WO2020199232A1 - 低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法 - Google Patents

低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法 Download PDF

Info

Publication number
WO2020199232A1
WO2020199232A1 PCT/CN2019/081830 CN2019081830W WO2020199232A1 WO 2020199232 A1 WO2020199232 A1 WO 2020199232A1 CN 2019081830 W CN2019081830 W CN 2019081830W WO 2020199232 A1 WO2020199232 A1 WO 2020199232A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesite
calcination
low
light
grade
Prior art date
Application number
PCT/CN2019/081830
Other languages
English (en)
French (fr)
Inventor
姚金
印万忠
郝晓宇
杨斌
班小淇
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020199232A1 publication Critical patent/WO2020199232A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling

Definitions

  • the invention relates to the technical field of mineral resources processing, in particular to a method for preparing high-purity light-burned magnesia by calcining, decalcifying and removing silicon from low-grade magnesite.
  • Magnesite is a carbonate mineral with high industrial value, and it is a dominant mineral resource in my country. After years of mining, the current high-grade magnesite can no longer meet the production needs, and the low-grade magnesite also contains some gangue minerals such as dolomite and quartz. For magnesite beneficiation, gangue minerals are mainly removed to achieve the removal of CaO. , SiO 2 and other impurities to obtain high purity MgO. Dolomite is the main calcium-containing impurity mineral in magnesite. Its existence will cause the formation of CaSiO 3 in the subsequent high-temperature calcination process, which will easily loosen after cooling and affect the properties of light-burned magnesia.
  • Dolomite and magnesite are both carbonate minerals. They have exactly the same anions and part of the same cations. Their crystal structure and surface properties are very close. They are very difficult to separate by flotation. Therefore, the high content of dolomite and quartz The comprehensive utilization of calcium, high silicon, and low-grade magnesite is a worldwide problem. In particular, the effective industrial removal of dolomite and quartz in magnesite needs to be further resolved.
  • the determination of magnesite beneficiation method is closely related to the cause and form of mineralization and impurity composition.
  • the industrial purification of low-grade magnesite and the preparation of light-burned magnesia products are mainly through flotation and calcination-acid leaching-recalcination methods, which have complex process flow, high production costs, serious environmental pollution, and waste of energy.
  • the present invention proposes a method for preparing high-purity light-burned magnesia by calcination, decalcification and silicon removal from low-grade magnesite.
  • the method is a method for preparing high-purity magnesite with low-grade high-silicon, high-calcium magnesite.
  • the method of light-burning magnesia adopts the steps of cleaning, crushing and classification, calcination pretreatment, selective grinding, size classification, and air separation purification steps to prepare high-purity light-burning magnesia, which can effectively solve the problems of magnesite and dolomite Quartz is difficult to separate, and it completely improves the existing high-purity magnesium oxide production process consumes strong acid and environmental pollution problems.
  • the method for preparing high-purity light-burned magnesia by calcining, decalcifying and removing silicon from low-grade magnesite of the present invention includes the following steps:
  • the low-grade magnesite includes the components and the mass percentages of each component respectively: the mass percentage of magnesite is 30-95%, the mass percentage of main impurity dolomite is 2-30%, and the mass percentage of quartz is 2 ⁇ 35%, the balance is other mineral impurities;
  • Step 2 Crushing and grading
  • Step 3 Perform separate processing for different particle sizes:
  • the calcination equipment Put the magnesite powder with a particle size of 2.5-20mm into the calcination equipment, control the calcination temperature to 600-700°C, and the calcination time for 1 to 2.5h.
  • the magnesite is completely decomposed, and the dolomite and quartz are not decomposed.
  • a mixture of magnesite, dolomite, and quartz; among them, the calcining equipment is one of muffle furnace, rotary kiln, calciner or boiling furnace;
  • the grinding products are sieved and classified to obtain -0.074mm particle size grinding products
  • the calcination temperature is 570 ⁇ 670°C
  • the calcination time is 0.5 ⁇ 2h to obtain the light calcined magnesia recovered by suspension calcination
  • the -0.074mm particle size grinding product and the light-burned magnesia recovered by suspension calcination are purified by wind separation, and finally a high-purity light-burned magnesia product is prepared.
  • the wear-resistant ball mill is preferably a ceramic ball mill.
  • the selective grinding time is 1 to 6 minutes.
  • step 3 (1), 3) 18 mesh, 35 mesh, 60 mesh, 100 mesh, 150 mesh, 200 mesh standard sieve is used for sieving for 10-20 minutes.
  • the blowing and calcination of the suspension furnace is to introduce air, the air flow rate is 500-1200 mL/s, and the air feeding direction is perpendicular to the feeding direction.
  • the high-purity light-burned magnesia product prepared by the invention has a purity of more than 99 wt.%.
  • the recovery rate is more than 76%.
  • the method for preparing high-purity light burnt magnesia by calcining, decalcifying and removing silicon from low-grade magnesite of the present invention has the following advantages:
  • the invention can realize the high-efficiency comprehensive utilization of low-grade, high-silicon, high-calcium magnesite, and realize the effective separation of magnesite and dolomite.
  • different calcination equipment can be used flexibly, and coarse-grained magnesite Calcination pretreatment-selective grinding-grain classification-wind separation purification process is adopted, and the fine-grained magnesite adopts suspension calcination-wind separation purification process.
  • the process is simple and the energy consumption of magnesite crushing and grinding is significantly reduced. ,Green.
  • the present invention adopts the calcination pretreatment of different particle sizes respectively, and selectively grinds the calcined product of 2.5-20mm magnesite powder.
  • the light generated by thermal decomposition of magnesite Burned magnesia is porous, brittle, and loose particles, while gangue minerals such as dolomite and quartz are basically not decomposed, so the texture is hard.
  • the ball milling parameters the light burned magnesia is refined, and after sieving, Dolomite and quartz are separated to achieve the effect of decalcification to produce silicon, which is purified by subsequent winnowing to obtain high-purity light-burned magnesia.
  • the process of crushing first, pre-calcining, and then grinding and air separation has lower energy consumption than the process of crushing, grinding and calcining.
  • the calcination temperature (600-700°C) of the present invention is lower, the energy consumption is lower, and the separation effect is better.
  • the prepared light-burned magnesia powder It has higher activity, especially for dolomite, which is very similar to magnesite in crystal structure and properties and is difficult to separate. The effect is particularly obvious. .
  • a method for preparing high-purity light burned magnesia by calcining, decalcifying and removing silicon from low-grade magnesite includes the following steps:
  • magnesite containing dolomite and quartz with a purity of 51wt.% magnesite as raw materials cleaning is carried out to remove surface mud and fine-grained minerals to obtain cleaned low-grade magnesite; among them, the magnesite
  • the mass percentage of magnesite is 51%
  • the mass percentage of dolomite is 30%
  • the mass percentage of quartz is 19%.
  • the cleaned low-grade magnesite is crushed by a jaw crusher to obtain magnesite powder with a particle size of 0.1-20 mm, and the magnesite powder is classified to obtain magnesite powder of different particle sizes;
  • a magnesite calcined product a mixture of decomposed magnesite, dolomite, and quartz.
  • the mixture of decomposed magnesite, dolomite, and quartz is ground by a ceramic ball mill, and the grinding time is controlled at 5 minutes.
  • the ceramic ball volume filling rate in the ceramic ball mill is 30%.
  • the ratio of 15mm, 10mm, and 5mm ceramic balls is 1:2:3:4, and the speed of the ball mill is 60r/min.
  • the grinding products are sieved with 18 mesh, 35 mesh, 60 mesh, 100 mesh, 150 mesh, and 200 mesh standard sieve vibrating sieve for 15 minutes to obtain a fine-grained light-burned magnesia product.
  • the low-grade magnesite powder of 0.1 ⁇ 2.5mm fine-grained grade is blown and calcined through a suspension furnace.
  • the suspension calcination temperature is 650°C
  • the calcination time is 1.5h
  • the air flow rate is 700 ⁇ 900mL/min into the suspension furnace.
  • the air feeding direction is perpendicular to the feeding direction, and the light-burned magnesia product recovered by suspension calcination is obtained.
  • the fine-grained light calcined magnesia product and the light calcined magnesia product recovered by suspension calcination are mixed, and then purified by a winnowing equipment, and further purified to obtain a light calcined magnesia with a purity of 99 wt.% and a recovery rate of 80%.
  • a method for preparing high-purity light burned magnesia by calcining, decalcifying and removing silicon from low-grade magnesite includes the following steps:
  • magnesite containing dolomite and quartz with a purity of 45 wt.% of magnesite as raw materials cleaning is carried out to remove surface mud and fine-grained minerals to obtain cleaned low-grade magnesite; among them, magnesite ore Among them, the mass percentage of magnesite is 45%, the mass percentage of dolomite is 20%, and the mass percentage of quartz is 35%.
  • the cleaned low-grade magnesite is crushed by a jaw crusher to obtain magnesite powder with a particle size of 0.1-20 mm, and the magnesite powder is classified to obtain magnesite powder of different particle sizes;
  • the magnesite calcined product a mixture of decomposed magnesite, dolomite, and quartz.
  • the decomposed mixture of magnesite, dolomite, and quartz is ground by a ceramic ball mill, and the grinding time is controlled at 3 minutes.
  • the volumetric filling rate of ceramic balls is 30%.
  • the number ratio, 30mm, 15mm The ratio of 10mm and 5mm ceramic balls is 1:2:3:6, and the speed of the ball mill is 60r/min.
  • the grinding products are sieved with 18 mesh, 35 mesh, 60 mesh, 100 mesh, 150 mesh, and 200 mesh standard sieve vibrating sieve for 15 minutes to obtain a fine-grained light-burned magnesia product.
  • the low-grade magnesite powder of 0.1 ⁇ 2.5mm fine-grained grade is blown and calcined through a suspension furnace.
  • the suspension calcination temperature is 650°C
  • the calcination time is 1.75h
  • the flow rate is 700 ⁇ 900mL/min. Air
  • the air feeding direction is perpendicular to the feeding direction, and the light calcined magnesium oxide product recovered by suspension calcination is obtained.
  • the fine-grained light calcined magnesia product and the light calcined magnesia product recovered by suspension calcination are mixed, and then purified by a winnowing equipment, and further purified to obtain the light calcined magnesia with a purity of 99 wt.% and a recovery rate of 76%.
  • a method for preparing high-purity light burned magnesia by calcining, decalcifying and removing silicon from low-grade magnesite includes the following steps:
  • magnesite with a purity of 70wt.% of magnesite containing dolomite and quartz as raw materials for cleaning to remove surface mud and fine-grained minerals to obtain cleaned low-grade magnesite; among them, the magnesite ore is The mass percentage of magnesite is 70%, the mass percentage of dolomite is 28%, and the mass percentage of quartz is 2%.
  • the cleaned low-grade magnesite is crushed by a jaw crusher to obtain magnesite powder with a particle size of 0.1-20 mm, and the magnesite powder is classified to obtain magnesite powder of different particle sizes;
  • the grinding products are sieved with 18 mesh, 35 mesh, 60 mesh, 100 mesh, 150 mesh, and 200 mesh standard sieve vibrating sieve for 15 minutes to obtain a fine-grained light-burned magnesia product.
  • the low-grade magnesite powder of 0.1 ⁇ 2.5mm fine-grained grade is blown and calcined in a suspension furnace. After the suspension calcination temperature is 650°C, the calcination time is 1.5h, and the air flow rate is 700 ⁇ 900mL/ min, the air feeding direction is perpendicular to the feeding direction, and the light-burned magnesium oxide product recovered by suspension calcination is obtained.
  • the fine-grained light calcined magnesia product and the light calcined magnesia product recovered by suspension calcination are mixed, and then purified by a winnowing equipment, and further purified to obtain light calcined magnesia with a purity of 99 wt.% and a recovery rate of 86%.
  • a method for preparing high-purity light burned magnesia by calcining, decalcifying and removing silicon from low-grade magnesite includes the following steps:
  • magnesite purity of 95wt.% containing dolomite, quartz magnesite ore, raw materials, cleaned to remove surface mud and fine-grained minerals, to obtain cleaned low-grade magnesite; among them, magnesite ore
  • the mass percentage of magnesite is 95%, the mass percentage of dolomite is 2%, and the mass percentage of quartz is 3%.
  • the cleaned low-grade magnesite is crushed by a jaw crusher to obtain magnesite powder with a particle size of 0.1-20 mm, and the magnesite powder is classified to obtain magnesite powder of different particle sizes;
  • the magnesite calcined product a mixture of decomposed magnesite, dolomite, and quartz.
  • the decomposed mixture of magnesite, dolomite, and quartz is ground by a ceramic ball mill, and the grinding time is controlled at 1 min.
  • the volumetric filling rate of ceramic balls is 25%. According to the number ratio, 30mm, The ratio of 15mm, 10mm, and 5mm ceramic balls is 1:2:3:5, and the speed of the ball mill is 70r/min.
  • the grinding products are sieved with 18 mesh, 35 mesh, 60 mesh, 100 mesh, 150 mesh, and 200 mesh standard sieve vibrating sieve for 15 minutes to obtain a fine-grained light-burned magnesia product.
  • the low-grade magnesite powder of 0.1-2.5mm fine-grained grade is blown and calcined in a suspension furnace. After the suspension calcination temperature is 600°C, the calcination time is 0.5h, and the air flow rate is 500-700mL/ min, the air feeding direction is perpendicular to the feeding direction, and the light-burned magnesium oxide product recovered by suspension calcination is obtained.
  • the fine-grained light calcined magnesia product and the light calcined magnesia product recovered by suspension calcination are mixed, and then purified by a winnowing equipment, and further purified to obtain a light calcined magnesia with a purity of 99 wt.% and a recovery rate of 82%.
  • a method for preparing high-purity light burned magnesia by calcining, decalcifying and removing silicon from low-grade magnesite includes the following steps:
  • the mass percentage of magnesite is 30%
  • the mass percentage of dolomite is 30%
  • the mass percentage of quartz is 35%
  • the balance is other mineral impurities.
  • the cleaned low-grade magnesite is crushed by a jaw crusher to obtain magnesite powder with a particle size of 0.1-20 mm, and the magnesite powder is classified to obtain magnesite powder of different particle sizes;
  • magnesite powder with a particle size of 2.5-20 mm place it in a boiling furnace and calcinate at 700°C for 1 hour to obtain the magnesite calcined product—a mixture of decomposed magnesite, dolomite, and quartz, which will be decomposed
  • the latter mixture of magnesite, dolomite, and quartz is ground by a ceramic ball mill, and the grinding time is controlled at 3 minutes.
  • the volumetric filling rate of ceramic balls is 35%. According to the number ratio, 30mm, 15mm, The ratio of 10mm and 5mm ceramic balls is 1:2:3:, 5, and the speed of the ball mill is 50r/min.
  • the grinding products are sieved with 18 mesh, 35 mesh, 60 mesh, 100 mesh, 150 mesh, and 200 mesh standard sieve vibrating sieve for 15 minutes to obtain a fine-grained light-burned magnesia product.
  • the low-grade magnesite powder of 0.1 ⁇ 2.5mm fine-grained grade is blown and calcined through a suspension furnace. After the suspension calcination temperature is 570°C, the calcination time is 2h, and the air flow rate is 1000 ⁇ 1200mL/min. , The air feeding direction is perpendicular to the feeding direction, and the light-burned magnesia product recovered by suspension calcination is obtained.
  • the fine-grained light calcined magnesia product and the light calcined magnesia product recovered by suspension calcination are mixed, and then purified by a winnowing equipment, and further purified to obtain a light calcined magnesia with a purity of 99 wt.% and a recovery rate of 86%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

提供一种低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,该方法包括:对含白云石和石英的低品位菱镁矿进行清洗,破碎,对于粒级为2.5~20mm的菱镁矿粉,在600~700℃煅烧1~2.5h,得到分解后的菱镁矿、白云石、石英的混合物,再进行选择性磨矿,磨矿产物进行筛分分级,得到-0.074mm粒级磨矿产物;对于粒级为0.1~2.5mm的菱镁矿粉放入悬浮炉吹风煅烧,在570~670℃煅烧0.5~2h,得到悬浮煅烧回收的轻烧镁;将磨矿产物和悬浮煅烧的轻烧镁再进行风选提纯,最终制备高纯轻烧镁产品。该方法能有效解决菱镁矿与白云石和石英难分离,并彻底改善现有的高纯氧化镁生产过程消耗强酸以及环境污染的问题。

Description

低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法 技术领域
本发明涉及矿产资源加工技术领域,特别涉及一种低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法。
背景技术
菱镁矿是一种高工业价值的碳酸盐矿物,是我国优势矿产资源。经过多年开采,现在的高品位菱镁矿已经不能满足生产需要,而低品位菱镁矿,也含有一些白云石和石英等脉石矿物,对菱镁矿选矿主要是去除脉石矿物而达到去除CaO、SiO 2等杂质,得到纯度高的MgO。白云石是菱镁矿中主要的含钙杂质矿物,它的存在会使得后续高温煅烧过程中形成CaSiO 3,冷却后易松离而影响轻烧氧化镁性质。白云石和菱镁矿同属于碳酸盐矿物,具有完全相同的阴离子和部分相同的阳离子,其晶体结构和表面性质十分接近,十分难以浮选分离,因此,含白云石和石英等脉石矿物的高钙高硅低品位菱镁矿的综合利用是一世界性难题,尤其是,菱镁矿中,白云石和石英在工业上的有效去除有待进一步解决。
菱镁矿选矿方法的确定和成矿原因和形式、杂质成分密切相关。目前,工业上提纯低品位菱镁矿以及制备轻烧氧化镁产品主要通过浮选和煅烧-酸浸-再煅烧的方法,工艺流程复杂,生产成本高,环境污染严重,浪费能源。
发明概述
技术问题
问题的解决方案
技术解决方案
针对现有技术存在的问题,本发明提出一种低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,该方法是一种低品位高硅高钙菱镁矿制备高纯轻烧氧化镁的方法,其采用清洗、破碎分级、煅烧预处理、选择性磨矿、粒级分级、风选提纯步骤,制备高纯轻烧氧化镁,其能有效解决菱镁矿与白云石和石英难分离、并彻底改善现有的高纯氧化镁生产过程消耗强酸以及环境污染问题。
本发明采用以下技术方案实现:
本发明的低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,包括以下步骤:
步骤一:清洗
以低品位菱镁矿为原料,清洗,去除表面泥质和微细粒矿物,得到清洗后的低品位菱镁矿;
所述的低品位菱镁矿,包括的成分及各个成分的质量百分数分别为:菱镁矿的质量百分数为30~95%,主要杂质白云石质量百分数为2~30%,石英质量百分数为2~35%,余量为其他矿物杂质;
步骤二:破碎分级
将清洗后的低品位菱镁矿进行破碎,得到粒级为0.1~20mm的菱镁矿粉,对菱镁矿粉进行分级,得到不同粒级的菱镁矿粉;
步骤三:针对不同粒级进行分别处理:
(1)对于粒级为2.5~20mm的菱镁矿粉进行处理
1)煅烧预处理
将粒级为2.5~20mm的菱镁矿粉放入煅烧设备中,控制煅烧温度为600~700℃,煅烧时间为1~2.5h,菱镁矿完全分解,白云石和石英未分解,得到分解后的菱镁矿、白云石、石英的混合物;其中,煅烧设备为马弗炉、回转炉、煅烧炉或沸腾炉中的一种;
2)选择性磨矿
将分解后的菱镁矿、白云石、石英的混合物置于耐磨球磨机中,进行选择性磨矿,得到磨矿产物;
球磨机中,陶瓷球的体积充填率为25~35%,按个数比,30mm粒级陶瓷球、15mm粒级陶瓷球、10mm粒级陶瓷球、5mm粒级陶瓷球=1∶2∶3∶(4~6),球磨机转速50~70r/min;
3)粒级分级
将磨矿产物进行筛分分级,得到-0.074mm粒级磨矿产物;
(2)对于粒级为0.1~2.5mm的菱镁矿粉进行煅烧预处理
将粒级为0.1~2.5mm的菱镁矿粉放入悬浮炉吹风煅烧,煅烧温度为570~670℃,煅烧时间为0.5~2h,得到悬浮煅烧回收的轻烧氧化镁;
步骤四:风选提纯
将-0.074mm粒级磨矿产物和悬浮煅烧回收的轻烧氧化镁进行风选提纯,最终制备高纯轻烧氧化镁产品。
所述的步骤三(1)的2)中,耐磨球磨机优选为陶瓷球磨机。
所述的步骤三(1)的2)中,选择性磨矿时间为1~6min。
所述的步骤三(1)的3)中,依次采用18目、35目、60目、100目、150目、200目标准筛振动筛筛分10~20min。
所述的步骤三(2)中,所述的悬浮炉吹风煅烧,为通入空气,空气流量为500~1200mL/s,空气给入方向垂直给料方向。
本发明制备的高纯轻烧氧化镁产品,其纯度为99wt.%以上。
所述的低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法中,回收率为76%以上。
发明的有益效果
有益效果
与现有的技术相比,本发明的低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,其优点是:
1、本发明能够实现低品位高硅高钙菱镁矿高效综合利用,实现菱镁矿与白云石的有效分离,根据破碎产物粒级的不同,灵活采用不同煅烧设备,粗粒级菱镁矿采取煅烧预处理-选择性磨矿-粒级分级-风选提纯工艺方法,细粒级菱镁矿采取悬浮煅烧-风选提纯的工艺方法,工艺简单,显著减少菱镁矿破碎磨矿能耗,绿色环保。
2、本发明采用对不同粒级分别进行煅烧预处理,对2.5~20mm粒级的菱镁矿粉煅烧后的产物进行选择性磨矿,通过控制煅烧参数,因为菱镁矿热分解生成的轻烧氧化镁是多孔、质地脆、疏松的颗粒,而白云石和石英等脉石矿物基本未分解,因而质地坚硬,再通过控制球磨参数,轻烧氧化镁粒级细化,经过筛分后,与白云石和石英分开,达到脱钙出硅的作用,通过后续风选进行提纯,得 到高纯轻烧氧化镁。
3、本发明通过先破碎,在进行煅烧预处理,再磨矿风选的工艺,相比于先破碎、磨矿再煅烧的工艺,其能耗低。
4、本发明相比于传统的热选法(800~1000℃),本发明的煅烧温度(600~700℃)更低,耗能较小,分离效果更好,制备的轻烧氧化镁粉活性更高,特别是针对白云石这种和菱镁矿晶体结构和性质十分相近难以分离的物质,效果特别明显。。
发明实施例
本发明的实施方式
下面结合实施例对本发明作进一步的详细说明。
实施例1
一种低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,包括以下步骤:
步骤一:清洗
采用菱镁矿纯度为51wt.%的含白云石、石英的菱镁矿石为原料,进行清洗,去除表面泥质和微细粒矿物,得到清洗后的低品位菱镁矿;其中,菱镁矿石中,菱镁矿的质量百分数为51%,白云石的质量百分数为30%,石英的质量百分数为19%。
步骤二:破碎
将清洗后的低品位菱镁矿,经颚式破碎机破碎,得到粒级为0.1~20mm的菱镁矿粉,对菱镁矿粉进行分级,得到不同粒级的菱镁矿粉;
步骤三:煅烧预处理
针对不同粒级进行煅烧处理:
(1)对2.5~20mm粒级的菱镁矿粉,置于马弗炉中,在650℃煅烧2h,得到菱镁矿煅烧产物——分解后的菱镁矿、白云石、石英的混合物,将分解后的菱镁矿、白云石、石英的混合物经陶瓷球磨机进行磨矿,磨矿时间控制在5min,其中,陶瓷球磨机中,陶瓷球体积充填率为30%,按个数比,30mm、15mm、10mm、5mm粒级陶瓷球配比为1∶2∶3∶4,球磨机转速为60r/min。磨矿后,将磨矿产物依次使用18目、35目、60目、100目、150目、200目标准筛振动筛筛分15min,得到 细粒级轻烧氧化镁产品。
(2)将0.1~2.5mm细粒级的低品位菱镁矿粉,经过悬浮炉吹风煅烧,其中,悬浮煅烧温度650℃、煅烧时间1.5h,向悬浮炉通入空气流量700~900mL/min,空气给入方向和给料方向垂直,得到悬浮煅烧回收的轻烧氧化镁产品。
步骤四:风选提纯
将细粒级轻烧氧化镁产品和悬浮煅烧回收的轻烧氧化镁产品,混合,再经风选设备提纯,进一步提纯获得纯度为99wt.%,回收率80%的轻烧氧化镁。
实施例2
一种低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,包括以下步骤:
步骤一:清洗
采用菱镁矿纯度为45wt.%的含白云石、石英的菱镁矿石,为原料,进行清洗,去除表面泥质和微细粒矿物,得到清洗后的低品位菱镁矿;其中,菱镁矿石中,菱镁矿的质量百分数为45%,白云石的质量百分数为20%,石英的质量百分数为35%。
步骤二:破碎
将清洗后的低品位菱镁矿,经颚式破碎机破碎,得到粒级为0.1~20mm的菱镁矿粉,对菱镁矿粉进行分级,得到不同粒级的菱镁矿粉;
步骤三:煅烧预处理
针对不同粒级进行煅烧处理:
(1)对2.5~20mm粒级的菱镁矿粉,置于煅烧炉中,在650℃煅烧2h,得到菱镁矿煅烧产物——分解后的菱镁矿、白云石、石英的混合物,将分解后的菱镁矿、白云石、石英的混合物经陶瓷球磨机进行磨矿,磨矿时间控制在3min,其中,陶瓷球磨机中,陶瓷球体积充填率为30%,按个数比,30mm、15mm、10mm、5mm粒级陶瓷球配比为1∶2∶3∶6,球磨机转速为60r/min。磨矿后,将磨矿产物依次使用18目、35目、60目、100目、150目、200目标准筛振动筛筛分15min,得到细粒级轻烧氧化镁产品。
(2)将0.1~2.5mm细粒级的低品位菱镁矿粉,经过悬浮炉吹风煅烧,其中,悬浮煅烧温度650℃、煅烧时间1.75h,向悬浮炉通入流量700~900mL/min的空气, 空气给入方向和给料方向垂直,得到悬浮煅烧回收的轻烧氧化镁产品。
步骤四:风选提纯
将细粒级轻烧氧化镁产品和悬浮煅烧回收的轻烧氧化镁产品,混合,再经风选设备提纯,进一步提纯获得纯度为99wt.%,回收率76%的轻烧氧化镁。
实施例3
一种低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,包括以下步骤:
步骤一:清洗
采用菱镁矿纯度为70wt.%的含白云石、石英的菱镁矿石,原料,进行清洗,去除表面泥质和微细粒矿物,得到清洗后的低品位菱镁矿;其中,菱镁矿石中,菱镁矿的质量百分数为70%,白云石的质量百分数为28%,石英的质量百分数为2%。
步骤二:破碎
将清洗后的低品位菱镁矿,经颚式破碎机破碎,得到粒级为0.1~20mm的菱镁矿粉,对菱镁矿粉进行分级,得到不同粒级的菱镁矿粉;
步骤三:煅烧预处理
针对不同粒级进行煅烧处理:
(1)对2.5~20mm粒级的菱镁矿粉,置于回转炉中,在650℃煅烧2h。得到菱镁矿煅烧产物——分解后的菱镁矿、白云石、石英的混合物,将分解后的菱镁矿、白云石、石英的混合物经陶瓷球磨机进行磨矿,磨矿时间控制在3min,其中,陶瓷球磨机中,陶瓷球体积充填率为30%,按个数比,30mm、15mm、10mm、5mm粒级陶瓷球配比为1∶2∶3∶6,球磨机转速为60r/min。磨矿后,将磨矿产物依次使用18目、35目、60目、100目、150目、200目标准筛振动筛筛分15min,得到细粒级轻烧氧化镁产品。(2)将0.1~2.5mm细粒级的低品位菱镁矿粉,经过悬浮炉吹风煅烧,其中,经悬浮煅烧温度650℃、煅烧时间1.5h,向悬浮炉通入空气流量700~900mL/min,空气给入方向和给料方向垂直,得到悬浮煅烧回收的轻烧氧化镁产品。
步骤四:风选提纯
将细粒级轻烧氧化镁产品和悬浮煅烧回收的轻烧氧化镁产品,混合,再经风选 设备提纯,进一步提纯获得纯度为99wt.%,回收率86%的轻烧氧化镁。
实施例4
一种低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,包括以下步骤:
步骤一:清洗
采用菱镁矿纯度为95wt.%的含白云石、石英的菱镁矿石,原料,进行清洗,去除表面泥质和微细粒矿物,得到清洗后的低品位菱镁矿;其中,菱镁矿石中,菱镁矿的质量百分数为95%,白云石的质量百分数为2%,石英的质量百分数为3%。
步骤二:破碎
将清洗后的低品位菱镁矿,经颚式破碎机破碎,得到粒级为0.1~20mm的菱镁矿粉,对菱镁矿粉进行分级,得到不同粒级的菱镁矿粉;
步骤三:煅烧预处理
针对不同粒级进行煅烧处理:
(1)对2.5~20mm粒级的菱镁矿粉,置于回转炉中,在630℃煅烧2.5h,得到菱镁矿煅烧产物——分解后的菱镁矿、白云石、石英的混合物,将分解后的菱镁矿、白云石、石英的混合物经陶瓷球磨机进行磨矿,磨矿时间控制在1min,其中,陶瓷球磨机中,陶瓷球体积充填率为25%,按个数比,30mm、15mm、10mm、5mm粒级陶瓷球配比为1∶2∶3∶5,球磨机转速为70r/min。磨矿后,将磨矿产物依次使用18目、35目、60目、100目、150目、200目标准筛振动筛筛分15min,得到细粒级轻烧氧化镁产品。(2)将0.1~2.5mm细粒级的低品位菱镁矿粉,经过悬浮炉吹风煅烧,其中,经悬浮煅烧温度600℃、煅烧时间0.5h,向悬浮炉通入空气流量500~700mL/min,空气给入方向和给料方向垂直,得到悬浮煅烧回收的轻烧氧化镁产品。
步骤四:风选提纯
将细粒级轻烧氧化镁产品和悬浮煅烧回收的轻烧氧化镁产品,混合,再经风选设备提纯,进一步提纯获得纯度为99wt.%,回收率82%的轻烧氧化镁。
实施例5
一种低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,包括以下步骤:
步骤一:清洗
采用菱镁矿纯度为30wt.%的含白云石、石英的菱镁矿石,原料,进行清洗,去除表面泥质和微细粒矿物,得到清洗后的低品位菱镁矿;其中,菱镁矿石中,菱镁矿的质量百分数为30%,白云石的质量百分数为30%,石英的质量百分数为35%,余量为其他矿物杂质。
步骤二:破碎
将清洗后的低品位菱镁矿,经颚式破碎机破碎,得到粒级为0.1~20mm的菱镁矿粉,对菱镁矿粉进行分级,得到不同粒级的菱镁矿粉;
步骤三:煅烧预处理
针对不同粒级进行煅烧处理:
(1)对2.5~20mm粒级的菱镁矿粉,置于沸腾炉中,在700℃煅烧1h,得到菱镁矿煅烧产物——分解后的菱镁矿、白云石、石英的混合物,将分解后的菱镁矿、白云石、石英的混合物经陶瓷球磨机进行磨矿,磨矿时间控制在3min,其中,陶瓷球磨机中,陶瓷球体积充填率为35%,按个数比,30mm、15mm、10mm、5mm粒级陶瓷球配比为1∶2∶3∶,5,球磨机转速为50r/min。磨矿后,将磨矿产物依次使用18目、35目、60目、100目、150目、200目标准筛振动筛筛分15min,得到细粒级轻烧氧化镁产品。(2)将0.1~2.5mm细粒级的低品位菱镁矿粉,经过悬浮炉吹风煅烧,其中,经悬浮煅烧温度570℃、煅烧时间2h,向悬浮炉通入空气流量1000~1200mL/min,空气给入方向和给料方向垂直,得到悬浮煅烧回收的轻烧氧化镁产品。
步骤四:风选提纯
将细粒级轻烧氧化镁产品和悬浮煅烧回收的轻烧氧化镁产品,混合,再经风选设备提纯,进一步提纯获得纯度为99wt.%,回收率86%的轻烧氧化镁。

Claims (7)

  1. 一种低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,其特征在于,包括以下步骤:
    步骤一:清洗
    以低品位菱镁矿为原料,清洗,去除表面泥质和微细粒矿物,得到清洗后的低品位菱镁矿;
    所述的低品位菱镁矿包括的成分及各个成分的质量百分数分别为:菱镁矿的质量百分数为30~95%,主要杂质白云石质量百分数为2~30%,石英质量百分数为2~35%,余量为其他矿物杂质;
    步骤二:破碎分级
    将清洗后的低品位菱镁矿进行破碎,得到粒级为0.1~20mm的菱镁矿粉,对菱镁矿粉进行分级,得到不同粒级的菱镁矿粉;
    步骤三:针对不同粒级进行分别处理:
    (1)对于粒级为2.5~20mm的菱镁矿粉进行处理
    1)煅烧预处理
    将粒级为2.5~20mm的菱镁矿粉放入煅烧设备中,控制煅烧温度为600~700℃,煅烧时间为1~2.5h,菱镁矿完全分解,白云石未分解,得到分解后的菱镁矿、白云石、石英的混合物;其中,煅烧设备为马弗炉、回转炉、煅烧炉或沸腾炉中的一种;
    2)选择性磨矿
    将分解后的菱镁矿、白云石、石英的混合物置于耐磨球磨机中,进行选择性磨矿,得到磨矿产物;
    球磨机中,陶瓷球的体积充填率为25~35%,按个数比,30mm粒级陶瓷球、15mm粒级陶瓷球、10mm粒级陶瓷球、5mm粒级陶瓷球=1∶2∶3∶(4~6),球磨机转速50~70r/min;
    3)粒级分级
    将磨矿产物进行筛分分级,得到-0.074mm粒级磨矿产物;
    (2)对于粒级为0.1~2.5mm的菱镁矿粉进行煅烧预处理
    将粒级为0.1~2.5mm的菱镁矿粉放入悬浮炉吹风煅烧,煅烧温度为570~670℃,煅烧时间为0.5~2h,得到悬浮煅烧回收的轻烧氧化镁;
    步骤四:风选提纯
    将-0.074mm粒级磨矿产物和悬浮煅烧回收的轻烧氧化镁进行风选提纯,最终制备高纯轻烧氧化镁产品。
  2. 如权利要求1所述的低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,其特征在于,所述的步骤三(1)的2)中,耐磨球磨机为陶瓷球磨机。
  3. 如权利要求1所述的低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,其特征在于,所述的步骤三(1)的2)中,选择性磨矿时间为1~6min。
  4. 如权利要求1所述的低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,其特征在于,所述的步骤三(1)的3)中,依次采用18目、35目、60目、100目、150目、200目标准筛振动筛筛分10~20min。
  5. 如权利要求1所述的低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,其特征在于,所述的步骤三(2)中,所述的悬浮炉吹风煅烧,为通入空气,空气流量为500~1200mL/s,空气给入方向垂直给料方向。
  6. 如权利要求1~5任意一项所述的低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,其特征在于,制备的高纯轻烧氧化镁产品,其纯度为99wt.%以上。
  7. 如权利要求1~5任意一项所述的低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法,其特征在于,所述的低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法中,回收率为76%以上。
PCT/CN2019/081830 2019-03-29 2019-04-09 低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法 WO2020199232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910247353.4 2019-03-29
CN201910247353.4A CN109809716B (zh) 2019-03-29 2019-03-29 低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法

Publications (1)

Publication Number Publication Date
WO2020199232A1 true WO2020199232A1 (zh) 2020-10-08

Family

ID=66610898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081830 WO2020199232A1 (zh) 2019-03-29 2019-04-09 低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法

Country Status (2)

Country Link
CN (1) CN109809716B (zh)
WO (1) WO2020199232A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981227B (zh) * 2019-12-27 2021-12-28 辽宁东和新材料股份有限公司 一种氧化镁基脱硫剂及其制备方法
CN112028093A (zh) * 2020-07-13 2020-12-04 辽宁东和新材料股份有限公司 一种高活性高纯氧化镁的制备方法
CN112094106A (zh) * 2020-08-19 2020-12-18 辽宁东和新材料股份有限公司 一种低二氧化硅含量的大结晶镁砂的制备方法
CN113772970B (zh) * 2021-09-01 2022-09-30 鞍钢集团北京研究院有限公司 一种利用菱镁矿制备氧化镁的方法
CN115353300A (zh) * 2022-09-29 2022-11-18 信德(深圳)城市建筑环保科技有限公司 一种基于低品位菱镁矿制备高活性氧化镁的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986846A (zh) * 2006-12-20 2007-06-27 辽宁科技大学 菱镁矿热选工艺
CN102653459A (zh) * 2011-03-01 2012-09-05 辽宁科技大学 轻烧氧化镁的热选方法及其装置
CN103204641A (zh) * 2012-01-16 2013-07-17 东北大学 一种低品位菱镁矿的水化提纯方法
CN104511368A (zh) * 2013-09-26 2015-04-15 沈阳铝镁设计研究院有限公司 一种低品位菱镁矿提纯工艺
CN108751751A (zh) * 2018-08-23 2018-11-06 淄博美盛化工有限公司 一种菱镁矿尾矿的热选工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335435C (zh) * 2006-03-16 2007-09-05 杨庆广 天然隐晶型菱镁矿二步煅烧生产高纯镁砂的工艺
CN100475732C (zh) * 2007-05-10 2009-04-08 芮新斌 菱镁矿制备氧化镁的方法
CN201648243U (zh) * 2010-03-16 2010-11-24 沈阳铝镁设计研究院 菱镁矿轻烧系统
CN102515213A (zh) * 2011-12-19 2012-06-27 北京科技大学 一种低品位菱镁矿综合利用的方法
ES2911204T3 (es) * 2014-11-18 2022-05-18 Calix Ltd Proceso y aparato para la fabricación de compuestos calcinados para la producción de productos calcinados
CN106186737B (zh) * 2016-07-12 2018-11-06 海城市恒镁科技有限公司 一种环境友好的菱镁矿精矿轻烧高品质氧化镁的方法
CN107879365A (zh) * 2017-12-01 2018-04-06 神雾科技集团股份有限公司 一种利用脱硅粉煤灰烧结法生产氧化铝的系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986846A (zh) * 2006-12-20 2007-06-27 辽宁科技大学 菱镁矿热选工艺
CN102653459A (zh) * 2011-03-01 2012-09-05 辽宁科技大学 轻烧氧化镁的热选方法及其装置
CN103204641A (zh) * 2012-01-16 2013-07-17 东北大学 一种低品位菱镁矿的水化提纯方法
CN104511368A (zh) * 2013-09-26 2015-04-15 沈阳铝镁设计研究院有限公司 一种低品位菱镁矿提纯工艺
CN108751751A (zh) * 2018-08-23 2018-11-06 淄博美盛化工有限公司 一种菱镁矿尾矿的热选工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIE PENGYONG: "Study on Thermoselect Purification Process of Low-Grade Magnesite", NAIHUO-CAILIAO : SHUANGYUEKAN [REFRACTORIES], vol. 51, no. 1, 28 February 2017 (2017-02-28), pages 53 - 56, XP009523695, ISSN: 1001-1935 *
ZHOU XULIANG: "Research on Magnesite Heat-Dress Mechanism", CHINA MASTER'S THESES FULL-TEXT DATABASE, no. 6, 10 March 2007 (2007-03-10), pages 1 - 94, XP055739944 *

Also Published As

Publication number Publication date
CN109809716B (zh) 2020-05-12
CN109809716A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2020199232A1 (zh) 低品位菱镁矿煅烧脱钙除硅制备高纯轻烧氧化镁的方法
CN110510620B (zh) 高纯石英砂尾矿的提纯方法
CN100462449C (zh) 菱镁矿热选工艺
CN113999970B (zh) 一种混合硫酸盐法焙烧从锂瓷石矿物中提锂的方法
CN110589844A (zh) 一种高白度硅灰石粉体及其制备方法
CN109206024A (zh) 一种以低品位菱镁矿为原料生产高纯镁砂的制备方法
CN108640664A (zh) 一种用于陶瓷制作的石英粉
WO2020206830A1 (zh) 一种赤泥回收钠、铁和钛同时熔融渣直接水泥化的方法
KR101161755B1 (ko) 저품위 석회석의 품위 향상 방법과 그 석회석
WO2020082528A1 (zh) 一种低成本高白度煅烧滑石的制备方法
CN106186737A (zh) 一种环境友好的菱镁矿精矿轻烧高品质氧化镁的方法
CN114405659B (zh) 一种基于花岗岩机制砂尾泥生产陶瓷材料的工艺方法
CN106395840B (zh) 一种用煤矸石制备高遮盖性能煅烧高岭土的工艺
CN109354482A (zh) 一种大理岩型中低品位硅灰石矿的综合利用工艺
CN110606675B (zh) 一种钒钛矿渣超细粉体掺合料及其制备方法
CN115140741B (zh) 一种以花岗伟晶岩为原料制备4N及4N以上的SiO2石英砂的方法
CN113957268B (zh) 一种从锂瓷石原料中提锂的方法
KR101796040B1 (ko) 탈황용 생석회 제조를 위한 저급 석회석의 고품위화 방법
RU2539884C1 (ru) Способ переработки железосодержащих отходов
CN103373844A (zh) 一种开采风化花岗岩矿山的资源综合利用的方法
CN114835132A (zh) 干湿法加工煤系高岭土的高效节能工艺
CN115072730A (zh) 双窑煅烧煤系高岭土节能工艺
CN109092515B (zh) 一种高纯刚玉粉末及其制备方法
KR101300181B1 (ko) 소성백운석의 제조방법
KR101796041B1 (ko) 침강성탄산칼슘 원료용 고품위 석회유 제조를 위한 실리카 제거 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922992

Country of ref document: EP

Kind code of ref document: A1