WO2019059196A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2019059196A1
WO2019059196A1 PCT/JP2018/034528 JP2018034528W WO2019059196A1 WO 2019059196 A1 WO2019059196 A1 WO 2019059196A1 JP 2018034528 W JP2018034528 W JP 2018034528W WO 2019059196 A1 WO2019059196 A1 WO 2019059196A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
resource set
control resource
control
configuration
Prior art date
Application number
PCT/JP2018/034528
Other languages
English (en)
French (fr)
Inventor
大樹 武田
聡 永田
大輔 村山
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US16/649,569 priority Critical patent/US11533691B2/en
Priority to JP2019543651A priority patent/JP7148525B2/ja
Priority to RU2020113216A priority patent/RU2779299C2/ru
Priority to BR112020005382-1A priority patent/BR112020005382A2/pt
Priority to KR1020207009020A priority patent/KR20200052898A/ko
Priority to CN201880061146.3A priority patent/CN111133820B/zh
Priority to EP18858259.7A priority patent/EP3687242A4/en
Priority to PE2020000534A priority patent/PE20201376A1/es
Publication of WO2019059196A1 publication Critical patent/WO2019059196A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Rel. 8, 9
  • LTE successor system for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel. 14 or 15).
  • a user terminal transmits a synchronization signal (PSS (Primary Synchronization Signal) by an initial access procedure (also called cell search). And / or detects a secondary synchronization signal (SSS), synchronizes with a network (for example, a base station (eNB (eNode B))), and identifies a cell to be connected (for example, by a cell ID (Identifier)) Identify).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the user terminal is a master information block (MIB: Master Information Block) transmitted on a broadcast channel (PBCH: Physical Broadcast Channel) after cell search, and a downlink (DL) shared channel (PDSCH: Physical Downlink Shared Channel).
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • PDSCH Physical Downlink Shared Channel
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a resource unit including a synchronization signal and a broadcast channel as a synchronization signal block and to perform initial connection based on the SS block.
  • the synchronization signal is also called PSS and / or SSS, or NR-PSS and / or NR-SSS, etc.
  • the broadcast channel is also called PBCH or NR-PBCH or the like.
  • the synchronization signal block is also referred to as an SS block (Synchronization Signal block), an SS / PBCH block, or the like.
  • the configuration area of the downlink control channel includes a control resource set (CORESET), a control resource set, a control subband (control subband), a search space set, a search space resource set, a control area, and a control sub It is also called a band or an NR-PDCCH region or the like.
  • the present invention has been made in view of the foregoing, and it is an object of the present invention to provide a user terminal and a wireless communication method capable of appropriately notifying information of a setting region of a control channel in a wireless communication system using a synchronization signal block. It is one of the purposes.
  • a user terminal is a receiver for receiving a synchronization signal block (SS / PBCH block) including predetermined information indicating a configuration of a control resource set, and for the SS / PBCH block based on the predetermined information. And a controller configured to determine a relative position of the control resource set.
  • SS / PBCH block synchronization signal block
  • FIG. 1A and 1B are diagrams showing an example of the SS block configuration.
  • FIG. 2 is a diagram showing an example of an SS burst set configuration.
  • FIG. 3A and FIG. 3B are diagrams showing another example of the SS burst set configuration.
  • FIG. 4A and FIG. 4B are diagrams showing another example of the SS burst set configuration.
  • FIG. 5A shows an example of a table defining the control resource set configuration
  • FIG. 5B is a view for explaining the start position and frequency position of the control resource set.
  • FIG. 6 is a diagram showing another example of the table defining the control resource set configuration.
  • FIG. 7 is a diagram showing another example of a table defining the control resource set configuration.
  • FIG. 8 is a diagram showing another example of the table defining the control resource set configuration.
  • FIG. 9A and FIG. 9B are diagrams showing another example of the table defining the control resource set configuration.
  • FIG. 10 is a diagram showing another example of the table defining the control resource set configuration.
  • 11A to 11C illustrate an example of a method of specifying the start position of the control resource set.
  • FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 13 is a diagram showing an example of the entire configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 14 is a diagram showing an example of a functional configuration of a wireless base station according to an embodiment of the present invention.
  • FIG. 15 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 16 is a diagram showing an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 17 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • Synchronization signals also referred to as SS, PSS and / or SSS, or NR-PSS and / or NR-SSS, etc.
  • a signal block also referred to as SS / PBCH block, SS / PBCH block or the like
  • a set of one or more signal blocks is also referred to as a signal burst (SS / PBCH burst or SS burst).
  • a plurality of signal blocks in the signal burst are transmitted with different beams at different times (also referred to as beam sweep etc.).
  • the SS / PBCH block is composed of one or more symbols (eg, OFDM symbols). Specifically, the SS / PBCH block may be composed of a plurality of consecutive symbols. In the SS / PBCH block, PSS, SSS and NR-PBCH may be arranged in one or more different symbols. For example, the SS / PBCH block is also considered to constitute an SS / PBCH block with four or five symbols including one symbol PSS, one symbol SSS, and two or three symbols PBCH.
  • a set of one or more SS / PBCH blocks may be referred to as SS / PBCH bursts.
  • the SS / PBCH burst may be composed of SS / PBCH blocks in which frequency and / or time resources are continuous, and may be composed of SS / PBCH blocks in which frequency and / or time resources are non-consecutive.
  • the SS / PBCH burst may be set with a predetermined period (which may be called an SS / PBCH burst period) or may be set with a non-period.
  • one or more SS / PBCH bursts may be referred to as a SS / PBCH burst set (SS / PBCH burst series).
  • the SS / PBCH burst set is set periodically.
  • the user terminal may control reception processing assuming that SS / PBCH burst sets are transmitted periodically (with SS / PBCH burst set period).
  • FIG. 1 is a diagram illustrating an example of an SS burst set.
  • the radio base station gNB
  • the radio base station may transmit different SS blocks using different beams with temporally different beam directivity (beam sweeping).
  • FIGS. 1A and 1B show an example using multiple beams, it is also possible to transmit an SS block using a single beam.
  • SS bursts are composed of one or more SS blocks, and SS burst sets are composed of one or more SS bursts.
  • the SS burst is composed of 8 SS blocks # 0 to # 7, but is not limited thereto.
  • the SS blocks # 0 to # 7 may be transmitted by different beams # 0 to # 7 (FIG. 1A).
  • the SS burst set including the SS blocks # 0 to # 7 may be transmitted so as not to exceed a predetermined period (for example, 5 ms or less, also referred to as an SS burst set period). Also, the SS burst set may be repeated in a predetermined cycle (for example, also 5, 10, 20, 40, 80 or 160 ms, also referred to as an SS burst set cycle, etc.).
  • a predetermined period for example, 5 ms or less, also referred to as an SS burst set period
  • the SS burst set may be repeated in a predetermined cycle (for example, also 5, 10, 20, 40, 80 or 160 ms, also referred to as an SS burst set cycle, etc.).
  • a DL control channel (PDCCH: also referred to as Physical Downlink Control Channel, NR-PDCCH, downlink control information (DCI), or the like) may be transmitted and / or
  • a UL uplink control channel (PUCCH: Physical Uplink Control Channel) may be transmitted from the user terminal. For example, if each SS block consists of 4 symbols, NR-PDCCH of 2 symbols and 2 SS blocks, NR-PUCCH for 2 symbols, and guard time may be included in a slot of 14 symbols .
  • the index of the SS block is notified using NR-PBCH (or DMRS for NR-PBCH) included in the SS block.
  • the UE may know the received SS block index based on NR-PBCH (or DMRS for NR-PBCH).
  • the base station notifies the UE of information related to the region in which the downlink control channel (NR-PDCCH) is configured using NR-PBCH.
  • the information on the configuration area of the NR-PDCCH may be called control resource set configuration (CORESET configuration), control resource set configuration, or NR-PDCCH configuration.
  • the base station is considered to schedule system information (for example, Remaining Minimum System Information (RMSI)) using NR-PDCCH.
  • system information for example, Remaining Minimum System Information (RMSI)
  • the UE receives the NR-PDCCH based on the control resource set configuration notified on the NR-PBCH, receives the NR-PDSCH scheduled on the NR-PDCCH, and acquires system information.
  • RMSI Remaining Minimum System Information
  • the content to be notified by including it in NR-PBCH is not specifically decided, but how to set and notify the UE of specific notification method (number of bits, content, etc.) of control resource set configuration Is a problem.
  • the payload is minimized, the redundancy is increased to improve the detection rate, and the setting range and / or granularity of the NR-PDCCH configuration is suppressed. It is desirable to do. In particular, when the frequency band is low (e.g., less than 6 GHz), it is desirable to satisfy the above requirements because the number of beams to be applied is smaller compared to the high frequency band.
  • the frequency band is low (e.g., less than 6 GHz)
  • NR-PDCCH configuration considering application of multiple beams in a high frequency band (for example, 6 GHz or more), it is desirable to set the NR-PDCCH configuration with a wide range and / or a fine granularity. For example, it is also conceivable to set a common control resource set using NR-PBCHs different in frequency band and / or transmission timing.
  • the number of bits used for notification of the control resource set configuration in a frequency band less than a predetermined frequency for example, 6 GHz
  • the contents (parameters) of the control resource set configuration notified using NR-PBCH include the bandwidth (BW) of the control resource set, the period (for example, the number of symbols), the start timing (Start timing), and the frequency position ( Frequency position). At least one of the contents is notified using bit information included in NR-PBCH.
  • the UE can determine the control resource set configuration based on the bit information included in the NR-PBCH and a preset table, and can receive the downlink control channel transmitted in the control resource set.
  • control resource set configuration corresponding to bit information included in NR-PBCH is defined.
  • SCS subcarrier spacing
  • frequency band used for SS block transmission notification of control resource set configuration can be performed with predetermined bits using one common table.
  • SS burst set allocation differs depending on subcarrier spacing (SCS) used for transmission of SS / PBCH blocks.
  • SCS subcarrier spacing
  • FIG. 2 shows an example of an SS burst set configuration when the subcarrier spacing is 15 kHz.
  • two SS blocks here, SSB # 0 and SSB # 1 are allocated in one slot (for example, 1 ms).
  • the frequency band is used at 0-3 GHz, and the number of candidate SS block positions in the SS burst set is set to four.
  • the frequency band is used at 3-6 GHz, and the number of candidate SS block positions in the SS burst set is set to eight.
  • the number of candidates of available frequency bands and SS block positions is not limited to this.
  • FIG. 3 shows an example of an SS burst set configuration when the subcarrier spacing is 30 kHz.
  • two SS blocks (here, SSB # 0 and SSB # 1 or SSB # 2 and SSB # 3) are allocated in one slot (for example, 0.5 ms).
  • the SS blocks in one slot may be arranged continuously (see FIG. 3A) or may be arranged discontinuously (see FIG. 3B).
  • the frequency band is used at 0-3 GHz, and the number of candidate SS block positions in the SS burst set is set to four.
  • the frequency band is used at 3-6 GHz, and the number of candidate SS block positions in the SS burst set is set to eight.
  • the number of candidates of available frequency bands and SS block positions is not limited to this.
  • FIG. 4A shows an example of SS burst set configuration when the subcarrier spacing is 120 kHz.
  • two SS blocks here, SSB # 32 and SSB # 33, or SSB # 34 and SSB # 35
  • the frequency band is used at 6-52.6 GHz
  • the number of candidate SS block positions in the SS burst set is set to 64.
  • the number of candidates of available frequency bands and SS block positions is not limited to this.
  • FIG. 4B shows an example of the SS burst set configuration when the subcarrier spacing is 240 kHz.
  • four continuous SS blocks here, SSB # 56- # 59 or SSB # 60- # 63
  • SSB # 56- # 59 or SSB # 60- # 63 are allocated in one slot (for example, 0.125 ms (24 OFDM symbols)).
  • the frequency band is used at 6-52.6 GHz
  • the number of candidate SS block positions in the SS burst set is set to 64.
  • the number of candidates of available frequency bands and SS block positions is not limited to this.
  • the SS burst set configuration differs only when the subcarrier interval is 240 kHz. Specifically, when the subcarrier spacing is 15 kHz, 30 kHz, 120 kHz, etc., two SS blocks are included in one slot, and at least three or more SS blocks are not continuous. On the other hand, when the subcarrier spacing is 240 kHz, four SS blocks are continuously arranged.
  • a table is defined based on a burst set of SCS 15 kHz, 30 kHz, 120 kHz, etc.
  • SCS 240 kHz For example, when a configuration in which a control resource set is arranged in an area (for example, the same frequency position) adjacent to an SS block is defined in a table, control resource sets are mutually connected in SCS 240 kHz in which four SS blocks are continuous. And control resource set may collide.
  • setting the common table in consideration of burst sets in all SCSs makes it impossible to flexibly set the control resource set configuration.
  • a specific symbol for example, one before SS block etc.
  • a specific symbol for example, one before SS block etc.
  • notification is performed with a limited number of bits, it becomes difficult to flexibly notify the control resource set position.
  • the inventors conceived of setting a plurality of types (options) of OFDM symbol positions to be notified of the control resource set according to the position of the SS block. For example, using a plurality of options (information indicating the forward direction of the SS block, information indicating the backward direction, or other information), the time shift amount based on the relative position to the SS block The OFDM symbol position of the control resource set is notified using. This makes it possible to flexibly control the arrangement of control resource sets even when the NR-PBCH payload is limited.
  • the configuration according to each embodiment may be applied alone or in combination.
  • the configuration of the SS block is not limited to this.
  • the control resource set configuration notified in each SS block is configured differently according to the subcarrier interval (SCS) used for transmission of the SS block.
  • SCS subcarrier interval
  • the following description shows the case where a common control resource set configuration is used for SCS 15 kHz, 30 kHz, 60 kHz, and 120 kHz, and a different control resource set configuration is used for 240 kHz.
  • the classification of SCSs using a common control resource set configuration is not limited to this.
  • bit information notified in SS block using SCS 15 kHz, 30 kHz, 60 kHz, 120 kHz (first SCS), and a table (first table) in which a control resource set configuration corresponding to the bit information is defined.
  • first SCS bit information notified in SS block using SCS 15 kHz, 30 kHz, 60 kHz, 120 kHz
  • second SCS bit information notified in SS block using SCS 240 kHz
  • second table in which a control resource set configuration corresponding to the bit information is defined as a first table Is set separately.
  • the number of bits and / or the contents used for notification of the control resource set configuration are set to be different between the first SCS and the second SCS.
  • the following describes the case where different numbers of bits are applied to the notification of the control resource set configuration of the first SCS and the second SCS (Configuration 1), and the case where different numbers of bits are notified as different bits (Configuration 2) Do.
  • Control resource set configuration is notified using 4 bits of bit information, and in the SS block using the second SCS using 5 bits of bit information, the control resource Report set configuration.
  • more bits may be applied to the second SCS as compared to at least the first SCS, and the number of bits is not limited to this.
  • the second SCS when applying the second SCS, more control resource set configurations can be notified as compared to the first SCS, and therefore, it is possible to secure sufficient options for a predetermined SCS.
  • FIG. 5A shows an example of a first table in the case of notifying of the control resource set configuration using 4-bit bit information.
  • bandwidth BW
  • a period for example, the number of symbols
  • start timing Start timing
  • Frequency position frequency position
  • 24 PRBs, 48 PRBs, and 96 PRBs are defined as bandwidths of control resource sets. Also, any one of 1 to 3 symbols is defined as a period of control resource set.
  • One of S1-S3 is defined as the start position of the control resource set.
  • One of F1 to F3 is defined as the frequency position of the control resource set.
  • the start position S1-S3 of the control resource set may be set as follows (see FIG. 5B).
  • S1 OFDM symbol after SS block (OFDM symbol after SS block)
  • S2 First OFDM symbol of the same slot as SS block (First OFDM symbol of the same slot)
  • S3 First OFDM symbol of SS block (First OFDM symbol of SS block)
  • the start position F1-F3 of the control resource set may be set as follows (see FIG. 5B).
  • F1 Same PRB as SS block (Same PRBs occupied by the SS block)
  • F2 PRB adjacent to SS block at frequency: PRB with equal number of immediately below and above the SS block in frequency
  • F3 The center of CORESET and the center of SS block are aligned (with the center of the CORESET BW aligned with the center of the SS block)
  • FIG. 6 shows an example of a second table in the case of notifying the control resource set configuration using 5-bit bit information.
  • bandwidth BW
  • a period for example, the number of symbols
  • start timing Start timing
  • Frequency position frequency position
  • PRBs, 48 PRBs, and 96 PRBs are defined as bandwidths of control resource sets. Also, any one of 1 to 3 symbols is defined as a period of control resource set. In addition to S1-S3, any one of S8, S9, S10, S11, S12, and S14 is defined as the start position of the control resource set. One of F1 to F3 is defined as the frequency position of the control resource set.
  • Each of S8 to S14 corresponds to the number of OFDM symbols before SS block. That is, S8 indicates that the OFDM symbol eight OFDM symbols before the SS block is the start position. Similarly, S9 indicates that the OFDM symbol nine OFDM symbols before the SS block is the start position.
  • Table 2 a control resource set configuration corresponding to more bit information than Table 1 is defined.
  • more patterns are defined in Table 2 for the start position of the control resource set as compared to Table 1.
  • At least the types (patterns) of start positions are set in the control resource set configuration of the second SCS compared to the control resource set configuration of the first SCS.
  • other parameters bandwidth, period, frequency position, etc.
  • different contents numbererical values, etc.
  • Control resource set configurations may be notified using 4 bits of bit information in each of the SS block using the first SCS and the SS block using the second SCS.
  • FIG. 7 shows an example of a second table (used for second SCS transmission) in the case of notifying of the control resource set configuration using 4-bit bit information.
  • bandwidth BW
  • a period for example, the number of symbols
  • start timing Start timing
  • Frequency position frequency position
  • PRBs, 48 PRBs, and 96 PRBs are defined as bandwidths of control resource sets. Also, any one of 1 to 3 symbols is defined as a period of control resource set.
  • One of S1-S3, S8, S9, and S10 is defined as the start position of the control resource set.
  • One of F1 to F3 is defined as the frequency position of the control resource set.
  • start positions S1-S3 and S8-S10 of the control resource set may be set as follows.
  • S10 OFDM symbol 10 OFDM symbols before SS block
  • the control resource set configuration can be flexibly set according to each SS burst set. Can.
  • FIG. 7 shows a case where the symbol number of the SS block is specifically defined as the start position of the control resource set
  • the present invention is not limited to this.
  • the start position of the control resource set notified in the SS block may be determined (see FIG. 8).
  • the first table may have the same content as that of FIG. 5A.
  • any one of S1, S3 and SZ is defined as the start position of the control resource set.
  • SZ indicates the OFDM symbol before Z OFDM symbol of the SS block
  • Z is a value associated with the SS block index.
  • Z may be, for example, a value obtained from the following equation (1).
  • the modulo operation used in the following equation (1) corresponds to the number of SS blocks (here, 4) continuous in the slot, and is appropriately changed according to the SS burst set configuration (for example, the continuous SS block configuration) It is possible.
  • the start position of the control resource from the SS block index, it is possible to reduce the number of start position patterns (the number of types of start positions specified) defined in the second table. it can. As a result, the bit value of the bit information notified in the SS block transmitted by applying the second SCS is reduced (for example, the same bit value as in the case of using the first SCS) and the start position is set. It can be controlled flexibly.
  • the first table may be set to calculate the start position using the SS block index also for the first SCS.
  • the time shift amount from the SS block is set as the start position of the control resource set in FIG. 8 above, a case where the time domain (for example, a symbol) ahead of the SS block is specified is shown.
  • the form is not limited to this.
  • a plurality of options for notifying the position (for example, the symbol position) of the control resource set are set according to the position of the SS block, and the position of the control resource set scheduling the RMSI is flexibly set and notified.
  • a specific symbol in the SS block, a symbol in front of the SS block, and a symbol behind the SS block are set as a plurality of options used for notification of the OFDM symbol position of the control resource set.
  • the front symbol and the rear symbol of the SS block indicate the position in the time direction relative to the SS block.
  • the plurality of options used for notification of OFDM symbol positions of the control resource set is not limited to this.
  • the base station notifies the UE of any one of the following SX, SY, and S3 as the start position of the control resource set.
  • SX OFDM symbol X OFDM symbols earlier than SS block
  • SY OFDM symbol Y OFDM symbols later than SS block
  • S3 first OFDM symbol in SS block
  • X and Y correspond to shift amounts based on the SS block, and may be values defined based on predetermined parameters.
  • X and / or Y may be values determined by at least one of subcarrier spacing, configuration of control resource set, configuration of SS block, and frequency band.
  • X and / or Y may be defined for each subcarrier interval (or a configuration in which SS blocks are continuous) used for transmission of SS blocks.
  • a formula including the configuration of the control resource set (for example, the period of the control resource set) and the configuration of the SS block (for example, the SS block index) may be defined for each subcarrier interval.
  • X and Y are represented by the following formulas (2) and (3) It may be calculated from (see FIG. 11A).
  • FIG. 11 shows the case where the control resource set period is two.
  • Formula (2) X 2 + (4-control resource set period) ⁇ (SS block index mod 1)
  • Formula (3) Y 1-(4-control resource set period) x (SS block index mod 1)
  • the position of the control resource set can be flexibly controlled by notifying the UE with information that can specify the forward or backward of the SS block as the shift amount from the SS block in the SS block.
  • X and Y are calculated from the following formulas (4) and (5) at subcarrier intervals (for example, SCS 30 kHz (FIG. 3A), 120 kHz (FIG. 4A)) using a configuration in which two SS blocks are continuous. You may do (refer FIG. 11B).
  • Formula (4) X 4 + (4-control resource set period) ⁇ (SS block index mod 2)
  • Formula (5) Y 5- (4-control resource set period) x (SS block index mod 2)
  • the position of the control resource set can be flexibly controlled by notifying the UE with information that can specify the forward or backward of the SS block as the shift amount from the SS block in the SS block. Also, even when the SS blocks are continuous, the control resource set can be appropriately arranged by determining the control resource set position in consideration of the SS block index and the control resource set period.
  • X and Y may be calculated from the following equations (6) and (7) at subcarrier intervals (for example, SCS 240 kHz (FIG. 4B)) using a configuration in which four SS blocks are continuous (see FIG. 11C).
  • Formula (6) X 8 + (4-control resource set period) ⁇ (SS block index mod 4)
  • Formula (7) Y 13- (4-control resource set period) ⁇ (SS block index mod 4)
  • the UE receives the SS block # 0 and X or Y is notified on the NR-PBCH included in the SS block # 0, from the SS block # 0 based on the above equation (6) or (7) Determine the relative position of Then, assuming that the control resource set is transmitted at the relative position from the SS block # 0, the reception of the RMSI is controlled.
  • the UE receives another SS block # 1- # 7 the same process may be performed.
  • control resource set can be appropriately arranged by determining the control resource set position in consideration of the SS block index and the control resource set period.
  • Equation (2)-(7) defining X and Y are not limited to the above-described configuration. It may be defined using other numerical values or parameters.
  • SX, SY, and S3 may be set to the start position of the above-described table (for example, FIG. 8), or the information on SX, SY, or S3 may be notified to the UE without using the table. Good. Also, only SX and SY may be set in the table, or only SY and S3 may be set in the table. Information (S2 etc.) indicating another position may be set in the table instead of S3 (or in addition to S3).
  • the NR-- can be notified by notifying the position of the control resource set. Even when the PBCH payload is limited, it is possible to flexibly control the arrangement of control resource sets.
  • the control resource set configuration notified in each SS block is different depending on the frequency band used for transmission of the SS block.
  • the following description shows the case where different control resource set configurations (for example, different tables) are used for a band of less than 6 GHz (first band) and a band of 6 GHz or more (second band).
  • the number of bits and / or the content used for notification of control resource set configuration are set to be different in the first band and the second band.
  • the case where different numbers of bits are applied to notification of control resource set configuration of the first band and the second band will be described below.
  • a control resource set configuration is notified using 4 bits of bit information in the SS block using the first band, and a control resource using 12 bits of bit information in the SS block using the second band Report set configuration. Note that more bits may be applied to the second band compared to at least the first band, and the number of bits is not limited to this.
  • FIGS. 9 and 10 show an example of a table (third table) used for notifying of the control resource configuration in the second band.
  • the third table corresponds to the case of notifying the control resource set configuration using 12-bit bit information.
  • the table used to notify of the control resource configuration in the first band can use the table (for example, FIG. 5 or the like) shown in the first aspect.
  • FIG. 9A shows a table in which bandwidths and periods of control resource sets are defined using 3 bits. Further, FIG. 9B shows a table in which the start position of the control resource set is defined using 4 bits. Further, FIG. 10 shows a table in which start positions of control resource sets are defined using 5 bits.
  • 24 PRBs, 48 PRBs, 96 PRBs, and 154 PRBs are defined as bandwidths of control resource sets. Also, any one of 1 to 3 symbols is defined as a period of control resource set.
  • any of SB2, SB4, SB6, SB8, SB10, SB12, SB14, ST1, ST3, SN1, SA3, SA5, SA7, SA9, SA11, SA13 is defined as the start position of the control resource set. .
  • SBX indicates an OFDM symbol X OFDM symbols before the SS block (X OFDM symbol before SS block).
  • SB2 indicates an OFDM symbol two OFDM symbols before the SS block.
  • STX indicates the X-th OFDM symbol in the SS block (X OFDM symbol of SS block).
  • ST1 indicates the first OFDM symbol of the SS block.
  • SN1 indicates the next OFDM symbol after SS block (Next OFDM symbol after SS block).
  • SAX is an X-th OFDM symbol after SS block (X OFDM symbol after SS block).
  • SA2 indicates the second OFDM symbol after SS block.
  • the configuration shown in the second aspect may be applied as the start position of the control resource set.
  • either the same center frequency (F) as the SS block or the offset value (the number of PRBs) from the center frequency (F) of the SS block is defined as the frequency position of the control resource set.
  • the offset value a predetermined number of PRBs (for example, +12, +24, +36..., +180, -12, -24, -36,... -180) are set.
  • the frequency position of the control resource set is flexibly controlled by notifying the UE of the offset from the frequency position (center frequency) of the SS block as the frequency position of the control resource set notified in each SS block. it can. This makes it possible to notify a common control resource set from different SS blocks.
  • setting the control resource set can be flexibly controlled according to the communication environment by changing the number of patterns of the control resource set configuration notified by each SS block based on the frequency band. For example, in the case of applying a second band (high frequency band or the like), it is possible to notify more control resource set configurations as compared with the first band. This enables flexible operation such as notification of common control resource set configuration from different NR-PBCHs in a high frequency band to which multi-beam operation is applied.
  • the first aspect and the second aspect may be applied in combination as appropriate.
  • the frequency position (for example, frequency offset) of the control resource set may be notified to the UE.
  • the first table for example, see FIG. 5A
  • bit information corresponding to the first table are used
  • the second SCS when using the second SCS, the second is used.
  • the bit information corresponding to the table see, eg, FIG. 6, FIG. 7 or FIG. 8) and the second table is used.
  • bit information for example, FIG. 10
  • the frequency position for example, frequency offset
  • the UE may be notified of (see).
  • the setting of the control resource set can be flexibly controlled in consideration of the SCS used for transmission of the SS block and the frequency band.
  • control resource set configuration shown in the present embodiment may be defined in advance in the specification, or from the base station to the UE for downlink control information and / or upper layer signaling (for example, RRC You may set by signaling and / or alerting
  • RRC You may set by signaling and / or alerting
  • Wireless communication system Hereinafter, the configuration of a wireless communication system according to an embodiment of the present invention will be described. In this wireless communication system, communication is performed using any one of the above aspects of the present invention or a combination thereof.
  • FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th Generation mobile communication system), 5G It may be called (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology) or the like, or it may be called a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 5G It may be called (5th generation mobile communication system)
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the radio communication system 1 includes a radio base station 11 forming a macrocell C1 with a relatively wide coverage, and radio base stations 12 (12a to 12c) disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. And. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 simultaneously uses the macro cell C1 and the small cell C2 by CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, 5 or less CCs, 6 or more CCs). For example, in DC, MeNB (MCG) applies an LTE cell, and SeNB (SCG) performs communication using NR / 5G-cell.
  • MCG MeNB
  • SCG SeNB
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a carrier having a narrow bandwidth (referred to as an existing carrier, Legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • a wired connection for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.
  • a wireless connection Can be configured.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink as a radio access scheme, and single carrier frequency division multiple access (SC-FDMA: single carrier) to the uplink.
  • SC-FDMA single carrier frequency division multiple access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission scheme that divides the system bandwidth into bands consisting of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between the terminals. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, etc. are used as downlink channels. Used. User data, upper layer control information, SIB (System Information Block), etc. are transmitted by the PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH.
  • a common control channel that reports the presence or absence of a paging channel is mapped to a downlink L1 / L2 control channel (for example, PDCCH), and data of a paging channel (PCH) is mapped to a PDSCH.
  • a downlink reference signal, an uplink reference signal, and a physical downlink synchronization signal are separately arranged.
  • the downlink L1 / L2 control channel includes PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • Delivery confirmation information (for example, also referred to as retransmission control information, HARQ-ACK, or ACK / NACK) of HARQ (Hybrid Automatic Repeat reQuest) for the PUSCH is transmitted by the PHICH.
  • the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel), and is used for transmission such as DCI, similarly to the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and upper layer control information are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, etc. are transmitted by the PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a downlink reference signal As a downlink reference signal, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation). Reference Signal), Positioning Reference Signal (PRS), etc. are transmitted. Further, in the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals.
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signal
  • DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Also, reference signals to be transmitted are not limited to these.
  • FIG. 13 is a diagram showing an example of the entire configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Transmission processing such as retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. It is transferred to 103. Also, with regard to the downlink control signal, transmission processing such as channel coding and inverse fast Fourier transform is performed and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmission / reception unit 103 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as setting and release of communication channels, status management of the wireless base station 10, and management of wireless resources.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the other wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). May be
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • the transmitting / receiving unit 103 transmits predetermined bit information indicating the configuration of the control resource set (control resource set) in an SS block (for example, NR-PBCH). Also, the transmission / reception unit 103 transmits the downlink control channel (NR-PDCCH) in the control resource set notified by the SS block. Also, the transmission / reception unit 103 may notify the UE of a table in which the control resource set configuration is defined by higher layer signaling or the like. Also, the transmission / reception unit 103 selects predetermined information from among a plurality of pieces of information (options) indicating the relative position of the control resource set with respect to the SS block, and controls transmission.
  • SS block for example, NR-PBCH
  • NR-PDCCH downlink control channel
  • the transmission / reception unit 103 may notify the UE of a table in which the control resource set configuration is defined by higher layer signaling or the like. Also, the transmission / reception unit 103 selects predetermined information from among a plurality of pieces
  • FIG. 14 is a diagram showing an example of a functional configuration of a wireless base station according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and the wireless base station 10 also has another functional block required for wireless communication.
  • the baseband signal processing unit 104 at least includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the wireless base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
  • the baseband signal processing unit 104 has a digital beamforming function of providing digital beamforming.
  • a control unit (scheduler) 301 performs control of the entire radio base station 10.
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 301 controls, for example, generation of a signal by the transmission signal generation unit 302 (including a synchronization signal, MIB, a paging channel, and a signal corresponding to a broadcast channel) and assignment of signals by the mapping unit 303.
  • a signal by the transmission signal generation unit 302 including a synchronization signal, MIB, a paging channel, and a signal corresponding to a broadcast channel
  • the control unit 301 performs control so that predetermined bit information indicating the control resource set configuration is included in the SS block (for example, NR-PBCH) and transmitted. Also, the control unit 301 performs control to transmit the downlink control channel (NR-PDCCH) in the control resource set notified by the SS block. Further, the control unit 301 may control transmission to the user terminal by selecting predetermined information from among a plurality of pieces of information (options) indicating the relative position of the control resource set with respect to the SS block.
  • predetermined bit information indicating the control resource set configuration is included in the SS block (for example, NR-PBCH) and transmitted. Also, the control unit 301 performs control to transmit the downlink control channel (NR-PDCCH) in the control resource set notified by the SS block. Further, the control unit 301 may control transmission to the user terminal by selecting predetermined information from among a plurality of pieces of information (options) indicating the relative position of the control resource set with respect to the SS block.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal or the like) based on an instruction from the control unit 301, and outputs the downlink signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 For example, based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a DL assignment for notifying downlink signal allocation information and a UL grant for notifying uplink signal allocation information. Also, coding processing and modulation processing are performed on the downlink data signal according to a coding rate, a modulation method, and the like determined based on channel state information (CSI: Channel State Information) and the like from each user terminal 20.
  • CSI Channel State Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the mapped downlink signal to transmission / reception section 103.
  • the mapping unit 303 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the reception signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception process to the control unit 301. For example, when the PUCCH including the HARQ-ACK is received, the HARQ-ACK is output to the control unit 301. Further, the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measuring unit 305 can be configured from a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 305 may, for example, receive power of a received signal (for example, reference signal received power (RSRP)), reception quality (for example, reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR)) and / or Or, it may measure channel conditions and the like.
  • RSRP reference signal received power
  • RSS reference signal received quality
  • SINR signal to interference plus noise ratio
  • the measurement result may be output to the control unit 301.
  • FIG. 15 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmitting and receiving antennas 201, an amplifier unit 202, a transmitting and receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • each of the transmitting and receiving antenna 201, the amplifier unit 202, and the transmitting and receiving unit 203 may be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmitting and receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured of a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs reception processing of FFT processing, error correction decoding, retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. It is transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmitting and receiving unit 203 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beamforming unit comprises an analog beamforming circuit (eg, phase shifter, phase shift circuit) or an analog beamforming apparatus (eg, phase shifter) described based on common recognition in the technical field according to the present invention can do.
  • the transmitting and receiving antenna 201 can be configured by, for example, an array antenna.
  • the transmission / reception unit 203 receives an SS block (for example, NR-PBCH) including predetermined bit information indicating the configuration of the control resource set (control resource set). Also, the transmission / reception unit 203 receives the downlink control channel (NR-PDCCH) in the control resource set notified by the SS block. Also, the transmitting / receiving unit 203 may receive a table in which the control resource set configuration is defined by higher layer signaling or the like. The transmitting / receiving unit 203 also receives predetermined information selected by the base station from among a plurality of information (options) indicating the relative position of the control resource set with respect to the SS block.
  • NR-PBCH downlink control channel
  • FIG. 16 is a diagram showing an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it is assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 at least includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and assignment of signals by the mapping unit 403. Further, the control unit 401 controls reception processing of the signal by the reception signal processing unit 404 and measurement of the signal by the measurement unit 405.
  • the control unit 401 controls the reception of the downlink control channel by determining the relative position of the control resource set with respect to the SS block based on predetermined bit information. For example, the control unit 401 calculates candidates for shift amounts (X and / or Y) with respect to forward and backward in the time direction of the SS block based on predetermined bit information (for example, bits specifying X or Y). At this time, the control unit 401 may determine a plurality of candidates for the shift amount using a predetermined equation. Also, the equation used to calculate the shift amount may be defined differently depending on the subcarrier spacing or the SS block configuration (for example, the number of continuous SS blocks and the like).
  • the candidate positions of the control resource set notified by predetermined bit information are defined in the table, and at least the shift amount of the SS block in the time direction as the candidate position of the control resource set, the shift amount of the SS block in the time direction; And information indicating a specific symbol may be defined in the table.
  • control unit 401 controls the contents of predetermined bit information (for example, a table to be used) included in the SS block (for example, NR-PBCH) according to the subcarrier interval and / or frequency band applied to transmission of the SS block.
  • predetermined bit information for example, a table to be used
  • the control unit 401 determines the content of the predetermined bit information with reference to different tables based on subcarrier intervals and / or frequency bands applied to transmission of SS blocks.
  • the first table is applied to the first subcarrier interval (15/30/60/120 kHz), and the second table is applied to the second subcarrier interval (240 kHz).
  • different tables are applied to the first frequency band (eg, less than 6 GHz) and the second frequency band (eg, 6 GHz or more).
  • the number of patterns of start positions of control resource sets are defined differently.
  • the number of bits of bit information may be different depending on the subcarrier spacing and / or frequency band applied to transmission of the SS block.
  • the start position of the control resource set may be defined using the SS block index.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal or the like) based on an instruction from the control unit 401, and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates, for example, an uplink control signal related to delivery confirmation information and / or channel state information (CSI) based on an instruction from the control unit 401. Further, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, when the downlink control signal notified from the radio base station 10 includes a UL grant, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the uplink signal to transmission / reception section 203.
  • the mapping unit 403 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 203.
  • the reception signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, or the like) transmitted from the radio base station 10.
  • the received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
  • the reception signal processing unit 404 receives a synchronization signal and a broadcast channel that the radio base station applies beamforming to transmit based on an instruction from the control unit 401. In particular, it receives a synchronization signal and a broadcast channel assigned to at least one of a plurality of time domains (e.g., symbols) that make up a predetermined transmission time interval (e.g., a subframe or slot).
  • a synchronization signal and a broadcast channel assigned to at least one of a plurality of time domains (e.g., symbols) that make up a predetermined transmission time interval (e.g., a subframe or slot).
  • the reception signal processing unit 404 outputs the information decoded by the reception process to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 performs measurement using the beamforming RS transmitted from the radio base station 10.
  • the measuring unit 405 can be configured of a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 405 may measure, for example, reception power (for example, RSRP), reception quality (for example, RSRQ, reception SINR), and / or channel condition of a received signal.
  • the measurement result may be output to the control unit 401.
  • the measurement unit 405 performs RRM measurement using a synchronization signal.
  • each functional block is realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
  • a wireless base station, a user terminal, and the like in an embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention.
  • FIG. 17 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is performed, for example, by causing a processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the processor 1001 performs an operation. This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may consist of one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be composed of
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and / or the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • a radio frame may be configured with one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured with one or more slots in the time domain.
  • the slot may be configured with one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.).
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier frequency division multiple access
  • a radio frame, a subframe, a slot and a symbol all represent time units when transmitting a signal.
  • radio frames, subframes, slots and symbols different designations corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot may be referred to as a TTI.
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to allocate radio resources (such as frequency bandwidth and / or transmission power that can be used in each user terminal) to each user terminal on a TTI basis.
  • the TTI may be a transmission time unit of a channel coded data packet (transport block) or may be a processing unit such as scheduling and / or link adaptation.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a shortened subframe, a short subframe, or the like.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one subframe, or one TTI in length. One TTI and one subframe may be configured of one or more resource blocks, respectively.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • PRB Physical RB
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as radio frames, subframes, slots and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots included in a subframe, the number of symbols and RBs included in a slot, the number of subcarriers included in an RB, and the number of symbols in TTI, symbol length can be variously changed.
  • the information, parameters, and the like described in the present specification may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by corresponding other information.
  • the radio resources may be indicated by a predetermined index.
  • the formulas etc. that use these parameters may differ from those explicitly disclosed herein.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed in other manners.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (Rrcconnection setup) message, an RRC connection reconfiguration (Rrcconnection reconfiguration) message, or the like.
  • MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to what is explicitly performed, but implicitly (for example, by not notifying the predetermined information or another It may be performed by notification of information.
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a Boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein are used interchangeably.
  • base station As used herein, the terms “base station (BS)”, “radio base station”, “eNB”, “cell”, “sector”, “cell group”, “carrier” and “component carrier” , Can be used interchangeably.
  • a base station may be called by terms such as a fixed station (fixed station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell and the like.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication services may also be provided by the Remote Radio Head, where the term "cell” or “sector” refers to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage. Point to.
  • RRH Small base station for indoor use
  • MS mobile station
  • UE user equipment
  • UE user equipment
  • a base station may be called by terms such as a fixed station (fixed station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell and the like.
  • fixed station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • access point access point
  • transmission point reception point
  • femtocell small cell and the like.
  • the mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • words such as "up” and / or "down” may be read as "side".
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the specific operation to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with terminals may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-AdvaNced, 4G (4th generation mobile) communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future Generation Radio access), GSM (Global System for Mobile Communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wideband), Bluetooth (registered And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Be
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using the designation "first,” “second,” etc. as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be Calculating, Computing, Processing, Deriving, Investigating, Looking up (e.g., a table, database or other data) It may be considered as “determining” a search on a structure), ascertaining, etc.
  • determination (determination) may be receiving (for example, receiving information), transmitting (for example, transmitting information), input (Input), output (output), access (for example). Accessing (eg, accessing data in memory) and the like may be considered as “determining”.
  • determination is considered to be “decision (decision)” such as solving (Resolving), selecting (Selecting), selecting (Choosing), establishing (Establishing), etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • the terms “connected”, “coupled”, or any variation thereof refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof.
  • the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered “connected” or “coupled” to one another by using electromagnetic energy such as electromagnetic energy having wavelengths in the region, microwave region and light (both visible and invisible) regions.
  • a receiver configured to receive a synchronization signal (SS) block including predetermined bit information indicating a configuration of the control resource set, and determining a relative position of the control resource set with respect to the SS block based on the predetermined bit information; And a control unit configured to control reception of a control channel.
  • SS synchronization signal
  • a control unit configured to control reception of a control channel.
  • a transmitter configured to transmit a synchronization signal (SS) block including predetermined bit information indicating a configuration of a control resource set, and predetermined information out of a plurality of pieces of information indicating a relative position of the control resource set with respect to the SS block
  • a control unit which selects and controls transmission to a user terminal.
  • Downlink control by determining a relative position of the control resource set relative to the SS block based on the predetermined bit information, receiving a synchronization signal (SS) block including predetermined bit information indicating the configuration of the control resource set And controlling the reception of a channel.
  • SS synchronization signal

Abstract

同期信号ブロックを利用する無線通信システムにおいて制御チャネルの設定領域の情報を適切に通知するために、本開示の一態様に係るユーザ端末は、制御リソースセットの構成を示す所定情報を含む同期信号ブロック(SS/PBCHブロック)を受信する受信部と、前記所定情報に基づいて前記SS/PBCHブロックに対する前記制御リソースセットの相対的な位置を決定する制御部と、を有する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)において、ユーザ端末(UE:User Equipment)は、初期接続(initial access)手順(セルサーチ等とも呼ばれる)によって同期信号(PSS(Primary Synchronization Signal)及び/又はSSS(Secondary Synchronization Signal))を検出し、ネットワーク(例えば、基地局(eNB(eNode B)))との同期をとるとともに、接続するセルを識別する(例えば、セルID(Identifier)によって識別する)。
 また、ユーザ端末は、セルサーチ後に、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)で送信されるマスタ情報ブロック(MIB:Master Information Block)、下りリンク(DL)共有チャネル(PDSCH:Physical Downlink Shared Channel)で送信されるシステム情報ブロック(SIB:System Information Block)などを受信して、ネットワークとの通信のための設定情報(ブロードキャスト情報、システム情報などと呼ばれてもよい)を取得する。
 将来の無線通信システム(例えば、NR又は5G)においては、同期信号及びブロードキャストチャネルを含むリソースユニットを同期信号ブロックと定義し、当該SSブロックに基づいて初期接続を行うことが検討されている。同期信号は、PSS及び/又はSSS、又は、NR-PSS及び/又はNR-SSS等とも呼ぶ。ブロードキャストチャネルは、PBCH又はNR-PBCH等とも呼ぶ。同期信号ブロックは、SSブロック(Synchronization Signal block)、又はSS/PBCHブロック等とも呼ぶ。
 SSブロックを利用した初期接続では、SSブロックを構成するNR-PBCHを利用して下り制御チャネルが設定される領域に関する情報等がUEに通知される。下り制御チャネル(NR-PDCCH)の設定領域は、コントロールリソースセット(CORESET:control resource set)、制御リソースセット、コントロールサブバンド(control subband)、サーチスペースセット、サーチスペースリソースセット、コントロール領域、制御サブバンド、又はNR-PDCCH領域等とも呼ばれる。
 しかし、下り制御チャネルの設定領域に関する情報(CORESET configurationとも呼ぶ)等をどのようにNR-PBCHに含めてUEに通知するかは決まっておらず、適切な通知方法が望まれている。
 本発明はかかる点に鑑みてなされたものであり、同期信号ブロックを利用する無線通信システムにおいて制御チャネルの設定領域の情報を適切に通知することができるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、制御リソースセットの構成を示す所定情報を含む同期信号ブロック(SS/PBCHブロック)を受信する受信部と、前記所定情報に基づいて前記SS/PBCHブロックに対する前記制御リソースセットの相対的な位置を決定する制御部と、を有することを特徴とする。
 本発明によれば、同期信号ブロックを利用する無線通信システムにおいて制御チャネルの設定領域の情報を適切に通知することができる。
図1A及び図1Bは、SSブロック構成の一例を示す図である。 図2は、SSバーストセット構成の一例を示す図である。 図3A及び図3Bは、SSバーストセット構成の他の例を示す図である。 図4A及び図4Bは、SSバーストセット構成の他の例を示す図である。 図5Aは、コントロールリソースセット構成を規定したテーブルの一例を示し、図5Bは、コントロールリソースセットの開始位置と周波数位置を説明する図である。 図6は、コントロールリソースセット構成を規定したテーブルの他の例を示す図である。 図7は、コントロールリソースセット構成を規定したテーブルの他の例を示す図である。 図8は、コントロールリソースセット構成を規定したテーブルの他の例を示す図である。 図9A及び図9Bは、コントロールリソースセット構成を規定したテーブルの他の例を示す図である。 図10は、コントロールリソースセット構成を規定したテーブルの他の例を示す図である。 図11A-図11Cは、コントロールリソースセットの開始位置の特定方法の一例を示す図である。 図12は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図13は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 図14は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 図15は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図16は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図17は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システム(例えば、LTE Rel.14以降、5G又はNRなど)では、同期信号(SS、PSS及び/又はSSS、又は、NR-PSS及び/又はNR-SSS等をともいう)及びブロードキャストチャネル(ブロードキャスト信号、PBCH、又は、NR-PBCH等ともいう)を含む信号ブロック(SS/PBCHブロック、SS/PBCHブロック等ともいう)を定義することが検討されている。一以上の信号ブロックの集合は、信号バースト(SS/PBCHバースト又はSSバースト)とも呼ばれる。当該信号バースト内の複数の信号ブロックは、異なる時間に異なるビームで送信される(ビームスィープ(beam sweep)等ともいう)。
 SS/PBCHブロックは、一以上のシンボル(例えば、OFDMシンボル)で構成される。具体的には、SS/PBCHブロックは、連続する複数のシンボルで構成されてもよい。当該SS/PBCHブロック内では、PSS、SSS及びNR-PBCHがそれぞれ異なる一以上のシンボルに配置されてもよい。例えば、SS/PBCHブロックは、1シンボルのPSS、1シンボルのSSS、2又は3シンボルのPBCHを含む4又は5シンボルでSS/PBCHブロックを構成することも検討されている。
 1つ又は複数のSS/PBCHブロックの集合は、SS/PBCHバーストと呼ばれてもよい。SS/PBCHバーストは、周波数及び/又は時間リソースが連続するSS/PBCHブロックで構成されてもよいし、周波数及び/又は時間リソースが非連続のSS/PBCHブロックで構成されてもよい。SS/PBCHバーストは、所定の周期(SS/PBCHバースト周期と呼ばれてもよい)で設定されてもよいし、又は、非周期で設定されてもよい。
 また、1つ又は複数のSS/PBCHバーストは、SS/PBCHバーストセット(SS/PBCHバーストシリーズ)と呼ばれてもよい。SS/PBCHバーストセットは周期的に設定される。ユーザ端末は、SS/PBCHバーストセットが周期的に(SS/PBCHバーストセット周期(SS burst set periodicity)で)送信されると想定して受信処理を制御してもよい。
 図1は、SSバーストセットの一例を示す図である。図1Aでは、ビームスイーピングの一例が示される。図1A及び図1Bに示すように、無線基地局(gNB)は、ビームの指向性を時間的に異ならせて(ビームスイーピング)、異なるビームを用いて異なるSSブロックを送信してもよい。なお、図1A及び図1Bでは、マルチビームを用いた例が示されるが、シングルビームを用いてSSブロックを送信することも可能である。
 図1Bに示すように、SSバーストは1つ以上のSSブロックで構成され、SSバーストセットは1つ以上のSSバーストで構成される。例えば、図1Bでは、SSバーストが8SSブロック#0~#7で構成されるものとするが、これに限られない。SSブロック#0~#7は、それぞれ異なるビーム#0~#7(図1A)で送信されてもよい。
 図1Bに示すように、SSブロック#0~#7を含むSSバーストセットは、所定期間(例えば、5ms以下、SSバーストセット期間等ともいう)を超えないように送信されてもよい。また、SSバーストセットは、所定周期(例えば、5、10、20、40、80又は160ms、SSバーストセット周期等ともいう)で繰り替えされてもよい。
 なお、図1Bでは、SSブロック#1及び#2、#3及び#4、#5及び#6の間にそれぞれ所定の時間間隔があるが、当該時間間隔はなくともよく、他のSSブロック間(例えば、SSブロック#2及び#3、#5及び#6の間など)に設けられてもよい。当該時間間隔には、例えば、DL制御チャネル(PDCCH:Physical Downlink Control Channel、NR-PDCCH又は下りリンク制御情報(DCI:Downlink Control Information)等ともいう)が送信されてもよいし、及び/又は、UL制御チャネル(PUCCH:Physical Uplink Control Channel)がユーザ端末から送信されてもよい。例えば、各SSブロックが4シンボルで構成される場合、14シンボルのスロット内には、2シンボルのNR-PDCCHと2つのSSブロック、2シンボル分のNR-PUCCH及びガード時間が含まれてもよい。
 また、SSブロックに含まれるNR-PBCH(又は、NR-PBCH用のDMRS)を利用してSSブロックのインデックスが通知される。UEは、NR-PBCH(又は、NR-PBCH用のDMRS)に基づいて受信したSSブロックインデックスを把握することができる。
 また、基地局は、NR-PBCHを用いて下り制御チャネル(NR-PDCCH)が設定される領域に関する情報をUEに通知することが検討されている。NR-PDCCHの設定領域に関する情報は、コントロールリソースセット構成(CORESET configuration)、制御リソースセット構成、又はNR-PDCCH構成と呼んでもよい。
 また、基地局は、NR-PDCCHを利用してシステム情報(例えば、RMSI(Remaining Minimum System Information))をスケジューリングすることが検討されている。この場合、UEは、NR-PBCHで通知されるコントロールリソースセット構成に基づいて、NR-PDCCHを受信し、当該NR-PDCCHでスケジューリングされるNR-PDSCHを受信してシステム情報を取得する。
 一方で、NR-PBCHに含めて通知する内容は具体的に決まっておらず、コントロールリソースセット構成の具体的な通知方法(ビット数及び内容等)をどのように設定してUEに通知するかが問題となる。
 NR-PBCHに適用可能なリソースも限られるため、NR-PBCHではペイロードを必要最低限に抑え、冗長度を高めて検出率を向上すると共に、NR-PDCCH構成の設定範囲及び/又は粒度を抑制することが望ましい。特に、周波数帯域が低い場合(例えば、6GHz未満)には、高周波数帯と比較して適用するビーム数も少ないため上記要求を満たすことが望ましい。
 また、高周波数帯(例えば、6GHz以上)の帯域ではマルチビームを適用することを考慮すると、NR-PDCCH構成を広範囲及び/又は細かい粒度で設定することが望ましい。例えば、周波数帯域及び/又は送信タイミングが異なるNR-PBCHを用いて共通のコントロールリソースセットを設定することも考えられる。
 このように、SS/PBCHブロックに含まれるNR-PBCHを利用してコントロールリソースセット構成を通知する場合、所定周波数(例えば、6GHz)未満の周波数帯におけるコントロールリソースセット構成の通知に利用するビット数を抑制すること、所定周波数(例えば、6GHz)以上の周波数帯においてマルチビーム対応を考慮した柔軟な設定を行うこと、SSバーストセット配置に応じたコントロールリソースセット構成の通知を行うこと、の少なくとも一つを満たすように制御することが望ましい。
 NR-PBCHを利用して通知するコントロールリソースセット構成の内容(パラメータ)としては、コントロールリソースセットの帯域幅(BW)、期間(例えば、シンボル数)、開始タイミング(Start timing)、及び周波数位置(Frequency position)がある。このうち少なくとも一つの内容をNR-PBCHに含まれるビット情報を利用して通知する。
 コントロールリソースセットの帯域幅、期間、開始タイミング及び周波数位置の一部又は全部を通知する際、NR-PBCHに含まれるビット情報と、コントロールリソースセット構成の内容とを対応づけたテーブルを定義することが考えられる。UEは、NR-PBCHに含まれるビット情報と予め設定されたテーブルに基づいて、コントロールリソースセット構成を判断し、コントロールリソースセットで送信される下り制御チャネルの受信を行うことができる。
 例えば、NR-PBCHに含まれるビット情報に対応するコントロールリソースセット構成が規定されたテーブルを一つ定義することが考えられる。この場合、SSブロックの送信に利用するサブキャリア間隔(SCS)及び/又は周波数帯域等に関わらず、1つの共通のテーブルを利用して所定ビットでコントロールリソースセット構成の通知を行うことができる。
 しかし、将来の無線通信システムでは、SS/PBCHブロックの送信に利用するサブキャリア間隔(SCS)により、SSバーストセット配置が異なることも想定される。
 図2-図4に、各サブキャリア間隔(ここでは、SCS=15kHz、30kHz、120kHz、240kHz)で適用するSSバーストセット構成(SS burst set composition)について説明する。
 図2は、サブキャリア間隔が15kHzの場合のSSバーストセット構成の一例を示している。この場合、1スロット(例えば、1ms)において、2個のSSブロック(ここでは、SSB#0とSSB#1)が割当てられる。図2に示す構成は、例えば、周波数帯域が0-3GHzで利用され、SSバーストセット内のSSブロック位置の候補数が4個に設定される。あるいは、周波数帯域が3-6GHzで利用され、SSバーストセット内のSSブロック位置の候補数が8個に設定される。利用可能な周波数帯域及びSSブロック位置の候補数はこれに限られない。
 図3は、サブキャリア間隔が30kHzの場合のSSバーストセット構成の一例を示している。この場合、1スロット(例えば、0.5ms)において、2個のSSブロック(ここでは、SSB#0とSSB#1、又はSSB#2とSSB#3)が割当てられる。なお、1スロット内のSSブロックは連続して配置してもよいし(図3A参照)、非連続となるように配置してもよい(図3B参照)。図3に示す構成は、例えば、周波数帯域が0-3GHzで利用され、SSバーストセット内のSSブロック位置の候補数が4個に設定される。あるいは、周波数帯域が3-6GHzで利用され、SSバーストセット内のSSブロック位置の候補数が8個に設定される。利用可能な周波数帯域及びSSブロック位置の候補数はこれに限られない。
 図4Aは、サブキャリア間隔が120kHzの場合のSSバーストセット構成の一例を示している。この場合、1スロット(例えば、0.125ms)において、2個のSSブロック(ここでは、SSB#32とSSB#33、又はSSB#34とSSB#35)が割当てられる。図4Aに示す構成は、例えば、周波数帯域が6-52.6GHzで利用され、SSバーストセット内のSSブロック位置の候補数が64個に設定される。利用可能な周波数帯域及びSSブロック位置の候補数はこれに限られない。
 図4Bは、サブキャリア間隔が240kHzの場合のSSバーストセット構成の一例を示している。この場合、1スロット(例えば、0.125ms(24OFDMシンボル))において、4個の連続するSSブロック(ここでは、SSB#56-#59、又はSSB#60-#63)が割当てられる。図4Bに示す構成は、例えば、周波数帯域が6-52.6GHzで利用され、SSバーストセット内のSSブロック位置の候補数が64個に設定される。利用可能な周波数帯域及びSSブロック位置の候補数はこれに限られない。
 このように、複数のサブキャリア間隔を利用してSSブロックの送信を行う場合、サブキャリア間隔が240kHzの場合のみSSバーストセット構成が異なる。具体的には、サブキャリア間隔が15kHz、30kHz、120kHz等では、1スロットに含まれるSSブロックが2個となり、少なくとも3個以上のSSブロックが連続する構成とはならない。これに対して、サブキャリア間隔が240kHzでは4個のSSブロックが連続して配置される構成となる。
 そのため、SCS15kHz、30kHz、120kHz等のバーストセットに基づいてテーブルを定義すると、SCS240kHzにそのまま適用することが困難となる。例えば、コントロールリソースセットをSSブロックに隣接する領域(例えば、同じ周波数位置等)に配置する構成をテーブルに定義する場合、4個のSSブロックが連続するSCS240kHzでは、コントロールリソースセット同士、又はSSブロックとコントロールリソースセットが衝突するおそれがある。一方で、全てのSCSにおけるバーストセットを考慮して共通テーブルを設定すると、コントロールリソースセット構成を柔軟に設定できなくなる。
 また、コントロールリソースセットの位置(例えば、開始位置)を通知する場合、特定のシンボル(例えば、SSブロックの1つ前等)を通知することが考えられる。例えば、所定ビット数に対応するテーブルにおいて、特定のシンボルを予め定義してUEに通知することが考えられる。しかし、限られたビット数で通知を行う場合、コントロールリソースセット位置を柔軟に通知することが困難となる。
 そこで、本発明者等は、SSブロックの位置に応じてコントロールリソースセットの通知するOFDMシンボル位置の種類(オプション)を複数設定することを着想した。例えば、複数のオプション(SSブロックの時間方向の前方を示す情報、時間方向の後方を示す情報、又はその他の情報)を利用して、SSブロックとの相対的な位置に基づいた時間シフト量を利用してコントロールリソースセットのOFDMシンボル位置を通知する。これにより、NR-PBCHペイロードが限られる場合であっても、コントロールリソースセットの配置を柔軟に制御することが可能となる。
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る構成は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。また、以下の説明では、SSブロックが4シンボル(NR-PSS、NR-SSS、2個のNR-PBCH)で構成される場合を説明するが、SSブロックの構成はこれに限られない。
(第1の態様)
 第1の態様は、SSブロックの送信に利用するサブキャリア間隔(SCS)に応じて、各SSブロック(NR-PBCH)で通知するコントロールリソースセット構成を異なる構成とする。以下の説明では、SCS15kHz、30kHz、60kHz、120kHzに対して共通のコントロールリソースセット構成を利用し、240kHzに対して異なるコントロールリソースセット構成を利用する場合を示す。但し、共通のコントロールリソースセット構成を利用するSCSの分類はこれに限られない。
 例えば、SCS15kHz、30kHz、60kHz、120kHz(第1のSCS)を利用するSSブロックで通知されるビット情報と、当該ビット情報に対応するコントロールリソースセット構成が定義されるテーブル(第1のテーブル)を共通とする。一方で、SCS240kHz(第2のSCS)を利用するSSブロックで通知されるビット情報と、当該ビット情報に対応するコントロールリソースセット構成が定義されるテーブル(第2のテーブル)を第1のテーブルとは別に設定する。
 具体的には、コントロールリソースセット構成の通知に利用するビット数及び/又は内容を、第1のSCSと、第2のSCSで異なるように設定する。以下に、第1のSCSと第2のSCSのコントロールリソースセット構成の通知に異なるビット数を適用する場合(構成1)と、ビット数は共通として異なる内容を通知する場合(構成2)について説明する。
(構成1)
 例えば、第1のSCSを利用するSSブロックにおいて4ビットのビット情報を利用してコントロールリソースセット構成を通知し、第2のSCSを利用するSSブロックにおいて5ビットのビット情報を利用してコントロールリソースセット構成を通知する。なお、少なくとも第1のSCSと比較して第2のSCSに多くのビットを適用すればよく、ビット数はこれに限られない。これにより、第2のSCSを適用する場合、第1のSCSと比較して多くのコントロールリソースセット構成を通知可能となるため、所定のSCSに対して十分な選択肢を確保することができる。
 図5Aに、4ビットのビット情報を利用してコントロールリソースセット構成の通知を行う場合の第1のテーブルの一例を示す。ここでは、コントロールリソースセット構成として帯域幅(BW)、期間(例えば、シンボル数)、開始タイミング(Start timing)、及び周波数位置(Frequency position)をテーブルに設定する場合を示している。
 図5Aでは、コントロールリソースセットの帯域幅として、24PRB、48PRB、96PRBが規定される。また、コントロールリソースセットの期間として、1-3シンボルのいずれかが規定される。コントロールリソースセットの開始位置として、S1-S3のいずれかが規定される。コントロールリソースセットの周波数位置として、F1-F3のいずれかが規定される。
 コントロールリソースセットの開始位置S1-S3として、例えば以下の通り設定してもよい(図5B参照)。
S1:SSブロック後のOFDMシンボル(OFDM symbol after SS block)
S2:SSブロックと同一スロットの先頭OFDMシンボル(First OFDM symbol of the same slot)
S3:SSブロックの先頭OFDMシンボル(First OFDM symbol of SS block)
 コントロールリソースセットの開始位置F1-F3として、例えば以下の通り設定してもよい(図5B参照)。
F1:SSブロックと同じPRB(Same PRBs occupied by the SS block)
F2:周波数においてSSブロックと隣接する上下のPRB(With equal number of PRBs immediately below and above the SS block in frequency)
F3:CORESETの中央とSSブロックの中央が一致(With the center of the CORESET BW aligned with the center of the SS block)
 なお、テーブルに規定する内容(パラメータ、数値等)はこれに限られない。
 図6に、5ビットのビット情報を利用してコントロールリソースセット構成の通知を行う場合の第2のテーブルの一例を示す。ここでは、コントロールリソースセット構成として帯域幅(BW)、期間(例えば、シンボル数)、開始タイミング(Start timing)、及び周波数位置(Frequency position)をテーブルに設定する場合を示している。
 図6では、コントロールリソースセットの帯域幅として、24PRB、48PRB、96PRBが規定される。また、コントロールリソースセットの期間として、1-3シンボルのいずれかが規定される。コントロールリソースセットの開始位置として、S1-S3に加えて、S8、S9、S10、S11、S12、S14のいずれかが規定される。コントロールリソースセットの周波数位置として、F1-F3のいずれかが規定される。
 S8-S14は、それぞれSSブロック前のOFDMシンボル数に相当する。つまり、S8は、SSブロックの8OFDMシンボル前のOFDMシンボルが開始位置となることを示す。同様に、S9は、SSブロックの9OFDMシンボル前のOFDMシンボルが開始位置となることを示す。
 テーブル2では、テーブル1より多くのビット情報に対応するコントロールリソースセット構成が規定される。図6では、テーブル1と比較してコントロールリソースセットの開始位置についてより多くのパターンがテーブル2に規定される。開始位置をより詳細に規定することにより、SSブロックが4個連続する場合であっても、各SSブロックで通知されるコントロールリソースセットの位置(例えば、開始位置)を柔軟に設定することが可能となる。
 このように、第1のSCSのコントロールリソースセット構成に比べて、第2のSCSのコントロールリソースセット構成において少なくとも開始位置の種類(パターン)を多く設定する。なお、他のパラメータ(帯域幅、期間、及び周波数位置等)についても、第1のSCSのコントロールリソースセット構成と、第2のSCSのコントロールリソースセット構成で異なる内容(数値等)を規定してもよい。
(構成2)
 例えば、第1のSCSを利用するSSブロックと、第2のSCSを利用するSSブロックにおいてそれぞれ4ビットのビット情報を利用して異なるコントロールリソースセット構成を通知してもよい。
 図7に、4ビットのビット情報を利用してコントロールリソースセット構成の通知を行う場合の第2のテーブル(第2のSCS送信に利用)の一例を示す。ここでは、コントロールリソースセット構成として帯域幅(BW)、期間(例えば、シンボル数)、開始タイミング(Start timing)、及び周波数位置(Frequency position)をテーブルに設定する場合を示している。なお、第1のSCS送信に利用する第1のテーブルは、図5Aと同様の内容としてもよい。
 図7では、コントロールリソースセットの帯域幅として、24PRB、48PRB、96PRBが規定される。また、コントロールリソースセットの期間として、1-3シンボルのいずれかが規定される。コントロールリソースセットの開始位置として、S1-S3、S8、S9、S10のいずれかが規定される。コントロールリソースセットの周波数位置として、F1-F3のいずれかが規定される。
 コントロールリソースセットの開始位置S1-S3、S8-S10として、例えば以下の通り設定してもよい。
S1:SSブロック後のOFDMシンボル
S2:SSブロックと同一スロットの先頭OFDMシンボル
S3:SSブロックの先頭OFDMシンボル
S8:SSブロックより8OFDMシンボル前のOFDMシンボル
S9:SSブロックより9OFDMシンボル前のOFDMシンボル
S10:SSブロックより10OFDMシンボル前のOFDMシンボル
 このように、第1のテーブルと第2のテーブルを同じビット情報(例えば、4ビット)に対応して定義する場合、第2のテーブルにおいてSSブロックの開始位置の種類(パターン)を多く規定する。これにより、第1のSCSと第2のSCSにおいてSSバーストセット(例えば、連続するSSブロック数)が異なる場合であっても、各SSバーストセットに応じてコントロールリソースセット構成を柔軟に設定することができる。
 なお、図7では、コントロールリソースセットの開始位置として、SSブロックのシンボル数を具体的に規定する場合を示したが、これに限られない。例えば、SSブロックインデックスに基づいて、当該SSブロックで通知されるコントロールリソースセットの開始位置を決定するようにしてもよい(図8参照)。なお、図8に示すテーブルを第2のテーブルとする場合、第1のテーブルは上記図5Aと同様の内容としてもよい。
 図8では、コントロールリソースセットの開始位置として、S1、S3、SZのいずれかが規定される。ここで、SZは、SSブロックのZ OFDMシンボル前のOFDMシンボルを示し、ZはSSブロックインデックスに関連した値とする。Zは、例えば、以下の式(1)から求められる値としてもよい。なお、以下の式(1)に利用するmodulo演算はスロット内で連続するSSブロック数(ここでは、4)に対応し、SSバーストセット構成(例えば、連続するSSブロック構成)に応じて適宜変更可能である。
式(1)
Z=8+S×y
x:SSブロックインデックス
S:コントロールリソースセットの期間(シンボル数)
y=x mod4
 このように、コントロールリソースの開始位置をSSブロックインデックスから算出する構成とすることにより、第2のテーブルで規定する開始位置のパターン数(規定される開始位置の種類の数)を低減することができる。これにより、第2のSCSを適用して送信されるSSブロックで通知するビット情報のビット値を少なくする(例えば、第1のSCSを利用する場合と同じビット値とする)と共に、開始位置を柔軟に制御することができる。なお、第1のSCSに対しても、SSブロックインデックスを利用して開始位置を算出するように第1のテーブルを設定してもよい。
(第2の態様)
 第2の態様では、SSブロックの位置に応じてコントロールリソースセットの通知するOFDMシンボル位置の種類(オプション)を複数設定して、基地局からUEに通知する場合について説明する。なお、第2の態様は単独で適用してもよいし、他の態様と組み合わせて適用してもよい。
 上記図8では、コントロールリソースセットの開始位置として、SSブロックからの時間シフト量を設定して、当該SSブロックの前方の時間領域(例えば、シンボル)を特定する場合を示したが、本実施の形態はこれに限られない。SSブロックを基準とした時間シフト量によりコントロールリソースセットの開始位置を通知する場合、時間方向におけるSSブロックの前方だけでなく、SSブロックの後方及び/又はその他(例えば、SSブロック内の領域)を通知してもよい。
 つまり、SSブロックの位置に応じてコントロールリソースセットの位置(例えば、シンボル位置)を通知するオプションを複数設定し、RMSIをスケジューリングするコントトロールリソースセットの位置を柔軟に設定して通知する。
 複数のオプションを設定してSSブロックとの相対的な位置に基づいた時間シフト量でコントロールリソースセットのOFDMシンボル位置を通知する場合を以下に説明する。
 以下の説明では、コントロールリソースセットのOFDMシンボル位置の通知に利用する複数オプションとして、SSブロック内の特定のシンボル、SSブロックの前方のシンボル、SSブロックの後方のシンボルを設定する場合を示す。なお、SSブロックの前方シンボル及び後方シンボルは、SSブロックを基準とした時間方向における位置を指す。もちろん、コントロールリソースセットのOFDMシンボル位置の通知に利用する複数オプションはこれに限られない。
 例えば、コントロールリソースセットの開始位置として以下のSX、SY、S3のいずれかを基地局からUEに通知する。もちろんUEに通知する内容及び種別はこれに限られない。
SX:SSブロックよりXOFDMシンボル前のOFDMシンボル
SY:SSブロックよりYOFDMシンボル後のOFDMシンボル
S3:SSブロック内の先頭OFDMシンボル
 X及びYは、SSブロックを基準としたシフト量に対応し、所定パラメータに基づいて定義される値としてもよい。例えば、X及び/又はYは、サブキャリア間隔、コントロールリソースセットの構成、SSブロックの構成、及び周波数帯域の少なくとも一つにより定まる値としてもよい。
 例えば、X及び/又はYを、SSブロックの送信に利用するサブキャリア間隔(又は、SSブロックが連続する構成)毎に定義してもよい。この際、コントロールリソースセットの構成(例えば、コントロールリソースセットの期間)と、SSブロックの構成(例えば、SSブロックインデックス)を含む数式をサブキャリア間隔毎に定義してもよい。
 例えば、SSブロックが連続しない構成を利用するサブキャリア間隔(例えば、SCS15kHz(例えば、図2)、30kHz(例えば、図3B))において、X、Yを以下の式(2)、式(3)から算出しても良い(図11A参照)。なお、図11は、コントロールリソースセット期間が2の場合を示している。
式(2)
X=2+(4-コントロールリソースセット期間)×(SSブロックインデックス mod1)
式(3)
Y=1-(4-コントロールリソースセット期間)×(SSブロックインデックス mod1)
 図11Aでは、X=2、Y=1の場合を示している。例えば、UEがSSブロック#0を受信し、当該SSブロック#0に含まれるNR-PBCHでX又はYが通知された場合、上記式(2)又は(3)に基づいてSSブロック#0からの相対位置を判断する。そして、当該SSブロック#0からの相対位置においてコントロールリソースセットが送信されると想定してRMSIの受信を制御する。UEが他のSSブロック#1を受信した場合には、同様の処理を行えばよい。
 このように、SSブロックからのシフト量として、SSブロックの前方又は後方を指定可能な情報をSSブロックに含めてUEに通知することにより、コントロールリソースセットの位置を柔軟に制御できる。
 また、SSブロックが2個連続する構成を利用するサブキャリア間隔(例えば、SCS30kHz(図3A)、120kHz(図4A))において、X、Yを以下の式(4)、式(5)から算出しても良い(図11B参照)。
式(4)
X=4+(4-コントロールリソースセット期間)×(SSブロックインデックス mod2)
式(5)
Y=5-(4-コントロールリソースセット期間)×(SSブロックインデックス mod2)
 図11Bでは、連続する2個のSSブロックの前半のSSブロックにおいてX=4、Y=5の場合を示し、後半のSSブロックにおいてX=6、Y=3の場合を示している。例えば、UEがSSブロック#0を受信し、当該SSブロック#0に含まれるNR-PBCHでX又はYが通知された場合、上記式(4)又は(5)に基づいてSSブロック#0からの相対位置を判断する。そして、当該SSブロック#0からの相対位置においてコントロールリソースセットが送信されると想定してRMSIの受信を制御する。UEが他のSSブロック#1-#3を受信した場合には、同様の処理を行えばよい。
 このように、SSブロックからのシフト量として、SSブロックの前方又は後方を指定可能な情報をSSブロックに含めてUEに通知することにより、コントロールリソースセットの位置を柔軟に制御できる。また、SSブロックが連続する場合であっても、SSブロックインデックス及びコントロールリソースセット期間を考慮してコントロールリソースセット位置を決定することにより、コントロールリソースセットを適切に配置できる。
 また、SSブロックが4個連続する構成を利用するサブキャリア間隔(例えば、SCS240kHz(図4B))において、X、Yを以下の式(6)、式(7)から算出しても良い(図11C参照)。
式(6)
X=8+(4-コントロールリソースセット期間)×(SSブロックインデックス mod4)
式(7)
Y=13-(4-コントロールリソースセット期間)×(SSブロックインデックス mod4)
 図11Cでは、連続する4個のSSブロックの1個目のSSブロックにおいてX=8、Y=13の場合を示し、2個目のSSブロックにおいてX=10、Y=11の場合を示し、3個目のSSブロックにおいてX=12、Y=9の場合を示し、4個目のSSブロックにおいてX=14、Y=7の場合を示している。例えば、UEがSSブロック#0を受信し、当該SSブロック#0に含まれるNR-PBCHでX又はYが通知された場合、上記式(6)又は(7)に基づいてSSブロック#0からの相対位置を判断する。そして、当該SSブロック#0からの相対位置においてコントロールリソースセットが送信されると想定してRMSIの受信を制御する。UEが他のSSブロック#1-#7を受信した場合には、同様の処理を行えばよい。
 このように、SSブロックが連続する場合であっても、SSブロックインデックス及びコントロールリソースセット期間を考慮してコントロールリソースセット位置を決定することにより、コントロールリソースセットを適切に配置できる。
 なお、X及びYを規定する数式(2)-(7)は上述した構成に限られない。他の数値又はパラメータを利用して規定してもよい。
 また、SX、SY、S3は、上述したテーブル(例えば、図8)の開始位置にそれぞれ設定してもよいし、テーブルを利用せずにSX、SY又はS3の情報をUEに通知してもよい。また、SX及びSYのみテーブルに設定してもよいし、SY及びS3のみテーブルに設定してもよい。なお、S3にかえて(又は、S3に加えて)他の位置を示す情報(S2等)をテーブルに設定してもよい。
 このように、複数のオプション(SSブロックの時間方向の前方を示す情報、時間方向の後方を示す情報、又はその他の情報)を利用して、コントロールリソースセットの位置を通知することにより、NR-PBCHペイロードが限られる場合であっても、コントロールリソースセットの配置を柔軟に制御することが可能となる。
(第3の態様)
 第3の態様は、SSブロックの送信に利用する周波数帯域に応じて、各SSブロック(NR-PBCH)で通知するコントロールリソースセット構成を異なる構成とする。以下の説明では、6GHz未満の帯域(第1の帯域)と、6GHz以上の帯域(第2の帯域)に対して異なるコントロールリソースセット構成(例えば、異なるテーブル)を利用する場合を示す。
 例えば、コントロールリソースセット構成の通知に利用するビット数及び/又は内容を第1の帯域と、第2の帯域で異なるように設定する。以下に、第1の帯域と第2の帯域のコントロールリソースセット構成の通知に異なるビット数を適用する場合ついて説明する。
 例えば、第1の帯域を利用するSSブロックにおいて4ビットのビット情報を利用してコントロールリソースセット構成を通知し、第2の帯域を利用するSSブロックにおいて12ビットのビット情報を利用してコントロールリソースセット構成を通知する。なお、少なくとも第1の帯域と比較して第2の帯域に多くのビットを適用すればよく、ビット数はこれに限られない。
 図9、図10に、第2の帯域におけるコントロールリソース構成の通知に利用するテーブル(第3のテーブル)の一例を示す。なお、第3のテーブルでは、12ビットのビット情報を利用してコントロールリソースセット構成の通知を行う場合に相当する。なお、第1の帯域におけるコントロールリソース構成の通知に利用するテーブルは、上記第1の態様で示したテーブル(例えば、図5等)を利用できる。
 図9Aは、3ビットを利用してコントロールリソースセットの帯域幅と期間が規定されたテーブルを示す。また、図9Bは、4ビットを利用してコントロールリソースセットの開始位置が規定されたテーブルを示す。また、図10は、5ビットを利用してコントロールリソースセットの開始位置が規定されたテーブルを示す。
 図9Aでは、コントロールリソースセットの帯域幅として、24PRB、48PRB、96PRB、154PRBが規定される。また、コントロールリソースセットの期間として、1-3シンボルのいずれかが規定される。図9Bでは、コントロールリソースセットの開始位置として、SB2、SB4、SB6、SB8、SB10、SB12、SB14、ST1、ST3、SN1、SA3、SA5、SA7、SA9、SA11、SA13のいずれかが規定される。
 コントロールリソースセットの開始位置として、SBXはSSブロックよりX OFDMシンボル前のOFDMシンボルを示す(X OFDM symbol before SS block)。例えばSB2は、SSブロックの2OFDMシンボル前のOFDMシンボルを示す。STXはSSブロックにおけるX番目のOFDMシンボルを示す(X OFDM symbol of SS block)。例えばST1は、SSブロックの1番目のOFDMシンボルを示す。SN1はSSブロック後の次のOFDMシンボルを示す(Next OFDM symbol after SS block)。SAXはSSブロック後のX番目のOFDMシンボル(X OFDM symbol after SS block)。例えばSA2は、SSブロック後の2番目のOFDMシンボルを示す。
 また、コントロールリソースセットの開始位置として、上記第2の態様で示した構成を適用してもよい。
 図10では、コントロールリソースセットの周波数位置として、SSブロックと同じ中心周波数(F)、又は当該SSブロックの中心周波数(F)からのオフセット値(PRB数)のいずれかが規定される。オフセット値としては、所定のPRB数(例えば、+12、+24、+36...、+180、-12、-24、-36、...-180)が設定される。
 このように、各SSブロックで通知されるコントロールリソースセットの周波数位置として、当該SSブロックの周波数位置(中心周波数)からのオフセットをUEに通知することにより、コントロールリソースセットの周波数位置を柔軟に制御できる。これにより、異なるSSブロックから共通のコントロールリソースセットを通知することが可能となる。
 このように、周波数帯域に基づいて各SSブロックが通知するコントロールリソースセット構成のパターン数を変更することにより、通信環境に応じてコントロールリソースセットの設定を柔軟に制御することができる。例えば、第2の帯域(高周波数帯等)を適用する場合、第1の帯域と比較して多くのコントロールリソースセット構成を通知可能な構成とする。これにより、マルチビーム運用が適用される高周波数帯において、異なるNR-PBCHから共通のコントロールリソースセット構成を通知する等の柔軟な運用が可能となる。
(変形例)
 第1の態様と第2の態様を適宜組み合わせて適用してもよい。例えば、第1の態様において、所定の帯域幅(例えば、6GHz以上)の場合に、コントロールリソースセットの周波数位置(例えば、周波数オフセット)をUEに通知する構成としてもよい。
 例えば、第1のSCSを利用する場合には第1のテーブル(例えば、図5A参照)及び第1のテーブルに対応するビット情報を利用し、第2のSCSを利用する場合には第2のテーブル(例えば、図6、図7又は図8参照)及び第2のテーブルに対応するビット情報を利用する。また、各SCSにおいて、所定の帯域幅(例えば、6GHz以上)を利用してSSブロックを送信する場合には、コントロールリソースセットの周波数位置(例えば、周波数オフセット)を示すビット情報(例えば、図10参照)をさらに追加でUEに通知してもよい。
 これにより、SSブロックの送信に利用するSCSと周波数帯域を考慮して、コントロールリソースセットの設定を柔軟に制御することが可能となる。
 なお、本実施の形態で示したコントロールリソースセット構成が規定されたテーブルは、仕様であらかじめ定義してもよいし、基地局からUEに対して下り制御情報及び/又は上位レイヤシグナリング(例えば、RRCシグナリング及び/又は報知情報)で設定してもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各態様のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図12は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th Generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。例えば、DCにおいて、MeNB(MCG)がLTEセルを適用し、SeNB(SCG)がNR/5G-セルを適用して通信を行う。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)が適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。ページングチャネルの有無を通知する共通制御チャネルは下りL1/L2制御チャネル(例えば、PDCCH)にマッピングされ、ページングチャネル(PCH)のデータはPDSCHにマッピングされる。下りリンク参照信号、上りリンク参照信号、物理下りリンクの同期信号が別途配置される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図13は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、制御リソースセット(コントロールリソースセット)の構成を示す所定ビット情報をSSブロック(例えば、NR-PBCH)に含めて送信する。また、送受信部103は、当該SSブロックで通知する制御リソースセットにおいて、下り制御チャネル(NR-PDCCH)を送信する。また、送受信部103は、コントロールリソースセット構成が規定されるテーブルを上位レイヤシグナリング等でUEに通知してもよい。また、送受信部103は、SSブロックに対する制御リソースセットの相対的な位置を示す複数の情報(オプション)の中から所定の情報を選択して送信を制御する。
 図14は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。ベースバンド信号処理部104は、デジタルビームフォーミングを提供するデジタルビームフォーミング機能を備える。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号(同期信号、MIB、ページングチャネル、報知チャネルに対応した信号を含む)の生成や、マッピング部303による信号の割り当てを制御する。
 制御部301は、コントロールリソースセット構成を示す所定ビット情報をSSブロック(例えば、NR-PBCH)に含めて送信するように制御する。また、制御部301は、当該SSブロックで通知する制御リソースセットにおいて、下り制御チャネル(NR-PDCCH)を送信するように制御する。また、制御部301は、SSブロックに対する制御リソースセットの相対的な位置を示す複数の情報(オプション)の中から所定の情報を選択してユーザ端末への送信を制御してもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号、及び受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、受信した信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio))及び/又はチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図15は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ201は、例えばアレーアンテナにより構成することができる。
 送受信部203は、制御リソースセット(コントロールリソースセット)の構成を示す所定ビット情報が含まれるSSブロック(例えば、NR-PBCH)を受信する。また、送受信部203は、当該SSブロックで通知する制御リソースセットにおいて、下り制御チャネル(NR-PDCCH)を受信する。また、送受信部203は、コントロールリソースセット構成が規定されるテーブルを上位レイヤシグナリング等で受信してもよい。また、送受信部203は、SSブロックに対する制御リソースセットの相対的な位置を示す複数の情報(オプション)の中から基地局が選択した所定の情報を受信する。
 図16は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成、及びマッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理、及び測定部405による信号の測定を制御する。
 制御部401は、所定ビット情報に基づいて前記SSブロックに対する前記制御リソースセットの相対的な位置を決定して下り制御チャネルの受信を制御する。例えば、制御部401は、所定ビット情報(例えば、X又はYを指定するビット)に基づいて、SSブロックの時間方向の前方及び後方に対するシフト量(X及び/又はY)の候補を算出する。この際、制御部401は、シフト量の複数の候補を所定の式を利用して決定してもよい。また、シフト量の算出に利用される式は、サブキャリア間隔又はSSブロック構成(例えば、連続するSSブロック数等)に応じて異なって定義されてもよい。
 所定ビット情報で通知される前記制御リソースセットの候補位置がテーブルに定義され、制御リソースセットの候補位置として少なくともSSブロックの時間方向の前方に対するシフト量、SSブロックの時間方向の後方に対するシフト量、及び特定のシンボルを示す情報がテーブルに規定されてもよい。
 また、制御部401は、SSブロックの送信に適用されるサブキャリア間隔及び/又は周波数帯域に応じてSSブロック(例えば、NR-PBCH)に含まれる所定ビット情報の内容(例えば、利用するテーブル)を判断して下り制御チャネルの受信を制御してもよい。例えば、制御部401は、SSブロックの送信に適用されるサブキャリア間隔及び/又は周波数帯域に基づいて、異なるテーブルを参照して所定ビット情報の内容を判断する。
 一例として、第1のサブキャリア間隔(15/30/60/120kHz)に対して第1のテーブルを適用し、第2のサブキャリア間隔(240kHz)に対して第2のテーブルを適用する。あるいは、第1の周波数帯域(例えば、6GHz未満)と、第2の周波数帯域(例えば、6GHz以上)に対して異なるテーブルを適用する。
 例えば、異なるテーブルにおいて、少なくとも制御リソースセットの開始位置のパターン数が異なって規定される。また、SSブロックの送信に適用されるサブキャリア間隔及び/又は周波数帯域に応じてビット情報のビット数が異なってもよい。異なるテーブルの少なくとも一つにおいて、制御リソースセットの開始位置がSSブロックインデックスを利用して規定されていてもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報及び/又はチャネル状態情報(CSI)に関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、制御部401からの指示に基づいて、無線基地局がビームフォーミングを適用して送信する同期信号及び報知チャネルを受信する。特に、所定の送信時間間隔(例えば、サブフレーム又はスロット)を構成する複数の時間領域(例えば、シンボル)の少なくとも一つに割当てられる同期信号と報知チャネルを受信する。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号、及び受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、無線基地局10から送信されたビーム形成用RSを用いて測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、受信SINR)及び/又はチャネル状態などについて測定してもよい。測定結果は、制御部401に出力されてもよい。例えば、測定部405は、同期信号を利用したRRM測定を行う。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び/又はメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。
 無線フレーム、サブフレーム、スロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅及び/又は送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。TTIは、チャネル符号化されたデータパケット(トランスポートブロック)の送信時間単位であってもよいし、スケジューリング及び/又はリンクアダプテーションなどの処理単位となってもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、短縮サブフレーム、又はショートサブフレームなどと呼ばれてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclicprefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(Rrcconnectionsetup)メッセージ、RRC接続再構成(Rrcconnectionreconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(Boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed Station)、NodeB、eNodeB(eNB)、アクセスポイント(access Point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user Terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed Station)、NodeB、eNodeB(eNB)、アクセスポイント(access Point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び/又は「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper Node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(Network Nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-AdvaNced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future Generation Radio access)、GSM(登録商標)(Global System for Mobile Communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-Wideband)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(Determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(Calculating)、算出(Computing)、処理(Processing)、導出(Deriving)、調査(Investigating)、探索(Looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(Ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(Receiving)(例えば、情報を受信すること)、送信(Transmitting)(例えば、情報を送信すること)、入力(Input)、出力(output)、アクセス(Accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(Resolving)、選択(Selecting)、選定(Choosing)、確立(Establishing)、比較(Comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(Connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は請求の範囲で「含む(Including)」、「含んでいる(Comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
(付記)
 以下、本開示の補足事項について付記する。
[構成1]
 制御リソースセットの構成を示す所定ビット情報を含む同期信号(SS)ブロックを受信する受信部と、前記所定ビット情報に基づいて前記SSブロックに対する前記制御リソースセットの相対的な位置を決定して下り制御チャネルの受信を制御する制御部と、を有することを特徴とするユーザ端末。
[構成2]
 前記制御部は、前記所定ビット情報に基づいて、前記SSブロックの時間方向の前方及び後方に対するシフト量の候補を算出することを特徴とする構成1に記載のユーザ端末。
[構成3]
 前記制御部は、前記シフト量の複数の候補を所定の式を利用して決定することを特徴とする構成1又は構成2に記載のユーザ端末。
[構成4]
 前記シフト量の算出に利用される式は、サブキャリア間隔又はSSブロック構成に応じて異なって定義されることを特徴とする構成3に記載のユーザ端末。
[構成5]
 前記所定ビット情報で通知される前記制御リソースセットの候補位置がテーブルに定義され、前記制御リソースセットの候補位置として少なくとも前記SSブロックの時間方向の前方に対するシフト量、前記SSブロックの時間方向の後方に対するシフト量、及び特定のシンボルを示す情報が前記テーブルに規定されることを特徴とする構成1から構成4のいずれかに記載のユーザ端末。
[構成6]
 制御リソースセットの構成を示す所定ビット情報を含む同期信号(SS)ブロックを送信する送信部と、前記SSブロックに対する前記制御リソースセットの相対的な位置を示す複数の情報の中から所定の情報を選択してユーザ端末への送信を制御する制御部と、を有することを特徴とする基地局。
[構成7]
 制御リソースセットの構成を示す所定ビット情報を含む同期信号(SS)ブロックを受信する工程と、前記所定ビット情報に基づいて前記SSブロックに対する前記制御リソースセットの相対的な位置を決定して下り制御チャネルの受信を制御する工程と、を有することを特徴とするユーザ端末の無線通信方法。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2017年9月20日出願の特願2017-196411に基づく。この内容は、全てここに含めておく。

Claims (8)

  1.  制御リソースセットの構成を示す所定情報を含む同期信号ブロック(SS/PBCHブロック)を受信する受信部と、
     前記所定情報に基づいて前記SS/PBCHブロックに対する前記制御リソースセットの相対的な位置を決定する制御部と、を有することを特徴とするユーザ端末。
  2.  制御リソースセットの構成を示す所定情報を含む同期信号ブロック(SS/PBCHブロック)を受信する受信部と、
     前記所定情報と前記SS/PBCHブロックに応じて決定される前記制御リソースセットの開始位置となるシンボルに基づいて前記下り制御チャネルの受信を制御する制御部と、を有することを特徴とするユーザ端末。
  3.  前記制御部は、前記制御リソースセットの開始位置となるシンボルを前記SS/PBCHブロックのインデックスを考慮して決定することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記制御リソースセットの異なる開始位置候補が規定されるテーブルを参照して、前記下り制御チャネルの受信を制御することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記テーブルに規定される開始位置の候補は、制御リソースセット期間及びSS/PBCHブロックのインデックスに基づいて規定されるシンボルと、特定のシンボルと、のいずれかで定義されることを特徴とする請求項4に記載のユーザ端末。
  6.  前記制御リソースセット構成の候補がテーブルに定義され、前記テーブルが前記SS/PBCHブロックのサブキャリア間隔に応じて異なって定義されることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  7.  制御リソースセットの構成を示す所定情報を含む同期信号ブロック(SS/PBCHブロック)を受信する工程と、
     前記所定情報に基づいて前記SS/PBCHブロックに対する前記制御リソースセットの相対的な位置を決定する工程と、を有することを特徴とするユーザ端末の無線通信方法。
  8.  制御リソースセットの構成を示す所定情報を含む同期信号ブロック(SS/PBCHブロック)を受信する工程と、
     前記所定情報と前記SS/PBCHブロックに応じて決定される前記制御リソースセットの開始位置となるシンボルに基づいて前記下り制御チャネルの受信を制御する工程と、を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2018/034528 2017-09-20 2018-09-18 ユーザ端末及び無線通信方法 WO2019059196A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US16/649,569 US11533691B2 (en) 2017-09-20 2018-09-18 User terminal and radio communication method
JP2019543651A JP7148525B2 (ja) 2017-09-20 2018-09-18 端末、無線通信方法、基地局及びシステム
RU2020113216A RU2779299C2 (ru) 2017-09-20 2018-09-18 Пользовательский терминал и способ радиосвязи
BR112020005382-1A BR112020005382A2 (pt) 2017-09-20 2018-09-18 terminal, método de radiocomunicação para um terminal e estação base
KR1020207009020A KR20200052898A (ko) 2017-09-20 2018-09-18 유저단말 및 무선 통신 방법
CN201880061146.3A CN111133820B (zh) 2017-09-20 2018-09-18 用户终端以及无线通信方法
EP18858259.7A EP3687242A4 (en) 2017-09-20 2018-09-18 USER TERMINAL, AND WIRELESS COMMUNICATION PROCESS
PE2020000534A PE20201376A1 (es) 2017-09-20 2018-09-18 Terminal de usuario y metodo de comunicacion por radio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-196411 2017-09-20
JP2017196411 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019059196A1 true WO2019059196A1 (ja) 2019-03-28

Family

ID=65809926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034528 WO2019059196A1 (ja) 2017-09-20 2018-09-18 ユーザ端末及び無線通信方法

Country Status (9)

Country Link
US (1) US11533691B2 (ja)
EP (1) EP3687242A4 (ja)
JP (1) JP7148525B2 (ja)
KR (1) KR20200052898A (ja)
CN (1) CN111133820B (ja)
BR (1) BR112020005382A2 (ja)
PE (1) PE20201376A1 (ja)
TW (1) TWI784052B (ja)
WO (1) WO2019059196A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3585123B1 (en) * 2017-02-16 2023-02-01 LG Electronics Inc. Method for signal transmission/reception between base station and terminal in wireless communication system supporting unlicensed band, and apparatus supporting same
KR20200052898A (ko) * 2017-09-20 2020-05-15 가부시키가이샤 엔티티 도코모 유저단말 및 무선 통신 방법
US11284362B2 (en) * 2017-10-02 2022-03-22 Apple Inc. Synchronization signal block for unlicensed carrier, and listen before talk strategies for initial access
CN109803402B (zh) * 2017-11-17 2023-11-24 中兴通讯股份有限公司 信息发送、接收方法及装置
US11245499B2 (en) * 2018-06-22 2022-02-08 Qualcomm Incorporated Signaling overhead reduction in NOMA
CN111092701B (zh) * 2018-10-24 2021-05-18 华为技术有限公司 同步信号块的传输方法及通信装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196411A (ja) 2016-04-25 2017-11-02 ニルフィスク エ/エス フィルターエレメント及びフィルターエレメントのためのフィルター収容部を備えたゴミ吸引機

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5868717B2 (ja) * 2012-01-27 2016-02-24 シャープ株式会社 通信システム、移動局装置、基地局装置、通信方法および集積回路
GB2510138A (en) * 2013-01-24 2014-07-30 Sony Corp Allocating communications resources within different frequency ranges according to the relative capability of a communications device
EP3016302B1 (en) * 2013-06-26 2018-05-23 LG Electronics Inc. Method and apparatus for acquiring control information in wireless communication system
CN107079440A (zh) * 2014-11-06 2017-08-18 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
US10863459B2 (en) 2015-07-24 2020-12-08 Apple Inc. Synchronization signals and channel structure for narrowband LTE deployments
US10389567B2 (en) * 2016-11-03 2019-08-20 Samsung Electronics Co., Ltd. Method and apparatus for synchronization signal design
US10470191B2 (en) * 2016-12-09 2019-11-05 Samsung Electronics Co., Ltd. Method and apparatus of broadcast signals and channels for system information transmission
US11044739B2 (en) * 2017-01-06 2021-06-22 Convida Wireless Mechanisms for efficient access and transmission in NR
US10568102B2 (en) * 2017-02-23 2020-02-18 Qualcomm Incorporated Usage of synchronization signal block index in new radio
US10523354B2 (en) * 2017-02-24 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for design of NR-SS burst set
US10484153B2 (en) * 2017-03-09 2019-11-19 Samsung Electronics Co., Ltd. Method and apparatus for NR-DMRS sequence design
US11224073B2 (en) * 2017-03-23 2022-01-11 Convida Wireless, Llc Beam training and initial access
WO2018174587A1 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for pbch transmission in a multi-beam based system
EP4084368B1 (en) * 2017-06-16 2023-12-20 LG Electronics Inc. Method for transreceiving downlink channel and apparatus for same
CN109152013B (zh) * 2017-06-16 2022-11-15 大唐移动通信设备有限公司 一种公共下行控制信道信号传输方法和相关设备
KR20200052898A (ko) * 2017-09-20 2020-05-15 가부시키가이샤 엔티티 도코모 유저단말 및 무선 통신 방법
US11147008B2 (en) * 2017-11-15 2021-10-12 Qualcomm Incorporated Transmission of physical broadcast channel for new radio
ES2960352T3 (es) * 2017-11-16 2024-03-04 Beijing Xiaomi Mobile Software Co Ltd Informe de información de estado de canal sobre la parte de ancho de banda
US10616877B2 (en) * 2017-11-16 2020-04-07 Huawei Technologies Co., Ltd. Configuration of the initial active bandwidth part for initial network access
US11071000B2 (en) * 2018-07-19 2021-07-20 Samsung Electronics Co., Ltd. Method and apparatus for RRM measurement enhancement for NR unlicensed
KR20210122857A (ko) * 2019-02-15 2021-10-12 엘지전자 주식회사 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196411A (ja) 2016-04-25 2017-11-02 ニルフィスク エ/エス フィルターエレメント及びフィルターエレメントのためのフィルター収容部を備えたゴミ吸引機

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2", 3GPP TS 36.300
ERICSSON: "On Configuration of Control Resource Sets", 3GPP TSG RAN WG1 #90 R1-1714410, 12 August 2017 (2017-08-12), XP051317190 *
NTT DOCOMO; INC: "Discussion on remaining details on NR-PBCH and PBCH-DMRS", 3GPP TSG RAN WG1 NR#3 R1-1716070, 12 September 2017 (2017-09-12), XP051329729 *
NTT DOCOMO; INC: "Discussion on remaining details on RMSI delivery", 3GPP TSG RAN WG1 NR#3 R1-1716071, 12 September 2017 (2017-09-12), XP051329730 *
ZTE, SANECHIPS: "Remaining details of NR-SS", 3GPP TSG RAN WG1 NR#3 R1-1715376, 12 September 2017 (2017-09-12), XP051329350 *

Also Published As

Publication number Publication date
CN111133820A (zh) 2020-05-08
CN111133820B (zh) 2023-09-15
US11533691B2 (en) 2022-12-20
JP7148525B2 (ja) 2022-10-05
TWI784052B (zh) 2022-11-21
RU2020113216A (ru) 2021-10-20
BR112020005382A2 (pt) 2020-09-29
TW201918044A (zh) 2019-05-01
JPWO2019059196A1 (ja) 2020-10-22
EP3687242A4 (en) 2021-04-14
US20200221404A1 (en) 2020-07-09
KR20200052898A (ko) 2020-05-15
EP3687242A1 (en) 2020-07-29
RU2020113216A3 (ja) 2022-02-21
PE20201376A1 (es) 2020-11-30

Similar Documents

Publication Publication Date Title
WO2019215888A1 (ja) ユーザ端末及び無線通信方法
KR102321036B1 (ko) 유저단말 및 무선 통신 방법
JP7148525B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2019049350A1 (ja) 端末、無線通信方法及び基地局
JPWO2018198343A1 (ja) ユーザ端末及び無線通信方法
JP7088941B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019069471A1 (ja) ユーザ端末及び無線通信方法
WO2019111862A1 (ja) ユーザ端末及び無線通信方法
EP3754928B1 (en) User terminal and wireless communication method
WO2019038832A1 (ja) ユーザ端末及び無線通信方法
WO2019012670A1 (ja) ユーザ端末及び無線通信方法
WO2019021490A1 (ja) ユーザ端末及び無線通信方法
WO2019107547A1 (ja) ユーザ端末及び無線通信方法
WO2019021473A1 (ja) 送信装置、受信装置及び無線通信方法
WO2018235208A1 (ja) ユーザ端末及び無線通信方法
WO2019064569A1 (ja) ユーザ端末及び無線通信方法
WO2019069464A1 (ja) ユーザ端末及び無線通信方法
JPWO2018211607A1 (ja) ユーザ端末及び無線通信方法
WO2019097696A1 (ja) ユーザ端末及び無線通信方法
WO2018235299A1 (ja) ユーザ端末及び無線通信方法
AU2018422906A1 (en) User terminal and radio communication method
WO2018235297A1 (ja) ユーザ端末及び無線通信方法
WO2019107548A1 (ja) ユーザ端末及び無線通信方法
WO2019138523A1 (ja) ユーザ端末及び無線通信方法
WO2019049345A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207009020

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018858259

Country of ref document: EP

Effective date: 20200420

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020005382

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020005382

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200318