WO2020199641A1 - 具有温度补偿功能的对数流转压电路 - Google Patents

具有温度补偿功能的对数流转压电路 Download PDF

Info

Publication number
WO2020199641A1
WO2020199641A1 PCT/CN2019/124019 CN2019124019W WO2020199641A1 WO 2020199641 A1 WO2020199641 A1 WO 2020199641A1 CN 2019124019 W CN2019124019 W CN 2019124019W WO 2020199641 A1 WO2020199641 A1 WO 2020199641A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
logarithmic
operational amplifier
resistor
temperature coefficient
Prior art date
Application number
PCT/CN2019/124019
Other languages
English (en)
French (fr)
Inventor
石传波
Original Assignee
思瑞浦微电子科技(苏州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 思瑞浦微电子科技(苏州)股份有限公司 filed Critical 思瑞浦微电子科技(苏州)股份有限公司
Priority to US16/964,373 priority Critical patent/US11169558B2/en
Publication of WO2020199641A1 publication Critical patent/WO2020199641A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/267Current mirrors using both bipolar and field-effect technology
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7807System on chip, i.e. computer system on a single chip; System in package, i.e. computer system on one or more chips in a single package
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/556Logarithmic or exponential functions

Definitions

  • This application relates to a circuit design with a temperature compensation function implemented in an integrated circuit, for example, to a logarithmic current conversion circuit with a temperature compensation function.
  • the microelectronics is also constantly breaking through and developing in the emerging technical problems.
  • the signal input into the microelectronic system after signal conversion is usually a very large dynamic range current, and it needs to be converted for further system calculations.
  • Most of the existing traditional solutions use an operational amplifier combined with a triode structure to implement logarithmic signal conversion from I to V.
  • This application proposes a logarithmic current conversion circuit with temperature compensation function to solve the problem of temperature stability of the logarithmic signal conversion device.
  • the present application is a logarithmic current conversion circuit with temperature compensation function, which is characterized by comprising: a logarithmic current conversion voltage buffer unit, a positive temperature coefficient compensation unit and a self-heating unit, wherein
  • the logarithmic flow conversion buffer unit is provided with a reference circuit consistent with the basic logarithmic circuit, and the difference ⁇ Vbe between the output of the basic logarithmic circuit and the output of the reference circuit corresponds to the temperature coefficient;
  • the positive temperature coefficient compensation unit is equipped with a first-stage voltage converter circuit and a second-stage current mirror, and outputs the voltage Vout through an external resistor R2.
  • the input of the positive temperature coefficient compensation unit is connected to ⁇ Vbe, and the voltage converter circuit is provided
  • the resistor R0 and the adjustable resistor R1 are connected in series, and the value of the adjustable resistor R1 is adjusted to modify the temperature coefficient of (R1+R0)/R2.
  • the basic logarithmic circuit is composed of a first operational amplifier and an input transistor, wherein the positive input terminal of the first operational amplifier is connected to a fixed bias Vbias, and the base and collector of the input transistor are shorted to the input current I_input Connect to the negative input terminal of the first operational amplifier together, and connect the emitter of the input transistor to the output terminal of the first operational amplifier.
  • the reference circuit is composed of a second operational amplifier and a reference transistor, wherein the positive input terminal of the second operational amplifier is connected to a fixed bias Vbias, and the reference transistor is configured and connected in a consistent manner with the input transistor of the basic logarithmic circuit, and The reference current I_ref is connected to the negative input terminal of the second operational amplifier.
  • the voltage conversion circuit is composed of a third operational amplifier, an NMOS tube Mf, a resistor R0 and an adjustable resistor R1, wherein the positive input terminal of the third operational amplifier is connected to the output of the basic logarithmic circuit, and the negative electrode of the third operational amplifier The input terminal is connected to the emitter of the NMOS tube Mf and connected in series to the output of the reference circuit through two resistors, and the output terminal of the third operational amplifier is connected to the base of the NMOS tube Mf.
  • the current mirror is composed of a PMOS tube M0 and a PMOS tube M1 connected with a common emitter, and the common base of the two PMOS tubes and the collector of the PMOS tube M0 are connected to the collector of the NMOS tube Mf in the voltage-switching circuit , The collector of the PMOS tube M1 is grounded in series through the resistor R2 and outputs the voltage Vout.
  • the adjustment range of the adjustable resistor R1 adapts to the resistor R0 and the resistor R2 to be deviated during the manufacturing process. That is to ensure that the temperature coefficient of (R1+R0)/R2 can be corrected as needed when the resistance values of the two resistors differ during the manufacturing process.
  • the self-heating unit is integrated at the bottom of the logarithmic current transfer voltage circuit, and the self-heating unit is composed of a switch connected to the power supply VDD and a heating resistance wire.
  • This application provides a logarithmic current conversion circuit with temperature compensation function.
  • the logarithmic current conversion circuit completely implements temperature compensation on-chip, so that the system using the circuit can be integrated on a single chip, and the circuit simulation results show that the output varies with temperature Changes are more stable.
  • Fig. 1 is a schematic diagram of the structure of the logarithmic current conversion circuit of the present application.
  • this application optimizes the performance of the circuit in an all-round way to meet the requirements of adapting the device to temperature changes in the operating environment and efficiently and stably realize signal conversion.
  • the logarithmic current conversion circuit mainly includes a logarithmic current conversion buffer unit and a positive temperature
  • the coefficient compensation unit and the self-heating unit have three parts, and the three-part unit circuits are connected in different ways to realize the temperature compensation in the chip.
  • the logarithmic flow conversion voltage buffer unit is equipped with a reference circuit consistent with the basic logarithmic circuit, and the difference ⁇ Vbe between the output of the basic logarithmic circuit and the output of the reference circuit corresponds to the temperature coefficient, and The output of this tracking basic logarithmic circuit is affected by temperature changes;
  • the positive temperature coefficient compensation unit is equipped with a first-stage voltage converter circuit and a second-stage current mirror, and outputs the voltage Vout through an external resistor R2, a positive temperature coefficient
  • the input of the compensation unit is connected to ⁇ Vbe, and a resistor R0 and an adjustable resistor R1 connected in series are arranged in the voltage converter circuit, and the value of the adjustable resistor R1 is adjusted to perform temperature coefficient compensation for the basic logarithmic circuit.
  • the adjustment range of the adjustable resistor R1 adapts to the resistance R0 and the resistor R2 to be deviated during the manufacturing process. That is to ensure that the temperature coefficient of (R1+R0)/R2 can be corrected as needed when the resistance values of the two resistors differ during the manufacturing process.
  • resistors R0 and R2 are made of the same material, and their resistance values will change at the same time.
  • the adjustment range of the resistance R1 It is necessary to ensure that the temperature coefficient of (R1+R0)/R2 can be adjusted to the required temperature coefficient even when the resistance R0 becomes 8k ohm due to the process deviation; the same applies if the actual resistance value is caused by the process deviation during the manufacturing process As high as 13k ohms, the adjustment range of resistance R1 must ensure that the temperature coefficient of (R1+R0)/R2 can be adjusted to the required temperature coefficient even when the resistance R0 becomes 13k ohms due to process deviation.
  • the adjustment range and adjustment accuracy should be calculated according to the maximum deviation range of the resistance R0 and R2 to meet the demand.
  • the basic logarithmic circuit is composed of a first operational amplifier and an input transistor.
  • the positive input terminal of the first operational amplifier is connected to the fixed bias Vbias, and the base and collector of the input transistor are shorted and combined. Together with the input current I_input, it is connected to the negative input terminal of the first operational amplifier, and the emitter of the input transistor is connected to the output terminal of the first operational amplifier as the output VBE_in of the basic logarithmic circuit.
  • the reference circuit is composed of a second operational amplifier and a reference transistor.
  • the positive input terminal of the second operational amplifier is connected to a fixed bias Vbias consistent with the positive input terminal of the first operational amplifier.
  • the input transistor of the logarithmic circuit is uniformly configured and connected, that is, it is also short-circuited with the collector and connected with the reference current I_ref to the negative input of the second op amp.
  • the emitter of the reference transistor is connected to the output of the second op amp. Terminal, as the output VBE_ref of the reference circuit.
  • the first stage of the above-mentioned positive temperature coefficient compensation unit is a voltage converter circuit, which is composed of a third operational amplifier, an NMOS tube Mf, a resistor R0, and an adjustable resistor R1. It is mainly used to pass current to the next stage and give an adjustable ability.
  • the positive input terminal of the third operational amplifier is connected to the output VBE_in of the basic logarithmic circuit, and the negative input terminal of the third operational amplifier is connected to the emitter of the NMOS tube Mf and connected in series to the output VBE_ref of the reference circuit through two resistors.
  • the output terminal of the third operational amplifier is connected to the base of the NMOS tube Mf.
  • the above-mentioned current mirror is composed of a PMOS tube M0 and a PMOS tube M1 connected with a common emitter, and the common base of the two PMOS tubes and the collector of the PMOS tube M0 are connected to the collector of the NMOS tube Mf in the voltage-switching circuit, The collector of the PMOS tube M1 is grounded in series through the resistor R2 and outputs the voltage Vout.
  • the output voltage Vout is formed on the external resistor R2.
  • the temperature coefficient of resistance R2 and resistance R0 are the same, and the temperature coefficient of (R1+R0)/R2 is a positive temperature coefficient (the temperature coefficient of R1 relative to R0 and R2 is positive), and the temperature coefficient can be determined by the value of resistance R1 Adjust to achieve temperature compensation under different process conditions.
  • adjusting the resistor R1 will result in a deviation in the absolute value of Vout, the absolute value can be corrected by adjusting the mirror image coefficient or other proportional methods.
  • the figure shows that the aforementioned self-heating unit is integrated at the bottom of the logarithmic current conversion circuit, and the self-heating unit is composed of a switch connected to the power supply VDD and a heating resistance wire; the switch responds to the need for temperature compensation to quickly change the entire circuit Therefore, there is no need for external temperature changes or off-chip devices to achieve temperature calibration.
  • the circuit structure design of the application has outstanding substantive features and significant advancement: the logarithmic current converter circuit completely realizes temperature compensation on-chip, so that the circuit can be used The system can be integrated on a single chip, and the simulation results of the circuit show that the output is more stable with temperature changes. Moreover, the overall calibration circuit is simple and low in cost, and the requirements for calibration equipment or ATE machines are low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Optimization (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种具有温度补偿功能的对数流转压电路,包括对数流转压缓冲单元、正温度系数补偿单元和自加热单元,其中对数流转压缓冲单元设有与基本对数电路相一致的参考电路,且基本对数电路的输出与参考电路的输出之间的差值△Vbe对应反映温度系数;正温度系数补偿单元设有第一级的压转流电路和第二级的电流镜,并通过外部电阻R2输出电压Vout,正温度系数补偿单元的输入接△Vbe,且压转流电路中设有相串联的电阻R0和可调电阻R1,调节可调电阻R1的值修正(R1+R0)/R2的温度系数。

Description

具有温度补偿功能的对数流转压电路
本公开要求在2019年04月04日提交中国专利局、申请号为201910270075.4的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及一种以集成电路方式实现的具有温度补偿功能的电路设计,例如涉及一种具有温度补偿功能的对数流转压电路。
背景技术
随着电子应用科技的日新月异,作为硬件基础的顺势发展,其中微电子方面也在不断层出的技术问题中不断突破、发展。在诸多应用系统的微电子设计中,尤其是通信领域发展的光电转换硬件基础上,信号转换后输入微电子系统的通常是动态范围非常大的电流,而为进行进一步的系统运算需要将其转换为电压信号。现有传统方案大都采用运算放大器组合三极管的架构实现I转V的对数信号转换。然而,不同工艺条件下的对数流转压电路中的电子器件通常存在宽范围各异的温度系数,对电路成品性能产生较大的影响,尤其是对数转换的信号随温度变化稳定性较差。
通常,改善此类电路温度补偿,只能依靠片外实现。虽然这样可以实现相对精确的输入、输出的对数特性,但无疑使得系统变得复杂,无法单片集成,限制了对数电路的应用。
发明内容
本申请提出一种具有温度补偿功能的对数流转压电路,以解决对数信号转换器件的适温稳定性问题。
本申请一种具有温度补偿功能的对数流转压电路,其特征在于包括:对数流转压缓冲单元、正温度系数补偿单元和自加热单元,其中
对数流转压缓冲单元设有与基本对数电路相一致的参考电路,且基本对数电路的输出与参考电路的输出之间的差值ΔVbe对应反映温度系数;
正温度系数补偿单元设有第一级的压转流电路和第二级的电流镜,并通过外部电阻R2输出电压Vout,正温度系数补偿单元的输入接ΔVbe,且压转流电路中设有相串联的电阻R0和可调电阻R1,调节可调电阻R1的值修正(R1+R0)/R2的温度系数。
所述基本对数电路由第一运放和输入三极管构成,其中所述第一运放的正极输入端接固定偏置Vbias,所述输入三极管的基极和集电极短接并与输入电流I_input一并接入第一运放的负极输入端,输入三极管的发射极接第一运放的输出端。
所述参考电路由第二运放和参考三极管构成,其中所述第二运放的正极输入端接固定偏置Vbias,所述参考三极管与基本对数电路的输入三极管一致化配置及接线,且参考电流I_ref接入第二运放的负极输入端。
所述压转流电路由第三运放、NMOS管Mf、电阻R0和可调电阻R1构成,其中第三运放的正极输入端与基本对数电路的输出相接,第三运放的负极输入端与NMOS管Mf的发射极相接并通过两个电阻串接至参考电路的输出,第三运放的输出端接入NMOS管Mf的基极。
所述电流镜由共射极相接的PMOS管M0和PMOS管M1构成,且两个PMOS管的共基极与PMOS管M0的集电极汇接至压转流电路中NMOS管Mf的集电极,PMOS管M1的集电极通过电阻R2串接地并输出电压Vout。
所述可调电阻R1的调节范围适配电阻R0、电阻R2在制造过程中出现偏差。即确保两个电阻在制造过程中阻值出现偏差时能将(R1+R0)/R2的温度系数按需修正。
所述自加热单元一体集成于对数流转压电路的底部,且自加热单元为由接入电源VDD的开关和加热电阻丝构成。
本申请提供的一种具有温度补偿功能的对数流转压电路对数流转压电路完全在片内实现了温度补偿,使得应用该电路的系统可以单芯片集成,且电路的仿真结果显示输出随温度变化更稳定。
附图说明
图1是本申请对数流转压电路的结构示意图。
具体实施方式
以下便结合实施例附图,对本申请的具体实施方式作进一步的详述,以使本申请技术方案更易于理解、掌握,从而对本申请的保护范围做出更为清晰的界定。
本申请针对相关技术对数流转压电路传统结构的不足,对该电路性能全方位优化,满足器件在运行环境下适应温度变化,高效稳定地实现信号转换。
为更具象化地理解,如图1所示的本申请具有温度补偿功能的对数流转压电路之实施例电路结构示意图可见,该对数流转压电路主要包括对数流转压缓冲单元、正温度系数补偿单元和自加热单元三部分,且三部分单元电路通过不同的方式相接配合,实现片内的温度补偿。其各部分的技术概述为对数流转压缓冲单元设有与基本对数电路相一致的参考电路,且基本对数电路的输出与参考电路的输出之间的差值ΔVbe对应反映温度系数,以此跟踪基本对数电路的输出受温度变化的影响程度;正温度系数补偿单元设有第一级的压转流电路和第二级的电流镜,并通过外部电阻R2输出电压Vout,正温度系数补偿单元的输入接ΔVbe,且压转流电路中设有相串联的电阻R0和可调电阻R1,调节可调电阻R1的值对基本对数电路进行温度系数补偿。可调电阻R1的调节范围适配电阻R0、电阻R2在制造过程中出现偏差。即确保两个电阻在制造过程中阻值出现偏差时能将(R1+R0)/R2的温度系数按需修正。例如,通常电阻R0、R2会采用同一材质的电阻,其阻值会同时变化,假设电阻R0取值10k欧姆,制造过程中因工艺偏差导致实际阻值低至8k欧姆,则电阻R1的调节范围需确保电阻R0即使因工艺偏差变为8k欧姆时仍能保证(R1+R0)/R2的温度系数可以被修调至所需温度系数;同理,如果制造过程中因工艺偏差导致实际阻值高至13k欧姆,则电阻R1的调节范围需确保电阻R0即使因工艺偏差变为13k欧姆时仍能保证(R1+R0)/R2的温度系数可以被修调至所需温度系数,电阻R1的调节范围和调节精度应根据电阻R0、R2的最大偏差范围进行计算,以求满足需求。
从进一步的细化特征来看,该基本对数电路由第一运放和输入三极管构成,其中第一运放的正极输入端接固定偏置Vbias,输入三极管的基极和集电极短接并与输入电流I_input一并接入第一运放的负极输入端,输入三极管的发射极接第一运放的输出端,作为基本对数电路的输出VBE_in。
再者可见,该参考电路由第二运放和参考三极管构成,其中第二运放的正 极输入端接入与第一运放的正极输入端相一致的固定偏置Vbias,该参考三极管与基本对数电路的输入三极管一致化配置及接线,即也是晋级与集电极短接并与参考电流I_ref一并接入第二运放的负极输入端,参考三极管的发射极接第二运放的输出端,作为参考电路的输出VBE_ref。
上述正温度系数补偿单元的第一级为压转流电路,由第三运放、NMOS管Mf、电阻R0和可调电阻R1构成,主要用于向下一级传递电流并赋予可调节能力,其中第三运放的正极输入端与基本对数电路的输出VBE_in相接,第三运放的负极输入端与NMOS管Mf的发射极相接并通过两个电阻串接至参考电路的输出VBE_ref,第三运放的输出端接入NMOS管Mf的基极。
上述电流镜由共射极相接的PMOS管M0和PMOS管M1构成,且两个PMOS管的共基极与PMOS管M0的集电极汇接至压转流电路中NMOS管Mf的集电极,PMOS管M1的集电极通过电阻R2串接地并输出电压Vout。
结合上述图示和电路结构描述来理论分析,从上述对数流转压缓冲单元的输出来看,两者差值ΔVbe=VBE_in-VBE_ref=A*KT*ln(I_in/I_ref),其中A为电路固定参数,K为波兹曼常数,T为实时温度。从公式上看,ΔVbe具有正温度系数,因此有需要对其温度系数进行补偿。从图示右半部分是正温度系数补偿单元,其输入为ΔVbe,先通过第一级的V2I电路,其电流输出Imir=ΔVbe/(R1+R0);然后再通过PMOS管M0和M1的电流镜在外部电阻R2上形成输出电压Vout。设镜像系数为1,则输出电压为Vout=Imir*R2;公式推导得:Vout=ΔVbe*R2/(R1+R0)=A*KT*ln(I_in/I_ref)*R2/(R1+R0)。
如以上推导公式所示,只需将KT的温度系数和(R1+R0)/R2的温度系数一致化设计,即可实现对数电流转换电压的温度补偿。因此,取电阻R2和电阻R0的温度系数一致,且(R1+R0)/R2温度系数为正温度系数(R1相对R0和R2的温度系数为正),且温度系数可通过电阻R1的值来调节,从而实现不同工艺条件下的温度补偿。虽然调节电阻R1会导致Vout的绝对值会有偏差,但可以通过调节镜像系数或其它比例方式来修正绝对值。
此外,图示可见,前述自加热单元一体集成于对数流转压电路的底部,且自加热单元为由接入电源VDD的开关和加热电阻丝构成;通过开关响应温度补偿的需求快速改变整个电路的温度,从而无需外部温度变化或片外器件实现温 度校准。
综上结合图示的实施例详述,应用本申请的电路结构设计,具备突出的实质性特点和显著的进步性:该对数流转压电路完全在片内实现了温度补偿,使得应用该电路的系统可以单芯片集成,且电路的仿真结果显示输出随温度变化更稳定。而且整体校准电路简单、成本较低,对校准设备或者ATE机台要求较低。

Claims (7)

  1. 一种具有温度补偿功能的对数流转压电路,包括:对数流转压缓冲单元、正温度系数补偿单元和自加热单元,其中
    对数流转压缓冲单元设有与基本对数电路相一致的参考电路,且基本对数电路的输出与参考电路的输出之间的差值ΔVbe对应反映温度系数;
    正温度系数补偿单元设有第一级的压转流电路和第二级的电流镜,并通过外部电阻R2输出电压Vout,正温度系数补偿单元的输入接ΔVbe,且压转流电路中设有相串联的电阻R0和可调电阻R1,调节可调电阻R1的值修正(R1+R0)/R2的温度系数。
  2. 根据权利要求1所述具有温度补偿功能的对数流转压电路,其中,所述基本对数电路由第一运放和输入三极管构成,其中所述第一运放的正极输入端接固定偏置Vbias,所述输入三极管的基极和集电极短接并与输入电流I_input一并接入第一运放的负极输入端,输入三极管的发射极接第一运放的输出端。
  3. 根据权利要求1所述具有温度补偿功能的对数流转压电路,其中,所述参考电路由第二运放和参考三极管构成,其中所述第二运放的正极输入端接固定偏置Vbias,所述参考三极管与基本对数电路的输入三极管一致化配置及接线,且参考电流I_ref接入第二运放的负极输入端。
  4. 根据权利要求1所述具有温度补偿功能的对数流转压电路,其中,所述压转流电路由第三运放、NMOS管Mf、电阻R0和可调电阻R1构成,其中第三运放的正极输入端与基本对数电路的输出相接,第三运放的负极输入端与NMOS管Mf的发射极相接并通过两个电阻串接至参考电路的输出,第三运放的输出端接入NMOS管Mf的基极。
  5. 根据权利要求1所述具有温度补偿功能的对数流转压电路,其中,所述电流镜由共射极相接的PMOS管M0和PMOS管M1构成,且两个PMOS管的共基极与PMOS管M0的集电极汇接至压转流电路中NMOS管Mf的集电极,PMOS管M1的集电极通过电阻R2串接地并输出电压Vout。
  6. 根据权利要求1所述具有温度补偿功能的对数流转压电路,其中,所述可调电阻R1的调节范围适配电阻R0、电阻R2在制造过程中出现偏差。
  7. 根据权利要求1所述具有温度补偿功能的对数流转压电路,其中,所述自加热单元一体集成于对数流转压电路的底部,且自加热单元为由接入电源VDD的开关和加热电阻丝构成。
PCT/CN2019/124019 2019-04-04 2019-12-09 具有温度补偿功能的对数流转压电路 WO2020199641A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/964,373 US11169558B2 (en) 2019-04-04 2019-12-09 Logarithmic current-to-voltage conversion circuit having temperature compensation function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910270075.4 2019-04-04
CN201910270075.4A CN109992898B (zh) 2019-04-04 2019-04-04 一种具有温度补偿功能的对数流转压电路

Publications (1)

Publication Number Publication Date
WO2020199641A1 true WO2020199641A1 (zh) 2020-10-08

Family

ID=67132377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124019 WO2020199641A1 (zh) 2019-04-04 2019-12-09 具有温度补偿功能的对数流转压电路

Country Status (3)

Country Link
US (1) US11169558B2 (zh)
CN (1) CN109992898B (zh)
WO (1) WO2020199641A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109992898B (zh) 2019-04-04 2022-08-05 思瑞浦微电子科技(苏州)股份有限公司 一种具有温度补偿功能的对数流转压电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090002056A1 (en) * 2007-06-30 2009-01-01 Doyle James T Active resistance circuit with controllable temperature coefficient
CN102323847A (zh) * 2011-07-29 2012-01-18 中国电子科技集团公司第二十四研究所 基于温度补偿的电压基准电路
CN102931925A (zh) * 2012-11-12 2013-02-13 东南大学 一种基于cmos工艺的低温度系数对数放大器
CN203872158U (zh) * 2014-04-28 2014-10-08 比亚迪股份有限公司 一种降低电阻温度特性的补偿电路
CN108121390A (zh) * 2016-11-30 2018-06-05 无锡华润矽科微电子有限公司 修调带隙基准的电路及方法
CN109992898A (zh) * 2019-04-04 2019-07-09 思瑞浦微电子科技(苏州)股份有限公司 一种具有温度补偿功能的对数流转压电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671186B2 (ja) * 1990-01-19 1994-09-07 株式会社東芝 対数増幅回路
EP0613243A1 (en) * 1993-02-26 1994-08-31 STMicroelectronics S.r.l. Anti-logarithmic converter with temperature compensation
US6426495B1 (en) * 1999-06-24 2002-07-30 Hitachi, Ltd. Temperature compensating circuit, temperature compensating logarithm conversion circuit and light receiver
US7310656B1 (en) * 2002-12-02 2007-12-18 Analog Devices, Inc. Grounded emitter logarithmic circuit
US7969223B1 (en) * 2010-04-30 2011-06-28 Analog Devices, Inc. Temperature compensation for logarithmic circuits
CN102664594B (zh) * 2012-05-29 2014-09-10 东南大学 一种具有温度补偿功能的对数放大器
CN103151989B (zh) * 2013-03-05 2015-06-17 东南大学 一种低电压低温度系数的对数放大器
CN109560809B (zh) * 2019-01-07 2020-06-30 上海奥令科电子科技有限公司 一种对数转换电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090002056A1 (en) * 2007-06-30 2009-01-01 Doyle James T Active resistance circuit with controllable temperature coefficient
CN102323847A (zh) * 2011-07-29 2012-01-18 中国电子科技集团公司第二十四研究所 基于温度补偿的电压基准电路
CN102931925A (zh) * 2012-11-12 2013-02-13 东南大学 一种基于cmos工艺的低温度系数对数放大器
CN203872158U (zh) * 2014-04-28 2014-10-08 比亚迪股份有限公司 一种降低电阻温度特性的补偿电路
CN108121390A (zh) * 2016-11-30 2018-06-05 无锡华润矽科微电子有限公司 修调带隙基准的电路及方法
CN109992898A (zh) * 2019-04-04 2019-07-09 思瑞浦微电子科技(苏州)股份有限公司 一种具有温度补偿功能的对数流转压电路

Also Published As

Publication number Publication date
CN109992898A (zh) 2019-07-09
CN109992898B (zh) 2022-08-05
US11169558B2 (en) 2021-11-09
US20210232170A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US7808068B2 (en) Method for sensing integrated circuit temperature including adjustable gain and offset
US7225099B1 (en) Apparatus and method for temperature measurement using a bandgap voltage reference
US10671109B2 (en) Scalable low output impedance bandgap reference with current drive capability and high-order temperature curvature compensation
JP5836074B2 (ja) 温度検出回路及びその調整方法
CN108225588B (zh) 一种温度传感器及温度检测方法
JP2005519266A5 (zh)
US7119611B2 (en) On-chip calibrated source termination for voltage mode driver and method of calibration thereof
JP2004146576A (ja) 半導体温度測定回路
KR101889766B1 (ko) 보정 기능을 가지는 온도 센서 회로
TW202132790A (zh) 具自我校準功能的電流感測電路
TWI721725B (zh) 溫度感測器配置中之閃爍雜訊減少
WO2020199641A1 (zh) 具有温度补偿功能的对数流转压电路
JP2004514230A (ja) Bgr回路を調整する方法およびbgr回路
CN108426648A (zh) Cmos温度测量电路
JP2008045898A (ja) プローブ
Meijer A low-power easy-to-calibrate temperature transducer
JP2003042870A (ja) センサ用温度特性補正回路装置及びセンサの温度特性補正方法
JPH0160922B2 (zh)
CN106768516B (zh) 一种高温压力传感器专用集成电路
JP3420244B2 (ja) Ic構成部分のためのウェーハ段階での温度補償
JP6357182B2 (ja) センサ装置
US4002964A (en) Temperature compensation technique
JP4501555B2 (ja) 電流検出回路
CN111213041B (zh) 单温点温度传感器灵敏度校准
CN214122812U (zh) 带基极电流补偿的基准电压源集成器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922976

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19922976

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 01/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19922976

Country of ref document: EP

Kind code of ref document: A1