WO2020199539A1 - 锂电池充放电控制方法及供电系统 - Google Patents

锂电池充放电控制方法及供电系统 Download PDF

Info

Publication number
WO2020199539A1
WO2020199539A1 PCT/CN2019/108614 CN2019108614W WO2020199539A1 WO 2020199539 A1 WO2020199539 A1 WO 2020199539A1 CN 2019108614 W CN2019108614 W CN 2019108614W WO 2020199539 A1 WO2020199539 A1 WO 2020199539A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium battery
charging
voltage
current
discharge
Prior art date
Application number
PCT/CN2019/108614
Other languages
English (en)
French (fr)
Inventor
钟伟龙
陈坤裕
杨鑫
蔡钟山
Original Assignee
漳州科华技术有限责任公司
科华恒盛股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 漳州科华技术有限责任公司, 科华恒盛股份有限公司 filed Critical 漳州科华技术有限责任公司
Publication of WO2020199539A1 publication Critical patent/WO2020199539A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection

Definitions

  • This application relates to the field of power supply technology, and in particular to a method and power supply system for lithium battery charge and discharge control.
  • UPS Uninterruptible Power System
  • batteries used as energy storage components and supply power to the load when the battery is connected to the load.
  • the battery will over-discharge during the power supply process.
  • over-discharged batteries especially lithium batteries, if high current is used directly for fast charging, it is very easy to cause damage to the lithium battery, which affects the power reserve of the lithium battery and shortens the backup time of the power supply system.
  • the first aspect of the embodiments of the present application provides a lithium battery charging and discharging control method, including:
  • the lithium battery When the current voltage is greater than or equal to the second charging voltage threshold, the lithium battery is charged with a preset second constant current; wherein, the second charging voltage threshold is greater than the first charging voltage threshold, so The second constant current current is greater than the first constant current current;
  • the third charging voltage threshold is greater than the second charging voltage threshold.
  • the lithium battery charging control method further includes: when the current voltage is greater than or equal to a first charging voltage threshold, and the current voltage is less than a second charging voltage threshold At this time, the lithium battery is charged by the preset second constant current.
  • the lithium battery charging control method further includes: when the current voltage is less than a preset second charging voltage threshold, repeating the passing of the preset first The step of charging the lithium battery with a constant current until the current voltage is greater than or equal to the preset second charging voltage threshold.
  • the lithium battery charging control method further includes: when the current voltage is less than a preset third charging voltage threshold, repeating the passing of the preset first 2. A step of charging the lithium battery with a constant current until the current voltage is greater than or equal to a preset third charging voltage threshold.
  • the control method further includes: when the current voltage is less than or equal to a fourth charging voltage threshold, charging the lithium battery through a second constant current until the current voltage of the lithium battery reaches a third charging voltage threshold; wherein, The fourth charging voltage threshold is less than the third charging voltage threshold.
  • the lithium battery charging and discharging control method further includes: monitoring whether the lithium battery is connected to a load, and after monitoring that the lithium battery is connected to the load When the discharge voltage information of the lithium battery is monitored; when the discharge voltage information is less than the preset discharge voltage threshold, the voltage change rate of the lithium battery is acquired; when the voltage change rate of the lithium battery is greater than or equal to the preset When the rate threshold is set, stop discharging to the load.
  • the obtaining the voltage change rate of the lithium battery includes: obtaining two pieces of discharge voltage information of the lithium battery, and the two Time information corresponding to the discharge voltage information respectively; calculating the voltage change rate of the lithium battery according to the two discharge voltage information and the time information.
  • a lithium battery charge and discharge control device including:
  • the voltage acquisition unit is used to monitor whether the lithium battery is connected to an external power source, and when it is monitored that the lithium battery is connected to the external power source, monitor the current voltage of the lithium battery;
  • the charge and discharge control unit is configured to charge the lithium battery through a preset first constant current when the current voltage is less than the first charging voltage threshold;
  • the charge-discharge control unit is further configured to charge the lithium battery through a preset second constant current current; wherein, the second charging voltage threshold is greater than The first charging voltage threshold, the second constant current current is greater than the first constant current current;
  • the charge and discharge control unit is further configured to stop charging the lithium battery; the third charging voltage threshold is greater than the second charging voltage threshold .
  • the third aspect of the embodiments of the present application also provides a power supply system, including: a lithium battery, a memory, and a processor, and the lithium battery, the memory, and the processor are in communication connection with each other.
  • a computer instruction is stored in the memory, and the processor executes the computer instruction to execute the lithium battery charge and discharge control method as described in the first aspect.
  • This application provides a method for controlling the charging and discharging of a lithium battery.
  • When charging the lithium battery with an external power source first collect the current voltage of the lithium battery, and determine whether the lithium battery was excessively discharged during the last discharge according to the current voltage of the lithium battery Discharge.
  • the lithium batteries are charged in stages to avoid directly charging the over-discharged lithium batteries with larger currents to realize the charging protection of the lithium batteries. It solves the problem of easily causing damage to the lithium battery in the process of charging the lithium battery in the prior art.
  • FIG. 1 is a flowchart of a specific example of a lithium battery charge and discharge control method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of another specific example of a lithium battery charge and discharge control method provided by an embodiment of the present application
  • FIG. 3 is a discharge characteristic curve of a lithium battery provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a specific example of a lithium battery charge and discharge control device provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a specific example of a power supply system provided by an embodiment of the present application.
  • the embodiment of the present application provides a method for controlling the charge and discharge of a lithium battery.
  • the method for controlling the charge and discharge of a lithium battery may include:
  • Step S101 Monitor whether the lithium battery is connected to an external power source, and monitor the current voltage of the lithium battery when it is monitored that the lithium battery is connected to the external power source.
  • the external power source starts to charge the lithium battery.
  • the external power source may be a three-phase AC power of the mains, and the lithium battery is charged through an AC-DC converter.
  • the current voltage of the lithium battery can be detected first, and then in the subsequent steps, according to the current voltage, it can be identified whether the lithium battery is over-discharged during the last discharge.
  • Step S102 Determine whether the current voltage is less than a preset first charging voltage threshold. When the current voltage is less than the preset first charging voltage threshold, step S103 is executed; when the current voltage is greater than or equal to the preset first charging voltage threshold, step S104 is executed.
  • Step S103 Charge the lithium battery through the preset first constant current current.
  • lithium batteries that are over-discharged that is, lithium batteries whose current voltage is less than the preset first charging voltage threshold
  • the lithium battery is charged with a small current to avoid directly using a larger current to over-discharge
  • the lithium battery is charged to cause damage, and the charging protection of the lithium battery is realized.
  • the voltage information of the lithium battery can be periodically detected, and then in the subsequent steps, it is determined whether to update the lithium battery according to the voltage information of the lithium battery.
  • the charging current of the battery is determined whether to update the lithium battery according to the voltage information of the lithium battery.
  • Step S104 Determine whether the current voltage is greater than or equal to a preset second charging voltage threshold. When the current voltage is greater than or equal to the preset second charging voltage threshold, step S105 is executed; when the current voltage is less than the preset second charging voltage threshold, step S103 is returned.
  • Step S105 Charge the lithium battery through the preset second constant current current.
  • an over-discharged lithium battery that is, a lithium battery whose current voltage is less than the preset first charging voltage threshold
  • the voltage of the lithium battery will rise after charging it for a period of time with a small first constant current current
  • the over-discharge energy in the over-discharged lithium battery has been supplemented.
  • the small current charging is replaced with a larger current charging, the battery damage caused by the large current charging after over-discharge will not occur.
  • the smaller first constant current can be replaced by a larger second constant current current, and the lithium battery can be continuously charged with constant current and constant voltage.
  • the lithium batteries that have not been over-discharged that is, lithium batteries whose current voltage is greater than or equal to the preset first charging voltage threshold
  • the voltage information of the lithium battery can be periodically detected, and then in the subsequent steps, the voltage information of the lithium battery can be used to determine whether the charging is completed. Charging of lithium battery.
  • Step S106 Determine whether the current voltage is greater than or equal to a preset third charging voltage threshold. When the current voltage is greater than or equal to the preset third charging voltage threshold, step S107 is executed; when the current voltage is less than the preset third charging voltage threshold, step S105 is returned.
  • Step S107 Stop charging the lithium battery. By comparing the current voltage with the preset third charging voltage threshold, it is judged in real time whether the lithium battery has met the full charge condition. For the fully charged lithium battery, in order not to keep it in the high-voltage charging mode for a long time, the charging should be terminated in time ; For the lithium battery that is not in a fully charged state, it will continue to be charged with a larger second constant current to ensure the charging capacity of the lithium battery.
  • step S107 the following steps may be added after step S107:
  • Step S108 Determine whether the current voltage is less than or equal to the fourth charging voltage threshold.
  • step S109 is executed; when the current voltage is greater than the preset fourth charging voltage threshold, the current voltage is continuously monitored.
  • the current voltage of the lithium battery may refer to the voltage difference between the positive and negative electrodes of the lithium battery when the lithium battery is connected to an external power source and is charged with the external power source; the current voltage of the lithium battery may also refer to the lithium battery When neither an external power source nor a load is connected, the voltage difference between its positive and negative poles.
  • the current voltage of the lithium battery refers to the voltage difference between the positive and negative electrodes of the lithium battery in a self-discharge state.
  • Step S109 The lithium battery is charged by the preset second constant current current, and the charging of the lithium battery is stopped when the voltage of the lithium battery reaches the preset third charging voltage threshold.
  • the current voltage of the lithium battery is less than or equal to the preset fourth charging voltage threshold, it can be considered that the self-discharge power loss of the lithium battery is large.
  • the self-discharge power loss of the lithium battery is large.
  • it needs to be used to supply power to the load in the future.
  • Perform supplementary charging When recharging the lithium battery, since the current self-discharge power loss of the lithium battery is not large and has not reached the degree of over-discharge, it can be directly charged with only the second constant current with a larger amplitude. So as to quickly complete the power replenishment of the lithium battery.
  • the voltage information of the lithium battery can be periodically detected, and then in the subsequent steps, the voltage information of the lithium battery can be used to determine whether the lithium battery needs to be Self-discharge power loss is supplemented.
  • the lithium battery charging and discharging control method provided in the embodiments of the present application fully considers the self-discharge of the lithium battery after the lithium battery is charged, and timely supplements the electrical energy caused by the long-term self-discharge, so as to avoid the long-term idle of the lithium battery.
  • the loss of electrical energy is conducive to providing the power supply reliability of the lithium battery.
  • step S107 or step S109 the following steps can be added after step S107 or step S109, so as to realize the discharge protection of the lithium battery and avoid the over-discharge of the lithium battery:
  • Step S110 monitor whether the lithium battery is connected to the load, and monitor the discharge voltage information of the lithium battery when it is monitored that the lithium battery is connected to the load.
  • the discharge voltage information of the lithium battery can be periodically detected, and then in the subsequent steps, the discharge voltage information of the lithium battery can be used to determine whether the lithium battery appears or is about to Excessive discharge has occurred.
  • the discharge voltage information refers to the voltage difference between the positive and negative electrodes of the lithium battery when it is connected to a load and discharged to the load.
  • Step S111 Determine whether the discharge voltage information is less than a preset discharge voltage threshold.
  • the discharge voltage information is less than the preset discharge voltage threshold, perform step S112; when the discharge voltage information is greater than or equal to the preset discharge voltage threshold, return to step S110.
  • Power supply systems such as UPS systems
  • lithium batteries will set the battery discharge cut-off voltage to provide protection for battery discharge. If the discharge cut-off voltage is too low, it is easy to cause over-discharge of the battery; if the discharge cut-off voltage is too high, it will shorten the backup time of the power supply system or the lithium battery.
  • the function of the discharge voltage threshold is similar to the discharge cut-off voltage. However, in the lithium battery charging and discharging control method provided in the embodiment of the present application, the discharge voltage threshold is not only used as the only standard for lithium battery discharge control.
  • Step S112 Obtain the voltage change rate of the lithium battery.
  • Figure 3 shows the discharge characteristic curve of the lithium battery, and the horizontal axis represents the power loss of the lithium battery.
  • the voltage change of the lithium battery is very small during most of the discharge period; however, the voltage of the lithium battery drops rapidly at the beginning and the end of the discharge, that is, the voltage change rate is relatively large.
  • the process of step S112 can be implemented through the following sub-steps:
  • Step S1121 Obtain two discharge voltage information of the lithium battery, and time information corresponding to the two discharge voltage information respectively.
  • Step S1122 Calculate the voltage change rate of the lithium battery according to the two discharge voltage information and time information.
  • the voltage change rate of the lithium battery can be calculated by formula (1):
  • K represents the voltage change rate of the lithium battery
  • ⁇ V
  • , V 1 and V 2 respectively represent two discharge voltage information
  • ⁇ t t 2 -t 1 , t 1 and t 2 are two respectively Time information corresponding to each discharge voltage information.
  • Step S113 Determine whether the voltage change rate of the lithium battery is greater than or equal to a preset rate threshold.
  • step S114 is executed; when the voltage change rate of the lithium battery is less than the preset rate threshold, step S112 is returned.
  • Step S114 Stop discharging the lithium battery to the load.
  • the discharge voltage of the lithium battery is less than the preset discharge voltage threshold, and the voltage change rate is greater than or equal to the preset rate threshold, it can be considered that the lithium battery has entered or is about to enter the rapid decline phase.
  • the lithium battery should be removed in time, that is Stop the lithium battery to continue discharging to the load to prevent the lithium battery from over-discharging.
  • the lithium battery charging and discharging control method provided by the embodiments of the present application utilizes the characteristic that the voltage of the lithium battery decreases rapidly at the beginning and the end of the discharge, and identifies whether the lithium battery enters the end of discharge through the voltage and the rate of voltage change, and cuts off the end of the discharge in time. Lithium battery, avoid its excessive discharge, so as to realize the discharge protection of lithium battery.
  • the voltage change rate of the lithium battery is calculated. Since both the discharge voltage information and the time information are conventional parameters, they have the advantages of fast collection speed and controllable accuracy, and the data collection process can be completed conveniently and quickly. Through the formula and using the two continuous discharge voltage information and corresponding time information of the lithium battery, the calculation of the voltage change rate of the lithium battery can be conveniently and quickly completed.
  • the current voltage of the lithium battery is first collected, and it is judged whether the lithium battery has been excessively discharged during the last discharge according to the current voltage of the lithium battery. Discharge.
  • staged charging control of the lithium battery it is beneficial to maintain the power reserve of the lithium battery and extend its service life, reduce the maintenance frequency of the lithium battery, and ensure the backup time of the power supply system, which is beneficial to improve the lithium battery The reliability of power supply.
  • the lithium battery charging and discharging control device may include a voltage acquisition unit 401 and a charging and discharging control unit 402.
  • the voltage acquisition unit 401 is used to monitor whether the lithium battery is connected to an external power source, and monitor the current voltage of the lithium battery when it is monitored that the lithium battery is connected to the external power source; for the specific working process, please refer to the step S101 in the above method embodiment. Narrated.
  • the charging and discharging control unit 402 When the current voltage is less than the first charging voltage threshold, the charging and discharging control unit 402 is used to charge the lithium battery through a preset first constant current current. When the current voltage is greater than or equal to the second charging voltage threshold, the charging and discharging control unit 402 is further configured to charge the lithium battery through a preset second constant current; wherein, the second charging voltage threshold is greater than the first A charging voltage threshold, the second constant current current is greater than the first constant current current. When the current voltage is greater than or equal to the preset third charging voltage threshold, the third charging voltage threshold is greater than the second charging voltage threshold, and the charging and discharging control unit 402 is further configured to stop charging the lithium battery.
  • the charging and discharging control unit 402 is further configured to: when the current voltage is greater than or equal to the first charging voltage threshold, and the current voltage is less than the second charging voltage threshold, apply a preset second constant current to the lithium battery Recharge.
  • the charge and discharge control unit 402 is further configured to repeat the step of charging the lithium battery through the preset first constant current when the current voltage is less than the preset second charging voltage threshold value, until the The current voltage is greater than or equal to the preset second charging voltage threshold.
  • the charging and discharging control unit 402 is further configured to repeatedly perform the step of charging the lithium battery through the preset second constant current when the current voltage is less than the preset third charging voltage threshold, until the The current voltage is greater than or equal to the preset third charging voltage threshold.
  • the charging and discharging control unit 402 is further configured to charge the lithium battery through the second constant current when the current voltage is less than or equal to the fourth charging voltage threshold, until the current voltage of the lithium battery reaches the third charging voltage threshold, where , The fourth charging voltage threshold is less than the third charging voltage threshold.
  • the fourth charging voltage threshold is less than the third charging voltage threshold.
  • the voltage acquisition unit 401 can also be used to monitor whether the lithium battery is connected to the load, and monitor the discharge voltage of the lithium battery when it is monitored that the lithium battery is connected to the load; the specific working process can refer to the above In the method embodiment, step S110 is described.
  • the charge and discharge control unit 402 can also be used to obtain the voltage change rate of the lithium battery when the discharge voltage is less than the discharge voltage threshold, and stop discharging to the load when the voltage change rate is greater than or equal to the preset rate threshold; its specific working process can be Refer to the description of step S111 to step S114 in the above method embodiment.
  • the charge and discharge control unit 402 may also be specifically configured to obtain two discharge voltage information of the lithium battery, and time information corresponding to the two discharge voltage information; according to the two discharge voltage information and the time information
  • , V 1 and V 2 respectively represent the two discharge voltage information; ⁇ t t 2 -t 1 , t 1 and t 2 are respectively the time information corresponding to the two discharge voltage information.
  • the power supply system may include a processor 501, a memory 502, and a lithium battery 503.
  • the processor 501, the memory 502, and the lithium battery 503 are communicatively connected.
  • the processor 501 and the memory 502 may be connected by a bus or in other ways. In FIG. 5, the connection by a bus is taken as an example.
  • the processor 501 may be a central processing unit (Central Processing Unit, CPU).
  • the processor 501 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), or Chips such as other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, or a combination of the above types of chips.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • Chips such as other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, or a combination of the above types of chips.
  • the memory 502 can be used to store non-transitory software programs, non-transitory computer executable programs, and modules, such as the program instructions corresponding to the lithium battery charge and discharge control method in the embodiment of the present application / Module (for example, the voltage acquisition unit 401 and the charge and discharge control unit 402 shown in FIG. 4).
  • the processor 501 executes various functional applications and data processing of the processor by running non-transitory software programs, instructions, and modules stored in the memory 502, that is, realizes the lithium battery charging and discharging control method in the foregoing method embodiment.
  • the memory 502 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created by the processor 501 and the like.
  • the memory 502 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid state storage devices.
  • the memory 502 may optionally include a memory remotely provided with respect to the processor 501, and these remote memories may be connected to the processor 501 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 502, and when executed by the processor 501, the lithium battery charge and discharge control method in the embodiment shown in FIGS. 1 to 2 is executed.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (RAM), a flash memory (Flash Memory), a hard disk (Hard Disk Drive, abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.; the storage medium may also include a combination of the foregoing types of memories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请适用于电力供应技术领域,公开了一种锂电池充放电控制方法及供应系统,其中,上述锂电池充放电控制方法包括:获取锂电池的当前电压;当当前电压小于预设的第一充电电压阈值时,通过预设的第一恒流电流对锂电池充电;当当前电压大于或等于预设的第二充电电压阈值时,通过预设的第二恒流电流对所述锂电池充电;当当前电压大于或等于预设的第三充电电压阈值时,停止对锂电池充电。本申请提供的锂电池充放电控制方法及供电系统,通过控制充电电流的大小对锂电池进行分阶段的充电控制,避免直接采用较大电流对过放的锂电池进行充电,实现对锂电池的充电保护。

Description

锂电池充放电控制方法及供电系统
本申请要求于2019年04月01日提交中国专利局、申请号为201910257306.8、发明名称为“锂电池充放电控制方法及供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力供应技术领域,特别是涉及一种锂电池充放电控制方法及供电系统。
背景技术
普通的UPS(Uninterruptible Power System不间断电源,简称UPS)大多以蓄电池作为储能部件,在蓄电池接入负载时为负载供电。有时蓄电池在供电过程中会出现电能过放。对于电能过放的蓄电池,特别是锂电池,如果直接使用大电流进行快速充电,非常容易对锂电池造成损伤,从而影响锂电池的电能储备量,造成供电系统后备时间的缩短。
发明概述
技术问题
现有技术中,在对锂电池进行充电的过程中存在容易对锂电池造成损伤的问题。
问题的解决方案
技术解决方案
为解决上述技术问题,本申请实施例的第一方面提供了一种锂电池充放电控制方法,包括:
监听锂电池是否接入外部电源,在监听到锂电池接入外部电源时,监测所述锂电池的当前电压;
在所述当前电压小于第一充电电压阈值时,通过预设的第一恒流电流对所述锂电池充电;
在所述当前电压大于或等于第二充电电压阈值时,通过预设的第二恒流电流对 所述锂电池充电;其中,所述第二充电电压阈值大于所述第一充电电压阈值,所述第二恒流电流大于所述第一恒流电流;
在所述当前电压大于或等于预设的第三充电电压阈值时,停止对所述锂电池充电;所述第三充电电压阈值大于所述第二充电电压阈值。
根据第一方面,在第一方面第一实施方式中,所述锂电池充电控制方法还包括:当所述当前电压大于或等于第一充电电压阈值,且所述当前电压小于第二充电电压阈值时,通过预设的第二恒流电流对所述锂电池充电。
根据第一方面,在第一方面第二实施方式中,所述锂电池充电控制方法还包括:当所述当前电压小于预设的第二充电电压阈值时,重复执行所述通过预设的第一恒流电流对所述锂电池充电的步骤,直至所述当前电压大于或等于预设的第二充电电压阈值。
根据第一方面,在第一方面第三实施方式中,所述锂电池充电控制方法还包括:当所述当前电压小于预设的第三充电电压阈值时,重复执行所述通过预设的第二恒流电流对所述锂电池充电的步骤,直至所述当前电压大于或等于预设的第三充电电压阈值。
根据第一方面或第一方面第一至第三中的任一实施方式,在第一方面第四实施方式中,在所述停止对所述锂电池充电的步骤之后,所述锂电池充放电控制方法还包括:在所述当前电压小于或等于第四充电电压阈值时,通过第二恒流电流对所述锂电池充电,直至所述锂电池的当前电压达到第三充电电压阈值;其中,所述第四充电电压阈值小于所述第三充电电压阈值。
根据第一方面第四实施方式,在第一方面第五实施方式中,所述锂电池充放电控制方法还包括:监听所述锂电池是否接入负载,在监听到所述锂电池接入负载时,监测所述锂电池的放电电压信息;当所述放电电压信息小于预设的放电电压阈值时,获取所述锂电池的电压变化速率;当所述锂电池的电压变化速率大于或等于预设的速率阈值时,停止向所述负载放电。
根据第一方面第五实施方式,在第一方面第六实施方式中,所述获取所述锂电池的电压变化速率,包括:获取所述锂电池的两个放电电压信息,以及所述两个放电电压信息分别对应的时间信息;根据所述两个放电电压信息和所述时间 信息计算所述锂电池的电压变化速率。
根据第一方面第六实施方式,在第一方面第七实施方式中,通过
Figure PCTCN2019108614-appb-000001
计算所述锂电池的电压变化速率;其中,K表示所述锂电池的电压变化速率;ΔV=|V 1-V 2|,V 1和V 2分别表示所述两个放电电压信息;Δt=t 2-t 1,t 1和t 2分别为所述两个放电电压信息对应的时间信息。
为解决上述技术问题,本申请实施例的第二方面提供了一种锂电池充放电控制装置,包括:
电压采集单元,用于监听锂电池是否接入外部电源,在监听到锂电池接入外部电源时,监测所述锂电池的当前电压;
充放电控制单元,在所述当前电压小于第一充电电压阈值时,用于通过预设的第一恒流电流对所述锂电池充电;
在所述当前电压大于或等于第二充电电压阈值时,所述充放电控制单元还用于通过预设的第二恒流电流对所述锂电池充电;其中,所述第二充电电压阈值大于所述第一充电电压阈值,所述第二恒流电流大于所述第一恒流电流;
在所述当前电压大于或等于预设的第三充电电压阈值时,所述充放电控制单元还用于停止对所述锂电池充电;所述第三充电电压阈值大于所述第二充电电压阈值。
为解决上述技术问题,本申请实施例的第三方面还提供了一种供电系统,包括:锂电池、存储器和处理器,所述锂电池、所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行如第一方面所述的锂电池充放电控制方法。
发明的有益效果
有益效果
本申请提供了一种锂电池充放电控制方法,在利用外接电源对锂电池进行充电时,首先采集锂电池的当前电压,根据锂电池的当前电压判断锂电池是否在最近一次放电中发生了过度放电。对于确实存在过度放电情况的锂电池,通过控制充电电流的大小,对锂电池进行分阶段的充电控制,避免直接采用较大电流对过放的锂电池进行充电,实现对锂电池的充电保护,解决了现有技术在对锂电池进行充电的过程中存在的容易对锂电池造成损伤的问题。此外,通过对锂电池进行分阶段的充电控制,有利于保持锂电池的电能储备量并延长其使用寿命,减小了锂电池的维护频次,并使供电系统的后备时间得到保障,有利于提高锂电池的供电可靠性。
对附图的简要说明
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的锂电池充放电控制方法的一个具体示例的流程图;
图2是本申请实施例提供的锂电池充放电控制方法的另一个具体示例的流程图;
图3是本申请实施例提供的锂电池放电特性曲线;
图4是本申请实施例提供的锂电池充放电控制装置的一个具体示例的结构示意图;
图5是本申请实施例提供的供电系统的一个具体示例的结构示意图。
发明实施例
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
本申请实施例提供了一种锂电池充放电控制方法,如图1所示,该锂电池充放电控制方法可以包括:
步骤S101:监听锂电池是否接入外部电源,在监听到锂电池接入外部电源时,监测锂电池的当前电压。当锂电池接入外接电源时,外接电源开始对锂电池进行充电。具体的,外接电源可以是市电的三相交流电,通过交直流转换装置向锂电池充电。在外接电源对锂电池进行充电之前,可以首先检测锂电池的当前电压,进而在后续步骤中根据当前电压识别锂电池是否在最近一次放电过程中出现过度放电的情况。
步骤S102:判断当前电压是否小于预设的第一充电电压阈值。当当前电压小于预设的第一充电电压阈值时,执行步骤S103;当当前电压大于或等于预设的第一充电电压阈值时,执行步骤S104。
步骤S103:通过预设的第一恒流电流对锂电池充电。对于存在过度放电情况的锂电池,即当前电压小于预设的第一充电电压阈值的锂电池,通过控制充电电流的大小,对锂电池进行小电流充电控制,避免直接采用较大电流对过放的锂电池进行充电造成损伤,实现对锂电池的充电保护。
此外,在按照第一恒流电流对锂电池进行小电流的恒流恒压充电过程中,可以周期性的检测锂电池的电压信息,进而在后续步骤中根据锂电池的电压信息判 断是否更新锂电池的充电电流。
步骤S104:判断当前电压是否大于或等于预设的第二充电电压阈值。当当前电压大于或等于预设的第二充电电压阈值时,执行步骤S105;当当前电压小于预设的第二充电电压阈值时,返回步骤S103。
步骤S105:通过预设的第二恒流电流对锂电池充电。对于过度放电的锂电池,即当前电压小于预设的第一充电电压阈值的锂电池,在利用较小的第一恒流电流对其进行一段时间的充电之后,锂电池的电压会有所上升,当其电压达到预设的第二充电电压阈值时,可以认为过度放电的锂电池中的过放电能已得到补充。此时,如果将小电流充电更换为较大电流充电,不会出现过放后大电流充电造成的电池损伤。为了提高锂电池的充电效率,可以由较大的第二恒流电流代替较小的第一恒流电流,继续对锂电池进行恒流恒压充电。此外,对于未出现过度放电的锂电池,即当前电压大于或等于预设的第一充电电压阈值的锂电池,可以直接采用较大的第二恒流电流对其进行恒流恒压充电,有利于快速完成正常放电的锂电池的充电过程。
此外,在按照第二恒流电流对锂电池进行大电流的恒流恒压充电过程中,可以周期性的检测锂电池的电压信息,进而在后续步骤中根据锂电池的电压信息判断是否完成对锂电池的充电。
步骤S106:判断当前电压是否大于或等于预设的第三充电电压阈值。当当前电压大于或等于预设的第三充电电压阈值时,执行步骤S107;当当前电压小于预设的第三充电电压阈值时,返回步骤S105。
步骤S107:停止对锂电池充电。通过当前电压与预设的第三充电电压阈值的比较,实时判断锂电池是否已经满足充饱条件,对于处于充饱状态的锂电池,为了不使其长时间处于高压充电模式下,及时结束充电;对于尚未处于充饱状态的锂电池,则持续通过较大的第二恒流电流对其充电,从而保证锂电池的充电量。
可选的,为了实现对锂电池自放电的电能补充,如图2所示,还可以在步骤S107之后增设以下步骤:
步骤S108:判断当前电压是否小于或等于第四充电电压阈值。当当前电压小于 或等于第四充电电压阈值时,执行步骤S109;当当前电压大于预设的第四充电电压阈值时,持续监测当前电压。在本申请实施例中,锂电池的当前电压可以指锂电池接入外部电源并利用外部电源进行充电过程中,其正负极之间的电压差值;锂电池的当前电压还可以指锂电池既没有接入外部电源,也没有接入负载时,其正负极之间的电压差值。在步骤S108中,锂电池的当前电压指的是锂电池自放电状态下,其正负极之间的电压差值。
步骤S109:通过预设的第二恒流电流对锂电池充电,直至锂电池的电压达到预设的第三充电电压阈值时,停止对锂电池充电。当锂电池的当前电压小于或等于预设的第四充电电压阈值时,可以认为锂电池的自放电电能损耗较大,为了保持锂电池中的电能储备,以备将来为负载供电,需要对其进行补充充电。在对锂电池进行补充充电时,由于锂电池当前的自放电电能损耗不大,并未达到过度放电的程度,因此,可以直接只用幅值较大的第二恒流电流对其进行充电,从而快速完成锂电池的电能补充。
在锂电池处于闲置状态下,即锂电池未接入负载并向负载放电时,可以周期性的检测锂电池的电压信息,进而在后续步骤中根据锂电池的电压信息判断是否需要对锂电池的自放电电能损耗进行补充。
本申请实施例提供的锂电池充放电控制方法,在完成锂电池充电后,充分考虑锂电池的自放电,对于长时间自放电造成的电能损耗,及时进行电能补充,从而避免锂电池长期闲置造成电能亏损,有利于提供锂电池的供电可靠性。
可选的,如图2所示,在步骤S107或步骤S109之后还可以增设以下步骤,从而实现对锂电池的放电保护,避免锂电池出现过度放电的情况:
步骤S110:监听锂电池是否接入负载,在监听到锂电池接入负载时,监测锂电池的放电电压信息。在锂电池处于负载放电状态下,即锂电池接入负载并向负载放电时,可以周期性的检测锂电池的放电电压信息,进而在后续步骤中根据其放电电压信息判断锂电池是否出现或即将出现过度放电的情况。在本申请实施例中,放电电压信息指的是锂电池接入负载并向负载放电时其正负极之间的电压差值。
步骤S111:判断放电电压信息是否小于预设的放电电压阈值。当放电电压信息 小于预设的放电电压阈值时,执行步骤S112;当放电电压信息大于或等于预设的放电电压阈值时,返回步骤S110。供电系统(如UPS系统)或者锂电池,都会设定电池放电截止电压,从而为电池放电提供保护。放电截止电压过低,容易造成电池过度放电;放电截止电压过高,则会使供电系统或锂电池的后备时间变短。在步骤S111中,放电电压阈值的作用与放电截止电压类似,但本申请实施例提供的锂电池充放电控制方法中,并不仅仅以放电电压阈值作为锂电池放电控制的唯一标准。
步骤S112:获取锂电池的电压变化速率。图3所示为锂电池放电特性曲线,其横轴表示锂电池已损失的电量。根据锂电池放电特性曲线得知,在放电的大部分期间内,锂电池的电压变化量很小;但在放电初期以及放电末期,锂电池的电压下降的很快,即电压变化速率较大。通过锂电池的放电电压信息以及电压变化速率,能够识别锂电池的放电状态。在一具体实施方式中,可以通过以下几个子步骤实现步骤S112的过程:
步骤S1121:获取锂电池的两个放电电压信息,以及两个放电电压信息分别对应的时间信息。
步骤S1122:根据两个放电电压信息和时间信息计算锂电池的电压变化速率。在实际应用中,可以通过公式(1)计算锂电池的电压变化速率:
Figure PCTCN2019108614-appb-000002
其中,K表示锂电池的电压变化速率;ΔV=|V 1-V 2|,V 1和V 2分别表示两个放电电压信息; Δt=t 2-t 1,t 1和t 2分别为两个放电电压信息对应的时间信息。
步骤S113:判断锂电池的电压变化速率是否大于或等于预设的速率阈值。当锂电池的电压变化速率大于或等于预设的速率阈值时,执行步骤S114;当锂电池的电压变化速率小于预设的速率阈值时,返回步骤S112。
步骤S114:停止锂电池向负载放电。当锂电池的放电电压小于预设的放电电压阈值,且电压变化速率大于或等于预设的速率阈值时,可以认为锂电池进入或即将进入快速下降阶段,此时,应当及时切除锂电池,即停止锂电池向负载继续放电,从而防止锂电池过放。
本申请实施例提供的锂电池充放电控制方法,利用锂电池在放电初期和放电末期电压下降较快的特性,通过电压和电压变化速率识别锂电池是否进入放电末期,并及时切除进入放电末期的锂电池,避免其过度放电,从而实现对锂电池的放电保护。
通过连续采集锂电池的两个放电电压信息及对应的时间信息,计算锂电池的电压变化速率。由于放电电压信息和时间信息均为常规参数,具有采集速度快和精度可控的优点,能够方便、快捷地完成数据采集过程。通过公式并利用锂电池的两个连续的放电电压信息及对应的时间信息,能够方便、快捷地完成锂电池电压变化速率的计算。
本申请实施例提供的锂电池充放电控制方法,在利用外接电源对锂电池进行充电时,首先采集锂电池的当前电压,根据锂电池的当前电压判断锂电池是否在最近一次放电中发生了过度放电。通过对锂电池进行分阶段的充电控制,有利于保持锂电池的电能储备量并延长其使用寿命,减小了锂电池的维护频次,并使供电系统的后备时间得到保障,有利于提高锂电池的供电可靠性。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例还提供了一种锂电池充放电控制装置,如图4所示,该锂电池充放电控制装置可以包括:电压采集单元401和充放电控制单元402。
其中,电压采集单元401用于监听锂电池是否接入外部电源,在监听到锂电池接入外部电源时,监测锂电池的当前电压;其具体的工作过程可参考上述方法实施例中步骤S101所述。
在当前电压小于第一充电电压阈值时,充放电控制单元402用于通过预设的第一恒流电流对锂电池充电。在当前电压大于或等于第二充电电压阈值时,充放电控制单元402还用于通过预设的第二恒流电流对所述锂电池充电;其中,所述第二充电电压阈值大于所述第一充电电压阈值,所述第二恒流电流大于所述第一恒流电流。在当前电压大于或等于预设的第三充电电压阈值时,第三充电电压阈值大于第二充电电压阈值,充放电控制单元402还用于停止对所述锂电池充电。充放电控制单元402,还用于当所述当前电压大于或等于第一充电电压阈值,且所述当前电压小于第二充电电压阈值时,通过预设的第二恒流电流对所述锂电池充电。充放电控制单元402,还用于当所述当前电压小于预设的第二充电电压阈值时,重复执行所述通过预设的第一恒流电流对所述锂电池充电的步骤,直至所述当前电压大于或等于预设的第二充电电压阈值。充放电控制单元402,还用于当所述当前电压小于预设的第三充电电压阈值时,重复执行所述通过预设的第二恒流电流对所述锂电池充电的步骤,直至所述当前电压大于或等于预设的第三充电电压阈值。充放电控制单元402的具体工作过程可参考上述方法实施例中步骤S102至步骤S107所述。
可选的,充放电控制单元402还用于在当前电压小于或等于第四充电电压阈值时,通过第二恒流电流对锂电池充电,直至锂电池的当前电压达到第三充电电压阈值,其中,所述第四充电电压阈值小于所述第三充电电压阈值。其具体的工作过程可参考上述方法实施例中步骤S108至步骤S109所述。
此外,在一具体实施方式中,电压采集单元401还可以用于监听锂电池是否接 入负载,在监听到锂电池接入负载时,监测锂电池的放电电压;其具体的工作过程可参考上述方法实施例中步骤S110所述。充放电控制单元402还可以用于在放电电压小于放电电压阈值时获取锂电池的电压变化速率,并在电压变化速率大于或等于预设速率阈值时,停止向负载放电;其具体的工作过程可参考上述方法实施例中步骤S111至步骤S114所述。
可选的,充放电控制单元402还可以具体用于获取所述锂电池的两个放电电压信息,以及所述两个放电电压信息分别对应的时间信息;根据所述两个放电电压信息和所述时间信息计算所述锂电池的电压变化速率。可以通过
Figure PCTCN2019108614-appb-000003
计算所述锂电池的电压变化速率;其中,K表示所述锂电池的电压变化速率;ΔV=|V 1-V 2|,V 1和V 2分别表示所述两个放电电压信息;Δt=t 2-t 1,t 1和t 2分别为所述两个放电电压信息对应的时间信息。
本申请实施例还提供了一种供电系统,如图5所示,该供电系统可以包括处理器501、存储器502和锂电池503。其中,处理器501、存储器502和锂电池503通信连接。具体的,处理器501和存储器502可以通过总线或者其他方式连接,图5 中以通过总线连接为例。
处理器501可以为中央处理器(Central Processing Unit,CPU)。处理器501还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器502作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本申请实施例中的锂电池充放电控制方法对应的程序指令/模块(例如,图4所示的电压采集单元401和充放电控制单元402)。处理器501通过运行存储在存储器502中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的锂电池充放电控制方法。
存储器502可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器501所创建的数据等。此外,存储器502可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器502可选包括相对于处理器501远程设置的存储器,这些远程存储器可以通过网络连接至处理器501。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器502中,当被所述处理器501执行时,执行如图1至图2所示实施例中的锂电池充放电控制方法。
上述终端设备具体细节可以对应参阅图1至图2所示的实施例中对应的相关描述和效果进行理解,此处不再赘述。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash  Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种锂电池充放电控制方法,其特征在于,包括:
    监听锂电池是否接入外部电源,在监听到锂电池接入外部电源时,监测所述锂电池的当前电压;
    在所述当前电压小于第一充电电压阈值时,通过预设的第一恒流电流对所述锂电池充电;
    在所述当前电压大于或等于第二充电电压阈值时,通过预设的第二恒流电流对所述锂电池充电;其中,所述第二充电电压阈值大于所述第一充电电压阈值,所述第二恒流电流大于所述第一恒流电流;
    在所述当前电压大于或等于预设的第三充电电压阈值时,停止对所述锂电池充电;所述第三充电电压阈值大于所述第二充电电压阈值。
  2. 如权利要求1所述的锂电池充放电控制方法,其特征在于,所述锂电池充电控制方法还包括:
    当所述当前电压大于或等于第一充电电压阈值,且所述当前电压小于第二充电电压阈值时,通过预设的第二恒流电流对所述锂电池充电。
  3. 如权利要求1所述的锂电池充放电控制方法,其特征在于,所述锂电池充电控制方法还包括:
    当所述当前电压小于预设的第二充电电压阈值时,重复执行所述通过预设的第一恒流电流对所述锂电池充电的步骤,直至所述当前电压大于或等于预设的第二充电电压阈值。
  4. 如权利要求1所述的锂电池充放电控制方法,其特征在于,所述锂电池充电控制方法还包括:
    当所述当前电压小于预设的第三充电电压阈值时,重复执行所述通过预设的第二恒流电流对所述锂电池充电的步骤,直至所述当前电压大于或等于预设的第三充电电压阈值。
  5. 如权利要求1至4任一项所述的锂电池充放电控制方法,其特征在于,在所述停止对所述锂电池充电的步骤之后,所述锂电池充放电控制方法还包括:
    在所述当前电压小于或等于第四充电电压阈值时,通过第二恒流电流对所述锂电池充电,直至所述锂电池的当前电压达到第三充电电压阈值;其中,所述第四充电电压阈值小于所述第三充电电压阈值。
  6. 如权利要求5所述的锂电池充放电控制方法,其特征在于,所述锂电池充放电控制方法还包括:
    监听所述锂电池是否接入负载,在监听到所述锂电池接入负载时,监测所述锂电池的放电电压信息;
    当所述放电电压信息小于预设的放电电压阈值时,获取所述锂电池的电压变化速率;
    当所述锂电池的电压变化速率大于或等于预设的速率阈值时,停止向所述负载放电。
  7. 如权利要求6所述的锂电池充放电控制方法,其特征在于,所述获取所述锂电池的电压变化速率,包括:
    获取所述锂电池的两个放电电压信息,以及所述两个放电电压信息分别对应的时间信息;
    根据所述两个放电电压信息和所述时间信息计算所述锂电池的电压变化速率。
  8. 如权利要求7所述的锂电池充放电控制方法,其特征在于,通过
    Figure PCTCN2019108614-appb-100001
    计算所述锂电池的电压变化速率;
    其中,K表示所述锂电池的电压变化速率;
    ΔV=|V 1-V 2|
    V 1
    V 2
    分别表示所述两个放电电压信息;
    Δt=t 2-t 1
    t 1
    t 2
    分别为所述两个放电电压信息对应的时间信息。
  9. 一种锂电池充放电控制装置,其特征在于,包括:
    电压采集单元,用于监听锂电池是否接入外部电源,在监听到锂电池接入外部电源时,监测所述锂电池的当前电压;
    充放电控制单元,在所述当前电压小于第一充电电压阈值时,用于通过预设的第一恒流电流对所述锂电池充电;
    在所述当前电压大于或等于第二充电电压阈值时,所述充放电控制单元还用于通过预设的第二恒流电流对所述锂电池充电;其中,所述第二充电电压阈值大于所述第一充电电压阈值,所述第二恒流电流大于所述第一恒流电流;
    在所述当前电压大于或等于预设的第三充电电压阈值时,所述充放电控制单元还用于停止对所述锂电池充电;所述第三充电电压阈值大于所述第二充电电压阈值。
  10. 一种供电系统,其特征在于,包括:
    锂电池、存储器和处理器;
    所述锂电池、所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指 令,从而执行如权利要求1至8任一项所述的锂电池充放电控制方法。
PCT/CN2019/108614 2019-04-01 2019-09-27 锂电池充放电控制方法及供电系统 WO2020199539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910257306.8A CN109980732A (zh) 2019-04-01 2019-04-01 锂电池充放电控制方法及供电系统
CN201910257306.8 2019-04-01

Publications (1)

Publication Number Publication Date
WO2020199539A1 true WO2020199539A1 (zh) 2020-10-08

Family

ID=67082092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108614 WO2020199539A1 (zh) 2019-04-01 2019-09-27 锂电池充放电控制方法及供电系统

Country Status (2)

Country Link
CN (1) CN109980732A (zh)
WO (1) WO2020199539A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980732A (zh) * 2019-04-01 2019-07-05 漳州科华技术有限责任公司 锂电池充放电控制方法及供电系统
JP7201632B2 (ja) * 2020-03-03 2023-01-10 トヨタ自動車株式会社 電池システム及びその制御方法
CN111446515B (zh) * 2020-04-02 2022-03-25 联想(北京)有限公司 一种充电方法、装置和电子设备
CN112803524B (zh) * 2020-12-31 2023-04-28 科华恒盛股份有限公司 电池充电控制方法、装置及终端
CN114696431B (zh) * 2022-05-09 2022-09-30 上海玫克生储能科技有限公司 储能电站的充放效率比调节方法、存储介质及调节装置
CN116742666B (zh) * 2023-08-10 2023-10-31 山东赛马力发电设备有限公司 储能系统的充放电控制方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078716A (zh) * 2014-07-14 2014-10-01 东莞市西奥计算机智能科技有限公司 一种电池充电方法及处理器
CN109980732A (zh) * 2019-04-01 2019-07-05 漳州科华技术有限责任公司 锂电池充放电控制方法及供电系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA952456B (en) * 1994-03-28 1996-03-29 John York Seymour A method and apparatus for processing batteries
CN101604851B (zh) * 2008-06-13 2012-11-21 鸿富锦精密工业(深圳)有限公司 蓄电池lvd数值的监控系统及方法
CN104410116A (zh) * 2014-11-18 2015-03-11 深圳市中兴移动通信有限公司 快速充电装置和快速充电方法
CN107171384A (zh) * 2017-05-31 2017-09-15 上海青橙实业有限公司 电池的充电控制方法及装置
CN208334596U (zh) * 2018-04-24 2019-01-04 唐山松下产业机器有限公司 电池监测装置和电池模组

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078716A (zh) * 2014-07-14 2014-10-01 东莞市西奥计算机智能科技有限公司 一种电池充电方法及处理器
CN109980732A (zh) * 2019-04-01 2019-07-05 漳州科华技术有限责任公司 锂电池充放电控制方法及供电系统

Also Published As

Publication number Publication date
CN109980732A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020199539A1 (zh) 锂电池充放电控制方法及供电系统
US10345388B2 (en) Method for screening lithium ion battery
CN103928974B (zh) 一种双电池切换、充电的方法
US11159039B2 (en) Apparatus and method for battery charging with lithium plating detection and battery degradation detection and separation
WO2018082288A1 (zh) 一种修复电池的方法及装置
US20110267007A1 (en) Discharge method for a battery pack
CN108282007B (zh) 通信电池模块充电限流策略
CN102005794B (zh) 一种电池组充电管理系统的管理方法
CN104953684A (zh) 一种电池管理系统的动态均衡电路及其动态均衡方法
WO2021077273A1 (zh) 充电方法、电子装置以及存储介质
CN204046213U (zh) 一种充放电同口控制电路
WO2019019561A1 (zh) 一种服务器供电系统的检测维护方法和检测维护装置
CN113745673A (zh) 电池簇上电方法与系统、电池管理系统与电池簇
WO2017152798A1 (zh) 一种实现油机和电池的供电控制方法及装置
CN202405763U (zh) 过放电保护电路及使用该电路的电池
CN103683266B (zh) 充电电池保护电路
TWI631790B (zh) 充電電流調節方法及行動裝置
WO2021077271A1 (zh) 充电方法、电子装置以及存储介质
KR20190054513A (ko) 배터리 충전 방법 및 배터리 충전 장치
CN201994718U (zh) 一种智能供电、充电电路
CN101312296B (zh) 电池模块的充电方法
CN208209602U (zh) 一种新能源智能充电系统
CN114552711A (zh) 一种电芯控制方法、装置和bms设备
CN201854071U (zh) 一种电池组充电管理系统
CN112768793B (zh) 一种电池组主动均衡补偿方法、装置、系统及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922802

Country of ref document: EP

Kind code of ref document: A1