号的开始与结束时间可以指发送符号的开始与结束时间,也可以指接收符号的开始与结束时间。应理解,接收符号的开始与结束时间可以指该符号接收窗的开始与结束时间,且接收符号的开始时间可以不包含OFDM符号的循环前缀(CP,cyclic prefix)。
上述第一阈值x和第二阈值y在不同场景下的取值不同。具体地,
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,第一阈值x=T TR;或者,
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为上行传输时,x=0;或者,
当第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为下行 传输时,x=0;或者,
当第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,x=T RT;或者,
当第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,y=T RT;或者,
当第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为上行传输时,y=0;或者,
当第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,y=0;或者,
当第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,y=T TR
其中,T RT为第一节点的MT接收到DU发送的转换时间,或DU接收到MT发送的转换时间;T TR为第一节点的MT发送到DU接收的转换时间,或DU发送到MT接收的转换时间。
通过上述各种场景下参数的设定,可以确定IAB节点在回传链路上的资源。图9为本申请实施例提供的资源确定的方法。应理解,图9中的步骤不代表执行的先后顺序,也不表示所有步骤都是必须的。
为了实现IAB节点和上级节点保持回传链路上传输资源的一致性,IAB节点和上级节点确定的用于回传链路的资源相同。图9中,第一节点为IAB节点,第二节点为IAB节点的上级节点,第二节点可以是另一个IAB节点,也可以是宿主基站。具体步骤如下。
S901、第二节点获取第一节点的第一硬资源集和第二硬资源集。
第二节点可以通过宿主基站获取第一节点的第一硬资源集和第二硬资源集。例如,通过RRC信令或F1-AP接口来获取第一硬资源集和第二硬资源集。
第二节点还可以通过第一节点直接获取第一硬资源集和第二硬资源集。例如,第二节点可以通过向第一节点发送资源配置请求来获得第一节点的第一硬资源集和第二硬资源集。具体地,可以通过媒体接入控制(media access control,MAC)层信令(control element,CE),即MAC CE来获取第一硬资源集和第二硬资源集。第一节点收到第二节点的资源配置请求后向第二节点发送资源配置响应,资源配置响应中包括第一硬资源集和第二硬资源集。
在一种可能的实现中,第二节点还可以获得第一节点的soft资源配置信息,通过soft配置信息获得第一硬资源集和第二硬资源集。由前述实施例可知,第二节点根据第一节点的hard资源和/或soft资源可以确第一节点的MT上的可用和/或不可用资源。
上述第一硬资源集可以是一个或多个符号、时隙或子帧。第一硬资源集中的资源具有相同的传输方向,即,用于第一节点的DU在接入链路上的上行传输或下行传输。同样地,第二硬资源集可以是一个或多个符号、时隙或子帧。第二硬资源集中的资源具有相同的传输方向。因此,第二节点获取第一节点的第一硬资源集和第二硬资源集包括获取第一硬资源集和第二硬资源集的传输方向的信息。
S902、第二节点确定第一资源集。
第一资源集位于第一硬资源集和第二硬资源集之间。第一资源集是第一硬资源集和第二硬资源集之间的部分或全部资源,第一资源集可以是一个或多个符号、时隙或子帧,第一资源集上的所有资源具有相同的传输方向。第一资源集用于第一节点的MT和第二节点的DU之间进行数据传输。应理解,本申请中的数据传输包括用户数据和控制信令的传输。 以下主要以符号为例来进行说明。
第一硬资源集和第二硬资源集之间的资源可以被划分为一个或多个第一资源集,每个第一资源集可以有自己的传输方向,具体的传输方向是有第二节点根据调度的需要进行动态分配的。因此,第二节点在确定第一资源集后,通过资源指示信息将第一资源集通知给第一节点。资源指示信息可以通过PDCCH进行指示,具体地,通过PDCCH中的DCI携带资源指示信息。PDCCH中可以包括一个或多个第一资源集的资源指示信息。
S903、第二节点向第一节点发送资源指示信息。
资源指示信息可以通过高层信令或层一信令来进行承载,例如,通过DCI来进行资源指示。具体地,资源指示信息包括以下信息中的一个或多个:资源的开始位置、资源的数量、传输方向、频域信息。其中频域信息可以包括频域的起始位置,如资源块(resourceblock,RB)的编号、和/或RB个数等。
S904、第一节点根据资源指示信息确定第一阈值x和第二阈值y。
第一阈值和第二阈值依赖于第一资源集的传输方向,还依赖于第一硬资源集和第二硬资源集的传输方向。第一硬资源集和第一资源集的不同传输方向造成的资源间的时序关系如前述实施例图5到图8所述,不再赘述。
第一阈值x为第一符号的开始时间和第一硬资源集中最后一个符号的结束时间的时间差满足的最小限度。第二阈值y为第一符号的结束时间和第二硬资源集中第一个符号的开始时间的时间差满足的最小限度。第一符号为第一资源集中需要确定可用状态的符号。
具体地,当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,第一阈值x=T TR;或者,
当第一硬资源集中最后一个符号传输方向为下行传输,第一资源集的传输方向为上行传输时,x=0;或者,
当第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,x=0;或者,
当第一硬资源集中最后一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,x=T RT;或者,
当第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为下行传输时,y=T RT;或者,
当第二硬资源集中第一个符号传输方向为下行传输,第一资源集的传输方向为上行传输时,y=0;或者,
当第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为下行传输时,y=0;或者,
当第二硬资源集中第一个符号传输方向为上行传输,第一资源集的传输方向为上行传输时,y=T TR
其中,T RT为第一节点的接收到发送的转换时间,T TR为第一节点的发送到接收的转换时间。
在一种可能的实现中,第一节点可以通过查表来确定第一阈值x和第二阈值y。具体地,可以通过如下表3来确定第一阈值x和第二阈值y。
表3资源传输方向和阈值对应关系
Figure PCTCN2020075401-appb-000013
表3中DU表示第一节点DU的hard资源,MT表示第一节点MT的第一资源。对DU,UL表示传输方向为在接入链路上进行上行接收,DL表示传输方向为在接入链路上进行下行发送。对MT,UL表示传输方向为在回传链路上进行上行发送,DL表示传输方向为在回传链路上进行下行接收。
通过查表,就可以确定第一阈值x和第二阈值y。
在一种可能的实现中,上述第一阈值x和第二阈值y可以通过协议进行定义。例如,将第一阈值x和第二阈值y定义成同一个预定义的值,也可以是分别定义成不同的预定义的值。针对上述表3中各种场景下的第一阈值x和第二阈值y均可以分别定义预定义的阈值。例如,对DU为上行,MT为下行的场景,第一阈值x和第二阈值y也可以不为0。具体定义依赖于协议定义或其他因素,如厂家设备实现等。本申请并不约束具体的实现。
在一种可能的实现中,第一阈值x和第二阈值y由第一节点上报至第二节点。
S905、第一节点确定第一符号的可用状态。
假定t 1为第一硬资源集中最后一个符号的结束时间,t 2为第二硬资源集中第一个符号的开始时间,t 3为第一符号的开始时间,t 4为第一符号的结束时间。当t 3-t 1≥x,且t 2-t 4≥y时,第一节点确定第一资源集中的第一符号为可用。
在这里,符号的开始与结束时间可以指发送符号的开始与结束时间,也可以指接收符号的开始与结束时间。应理解,接收符号的开始与结束时间可以指该符号接收窗的开始与结束时间,且接收符号的开始时间可以不包含OFDM符号的循环前缀(CP,cyclic prefix)。
由于第一资源集中可以包括多个符号,通常,找到第一资源集中的第一个可用符号和最后一个可用符号就可以确定第一资源集中的可用符号集。上述第一符号为第一资源集中的某个需要确定其可用性的符号,第一节点可以对第一资源集中的每个符号采用上述方法确定其可用状态。可用状态包括可用和不可用。状态为可用的符号表示可以用于第一节点和第二节点之间的数据传输,状态为不可用的符号表示不能用于第一节点和第二节点之间的数据传输。
当第一资源集包括第一硬资源集和第二硬资源集之间的所有资源的时候,有前述图5到图8所述实施例可以看出,需要考虑第一资源集中时域上位于第一硬资源集之后的一个或多个符号,以及第一资源集中时域上位于第二资源集之前的一个或多个符号。
如果第一资源集包括第一硬资源集和第二硬资源集之间的部分资源,且资源位于第一硬资源集之后,则一般仅需要考虑第一资源集中位于第一硬资源集之后的一个或多个符号。
如果第一资源集包括第一硬资源集和第二硬资源集之间的部分资源,且资源位于第二硬资源集之前,则一般仅需要考虑第一资源集中位于第二资源集之前的一个或多个符号。
具体的第一符号的可用状态的确定方法参见图10和图11所示实施例。
在一种可能的实现中,第一硬资源集的最后一个符号或第二硬资源集的第一个符号为 灵活符号,即传输方向还未确定的符号。在一种可能的实现中,第一节点可分别假设所述灵活符号为上行符号或下行符号,并根据两种假设分别确定第一符号的可用性,当且仅当在两种假设下第一符号均为可用符号时,第一符号才被确定为可用符号。在另外一种可能的实现中,协议规定第一节点或第二节点对灵活符号的假设,例如,始终将灵活符号假设为上行或下行,而第一节点根据此假设确定第一符号的可用性。
S906、第二节点获取第一阈值x和第二阈值y。
由于第一阈值x和第二阈值y可能和第一节点的DU和MT之间的功放收发转换时间有关,因此,第二节点需要获取第一节点的DU和MT之间的功放收发转换时间,从而确定第一阈值x和第二阈值y。第一节点的DU和MT之间的功放收发转换时间包括从接收到发送的转换时间,或从发送到接收的转换时间,如前所述,不再赘述。
在一种可能的实现中,第二节点可以从宿主基站获取第一节点的DU和MT之间的功放收发转换时间,例如,通过RRC协议或F1-AP接口消息来获得第一节点的DU和MT之间的功放收发转换时间。
在一种可能的实现中,或者第二节点可以直接通过MAC CE请求第一节点发送第一节点的DU和MT之间的功放收发转换时间。
在一种可能的实现中,第一阈值x和第二阈值y可以是协议定义的。具体的如前所述,不再赘述。
S907、第二节点确定第一符号的可用状态。
步骤S907同步骤S905,具体的确定第一符号的可用状态的方法参见图10和图11所示实施例。
图10为确定第一硬资源集之后的第一资源集中一个或多个符号可用状态的示意图。确定第一硬资源集之后的一个或多个符号的可用状态主要包括两种场景,即,第一资源集为上行传输和第一资源集为下行传输的场景。图10(a)为第一资源集为下行传输的场景,图10(b)为第一资源集为上行传输的场景。
图10(a)中,1010为IAB节点DU的下行传输资源,1001为DU的上行传输资源,传输资源可以是符号、时隙或子帧。一般上行时隙边界相对下行时隙边界有一定的提前量。1003为DU上行传输资源的结束时间,1004为DU的下行传输资源的结束时间。图10(a)示出了IAB节点MT的两个资源1020和1021,假定这两个资源的编号分别为0和1,资源0的开始时间为1025,资源1的开始时间为1026。1025和1026分别是资源0和资源1的可能的接收时间。1003和1004分别是1001和1001的实际结束时间。由于1001和1010为hard资源,因此其结束时间是确定的。
因此,在图10(a)中,为了确定MT的资源0、资源1是否可用,就要看资源0和资源1和1003或1004的时间差。有前述实施例可知,当IAB节点DU的1001为上行接收时,此时不需要进行功放的收发转换,而IAB节点在MT上的接收由于传播时延会存在一定的时延。因此1025和1003之间的时间差大于0,第一资源集中的第一个符号总是可用的。
当IAB节点DU的1010为下行发送时,此时功放需要从IAB节点的接入链路的发送转换为回传链路的接收状态,需要有一定的转换时延,如前所述,不再赘述。此时,需要计算1025和1004之间的时间差以确定第一符号的可用状态。对IAB节点MT的资源1是类似的。
图10(a)中,由于第一资源集为下行传输,因此IAB节点MT的资源0的位置可以从 IAB节点DU的下行时隙或帧定时来确定。由于IAB节点DU的1010资源的结束位置在1004,因此,理论上可以通过传播时延来确定IAB节点资源0的到达时间,从而确定1025和1004之间的时间差。然而,在实际中,由于定时的非理想性,1025和1004之间的时间差不一定严格等于第一节点和第二节点之间的传播时延。
通常,1025和1004之间的时间差由Δ DD确定。当IAB节点DU的下行发送定时由上级节点通过OTA(over the air)方法配置时,假定上级节点为IAB节点配置的定时提前量为TA,定时偏移量为T delta,则可以得到Δ DD=TA/2+T delta。TA是IAB节点MT进行上行传输时所采用的定时提前量,一般由上级节点所配置,与UE上行传输所采用的定时提前量意义相同。
例如,要判断符号1020是否可用,则通过符号1020的开始时间1025和符号1010的结束时间1004之间的时间差来确定。假定1020的开始时间为t 3,符号1010的结束时间为t 1,通过判断t 3-t 1和第一阈值x之间的关系来确定IAB节点MT上第一资源集中第一个符号的可用状态。当(t 3-t 1)≥x(或(t 3-t 1)>x)时,则判断资源1020可用。如果(t 3-t 1)<x(或(t 3-t 1)≤x)时,则判断资源1020不可用。在示例中,对第一资源集中的第一个符号,(t 3-t 1)=Δ DD
类似地,对资源1021,其开始时间2016相对于资源1020的开始时间1025有一个偏移,以符号为例,1026相对1025的偏移量为T s,其中T s为一个符号的长度,T s大小依赖于波形参数,在不同的波形参数下,T s大小不同。具体T s大小依赖于协议定义。应理解,如果资源是时隙,则1026相对1025的偏移量为一个时隙的大小,时隙的大小也依赖于波形参数,具体可以根据协议中定义的波形参数来进行确定,此处不赘述。
因此,图10(a)中1026和1004之间的时间差为T sDD,当T sDD≥x(或T sDD>x)时,则判断资源1021可用。如果T sDD<x(或T sDD≤x)时,则判断资源1021不可用。
更一般地,假定图10(a)中第一资源集中的符号依次编号为0,1,…,k-1,其中k为大于1的整数。则,第i个符号的开始时间和1004之间的时间差为i*T sDD,当i*T sDD≥x(或i*T sDD>x)时,则判断第一资源集中第i个符号可用。如果i*T sDD<x(或i*T sDD≤x)时,则判断第一资源集中第i个符号不可用。
在图10(b)中,1002和1011为IAB节点DU的hard资源,其中1002为上行资源,1011为下行资源,1002由于是上行接收资源,相对下行发送资源1011有一定的定时提前,记为T g,即T g为IAB节点DU的上行帧与下行帧的定时偏差。1005和1006分别为上行资源1002和下行资源1011的结束时间。资源1022、1023和1024为第一资源集中可能的传输时间,例如,如果资源1022被传输,则开始时间为1027,资源1023如果被传输,则开始时间为1028等。
由于第一资源集为上行传输,因此,在进行实际传输时,需要相对上行时隙或子帧定时有一定的提前。
如果第一资源集之前的IAB节点DU的hard资源为下行发送,则IAB节点从UD的hard资源到MT的上行传输不需要进行功放的转换。因此,如果第一资源集中的某个符号开始时间晚于DU的hard资源1011的结束时间1006,则该符号可以用于MT传输。
图10(b)中,MT上行发送帧相对DU的下行发送帧的提前量Δ UD=TA+TA offsetDD。假定图10(b)中第一资源集中的符号依次编号为0,1,…,k-1,其中k为大于1的整数。 则,第i个符号的开始时间和1006之间的时间差为i*T sUD,当i*T sUD≥0(或i*T sUD>0)时,则判断第一资源集中第i个符号可用。如果i*T sUD<0(或i*T sUD≤0)时,则判断第一资源集中第i个符号不可用。
如果图10(b)中IAB节点DU为上行传输,则从DU的上行接收转换到MT的上行发送需要一定的功放转换时间T RT。此时,IAB节点DU的上行接收帧和MT的上行发送帧之间的时间差Δ UU=TA+TA offsetDD-T g。类似地,可以获得第一资源集中第i个符号的开始时间和1005之间的时间差为i*T sUU,当i*T sUU≥T RT(或i*T sUU>T RT)时,则判断第一资源集中第i个符号可用。如果i*T sUU<T RT(或i*T sUU≤T RT)时,则判断第一资源集中第i个符号不可用。
图11为确定第二硬资源集之前的第一资源集中一个或多个符号可用状态的示意图。确定第二硬资源集之前的一个或多个符号的可用状态主要包括两种场景,即,第一资源集为上行传输和第一资源集为下行传输的场景。图11(a)为第一资源集为下行传输的场景,图11(b)为第一资源集为上行传输的场景。
图11(a)中,1110为IAB节点DU的下行传输资源,1101为DU的上行传输资源,传输资源可以是符号、时隙或子帧。一般上行时隙边界相对下行时隙边界有一定的提前量,记为T g。1103为DU上行传输资源的开始时间,1004为DU的下行传输资源的开始时间。图11(a)示出了IAB节点MT的两个资源1120和1121,假定这两个资源的编号分别为k-2和k-1,资源k-2的结束时间为1124,资源k-1的结束时间为1125。如果资源1120和1121被用于传输,则1124和1125分别是资源k-2和资源k-1的结束时间。由于1101和1110为hard资源,因此其开始时间是确定的。
因此,在图11(a)中,为了确定MT的资源k-2、资源k-1是否可用,就要看资源k-2和IAB节点DU的hard资源的开始时间的时间差。同样地,为了确定MT的资源k-1是否可用,就要看资源k-1和IAB节点DU的hard资源的开始时间的时间差。
由前述实施例可知,当IAB节点DU的1101为上行接收时,此时不需要进行功放的收发转换,因此IAB节点MT上的某个符号的结束时间在1101的开始时间之间,该符号就是可用的。
当IAB节点DU的1110为下行发送时,此时功放需要从IAB节点的回传链路的接收转换为接入链路的发送状态,有一定的转换时延T RT。此时,需要计算1104和IAB节点MT第一符号的结束时间之间的时间差,从而确定第一符号的可用状态。
图11(a)中,由于第一资源集为下行传输,每个MT资源,如资源k-1相对帧定时都存在Δ DD的延迟,Δ DD的定义如前所述,不再赘述。假定IAB节点DU的资源1110的开始时间和MT的第i个符号的结束时间的时间差为t DD,则可以通过t DD和第二阈值y之间的关系来确定IAB节点MT上第一资源集中第i个符号的可用状态。
由图11(a)可以确定t DD=(k-i-1)*T sDD,当t DD≥y(或t DD>y)时,则判断资源i可用。如果t DD<y(或t DD≤y)时,则判断资源i不可用。在IAB节点MT上第一资源集为下行传输,DU上hard资源为下行传输时,y=T RT。各参数定义如前所述,不再赘述。
图11(a)中,如果IAB节点DU为上行传输时,类似地,可以确定IAB节点MT上第一资源集中第i个符号的可用状态。假定IAB节点DU的资源1101的开始时间和MT的第i个符号的结束时间的时间差为t DU,从图11(a)及前述实施例,可以得到t DU=(k-i-1)* T sDD-T g,当t DU≥y(或t DU>y)时,则判断资源i可用。如果t DU<y(或t DU≤y)时,则判断资源i不可用。在IAB节点MT上第一资源集为下行传输,DU上hard资源为上行传输时,y=0。各参数定义如前所述,不再赘述。
图11(b)中,资源1102和1111是IAB节点DU的hard资源,其中1102为上行接收资源,1111为下行发送资源,资源1102的开始时间是1105,1111的开始时间是1106。同样地,1102的边界1105相对1111的边界1106有一定的提前,提前的时间为T g。IAB节点MT的第一资源集为上行传输,图11(b)中示出了第一资源集中的最后两个资源(如,符号)1122和1123。1122和1123的结束时间分别为1126和1127。
当图11(b)中IAB节点DU的hard资源为下行传输的时候,由于MT的第一资源集为上行传输,因此MT和DU都是发送状态,因此,功放从MT的传输到DU的传输不需要转换时间。因此,只需要满足1106和1127之间的时间差大于0(或大于等于0)即可。由于第一资源集中资源都是在DU的hard资源1111之前,而MT的上行帧相对DU的下行发送帧有一定的提前量,由前述实施例可知,这个提前量为Δ UD=TA+TA offsetDD
当图11(b)中IAB节点DU的hard资源为上行接收的时候,IAB节点MT从上行发送转换到DU的上行接收,功放从发送状态转换到接收状态,这个转换时间为T TR。类似地,可以确定IAB节点MT上第一资源集中第i个符号的可用状态。假定IAB节点DU的资源1102的开始时间和MT的第i个符号的结束时间的时间差为t UU,从图11(b)及前述实施例,可以得到t UU=(k-i-1)*T sUD-T g,当t UU≥y(或t UU>y)时,则判断资源i可用。如果t UU<y(或t UU≤y)时,则判断资源i不可用。其中,y=T TR。各参数定义如前所述,不再赘述。
应理解,上述图10和图11所述的实施例对第一节点和第二节点的计算方法是一样的,都需要确定第一资源集中的符号的可用状态。为了使得第二节点可以计算第一资源集中的符号(或资源)的可用状态,第二节点需要获得IAB节点DU和MT之间的功放转换时间,如前所述,不再赘述。第二节点还需要获得IAB节点DU的上行接收至下行发送的转换时间T g,或Δ UU,或
Figure PCTCN2020075401-appb-000014
具体地,第一节点向第二节点上报Δ UU,或
Figure PCTCN2020075401-appb-000015
或T g。第二节点接收到第一节点上报的参数T g后,通过下式确定Δ UU
Δ UU=TA+TA offsetDD-T g
在一种可能的实现中,第一节点可能由于某种原因,如波束失败,导致第一节点从第一上级节点切换到第二上级节点,此时,第一节点向所述第二上级节点发送所述T delta1或所述Δ DD,其中T delta1=Δ DD-TA/2。在第一节点完成上报之前,第二上级节点假设Δ DD=TA/2。
在一种可能的实现中,第一节点的定时并非由第二节点通过OTA方法配置,例如,第一节点的定时可能通过GPS获得,此时,第一节点向所述第二上级节点发送所述T delta1或所述Δ DD,其中T delta1=Δ DD-TA/2。在第一节点完成上报之前,第二上级节点假设Δ DD=TA/2。
在一种可能的实现中,IAB节点接收的T delta和上报的T delta1具有相同的信令格式,所述信令格式包括T delta和的T delta1的取值范围,取值粒度。
在一种可能的实现中,在空口同步时,上级节点通过调整TA或T delta调整第一节点DU的下行发送定时,且上级节点可获知第一节点完成下行发送定时的时间。因此,上级节点默认在第一节点完成定时调整后采用新的Δ DD值。相应地,第一节点接收上级节点发送的TA 更新命令,第一节点根据TA更新命令更新Δ UU和/或Δ DD
在一种可能的实现中,上级节点向宿主基站节点上报T delta和/或T delta1的取值,在这里,T delta表示上级节点向第一节点发送或准备向第一节点发送的定时调整值。可选的,在上报后,宿主基站向上级节点传递更新的T delta取值,而后上级节点将此更新的T delta取值发送给第一节点。
应理解,上述TA更新命令可以通过RRC或MAC CE发送给第一节点,也可以是宿主节点通过RRC或F1-AP接口发送给第一节点。此外,如果第一节点的T g值和上级节点的T g值相同时,第一节点可以不上报T g值,此时Δ UU=Δ DD
在一种可能的实现中,上级节点为第一节点的DU更新下行发送定时,此时,第一节点的DU需要调节下行发送时间至更新值,而同时,第一节点DU也应该调节上行接收定时,使得T g保持恒定。可选的,第一节点调整DU的下行发送定时不在下行时隙的发送过程中进行。可选的,DU上行接收定时的调整不在上行时隙的接收过程中进行。因此,可选的,上述调节可以在时隙的第一个符号的CP范围进行。
应理解,上述Δ DD,Δ UD,Δ UUDU的计算均为示例。第二节点在获取到必要的信息后,可通过不同的实现方法得到Δ DD,Δ UD,Δ UUDU。所述必要的信息包括上述TA,T delta,T delta1,TA offset,T g中的至少一个。
考虑第一节点至第二节点的上行定时提前TA。在初始接入过程中,第一节点从第二节点处获得初始定时提前量,而后第二节点可通过信令更新第一节点的上行定时提前量,第一节点采用更新后的上行定时提前量与第二节点进行通信。然而,在实际中,第一节点和/或第二节点可能出现译码错误,造成第一节点和第二节点所维持的TA值不同。当第一节点和第二节点所维护的TA值不同时,可能造成第二节点为第一节点配置错误的T delta,或造成第二节点在计算Δ DD,Δ UD,Δ UUDU时出现错误。为避免此情况,需要提供一种机制,解决第一节点和第二节点所维护或保存的TA值不一致的情况。
在一种可能的实现中,为了保持第二节点可以为第一节点配置正确的T delta,第一节点向第二节点或donor节点上报其维护的TA值,将其记为TA1,此上报可由第二节点或donor节点触发。例如,第二节点或donor节点向第一节点发送TA上报请求,第一节点在接收到TA上报请求后向第二节点或donor节点上报其维护的TA值。可选的,第一节点可同时上报T delta1,并且T delta1是根据TA1所得到,即T delta1=Δ DD-TA1/2。
在一种可能的实现中,第一节点向第二节点或donor节点上报TA1/2,以及其对应的T delta1。或者,第一节点在上报T delta1时,可同时上报其计算T delta1所采用的TA值或TA/2。或者,第二节点或donor节点在触发第一节点上报T delta1时,可同时要求第一节点上报计算T delta1所采用的TA值或TA/2。
在另一种可能的实现中,第一节点在收到第二节点所发送的MAC CE定时更新命令之后,通过MAC CE向第二节点发送TA确认消息,从而保证第一节点和第二节点维护相同的TA。由于此时需要第一节点返回TA确认消息,因此,第二节点在接收到TA确认消息之前不能应用定时更新命令中的定时提前量的值。为保证第一节点和第二节点可以同时使用正确的定时提前量,可以在定时更新命令中增加激活时间。例如,从第二节点的角度,激活时间可以是当前发送定时更新命令时隙/子帧之后的m个时隙/子帧开始使用新的定时提前量的值,m位任意正整数。激活时间也可以是协议定义的,例如,协议定义在收到定时更新命令后的m个时隙/子帧开始使用新的定时提前量的值。具体实现本申请不做约束。
由于TA确认消息也可能丢失,因此,为保证一致性,第二节点可以进一步向第一节点发送TA更新完成消息。如果支持TA更新完成消息,则,上述激活时间应在TA更新完成消息之后。
通过上述实施例,可以保证上级节点可以为IAB节点配置正确的定时偏移量T delta,并保证第二节点计算得到的Δ DD,Δ UD,Δ UUDU和第一节点的计算结果一致,以确定正确的符号可用状态,避免符号不一致出现的数据传输错误。
应注意,以上实施例给出了第二节点根据Δ DD,Δ UD,Δ UUDU获取MT符号与DU符号时间偏差的一些实例,在实际中,第二节点根据Δ DD,Δ UD,Δ UUDU,以及IAB节点的MT与DU资源的参数信息,可以获得任意MT符号与DU符号的时间偏差,具体的获取或计算方法可以由协议定义,也可以留作第二节点的实现。
通过上述实施例可以确定第一资源集中的符号的可用状态,从而最大限度地利用符号,提升了频谱效率。应理解,上述确定第一资源集中的符号的可用状态并不需要对每个符号进行确定,通常可以考虑第一资源集中的前面的一个或多个符号,或者结尾的一个或多个符号。例如仅考虑第一资源集中的第0到第3个符号,后面的符号可以是第k-1、第k-2或第k-3个符号等,确定第一个和最后一个可用的符号后,则介于第一和最后一个可用符号中间的符号状态都是为可用。
前述实施例主要是确定IAB节点DU的第一硬资源之后,和/或第二硬资源之前的第一资源集中的可用符号的状态。而第一资源集可能只是介于第一硬资源和第二硬资源之间的资源的一部分。为描述方便,本申请将介于第一硬资源和第二硬资源之间的资源称为MT可用资源。而MT可用资源中可以包括多个第一资源集。每个第一资源集可以被调度为上行传输,或者下行传输。如果连续的两个第一资源集的传输状态不同,即,一个第一资源集为上行传输,另一个第一资源集为下行传输,则这两个第一资源集之间也需要进行功放的收发转换。
图12为IAB节点MT上连续两个第一资源集的传输状态不同的示意图。图12(a)中,IAB节点MT从发送到接收。图12(b)为IAB节点MT从接收到发送。
图12(a)中,1201为IAB节点DU下行发送资源,1202为IAB节点DU上行接收资源。1203为IAB节点DU下行发送时隙定时,1204为IAB节点DU上行接收定时。1205为IAB节点MT接收资源(或资源集),1206为IAB节点MT发送资源(或资源集)。图12(a)为IAB节点MT从上行发送转换到下行接收。
有前述实施例可知,从1205资源开始时间到1206资源结束时间之间的时间差
Figure PCTCN2020075401-appb-000016
其中
Figure PCTCN2020075401-appb-000017
的上标表示是MT,下标表示从上行传输到下行接收,其他各参数的含义如前所述,不再赘述。
因此,当
Figure PCTCN2020075401-appb-000018
(或
Figure PCTCN2020075401-appb-000019
)时,则资源1206可用。应理解,这里假定IAB节点的功放在MT上的发送到接收的转换时间和DU上的转换时间相等。如果不同,则T TR应该为MT上功放的发送到接收的转换时间。
在MT上进行数据收发时,由于下行接收通常带有控制信息,因此,通常需要保证下行传输的第一个符号可用。图12所示的实施例假定下行接收的前面的符号要保证可用。如果
Figure PCTCN2020075401-appb-000020
(或
Figure PCTCN2020075401-appb-000021
)时,则资源1206上需要打掉的符号数i要满足
Figure PCTCN2020075401-appb-000022
Figure PCTCN2020075401-appb-000023
(或者
Figure PCTCN2020075401-appb-000024
)。
图12(b)为IAB节点MT先在资源1215上进行下行接收,而之后在另一个资源1216 上进行上行发送。1211为IAB节点DU下行发送资源,1212为IAB节点DU上行接收资源。1213为IAB节点DU下行发送时隙定时,1214为IAB节点DU上行接收定时。
类似地,IAB节点的MT的上行发送的开始时间和下行接收的结束的时间差
Figure PCTCN2020075401-appb-000025
Figure PCTCN2020075401-appb-000026
其中
Figure PCTCN2020075401-appb-000027
的上标表示是MT,下标表示从下行接收到上行传输,其他各参数的含义如前所述,不再赘述。
由图12(b)可知,由于1215的最后一个资源和1216的第一资源的重叠时间为
Figure PCTCN2020075401-appb-000028
为了保证这两个资源集之间满足功放转换要求,需要打掉资源集1215的最后的一个或多个符号,或者打掉资源集1216开始的一个或多个符号。或者分别打掉1215的结尾或1216开始的一个或多个符号,以确保两个资源集之间满足功放转换的时间。
具体地,打掉的符号数i要满足
Figure PCTCN2020075401-appb-000029
(或者
Figure PCTCN2020075401-appb-000030
)。因此,只要满足资源集1215和/或资源集1216上打掉的符号总数满足上述要求即可。具体的是打掉资源集1215结尾的符号,还是打掉1216开始的符号,或者分别打掉1215和1216上的部分符号可以依赖于配置。例如,可以在PDCCH的DCI中进行指示,具体的指示可以包括打掉的符号数,还可以包括仅打掉下行接收的尾部或者仅打掉上行传输的头部的指示,例如用一个比特来指示,1表示仅打掉下行接收的尾部,0表示仅打掉上行传输的头部。
如果MT可用资源中的两个连续的第一资源集的传输方向相同,则不存在功放转换时间,因此,两个资源集中间不需要打掉符号。
在一种可能的实现中,第一硬资源集的最后一个符号或第二硬资源集的第一个符号为灵活符号,即传输方向还未确定的符号。在一种可能的实现中,第二节点可分别假设所述灵活符号为上行符号或下行符号,并根据两种假设分别确定第一符号的可用性,当且仅当在两种假设下第一符号均为可用符号时,第一符号才被确定为可用符号。在另外一种可能的实现中,协议规定第二节点对灵活符号的假设,例如,始终将灵活符号假设为上行或下行,而第二节点根据此假设确定第一符号的可用性。通过上述实施例,可以控制MT可用资源上连续的两个第一资源集之间的传输方向不同时,确定打掉符号的数量。通过符号级的控制,减少资源浪费,提升频谱效率,且保持发送方和接收方保持接收或发送的一致性,避免传输错误。
前述实施例主要从已知第一硬资源集和/或第二硬资源集的配置情况下,确定第一资源集的符号的可用性。而在某些情况下,可能存在相反的可能,第一硬资源集和/或第二硬资源集的配置是隐式配置。所述隐式配置是指通过信令指定第一硬资源集和第二硬资源集之间的可用资源,反过来推断出第一硬资源集结束符号的位置,或者第二硬资源集开始符号的位置。
具体地,IAB节点接收上级节点或宿主节点发送的MT可用资源配置信息。IAB节点根据MT可用资源配置信息确定前述各种场景下第一硬资源集中最后一个可用符号的位置;或者IAB节点根据MT可用资源配置信息确定前述各种场景下第二硬资源集中第一个可用符号的位置。
具体地,可以根据MT可用资源中第一资源的传输方向,以及第一硬资源集或第二硬资源集的传输方向来确定第一硬资源集中最后一个符号和/或第二硬资源集中第一符号。以第一资源集为下行接收,第一硬资源集为下行发送为例,第一资源集的第一个可用符号的开始时间t 3和第一硬资源集任意一个符号的结束时间t 1之间的时间差满足t 3-t 1≥T TR(或t 3-t 1>T TR)时,而第一硬资源集的最后一个符号具有满足上述条件的最大符号结 束时间t 1。其他各参数的含义如前所述,不再赘述。
类似地,可以确定第二硬资源集中的第一个符号的位置。
应理解,上述隐式推导需要上级节点或donor节点获取Δ DD,Δ UD,Δ UUDU的信息,获取Δ DD,Δ UD,Δ UUDU的方法与步骤S907类似,在此不再赘述。
假定第一硬资源集中最后一个符号之后有j个符号不可用或软符号(soft symbol),则,可以根据j*T sDD≥x(或j*T sDD>x)来确定j的取值。其他个参数的含义如前所述,不再赘述。通过确定参数j就可以确定第一硬资源集的边界。
类似地,确定第二硬资源集之前有j个符号不可用或软符号,根据j*T sDD≥x(或j*T sDD>x)来确定j的取值。通过参数j就可以确定第二硬资源集的边界。
同样地,当第一硬资源集为上行接收,第一资源集为下行接收时,第一硬资源集上的符号都是可用的,因为此时IAB节点的功放不需要转换。此时,第一资源集和第一硬资源集之间的符号都可用,因此,第一硬资源集符号边界为第一资源集第一个符号之前的符号。
而当第二硬资源集为上行接收,第一资源集为下行接收时,根据j*T sDU≥y(或j*T sDU>y)来确定第二硬资源集之前不可用符号或软符号个数j的取值。通过参数j就可以确定第二硬资源集的边界。
当第一硬资源集为下行发送,第一资源集为上行传输时,根据j*T sUD≥x(或j*T sUD>x)来确定第一硬资源集之后不可用符号或软符号个数j的取值。通过确定参数j就可以确定第一硬资源集的边界。
当第二硬资源集为下行发送,第一资源集为上行传输时,此时不需要功放转换,因此第二硬资源集上的符号都是可用的。因此,第二硬资源集第一个符号的边界为第一资源集之后的符号。
当第一硬资源集为上行接收,第一资源集为上行传输时,根据j*T sUU+T g≥x(或j*T sUD+T g>x)来确定第一硬资源集之后不可用符号或软符号个数j的取值。通过确定参数j就可以确定第一硬资源集的边界。
当第二硬资源集为上行接收,第一资源集为上行传输时,根据j*T sUU+T g≥y(或j*T sUD+T g>y)来确定第二硬资源集之前不可用符号或软符号个数j的取值。通过参数j就可以确定第二硬资源集的边界。
通过上述实施例,可以通过隐式方式对第一资源集进行配置时,可以确定第一硬资源集和/或第二硬资源集上的不可用符号的个数。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如第一节点和第二节点,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一节点、第二节点进行功能模块的划分,例如,可以划分成各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要 说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。应理解,第二节点可以是IAB节点,也可以是宿主基站。
图13为本申请的提供的上述实施例中所涉及的第一节点的一种可能的结构示意图。在本申请中,第一节点是IAB节点。第一节点包括:收发单元1301,处理单元1302。收发单元1301,用于支持第一节点执行图9中S903、S908,以及用于支持前述实施例中的第一节点从第一上级节点切换到第二上级节点时向第二上级节点发送T delta1或Δ DD;处理单元1302,用于支持第一节点执行图9中的S904,S905,以及用于支持前述实施例中的第一节点对接收的消息或信令进行处理。
第一节点还包括:切换单元1303,用于支持第一节点从第一上级节点切换到第二上级节点时向第二上级节点。
在硬件实现上,上述收发单元1101可以为收发器,收发器构成第一节点的通信接口。应理解,通信接口可以是可以是软件或硬件接口。
图14为本申请的实施例提供的上述实施例中所涉及的第一节点的一种可能的逻辑结构示意图。第一节点包括:处理器1402。在本申请的实施例中,处理器1402用于对该第一节点的动作进行控制管理,例如,处理器1402用于支持第一节点执行前述实施例中图9中的S904和S905,以及用于支持前述实施例中的第一节点对接收的消息或信令进行处理。可选的,第一节点还可以包括:存储器1401和通信接口1403;处理器1402、通信接口1403以及存储器1401可以相互连接或者通过总线1404相互连接。其中,通信接口1403用于支持该第一节点进行通信,存储器1201用于存储第一节点的程序代码和数据。处理器1202调用存储器1201中存储的代码进行控制管理,实现前述实施例中各种可能的方法。该存储器1401可以跟处理器耦合在一起,也可以不耦合在一起。
上述处理器1402、存储器1401也可以集成在专用集成电路中,专用集成电路还可以包括通信接口1403。专用集成电路可以是处理芯片,也可以是处理电路。其中通信接口1403可以是包括无线收发的通信接口,也可以是经过其他处理电路对接收的无线信号进行处理后而输入的数字信号的接口,还可以是和其他模块进行通信的软件或硬件接口。
在一个可能的设计中,处理器1402、存储器1401和通信接口1403可以通过芯片实现,处理器1402、存储器1401和通信接口1403可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。
其中,处理器1402可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线1404可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。
上述处理器1402、通信接口1403以及存储器1401也可以集成在一个集成电路中,执行前述实施例中所有第一节点执行的动作或功能。
图15为本申请的提供的上述实施例中所涉及的第二节点的一种可能的结构示意图。在本申请中,第二节点为中继节点或宿主基站。第二节点包括:收发单元1501和处理单元1502。其中,收发单元1501用于支持第二节点执行图9中的S903、S908,以及用于支 持第二节点执行前述实施例中第一节点切换到第二节点时接收T delta1或Δ DD。第二节点还包括:处理单元1502,处理单元1502,用于支持第二节点执行图9中的S901、S902、S906以及S907,或者用于对接收消息的处理。
在硬件实现上,上述收发单元1501可以为收发器,收发器在第二节点中构成通信接口。应理解,通信接口可以是可以是软件或硬件接口。
图16为本申请的实施例提供的上述实施例中所涉及的第二节点的一种可能的逻辑结构示意图。第二节点包括:处理器1602。在本申请的实施例中,处理器1602用于对该第二节点的动作进行控制管理,例如,处理器1602用于支持第二节点执行前述实施例中图9中的S901、S902、S906以及S907,或者用于对接收消息的处理。可选的,第二节点还可以包括:存储器1601和通信接口1603;处理器1602、通信接口1603以及存储器1601可以相互连接或者通过总线1604相互连接。其中,通信接口1603用于支持该第二节点进行通信,存储器1601用于存储第二节点的程序代码和数据。处理器1602调用存储器1601中存储的代码进行控制管理。该存储器1601可以跟处理器耦合在一起,也可以不耦合在一起。
上述处理器1602、存储器1601也可以集成在专用集成电路中,专用集成电路还可以包括通信接口1603。专用集成电路可以是处理芯片,也可以是处理电路。其中通信接口1603可以是包括无线收发的通信接口,也可以是经过其他处理电路对接收的无线信号进行处理后而输入的数字信号的接口,还可以是和其他模块进行通信的软件或硬件接口。
在一个可能的设计中,处理器1602、存储器1601和通信接口1603可以通过芯片实现,处理器1602、存储器1601和通信接口1603可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。
其中,处理器1602可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线1604可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。
上述处理器1602、通信接口1603以及存储器1601也可以集成在一个集成电路中,执行前述实施例中所有第二节点执行的动作或功能。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行图9的资源确定方法时,读取存储介质中的计算机执行指令。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施图9资源确定的方法中第一节点、第二节点的步骤。
在本申请的另一实施例中,还提供一种通信系统,该通信系统至少包括第一节点、第 二节点。其中,第一节点可以为图9所提供的第一节点,用于执行图9所提供的资源确定的方法中第一节点的步骤;和/或,第二节点可以为图9所提供的第二节点,且用于执行图9所提供的资源确定的方法中由第二节点执行的步骤。应理解,该通信系统可以包括多个第一节点以及第二节点,或者包括多个第一节点以及一个第二节点。通过资源指示信息,使得第一节点和第二节点在回传链路上确定资源的可用状态,通过符号级的资源确定,避免资源浪费,提升频谱效率。
在本申请实施例中,通过在资源确定,使得第一节点和第二节点之间确定的资源状态保持一致,从而根据确定资源进行通信,由于确定的资源是基于符号的,最大限度地利用空口资源,减小资源浪费,提升频谱效率。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种中继系统中资源确定的方法,其特征在于,包括:
    第一节点接收上级节点发送的资源指示信息,所述资源指示信息用于指示第一资源集的传输方向,所述第一资源集位于第一硬资源集和第二硬资源集之间,所述第一硬资源集和所述第二硬资源集为连续的硬资源;
    所述第一节点根据所述资源指示信息确定第一阈值x和第二阈值y;
    当t 3-t 1≥x,且t 2-t 4≥y时,所述第一节点确定第一资源集中的第一符号为可用;
    其中,t 1为所述第一硬资源集中最后一个符号的结束时间,t 2为所述第二硬资源集中第一个符号的开始时间,t 3为所述第一符号的开始时间,t 4为所述第一符号的结束时间;
    所述第一节点根据资源指示信息在所述第一符号上和所述上级节点进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述第一节点根据所述资源指示信息确定第一阈值x和第二阈值y包括:
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述第一阈值x=T TR;或者,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述x=0;或者,
    当所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述x=0;或者,
    当所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述x=T RT;或者,
    当所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述y=T RT;或者,
    当所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述y=0;或者,
    当所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述y=0;或者,
    当所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述y=T TR
    所述T RT为所述第一节点的接收到发送的转换时间,所述T TR为所述第一节点的发送到接收的转换时间。
  3. 根据权利要求1或2所述的方法,其特征在于,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述t 3-t 1和t 2-t 4由Δ DD确定,所述
    Figure PCTCN2020075401-appb-100001
    或者,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述t 3-t 1和t 2-t 4由Δ UD确定,所述Δ UD=TA+TA offsetDD;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述t 3-t 1和t 2-t 4由Δ DU确定,所述Δ DU=T gDD;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述t 3-t 1和t 2-t 4由Δ UU确定,所述Δ UU=TA+TA offsetDD-T g;或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述t 3-t 1和t 2-t 4由Δ DD确定,所述
    Figure PCTCN2020075401-appb-100002
    或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述t 3-t 1和t 2-t 4由Δ UD确定,所述Δ UD=TA+TA offsetDD;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述t 3-t 1和t 2-t 4由Δ DU确定,所述Δ DU=T gDD;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述t 3-t 1和t 2-t 4由Δ UU确定,所述Δ UU=TA+TA offsetDD-T g
    所述TA为定时提前量,所述T delta为定时偏移量,所述TA offset为定时提前偏移量,所述T g为所述第一节点的接入链路的收发转换时间差。
  4. 根据权利要求3所述的方法,其特征在于,包括:
    所述第一节点从第一上级节点切换到第二上级节点;
    所述第一节点向所述第二上级节点发送所述T delta或所述Δ DD
  5. 根据权利要求3或4所述的方法,其特征在于,包括:
    所述第一节点向所述上级节点上报所述Δ UU,或
    Figure PCTCN2020075401-appb-100003
    或所述T g
  6. 根据权利要求3-5任一项所述的方法,其特征在于,包括:
    所述第一节点接收上级节点发送的TA更新命令,所述第一节点根据所述TA更新命令更新所述Δ UU
  7. 一种中继系统中资源确定的方法,其特征在于,包括:
    第二节点获取第一节点的第一硬资源集和第二硬资源集,所述第一硬资源集和所述第二硬资源集为连续的硬资源,所述第二节点为第一节点的上级节点;
    所述第二节点确定第一资源集,所述第一资源集位于第一硬资源集和第二硬资源集之间;
    所述第二节点获取第一阈值x和第二阈值y;
    当第一符号的开始时间和所述第一硬资源集中最后一个符号的结束时间的时间差D h大于x,且所述第二硬资源集中第一个符号的开始时间和所述第一符号的结束时间的时间差D e大于y时,所述第二节点确定所述第一资源集中的所述第一符号为可用;
    所述第二节点在所述第一符号上和所述第一节点进行数据传输。
  8. 根据权利要求7所述的方法,其特征在于,所述第二节点获取第一阈值x和第二阈值y包括:
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述第一阈值x=T TR;或者,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方 向为上行传输时,所述x=0;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述x=0;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述x=T RT;或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述y=T RT;或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述y=0;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述y=0;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述y=T TR
    所述T RT为所述第一节点的接收到发送的转换时间,所述T TR为所述第一节点的发送到接收的转换时间。
  9. 根据权利要求7或8所述的方法,其特征在于,包括:
    所述第二节点向第一节点发送资源指示信息,所述资源指示信息用于指示第一资源集的传输方向。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,包括:
    所述第二节点接收所述第一节点上报的Δ UU,或
    Figure PCTCN2020075401-appb-100004
    或T g,所述TA为定时提前量,所述Δ UU为所述第一节点回传链路上行发送帧相对接入链路上行接收帧边界的时间差,所述T g为所述第一节点的接入链路的收发转换时间差。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述D h和所述D e由Δ DD确定,所述
    Figure PCTCN2020075401-appb-100005
    或者,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述D h和所述D e由Δ UD确定,所述Δ UD=TA+TA offsetDD;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述D h和所述D e由Δ DU确定,所述Δ DU=T gDD;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述D h和所述D e由Δ UU确定,所述Δ UU=TA+TA offsetDD-T g;或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述D h和所述D e由所述Δ DD确定;或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述D h和所述D e由所述Δ UD确定;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述D h和所述D e由所述Δ DU确定;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为 上行传输时,所述D h和所述D e由所述Δ UU确定;
    所述TA为定时提前量,所述T delta为定时偏移量,所述TA offset为定时提前偏移量,所述T g为所述第一节点的接入链路的收发转换时间差。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,包括:
    所述第二节点向所述第一节点发送TA更新命令,所述TA更新命令用于所述第一节点更新所述Δ DD,所述Δ UU,所述Δ UD或所述Δ DU
  13. 一种装置,所述装置用于中继系统中资源的确定,其特征在于,包括:
    收发单元,用于接收上级节点发送的资源指示信息,所述资源指示信息用于指示第一资源集的传输方向,所述第一资源集位于第一硬资源集和第二硬资源集之间,所述第一硬资源集和所述第二硬资源集为连续的硬资源;
    处理单元,用于根据所述资源指示信息确定第一阈值x和第二阈值y;
    当t 3-t 1≥x,且t 2-t 4≥y时,所述处理单元,还用于确定第一资源集中的第一符号为可用;
    其中,t 1为所述第一硬资源集中最后一个符号的结束时间,t 2为所述第二硬资源集中第一个符号的开始时间,t 3为所述第一符号的开始时间,t 4为所述第一符号的结束时间;
    所述收发单元,还用于根据资源指示信息在所述第一符号上和所述上级节点进行通信。
  14. 根据权利要求13所述的中继装置,其特征在于,所述处理单元具体用于:
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,确定所述第一阈值x=T TR;或者,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,确定所述x=0;或者,
    当所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,确定所述x=0;或者,
    当所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,确定所述x=T RT;或者,
    当所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,确定所述y=T RT;或者,
    当所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,确定所述y=0;或者,
    当所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,确定所述y=0;或者,
    当所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,确定所述y=T TR
    所述T RT为所述第一节点的接收到发送的转换时间,所述T TR为所述第一节点的发送到接收的转换时间。
  15. 根据权利要求13或14所述的中继装置,其特征在于,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述t 3-t 1和t 2-t 4由Δ DD确定,所述
    Figure PCTCN2020075401-appb-100006
    或者,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述t 3-t 1和t 2-t 4由Δ UD确定,所述Δ UD=TA+TA offsetDD;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述t 3-t 1和t 2-t 4由Δ DU确定,所述Δ DU=T gDD;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述t 3-t 1和t 2-t 4由Δ UU确定,所述Δ UU=TA+TA offsetDD-T g;或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述t 3-t 1和t 2-t 4由Δ DD确定,所述
    Figure PCTCN2020075401-appb-100007
    或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述t 3-t 1和t 2-t 4由Δ UD确定,所述Δ UD=TA+TA offsetDD;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述t 3-t 1和t 2-t 4由Δ DU确定,所述Δ DU=T gDD;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述t 3-t 1和t 2-t 4由Δ UU确定,所述Δ UU=TA+TA offsetDD-T g
    所述TA为定时提前量,所述T delta为定时偏移量,所述TA offset为定时提前偏移量,所述T g为所述第一节点的接入链路的收发转换时间差。
  16. 根据权利要求15所述的中继装置,其特征在于,包括:
    切换单元,用于从第一上级节点切换到第二上级节点;
    所述收发单元,还用于向所述第二上级节点发送所述T delta或所述Δ DD
  17. 根据权利要求15或16所述的中继装置,其特征在于,包括:
    所述收发单元,用于向所述上级节点上报所述Δ UU,或
    Figure PCTCN2020075401-appb-100008
    或所述T g
  18. 根据权利要求13-17任一项所述的中继装置,其特征在于,包括:
    所述收发单元,还用于接收上级节点发送的TA更新命令,所述第一节点根据所述TA更新命令更新所述Δ UU
  19. 一种装置,所述装置用于中继系统中资源的确定,其特征在于,包括:
    处理单元,用于获取第一节点的第一硬资源集和第二硬资源集,所述第一硬资源集和所述第二硬资源集为连续的硬资源,所述第二节点为第一节点的上级节点;
    所述处理单元,还用于确定第一资源集,所述第一资源集位于第一硬资源集和第二硬资源集之间;
    所述处理单元,还用于获取第一阈值x和第二阈值y;
    当第一符号的开始时间和所述第一硬资源集中最后一个符号的结束时间的时间差D h大于x,且所述第二硬资源集中第一个符号的开始时间和所述第一符号的结束时间的时间差D e大于y时,所述处理单元,还用于确定所述第一资源集中的所述第一符号为可用;
    收发单元,用于在所述第一符号上和所述第一节点进行数据传输。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元具体用于,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,确定所述第一阈值x=T TR;或者,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,确定所述x=0;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,确定所述x=0;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,确定所述x=T RT;或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,确定所述y=T RT;或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,确定所述y=0;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,确定所述y=0;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,确定所述y=T TR
    所述T RT为所述第一节点的接收到发送的转换时间,所述T TR为所述第一节点的发送到接收的转换时间。
  21. 根据权利要求19或20所述的装置,其特征在于,包括:
    所述收发单元,还用于向第一节点发送资源指示信息,所述资源指示信息用于指示第一资源集的传输方向。
  22. 根据权利要求19-21任一项所述的装置,其特征在于,包括:
    所述收发单元,还用于接收所述第一节点上报的Δ UU,或
    Figure PCTCN2020075401-appb-100009
    或T g,所述TA为定时提前量,所述Δ UU为所述第一节点回传链路上行发送帧相对接入链路上行接收帧边界的时间差,所述T g为所述第一节点的接入链路的收发转换时间差。
  23. 根据权利要求19-22任一项所述的装置,其特征在于,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述D h和所述D e由Δ DD确定,所述
    Figure PCTCN2020075401-appb-100010
    或者,
    当所述第一硬资源集中最后一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述D h和所述D e由Δ UD确定,所述Δ UD=TA+TA offsetDD;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述D h和所述D e由Δ DU确定,所述Δ DU=T gDD;或者,
    所述第一硬资源集中最后一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述D h和所述D e由Δ UU确定,所述Δ UU=TA+TA offsetDD-T g;或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为下行传输时,所述D h和所述D e由所述Δ DD确定;或者,
    所述第二硬资源集中第一个符号传输方向为下行传输,所述第一资源集的传输方向为上行传输时,所述D h和所述D e由所述Δ UD确定;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为下行传输时,所述D h和所述D e由所述Δ DU确定;或者,
    所述第二硬资源集中第一个符号传输方向为上行传输,所述第一资源集的传输方向为上行传输时,所述D h和所述D e由所述Δ UU确定;
    所述TA为定时提前量,所述T delta为定时偏移量,所述TA offset为定时提前偏移量,所述T g为所述第一节点的接入链路的收发转换时间差。
  24. 根据权利要求19-23任一项所述的装置,其特征在于,包括:
    所述收发单元,还用于向所述第一节点发送TA更新命令,所述TA更新命令用于所述第一节点更新所述Δ DD,所述Δ UU,所述Δ UD或所述Δ DU
  25. 一种装置,所述装置用于中继系统中资源的确定,其特征在于,所述装置包括:存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述装置执行权利要求1-6任一项所述的干扰随机化的方法,或者执行权利要求7-12任一项所述的资源确定的方法。
  26. 一种计算机可读存储介质,其上存储有指令,其特征在于,该指令被执行时执行如权利要求1-6任一项所述的资源确定的方法,或者执行权利要求7-12任一项所述的资源确定的方法。
  27. 一种中继系统中资源确定的系统,所述系统包括至少一个第一节点,以及至少一个第二节点,其特征在于,包括:
    所述第一节点执行如权利要求1-6中任一项所述的资源确定的方法;
    所述第二节点执行如权利要求7-12中任一项所述的资源确定的方法。
PCT/CN2020/075401 2019-03-29 2020-02-14 一种同步信号发送和接收的方法及装置 WO2020199766A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20782896.3A EP3952146B1 (en) 2019-03-29 2020-02-14 Methods and apparatuses for transmitting and receiving synchronization signal
US17/487,440 US11956803B2 (en) 2019-03-29 2021-09-28 Method and apparatus for determining transmission resource

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910253084 2019-03-29
CN201910253084.2 2019-03-29
CN201910266905.6A CN111756459B (zh) 2019-03-29 2019-04-03 一种同步信号发送和接收的方法及装置
CN201910266905.6 2019-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/487,440 Continuation US11956803B2 (en) 2019-03-29 2021-09-28 Method and apparatus for determining transmission resource

Publications (1)

Publication Number Publication Date
WO2020199766A1 true WO2020199766A1 (zh) 2020-10-08

Family

ID=72664666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075401 WO2020199766A1 (zh) 2019-03-29 2020-02-14 一种同步信号发送和接收的方法及装置

Country Status (3)

Country Link
US (1) US11956803B2 (zh)
EP (1) EP3952146B1 (zh)
WO (1) WO2020199766A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036293A (zh) * 2009-09-24 2011-04-27 中兴通讯股份有限公司 Lte系统下行硬资源接纳控制方法、装置和系统
WO2018059400A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 信号传输方法、终端设备、网络设备和通信系统
CN108811097A (zh) * 2017-05-02 2018-11-13 华为技术有限公司 资源指示方法及通信设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148547A1 (zh) 2009-06-22 2010-12-29 华为技术有限公司 流量控制的方法、中继节点和施主基站
CN101990231B (zh) 2009-07-31 2014-02-19 华为技术有限公司 确定空闲频段的方法和系统、中心节点和感知节点
WO2014204425A1 (en) 2012-06-14 2014-12-24 Interdigital Patent Holdings, Inc. Robust uplink transmission and joint base station scheduling distributed compression
CN106304112B (zh) 2016-08-14 2019-09-03 正链科技(深圳)有限公司 一种基于中继协作的蜂窝网络能量效率优化方法
CN107567068B (zh) 2017-09-19 2020-10-27 东北大学 一种超密集小型基站自适应fso回程网络构建方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036293A (zh) * 2009-09-24 2011-04-27 中兴通讯股份有限公司 Lte系统下行硬资源接纳控制方法、装置和系统
WO2018059400A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 信号传输方法、终端设备、网络设备和通信系统
CN108811097A (zh) * 2017-05-02 2018-11-13 华为技术有限公司 资源指示方法及通信设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Necessary Enhancements for NR IAB", 3GPP DRAFT; R1-1812981, 16 November 2018 (2018-11-16), Spokane USA, pages 1 - 9, XP051479245 *
See also references of EP3952146A4 *

Also Published As

Publication number Publication date
US20220015095A1 (en) 2022-01-13
EP3952146A4 (en) 2022-06-08
US11956803B2 (en) 2024-04-09
EP3952146B1 (en) 2023-06-07
EP3952146A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
US11973716B2 (en) Terminal, radio communication method, base station, and system
EP3425979B1 (en) User terminal and radio communication method
WO2017038894A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2020029777A1 (zh) 一种资源配置的方法及装置
JP7001583B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7418507B2 (ja) 端末、無線通信方法、基地局及びシステム
CN107432014B (zh) 用户终端、无线基站以及无线通信方法
JP2014503145A (ja) チャネル品質指標のレポート
WO2020035947A1 (ja) 無線通信装置及び無線通信方法
JPWO2017033839A1 (ja) ユーザ端末、無線基地局及び無線通信方法
US20220174670A1 (en) Resource Multiplexing Method and Apparatus
WO2019038832A1 (ja) ユーザ端末及び無線通信方法
JP6907119B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019059196A1 (ja) ユーザ端末及び無線通信方法
CN112584518A (zh) 一种资源确定方法及装置
WO2020187115A1 (zh) 指示资源的方法和装置
KR20220047603A (ko) 타이밍 동기화 방법 및 장치
CN110582946A (zh) 用户终端以及无线通信方法
CN111756459B (zh) 一种同步信号发送和接收的方法及装置
CN111165053B (zh) 终端、基站、系统以及无线通信方法
WO2020199766A1 (zh) 一种同步信号发送和接收的方法及装置
JP7511004B2 (ja) 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法
CN111819882A (zh) 用户终端以及无线通信方法
JP2022552296A (ja) 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法
WO2018233694A1 (zh) 信号发送和接收方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020782896

Country of ref document: EP

Effective date: 20211029