WO2020199459A1 - 一种发光装置 - Google Patents

一种发光装置 Download PDF

Info

Publication number
WO2020199459A1
WO2020199459A1 PCT/CN2019/101560 CN2019101560W WO2020199459A1 WO 2020199459 A1 WO2020199459 A1 WO 2020199459A1 CN 2019101560 W CN2019101560 W CN 2019101560W WO 2020199459 A1 WO2020199459 A1 WO 2020199459A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
optically transparent
crystal
transparent body
Prior art date
Application number
PCT/CN2019/101560
Other languages
English (en)
French (fr)
Inventor
贝尔科姆赫尔曼•范
胡谱金
Original Assignee
阳睐(上海)光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳睐(上海)光电科技有限公司 filed Critical 阳睐(上海)光电科技有限公司
Publication of WO2020199459A1 publication Critical patent/WO2020199459A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention mainly relates to the field of solid-state light emitting, and in particular to a light emitting device.
  • the mainstream stage entertainment lighting equipment is computer lights, and there are three main categories: beam lights, pattern lights, and dyeing lights.
  • multifunctional computer lights such as beam, pattern and dyeing three-in-one computer lights.
  • These lamps originally used halogen lamps or gas discharge lamps as light sources (including ordinary gas discharge lamps and ultra-high pressure mercury lamps).
  • the luminous efficiency of halogen lamps was very low and the working life was very short. They have been gradually replaced by other light sources.
  • the color rendering is very good, and it is still used in some lamps that require high color rendering index.
  • the ultra-high pressure mercury lamp is a special gas discharge lamp with very small optical extension, but the brightness uniformity in its light-emitting area is poor.
  • the ultra-high pressure mercury lamp is mostly used in the beam lamp, and there are also some multi-function computer lights (such as beam, pattern two-in-one computer light or beam, pattern, dyeing three-in-one A computer lamp) uses an ultra-high pressure mercury lamp, but its pattern and dyeing effect is not good.
  • the ultra-high pressure mercury lamp has very high requirements for its working temperature. Therefore, the lamp manufacturer needs to design a relatively complicated heat dissipation design and act as a gas discharge One of the lamps, the ultra-high pressure mercury lamp has a shorter working life.
  • optical extension of ordinary gas discharge lamps is larger than that of ultra-high pressure mercury lamps, but it can achieve greater power, and its brightness uniformity is better than that of ultra-high pressure mercury lamps. Therefore, it is mostly used in professional pattern lights and dyeing lights, but also in some multi-function computer lights (such as three-in-one computer lights).
  • LED light source As a green, pollution-free, clean and energy-saving light source, LED light source has been widely used in the field of stage entertainment lighting. It has a long working life, high luminous efficiency and excellent brightness uniformity.
  • the luminous system composed of LEDs has an optical extension and luminescence. The area is very large. High-power LED systems often require a large number of LEDs, and their optical extension and light-emitting area will also be greatly increased.
  • the current light-emitting system composed of LEDs cannot meet the requirements of beam lamps for small optical extensions.
  • the light source or system can only be applied to pattern lights and dyeing lights. Only a few low-power, low-brightness beam lights use LEDs as light sources, but their brightness and efficiency cannot meet the needs of most applications, so beam lights so far
  • the mainstream light source is still ultra-high pressure mercury lamps.
  • the technical problem to be solved by the present invention is to provide a light emitting device to reduce the amount of optical expansion and improve the uniformity of light emission.
  • the present invention provides a light emitting device, which comprises: a light emitting crystal element, an optically transparent element arranged side by side with the light emitting crystal element, a first solid-state light source, a second solid-state light source, and light Extractor;
  • the light-emitting crystal element has a front face of a crystal element, a back face of a crystal element
  • the optically transparent element has a front face of a transparent element, a back face of a transparent element
  • the first solid-state light source is arranged in the optically transparent
  • the light extractor is provided at the front face of the crystal element of the light-emitting crystal element, and the light extractor partially covers the optically transparent body element.
  • the light-emitting crystal element is composed of a single light-emitting crystal or a plurality of light-emitting crystals placed sequentially, and the optically transparent element is composed of an optically transparent body or is composed of an optically transparent body and the The light-emitting crystals are arranged in sequence; the second solid-state light source is arranged on the side of the light-emitting crystal and is used to output excitation light to the light-emitting crystal.
  • the light extractor is an optical element.
  • the light-emitting crystal and the optically transparent body have the same length or different lengths.
  • the first solid-state light source and the rear surface of the transparent body element of the optically transparent body element is provided with optical parts for condensing light or optics for collimating and condensing light. Components.
  • the device further includes a light-reflecting surface, the light-reflecting surface is provided at the rear surface of the crystal element of the light-emitting crystal element.
  • a third solid-state light source is provided on the side of the optically transparent body.
  • a supplementary light source is further included, and the supplementary light source is provided at the rear face of the crystal element of the light-emitting crystal element.
  • a third solid-state light source is provided on the side of the optically transparent body.
  • it further includes a reflective surface and a supplementary light source, and the reflective surface and the supplementary light source are provided at the rear surface of the crystal element of the light-emitting crystal element.
  • a third solid-state light source is provided on the side of the optically transparent body.
  • the present invention Compared with the prior art, the present invention has the following advantages: the present invention provides a light-emitting device, which forms a white light or color light system by combining the light-emitting crystal and the spectrum emitted by the solid-state light source with various optical components.
  • the increase in the number of light sources will not greatly increase the optical expansion, so as to achieve the effect of high power and small optical expansion.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a first embodiment of a light-emitting device of the present invention
  • FIG. 2 is a schematic diagram of another cross-sectional structure of the first embodiment of a light-emitting device of the present invention.
  • FIG. 3 is another schematic cross-sectional structure diagram of the first embodiment of a light-emitting device of the present invention.
  • FIG. 4 is another schematic cross-sectional structure diagram of the first embodiment of a light-emitting device of the present invention.
  • FIG. 5 is another schematic cross-sectional structure diagram of the first embodiment of a light-emitting device of the present invention.
  • FIG. 6 is another schematic cross-sectional structure diagram of the first embodiment of a light-emitting device of the present invention.
  • FIG. 7 is a schematic diagram of another cross-sectional structure of the first embodiment of a light-emitting device of the present invention.
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a second embodiment of a light-emitting device of the present invention.
  • FIG. 9 is a schematic diagram of a cross-sectional structure of a third embodiment of a light-emitting device of the present invention.
  • FIG. 10 is another schematic cross-sectional structure diagram of the third embodiment of a light-emitting device of the present invention.
  • FIG. 11 is a schematic diagram of a cross-sectional structure of a fourth embodiment of a light-emitting device of the present invention.
  • FIG. 12 is another schematic cross-sectional structure diagram of the fourth embodiment of a light-emitting device of the present invention.
  • FIG. 13 is a schematic cross-sectional structure diagram of a fifth embodiment of a light-emitting device of the present invention.
  • FIG. 14 is a schematic cross-sectional structure diagram of a sixth embodiment of a light-emitting device of the present invention.
  • the reference signs are as follows: light-emitting crystal 101, optically transparent body 102, first solid-state light source 103, second solid-state light source 104, light extractor 105, light-emitting crystal element 201, optically transparent body element 202, optical part 203, reflective surface 301, a third solid-state light source 302, and a supplementary light source 401.
  • spatial relation words such as “below”, “below”, “below”, “below”, “above”, “above”, etc. may be used herein to describe an element shown in the drawings. Or the relationship between features and other elements or features. It will be understood that these spatial relationship terms are intended to encompass directions other than the directions depicted in the drawings of the device in use or operation. For example, if the device in the drawings is turned over, the orientation of elements described as “below” or “beneath” or “beneath” other elements or features will be changed to be “above” the other elements or features. Thus, the exemplary words “below” and “below” can encompass both directions of up and down.
  • the device may also have other orientations (rotated by 90 degrees or in other directions), so the spatial relationship descriptors used here should be explained accordingly.
  • a layer is referred to as being "between" two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
  • the described structure where the first feature is "on" the second feature may include an embodiment in which the first and second features are formed in direct contact, or may include other features formed on the first and second features.
  • the embodiment between the second feature, so that the first and second features may not be in direct contact.
  • a component when a component is referred to as being “on another component”, “connected to another component”, “coupled to another component” or “contacting another component”, it can be directly connected to another component. On, connected to or coupled to, or in contact with the other component, or an intervening component may be present. In contrast, when a component is referred to as being “directly on,” “directly connected to,” “directly coupled to,” or “directly in contact with” another component, there is no intervening component. Likewise, when the first component is referred to as “electrical contact” or “electrically coupled to” the second component, there is an electrical path between the first component and the second component that allows current to flow. The electrical path may include capacitors, coupled inductors, and/or other components that allow current to flow, even without direct contact between conductive components.
  • the first embodiment of the present invention provides a light-emitting device, which forms a white light or color light system by combining the light-emitting crystal and the spectrum emitted by the solid-state light source with various optical components, which has small optical expansion, good uniformity, and luminescence.
  • High efficiency, long life, simple heat dissipation design, etc. overcome the shortcomings of large optical expansion of general LEDs, and with the increase of the number of solid-state light sources, the optical expansion will not increase significantly, so as to achieve high power and small optical expansion
  • the effect can be applied to systems that require high light intensity or small optical expansion, such as entertainment lighting systems, projection systems, automotive lighting systems, medical lighting systems, search lighting systems, field lighting systems, marine lighting systems, and portable lighting System etc.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a first embodiment of a light-emitting device of the present invention.
  • the light-emitting device includes a light-emitting crystal element 201, an optically transparent element 202, a first solid-state light source 103, a second solid-state light source 104 and a light extractor 105.
  • the light-emitting crystal element 201 has a front face of the crystal element and a rear face of the crystal element.
  • the optically transparent element 202 has a front surface of the transparent element and a rear surface of the transparent element.
  • the first solid-state light source 103 is located at the rear surface of the transparent optical element 202
  • the light extractor 105 is located at the front surface of the crystal element of the light-emitting crystal element 201
  • the light extractor 105 is partially covered on the optical transparent element 202 at the front face of the transparent body element.
  • the light emitted by the first solid-state light source 103 is directed to the light extractor 105 through the optically transparent element 202, and the light extractor 105 extracts the light emitted from the light-emitting crystal element 201 and the optically transparent element 202 and mixes, mixes colors, and concentrates the light. Projected.
  • the light-emitting crystal element 201 can be composed of a single light-emitting crystal 101 or a plurality of light-emitting crystals 101 arranged in sequence, and the optically transparent element 202 can be composed of an optically transparent body 102 or an optically transparent body 102 and a light-emitting crystal 101 arranged in sequence .
  • the light-emitting crystal element 201 is composed of a single light-emitting crystal 101
  • the optically transparent body element 202 is composed of a single optically transparent body 102.
  • the light-emitting crystal element 201 may also be composed of a plurality of light-emitting crystals 101 arranged in sequence
  • the optically transparent element 202 may also be composed of a plurality of optically transparent bodies 102 arranged in sequence, or may be composed of an optically transparent body 102 and a light-emitting body.
  • the crystals 101 are arranged in order.
  • the light-emitting crystal 101 and the optically transparent body 102 may both be elongated cylinders.
  • the light-emitting crystal 101 of the elongated cylinder may have a front face of the crystal, a rear face of the crystal, and several crystal side faces.
  • the optically transparent body 102 of the elongated cylinder may have The front face of the transparent body, the rear face of the transparent body, and several sides of the transparent body.
  • the second solid-state light source 104 is arranged on the side surface of the light-emitting crystal 101 and is used to output excitation light to the light-emitting crystal 101.
  • the second solid-state light source 104 outputs excitation light in a specific wavelength range to the crystal side of the light-emitting crystal 101. After the light-emitting crystal 101 absorbs the excitation light in the specific wavelength range, it emits light in a different wavelength range. At the same time, due to the refraction of the light-emitting crystal 101 The rate is relatively high, most of the light propagates in the light-emitting crystal 101 in a way of total reflection, and is finally output from the front face of the crystal and the back face of the crystal.
  • the shape of the light-emitting crystal 101 is set to a long columnar shape, and more second solid-state light sources 104 can be placed on the crystal side of the light-emitting crystal 101.
  • the optical extension of these second solid-state light sources 104 is much larger than that at the front face of the crystal.
  • Optical expansion which converts the very large optical expansion originally composed of a large number of solid-state light sources into a smaller optical expansion.
  • the first solid-state light source 103 and the second solid-state light source 104 are preferably LED light sources or laser light sources.
  • the light extractor 105 used may be an optical element.
  • the optical element is preferably a light guide rod, a condenser or a lens.
  • the light-emitting crystal 101 and the optically transparent body 102 may be of equal length or unequal length.
  • the light-emitting device includes a single light-emitting crystal element 201 and a single optically transparent element 202, and the optically transparent element 202 is placed side by side under the light-emitting crystal element 201.
  • the light-emitting crystal element 201 is composed of a single light-emitting crystal 101
  • the optically transparent body element 202 is composed of a single optically transparent body 102.
  • the side surface of the light-emitting crystal 101 is provided with a second solid-state light source 104 for exciting the light-emitting crystal 101.
  • a first solid-state light source 103 is provided on the rear surface of the transparent body of the optically transparent body 102. The light emitted by the first solid-state light source 103 is directed to the light extractor 105 through the optically transparent body 102, and the two kinds of light are extracted and output by the light extractor 105 .
  • the light-emitting crystal 101 absorbs light with a wavelength of 320nm-520nm emitted by the second solid-state light source 104, and emits light with a wavelength greater than 480nm inside, and part of the light is directed toward the light extractor 105 by total reflection inside the light-emitting crystal 101.
  • the first solid-state light source 103 emits light with a dominant wavelength of 455 nm, and these lights are also emitted to the light extractor 105 through the optically transparent element 202, and finally these two lights are extracted and output by the light extractor 105.
  • This embodiment of the present invention provides a light-emitting device, which forms a white light or color light system by combining the light-emitting crystal and the spectrum emitted by the solid-state light source with various optical components. As the number of solid-state light sources increases, its optical expansion is not Will greatly increase, so as to achieve the effect of high power and small optical expansion.
  • FIG. 2 is a schematic diagram of another cross-sectional structure of the first embodiment of a light-emitting device of the present invention.
  • the light-emitting device includes a single light-emitting crystal element 201 and a single optically transparent element 202, and the optically transparent element 202 is placed side by side under the light-emitting crystal element 201.
  • the light-emitting crystal element 201 is composed of two light-emitting crystals 101 arranged in sequence, and the optically transparent body element 202 is composed of a single optically transparent body 102.
  • the side surface of the light-emitting crystal 101 is provided with a second solid-state light source 104 for exciting the light-emitting crystal 101.
  • a first solid-state light source 103 is provided on the rear surface of the transparent body of the optically transparent body 102.
  • the light emitted by the first solid-state light source 103 is directed to the light extractor 105 through the optically transparent body 102, and the two kinds of light are extracted and output by the light extractor 105 .
  • the light-emitting device includes a first solid-state light source 103 and a plurality of light-emitting crystals 101.
  • the plurality of light-emitting crystals 101 can emit light in a plurality of different wavelength ranges, and the extractor can extract and output light in different wavelength ranges accordingly. Therefore, the color gamut of the light-emitting device is improved, and the light-emitting effect of the light-emitting device is enriched.
  • the light-emitting crystal 101 on the left side of the light-emitting crystal element 201 absorbs light with a wavelength of 320nm-520nm emitted by the second solid-state light source 104 on its crystal side, and emits light with a wavelength of 600nm-700nm inside it.
  • the light-emitting crystal 101 on the right side of the light-emitting crystal element 201 absorbs light with a wavelength of 320nm-520nm emitted by the second solid-state light source 104 on its crystal side, and emits light with a wavelength of 460nm-700nm inside it.
  • Some of these lights are directed to the light extractor 105 through total reflection inside the light-emitting crystal 101.
  • the first solid-state light source 103 emits light with a dominant wavelength of 455nm, and these lights are also directed to the light extractor 105 through the optically transparent element 202. Finally, these types of light are extracted by the light extractor 105 and output.
  • the light-emitting device includes a single light-emitting crystal element 201 and two optically transparent elements 202, and the two optically transparent elements 202 are placed side by side under the light-emitting crystal element 201.
  • the light-emitting crystal element 201 is composed of a single light-emitting crystal 101
  • the optically transparent body element 202 is composed of a single optically transparent body 102.
  • the side surface of the light-emitting crystal 101 is provided with a second solid-state light source 104 for exciting the light-emitting crystal 101.
  • the two optically transparent bodies 102 are provided with a first solid-state light source 103 at the rear surface of the transparent body.
  • the light emitted by the first solid-state light source 103 is directed to the light extractor 105 through the optically transparent body 102, and the two kinds of light are emitted by the light extractor 105. Extract and output.
  • the light-emitting device includes a plurality of first solid-state light sources 103, and the plurality of first solid-state light sources 103 can emit a plurality of different wavelength ranges of light, and the extractor can extract and output these different wavelength ranges of light accordingly.
  • the color gamut of the light-emitting device is improved, and the light-emitting effect of the light-emitting device is enriched.
  • the uppermost light-emitting crystal 101 absorbs light with a wavelength of 320nm-520nm emitted by the second solid-state light source 104 on its crystal side, and emits light with a wavelength of 460nm-700nm inside it. Some of these lights are directed to the light extractor 105 through total reflection inside the light-emitting crystal 101.
  • the first solid-state light source 103 at the rear surface of the transparent body element of the intermediate layer of the optically transparent body element 202 emits light with a dominant wavelength of 455 nm, and these lights are also emitted to the light extractor 105 through the optically transparent body element 202.
  • the first solid-state light source 103 at the rear surface of the transparent body element of the lowermost optical transparent body element 202 emits light with a dominant wavelength of 630 nm, and these lights are also directed to the light extractor 105 through the optical transparent body element 202. Finally, these types of light are extracted by the light extractor 105 and output.
  • the light-emitting device includes a single light-emitting crystal element 201 and two optically transparent elements 202, and the two optically transparent elements 202 are placed side by side under the light-emitting crystal element 201.
  • the light-emitting crystal element 201 is composed of two light-emitting crystals 101 arranged in sequence, and the optically transparent body element 202 is composed of a single optically transparent body 102.
  • the side surface of the light-emitting crystal 101 is provided with a second solid-state light source 104 for exciting the light-emitting crystal 101.
  • the two optically transparent bodies 102 are provided with a first solid-state light source 103 at the rear surface of the transparent body.
  • the light emitted by the first solid-state light source 103 is directed to the light extractor 105 through the optically transparent body 102, and the two kinds of light are emitted by the light extractor 105. Extract and output.
  • the light-emitting crystal element is composed of multiple light-emitting crystals 101, and the multiple light-emitting crystals 101 can generate light of multiple different wavelength ranges.
  • the light-emitting device includes multiple first solid-state light sources 103, and multiple first solid-state light sources 103. It can emit light of multiple different wavelength ranges, and the extractor can extract and output the light of these different wavelength ranges accordingly, thereby further improving the color gamut of the light emitting device and enriching the light emitting effect of the light emitting device.
  • the light-emitting crystal 101 on the left side of the uppermost light-emitting crystal element 201 absorbs light with a wavelength of 320nm-520nm emitted by the second solid-state light source 104 on the crystal side, and emits light with a wavelength greater than 480nm inside.
  • the light-emitting crystal 101 on the right side of the uppermost light-emitting crystal element 201 absorbs light with a wavelength of 320nm-400nm emitted by the second solid-state light source 104 on the crystal side, and emits light with a wavelength of 350nm-550nm inside. Some of these lights are directed to the light extractor 105 through total reflection inside the light-emitting crystal 101.
  • the first solid-state light source 103 at the rear surface of the transparent body element of the intermediate layer of the optically transparent body element 202 emits light with a dominant wavelength of 630 nm, and these lights are also emitted to the light extractor 105 through the optically transparent body element 202.
  • the first solid-state light source 103 at the rear surface of the transparent body element of the lowermost optically transparent body element 202 emits light with a dominant wavelength of 455 nm, and these lights are also emitted to the light extractor 105 through the optically transparent body element 202. Finally, these types of light are extracted by the light extractor 105 and output.
  • FIG. 5 is another schematic cross-sectional structure diagram of the first embodiment of a light-emitting device of the present invention.
  • the light-emitting device includes a single light-emitting crystal element 201 and a single optically transparent element 202, and the optically transparent element 202 is placed side by side under the light-emitting crystal element 201.
  • the light-emitting crystal element 201 is composed of a single light-emitting crystal 101
  • the optically transparent body element 202 is composed of a single optically transparent body 102 and a single light-emitting crystal 101 arranged in sequence.
  • the side surface of the light-emitting crystal 101 is provided with a second solid-state light source 104 for exciting the light-emitting crystal 101.
  • a first solid-state light source 103 is provided on the rear surface of the transparent body of the optically transparent body 102.
  • the light emitted by the first solid-state light source 103 is directed to the light extractor 105 through the optically transparent body 102, and the two kinds of light are extracted and output by the light extractor 105 .
  • the optically transparent element 202 is composed of a single optically transparent body 102 and a single light-emitting crystal 101 arranged in sequence.
  • the light-emitting crystal can generate more light in different wavelength ranges, and the extractor can extract and output more different The light in the wavelength range further improves the color gamut of the light-emitting device and enriches the light-emitting effect of the light-emitting device.
  • the light-emitting crystal 101 in the upper light-emitting crystal element 201 absorbs light with a wavelength of 320nm-520nm emitted by the second solid-state light source 104 on the side of the crystal, and emits light with a wavelength of 460nm-700nm inside, and part of the light passes through
  • the total reflection inside the light-emitting crystal 101 is directed toward the light extractor 105.
  • the light-emitting crystal 101 in the lower optically transparent element 202 absorbs light with a wavelength of 320nm-400nm emitted by the second solid-state light source 104 on the side of the crystal, and emits light with a wavelength of 350nm-550nm inside, and part of the light passes through the light.
  • the total reflection inside the crystal 101 is directed to the light extractor 105.
  • the first solid-state light source 103 at the rear surface of the transparent body element of the lower optically transparent body element 202 emits light with a dominant wavelength of 630 nm, and these lights are emitted to the light-emitting crystal 101 through the optically transparent body 102.
  • due to the light with a dominant wavelength of 630 nm The light is not absorbed by the light-emitting crystal 101, so these lights can be directed to the light extractor 105 through the light-emitting crystal 101. Finally, these types of light are extracted by the light extractor 105 and output.
  • FIG. 6 is another schematic cross-sectional structure diagram of the first embodiment of a light-emitting device of the present invention.
  • the light-emitting device includes a single light-emitting crystal element 201 and a single optically transparent element 202, and the optically transparent element 202 is placed side by side under the light-emitting crystal element 201.
  • the light-emitting crystal element 201 is composed of two light-emitting crystals 101 arranged in sequence
  • the optically transparent body element 202 is composed of a single optically transparent body 102 and a single light-emitting crystal 101 arranged in sequence.
  • the side surface of the light-emitting crystal 101 is provided with a second solid-state light source 104 for exciting the light-emitting crystal 101.
  • a first solid-state light source 103 is provided on the rear surface of the transparent body of the optically transparent body 102.
  • the light emitted by the first solid-state light source 103 is directed to the light extractor 105 through the optically transparent body 102, and the two kinds of light are extracted and output by the light extractor 105 .
  • the light-emitting crystal element is composed of a plurality of light-emitting crystals 101, and the plurality of light-emitting crystals 101 can generate light in a plurality of different wavelength ranges, and the extractor can extract and combine light accordingly. More light of different wavelength ranges is output, thereby improving the color gamut of the light emitting device and enriching the light emitting effect of the light emitting device.
  • the light-emitting crystal 101 on the left side of the upper-layer light-emitting crystal element 201 absorbs light with a wavelength of 320nm-520nm emitted by the second solid-state light source 104 on its crystal side, and emits light with a wavelength greater than 480nm inside.
  • the light-emitting crystal 101 on the right side of the upper light-emitting crystal element 201 absorbs light with a wavelength of 320nm-400nm emitted by the second solid-state light source 104 on its crystal side, and emits light with a wavelength of 350nm-550nm inside. Some of these lights are directed to the light extractor 105 through total reflection inside the light-emitting crystal 101.
  • the light-emitting crystal 101 in the lower optically transparent element 202 absorbs light with a wavelength of 320nm-400nm emitted by the second solid-state light source 104 on the side of the crystal, and emits light with a wavelength of 350nm-550nm inside, and part of the light passes through the light.
  • the total reflection inside the crystal 101 is directed to the light extractor 105.
  • the first solid-state light source 103 at the rear surface of the transparent body element of the lower optical transparent body element 202 emits light with a dominant wavelength of 630 nm, and these lights are emitted to the light-emitting crystal 101 through the optical transparent body 102.
  • the light with a dominant wavelength of 630 nm will not be absorbed by the light-emitting crystal 101, the light can pass through the light-emitting crystal 101 to the light extractor 105. Finally, these types of light are extracted by the light extractor 105 and output.
  • FIG. 7 is another cross-sectional structural diagram of the first embodiment of a light-emitting device of the present invention.
  • the light-emitting device includes a single light-emitting crystal element 201 and a single optically transparent element 202, and the optically transparent element 202 is placed side by side under the light-emitting crystal element 201.
  • the light-emitting crystal element 201 is composed of two light-emitting crystals 101 arranged in sequence
  • the optically transparent body element 202 is composed of a single light-emitting crystal 101 and a single optically transparent body 102 arranged in sequence.
  • the side surface of the light-emitting crystal 101 is provided with a second solid-state light source 104 for exciting the light-emitting crystal 101.
  • a first solid-state light source 103 is arranged at the rear surface of the transparent body element of the optically transparent body element 202, and the light-emitting crystal 101 in the optically transparent body element 202 is arranged between the optically transparent body 102 and the first solid state light source 103.
  • the light emitted by the first solid-state light source 103 is directed to the light extractor 105 through the optically transparent body 102, and these two types of light are extracted and output by the light extractor 105.
  • the light-emitting crystal 101 on the left side of the upper-layer light-emitting crystal element 201 absorbs light with a wavelength of 320nm-520nm emitted by the second solid-state light source 104 on its crystal side, and emits light with a wavelength greater than 480nm inside.
  • the light-emitting crystal 101 on the right side of the upper-layer light-emitting crystal element 201 absorbs light with a wavelength of 320nm-400nm emitted by the second solid-state light source 104 on the crystal side, and emits light with a wavelength of 350nm-550nm inside. Some of these lights are directed to the light extractor 105 through total reflection inside the light-emitting crystal 101.
  • the light-emitting crystal 101 in the lower optically transparent element 202 absorbs light with a wavelength of 320nm-400nm emitted by the second solid-state light source 104 on the side of the crystal, and emits light with a wavelength of 350nm-550nm inside, and part of the light passes through the light.
  • the total reflection inside the crystal 101 is directed to the optically transparent body 102 and enters the light extractor 105 through the optically transparent body 102.
  • the first solid-state light source 103 at the rear surface of the transparent body element of the lower optically transparent body element 202 emits light with a dominant wavelength of 630 nm.
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a second embodiment of a light-emitting device of the present invention.
  • an optical part 203 is provided between the first solid-state light source 103 and the rear surface of the transparent body element of the optically transparent body element 202, and the optical part 203 is used for condensing light or Used for collimation and focusing.
  • the optical part 203 may be an optical part for condensing light
  • the optical part 203 may be used for alignment.
  • the optical component 203 is preferably a light guide rod, a condenser or a lens.
  • FIG. 9 is a schematic cross-sectional structure diagram of the third embodiment of a light-emitting device of the present invention
  • FIG. 10 is another cross-sectional structure schematic view of the third embodiment of a light-emitting device of the present invention.
  • the light-emitting device provided in this embodiment further includes a reflective surface 301.
  • the reflective surface 301 is provided at the rear surface of the crystal element of the light-emitting crystal element 201, and the light reflected from the interior of the light-emitting crystal element 201 to the rear surface of the crystal element is reflected again by the reflective surface 301, so that most of the light can escape from the light-emitting crystal element 201.
  • the front end face of the crystal element outputs and then enters the light extractor 105, which can reduce light loss and improve light output efficiency.
  • the side surface of the optically transparent body 102 in the optically transparent body element 202 is provided with a third solid-state light source 302.
  • the light emitted by the third solid-state light source 302 passes through the optically transparent body 102 and is directed to the light-emitting crystal 101 and excites the light-emitting crystal 101.
  • the use of the third solid-state light source 302 can reduce the amount of light-emitting crystal 101 used while maintaining the same brightness output, which not only saves costs, but also makes the entire light-emitting device more compact.
  • the third solid-state light source 302 is preferably an LED light source or a laser light source.
  • the light-emitting device provided in this embodiment further includes a supplementary light source 401.
  • the supplementary light source 401 is arranged at the rear face of the crystal element of the light-emitting crystal element 201, and the light emitted by the supplementary light source 401 is injected from the rear face of the crystal element of the light-emitting crystal element 201, which enables the entire light-emitting device to achieve a wider color temperature range and higher Color rendering index and better color saturation.
  • the supplementary light source 401 is preferably an LED light source or a laser light source.
  • FIG. 13 is a schematic diagram of a cross-sectional structure of a fifth embodiment of a light-emitting device of the present invention.
  • a light-emitting device provided by this embodiment includes two light-emitting crystal elements 201 and a single optically transparent element 202, and the single optically transparent element 202 is disposed between the two light-emitting crystal elements 201.
  • a reflective surface 301 is provided at the rear end of the upper light-emitting crystal element 201, and a supplementary light source 401 is provided at the rear end of the lower light-emitting crystal element 201.
  • the reflective surface 301 reflects the light reflected from the light-emitting crystal element 201 to the rear face of the crystal element again, so that most of the light can be output from the front face of the crystal element of the light-emitting crystal element 201, and then enter the light extractor 105, which can reduce the light.
  • the loss of light improve the light efficiency.
  • the light emitted by the supplementary light source 401 is incident from the rear surface of the crystal element of the light-emitting crystal element 201, which can enable the entire light-emitting device to achieve a wider color temperature range, a higher color rendering index, and a better color saturation.
  • the supplementary light source 401 is preferably an LED light source or a laser light source.
  • a light-emitting device provided by this embodiment includes two optically transparent elements 202 and a single light-emitting crystal element 201, and the single light-emitting crystal element 201 is arranged between the two optically transparent elements 202.
  • a single or multiple light-emitting crystal elements 201 and a single or multiple optically transparent elements 202 arranged side by side can also be used, and the light-emitting crystal elements 201 and the optically transparent elements 202 can be arranged alternately.
  • the plurality of light-emitting crystals 101 may use different light-emitting crystals 101, and each type of light-emitting crystal 101 has its specific excitation spectrum and emission spectrum, and the second solid-state light source 104 and the third solid-state light source 302 output
  • the corresponding specific excitation spectra are used to excite different light-emitting crystals 101, and the light output by the light-emitting crystals 101 can achieve a wider color temperature range, a higher color rendering index, and a better color saturation.
  • the luminescent crystal 101 is made of an oxide compound with the general formula AxByOz:C.
  • A may be at least one chemical element in the Ba, Gd, Lu, Mg, Tb and Y groups.
  • B may be at least one chemical element in the Al, Ga, In, Sc, and Si groups.
  • O is the oxygen element.
  • x, y, and z are any positive numbers;
  • C can be a doping element and is at least one chemical element in the Ce, Cr, Dy, Eu, Mn, Pr, Sm, and Ti groups.
  • the first solid-state light source 103 and the supplementary light source 401 are a single solid-state light source or a collection of multiple solid-state light sources.
  • the light-emitting device of the present invention can form a white light or color light system by combining the light-emitting crystal and the spectrum emitted by the solid-state light source with various optical components, and has small optical expansion, good uniformity, and high luminous efficiency.
  • Long life, simple heat dissipation design, etc. overcome the shortcomings of large optical expansion of general LEDs, and with the increase of the number of solid-state light sources, the optical expansion will not increase significantly, so as to achieve the effect of high power and small optical expansion. It can be applied to systems that require high light intensity or small optical expansion, such as entertainment lighting systems, projection systems, automotive lighting systems, medical lighting systems, search lighting systems, field lighting systems, marine lighting systems, portable lighting systems, etc. .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种发光装置,包括发光晶体元件(201)、与发光晶体元件(201)并列摆放的光学透明体元件(202)、第一固态光源(103)、第二固态光源(104)以及光线提取器(105);第一固态光源(103)设于光学透明体元件(202)的透明体元件后端面处,光线提取器(105)设于发光晶体元件(201)的晶体元件前端面处,且光线提取器(105)有部分覆盖于光学透明体元件(202)的透明体元件前端面处;发光晶体元件(201)由单个发光晶体(101)组成或由多个顺序摆放的发光晶体(101)组成,光学透明体元件(202)由光学透明体(102)组成或由光学透明体(102)与发光晶体(101)顺序摆放组成;第二固态光源(104)设于发光晶体(101)的侧面,用于对发光晶体(101)输出激发光线。

Description

一种发光装置 技术领域
本发明主要涉及固态光源发光领域,尤其涉及一种发光装置。
背景技术
现在主流的舞台娱乐灯光设备是电脑灯,主要有三大类,分别是光束灯、图案灯、染色灯。随后开始出现了多功能电脑灯,比如光束、图案和染色三合一电脑灯。这些灯具原本都采用卤素灯或者气体放电灯作为光源(包括普通气体放电灯和超高压汞灯),卤素灯的发光效率非常低而且工作寿命非常短,已经逐渐被其他光源所取代,但卤素灯的显色性非常好,现在仍然被使用在一些对显色指数要求较高的灯具内。超高压汞灯是一种特殊的气体放电灯,具有极小的光学扩展量,但在其发光面积内的亮度的均匀性较差。由于光束灯需要使用光学扩展量较小的光源,所以超高压汞灯大多被使用在光束灯中,也有一些多功能电脑灯(比如光束、图案二合一电脑灯或者光束、图案、染色三合一电脑灯)使用超高压汞灯,但其图案和染色的效果欠佳,同时超高压汞灯对其工作温度的要求非常高,因此灯具厂家需要设计相对比较复杂的散热设计,且作为气体放电灯的一种,超高压汞灯的工作寿命也较短。普通的气体放电灯的光学扩展量比超高压汞灯大,但其可以做到较大的功率,而且其亮度的均匀性要优于超高压汞灯。所以大多用于专业的图案灯和染色灯内,同时也用于一些多功能电脑灯(比如三合一电脑灯)内。
近年来,随着LED光源技术的日益成熟,越来越多的灯具采用LED作为光源。LED光源作为绿色无污染的干净节能光源,已经被大量使用在舞台娱乐灯光领域。它有超长的工作寿命,高效的发光效率和优异的亮度均匀性,但是由于LED的发光面积大而且光成散射状发射,所以一般来说由LED组成的发光系统,其光学扩展量和发光面积都非常大。大功率的LED系统往往需要大量的LED,其光学扩展量和发光面积也会随之大大增加,目前由LED组成的发光系统还无法满足光束灯对于小光学扩展量的要求,绝大多数的LED光源或系统只能应用于图案灯和染色灯,只有极少部分的低功率、低亮度的光束灯使用LED作为光源,但其亮度和效率都无法满足大多数的应用需求,因此目前为止光束灯的主流光源仍是超高压汞灯。
发明内容
本发明要解决的技术问题是提供一种发光装置,以降低光学扩展量,提升发光均匀性。
为解决上述技术问题,本发明提供了一种发光装置,该发光装置包括:发光晶体元件、与所述发光晶体元件并列摆放的光学透明体元件、第一固态光源、第二固态光源以及光线提取器;所述发光晶体元件具有晶体元件前端面、晶体元件后端面,所述光学透明体元件具有透明体元件前端面、透明体元件后端面,所述第一固态光源设于所述光学透明体元件的所述透明体元件后端面处,所述光线提取器设于所述发光晶体元件的所述晶体元件前端面处,且所述光线提取器有部分覆盖于所述光学透明体元件的所述透明体元件前端面处;所述发光晶体元件由单个发光晶体组成或由多个顺序摆放的发光晶体组成,所述光学透明体元件由光学透明体组成或由光学透明体与所述发光晶体顺序摆放组成;所述第二固态光源设于所述发光晶体的侧面,用于对所述发光晶体输出激发光线。
在本发明的一实施例中,所述光线提取器为光学元件。
在本发明的一实施例中,所述发光晶体与所述光学透明体等长或不等长。
在本发明的一实施例中,所述第一固态光源与所述光学透明体元件的所述透明体元件后端面之间设有用于聚光的光学零件或用于准直和聚光的光学零件。
在本发明的一实施例中,还包括反光面,所述反光面设于所述发光晶体元件的所述晶体元件后端面处。
在本发明的一实施例中,所述光学透明体的侧面设有第三固态光源。
在本发明的一实施例中,还包括补充光源,所述补充光源设于所述发光晶体元件的所述晶体元件后端面处。
在本发明的一实施例中,所述光学透明体的侧面设有第三固态光源。
在本发明的一实施例中,还包括反光面与补充光源,所述反光面与所述补充光源设于所述发光晶体元件的晶体元件后端面处。
在本发明的一实施例中,所述光学透明体的侧面设有第三固态光源。
与现有技术相比,本发明具有以下优点:本发明提供了一种发光装置,通过结合发光晶体与固态光源所发出的光谱配合各类光学元器件构成一个白光或彩光 系统,随着固态光源数量的增加其光学扩展量不会大幅度增加,从而实现大功率小光学扩展量的效果。
附图概述
本发明的特征、性能由以下的实施例及其附图进一步描述。
图1为本发明一种发光装置第一实施例的一剖面结构示意图;
图2为本发明一种发光装置第一实施例的另一剖面结构示意图;
图3为本发明一种发光装置第一实施例的另一剖面结构示意图;
图4为本发明一种发光装置第一实施例的另一剖面结构示意图;
图5为本发明一种发光装置第一实施例的另一剖面结构示意图;
图6为本发明一种发光装置第一实施例的另一剖面结构示意图;
图7为本发明一种发光装置第一实施例的另一剖面结构示意图;
图8为本发明一种发光装置第二实施例的一剖面结构示意图;
图9为本发明一种发光装置第三实施例的一剖面结构示意图;
图10为本发明一种发光装置第三实施例的另一剖面结构示意图;
图11为本发明一种发光装置第四实施例的一剖面结构示意图;
图12为本发明一种发光装置第四实施例的另一剖面结构示意图;
图13为本发明一种发光装置第五实施例的一剖面结构示意图;
图14为本发明一种发光装置第六实施例的一剖面结构示意图。
其中,附图标记如下:发光晶体101、光学透明体102、第一固态光源103、第二固态光源104、光线提取器105、发光晶体元件201、光学透明体元件202、光学零件203、反光面301、第三固态光源302、补充光源401。
本发明的较佳实施方式
为了使发明实现的技术手段、创造特征、达成目的和功效易于明白了解,下结合具体图示,进一步阐述本发明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。例如,如果翻转附图中的器件,则被描述为在其他元件或特征“下方”或“之下”或“下面”的元件的方向将改为在所述其他元件或特征的“上方”。因而,示例性的词语“下方”和“下面”能够包含上和下两个方向。器件也可能具有其他朝向(旋转90度或处于其他方向),因此应相应地解释此处使用的空间关系描述词。此外,还将理解,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。
在本申请的上下文中,所描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
应当理解,当一个部件被称为“在另一个部件上”、“连接到另一个部件”、“耦合于另一个部件”或“接触另一个部件”时,它可以直接在该另一个部件之上、连接于或耦合于、或接触该另一个部件,或者可以存在插入部件。相比之下,当一个部件被称为“直接在另一个部件上”、“直接连接于”、“直接耦合于”或“直接接触”另一个部件时,不存在插入部件。同样的,当第一个部件被称为“电接触”或“电耦合于”第二个部件,在该第一部件和该第二部件之间存在允许电流流动的电路径。该电路径可以包括电容器、耦合的电感器和/或允许电流流动的其它部件,甚至在导电部件之间没有直接接触。
第一实施例
本发明的第一实施例是提供一种发光装置,通过结合发光晶体与固态光源所发出的光谱配合各类光学元器件构成一个白光或彩光系统,具有光学扩展量小、均匀性好、发光效率高、寿命长、散热设计简单等优点,克服了一般LED光学扩展量大的缺点,且随着固态光源数量的增加其光学扩展量不会大幅度增加,从而实现大功率小光学扩展量的效果,可适用于需要高光照强度或小光学扩展量的系统中,比如娱乐照明系统、投影系统、汽车照明系统、医疗照明系统、探照照明系统、野外作业照明系统、航海照明系统、便携式照明系统等。
图1为本发明一种发光装置第一实施例的一剖面结构示意图。如图1所示,该发光装置包括发光晶体元件201、光学透明体元件202、第一固态光源103、第二固态光源104以及光线提取器105。
发光晶体元件201具有晶体元件前端面、晶体元件后端面。光学透明体元件202具有透明体元件前端面、透明体元件后端面。第一固态光源103设于光学透明体元件202的透明体元件后端面处,光线提取器105设于发光晶体元件201的晶体元件前端面处,且光线提取器105有部分覆盖于光学透明体元件202的透明体元件前端面处。第一固态光源103发出的光线通过光学透明体元件202射向光线提取器105,光线提取器105提取从发光晶体元件201和光学透明体元件202射出的光线并进行混光、混色、聚光后射出。
发光晶体元件201可以由单个发光晶体101组成或由多个顺序摆放的发光晶体101组成,光学透明体元件202可以由光学透明体102组成或由光学透明体102与发光晶体101顺序摆放组成。在图1所示的实施例中,发光晶体元件201由单个发光晶体101组成,光学透明体元件202单个由光学透明体102组成。在其它实施例中,发光晶体元件201还可以由多个发光晶体101顺序摆放组成,光学透明体元件202还可以由多个光学透明体102顺序摆放组成,或者由光学透明体102与发光晶体101顺序摆放组成。
发光晶体101与光学透明体102可以均呈长条柱体,长条柱体的发光晶体101可以具有晶体前端面、晶体后端面、数个晶体侧面,长条柱体的光学透明体102可以具有透明体前端面、透明体后端面、数个透明体侧面。
第二固态光源104设于发光晶体101的侧面,用于对发光晶体101输出激发光线。第二固态光源104对发光晶体101的晶体侧面输出特定波长范围的激发光线, 发光晶体101吸收该特定波长范围的激发光线后,在其内部发出不同波长范围的光线,同时由于发光晶体101的折射率较高,大部分的光线在发光晶体101内部以全反射的方式进行传播并最终从晶体前端面和晶体后端面输出。发光晶体101的形状设置为长条柱状,可以在发光晶体101的晶体侧面放置较多的第二固态光源104,这些第二固态光源104所组成的光学扩展量要远远大于晶体前端面处的光学扩展量,从而把原本由大量固态光源所组成的非常大的光学扩展量转化为较小的光学扩展量。第一固态光源103、第二固态光源104优选为LED光源或激光光源。
本实施例提供的一种发光装置,采用的光线提取器105可以为光学元件。光学元件优选为导光棒、聚光器或透镜。
本实施例提供的一种发光装置,采用的发光晶体101与光学透明体102可以等长或不等长。
在图1所示的发光装置中,发光装置包括单个发光晶体元件201与单个光学透明体元件202,光学透明体元件202并列摆放于发光晶体元件201的下方。发光晶体元件201由单个发光晶体101组成,光学透明体元件202由单个光学透明体102组成。发光晶体101的侧面设有第二固态光源104,用于激发发光晶体101。光学透明体102的透明体后端面处设有第一固态光源103,第一固态光源103发出的光线通过光学透明体102射向光线提取器105,这两种光线由光线提取器105提取并输出。
例如,发光晶体101吸收第二固态光源104发出的波长为320nm-520nm的光线,在其内部发出波长大于480nm的光线,其中一部分光线通过发光晶体101内部的全反射射向光线提取器105。第一固态光源103发出主波长为455nm的光线,这些光线通过光学透明体元件202也射向光线提取器105,最后这两种光线由光线提取器105提取并输出。
本发明的该实施例提供了一种发光装置,通过结合发光晶体与固态光源所发出的光谱配合各类光学元器件构成一个白光或彩光系统,随着固态光源数量的增加其光学扩展量不会大幅度增加,从而实现大功率小光学扩展量的效果。
图2为本发明一种发光装置第一实施例的另一剖面结构示意图。如图2所示,发光装置包括单个发光晶体元件201与单个光学透明体元件202,光学透明体元件202并列摆放于发光晶体元件201的下方。发光晶体元件201由两个顺序摆放的发 光晶体101组成,光学透明体元件202由单个光学透明体102组成。发光晶体101的侧面设有第二固态光源104,用于激发发光晶体101。光学透明体102的透明体后端面处设有第一固态光源103,第一固态光源103发出的光线通过光学透明体102射向光线提取器105,这两种光线由光线提取器105提取并输出。
在该实施例中,发光装置包括第一固态光源103和多个发光晶体101,多个发光晶体101可以发出多个不同波长范围的光线,提取器可以据此提取并输出这些不同波长范围的光线,从而提高了发光装置的色域,丰富了发光装置的发光效果。
例如,发光晶体元件201中左侧的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-520nm的光线,在其内部发出波长为600nm-700nm的光线。发光晶体元件201中右侧的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-520nm的光线,在其内部发出波长为460nm-700nm的光线。这些光线中的部分光线通过发光晶体101内部的全反射射向光线提取器105,第一固态光源103发出主波长为455nm的光线,这些光线通过光学透明体元件202也射向光线提取器105,最后这几种光线由光线提取器105提取并输出。
图3为本发明一种发光装置第一实施例的另一剖面结构示意图。如图3所示,发光装置包括单个发光晶体元件201与两个光学透明体元件202,两个光学透明体元件202并列摆放于发光晶体元件201的下方。发光晶体元件201由单个发光晶体101组成,光学透明体元件202都由单个光学透明体102组成。发光晶体101的侧面设有第二固态光源104,用于激发发光晶体101。两个光学透明体102的透明体后端面处均设有第一固态光源103,第一固态光源103发出的光线通过光学透明体102射向光线提取器105,这两种光线由光线提取器105提取并输出。
在该实施例中,发光装置包括多个第一固态光源103,多个第一固态光源103可以发出多个不同波长范围的光线,提取器可以据此提取并输出这些不同波长范围的光线,从而提高了发光装置的色域,丰富了发光装置的发光效果。
例如,最上层的发光晶体101吸收其晶体侧面的第二固态光源104发出的波长为320nm-520nm的光线,在其内部发出波长为460nm-700nm的光线。这些光线中的部分光线通过发光晶体101内部的全反射射向光线提取器105。中间层的光学透明体元件202的透明体元件后端面处的第一固态光源103发出主波长为455nm的光线,这些光线通过光学透明体元件202也射向光线提取器105。最下层光学透 明体元件202的透明体元件后端面处的第一固态光源103发出主波长为630nm的光线,这些光线通过光学透明体元件202也射向光线提取器105。最后这几种光线由光线提取器105提取并输出。
图4为本发明一种发光装置第一实施例的另一剖面结构示意图。如图4所示,发光装置包括单个发光晶体元件201与两个光学透明体元件202,两个光学透明体元件202并列摆放于发光晶体元件201的下方。发光晶体元件201由两个顺序摆放的发光晶体101组成,光学透明体元件202都由单个光学透明体102组成。发光晶体101的侧面设有第二固态光源104,用于激发发光晶体101。两个光学透明体102的透明体后端面处均设有第一固态光源103,第一固态光源103发出的光线通过光学透明体102射向光线提取器105,这两种光线由光线提取器105提取并输出。
在该实施例中,发光晶体元件由多个发光晶体101组成,多个发光晶体101可以产生多个不同波长范围的光线,发光装置包括多个第一固态光源103,多个第一固态光源103可以发出多个不同波长范围的光线,提取器可以据此提取并输出这些不同波长范围的光线,从而进一步提高了发光装置的色域,丰富了发光装置的发光效果。
例如,最上层的发光晶体元件201中左侧的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-520nm的光线,在其内部发出波长大于480nm的光线。最上层的发光晶体元件201中右侧的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-400nm的光线,在其内部发出波长为350nm-550nm的光线。这些光线中的部分光线通过发光晶体101内部的全反射射向光线提取器105。中间层的光学透明体元件202的透明体元件后端面处的第一固态光源103发出主波长为630nm的光线,这些光线通过光学透明体元件202也射向光线提取器105。最下层光学透明体元件202的透明体元件后端面处的第一固态光源103发出主波长为455nm的光线,这些光线通过光学透明体元件202也射向光线提取器105。最后这几种光线由光线提取器105提取并输出。
图5为本发明一种发光装置第一实施例的另一剖面结构示意图。如图5所示,发光装置包括单个发光晶体元件201与单个光学透明体元件202,光学透明体元件202并列摆放于发光晶体元件201的下方。发光晶体元件201由单个发光晶体101组成,光学透明体元件202由单个光学透明体102和单个发光晶体101顺序摆放组 成。发光晶体101的侧面设有第二固态光源104,用于激发发光晶体101。光学透明体102的透明体后端面处设有第一固态光源103,第一固态光源103发出的光线通过光学透明体102射向光线提取器105,这两种光线由光线提取器105提取并输出。
在该实施例中,光学透明体元件202由单个光学透明体102和单个发光晶体101顺序摆放组成,发光晶体可以产生更多不同波长范围的光线,提取器可以据此提取并输出更多不同波长范围的光线,从而进一步提高了发光装置的色域,丰富了发光装置的发光效果。
例如,上层的发光晶体元件201中的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-520nm的光线,在其内部发出波长为460nm-700nm的光线,其中一部分光线通过发光晶体101内部的全反射射向光线提取器105。下层的光学透明体元件202中的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-400nm的光线,在其内部发出波长为350nm-550nm的光线,其中一部分光线通过发光晶体101内部的全反射射向光线提取器105。下层的光学透明体元件202的透明体元件后端面处的第一固态光源103发出主波长为630nm的光线,这些光线通过光学透明体102射向发光晶体101,同时由于这些主波长为630nm的光线不会被发光晶体101所吸收,因此这些光线能够通过发光晶体101射向光线提取器105。最后这几种光线由光线提取器105提取并输出。
图6为本发明一种发光装置第一实施例的另一剖面结构示意图。如图6所示,发光装置包括单个发光晶体元件201与单个光学透明体元件202,光学透明体元件202并列摆放于发光晶体元件201的下方。发光晶体元件201由两个顺序摆放的发光晶体101组成,光学透明体元件202由单个光学透明体102和单个发光晶体101顺序摆放组成。发光晶体101的侧面设有第二固态光源104,用于激发发光晶体101。光学透明体102的透明体后端面处设有第一固态光源103,第一固态光源103发出的光线通过光学透明体102射向光线提取器105,这两种光线由光线提取器105提取并输出。
在该实施例中,与图5所示的实施例相比,发光晶体元件由多个发光晶体101组成,多个发光晶体101可以产生多个不同波长范围的光线,提取器可以据此提取 并输出更多不同波长范围的光线,从而提高了发光装置的色域,丰富了发光装置的发光效果。
例如,上层的发光晶体元件201中左侧的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-520nm的光线,在其内部发出波长大于480nm的光线。上层的发光晶体元件201中右侧的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-400nm的光线,在其内部发出波长为350nm-550nm的光线。这些光线中的部分光线通过发光晶体101内部的全反射射向光线提取器105。下层的光学透明体元件202中的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-400nm的光线,在其内部发出波长为350nm-550nm的光线,其中一部分光线通过发光晶体101内部的全反射射向光线提取器105。下层的光学透明体元件202的透明体元件后端面处的第一固态光源103发出主波长为630nm的光线,这些光线通过光学透明体102射向发光晶体101。同时由于这些主波长为630nm的光线不会被发光晶体101所吸收,因此这些光线能够通过发光晶体101射向光线提取器105。最后这几种光线由光线提取器105提取并输出。
图7为本发明一种发光装置第一实施例的另一剖面结构示意图。如图7所示,发光装置包括单个发光晶体元件201与单个光学透明体元件202,光学透明体元件202并列摆放于发光晶体元件201的下方。发光晶体元件201由两个顺序摆放的发光晶体101组成,光学透明体元件202由单个发光晶体101和单个光学透明体102顺序摆放组成。发光晶体101的侧面设有第二固态光源104,用于激发发光晶体101。光学透明体元件202的透明体元件后端面处设有第一固态光源103,光学透明体元件202中的发光晶体101设于光学透明体102与第一固态光源103之间。第一固态光源103发出的光线通过光学透明体102射向光线提取器105,这两种光线由光线提取器105提取并输出。
在该实施例中,与图6所示的实施例相比,光学透明体元件202中发光晶体101和光学透明体102的位置发生了变化,使得发光装置的结构更加灵活。
例如,上层的发光晶体元件201中左侧的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-520nm的光线,在其内部发出波长大于480nm的光线。上层的发光晶体元件201中右侧的发光晶体101吸收在其晶体侧面 的第二固态光源104发出的波长为320nm-400nm的光线,在其内部发出波长为350nm-550nm的光线。这些光线中的部分光线通过发光晶体101内部的全反射射向光线提取器105。下层的光学透明体元件202中的发光晶体101吸收在其晶体侧面的第二固态光源104发出的波长为320nm-400nm的光线,在其内部发出波长为350nm-550nm的光线,其中一部分光线通过发光晶体101内部的全反射射向光学透明体102并通过光学透明体102射入光线提取器105。下层的光学透明体元件202的透明体元件后端面处的第一固态光源103发出主波长为630nm的光线,由于这些主波长为630nm的光线不会被发光晶体101所吸收,因此这些光线可以通过发光晶体101射向光学透明体102并最终射向光线提取器105。最后这几种光线由光线提取器105提取并输出。
第二实施例
图8为本发明一种发光装置第二实施例的一剖面结构示意图。如图8所示,本实施例提供的一种发光装置中,第一固态光源103与光学透明体元件202的透明体元件后端面之间设有光学零件203,光学零件203用于聚光或用于准直和聚光。例如当第一固态光源103为激光光源或单个LED光源时,光学零件203可以是用于聚光的光学零件,当第一固态光源103为多个LED光源时,光学零件203可以是用于准直和聚光的光学零件。由于使用了用于聚光或用于准直和聚光的光学零件,使得光学透明体元件202的横截面变得更小,同时又不损失太多从第一固态光源103发出的光线,既优化了整个发光装置的光学扩展量,又能保持发光效率。光学零件203优选为导光棒、聚光器或透镜。
第三实施例
图9为本发明一种发光装置第三实施例的一剖面结构示意图,图10为本发明一种发光装置第三实施例的另一剖面结构示意图。如图9-10所示,本实施例提供的一种发光装置还包括反光面301。反光面301设于发光晶体元件201的晶体元件后端面处,以反光面301对发光晶体元件201内部反射至晶体元件后端面的光线进行再次反射,使绝大部分光线能够从发光晶体元件201的晶体元件前端面输出,然后射入光线提取器105,可以降低光的损失,提高出光效率。
本实施例提供的一种发光装置,光学透明体元件202中光学透明体102的侧面设有第三固态光源302。第三固态光源302发出的光线穿过光学透明体102射向 发光晶体101并激发发光晶体101。在该实施例中,使用第三固态光源302可以在保持同等亮度输出的条件下,减少发光晶体101的使用量,既节省了成本,又使得整个发光装置更加紧凑。第三固态光源302优选为LED光源或激光光源。
第四实施例
图11为本发明一种发光装置第四实施例的一剖面结构示意图,图12为本发明一种发光装置第四实施例的另一剖面结构示意图。如图11-12所示,本实施例提供的一种发光装置还包括补充光源401。补充光源401设于发光晶体元件201的晶体元件后端面处,补充光源401发出的光线从发光晶体元件201的晶体元件后端面射入,可使得整个发光装置实现更宽的色温范围、更高的显色指数和更好的色彩饱和度。补充光源401优选为LED光源或激光光源。
第五实施例
图13为本发明一种发光装置第五实施例的一剖面结构示意图。如图13所示,本实施例提供的一种发光装置包括两个发光晶体元件201和单个光学透明体元件202,单个光学透明体元件202设于两个发光晶体元件201之间。上方发光晶体元件201的晶体元件后端面处设有反光面301,下方发光晶体元件201的晶体元件后端面处设有补充光源401。反光面301对发光晶体元件201内部反射至晶体元件后端面的光线进行再次反射,使绝大部分光线能够从发光晶体元件201的晶体元件前端面输出,然后射入光线提取器105,可以降低光的损失,提高出光效率。补充光源401发出的光线从发光晶体元件201的晶体元件后端面射入,可使得整个发光装置实现更宽的色温范围、更高的显色指数和更好的色彩饱和度。补充光源401优选为LED光源或激光光源。
第六实施例
图14为本发明一种发光装置第六实施例的一剖面结构示意图。如图14所示,本实施例提供的一种发光装置包括两个光学透明体元件202和单个发光晶体元件201,单个发光晶体元件201设于两个光学透明体元件202之间。在其它实施例中,还可采用并列摆放的单个或多个发光晶体元件201与单个或多个光学透明体元件202,发光晶体元件201与光学透明体元件202可交错摆放。
上述实施例的发光装置中,多个发光晶体101可以采用不同的发光晶体101,每一种发光晶体101都具有其特定的激发光谱和发射光谱,第二固态光源104和第 三固态光源302输出所对应的各个特定的激发光谱用于激发各个不同的发光晶体101,发光晶体101输出的光可以实现更宽的色温范围、更高的显色指数、更好的色彩饱和度。发光晶体101由通式为AxByOz:C的氧化物型化合物制成。其中,A可以是Ba、Gd、Lu、Mg、Tb和Y族中的至少一种化学元素。B可以是Al、Ga、In、Sc和Si族中的至少一种化学元素。O是氧元素。x、y和z是任意正数;C可以是掺杂元素且是Ce、Cr、Dy、Eu、Mn、Pr、Sm和Ti族中的至少一种化学元素。上述实施例的发光装置中,第一固态光源103和补充光源401为单个固态光源或多个固态光源的集合。
综上,本发明的一种发光装置,能够通过结合发光晶体与固态光源所发出的光谱配合各类光学元器件组成一个白光或彩光系统,具有光学扩展量小、均匀性好、发光效率高、寿命长、散热设计简单等优点,克服了一般LED光学扩展量大的缺点,且随着固态光源数量的增加其光学扩展量不会大幅度增加,从而实现大功率小光学扩展量的效果,可适用于需要高光照强度或小光学扩展量的系统中,比如娱乐照明系统、投影系统、汽车照明系统、医疗照明系统、探照照明系统、野外作业照明系统、航海照明系统、便携式照明系统等。
本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
以上对发明的具体实施例进行了描述。需要理解的是,发明并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域中的普通方式予以实施;本领域技术人员可以在权利要求的范围内做出各种变形或修改做出若干简单推演、变形或替换,这并不影响发明的实质内容。

Claims (10)

  1. 一种发光装置,该发光装置包括:发光晶体元件、与所述发光晶体元件并列摆放的光学透明体元件、第一固态光源、第二固态光源以及光线提取器;
    所述发光晶体元件具有晶体元件前端面、晶体元件后端面,所述光学透明体元件具有透明体元件前端面、透明体元件后端面,所述第一固态光源设于所述光学透明体元件的所述透明体元件后端面处,所述光线提取器设于所述发光晶体元件的所述晶体元件前端面处,且所述光线提取器有部分覆盖于所述光学透明体元件的所述透明体元件前端面处;
    所述发光晶体元件由单个发光晶体组成或由多个顺序摆放的发光晶体组成,所述光学透明体元件由光学透明体组成或由光学透明体与所述发光晶体顺序摆放组成;
    所述第二固态光源设于所述发光晶体的侧面,用于对所述发光晶体输出激发光线。
  2. 如权利要求1所述的一种发光装置,其特征在于,所述光线提取器为光学元件。
  3. 如权利要求2所述的一种发光装置,其特征在于,所述发光晶体与所述光学透明体等长或不等长。
  4. 如权利要求3所述的一种发光装置,其特征在于,所述第一固态光源与所述光学透明体元件的所述透明体元件后端面之间设有用于聚光的光学零件或用于准直和聚光的光学零件。
  5. 如权利要求3或4所述的一种发光装置,其特征在于,还包括反光面,所述反光面设于所述发光晶体元件的所述晶体元件后端面处。
  6. 如权利要求5所述的一种发光装置,其特征在于,所述光学透明体的侧面设有第三固态光源。
  7. 如权利要求3或4所述的一种发光装置,其特征在于,还包括补充光源,所述补充光源设于所述发光晶体元件的所述晶体元件后端面处。
  8. 如权利要求7所述的一种发光装置,其特征在于,所述光学透明体的侧面设有第三固态光源。
  9. 如权利要求3或4所述的一种发光装置,其特征在于,还包括反光面与补充 光源,所述反光面与所述补充光源设于所述发光晶体元件的晶体元件后端面处。
  10. 如权利要求9所述的一种发光装置,其特征在于,所述光学透明体的侧面设有第三固态光源。
PCT/CN2019/101560 2019-04-03 2019-08-20 一种发光装置 WO2020199459A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910266788.3A CN111780053A (zh) 2019-04-03 2019-04-03 一种发光装置
CN201910266788.3 2019-04-03

Publications (1)

Publication Number Publication Date
WO2020199459A1 true WO2020199459A1 (zh) 2020-10-08

Family

ID=72664497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101560 WO2020199459A1 (zh) 2019-04-03 2019-08-20 一种发光装置

Country Status (2)

Country Link
CN (1) CN111780053A (zh)
WO (1) WO2020199459A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156130A (ja) * 2004-11-30 2006-06-15 Citizen Watch Co Ltd 光源装置及び照明装置及びそれを用いた表示装置
CN200982585Y (zh) * 2006-09-06 2007-11-28 武汉盟信科技有限责任公司 基于led光源系统的合光模块
CN105164358A (zh) * 2013-05-10 2015-12-16 工程吸气公司 复合透明发光装置
CN105757533A (zh) * 2016-03-03 2016-07-13 深圳市华星光电技术有限公司 一种光源、背光模组以及显示装置
CN207421852U (zh) * 2017-10-20 2018-05-29 阳睐(上海)光电科技有限公司 舞台照明发光装置
CN108443819A (zh) * 2018-02-13 2018-08-24 上海小糸车灯有限公司 一种多功能复用的汽车照明装置及其照明方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156130A (ja) * 2004-11-30 2006-06-15 Citizen Watch Co Ltd 光源装置及び照明装置及びそれを用いた表示装置
CN200982585Y (zh) * 2006-09-06 2007-11-28 武汉盟信科技有限责任公司 基于led光源系统的合光模块
CN105164358A (zh) * 2013-05-10 2015-12-16 工程吸气公司 复合透明发光装置
CN105757533A (zh) * 2016-03-03 2016-07-13 深圳市华星光电技术有限公司 一种光源、背光模组以及显示装置
CN207421852U (zh) * 2017-10-20 2018-05-29 阳睐(上海)光电科技有限公司 舞台照明发光装置
CN108443819A (zh) * 2018-02-13 2018-08-24 上海小糸车灯有限公司 一种多功能复用的汽车照明装置及其照明方法

Also Published As

Publication number Publication date
CN111780053A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
CN108368975B (zh) 堆叠式发光聚光器
US10746374B2 (en) Nearly index-matched luminescent glass-phosphor composites for photonic applications
Narukawa White-light LEDS
WO2017197794A1 (zh) 用于照明或显示的激光白光发光装置
JP5985091B1 (ja) 発光素子
JP6493946B2 (ja) 超高輝度を得るための多重励起ルミネッセンスロッド構成
CN105393046B (zh) 发光设备和用于对发光设备进行调光的方法
WO2014115492A1 (ja) 固体光源装置
CN105074944A (zh) 包括波长转换器的发光设备
CN105090873A (zh) 发光设备
US20160076711A1 (en) Solid state lighting device
JP2016536798A (ja) 発光デバイス
JP2022545426A (ja) 高いcriを有する高強度光源
TWI610457B (zh) 白光光源裝置
CN103836387A (zh) 一种led荧光激发光源系统
CN106922178A (zh) 发光设备
WO2020199459A1 (zh) 一种发光装置
CN209801378U (zh) 一种发光装置
CN111223979B (zh) 健康照明用的发光装置和灯具
KR100665221B1 (ko) 백색 발광 장치
WO2020114199A1 (zh) 一种照明光源及车灯
WO2021069562A1 (en) White luminescent concentrator with ld coupling as additional channel
CN207880586U (zh) 一种led白光照明模组
TWI818418B (zh) 發光裝置
CN111413841B (zh) 波长转换装置、光源系统与显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923087

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19923087

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19923087

Country of ref document: EP

Kind code of ref document: A1