WO2020199439A1 - Procédé informatique en nuage de points tridimensionnel basé sur une mesure hybride à caméra unique et à caméra double - Google Patents

Procédé informatique en nuage de points tridimensionnel basé sur une mesure hybride à caméra unique et à caméra double Download PDF

Info

Publication number
WO2020199439A1
WO2020199439A1 PCT/CN2019/098678 CN2019098678W WO2020199439A1 WO 2020199439 A1 WO2020199439 A1 WO 2020199439A1 CN 2019098678 W CN2019098678 W CN 2019098678W WO 2020199439 A1 WO2020199439 A1 WO 2020199439A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
point
projector
image
point cloud
Prior art date
Application number
PCT/CN2019/098678
Other languages
English (en)
Chinese (zh)
Inventor
邢威
张楠楠
孙博
郭磊
Original Assignee
易思维天津科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 易思维天津科技有限公司 filed Critical 易思维天津科技有限公司
Publication of WO2020199439A1 publication Critical patent/WO2020199439A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2504Calibration devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré

Definitions

  • the invention relates to the field of machine vision detection, in particular to a three-dimensional point cloud computing method based on mono-binocular hybrid measurement.
  • the binocular vision measurement system uses two cameras to take pictures of the target object from different angles for image collection, and reconstructs the three-dimensional information of the target in the three-dimensional space to achieve the detection of the object shape. It has a wide range of applications in the field of vision measurement.
  • the 3D scanning measurement system which adopts the structure of binocular camera + projector, realizes 3D point cloud information acquisition through raster projection, and is equipped with robots, guide rails, turntables and other motion mechanisms to achieve large-scale flexible measurement , High-density point cloud measurement, to truly restore the rich surface details of the object, due to its high efficiency, high accuracy, large data volume, low cost, and low environmental requirements, it is gradually replacing the three-coordinate system and becoming the mainstream implementation parts and components. Tools for measuring large-size workpieces.
  • the left and right cameras constitute a binocular stereo vision system.
  • the measurement range is the common field of view of the two cameras. Due to factors such as occlusion or overexposure, as long as the field of view of one of the cameras cannot be collected The surface information of the measured object and the uncollected partial surface will not be able to solve the 3D point cloud and perform 3D measurement, resulting in incomplete measurement range.
  • the present invention proposes a three-dimensional point cloud computing method based on mono-binocular hybrid measurement.
  • the three-dimensional scanning measurement system not only the binocular stereo vision method is used to obtain the three-dimensional point cloud information of the measured object, but also when When the field of view of one of the cameras is blocked or the shooting is overexposed, the other camera and the projector can be used to calculate the 3D point cloud of the blocked part, which ensures the integrity of the 3D point cloud data of the measured object.
  • the three-dimensional point cloud solution in the common field of view of a single camera and a projector is practical.
  • a three-dimensional point cloud calculation method based on single and binocular hybrid measurement including the following steps:
  • the projector projects the sinusoidal fringes onto the surface of the object to be measured.
  • intersection point When the pixel coordinates of the intersection point are on the image plane of the second camera: mark the intersection point as the second matching point, and use the effective image point u i and the second matching point to calculate the three-dimensional point cloud (x i , Y i , z i );
  • step S3 Repeat step S2 to traverse all effective image points and complete the three-dimensional point cloud calculation on the surface of the measured object.
  • step S2 the three-dimensional point cloud (x i , y i , z i ) of the point is calculated using the effective image point and the second matching point, and the calculation method is as follows:
  • step S2 the effective image point u i and the first matching point are used to calculate the three-dimensional point cloud (x i , y i , z i ) of the point, and the calculation method is as follows:
  • F lr is the basic matrix between the first camera and the second camera.
  • F dr is the basic matrix between the projector and the second camera.
  • a three-dimensional point cloud is calculated using the effective image point v j and the third matching point.
  • the absolute phase is solved by a phase shift combined with multi-frequency heterodyne or Gray coding, and the absolute phase is the horizontal and vertical phase.
  • the calibration method is Zhang's calibration method or beam adjustment calibration method
  • Zhang's calibration method regards the calibration plate as a plane, and only uses the information in the x and y directions of the mark point during the calibration process, but in fact the calibration plate is not an ideal plane, the calibration result is biased, and the reprojection error is 0.1 About pixels; the beam adjustment calibration method can be used to solve the three-dimensional point coordinates in the space.
  • the camera parameters are used as the quantity to be calculated in the observation equation, and the calculation is continuously optimized through iteration, and finally the camera parameters are obtained.
  • the reprojection error of this calibration method is about 0.02 pixels .
  • the calibration board includes a plurality of standard circles, and the center coordinates of the standard circles in the left and right camera images are calculated respectively; the image points between the left and right cameras are established Matching relationship
  • the projector projects multiple horizontal and vertical fringe images onto the calibration board, and simultaneously triggers the left and right cameras to collect multiple projected calibration board images;
  • the calibration result includes the internal parameter matrix, distortion coefficient, and external parameter matrix of the projector and the left and right cameras; the error equation of the beam adjustment is listed based on the collinear equation:
  • V i At+Dk-L
  • A is the partial derivative matrix of the internal parameter matrix correction of the projector and the left and right cameras
  • t is the internal parameter matrix correction of the projector and the left and right cameras
  • k is the projector and the left and right cameras.
  • the correction amount of the external parameter matrix of the projector D is the partial derivative matrix of the external parameter matrix of the projector and the left and right cameras
  • L is the two-dimensional coordinates on the image plane of the left camera, the right camera, and the projector and the three-dimensional coordinates of the calibration board The difference between the coordinates converted to the image plane;
  • q takes a value of 0.05 to 0.2.
  • the method of the present invention solves the problem that the binocular system cannot complete the point cloud calculation when the field of view of one of the cameras is blocked or the shooting is overexposed by obtaining the conversion relationship between the single camera and the projector ,
  • the cloud solution method obtains more point clouds, which can obtain more surface information of the measured object at one time, and has practical value.
  • the beam adjustment calibration method is used for calibration, and the calibration result is more accurate.
  • Figure 1 is a comparison diagram of the number of points obtained by the traditional method and the method of the present invention in the test experiment.
  • a three-dimensional point cloud calculation method based on single and binocular hybrid measurement including the following steps:
  • f xl , f yl are the focal length of the left camera, (u 0l , v 0l ) are the main point coordinates; f xr , f yr are the focal length, (u 0r , v 0r ) are the main point coordinates;
  • the projector projects the sinusoidal fringes onto the surface of the object to be measured.
  • the left and right cameras collect the modulated fringe images to obtain the left camera image and the right camera image.
  • the left camera image and the right camera image are calculated by the method of phase shift combined with multi-frequency heterodyne
  • the absolute phase of the left camera image and the right camera image is calculated by the Gray code method
  • step S3 Repeat step S2 to traverse all effective image points and complete the three-dimensional point cloud calculation on the surface of the measured object.
  • the Zhang calibration method is adopted for the calibration process of the left and right cameras and the projector;
  • the calibration process of the left and right cameras and the projector adopts the beam adjustment calibration method, and the calibration process is as follows:
  • the calibration board includes multiple standard circles.
  • the center coordinates of the standard circles in the left and right camera images are calculated respectively; the matching relationship between the image points in the left and right cameras is established ;
  • the projector projects multiple horizontal and vertical fringe images onto the calibration board, and simultaneously triggers the left and right cameras to collect multiple projected calibration board images;
  • the calibration results include the internal parameter matrix, distortion coefficient, and external parameter matrix of the projector and left and right cameras; the error equation of the beam adjustment is listed based on the collinear equation:
  • V i At+Dk-L
  • A is the partial derivative matrix of the internal parameter matrix correction of the projector and the left and right cameras
  • t is the internal parameter matrix correction of the projector and the left and right cameras
  • k is the external matrix of the projector and the left and right cameras.
  • the correction amount of the parameter matrix D is the partial derivative matrix of the external parameter matrix of the projector and the left and right cameras
  • L is the two-dimensional coordinates on the image plane of the left camera, the right camera, and the projector, and the three-dimensional coordinates of the calibration board are converted to The difference between the coordinates of the image plane;

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un procédé informatique en nuage de points tridimensionnel basé sur une mesure hybride à caméra unique et à caméra double. Pour un système de mesure de balayage tridimensionnel, deux caméras et un projecteur sont d'abord étalonnés, et des paramètres intrinsèques et extrinsèques et une matrice de base des trois sont acquis ; lorsqu'un nuage de points sur la surface d'un objet à mesurer est calculé, des informations de nuage de points sont acquises à l'aide d'un procédé d'appariement de lignes épipolaires binoculaires ; et lorsque le champ de vision de l'une des caméras est bloqué ou surexposé, un nuage de points tridimensionnel d'une partie ombrée peut être résolu par une seule caméra et le projecteur, assurant l'intégrité de données de nuage de points tridimensionnel dudit objet. De plus, en plus du champ de vision commun, une résolution de nuage de points tridimensionnel dans la plage d'un champ de vision indépendant de la caméra unique est ajoutée, de sorte que davantage d'informations de surface dudit objet puissent être obtenues une fois, ayant une valeur pratique.
PCT/CN2019/098678 2019-03-29 2019-07-31 Procédé informatique en nuage de points tridimensionnel basé sur une mesure hybride à caméra unique et à caméra double WO2020199439A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910247867.X 2019-03-29
CN201910247867.XA CN110044301B (zh) 2019-03-29 2019-03-29 基于单双目混合测量的三维点云计算方法

Publications (1)

Publication Number Publication Date
WO2020199439A1 true WO2020199439A1 (fr) 2020-10-08

Family

ID=67275555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098678 WO2020199439A1 (fr) 2019-03-29 2019-07-31 Procédé informatique en nuage de points tridimensionnel basé sur une mesure hybride à caméra unique et à caméra double

Country Status (2)

Country Link
CN (1) CN110044301B (fr)
WO (1) WO2020199439A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044301B (zh) * 2019-03-29 2020-05-05 易思维(天津)科技有限公司 基于单双目混合测量的三维点云计算方法
CN110880185B (zh) 2019-11-08 2022-08-12 南京理工大学 基于条纹投影的高精度动态实时360度全方位点云获取方法
CN111023994B (zh) * 2020-01-11 2023-06-23 武汉玄景科技有限公司 一种基于多重测量的光栅三维扫描方法及系统
CN112002016B (zh) * 2020-08-28 2024-01-26 中国科学院自动化研究所 基于双目视觉的连续曲面重建方法、系统和装置
CN115063468B (zh) * 2022-06-17 2023-06-27 梅卡曼德(北京)机器人科技有限公司 双目立体匹配方法、计算机存储介质以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233138A (ja) * 2003-01-29 2004-08-19 Kurabo Ind Ltd 写真測量における計測点の対応付け方法及び装置
CN102032878A (zh) * 2009-09-24 2011-04-27 甄海涛 基于双目立体视觉测量系统的精确在线测量方法
CN102654391A (zh) * 2012-01-17 2012-09-05 深圳大学 基于光束平差原理的条纹投影三维测量系统及其标定方法
CN102721376A (zh) * 2012-06-20 2012-10-10 北京航空航天大学 一种大视场三维视觉传感器的标定方法
CN104835158A (zh) * 2015-05-05 2015-08-12 中国人民解放军国防科学技术大学 基于格雷码结构光与极线约束的三维点云获取方法
CN110044301A (zh) * 2019-03-29 2019-07-23 易思维(天津)科技有限公司 基于单双目混合测量的三维点云计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233138A (ja) * 2003-01-29 2004-08-19 Kurabo Ind Ltd 写真測量における計測点の対応付け方法及び装置
CN102032878A (zh) * 2009-09-24 2011-04-27 甄海涛 基于双目立体视觉测量系统的精确在线测量方法
CN102654391A (zh) * 2012-01-17 2012-09-05 深圳大学 基于光束平差原理的条纹投影三维测量系统及其标定方法
CN102721376A (zh) * 2012-06-20 2012-10-10 北京航空航天大学 一种大视场三维视觉传感器的标定方法
CN104835158A (zh) * 2015-05-05 2015-08-12 中国人民解放军国防科学技术大学 基于格雷码结构光与极线约束的三维点云获取方法
CN110044301A (zh) * 2019-03-29 2019-07-23 易思维(天津)科技有限公司 基于单双目混合测量的三维点云计算方法

Also Published As

Publication number Publication date
CN110044301B (zh) 2020-05-05
CN110044301A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2020199439A1 (fr) Procédé informatique en nuage de points tridimensionnel basé sur une mesure hybride à caméra unique et à caméra double
CN111750806B (zh) 一种多视角三维测量系统及方法
CN110514143B (zh) 一种基于反射镜的条纹投影系统标定方法
CN110288642B (zh) 基于相机阵列的三维物体快速重建方法
CN105716542B (zh) 一种基于柔性特征点的三维数据拼接方法
CN109919911B (zh) 基于多视角光度立体的移动三维重建方法
CN110378969B (zh) 一种基于3d几何约束的汇聚式双目相机标定方法
CN110793464B (zh) 大视场条纹投影视觉三维测量系统和方法
CN110375648A (zh) 棋盘格靶标辅助的单台相机实现的空间点三维坐标测量方法
CN109272555B (zh) 一种rgb-d相机的外部参数获得及标定方法
WO2018201677A1 (fr) Procédé et dispositif d'étalonnage basé sur un réglage de faisceau pour un système d'imagerie tridimensionnelle contenant une lentille télécentrique
CN111091599B (zh) 一种基于球体标定物的多相机-投影仪系统标定方法
CN107610183B (zh) 一种条纹投影相位高度转换映射模型的标定方法
CN109307483A (zh) 一种基于结构光系统几何约束的相位展开方法
CN110349257B (zh) 一种基于相位伪映射的双目测量缺失点云插补方法
CN112229323B (zh) 基于手机单目视觉的棋盘格合作目标的六自由度测量方法及其应用
CN114111637A (zh) 一种基于虚拟双目的条纹结构光三维重建方法
CN113724337B (zh) 一种无需依赖云台角度的相机动态外参标定方法及装置
CN112489109B (zh) 一种三维成像系统方法、装置及三维成像系统
CN106500625A (zh) 一种远心立体视觉测量装置及其应用于物体三维形貌微米级精度测量的方法
CN114219866A (zh) 双目结构光三维重建方法、重建系统及重建设备
CN112164119A (zh) 一种适用于狭小空间的环绕放置多摄像机系统标定方法
CN112465914B (zh) 基于非共同视场下的相机阵列标定方法
CN113865514B (zh) 一种线结构光三维测量系统标定方法
CN114037768A (zh) 一种多套跟踪式扫描仪联合标定的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922364

Country of ref document: EP

Kind code of ref document: A1