WO2020199048A1 - 一种基于探测信号的测距方法及装置 - Google Patents

一种基于探测信号的测距方法及装置 Download PDF

Info

Publication number
WO2020199048A1
WO2020199048A1 PCT/CN2019/080678 CN2019080678W WO2020199048A1 WO 2020199048 A1 WO2020199048 A1 WO 2020199048A1 CN 2019080678 W CN2019080678 W CN 2019080678W WO 2020199048 A1 WO2020199048 A1 WO 2020199048A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
data set
signal
parameter
preset
Prior art date
Application number
PCT/CN2019/080678
Other languages
English (en)
French (fr)
Inventor
姜彤
李强
巫红英
李洪磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021557691A priority Critical patent/JP2022528382A/ja
Priority to CN201980060407.4A priority patent/CN112740075B/zh
Priority to PCT/CN2019/080678 priority patent/WO2020199048A1/zh
Priority to EP19923530.0A priority patent/EP3936896A4/en
Publication of WO2020199048A1 publication Critical patent/WO2020199048A1/zh
Priority to US17/486,946 priority patent/US20220011414A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates

Definitions

  • This application relates to the technical field of distance detection, and in particular to a method and device for distance measurement based on detection signals.
  • LiDAR Light Detection and Ranging
  • LiDAR is a radar system that emits laser beams to detect the location and speed of a target. Its working principle is to emit a laser detection signal to the target object, and then compare the received signal reflected from the target object with the transmitted detection signal. After the signal is processed, the relevant information of the target object is obtained, such as target distance, azimuth, height , Speed, attitude, even shape and other parameters.
  • Lidar has high measurement accuracy, fine time and space resolution, and can complete functions such as ranging, target detection, tracking and imaging recognition. Among them, ranging is the basic function of lidar.
  • TOF ranging includes two methods, namely, a ranging method based on Time to Digital Converter (TDC) and a ranging method based on Analog to Digital Converter (ADC).
  • TDC Time to Digital Converter
  • ADC Analog to Digital Converter
  • the TDC ranging method is a ranging method based on analog signals.
  • the time discrimination circuit determines the time when the detection signal is reflected by the target to form an echo signal, and then obtains the flight time of the detection signal, and converts the flight time
  • the ADC distance measurement method is a distance measurement method based on digital signals, which specifically converts the echo signal formed by the reflection of the detection signal into analog and digital, and performs signal processing on the digitized signal to obtain the detection distance.
  • the TDC-based ranging method has higher measurement accuracy, but the ranging performance is limited by the accuracy of time discrimination; the ADC-based ranging method can improve the low signal-to-noise ratio echo through digital domain signal processing
  • its ranging performance is limited by the sampling rate. Therefore, in practical applications, when either of the above-mentioned two methods is used alone, it is restricted by many factors, which affect the ranging performance.
  • the embodiments of the present application provide a ranging method and device based on detection signals, which are used to improve the accuracy and precision of ranging.
  • a ranging method based on a detection signal is provided.
  • the signal formed by reflection of the detection signal is an echo signal.
  • the method includes: processing the echo signal based on a time-to-digital conversion TDC ranging method, To determine a first data set, the first data set includes at least one first distance or at least one first flight time; the echo signal is processed based on the analog-to-digital conversion ADC ranging mode to determine the second data.
  • the second data set includes at least one second distance or at least one second flight time; according to the actual transmission power of the detection signal, at least one distance to be measured, or at least one signal parameter of the echo signal
  • the relationship between the at least one item of and the preset threshold respectively determines at least one data in the first data set or the second data set as the output distance set.
  • the ranging is performed through the TDC ranging mode and the ADC ranging mode, and the ADC ranging result or the ADC ranging result output can be selected flexibly from the two ranging results through a certain strategy, namely Choosing a better range finding result output can improve the accuracy of the output range set and range finding accuracy.
  • determining the output distance set according to at least one parameter in the first data set or the second data set includes at least one of the following methods: determining at least one first distance as Output distance set; calculate at least one third distance respectively according to at least one first flight time, determine at least one third distance as output distance set; determine at least one second distance as output distance set; or, according to at least one second distance
  • the flight time respectively calculates at least one fourth distance, and determines the at least one fourth distance as the output distance set.
  • At least one of the actual transmit power of the detection signal, at least one estimated distance, or at least one signal parameter of the echo signal is between the preset threshold Is determined as the output distance set according to at least one parameter in the first data set or the second data set, including at least one of the following: determining that the actual transmit power is greater than or equal to a preset power threshold, and determining the first data set as The output distance set; or, it is determined that the actual transmission power is less than the preset power threshold, and the second data set is determined as the output distance set.
  • At least one of the actual transmit power of the detection signal, at least one estimated distance, or at least one signal parameter of the echo signal is between the preset threshold
  • the output distance set is determined according to at least one parameter in the first data set or the second data set, including at least one of the following: determining that the actual transmit power is greater than or equal to a preset power threshold, and determining the first data set as the output Distance set; after determining that the actual transmit power is less than the preset power threshold, determine that at least one estimated distance is less than or equal to the preset distance threshold, and determine the first data set as the output distance set; or, determine that the actual transmit power is less than the preset After the power threshold, it is determined that at least one estimated distance is greater than the preset distance threshold, and the second data set is determined as the output distance set.
  • the above possible implementations can ensure the highest accuracy of the output distance set according to the relationship between the actual transmit power and the preset power threshold, and the relationship between the estimated distance and the preset distance threshold, thereby improving
  • At least one of the actual transmit power of the detection signal, at least one estimated distance, or at least one signal parameter of the echo signal is between the preset threshold Determine the output distance set according to at least one parameter in the first data set or the second data set, including at least one of the following: determining that at least one estimated distance is less than or equal to a preset distance threshold, and determining the first data set as Output distance set; or, determine that at least one estimated distance is greater than a preset distance threshold, and determine the second data set as the output distance set.
  • At least one of the actual transmit power of the detection signal, at least one estimated distance, or at least one signal parameter of the echo signal is between the preset threshold
  • the output distance set is determined according to at least one parameter in the first data set or the second data set, including at least one of the following: after determining that at least one estimated distance is less than or equal to a preset distance threshold, the actual detection signal is determined If the transmission power is less than the preset power threshold, the first data set is determined as the output distance set; or, after determining that at least one estimated distance is greater than the preset distance threshold, it is determined that the actual transmission power of the detection signal is less than the preset power threshold, and the The second data set is determined as the output distance set.
  • the relationship between the estimated distance and the preset distance threshold, and the relationship between the actual transmission power and the preset power threshold can ensure the highest accuracy of the output distance set, thereby improving the accuracy and accuracy of the distance measurement.
  • At least one estimated distance respectively corresponds to a parameter in the first data set, and corresponds to a parameter in the second data set, according to the detection signal
  • the relationship between the actual transmission power, at least one estimated distance, or at least one signal parameter of the echo signal and the preset threshold is based on at least one parameter in the first data set or the second data set
  • Determining the output distance set includes: determining at least one first estimated distance and at least one second estimated distance in the at least one estimated distance, the at least one estimated distance is all less than or equal to a preset distance threshold, and the at least one second estimated distance is all greater than the preset Set a distance threshold; determine the parameter corresponding to at least one first estimated distance in the first data set and the parameter corresponding to at least one second estimated distance in the second data set as the output distance set.
  • the at least one signal parameter is any one of the following parameters: amplitude, energy, or signal-to-noise ratio, according to the actual transmission power of the detection signal, at least one estimated distance, Or the relationship between at least one of the at least one signal parameter of the echo signal and the preset threshold, and the output distance set is determined according to at least one parameter in the first data set or the second data set, including at least one of the following Item: Determine that at least one signal parameter is less than or equal to the preset parameter threshold, and determine the first data set as the output distance set; or, determine that at least one signal parameter is greater than the preset parameter threshold, and determine the second data set as the output distance set.
  • the foregoing possible implementation manners, based on the comparison between the signal parameters of the echo signal and the preset parameter thresholds, can ensure that the accuracy of the output distance set is the highest, and can improve the accuracy and accuracy of ranging.
  • the at least one signal parameter is any one of the following parameters: amplitude, energy, or signal-to-noise ratio, and the at least one signal parameter is respectively the same as the parameter in the first data set One-to-one correspondence, and one-to-one correspondence with the parameters in the second data set, according to at least one of the actual transmission power of the detection signal, at least one estimated distance, or at least one signal parameter of the echo signal, and the preset
  • the relationship between the set thresholds and determining the output distance set according to at least one parameter in the first data set or the second data set includes: determining at least one first signal parameter and at least one second signal parameter in the at least one signal parameter , At least one first signal parameter is less than or equal to the preset parameter threshold, at least one second signal parameter is greater than the preset parameter threshold; and the parameter corresponding to the at least one first signal parameter in the first data set, and the second data The parameter corresponding to at least one second signal parameter in the set is determined as the output distance set.
  • the at least one signal parameter includes any one of the following parameters: amplitude, energy, or signal-to-noise ratio, and the at least one signal parameter is respectively the same as the parameter in the first data set One-to-one correspondence, and one-to-one correspondence with the parameters in the second data set, according to at least one of the actual transmission power of the detection signal, at least one estimated distance, or at least one signal parameter of the echo signal, and the preset
  • the relationship between the set thresholds and determining the output distance set according to at least one parameter in the first data set or the second data set includes: determining at least one first signal parameter and at least one second signal parameter in the at least one signal parameter , At least one first signal parameter and at least one second signal parameter are both greater than a preset parameter threshold, and at least one first signal parameter and at least one second signal parameter are respectively in the second data set corresponding to the data difference of the two parameters Is less than or equal to the data difference threshold; determining the parameter corresponding to at least one first signal parameter in
  • the second data set further includes clutter positions, based on at least one of the actual transmit power of the detection signal, at least one estimated distance, or at least one signal parameter of the echo signal
  • the method further includes: removing the first data set according to the clutter position The parameter corresponding to the clutter position.
  • the second data set further includes the saturated echo position, based on at least one of the actual transmission power of the detection signal, at least one estimated distance, or at least one signal parameter of the echo signal. The relationship between each item and the preset threshold.
  • the method further includes: removing and The parameter corresponding to the saturated echo position.
  • a distance measuring device based on a detection signal.
  • the signal formed by the reflection of the detection signal is an echo signal.
  • the distance measuring device includes: a time-to-digital conversion (TDC) distance measuring unit for TDC-based measurement
  • the echo signal is processed in a distance mode to determine a first data set.
  • the first data set includes the following parameters: at least one first distance or at least one first flight time; an analog-to-digital conversion (ADC) ranging unit for The ADC-based ranging method processes the echo signal to determine a second data set.
  • TDC time-to-digital conversion
  • ADC analog-to-digital conversion
  • the second data set includes the following parameters: at least one second distance or at least one second flight time; and the control unit is configured to detect The relationship between the actual transmission power of the signal, at least one estimated distance, or at least one signal parameter of the echo signal and the preset threshold is based on at least one of the first data set or the second data set.
  • One parameter determines the output distance set.
  • control unit is specifically configured to perform at least one of the following steps: determining at least one first distance as the output distance set; and calculating at least one first distance respectively according to the at least one first flight time Three distances, at least one third distance is determined as the output distance set; at least one second distance is determined as the output distance set; or, at least one fourth distance is calculated according to at least one second flight time, and at least one fourth distance is calculated Determine as the output distance set.
  • control unit is specifically configured to: determine that the actual transmission power is greater than or equal to a preset power threshold, and determine the first data set as the output distance set; or, determine the actual transmission power If it is less than the preset power threshold, the second data set is determined as the output distance set.
  • control unit is specifically configured to: determine that the actual transmit power is greater than or equal to a preset power threshold, determine the first data set as the output distance set; determine that the actual transmit power is less than the preset power threshold. After setting the power threshold, determine that at least one estimated distance is less than or equal to the preset distance threshold, and determine the first data set as the output distance set; or, after determining that the actual transmit power is less than the preset power threshold, determine that at least one estimated distance is greater than The distance threshold is preset, and the second data set is determined as the output distance set.
  • control unit is specifically configured to: determine that at least one estimated distance is less than or equal to a preset distance threshold, and determine the first data set as the output distance set; or, determine at least one estimate The distances are all greater than the preset distance threshold, and the second data set is determined as the output distance set.
  • control unit is specifically configured to: after determining that at least one estimated distance is less than or equal to a preset distance threshold, determine that the actual transmission power of the detection signal is less than the preset power threshold, and set the first One data set is determined as the output distance set; or, after determining that at least one estimated distance is greater than the preset distance threshold, it is determined that the actual transmission power of the detection signal is less than the preset power threshold, and the second data set is determined as the output distance set.
  • control unit is specifically configured to: determine at least one first estimated distance and at least one second estimated distance in the at least one estimated distance, and at least one estimated distance is less than or equal to a preset A distance threshold, at least one second estimated distance is greater than a preset distance threshold; a parameter in the first data set corresponding to the at least one first estimated distance, and a parameter in the second data set corresponding to the at least one second estimated distance, Determine as the output distance set; wherein, at least one estimated distance respectively corresponds to the parameters in the first data set one-to-one, and corresponds to the parameters in the second data set one-to-one.
  • control unit is specifically configured to: determine that at least one signal parameter is less than or equal to a preset parameter threshold, determine the first data set as the output distance set; or, determine at least one signal The parameters are all greater than the preset parameter threshold, and the second data set is determined as the output distance set; wherein, at least one signal parameter is any one of the following parameters: amplitude, energy, or signal-to-noise ratio.
  • control unit is specifically configured to: determine at least one first signal parameter and at least one second signal parameter in the at least one signal parameter, and at least one first signal parameter is less than or equal to A preset parameter threshold, at least one second signal parameter is greater than the preset parameter threshold; a parameter in the first data set corresponding to at least one first signal parameter, and a parameter in the second data set corresponding to at least one second signal parameter
  • the parameter is determined as the output distance set; at least one signal parameter is any one of the following parameters: amplitude, energy, or signal-to-noise ratio, at least one signal parameter corresponds to the parameter in the first data set one-to-one, and There is a one-to-one correspondence with the parameters in the second data set.
  • control unit is specifically configured to: determine the first signal parameter and the second signal parameter in the at least one signal parameter, and the at least one first signal parameter and the at least one second signal parameter are both Is greater than the preset parameter threshold, and the data difference between the at least one first signal parameter and the at least one second signal parameter in the second data set is less than or equal to the data difference threshold; and the first data set is compared with at least Two data corresponding to one first signal parameter and at least one second signal parameter in the second data set are determined as the output distance set; wherein, at least one signal parameter includes any one of the following parameters: amplitude, energy , Or the signal-to-noise ratio, at least one signal parameter corresponds to the parameter in the first data set one-to-one, and corresponds to the parameter in the second data set.
  • the second data set further includes a clutter position
  • the control unit is further configured to: remove the parameter corresponding to the clutter position in the first data set according to the clutter position.
  • the second data set further includes a saturated echo position
  • the control unit is further configured to eliminate the parameter corresponding to the saturated echo position in the first data set according to the saturated echo position.
  • control unit is further used to: turn on or turn off the TDC ranging unit and the ADC ranging unit.
  • the control unit is further used to: turn on or turn off the TDC ranging unit and the ADC ranging unit.
  • control unit is specifically further configured to: determine that the actual transmission power of the detection signal is greater than or equal to a preset power threshold, turn on the TDC ranging unit; determine the actual transmission power of the detection signal If it is less than the preset power threshold, turn on the ADC ranging unit.
  • the ranging unit with the highest accuracy is selected for ranging, so that the accuracy and precision of ranging can be improved, and the performance of the ranging system can be reduced. Consumption.
  • control unit is further configured to: determine that the ADC ranging unit is faulty and turn on the TDC ranging unit; determine that the TDC ranging unit is faulty and turn on the ADC ranging unit.
  • control unit is further configured to: configure the first measurement parameter of the TDC ranging unit, the first measurement parameter including the first distance or the first flight time; configure the ADC ranging unit The second measurement parameter, the second measurement parameter includes the second distance or the second flight time.
  • control unit can configure measurement parameters for the TDC ranging unit and the ADC ranging unit according to requirements, so that the flexibility and ranging performance of the ranging system can be improved.
  • the first measurement parameter further includes at least one of the following parameters: amplitude, energy, or signal-to-noise ratio; the second measurement parameter further includes at least one of the following parameters : Amplitude, energy, signal-to-noise ratio, clutter position, or saturated echo position.
  • the control unit may further configure other measurement parameters of the ADC ranging unit according to requirements, so that the ranging performance of the ranging system can be further improved.
  • a distance measuring device based on detection signals includes a processor and a memory.
  • the memory stores instructions.
  • the processor runs the stored instructions, the device executes the first aspect or the first aspect.
  • any possible implementation manner provides a ranging method based on detection signals.
  • a computer storage medium is provided, and instructions are stored in the computer-readable storage medium.
  • the instructions run on a computer, the computer executes the above-mentioned first aspect or any one of the possible implementations of the first aspect. Ranging method based on detection signal.
  • a mobile platform in a fifth aspect, includes a detection signal transmitter, a detection signal receiver, and the detection signal-based ranging provided in the second aspect or any possible implementation manner of the second aspect. Device.
  • any of the above-provided ranging devices, readable storage media, computer program products, and mobile platforms based on detection signals can be implemented by the corresponding methods provided above. Therefore, it can achieve For the beneficial effects of, please refer to the beneficial effects of the corresponding method provided above, which will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a vehicle with automatic driving function provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a TDC ranging system provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of an ADC ranging system provided by an embodiment of the application.
  • FIG. 4 is a first structural diagram of a ranging system provided by an embodiment of the application.
  • FIG. 5 is a second structural schematic diagram of a ranging system provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart 1 of a ranging method based on a detection signal provided by an embodiment of this application;
  • FIG. 7 is a second schematic flowchart of a ranging method based on detection signals provided by an embodiment of the application.
  • FIG. 8 is a waveform diagram after sampling an echo signal by an ADC ranging unit according to an embodiment of the application.
  • FIG. 9 is a third schematic flowchart of a ranging method based on detection signals provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a mobile platform provided by an embodiment of the application.
  • FIG. 1 is a functional block diagram of a vehicle 100 with an automatic driving function provided by an embodiment of the present application.
  • the vehicle 100 is configured in a fully or partially autonomous driving mode.
  • the vehicle 100 can control itself while in the automatic driving mode, and can determine the current state of the vehicle and its surrounding environment through human operations, determine the possible behavior of at least one other vehicle in the surrounding environment, and determine the other vehicle
  • the confidence level corresponding to the possibility of performing possible actions is controlled based on the determined information.
  • the vehicle 100 can be placed to operate without human interaction.
  • the vehicle 100 may include various subsystems, such as a travel system 102, a sensor system 104, a control system 106, one or more peripheral devices 108 and a power supply 110, a computer system 112, and a user interface 116.
  • the vehicle 100 may include more or fewer subsystems, and each subsystem may include multiple elements.
  • each of the subsystems and elements of the vehicle 100 may be wired or wirelessly interconnected.
  • the travel system 102 may include components that provide power movement for the vehicle 100.
  • the travel system 102 may include an engine 118, an energy source 119, a transmission 120, and wheels/tires 121.
  • the engine 118 may be an internal combustion engine, an electric motor, an air compression engine, or a combination of other types of engines, such as a hybrid engine composed of a gas oil engine and an electric motor, or a hybrid engine composed of an internal combustion engine and an air compression engine.
  • the engine 118 converts the energy source 119 into mechanical energy.
  • Examples of energy sources 119 include gasoline, diesel, other petroleum-based fuels, propane, other compressed gas-based fuels, ethanol, solar panels, batteries, and other sources of electricity.
  • the energy source 119 may also provide energy for other systems of the vehicle 100.
  • the transmission device 120 can transmit mechanical power from the engine 118 to the wheels 121.
  • the transmission device 120 may include a gearbox, a differential, and a drive shaft.
  • the transmission device 120 may also include other devices, such as a clutch.
  • the drive shaft may include one or more shafts that can be coupled to one or more wheels 121.
  • the sensor system 104 may include several sensors that sense information about the environment around the vehicle 100.
  • the sensor system 104 may include a positioning system 122 (the positioning system may be a global positioning system (GPS) system, a Beidou system or other positioning systems), an inertial measurement unit (IMU) 124, Radar 126, laser rangefinder 128, and camera 130.
  • the sensor system 104 may also include sensors of the internal system of the monitored vehicle 100 (for example, an in-vehicle air quality monitor, a fuel gauge, an oil temperature gauge, etc.). Sensor data from one or more of these sensors can be used to detect objects and their corresponding characteristics (position, shape, direction, speed, etc.). Such detection and identification are key functions for the safe operation of the autonomous vehicle 100.
  • the positioning system 122 can be used to estimate the geographic location of the vehicle 100.
  • the IMU 124 is used to sense changes in the position and orientation of the vehicle 100 based on inertial acceleration.
  • the IMU 124 may be a combination of an accelerometer and a gyroscope.
  • the radar 126 may use radio signals to sense objects in the surrounding environment of the vehicle 100. In some embodiments, in addition to sensing the object, the radar 126 may also be used to sense the speed and/or direction of the object.
  • the laser rangefinder 128 can use laser light to sense objects in the environment where the vehicle 100 is located.
  • the laser rangefinder 128 may include one or more laser sources, laser scanners, and one or more detectors, as well as other system components.
  • the camera 130 may be used to capture multiple images of the surrounding environment of the vehicle 100.
  • the camera 130 may be a still camera or a video camera.
  • the control system 106 controls the operation of the vehicle 100 and its components.
  • the control system 106 may include various components, including a steering system 132, a throttle 134, a braking unit 136, a sensor fusion algorithm 138, a computer vision system 140, a route control system 142, and an obstacle avoidance system 144.
  • the steering system 132 is operable to adjust the forward direction of the vehicle 100.
  • it may be a steering wheel system in one embodiment.
  • the throttle 134 is used to control the operating speed of the engine 118 and thereby control the speed of the vehicle 100.
  • the braking unit 136 is used to control the vehicle 100 to decelerate.
  • the braking unit 136 may use friction to slow down the wheels 121.
  • the braking unit 136 may convert the kinetic energy of the wheels 121 into electric current.
  • the braking unit 136 may also take other forms to slow down the rotation speed of the wheels 121 to control the speed of the vehicle 100.
  • the computer vision system 140 may be operable to process and analyze the images captured by the camera 130 in order to identify objects and/or features in the surrounding environment of the vehicle 100.
  • the objects and/or features may include traffic signals, road boundaries and obstacles.
  • the computer vision system 140 may use object recognition algorithms, structure from motion (SFM) algorithms, video tracking, and other computer vision technologies.
  • SFM structure from motion
  • the computer vision system 140 may be used to map the environment, track objects, estimate the speed of objects, and so on.
  • the route control system 142 is used to determine the travel route of the vehicle 100.
  • the route control system 142 may combine data from the sensor 138, the GPS 122, and one or more predetermined maps to determine the driving route for the vehicle 100.
  • the obstacle avoidance system 144 is used to identify, evaluate, and avoid or otherwise cross over potential obstacles in the environment of the vehicle 100.
  • control system 106 may add or alternatively include components other than those shown and described. Alternatively, a part of the components shown above may be reduced.
  • the vehicle 100 interacts with external sensors, other vehicles, other computer systems, or users through peripheral devices 108.
  • the peripheral device 108 may include a wireless communication system 116, an onboard computer 148, a microphone 150, and/or a speaker 152.
  • the peripheral device 108 provides a means for the user of the vehicle 100 to interact with the user interface 116.
  • the onboard computer 148 may provide information to the user of the vehicle 100.
  • the user interface 116 can also operate the onboard computer 148 to receive user input.
  • the on-board computer 148 can be operated through a touch screen.
  • the peripheral device 108 may provide a means for the vehicle 100 to communicate with other devices located in the vehicle.
  • the microphone 150 may receive audio (eg, voice commands or other audio input) from a user of the vehicle 100.
  • the speaker 152 may output audio to the user of the vehicle 100.
  • the wireless communication system 116 may wirelessly communicate with one or more devices directly or via a communication network.
  • the wireless communication system 116 may use 3G cellular communication, such as code division multiple access (CDMA), EVD0, global system for mobile communications (GSM)/general packet radio service technology (general packet radio service technology). Packet radio service, GPRS), or 4G cellular communication, such as long term evolution (LTE), or 5G cellular communication.
  • the wireless communication system 116 may use WiFi to communicate with a wireless local area network (WLAN).
  • the wireless communication system 116 may directly communicate with the device using an infrared link, Bluetooth, or ZigBee.
  • Other wireless protocols such as various vehicle communication systems.
  • the wireless communication system 116 may include one or more dedicated short-range communication (DSRC) devices, which may include vehicles and/or roadside stations. Public and/or private data communications.
  • DSRC dedicated short-range communication
  • the power supply 110 may provide power to various components of the vehicle 100.
  • the power source 110 may be a rechargeable lithium ion or lead-acid battery.
  • One or more battery packs of such batteries may be configured as a power source to provide power to various components of the vehicle 100.
  • the power source 110 and the energy source 119 may be implemented together, such as in some all-electric vehicles.
  • the computer system 112 may include at least one processor 113 that executes instructions 115 stored in a non-transitory computer readable medium such as the memory 114.
  • the computer system 112 may also be multiple computing devices that control individual components or subsystems of the vehicle 100 in a distributed manner.
  • the processor 113 may be any conventional processor, such as a commercially available central processing unit (CPU). Alternatively, the processor may be a dedicated device such as an application specific integrated circuit (ASIC) or other hardware-based processor.
  • FIG. 1 functionally illustrates the processor, memory, and other elements of the computer 110 in the same block, those of ordinary skill in the art should understand that the processor, computer, or memory may actually include Multiple processors, computers, or memories stored in the same physical enclosure.
  • the memory may be a hard disk drive or other storage medium located in a housing other than the computer 110. Therefore, a reference to a processor or computer will be understood to include a reference to a collection of processors or computers or memories that may or may not operate in parallel. Rather than using a single processor to perform the steps described here, some components such as steering components and deceleration components may each have its own processor that only performs calculations related to component-specific functions .
  • the processor may be located away from the vehicle and wirelessly communicate with the vehicle.
  • some of the processes described herein are executed on a processor disposed in the vehicle and others are executed by a remote processor, including taking the necessary steps to perform a single manipulation.
  • the memory 114 may contain instructions 115 (eg, program logic), which may be executed by the processor 113 to perform various functions of the vehicle 100, including those functions described above.
  • the memory 114 may also contain additional instructions, including those for sending data to, receiving data from, interacting with, and/or controlling one or more of the traveling system 102, the sensor system 104, the control system 106, and the peripheral device 108. instruction.
  • the memory 114 may also store data, such as road maps, route information, the location, direction, and speed of the vehicle, and other such vehicle data, as well as other information. Such information may be used by the vehicle 100 and the computer system 112 during the operation of the vehicle 100 in autonomous, semi-autonomous, and/or manual modes.
  • the user interface 116 is used to provide information to or receive information from a user of the vehicle 100.
  • the user interface 116 may include one or more input/output devices in the set of peripheral devices 108, such as a wireless communication system 116, an in-vehicle computer 148, a microphone 150, and a speaker 152.
  • the computer system 112 may control the functions of the vehicle 100 based on inputs received from various subsystems (eg, travel system 102, sensor system 104, and control system 106) and from the user interface 116. For example, the computer system 112 may utilize input from the control system 106 in order to control the steering unit 132 to avoid obstacles detected by the sensor system 104 and the obstacle avoidance system 144. In some embodiments, the computer system 112 is operable to provide control of many aspects of the vehicle 100 and its subsystems.
  • various subsystems eg, travel system 102, sensor system 104, and control system 106
  • the computer system 112 may utilize input from the control system 106 in order to control the steering unit 132 to avoid obstacles detected by the sensor system 104 and the obstacle avoidance system 144.
  • the computer system 112 is operable to provide control of many aspects of the vehicle 100 and its subsystems.
  • one or more of these components described above may be installed or associated with the vehicle 100 separately.
  • the storage 114 may exist partially or completely separately from the vehicle 100.
  • the aforementioned components may be communicatively coupled together in a wired and/or wireless manner.
  • FIG. 1 should not be construed as a limitation to the embodiments of the present application.
  • An autonomous vehicle traveling on a road can recognize objects in its surrounding environment to determine the adjustment to the current speed.
  • the object may be other vehicles, traffic control equipment, or other types of objects.
  • each recognized object can be considered independently, and based on the respective characteristics of the object, such as its current speed, acceleration, distance from the vehicle, etc., can be used to determine the speed to be adjusted by the autonomous vehicle.
  • the self-driving car vehicle 100 or the computing device associated with the self-driving vehicle 100 may be based on the characteristics of the recognized object and the state of the surrounding environment (For example, traffic, rain, ice on the road, etc.) to predict the behavior of the identified object.
  • each recognized object depends on each other's behavior, so all recognized objects can also be considered together to predict the behavior of a single recognized object.
  • the vehicle 100 can adjust its speed based on the predicted behavior of the identified object.
  • an autonomous vehicle can determine what stable state the vehicle will need to adjust to (for example, accelerate, decelerate, or stop) based on the predicted behavior of the object.
  • other factors may also be considered to determine the speed of the vehicle 100, such as the lateral position of the vehicle 100 on the road on which it is traveling, the curvature of the road, the proximity of static and dynamic objects, and so on.
  • the computing device can also provide instructions to modify the steering angle of the vehicle 100, so that the self-driving car follows a given trajectory and/or maintains an object near the self-driving car (for example, , The safe horizontal and vertical distances of cars in adjacent lanes on the road.
  • the above-mentioned vehicle 100 can be a car, truck, motorcycle, bus, boat, airplane, helicopter, lawn mower, recreational vehicle, playground vehicle, construction equipment, tram, golf cart, train, and trolley, etc.
  • the application examples are not particularly limited.
  • TDC time-to-digital conversion
  • ADC analog-to-digital conversion
  • the TDC ranging method is a distance measurement method based on analog signals. Specifically, the flight time of the detection signal is obtained by the detection signal and the echo signal formed by the reflection of the detection signal, and the flight time is converted into the corresponding distance to obtain Ranging method for detecting distance.
  • FIG. 2 it is a schematic structural diagram of a TDC ranging system.
  • the TDC ranging system may include: a control unit 201, a laser driver 202, a laser 203, a scanning device 204, and a time-to-digital conversion TDC unit 205 , The transmitting terminal 206, the receiving terminal 207, the detector 208, the transimpedance amplifier 209 and the time discrimination unit 210.
  • the control unit 201 may specifically be: a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a hardware component or any combination thereof, which can implement or execute various exemplary described in the disclosure of this application Logical blocks, modules and circuits.
  • the ranging principle of the TDC ranging system can be: the control unit 201 emits a pulse signal to the laser drive circuit 202, the laser drive circuit 202 modulates the pulse signal and sends it to the laser 203, the laser 203 emits a pulsed light signal, and the control unit 201 Send a start signal to the TDC unit 205, which is used to determine the start time of the pulsed optical signal; the scanning device 204 scans the pulsed optical signal; the transmitting end 206 can be the transmitting optical element, which performs Process and launch. After the pulsed light signal encounters an obstacle, such as a target object, it will reflect the echo signal to the receiving end 207.
  • the ADC ranging method is a ranging method based on digital signals, specifically by analog-digital conversion of the echo signal formed by the reflection of the detection signal, and signal processing of the digitized signal, so as to obtain the detection distance ranging method.
  • FIG. 3 it is a schematic structural diagram of an ADC ranging system.
  • the ADC ranging system may include: a signal processing and control unit 301, a laser driver 302, a laser 303, a scanning device 304, and a transmitter 305 , The receiving end 306, the detector 307, the transimpedance amplifier 308, and the analog-digital conversion ADC unit 309.
  • the signal processing and control unit 301 may specifically be: a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a hardware component, or any combination thereof, which can implement or execute what is described in conjunction with the disclosure of this application Various exemplary logical blocks, modules and circuits.
  • the ranging principle of the ADC ranging system can be as follows: the signal processing and control unit 301 emits a pulse signal to the laser drive circuit 302, the laser drive circuit 302 modulates the pulse signal and sends it to the laser 303, and the laser 303 emits a pulsed light signal to scan
  • the device 304 scans the pulsed light signal; the transmitting end 305 may be a transmitting optical element, which processes and transmits the pulsed light signal. After the pulsed light signal encounters an obstacle, such as a target object, it will reflect the echo signal to the receiving end 306.
  • the receiving end 306 can be a receiving end optical element. After focusing on the received light signal, it is sent to the detector 307, and the detector 307 receives it.
  • the optical signal converts the optical signal into a current signal.
  • the transimpedance amplifier 308 can amplify the current signal into a voltage signal.
  • the ADC unit 309 can convert the analog voltage signal into a digital signal and send it to the signal processing and control unit 301.
  • the signal processing and control unit 301 calculates and processes the digital signal output by the ADC unit 309, and can obtain a lot of information about the echo signal, such as distance, gray scale, reflectivity estimate, echo amplitude, energy, and noise. Ratio is clutter information or saturated echo information, etc.
  • the ranging accuracy of the TDC ranging method is higher than that of the ADC ranging method, but its ranging accuracy is related to the accuracy of the time discrimination unit 210 in the TDC ranging system. Therefore, the TDC ranging method is compared It is suitable for distance measurement of a closer target distance.
  • the ADC ranging method can process the converted digitized signal through the ranging algorithm to improve the performance of the low signal-to-noise ratio echo, so that the ranging accuracy is higher under the low signal-to-noise ratio echo signal.
  • the disadvantage of the ADC ranging method is that its ranging accuracy is limited by the sampling rate. Therefore, if either of the two methods is used alone, the ranging performance and accuracy are not high.
  • the embodiments of the present application provide a ranging method and a ranging device, which can improve the performance and accuracy of the ranging device by combining the TDC ranging method and the ADC ranging method.
  • the ranging system may include: a control unit 401, a TDC ranging unit 402, and an ADC ranging unit 403.
  • the distance measuring device may further include a related unit for sending a detection signal and receiving an echo signal of the detection signal, which is not shown in FIG. 4, and for details, please refer to the related description in FIG. 2 or FIG. 3.
  • the control unit 401 may specifically be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a hardware component, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the TDC ranging unit 402 can be used to perform ranging according to the TDC ranging mode
  • the ADC ranging unit 403 can be used to perform ranging according to the ADC ranging mode
  • the control unit 401 can output according to the TDC ranging unit 402
  • the ranging result output by the ADC ranging unit 403 the ranging result with the highest output accuracy is selected as the final measurement distance.
  • the control unit 401 may specifically be a central processing unit (Central Processing Unit, CPU), a signal processor (Digital Signal Processor, DSP), or an application specific integrated circuit (ASIC), etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • control unit 401 can also filter the ranging results of the TDC ranging unit 402 with large errors or external noise corresponding to the ranging results, such as clutter positions and saturated echoes, according to the ranging results of the ADC ranging unit 403. Wave position, etc., so as to realize the complementary advantages of the two ranging methods and improve the ranging performance of the ranging system.
  • the TDC ranging unit 402 can include a time discriminator 4021, a time-to-digital converter 4022, and a distance calculation unit 4023; wherein the time discriminator 4021 can be used to discriminate the time of the echo signal of the detection signal To obtain analog time information, the time-to-digital converter 4022 can be used to convert the analog time information into digital time information, and the distance calculation unit 4023 can be used to calculate corresponding distance information based on the digital time information.
  • the ADC ranging unit 403 may include an analog-digital converter 4031, a signal processor 4032, and a distance estimation unit 4033; wherein the analog-digital converter 4031 is used for analog-to-digital conversion of the echo signal of the detection signal to obtain a digital signal.
  • the device 4032 is used to perform a series of digital processing on the digital signal to obtain the digital information of the echo signal, and the distance estimation unit 4033 can be used to calculate the corresponding distance information according to the digital information.
  • the ranging principles and specific circuits of the TDC ranging unit 402 and the ADC ranging unit 403 please refer to the correlation between the TDC ranging system shown in FIG. 2 and the ADC ranging system shown in FIG. 3 Description, the embodiments of this application will not be repeated here.
  • the ranging method provided in the embodiments of the present application can be applied to various scenarios such as lidar ranging, infrared ranging, and ultrasonic ranging.
  • the lidar ranging is to transmit a laser beam as a detection signal, and compare the received echo signal reflected from the obstacle with the transmitted detection signal to obtain relevant information of the target object, such as target distance, azimuth, and height , Speed, attitude, and even shape parameters.
  • Lidar has high measurement accuracy, fine time and space resolution, and can complete functions such as ranging, target detection, tracking, and imaging recognition.
  • Ultrasonic distance measurement uses an ultrasonic transmitter to send out ultrasonic waves as a detection signal.
  • Infrared ranging also called “infrared photoelectric ranging” is a phase-type photoelectric ranging technology with infrared light as the light source. Its ranging range is relatively short, mostly within 5 kilometers. Due to the semiconductorization of the light source of infrared ranging technology, the gradual integration of electronic circuits, and the automation of the ranging process, it has the advantages of small size, light weight, simple operation, fast ranging speed, and high accuracy.
  • FIG. 6 is a schematic flowchart of a ranging method based on detection signals provided by an embodiment of the application. The method can be applied to the ranging system shown in FIG. 4 or FIG. 5. Referring to FIG. 6, the method includes the following Steps.
  • S501 Process the echo signal of the detection signal based on the TDC ranging method to determine a first data set, where the first data set includes the following parameters: at least one first distance or at least one first flight time.
  • the detection signal emitted by the ranging system passes through obstacles, such as target objects, fog or dust, and is reflected to form an echo signal.
  • the ranging system receives the echo signal, it can be based on the TDC ranging method A series of processing operations such as time discrimination and analog-to-digital conversion processing are performed on the echo signal to determine the first data set.
  • the first data set is a data set representing the distance between the ranging system and at least one obstacle (for example, one or more target objects), the first data set may include one or more first distances, or first data
  • the set includes one or more first flight times.
  • the first flight time can represent the light pulse emitted by the ranging system, and the flight time of the light pulse reflected by the obstacle back to the ranging system.
  • the ranging system and the obstacle can be calculated
  • the distance between objects that is, a distance can be calculated according to a first flight time, so that at least one distance can be calculated according to at least one first flight time (for ease of description, it will be referred to as at least one third distance hereinafter).
  • the process of determining the first data set according to S501 can be specifically implemented by the aforementioned TDC ranging unit 402.
  • the process of determining the first data set according to S501 can be specifically implemented by the aforementioned TDC ranging unit 402.
  • S502 Process the echo signal of the detection signal based on the ADC ranging mode to determine a second data set, where the second data set includes the following parameters: at least one second distance or at least one second flight time.
  • S501 and S502 may be in no particular order. In FIG. 6, S502 is located after S501 as an example for illustration.
  • the second data set is also a data set representing the distance between the ranging system and at least one obstacle (for example, one or more target objects), the second data set may include one or more second distances, or second data
  • the set includes one or more second flight times.
  • a distance can also be calculated based on a second flight time, so that at least one distance can be calculated based on at least one second flight time (for ease of description, it will be referred to as at least a fourth distance hereinafter).
  • the process of determining the second data set according to S502 can be specifically implemented by the aforementioned ADC ranging unit 403.
  • the process of determining the second data set according to S502 can be specifically implemented by the aforementioned ADC ranging unit 403.
  • S503 According to the relationship between at least one of the actual transmission power of the detection signal, at least one estimated distance, or at least one signal parameter of the echo signal and a preset threshold, according to the first data set or the second At least one parameter in the data set determines the output distance set.
  • determining the output distance set according to at least one parameter in the first data set or the second data set may include at least one of the following methods: determining at least one first distance in the first data set as the output distance set; Calculate at least one third distance respectively according to at least one first flight time in the first data set, determine at least one third distance as the output distance set; determine at least one second distance in the second data set as the output distance set Or, respectively calculate at least one fourth distance according to at least one second flight time in the second data set, and determine the at least one fourth distance as the output distance set.
  • the embodiment of the present application can select the data set with the highest accuracy as the final output distance set of the target object from the distance sets measured by the different ranging methods, thereby improving the measurement.
  • Ranging performance and accuracy of the ranging system may refer to the distance between the ranging system and at least one target object with the highest ranging accuracy, relatively high ranging accuracy, or small measurement error. It is the distance measurement result closest to the actual distance between the distance measurement system and at least one target object.
  • At least one parameter in the data set or the second data set determines the output distance set, which may specifically include the following different methods, which will be described in detail below.
  • the first one is to determine the output distance set according to at least one parameter in the first data set or the second data set according to the relationship between the actual transmission power of the detection signal and the preset power threshold. Wherein, when the actual transmit power P is greater than or equal to the preset power threshold P0, the first data set is determined as the output distance set; when the actual transmit power P is less than the preset power threshold P0, the second data set is determined as the output distance set.
  • the actual transmission power of the detection signal when controlled by the control unit 401 shown in FIG. 4, the actual transmission power can be directly obtained through the control unit 401 shown in FIG. 4; when the actual transmission power of the detection signal is determined by When other units of the ranging system are controlled (for example, a unit that transmits a detection signal), the control unit 401 can obtain the actual transmission power of the detection signal by communicating with the unit that controls the actual transmission power.
  • the preset power threshold may be set in advance, and the specific value of the preset power threshold may be set by a person skilled in the art based on experience, or a person skilled in the art may combine the ranging performance and the adopted range of various ranging methods.
  • the attenuation degree of the detection signal is specifically set, and this application does not specifically limit the specific value and detailed setting method of the preset power threshold.
  • the TDC ranging method corresponds to ranging The accuracy of the result is higher. Therefore, the first data set corresponding to the TDC ranging method can be determined as the output distance set; when the actual transmit power P is less than the preset power threshold P0, under normal circumstances, the distance measurement system receives The signal-to-noise ratio of the echo signal will be relatively low. At this time, the ADC ranging method can improve the signal-to-noise ratio of the echo signal, so that the accuracy of the ranging result corresponding to the ADC ranging method is higher. Therefore, the ADC can be The second data set corresponding to the ranging mode is determined as the output distance set.
  • the second data set can also be determined as the output distance set.
  • the embodiment of the present application only determines the first data set as the output distance set at this time as Examples are explained.
  • the second type is to determine the output distance set according to at least one parameter in the first data set or the second data set according to the relationship between at least one estimated distance and a preset distance threshold, including at least one of the following: determining at least one estimated distance average When it is less than or equal to the preset distance threshold L0, the first data set is determined as the output distance set; or, when at least one estimated distance is greater than the preset distance threshold L0, the second data set is determined to be the output distance set.
  • At least one estimated distance may be estimated by the ranging system according to a certain distance estimation method, or at least one estimated distance may be determined by the ranging system according to at least one parameter set in the first data set or the second data set, such as
  • the at least one estimated distance may be at least one first distance or at least one second distance, or the at least one estimated distance may be an average value of the distance corresponding to the same target object in the at least one first distance and the at least one second distance.
  • the preset distance threshold can be set in advance, and the specific value of the preset distance threshold can be set by those skilled in the art based on experience, or through the range of various ranging methods combined with the detection of the used detection signal The performance is specifically determined, and this application does not specifically limit the specific value and detailed setting method of the preset distance threshold.
  • the flight time of the detection signal emitted by the ranging system is relatively short, which needs to be achieved by measuring the flight time with high accuracy.
  • the accuracy of the ranging result corresponding to the TDC ranging mode is higher, therefore, the first data set corresponding to the TDC ranging mode can be determined as the output distance set.
  • the detection signal emitted by the ranging system has a greater attenuation degree, so that the echo signal formed by the reflection of the detection signal has a low signal-to-noise ratio.
  • the ADC ranging The accuracy of the ranging result corresponding to the method is higher. Therefore, the second data set corresponding to the ADC ranging method can be determined as the output distance set.
  • the second data set may also be determined as the output distance set, and the embodiment of the present application only determines the first data set as the output distance set at this time Take an example.
  • the parameter corresponding to at least one first estimated distance in the first data set and at least one second estimated distance in the second data set can be The parameter corresponding to the distance is determined as the output distance set.
  • the third type is to determine the output according to the relationship between the actual transmission power of the detection signal and the preset power threshold, and the relationship between at least one estimated distance and the preset distance threshold, according to at least one parameter in the first data set or the second data set
  • the distance set includes at least one of the following: determining that the actual transmission power is greater than or equal to a preset power threshold, and determining the first data set as the output distance set; determining that the actual transmission power P is less than the preset power threshold P0, and at least one estimate The distances are all less than or equal to the preset distance threshold L0, and the first data set is determined as the output distance set; or, it is determined that the actual transmission power P is greater than the preset power threshold P0, and at least one estimated distance is greater than the preset distance threshold L0,
  • the second data set is determined as the output distance set.
  • the determining based on the relationship between the actual transmission power of the detection signal and the preset power threshold, and the relationship between at least one estimated distance and the preset distance threshold it may include: first determining the actual transmission power and the preset power threshold Then determine the relationship between at least one estimated distance and the preset distance threshold; or first determine the relationship between at least one estimated distance and the preset distance threshold, and then determine the relationship between the actual transmit power and the preset power threshold.
  • the embodiment of the application does not specifically limit this.
  • the TDC ranging method has high accuracy in the short-distance ranging range, that is, TDC at this time The accuracy of the ranging result of the ranging method is higher. Therefore, the first data set corresponding to the TDC ranging method can be determined as the output distance set.
  • the ADC ranging method can improve the performance of low signal-to-noise ratio, that is, the accuracy of the ranging result of the ADC ranging method is higher. Therefore, the second data set corresponding to the ADC ranging method can be determined as the output distance set.
  • the second data set may also be determined as the output distance set.
  • the embodiment of the present application only uses At this time, the first data set is determined as the output distance set as an example for description.
  • the actual transmission power P and the preset power threshold P0 in the third mode are consistent with the actual transmission power P and the preset power threshold P0 in the above-mentioned first mode.
  • At least one estimated distance and preset power threshold in the third mode are It is assumed that the distance threshold L0 is consistent with at least one of the estimated distance and the preset distance threshold L0 in the above-mentioned second manner.
  • the distance threshold L0 is consistent with at least one of the estimated distance and the preset distance threshold L0 in the above-mentioned second manner.
  • the output distance set is determined according to at least one parameter in the first data set or the second data set, including at least one of the following Item: Determine that at least one signal parameter is greater than or equal to the preset parameter threshold, and determine the first data set as the output distance set; or, determine that at least one signal parameter is less than the preset parameter threshold, and determine the second data set as the output distance set.
  • the at least one signal parameter may include any of the following parameters: amplitude, energy, or signal-to-noise ratio. That is, at least one signal parameter of the echo signal may include at least one amplitude, at least one energy, or at least one signal-to-noise ratio. At least one signal parameter may be obtained by processing the TDC ranging unit 402 or the ADC ranging unit 403 shown in FIG. 4 according to the echo signal.
  • the overall signal-to-noise ratio of the echo signal of the ranging system will be higher. At this time, the accuracy of the ranging result corresponding to the TDC ranging method is higher.
  • the first data set as the output distance set; when at least one amplitude of the echo signal is less than the preset amplitude threshold, at least one energy of the echo signal is less than the preset energy threshold, or the echo signal
  • the overall signal-to-noise ratio of the echo signal of the ranging system will be relatively low.
  • the ADC ranging method can improve the signal-to-noise ratio of the echo signal.
  • the second data set can be determined as the output distance set.
  • a certain second distance in the second data set is D
  • the amplitude of the corresponding echo signal is A
  • the preset amplitude threshold is A0. If A ⁇ A0, it will be in [D- ⁇ D1, D+ ⁇ D1 In the range of ], the first data set can be used to determine the output distance set; while in the range other than [D- ⁇ D1, D+ ⁇ D1], the second data set can be determined as the output distance set.
  • ⁇ D1 can be set in advance.
  • the One of the amplitude, energy, or signal-to-noise ratio of the echo signal can be judged and selected, and it can also be judged and selected based on two or three at the same time.
  • the above description only takes one signal parameter as an example.
  • the preset amplitude threshold, the preset energy threshold, and the preset signal-to-noise ratio threshold can be set by those skilled in the art based on experience or specifically determined based on the performance of the ranging system, which is not specifically limited in this application.
  • the second data set may also be determined as the output distance set. The embodiment of the present application only takes the determination of the first data set as the output distance set at this time as an example Be explained.
  • At least one signal parameter corresponds to the parameters in the first data set one-to-one, and corresponds to the parameters in the second data set one-to-one, according to the at least one signal parameter of the echo signal and the preset parameter threshold.
  • the relationship between determining the output distance set according to at least one parameter in the first data set or the second data set may further include: determining at least one first signal parameter and at least one second signal parameter in the at least one signal parameter, At least one first signal parameter is less than or equal to the preset parameter threshold, and at least one second signal parameter is greater than the preset parameter threshold; and the parameter corresponding to the at least one first signal parameter in the first data set is combined with the second data set The parameter corresponding to at least one second signal parameter in is determined as the output distance set.
  • At least one first signal parameter in at least one signal parameter is less than or equal to a preset parameter threshold
  • at least one second signal parameter in at least one signal parameter is When it is greater than the preset parameter threshold, in order to obtain a more accurate ranging result, the parameter in the first data set corresponding to at least one first signal parameter and the parameter in the second data set corresponding to at least one second signal parameter The parameter of is determined as the output distance set.
  • At least one first signal parameter and at least one second signal parameter in the at least one signal parameter, at least one first signal parameter and at least one second signal parameter are both greater than a preset parameter threshold
  • at least one first signal parameter and at least one second signal parameter in the second data set correspond to the data difference of the two parameters less than or equal to the data difference threshold (for example, the distance difference between the two second distances is less than the distance difference Threshold, or the time difference between two second flight times is less than the time difference threshold)
  • the two data in the first data set corresponding to at least one first signal parameter and at least one second signal parameter in the second data set are respectively corresponding, Determine as the output distance set.
  • the at least two second distances included in the second data set are represented as L3 and L4, respectively, the amplitudes of the echo signals corresponding to the two second distances L3 and L4 are A3 and A4, and the preset amplitude threshold is Is A0, the preset distance difference threshold is D0, when the amplitude A3 is greater than or equal to A0 (ie A3 ⁇ A0), the amplitude A3 is greater than or equal to A0 (ie A4 ⁇ A0), and the second distance L3 and the second distance L4 When the difference D of is less than or equal to the preset distance difference threshold D0 (ie
  • the second data set also includes clutter positions.
  • the method further includes: S504.
  • S504 Eliminate the parameter corresponding to the clutter position in the first data set according to the clutter position.
  • the clutter may refer to the echo signal formed after the detection signal is reflected or scattered by an object that is not expected to be detected (that is, an obstacle other than the target object).
  • the clutter may be the echo signal formed by the reflection of the detection signal by fog, dust, raindrops, or groups of flying insects. Because clutter does not reflect the distance between the target object and the ranging system, it is necessary to remove the first distance corresponding to the clutter position from the output data set, or remove the first flight time corresponding to the clutter position from the output data set. Eliminate the data set, thereby improving the ranging performance and accuracy of the ranging system.
  • the ADC ranging unit 403 can acquire complete echo information by sampling the entire echo signal, and identify clutter and effective echo signals.
  • the TDC ranging unit 402 is usually unable to identify the clutter position, or it needs to be implemented through additional hardware design. Therefore, the first data set can be filtered according to the clutter positions included in the second data set, that is, the first distance or the first flight time corresponding to the clutter position in the first data set can be eliminated.
  • the waveform diagram of the echo signal sampled by the ADC ranging unit 403 is shown in Figure 8.
  • the positions corresponding to the target 1 and the target 2 circled in Figure 8 represent the positions L1 and L2 corresponding to the target object, and the arrow
  • the position shown represents the position information corresponding to the clutter.
  • the distance value S1 is the position corresponding to the fog cluster
  • the distance value S2 is the position of the noise. If its position information is also determined as the target distance output, it will greatly affect the ranging performance and accuracy of the ranging system.
  • the first distance or first flight time corresponding to the clutter position in the first data set is eliminated through the above S504. Therefore, it is possible to reduce the ranging error caused by the presence of clutter in the TDC ranging method, improve the accuracy of the output distance set, and further improve the ranging performance of the ranging system.
  • the second data set further includes the saturated echo position
  • the method further includes: S505.
  • S505 and S504 may be in no particular order.
  • S505 is located after S504 as an example for illustration.
  • S505 Remove the parameter corresponding to the saturated echo position in the first data set according to the saturated echo position.
  • the saturated echo can refer to the echo signal whose actual waveform exceeds the pre-quantized waveform range.
  • the echo signal generated at a relatively close distance because the amplitude of the echo signal is too large, exceeds the preset value.
  • the amplitude range of the echo signal is the case of saturated echo.
  • the ADC ranging unit 403 can acquire complete echo information by sampling the entire echo signal, it can accurately identify the position of the saturated echo, while the TDC ranging unit 402 usually cannot identify the saturated echo.
  • the position of the wave may be realized through additional hardware design. Therefore, the first data set can be filtered according to the saturated echo positions included in the second data set, that is, the first distance or the first flight time corresponding to the saturated echo position in the first data set can be eliminated.
  • the ranging error caused by the presence of the saturated echo in the TDC ranging method can be reduced. Improve the accuracy of the output distance set, thereby improving the ranging performance of the ranging system.
  • the embodiment of the present application also provides a ranging device based on a detection signal.
  • the signal formed by reflection of the detection signal emitted by the ranging device is an echo signal.
  • the ranging device may be as shown in FIG. 4 or FIG.
  • the ranging device may include: a control unit 401, a TDC ranging unit 402, and an ADC ranging unit 403.
  • the TDC ranging unit 402 is configured to process the echo signal based on the TDC ranging mode to determine a first data set, and the first data set includes the following parameters: at least one first distance or At least one first flight time;
  • the ADC ranging unit 403 is used for the ADC ranging mode to process the echo signal to determine a second data set, the second data set including the following parameters: at least one second distance or at least one second flight time;
  • the control unit 401 is configured to determine the relationship between at least one of the actual transmission power of the detection signal, at least one estimated distance, or at least one signal parameter of the echo signal and a preset threshold, according to the first data set or At least one parameter in the second data set determines the output distance set.
  • control unit 401 is specifically configured to perform at least one of the following steps: determine at least one first distance as the output distance set; calculate at least one third distance respectively according to the at least one first flight time, and set the at least one third distance The distance is determined as the output distance set; the at least one second distance is determined as the output distance set; or at least one fourth distance is respectively calculated according to the at least one second flight time, and the at least one fourth distance is determined as the output distance set.
  • control unit 401 is specifically configured to: determine that the actual transmission power is greater than or equal to a preset power threshold, and determine the first data set as the output distance set; or, determine that the actual transmission power is less than the preset power threshold.
  • the power threshold determines the second data set as the output distance set.
  • control unit 401 is further specifically configured to: determine that the actual transmit power is greater than or equal to a preset power threshold, and determine the first data set as the output distance set; after determining that the actual transmit power is less than the preset power threshold, determine at least If an estimated distance is less than or equal to the preset distance threshold, the first data set is determined as the output distance set; or, after determining that the actual transmission power is less than the preset power threshold, it is determined that at least one estimated distance is greater than the preset distance threshold, and The second data set is determined as the output distance set.
  • control unit 401 is specifically configured to: determine that the at least one estimated distance is less than or equal to a preset distance threshold, and determine the first data set as the output distance set; or, determine The at least one estimated distance is greater than a preset distance threshold, and the second data set is determined as an output distance set.
  • control unit 401 is further specifically configured to: after determining that the at least one estimated distance is less than or equal to a preset distance threshold, determine that the actual transmission power of the detection signal is less than the preset power threshold, and compare the first data The set is determined as the output distance set; or, after determining that the at least one estimated distance is greater than the preset distance threshold, it is determined that the actual transmission power of the detection signal is less than the preset power threshold, and the second data set is determined as the output distance set.
  • At least one estimated distance respectively corresponds to the parameters in the first data set one-to-one and corresponds to the parameters in the second data set
  • the control unit 401 is further specifically configured to: determine the At least one first estimated distance and at least one second estimated distance in the at least one estimated distance, the at least one estimated distance is less than or equal to a preset distance threshold, and the at least one second estimated distance is all greater than the preset distance Threshold
  • the parameter corresponding to the at least one first estimated distance in the first data set and the parameter corresponding to the at least one second estimated distance in the second data set are determined as an output distance set.
  • the at least one signal parameter is any one of the following parameters: amplitude, energy, or signal-to-noise ratio
  • the control unit 401 is specifically configured to: determine that the at least one signal parameter is equal to If it is less than or equal to a preset parameter threshold, determine the first data set as an output distance set; or, determine that the at least one signal parameter is greater than a preset parameter threshold, and determine the second data set as an output distance set.
  • control unit 401 is further specifically configured to: determine at least one first signal parameter and at least one second signal parameter in the at least one signal parameter, and the at least one first signal parameter is less than or equal to a preset parameter Threshold, the at least one second signal parameter is greater than the preset parameter threshold; the parameter corresponding to the at least one first signal parameter in the first data set, and the second data set with all parameters The parameter corresponding to the at least one second signal parameter is determined as an output distance set.
  • control unit 401 is further specifically configured to: determine at least one first signal parameter and at least one second signal parameter in the at least one signal parameter, and the at least one first signal parameter and the at least one second signal parameter Are greater than a preset parameter threshold, and the data difference of the two parameters corresponding to the at least one first signal parameter and the at least one second signal parameter in the second data set is less than or equal to the data difference threshold; The parameter corresponding to the at least one first signal parameter in the first data set and the parameter corresponding to the at least one second signal parameter in the second data set are determined as an output distance set.
  • the second data set further includes a clutter position
  • the control unit 401 is further configured to eliminate the parameter corresponding to the clutter position in the first data set according to the clutter position.
  • the second data set further includes a saturated echo position
  • the control unit 401 is further configured to eliminate the parameter corresponding to the saturated echo position in the first data set according to the saturated echo position.
  • control unit 401 the TDC ranging unit 402, and the ADC ranging unit 403 may refer to the related descriptions in the foregoing method embodiments, and details are not repeated in the embodiments of the present application.
  • control unit 401 is also used to turn on or turn off the TDC ranging unit 402 and the ADC ranging unit 403.
  • the specific process of the control unit 401 turning on or off the TDC ranging unit 402 and the ADC ranging unit 403 will be described below with three possible implementation manners.
  • the control unit 401 determines whether to turn on the TDC ranging unit 402 or the ADC ranging unit 403 according to the relationship between the actual transmission power of the detection signal and the preset power threshold. Specifically, when the actual transmission power P is less than the preset power threshold P1, the control unit 401 can turn on the ADC ranging unit 403. At this time, the control unit 401 can turn off the TDC ranging unit 402; when the actual transmission power P is greater than or When it is equal to the preset power threshold P1, the control unit 401 can turn on the TDC ranging unit 402, and at this time, the control unit 401 can turn off the ADC ranging unit 403.
  • the control unit 401 determines whether to turn on the TDC ranging unit 402 or the ADC ranging unit 403 according to the magnitude relationship between at least one estimated distance and a preset distance threshold. Specifically, when at least one estimated distance is less than or equal to the preset distance threshold L1, the control unit 401 may turn on the TDC ranging unit 402. At this time, the control unit 401 may turn off the ADC ranging unit 403; when at least one estimated distance is equal to When the distance is greater than the preset distance threshold L1, the control unit 401 can turn on the ADC ranging unit 403, and at this time, the control unit 401 can turn off the TDC ranging unit 402.
  • the control unit 401 turns on the ADC ranging unit 403 with higher ranging performance when the actual transmission power is small or at least one estimated distance is large, and the actual transmission power is large, or When at least one estimated distance is small, turning on the TDC ranging unit 402 with higher ranging performance can improve the accuracy of the final output distance set and reduce the energy consumption of the ranging device.
  • control unit 401 is further configured to: when it is determined that the ADC ranging unit 403 is faulty, turn on the TDC ranging unit 402; when it is determined that the TDC ranging unit 402 is faulty, turn on the ADC ranging unit 403.
  • the implementation manner for the control unit 401 to determine whether the TDC ranging unit 402 and the ADC ranging unit 403 are faulty may include: the first data set output by the TDC ranging unit 402 and the second data set output by the ADC ranging unit 403 To determine whether the TDC ranging unit 402 and the ADC ranging unit 403 are in a normal working state, so as to shut down the faulty ranging unit.
  • control unit 401 compares the TDC distance measurement unit 402 and the ADC distance measurement unit 403 with a greater difference in the distance measurement results, then the control unit 401 starts from this time measurement and compares the TDC distance measurement unit 402 and Multiple measurement results of the ADC ranging unit 403, for example 20 times.
  • the control unit 401 can determine whether the current echo signal is a multi-echo condition, and if it is a multi-echo condition, the control unit 401 can It is determined that the TDC ranging unit 402 and the ADC ranging unit 403 are currently in normal working conditions; if it is not a multi-echo condition, the control unit 401 can further determine the faulty ranging unit and shut it down, and can also issue an abnormal alarm signal.
  • the foregoing multi-echo situation may refer to a situation in which multiple echoes are generated in one ranging signal transmission period.
  • the process for the control unit 401 to determine the faulty ranging unit may be: the control unit 401 combines the ranging results of the two ranging methods according to the entire echo waveform sampled by the ADC ranging unit 403 to specifically determine the faulty ranging unit.
  • Distance unit Specifically, it is determined whether at least one first distance in the first data set and at least one second distance in the second data set is corresponding to the original echo position sampled by the ADC ranging unit 403 .
  • the control unit 401 can determine that the TDC ranging unit 402 is faulty; if at least one of the second data sets is The second distance cannot find a corresponding echo at the corresponding position of the original echo, and the control unit 401 can determine that the ADC ranging unit 403 is faulty. If both have corresponding echoes, the control unit 401 can cancel the alarm signal.
  • control unit 401 can improve the robustness of the ranging device by determining the faulty ranging unit and turning on another ranging unit when a fault occurs in a ranging unit. Improve the ranging performance of the ranging device.
  • control unit 401 is further configured to: configure the first measurement parameter of the TDC ranging unit 402, the first measurement parameter may include the first distance or the first flight time; configure the ADC ranging unit 402 The second measurement parameter may include the second distance or the second flight time.
  • the control unit 401 configures the first measurement parameter to be the first distance
  • the first data set measured by the TDC ranging unit 402 includes at least one first distance
  • the control unit 401 configures the first measurement parameter to be the first distance
  • the first data set measured by the TDC ranging unit 402 includes at least one first time of flight.
  • the control unit 401 configures the second measurement parameter as the second distance
  • the second data set measured by the ADC ranging unit 403 includes at least one second distance
  • the control unit 401 configures the second measurement parameter as the second flight time
  • the second data set measured by the ADC ranging unit 403 includes at least one second flight time.
  • control unit 401 may also configure the first measurement parameter to include at least one of the following parameters: amplitude, energy, or signal-to-noise ratio, and configure the second measurement parameter to include at least one of the following parameters: amplitude, energy , S/N ratio, clutter position, or saturated echo position.
  • control unit 401 may further configure the first data set obtained by the TDC ranging unit 402 to include at least one of the amplitude of the echo signal, the energy of the echo signal, or the signal-to-noise ratio of the echo signal, and
  • the second data set measured by the ADC ranging unit 403 includes the amplitude of the echo signal, the energy of the echo signal, the signal-to-noise ratio of the echo signal, the clutter position, or the saturated echo position. at least one.
  • control unit 401 can configure relative measurement parameters for the TDC ranging unit 402 and the ADC ranging unit 403 according to the ranging needs, thereby improving the flexibility and diversity of the ranging system, and at the same time.
  • the overall performance of the ranging device can configure relative measurement parameters for the TDC ranging unit 402 and the ADC ranging unit 403 according to the ranging needs, thereby improving the flexibility and diversity of the ranging system, and at the same time.
  • FIG. 10 a schematic structural diagram of a mobile platform provided by an embodiment of this application.
  • the mobile platform may include a probe signal transmitter, a probe signal receiver, and any one of those provided in FIG. 3, FIG. 4, or FIG.
  • the distance measuring device where the detection signal transmitter is used to transmit the detection signal, which may specifically include the laser drive, laser, scanning device, and transmitter shown in Figure 2 or Figure 3; the detection signal receiver is used to receive the echo of the detection signal
  • the signal may specifically include the receiving end, the detector, and the transimpedance amplifier shown in FIG. 2 or FIG. 3; the distance measuring device is used to perform the relevant steps in the foregoing method embodiment.
  • the disclosed method and device can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each functional unit in each embodiment of the present application may be integrated into one data processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute some steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks, etc., which can store program codes Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种基于探测信号的测距方法及装置,涉及距离检测技术领域,用于提高测距的准确性和测距精度。该方法包括:基于时间数字转换(TDC)的测距方式对探测信号的回波信号进行处理,以确定第一数据集合(S501),第一数据集合包括如下参数:至少一个第一距离或至少一个第一飞行时间;基于模拟数字转换(ADC)的测距方式对该回波信号进行处理,以确定第二数据集合(S502),第二数据集合包括如下参数:至少一个第二距离或至少一个第二飞行时间;根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据该第一数据集合或该第二数据集合中的至少一个参数确定输出距离集合(S503)。

Description

一种基于探测信号的测距方法及装置 技术领域
本申请涉及距离检测技术领域,尤其涉及一种基于探测信号的测距方法及装置。
背景技术
激光雷达(Light Detection and Ranging,LiDAR)是以发射激光束探测目标的位置、速度等特征量的雷达系统。其工作原理是向目标物体发射激光探测信号,然后将接收到的从目标物体反射回来的信号与发射的探测信号进行对比,信号处理后,获得目标物体的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数。激光雷达具有高测量精度、精细的时间和空间分辨率,能完成测距、目标探测、跟踪和成像识别等功能,其中,测距是激光雷达的基本功能。
目前,大部分激光雷达采用脉冲光飞行时间(Time of flight,TOF)原理测量距离,可以实现几米到几千米的探测。其原理是激光器发射一个持续很短时间的光脉冲,通过测量光脉冲从激光雷达到目标物体,然后从目标物体反射回测距仪的光传输时间,也叫飞行时间t,通过公式:R=c×t/(2×n)计算得到目标物体的距离。其中,c为光速,约为299792458m/s,n为介质中的折射率。通常TOF测距包括两种方式,即基于时间数字转换(Time to Digital Converter,TDC)的测距方式,和基于模拟数字转换(Analog to Digital Converter,ADC)的测距方式。其中,TDC测距方式是一种基于模拟信号的测距方式,具体通过时刻鉴别电路确定探测信号经目标反射形成的回波信号的时刻,进而获取探测信号的飞行时间,并将该飞行时间转换成相应的距离;ADC测距方式是一种基于数字信号的测距方式,具体通过对探测信号反射形成的回波信号进行模拟数字转换,并对数字化信号进行信号处理,从而得到探测的距离。
上述两种方式中,基于TDC测距方式虽然TDC的测量精度较高,但测距性能受限于时刻鉴别的精度;基于ADC测距方式能够通过数字域的信号处理改善低信噪比回波的性能,但其测距性能受限于采样率。因此,在实际应用中,单独使用上述两种方式的任一种测距方式时,受到多种因素制约,影响测距性能。
发明内容
本申请实施例提供一种基于探测信号的测距方法及装置,用于提高测距的准确性和测距精度。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种基于探测信号的测距方法,该探测信号经过反射形成的信号为回波信号,该方法包括:基于时间数字转换TDC的测距方式对所述回波信号进行处理,以确定第一数据集合,所述第一数据集合包括至少一个第一距离或至少一个第一飞行时间;基于模拟数字转换ADC的测距方式对所述回波信号进行处理,以确定第二数据集合,所述第二数据集合包括至少一个第二距离或至少一个第二飞行时间;根据所述探测信号的实际发射功率、至少一个待测距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,将所述第一数据集合或所述第二 数据集合中的至少一个数据确定为输出距离集合。
上述技术方案中,分别通过TDC测距方式和ADC测距方式来进行测距,并通过一定策略灵活性地从两个测距结果中选择ADC的测距结果或ADC的测距结果输出,即选择更优的测距结果输出,从而能够提高输出距离集合的准确性和测距精度。
在第一方面的一种可能的实现方式中,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合,包括以下方法中的至少一种:将至少一个第一距离确定为输出距离集合;根据至少一个第一飞行时间分别计算至少一个第三距离,将至少一个第三距离确定为输出距离集合;将至少一个第二距离确定为输出距离集合;或,根据至少一个第二飞行时间分别计算至少一个第四距离,将至少一个第四距离确定为输出距离集合。上述可能的实现方式,提供了多种不同的选择输出距离集合的方式,能够提高选择的灵活性和多样性。
在第一方面的一种可能的实现方式中,根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定为输出距离集合,包括如下至少一项:确定该实际发射功率大于或等于预设功率阈值,将第一数据集合确定为输出距离集合;或,确定该实际发射功率小于预设功率阈值,将第二数据集合确定为输出距离集合。上述可能的实现方式,根据实际发射功率与预设功率阈值的关系,能够保证输出距离集合的准确率最高,从而提高测距的准确性和测距精度。
在第一方面的一种可能的实现方式中,根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合,包括如下至少一项:确定该实际发射功率大于或等于预设功率阈值,将第一数据集合确定为输出距离集合;确定该实际发射功率小于预设功率阈值之后,确定至少一个估计距离均小于或等于预设距离阈值,将第一数据集合确定为输出距离集合;或,确定该实际发射功率小于预设功率阈值之后,确定至少一个估计距离均大于预设距离阈值,将第二数据集合确定为输出距离集合。上述可能的实现方式,根据实际发射功率与预设功率阈值的关系、以及估计距离与预设距离阈值的关系,能够保证输出距离集合的准确率最高,从而提高测距的准确性和测距精度。
在第一方面的一种可能的实现方式中,根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合,包括如下至少一项:确定至少一个估计距离均小于或等于预设距离阈值,将第一数据集合确定为输出距离集合;或,确定至少一个估计距离均大于预设距离阈值,将第二数据集合确定为输出距离集合。上述可能的实现方式,根据估计距离与预设距离阈值的关系,能够保证输出距离集合的准确率最高,从而提高测距的准确性和测距精度。
在第一方面的一种可能的实现方式中,根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合,包括如下至少一项:确定至少一个估计距离均小于或等于预设距离阈值之后,确定该 探测信号的实际发射功率小于预设功率阈值,将第一数据集合确定为输出距离集合;或,确定至少一个估计距离均大于预设距离阈值之后,确定该探测信号的实际发射功率小于预设功率阈值,将第二数据集合确定为输出距离集合。上述可能的实现方式,估计距离与预设距离阈值的关系,以及实际发射功率与预设功率阈值的关系,能够保证输出距离集合的准确率最高,从而提高测距的准确性和测距精度。
在第一方面的一种可能的实现方式中,至少一个估计距离分别与第一数据集合中的参数一一对应,且和第二数据集合中的参数一一对应,根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合,包括:确定至少一个估计距离中的至少一个第一估计距离和至少一个第二估计距离,至少一个估计距离均小于或等于预设距离阈值,至少一个第二估计距离均大于预设距离阈值;将第一数据集合中与至少一个第一估计距离对应的参数,以及第二数据集合中与至少一个第二估计距离对应的参数,确定为输出距离集合。上述可能的实现方式,能够保证输出距离集合的准确率最高,从而提高了测距的准确性和测距精度。
在第一方面的一种可能的实现方式中,至少一个信号参数为以下参数中的任一种:幅值、能量、或者信噪比,根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合,包括如下至少一项:确定至少一个信号参数均小于或等于预设参数阈值,将第一数据集合确定为输出距离集合;或,确定至少一个信号参数均大于预设参数阈值,将第二数据集合确定为输出距离集合。上述可能的实现方式,根据该回波信号的信号参数与预设参数阈值的比较,能够保证输出距离集合的准确率最高,能够提高测距的准确性和测距精度。
在第一方面的一种可能的实现方式中,至少一个信号参数为以下参数中的任一种:幅值、能量、或者信噪比,至少一个信号参数分别与第一数据集合中的参数一一对应,且和第二数据集合中的参数一一对应,根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合,包括:确定至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,至少一个第一信号参数均小于或等于预设参数阈值,至少一个第二信号参数均大于预设参数阈值;将第一数据集合中与至少一个第一信号参数对应的参数,以及第二数据集合中与至少一个第二信号参数对应的参数,确定为输出距离集合。上述可能的实现方式,根据该回波信号的信号参数与预设参数阈值的比较,能够保证输出距离集合的准确率最高,能够提高测距的准确性和测距精度。
在第一方面的一种可能的实现方式中,至少一个信号参数包括以下参数中的任一种:幅值、能量、或者信噪比,至少一个信号参数分别与第一数据集合中的参数一一对应,且和第二数据集合中的参数一一对应,根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合, 包括:确定至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,至少一个第一信号参数和至少一个第二信号参数均大于预设参数阈值,且至少一个第一信号参数和至少一个第二信号参数分别在第二数据集合中对应的两个参数的数据差小于或等于数据差阈值;将第一数据集合中与至少一个第一信号参数对应的参数,以及第二数据集合中与至少一个第二信号参数对应的参数,确定为输出距离集合。上述可能的实现方式,根据该回波信号的信号参数与预设参数阈值的比较,能够保证输出距离集合的准确率最高,能够提高测距的准确性和测距精度。
在第一方面的一种可能的实现方式中,第二数据集合还包括杂波位置,根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,将第一数据集合或第二数据集合中的至少一个参数确定为输出距离集合之前,该方法还包括:根据杂波位置剔除第一数据集合中与杂波位置对应的参数。上述可能的实现方式,根据杂波位置剔除第一数据集合中不准确的距离信息,从而能够进一步提高测距的准确性。
在第一方面的一种可能的实现方式中,第二数据集合还包括饱和回波位置,根据探测信号的实际发射功率、至少一个估计距离、或者回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合之前,该方法还包括:根据饱和回波位置剔除第一数据集合中与饱和回波位置对应的参数。上述可能的实现方式,根据饱和回波位置剔除第一数据集合中不准确的距离信息,从而能够进一步提高测距的准确性。
第二方面,提供一种基于探测信号的测距装置,该探测信号经过反射形成的信号为回波信号,该测距装置包括:时间数字转换(TDC)测距单元,用于基于TDC的测距方式对该回波信号进行处理,以确定第一数据集合,第一数据集合包括如下参数:至少一个第一距离或至少一个第一飞行时间;模拟数字转换(ADC)测距单元,用于基于ADC的测距方式对该回波信号进行处理,以确定第二数据集合,第二数据集合包括如下参数:至少一个第二距离或至少一个第二飞行时间;控制单元,用于根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合。
在第二方面的一种可能的实现方式中,控制单元具体用于执行以下步骤中至少一种:将至少一个第一距离确定为输出距离集合;根据至少一个第一飞行时间分别计算至少一个第三距离,将至少一个第三距离确定为输出距离集合;将至少一个第二距离确定为输出距离集合;或,根据至少一个第二飞行时间分别计算至少一个第四距离,将至少一个第四距离确定为输出距离集合。
在第二方面的一种可能的实现方式中,控制单元具体用于:确定该实际发射功率大于或等于预设功率阈值,将第一数据集合确定为输出距离集合;或,确定该实际发射功率小于预设功率阈值,将第二数据集合确定为输出距离集合。
在第二方面的一种可能的实现方式中,控制单元具体用于:确定该实际发射功率大于或等于预设功率阈值,将第一数据集合确定为输出距离集合;确定该实际发射功率小于预设功率阈值之后,确定至少一个估计距离均小于或等于预设距离阈值,将第 一数据集合确定为输出距离集合;或,确定实际发射功率小于预设功率阈值之后,确定至少一个估计距离均大于预设距离阈值,将第二数据集合确定为输出距离集合。
在第二方面的一种可能的实现方式中,控制单元具体用于:确定至少一个估计距离均小于或等于预设距离阈值,将第一数据集合确定为输出距离集合;或,确定至少一个估计距离均大于预设距离阈值,将第二数据集合确定为输出距离集合。
在第二方面的一种可能的实现方式中,控制单元具体用于:确定至少一个估计距离均小于或等于预设距离阈值之后,确定该探测信号的实际发射功率小于预设功率阈值,将第一数据集合确定为输出距离集合;或,确定至少一个估计距离均大于预设距离阈值之后,确定该探测信号的实际发射功率小于预设功率阈值,将第二数据集合确定为输出距离集合。
在第二方面的一种可能的实现方式中,控制单元具体用于:确定至少一个估计距离中的至少一个第一估计距离和至少一个第二估计距离,至少一个估计距离均小于或等于预设距离阈值,至少一个第二估计距离均大于预设距离阈值;将第一数据集合中与至少一个第一估计距离对应的参数,以及第二数据集合中与至少一个第二估计距离对应的参数,确定为输出距离集合;其中,至少一个估计距离分别与第一数据集合中的参数一一对应,且和第二数据集合中的参数一一对应。
在第二方面的一种可能的实现方式中,控制单元具体用于:确定至少一个信号参数均小于或等于预设参数阈值,将第一数据集合确定为输出距离集合;或,确定至少一个信号参数均大于预设参数阈值,将第二数据集合确定为输出距离集合;其中,至少一个信号参数为以下参数中的任一种:幅值、能量、或者信噪比。
在第二方面的一种可能的实现方式中,控制单元具体用于:确定至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,至少一个第一信号参数均小于或等于预设参数阈值,至少一个第二信号参数均大于预设参数阈值;将第一数据集合中与至少一个第一信号参数对应的参数,以及第二数据集合中与至少一个第二信号参数对应的参数,确定为输出距离集合;至少一个信号参数为以下参数中的任一种:幅值、能量、或者信噪比,至少一个信号参数分别与第一数据集合中的参数一一对应,且和第二数据集合中的参数一一对应。
在第二方面的一种可能的实现方式中,控制单元具体用于:确定至少一个信号参数中的第一信号参数和第二信号参数,至少一个第一信号参数和至少一个第二信号参数均大于预设参数阈值,且至少一个第一信号参数和至少一个第二信号参数分别在第二数据集合中对应的两个参数的数据差小于或等于数据差阈值;将第一数据集合中与至少一个第一信号参数和至少一个第二信号参数分别在第二数据集合中对应的两个数据,确定为输出距离集合;其中,至少一个信号参数包括以下参数中的任一种:幅值、能量、或者信噪比,至少一个信号参数分别与第一数据集合中的参数一一对应,且和第二数据集合中的参数一一对应。
在第二方面的一种可能的实现方式中,第二数据集合还包括杂波位置,控制单元还用于:根据杂波位置剔除第一数据集合中与杂波位置对应的参数。
在第二方面的一种可能的实现方式中,第二数据集合还包括饱和回波位置,控制单元还用于:根据饱和回波位置剔除第一数据集合中与饱和回波位置对应的参数。
在第二方面的一种可能的实现方式中,控制单元还用于:开启或关闭TDC测距单元和ADC测距单元。上述可能的实现方式,通过对不同测距单元的开启或关闭,来选择准确率最高的测距单元进行测距,从而能够提高测距的准确性和精度,能够能够降低该测距系统的能耗。
在第二方面的一种可能的实现方式中,控制单元具体还用于:确定该探测信号的实际发射功率大于或等于预设功率阈值,开启TDC测距单元;确定该探测信号的实际发射功率小于预设功率阈值,开启ADC测距单元。上述可能的实现方式,通过对不同测距单元的开启或关闭,来选择准确率最高的测距单元进行测距,从而能够提高测距的准确性和精度,能够能够降低该测距系统的能耗。
在第二方面的一种可能的实现方式中,控制单元还用于:确定ADC测距单元故障,开启TDC测距单元;确定TDC测距单元故障,开启ADC测距单元。上述可能的实现方式,通过在某一测距单元故障时,开启另一测距单元来进行测距,从而能够提高测距系统的鲁棒性和测距性能。
在第二方面的一种可能的实现方式中,控制单元还用于:配置TDC测距单元的第一测量参数,第一测量参数包括第一距离或第一飞行时间;配置ADC测距单元的第二测量参数,第二测量参数包括第二距离或第二飞行时间。上述可能的实现方式,控制单元可以根据需求,为TDC测距单元和ADC测距单元配置测量参数,从而能够提高该测距系统的灵活性和测距性能。
在第二方面的一种可能的实现方式中,第一测量参数还包括以下参数中的至少一项:幅值、能量、或者信噪比;第二测量参数还包括以下参数中的至少一项:幅值、能量、信噪比、杂波位置、或者饱和回波位置。上述可能的实现方式,控制单元可以根据需求进一步ADC测距单元配置其他的测量参数,从而能够进一步提高该测距系统的测距性能。
第三方面,提供一种基于探测信号的测距装置,该装置包括处理器和存储器,该存储器中存储有指令,当该处理器运行存储的指令时,使得该装置执行上述第一方面或第一方面任一种可能的实现方式所提供的基于探测信号的测距方法。
第四方面,提供一种计算机存储介质,计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行上述第一方面或第一方面任一种可能的实现方式所提供的基于探测信号的测距方法。
第五方面,提供一种移动平台,该移动平台包括探测信号发射器,探测信号接收器,以及如上述第二方面或第二方面任一种可能的实现方式所提供的基于探测信号的测距装置。
可以理解地,上述提供的任一种基于探测信号的测距装置、可读存储介质、计算机程序产品和移动平台,均可以由上文所提供的对应的方法来实现,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种具有自动驾驶功能的车辆的结构示意图;
图2为本申请实施例提供的一种TDC测距系统的结构示意图;
图3为本申请实施例提供的一种ADC测距系统的结构示意图;
图4为本申请实施例提供的一种测距系统的结构示意图一;
图5为本申请实施例提供的一种测距系统的结构示意图二;
图6为本申请实施例提供的一种基于探测信号的测距方法的流程示意图一;
图7为本申请实施例提供的一种基于探测信号的测距方法的流程示意图二;
图8为本申请实施例提供的一种ADC测距单元对回波信号进行采样后的波形图;
图9为本申请实施例提供的一种基于探测信号的测距方法的流程示意图三;
图10为本申请实施例提供的一种移动平台的结构示意图。
具体实施方式
图1是本申请实施例提供的具有自动驾驶功能的车辆100的功能框图。在一个实施例中,将车辆100配置为完全或部分地自动驾驶模式。例如,车辆100可以在处于自动驾驶模式中的同时控制自身,并且可通过人为操作来确定车辆及其周边环境的当前状态,确定周边环境中的至少一个其他车辆的可能行为,并确定该其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制车辆100。在车辆100处于自动驾驶模式中时,可以将车辆100置为在没有和人交互的情况下操作。
车辆100可包括各种子系统,例如行进系统102、传感器系统104、控制系统106、一个或多个外围设备108以及电源110、计算机系统112和用户接口116。可选地,车辆100可包括更多或更少的子系统,并且每个子系统可包括多个元件。另外,车辆100的每个子系统和元件可以通过有线或者无线互连。
行进系统102可包括为车辆100提供动力运动的组件。在一个实施例中,行进系统102可包括引擎118、能量源119、传动装置120和车轮/轮胎121。引擎118可以是内燃引擎、电动机、空气压缩引擎或其他类型的引擎组合,例如气油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。引擎118将能量源119转换成机械能量。
能量源119的示例包括汽油、柴油、其他基于石油的燃料、丙烷、其他基于压缩气体的燃料、乙醇、太阳能电池板、电池和其他电力来源。能量源119也可以为车辆100的其他系统提供能量。
传动装置120可以将来自引擎118的机械动力传送到车轮121。传动装置120可包括变速箱、差速器和驱动轴。在一个实施例中,传动装置120还可以包括其他器件,比如离合器。其中,驱动轴可包括可耦合到一个或多个车轮121的一个或多个轴。
传感器系统104可包括感测关于车辆100周边的环境的信息的若干个传感器。例如,传感器系统104可包括定位系统122(定位系统可以是全球定位系统(global positioning system,GPS)系统,也可以是北斗系统或者其他定位系统)、惯性测量单元(inertial measurement unit,IMU)124、雷达126、激光测距仪128以及相机130。传感器系统104还可包括被监视车辆100的内部系统的传感器(例如,车内空气质量监测器、燃油量表、机油温度表等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是自主车辆100的安全操作的关键功能。
定位系统122可用于估计车辆100的地理位置。IMU 124用于基于惯性加速度来感测车辆100的位置和朝向变化。在一个实施例中,IMU 124可以是加速度计和陀螺 仪的组合。
雷达126可利用无线电信号来感测车辆100的周边环境内的物体。在一些实施例中,除了感测物体以外,雷达126还可用于感测物体的速度和/或前进方向。
激光测距仪128可利用激光来感测车辆100所位于的环境中的物体。在一些实施例中,激光测距仪128可包括一个或多个激光源、激光扫描器以及一个或多个检测器,以及其他系统组件。
相机130可用于捕捉车辆100的周边环境的多个图像。相机130可以是静态相机或视频相机。
控制系统106为控制车辆100及其组件的操作。控制系统106可包括各种元件,其中包括转向系统132、油门134、制动单元136、传感器融合算法138、计算机视觉系统140、路线控制系统142以及障碍物避免系统144。
转向系统132可操作来调整车辆100的前进方向。例如在一个实施例中可以为方向盘系统。
油门134用于控制引擎118的操作速度并进而控制车辆100的速度。
制动单元136用于控制车辆100减速。制动单元136可使用摩擦力来减慢车轮121。在其他实施例中,制动单元136可将车轮121的动能转换为电流。制动单元136也可采取其他形式来减慢车轮121转速从而控制车辆100的速度。
计算机视觉系统140可以操作来处理和分析由相机130捕捉的图像以便识别车辆100周边环境中的物体和/或特征。所述物体和/或特征可包括交通信号、道路边界和障碍物。计算机视觉系统140可使用物体识别算法、运动中恢复结构(structure from motion,SFM)算法、视频跟踪和其他计算机视觉技术。在一些实施例中,计算机视觉系统140可以用于为环境绘制地图、跟踪物体、估计物体的速度等等。
路线控制系统142用于确定车辆100的行驶路线。在一些实施例中,路线控制系统142可结合来自传感器138、GPS 122和一个或多个预定地图的数据以为车辆100确定行驶路线。
障碍物避免系统144用于识别、评估和避免或者以其他方式越过车辆100的环境中的潜在障碍物。
当然,在一个实例中,控制系统106可以增加或替换地包括除了所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件。
车辆100通过外围设备108与外部传感器、其他车辆、其他计算机系统或用户之间进行交互。外围设备108可包括无线通信系统116、车载电脑148、麦克风150和/或扬声器152。
在一些实施例中,外围设备108提供车辆100的用户与用户接口116交互的手段。例如,车载电脑148可向车辆100的用户提供信息。用户接口116还可操作车载电脑148来接收用户的输入。车载电脑148可以通过触摸屏进行操作。在其他情况中,外围设备108可提供用于车辆100与位于车内的其它设备通信的手段。例如,麦克风150可从车辆100的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器152可向车辆100的用户输出音频。
无线通信系统116可以直接地或者经由通信网络来与一个或多个设备无线通信。 例如,无线通信系统116可使用3G蜂窝通信,例如码分多址(code division multiple access,CDMA)、EVD0、全球移动通信系统(global system for mobile communications,GSM)/是通用分组无线服务技术(general packet radio service,GPRS),或者4G蜂窝通信,例如长期演进(long term evolution,LTE),或者5G蜂窝通信。无线通信系统116可利用WiFi与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信系统116可利用红外链路、蓝牙或ZigBee与设备直接通信。其他无线协议,例如各种车辆通信系统,例如,无线通信系统116可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。
电源110可向车辆100的各种组件提供电力。在一个实施例中,电源110可以为可再充电锂离子或铅酸电池。这种电池的一个或多个电池组可被配置为电源为车辆100的各种组件提供电力。在一些实施例中,电源110和能量源119可一起实现,例如一些全电动车中那样。
车辆100的部分或所有功能受计算机系统112控制。计算机系统112可包括至少一个处理器113,处理器113执行存储在例如存储器114这样的非暂态计算机可读介质中的指令115。计算机系统112还可以是采用分布式方式控制车辆100的个体组件或子系统的多个计算设备。
处理器113可以是任何常规的处理器,诸如商业可获得的中央处理器(central processing unit,CPU)。替选地,该处理器可以是诸如专用集成电路(application specific integrated circuits,ASIC)或其它基于硬件的处理器的专用设备。尽管图1功能性地图示了处理器、存储器、和在相同块中的计算机110的其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机110的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对可以或者可以不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和减速组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。
在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。
在一些实施例中,存储器114可包含指令115(例如,程序逻辑),指令115可被处理器113执行来执行车辆100的各种功能,包括以上描述的那些功能。存储器114也可包含额外的指令,包括向行进系统102、传感器系统104、控制系统106和外围设备108中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。
除了指令115以外,存储器114还可存储数据,例如道路地图、路线信息,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在车辆100在自主、半自主和/或手动模式中操作期间被车辆100和计算机系统112使用。
用户接口116,用于向车辆100的用户提供信息或从其接收信息。可选地,用户 接口116可包括在外围设备108的集合内的一个或多个输入/输出设备,例如无线通信系统116、车车在电脑148、麦克风150和扬声器152。
计算机系统112可基于从各种子系统(例如,行进系统102、传感器系统104和控制系统106)以及从用户接口116接收的输入来控制车辆100的功能。例如,计算机系统112可利用来自控制系统106的输入以便控制转向单元132来避免由传感器系统104和障碍物避免系统144检测到的障碍物。在一些实施例中,计算机系统112可操作来对车辆100及其子系统的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,存储器114可以部分或完全地与车辆100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图1不应理解为对本申请实施例的限制。
在道路行进的自动驾驶汽车,如上面的车辆100,可以识别其周围环境内的物体以确定对当前速度的调整。所述物体可以是其它车辆、交通控制设备、或者其它类型的物体。在一些示例中,可以独立地考虑每个识别的物体,并且基于物体的各自的特性,诸如它的当前速度、加速度、与车辆的间距等,可以用来确定自动驾驶汽车所要调整的速度。
可选地,自动驾驶汽车车辆100或者与自动驾驶车辆100相关联的计算设备(如图1的计算机系统112、计算机视觉系统140、存储器114)可以基于所识别的物体的特性和周围环境的状态(例如,交通、雨、道路上的冰、等等)来预测所述识别的物体的行为。可选地,每一个所识别的物体都依赖于彼此的行为,因此还可以将所识别的所有物体全部一起考虑来预测单个识别的物体的行为。车辆100能够基于预测的所述识别的物体的行为来调整它的速度。换句话说,自动驾驶汽车能够基于所预测的物体的行为来确定车辆将需要调整到(例如,加速、减速、或者停止)什么稳定状态。在这个过程中,也可以考虑其它因素来确定车辆100的速度,诸如,车辆100在行驶的道路中的横向位置、道路的曲率、静态和动态物体的接近度等等。
除了提供调整自动驾驶汽车的速度的指令之外,计算设备还可以提供修改车辆100的转向角的指令,以使得自动驾驶汽车遵循给定的轨迹和/或维持与自动驾驶汽车附近的物体(例如,道路上的相邻车道中的轿车)的安全横向和纵向距离。
上述车辆100可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不做特别的限定。
在介绍完上述车辆100之后,下面对本申请涉及的上述车辆100中的雷达126和激光测距仪128等相关的测距方式进行介绍说明。首先对本申请所涉及的时间数字转换(Time to Digital Converter,TDC)测距方式和模拟数字转换(Analog to Digital Converter,ADC)测距方式进行介绍说明。
TDC测距方式是一种基于模拟信号的测距方式,具体通过探测信号和该探测信号反射形成的回波信号获取探测信号的飞行时间,并将该飞行时间转换成相应的距离,从而得出探测距离的测距方式。示例性的,如图2所示,为一种TDC测距系统的结构 示意图,该TDC测距系统可以包括:控制单元201、激光驱动202、激光器203、扫描器件204、时间数字转换TDC单元205、发射端206、接收端207、探测器208、跨阻放大器209和时刻鉴别单元210。控制单元201具体可以为:中央处理器单元,通用处理器,数字信号处理器,专用集成电路,硬件部件或者其任意组合,其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。
该TDC测距系统的测距原理可以为:控制单元201发射脉冲信号给激光驱动电路202,激光驱动电路202将脉冲信号进行调制后发送到激光器203,激光器203发射脉冲光信号,同时控制单元201向TDC单元205发送一个起始信号,该起始信号用来确定脉冲光信号发送的起始时刻;扫描器件204对脉冲光信号进行扫描;发射端206可以为发端光学元件,对脉冲光信号进行处理并发射。脉冲光信号遇到障碍物,例如目标物体后,会反射回波信号到接收端207,接收端207可以为收端光学元件,对接收光信号聚焦并处理后发送给探测器208,探测器208接收光信号,将光信号转化成电流信号,跨阻放大器209可将电流信号放大变成电压信号,并经过时刻鉴别单元210,输出结束信号到TDC单元205,该结束信号用来确定脉冲光信号返回的结束时刻;TDC单元205可通过计算时刻鉴别单元210发送的结束信号与控制单元201发送的起始信号的时间差,得到飞行时间,根据飞行时间和距离的计算公式R=c×t/(2×n)计算得到距离,其中,c为光速,约为299792458m/s,n为介质中的折射率,进而计算出距离。
ADC测距方式是一种基于数字信号的测距方式,具体通过对探测信号反射形成的回波信号进行模拟数字转换,并对数字化信号进行信号处理,从而得到探测距离的测距方式。示例性的,如图3所示,为一种ADC测距系统的结构示意图,该ADC测距系统可以包括:信号处理与控制单元301、激光驱动302、激光器303、扫描器件304、发射端305、接收端306、探测器307、跨阻放大器308和模拟数字转换ADC单元309。其中,信号处理与控制单元301具体可以为:中央处理器单元,通用处理器,数字信号处理器,专用集成电路,硬件部件或者其任意组合,其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。
该ADC测距系统的测距原理可以为:信号处理与控制单元301发射脉冲信号给激光驱动电路302,激光驱动电路302将脉冲信号进行调制后发送到激光器303,激光器303发射脉冲光信号,扫描器件304对脉冲光信号进行扫描;发射端305可以为发端光学元件,对脉冲光信号进行处理并发射。脉冲光信号遇到障碍物,例如目标物体后,会反射回波信号到接收端306,接收端306可以为收端光学元件,对接收光信号聚焦处理后发送给探测器307,探测器307接收光信号,将光信号转化成电流信号,跨阻放大器308可将电流信号放大变成电压信号,ADC单元309可以将模拟的电压信号转换成数字信号发送到信号处理与控制单元301。信号处理与控制单元301通过对ADC单元309输出后的数字信号进行计算处理,可以得到回波信号的很多信息,如距离、灰度、反射率估计值、回波的幅值、能量、性噪比即杂波信息或饱和回波信息等。
需要说明的是,TDC测距方式的测距精度比ADC测距方式的测距精度高,但其测距精度与TDC测距系统中时刻鉴别单元210的精度有关,因此,TDC测距方式比较适合于较近目标距离的测距。而ADC测距方式可以通过测距算法对转换得到的数字 化信号进行处理,改善低信噪比回波的性能,从而在低信噪比的回波信号下的测距精度较高。但ADC测距方式缺点是其测距精度受限于采样率。因此,单独使用两种方式的任一种,测距性能和精度都不高。
基于此,本申请实施例提供一种测距方法和测距装置,通过将TDC测距方式和ADC测距方式相结合,提高测距装置的性能和测距精度。如图4所示,为本申请实施例提供的一种该测距系统的结构示意图,该测距系统可以包括:控制单元401、TDC测距单元402和ADC测距单元403。此外,该测距装置还可以包括用于发送探测信号和接收该探测信号的回波信号的相关单元,图4中未示出,具体可以参见图2或图3中的相关描述。其中,控制单元401具体可以为中央处理器单元,通用处理器,数字信号处理器,专用集成电路,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。
在该测距系统中,TDC测距单元402可用于根据TDC测距方式进行测距,ADC测距单元403可用于根据ADC测距方式进行测距,控制单元401可以根据TDC测距单元402输出的测距结果和ADC测距单元403输出的测距结果,选择输出准确率最高的测距结果作为最终的测量距离。在实际应用中,控制单元401具体可以是中央处理器(Central Processing Unit,CPU)、信号处理器(Digital Signal Processor,DSP)、或者专用集成电路(Application Specific integrated Circuit,ASIC)等。
此外,控制单元401还可以根据ADC测距单元403的测距结果,过滤掉TDC测距单元402的测距结果中误差较大、或者外界噪声对应的测距结果,例如杂波位置和饱和回波位置等,从而实现两种测距方式的优势互补,提高测距系统的测距性能。
进一步的,如图5所示,TDC测距单元402可以包括时刻鉴别器4021、时间数字转换器4022和距离计算单元4023;其中,时刻鉴别器4021可用于对探测信号的回波信号进行时刻鉴别以得到模拟时间信息,时间数字转换器4022可用于将该模拟时间信息转换为数字时间信息,距离计算单元4023可用于根据该数字时间信息计算得到对应的距离信息。ADC测距单元403可以包括模拟数字转换器4031、信号处理器4032和距离估计单元4033;其中,模拟数字转换器4031用于将探测信号的回波信号进行模数转换以得到数字信号,信号处理器4032用于对该数字信号进行一系列数字化处理以得到该回波信号的数字化信息,距离估计单元4033可用于根据该数字化信息计算得到对应的距离信息。具体的,关于TDC测距单元402和ADC测距单元403的测距原理和具体电路的详细描述,可以参见上述图2所示的TDC测距系统和图3所示的ADC测距系统的相关描述,本申请实施例在此不再赘述。
本申请实施例提供的测距方法可以应用于激光雷达测距、红外测距、以及超声波测距等多种不同的场景。其中,激光雷达测距是通过发射激光束作为探测信号,将接收到的从障碍物反射回来的回波信号与发射的探测信号进行对比,获得目标物体的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数的技术。激光雷达具有高测量精度、精细的时间和空间分辨率,能完成测距、目标探测、跟踪和成像识别等功能。超声波测距,是通过超声波发射装置发出超声波作为探测信号,根据接收器收到超声波的时间差,计算出发射点距目标物体的距离超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而利用超声波测距比较迅速、方便、计算简单, 且可以做到实时控制,在测量精度方面能达到工业实用的要求。红外测距,也称“红外光电测距”,是以红外光为光源的相位式光电测距技术,它的测距范围较短,大多在5千米以内。由于红外测距技术其光源半导体化,电子线路逐步集成化,测距过程自动化,因此,具有体积小、重量轻、操作简便、测距速度快、精度高等优点。
图6为本申请实施例提供的一种基于探测信号的测距方法的流程示意图,该方法可应用于上述图4或图5所示的测距系统中,参见图6,该方法包括以下几个步骤。
S501:基于TDC的测距方式对探测信号的回波信号处理,以确定第一数据集合,第一数据集合包括如下参数:至少一个第一距离或至少一个第一飞行时间。
其中,在该测距系统发射的探测信号经过障碍物,例如目标物体、雾团或灰尘等,反射形成回波信号,该测距系统接收到该回波信号时,可以基于TDC的测距方式对该回波信号进行时刻鉴别和模数转换处理等一系列处理运算,以确定出第一数据集合。第一数据集合是表示该测距系统与至少一个障碍物(比如,一个或者多个目标物体)之间距离的数据集合,第一数据集合可以包括一个或者多个第一距离,或者第一数据集合包括一个或者多个第一飞行时间。第一飞行时间可以表示测距系统发出的光脉冲,经障碍物反射回到该测距系统的光脉冲飞行时间,根据飞行时间与距离之间的换算公式,可以计算得到该测距系统与障碍物之间的距离,即根据一个第一飞行时间可以计算得到一个距离,从而根据至少一个第一飞行时间可以计算得到至少一个距离(为便于描述,后续称为至少一个第三距离)。
需要说明的是,根据S501确定第一数据集合的过程具体可以由前述的TDC测距单元402来实现,其详细实现过程可以参见上述图3所示的TDC测距系统的相关描述,本申请实施例在此不再赘述。
S502:基于ADC的测距方式对该探测信号的回波信号进行处理,以确定第二数据集合,第二数据集合包括如下参数:至少一个第二距离或至少一个第二飞行时间。其中,S501与S502可以不分先后顺序,图6中以S502位于S501之后为例进行说明。
具体的,在该测距系统发射的探测信号经过障碍物反射形成回波信号,该测距系统接收到该回波信号时,可以基于ADC的测距方式将该回波信号转换为数字信号,进而对该数字信号进行一系列数据处理及运算,以确定出第二数据集合。第二数据集合也是表示该测距系统与至少一个障碍物(比如,一个或者多个目标物体)之间距离的数据集合,第二数据集合可以包括一个或者多个第二距离,或者第二数据集合包括一个或者多个第二飞行时间。同理,根据一个第二飞行时间也可以计算得到一个距离,从而根据至少一个第二飞行时间可以计算得到至少一个距离(为便于描述,后续称为至少一个第四距离)。
需要说明的是,根据S502确定第二数据集合的过程具体可以由前述的ADC测距单元403来实现,其详细实现过程可以参见上述图3所示的ADC测距系统的相关描述,本申请实施例在此不再赘述。
S503:根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合。
其中,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合, 可以包括以下方法中的至少一种:将第一数据集合中的至少一个第一距离确定为输出距离集合;根据第一数据集合中的至少一个第一飞行时间分别计算至少一个第三距离,将至少一个第三距离确定为输出距离集合;将第二数据集合中的至少一个第二距离确定为输出距离集合;或,根据第二数据集合中的至少一个第二飞行时间分别计算至少一个第四距离,将至少一个第四距离确定为输出距离集合。
由于各种测距方式都有其优势和局限性,例如TDC测距方式在近距离范围内的测距精度更高,ADC测距方式能够改善低信噪比回波的性能。因此,本申请实施例可以根据两种测距方式的优缺点,从不同的测距方式测得的距离集合中,选择准确率最高的数据集合作为最终输出的目标物体的距离集合,从而提高测距系统的测距性能和测距精度。另外,这里的准确率最高的数据集合可以是指该测距系统与至少一个目标物体之间距离,且测距精度最高或测距精度相对较高、或者测量误差较小的测距结果,也就是最接近该测距系统与至少一个目标物体的实际距离的测距结果。
进一步的,在S503中,根据该探测信号的实际发射功率、至少一个估计距离、或者该回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合,具体可以包括以下几种不同的方式,下面分别进行详细说明。
第一种、根据该探测信号的实际发射功率与预设功率阈值的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合。其中,当实际发射功率P大于或等于预设功率阈值P0时,将第一数据集合确定为输出距离集合;当实际发射功率P小于预设功率阈值P0时,将第二数据集合确定为输出距离集合。
其中,当该探测信号的实际发射功率由前述图4所示的控制单元401控制时,可以通过前述图4所示的控制单元401直接获得该实际发射功率;当该探测信号的实际发射功率由测距系统的其他单元控制(比如,发射探测信号的单元)时,控制单元401可以通过与控制该实际发射功率的单元进行通信来获得该探测信号的实际发射功率。
另外,该预设功率阈值可以为事先进行设置,且该预设功率阈值的具体数值可以由本领域技术人员根据经验进行设置,或者由本领域技术人员结合各种测距方式的测距性能和所采用的探测信号的衰减程度来具体设置,本申请对该预设功率阈值的具体数值和详细设置方式不做具体限定。
具体的,当实际发射功率P大于或等于预设功率阈值P0时,通常情况下,该测距系统接收的该回波信号的信噪比会比较高,此时TDC测距方式对应的测距结果的准确性更高,因此,可以将TDC测距方式对应的第一数据集合确定为输出距离集合;当实际发射功率P小于预设功率阈值P0时,通常情况下,该测距系统接收的该回波信号的信噪比会比较低,此时ADC测距方式能够改善该回波信号的信噪比,从而ADC测距方式对应的测距结果的准确性更高,因此,可以将ADC测距方式对应的第二数据集合确定为输出距离集合。
需要说明的是,当实际发射功率P等于预设功率阈值P0时,也可以将第二数据集合确定为输出距离集合,本申请实施例仅以此时将第一数据集合确定为输出距离集合为例进行说明。
第二种、根据至少一个估计距离与预设距离阈值的关系,根据第一数据集合或第 二数据集合中的至少一个参数确定为输出距离集合,包括如下至少一项:确定至少一个估计距离均小于或等于预设距离阈值L0时,将第一数据集合确定为输出距离集合;或者,确定当至少一个估计距离均大于预设距离阈值L0时,将第二数据集合确定为输出距离集合。
其中,至少一个估计距离可以由该测距系统根据一定的距离估算方法估计得到,或者至少一个估计距离由该测距系统根据第一数据集合或第二数据集合中的至少一个参数集合确定,比如,至少一个估计距离可以为至少一个第一距离或至少一个第二距离,或者至少一个估计距离可以为根据至少一个第一距离和至少一个第二距离中对应同一目标物体的距离的平均值等。
另外,预设距离阈值可以事先进行设置,且预设距离阈值的具体数值的设置可以由本领域技术人员根据经验进行设置,或者通过各种测距方式的测距范围结合所采用的探测信号的探测性能来具体确定,本申请对预设距离阈值的具体数值和详细设置方式不做具体限定。
具体的,当至少一个估计距离均小于或等于预设距离阈值L0时,该测距系统发射的探测信号的飞行时间较短,从而需要通过测量飞行时间的精确度较高的方式来实现,此时TDC测距方式对应的测距结果的准确性更高,因此,可以将TDC测距方式对应的第一数据集合确定为输出距离集合。当至少一个估计距离均大于预设距离阈值L0时,该测距系统发射的探测信号的衰减程度较大,从而该探测信号反射形成的回波信号的信噪比较低,此时ADC测距方式对应的测距结果的准确性更高,因此,可以将ADC测距方式对应的第二数据集合确定为输出距离集合。
需要说明的是,当至少一个估计距离均等于预设距离阈值L0时,也可以将第二数据集合确定为输出距离集合,本申请实施例仅以此时将第一数据集合确定为输出距离集合为例进行说明。
进一步,至少一个估计距离分别与第一数据集合中的参数一一对应,且和第二数据集合中的参数一一对应,根据至少一个估计距离与预设距离阈值的关系,根据第一数据集合或第二数据集合中的至少一个参数确定为输出距离集合,还包括:确定至少一个估计距离中的至少一个第一估计距离和至少一个第二估计距离,至少一个估计距离均小于或等于预设距离阈值,至少一个第二估计距离均大于预设距离阈值;将第一数据集合中与至少一个第一估计距离对应的参数,以及第二数据集合中与至少一个第二估计距离对应的参数,确定为输出距离集合。
根据上述TDC测距方式和ADC测距方式的分析可知,当至少一个估计距离中的至少一个第一估计距离均小于或等于预设距离阈值L0时,至少一个估计距离中的至少一个第二估计距离均大于预设距离阈值时,为了得到准确性更高的测距结果,可以将第一数据集合中与至少一个第一估计距离对应的参数,以及第二数据集合中与至少一个第二估计距离对应的参数,确定为输出距离集合。
第三种、根据该探测信号的实际发射功率与预设功率阈值的关系、以及至少一个估计距离与预设距离阈值的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合,包括如下至少一项:确定该实际发射功率大于或等于预设功率阈值,将第一数据集合确定为输出距离集合;确定该实际发射功率P小于预设功率阈 值P0、且至少一个估计距离均小于或等于预设距离阈值L0,将第一数据集合确定为输出距离集合;或者,确定该实际发射功率P大于预设功率阈值P0、且至少一个估计距离均大于预设距离阈值L0,将第二数据集合确定为输出距离集合。
其中,在根据该探测信号的实际发射功率与预设功率阈值的关系,以及以及至少一个估计距离与预设距离阈值的关系进行判断时,可以包括:先判断该实际发射功率与预设功率阈值的关系,再判断至少一个估计距离与预设距离阈值的关系;或者,先判断至少一个估计距离与预设距离阈值的关系,再判断该实际发射功率与预设功率阈值的关系。本申请实施例对此不作具体限定。
具体的,当该探测信号的实际发射功率P较小、且至少一个估计距离均较短时,由于TDC测距方式在较短距离的测距范围内具有较高的准确性,即此时TDC测距方式的测距结果精度更高,因此,可以将TDC测距方式对应的第一数据集合确定为输出距离集合。当探测信号的实际发射功率P较小,但至少一个估计距离均较大时,该测距系统发射的探测信号的衰减程度较大,从而该探测信号反射形成的回波信号的信噪比较低,ADC测距方式能够改善低信噪比的性能,即ADC测距方式的测距结果精度更高,因此,可以将ADC测距方式对应的第二数据集合确定为输出距离集合。
需要说明的是,当实际发射功率P小于预设功率阈值P0、且至少一个估计距离均等于预设距离阈值L0时,也可以将第二数据集合确定为输出距离集合,本申请实施例仅以此时将第一数据集合确定为输出距离集合为例进行说明。
另外,第三种方式下的实际发射功率P和预设功率阈值P0与上述第一种方式中的实际发射功率P、预设功率阈值P0一致,第三种方式下的至少一个估计距离和预设距离阈值L0与上述第二种方式中的至少一个估计距离和预设距离阈值L0一致,具体描述可以参见上述第一种方式和第二种方式中的相关描述,本申请实施例在此不再赘述。
第四种、根据该回波信号的至少一个信号参数与预设参数阈值的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合,包括如下至少一项:确定至少一个信号参数均大于或等于预设参数阈值,将第一数据集合确定为输出距离集合;或者,确定至少一个信号参数均小于预设参数阈值,将第二数据集合确定为输出距离集合。
其中,至少一个信号参数可以包括以下参数中的任一种:幅值、能量、或者信噪比。即该回波信号的至少一个信号参数可以包括至少一个幅值、至少一个能量、或者至少一个信噪比等。至少一个信号参数可以由前述图4所示的TDC测距单元402或者ADC测距单元403根据该回波信号处理得到。
具体的,当该回波信号的至少一个幅值均大于或等于预设幅值阈值、该回波信号的至少一个能量均大于或等于预设能量阈值、或者该回波信号的至少一个信噪比均大于或等于预设信噪比阈值时,该测距系统的回波信号的整体信噪比会比较高,此时TDC测距方式对应的测距结果的准确性更高,因此,可以将第一数据集合确定为输出距离集合;当该回波信号的至少一个幅值均小于预设幅值阈值、该回波信号的至少一个能量均小于预设能量阈值、或者该回波信号的至少一个信噪比均小于预设信噪比阈值时,该测距系统的回波信号的整体信噪比会比较低,此时ADC测距方式能够改善该回波信号的信噪比,因此,可以将第二数据集合确定为输出距离集合。
比如,第二数据集合中某一第二距离为D,对应的回波信号的幅值为A,预设幅值阈值为A0,若A≥A0,则在[D-△D1,D+△D1]范围内可以将第一数据集合确定输出距离集合;而在[D-△D1,D+△D1]之外的其他范围内,可以将第二数据集合确定为输出距离集合。这里的△D1可以事先进行设置。
需要说明的是,在根据该回波信号的信号参数与预设参数阈值的关系,将第一数据集合和第二数据集合中准确率最高的数据集合确定为输出距离集合时,可以仅根据该回波信号的幅值、能量、或者信噪比中一种进行判断选择,也可以同时根据两种或者三种进行判断选择,上述仅以一种信号参数为例进行说明。
另外,预设幅值阈值、预设能量阈值和预设信噪比阈值可以由本领域技术人员根据经验进行设置,或者根据该测距系统性能来具体确定,本申请对此不做具体限定。此外,当该回波信号的信号参数等于预设参数阈值时,也可以将第二数据集合确定为输出距离集合,本申请实施例仅以此时将第一数据集合确定为输出距离集合为例进行说明。
进一步的,至少一个信号参数分别与第一数据集合中的参数一一对应,且和第二数据集合中的参数一一对应,根据该回波信号的至少一个信号参数与预设参数阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合,还可以包括:确定至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,至少一个第一信号参数均小于或等于预设参数阈值,至少一个第二信号参数均大于预设参数阈值;将第一数据集合中与至少一个第一信号参数对应的参数,以及第二数据集合中与至少一个第二信号参数对应的参数,确定为输出距离集合。
根据上述TDC测距方式和ADC测距方式的分析可知,当至少一个信号参数中的至少一个第一信号参数均小于或等于预设参数阈值,至少一个信号参数中的至少一个第二信号参数均大于预设参数阈值时,为了得到准确性更高的测距结果,可以将第一数据集合中与至少一个第一信号参数对应的参数,以及第二数据集合中与至少一个第二信号参数对应的参数,确定为输出距离集合。
在另一种可能的实现方式中,确定至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,至少一个第一信号参数和至少一个第二信号参数均大于预设参数阈值,且至少一个第一信号参数和至少一个第二信号参数分别在第二数据集合中对应的两个参数的数据差小于或等于数据差阈值(比如,两个第二距离的距离差小于距离差阈值,或者两个第二飞行时间的时间差小于时间差阈值),则将第一数据集合中与至少一个第一信号参数和至少一个第二信号参数分别在第二数据集合中对应的两个数据,确定为输出距离集合。
示例性的,第二数据集合包括的至少两个第二距离分别表示为L3和L4,两个第二距离L3和L4分别对应的回波信号的幅值为A3和A4,预设幅值阈值为A0,预设距离差阈值为D0,当幅值A3大于或等于A0(即A3≥A0)、幅值A3大于或等于A0(即A4≥A0),且第二距离L3和第二距离L4的差值D小于或等于预设距离差阈值D0(即|L3-L4|≤D0)时,将ADC测距方式对应的第二数据集合中的L3和L4确定为输出距离集合。
进一步的,参见图7,第二数据集合还包括杂波位置,在S503之前,该方法还包 括:S504。
S504:根据该杂波位置剔除第一数据集合中与杂波位置对应的参数。
其中,杂波可以是指由非期望探测的物体(即目标物体之外的障碍物)对探测信号反射或散射后形成的回波信号。比如,杂波可以是由雾团、灰尘、雨滴、或成群的飞虫等对探测信号反射形成的回波信号。因为杂波并不反映目标物体与测距系统之间的距离,所以需要将杂波位置对应的第一距离从输出的数据集合中剔除,或者将杂波位置对应的第一飞行时间从输出的数据集合中剔除,从而提高该测距系统的测距性能和准确性。
具体的,ADC测距单元403可以通过对整个回波信号进行采样,获取完整的回波信息,并识别出杂波及有效回波信号。而TDC测距单元402通常无法识别出杂波位置,或者需要通过额外的硬件设计才能实现。因此,可以根据第二数据集合中包括的杂波位置对第一数据集合进行筛选,即剔除第一数据集合中与杂波位置对应的第一距离或者第一飞行时间。
比如,假设ADC测距单元403对回波信号进行采样后的波形图如图8所示,图8值圈出的目标1和目标2对应的位置表示目标物体对应的位置L1和L2,而箭头所示的位置表示杂波对应的位置信息,例如距离值S1为雾团对应的位置,距离值S2为噪声的位置。如果将其位置信息也确定为目标距离输出,则会大大影响测距系统的测距性能和精确度,通过上述S504剔除第一数据集合中与杂波位置对应的第一距离或者第一飞行时间,从而能够降低TDC测距方式由于杂波的存在而造成的测距误差,提高输出距离集合的准确性,进而提高测距系统的测距性能。
进一步的,参见图9,第二数据集合还包括饱和回波位置,在S503之前,该方法还包括:S505。其中,S505和S504可以不分先后顺序,图9中以S505位于S504之后为例进行说明。
S505:根据该饱和回波位置剔除第一数据集合中与该饱和回波位置对应的参数。
其中,饱和回波可以是指实际波形超出了预先量化的波形范围的回波信号,例如,较近距离处产生的回波信号,由于回波信号的幅值过大,超过了预先设定的回波信号的幅值范围,即为饱和回波的情况。
具体的,由于ADC测距单元403可以通过对整个回波信号进行采样,获取完整的回波信息,从而能够准确地识别出饱和回波的位置,而TDC测距单元402通常无法识别出饱和回波的位置,或者需要通过额外的硬件设计才能实现。因此,可以根据第二数据集合中包括的饱和回波位置对第一数据集合进行筛选,即剔除第一数据集合中与饱和回波位置对应的第一距离或者第一飞行时间。
在本申请实施例中,通过剔除第一数据集合中与该饱和回波位置对应的第一距离或者第一飞行时间,能够降低TDC测距方式由于饱和回波的存在而造成的测距误差,提高输出距离集合的准确性,进而提高测距系统的测距性能。
本申请实施例还提供一种基于探测信号的测距装置,该测距装置发射的探测信号经过反射形成的信号为回波信号,该测距装置可以如图4或图5所示,该测距装置可以包括:控制单元401、TDC测距单元402和ADC测距单元403。
在本申请实施例中,TDC测距单元402,用于基于TDC的测距方式对该回波信号 进行处理,以确定第一数据集合,第一数据集合包括如下参数:至少一个第一距离或至少一个第一飞行时间;
ADC测距单元403,用于ADC的测距方式对该回波信号进行处理,以确定第二数据集合,第二数据集合包括如下参数:至少一个第二距离或至少一个第二飞行时间;
控制单元401,用于根据探测信号的实际发射功率、至少一个估计距离、或者回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据第一数据集合或第二数据集合中的至少一个参数确定输出距离集合。
进一步的,控制单元401,具体用于执行以下步骤中至少一种:将至少一个第一距离确定为输出距离集合;根据至少一个第一飞行时间分别计算至少一个第三距离,将至少一个第三距离确定为输出距离集合;将至少一个第二距离确定为输出距离集合;或,根据至少一个第二飞行时间分别计算至少一个第四距离,将至少一个第四距离确定为输出距离集合。
在一种可能的实现方式中,控制单元401具体用于:确定该实际发射功率大于或等于预设功率阈值,将第一数据集合确定为输出距离集合;或,确定该实际发射功率小于预设功率阈值,将第二数据集合确定为输出距离集合。
可选的,控制单元401还具体用于:确定该实际发射功率大于或等于预设功率阈值,将第一数据集合确定为输出距离集合;确定该实际发射功率小于预设功率阈值之后,确定至少一个估计距离均小于或等于预设距离阈值,将第一数据集合确定为输出距离集合;或,确定该实际发射功率小于预设功率阈值之后,确定至少一个估计距离均大于预设距离阈值,将第二数据集合确定为输出距离集合。
在另一种可能的实现方式中,控制单元401具体用于:确定所述至少一个估计距离均小于或等于预设距离阈值,将所述第一数据集合确定为输出距离集合;或,确定所述至少一个估计距离均大于预设距离阈值,将所述第二数据集合确定为输出距离集合。
可选的,控制单元401还具体用于:确定所述至少一个估计距离均小于或等于预设距离阈值之后,确定所述探测信号的实际发射功率小于预设功率阈值,将所述第一数据集合确定为输出距离集合;或,确定所述至少一个估计距离均大于预设距离阈值之后,确定所述探测信号的实际发射功率小于预设功率阈值,将所述第二数据集合确定为输出距离集合。
进一步的,至少一个估计距离分别与所述第一数据集合中的参数一一对应,且和所述第二数据集合中的参数一一对应,控制单元401还具体用于:确定所述至少一个估计距离中的至少一个第一估计距离和至少一个第二估计距离,所述至少一个估计距离均小于或等于预设距离阈值,所述至少一个第二估计距离均大于所述预设距离阈值;
将所述第一数据集合中与所述至少一个第一估计距离对应的参数,以及所述第二数据集合中与所述至少一个第二估计距离对应的参数,确定为输出距离集合。
在另一种可能的实现方式中,所述至少一个信号参数为以下参数中的任一种:幅值、能量、或者信噪比,控制单元401具体用于:确定所述至少一个信号参数均小于或等于预设参数阈值,将所述第一数据集合确定为输出距离集合;或,确定所述至少一个信号参数均大于预设参数阈值,将所述第二数据集合确定为输出距离集合。
可选的,控制单元401还具体用于:确定所述至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,所述至少一个第一信号参数均小于或等于预设参数阈值,所述至少一个第二信号参数均大于所述预设参数阈值;将所述第一数据集合中与所述至少一个第一信号参数对应的参数,以及所述第二数据集合中与所述至少一个第二信号参数对应的参数,确定为输出距离集合。
或者,控制单元401还具体用于:确定所述至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,所述至少一个第一信号参数和所述至少一个第二信号参数均大于预设参数阈值,且所述至少一个第一信号参数和所述至少一个第二信号参数分别在所述第二数据集合中对应的两个参数的数据差小于或等于数据差阈值;将所述第一数据集合中与所述至少一个第一信号参数对应的参数,以及所述第二数据集合中与所述至少一个第二信号参数对应的参数,确定为输出距离集合。
在另一种可能的实现方式中,第二数据集合还包括杂波位置,控制单元401还用于:根据该杂波位置剔除第一数据集合中与杂波位置对应的参数。或者,第二数据集合还包括饱和回波位置,控制单元401还用于:根据该饱和回波位置剔除第一数据集合中与该饱和回波位置对应的参数。
需要说明的是,上述控制单元401、TDC测距单元402和ADC测距单元403的具体描述可以参见上述方法实施例中的相关描述,本申请实施例在此不再赘述。
在本申请的另一实施例中,控制单元401,还用于开启或关闭TDC测距单元402和ADC测距单元403。下面分别将以三种可能的实现方式,对控制单元401开启或关闭TDC测距单元402和ADC测距单元403的具体过程进行举例说明。
第1种,控制单元401根据该探测信号的实际发射功率与预设功率阈值的大小关系,判断是否开启TDC测距单元402或ADC测距单元403。具体的,当该实际发射功率P小于预设功率阈值P1时,控制单元401可以开启ADC测距单元403,此时,控制单元401可以关闭TDC测距单元402;当该实际发射功率P大于或等于预设功率阈值P1时,则控制单元401可以开启TDC测距单元402,此时,控制单元401可以关闭ADC测距单元403。
第2种,控制单元401根据至少一个估计距离与预设距离阈值的大小关系,判断是否开启TDC测距单元402或ADC测距单元403。具体的,当至少一个估计距离均小于或等于预设距离阈值L1时,控制单元401可以开启TDC测距单元402,此时,控制单元401可以关闭ADC测距单元403;当至少一个估计距离均大于预设距离阈值L1时,控制单元401可以开启ADC测距单元403,此时控制单元401可以关闭TDC测距单元402。
上述两种实现方式中,控制单元401通过在实际发射功率较小、或者至少一个估计距离较大的情况下,开启测距性能更高的ADC测距单元403,在实际发射功率较大、或者至少一个估计距离较小的情况下,开启测距性能更高的TDC测距单元402,能够提高最终的输出距离集合的准确性,同时能够减小该测距装置的能耗。
第3种,控制单元401还用于:当确定ADC测距单元403故障时,开启TDC测距单元402;当确定TDC测距单元402故障时,开启ADC测距单元403。
具体的,控制单元401判断TDC测距单元402和ADC测距单元403是否故障的 实现方式可以包括:通过TDC测距单元402输出的第一数据集合和ADC测距单元403输出的第二数据集合之间的差值,来判断TDC测距单元402和ADC测距单元403是否处于正常工作状态,从而关闭发生故障的测距单元。
例如,对于某次测距,控制单元401对比TDC测距单元402和ADC测距单元403的测距结果差值较大,则控制单元401从该次测距开始,比较TDC测距单元402和ADC测距单元403的多次测量结果,例如20次。如果两者的距离差值大于预设距离差值(或飞行时间差值大于预设时间差值),且距离差值大于预设距离差值的概率大于预设距离差概率(或飞行时间差值大于预设时间差值的概率大于预设时间差概率),例如90%,则控制单元401可以判断当前的回波信号是否为多回波情况,如果是多回波情况,则控制单元401可以确定TDC测距单元402和ADC测距单元403当前是正常工作状态;如果不是多回波情况,则控制单元401可以进一步确定发生故障的测距单元并关闭,还可以发出异常告警信号。上述多回波情况可以是指在一个测距信号发送周期中,产生多个回波的情况。
进一步的,控制单元401确定发生故障的测距单元的过程可以为:控制单元401根据ADC测距单元403采样的整个回波波形结合两种测距方式的测距结果,具体判断发生故障的测距单元。具体的,判断第一数据集合中的至少一个第一距离和第二数据集合中的至少一个第二距离,在对应的ADC测距单元403采样的原始回波位置上,是否有相应的回波。如果第一数据集合中的至少一个第一距离在原始回波对应位置上找不到相应的回波,则控制单元401可以确定TDC测距单元402发生故障;如果第二数据集合中的至少一个第二距离在原始回波对应位置上找不到相应的回波,则控制单元401可以确定ADC测距单元403发生故障。如果二者均有相应的回波,则控制单元401可以取消告警信号。
本申请实施例中控制单元401通过确定发生故障的测距单元,并在某一测距单元发生故障时,开启另一测距单元的方式,能够提高该测距装置的鲁棒性,从而进一步提高该测距装置的测距性能。
在本申请的另一实施例中,控制单元401还用于:配置TDC测距单元402的第一测量参数,第一测量参数可以包括第一距离或第一飞行时间;配置ADC测距单元402的第二测量参数,第二测量参数可以包括第二距离或第二飞行时间。
具体的,当控制单元401配置第一测量参数为第一距离时,则TDC测距单元402测量得到的第一数据集合包括至少一个第一距离,当控制单元401配置第一测量参数为第一飞行时间时,则TDC测距单元402测量得到的第一数据集合包括至少一个第一飞行时间。当控制单元401配置第二测量参数为第二距离时,则ADC测距单元403测量得到的第二数据集合包括至少一个第二距离,当控制单元401配置第二测量参数为第二飞行时间时,则ADC测距单元403测量得到的第二数据集合包括至少一个第二飞行时间。
进一步的,控制单元401还可以配置第一测量参数包括以下参数中的至少一项:幅值、能量或信噪比,以及配置第二测量参数包括以下参数中的至少一项:幅值、能量、信噪比、杂波位置、或者饱和回波位置。即控制单元401还可以配置TDC测距单元402得到的第一数据集合中包括该回波信号的幅值、该回波信号的能量、或者该回 波信号的信噪比中的至少一个,以及配置ADC测距单元403测量得到的第二数据集合中包括该回波信号的幅值、该回波信号的能量、该回波信号的信噪比、杂波位置、或者饱和回波位置中的至少一个。
在本申请实施例中,控制单元401可以根据测距需要为配置TDC测距单元402和ADC测距单元403配置相对的测量参数,从而提高该测距系统的灵活性和多样性,同时能够提高该测距装置的综合性能。
如图10所示,为本申请实施例提供的一种移动平台的结构示意图,该移动平台可以包括探测信号发射器,探测信号接收器,以及图3、图4或图10任一项所提供的测距装置;其中,探测信号发射器用于发射探测信号,具体可以包括图2或图3所示的激光驱动、激光器、扫描器件和发射端等;探测信号接收器用于接收探测信号的回波信号,具体可以包括图2或图3所示的接收端、探测器和跨阻放大器等;该测距装置用于执行上述方法实施例中的相关步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个数据处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种基于探测信号的测距方法,其特征在于,所述探测信号经过反射形成的信号为回波信号,所述方法包括:
    基于时间数字转换(TDC)的测距方式对所述回波信号进行处理,以确定第一数据集合,所述第一数据集合包括如下参数:至少一个第一距离或至少一个第一飞行时间;
    基于模拟数字转换(ADC)的测距方式对所述回波信号进行处理,以确定第二数据集合,所述第二数据集合包括如下参数:至少一个第二距离或至少一个第二飞行时间;
    根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合,包括以下方法中的至少一种:
    将所述至少一个第一距离确定为所述输出距离集合;
    根据所述至少一个第一飞行时间分别计算至少一个第三距离,将所述至少一个第三距离确定为所述输出距离集合;
    将所述至少一个第二距离确定为所述输出距离集合;
    或,
    根据所述至少一个第二飞行时间分别计算至少一个第四距离,将所述至少一个第四距离确定为所述输出距离集合。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定为输出距离集合,包括如下至少一项:
    确定所述实际发射功率大于或等于预设功率阈值,将所述第一数据集合确定为输出距离集合;
    或,
    确定所述实际发射功率小于预设功率阈值,将所述第二数据集合确定为输出距离集合。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合,包括如下至少一项:
    确定所述实际发射功率大于或等于预设功率阈值,将所述第一数据集合确定为输出距离集合;
    确定所述实际发射功率小于预设功率阈值之后,确定所述至少一个估计距离均小于或等于预设距离阈值,将所述第一数据集合确定为输出距离集合;
    或,
    确定所述实际发射功率小于预设功率阈值之后,确定所述至少一个估计距离均大于预设距离阈值,将所述第二数据集合确定为输出距离集合。
  5. 根据权利要求1或2所述的方法,其特征在于,所述根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合,包括如下至少一项:
    确定所述至少一个估计距离均小于或等于预设距离阈值,将所述第一数据集合确定为输出距离集合;
    或,
    确定所述至少一个估计距离均大于预设距离阈值,将所述第二数据集合确定为输出距离集合。
  6. 根据权利要求1或2所述的方法,其特征在于,所述根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合,包括如下至少一项:
    确定所述至少一个估计距离均小于或等于预设距离阈值之后,确定所述探测信号的实际发射功率小于预设功率阈值,将所述第一数据集合确定为输出距离集合;
    或,
    确定所述至少一个估计距离均大于预设距离阈值之后,确定所述探测信号的实际发射功率小于预设功率阈值,将所述第二数据集合确定为输出距离集合。
  7. 根据权利要求1或2所述的方法,其特征在于,所述至少一个估计距离分别与所述第一数据集合中的参数一一对应,且和所述第二数据集合中的参数一一对应,所述根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合,包括:
    确定所述至少一个估计距离中的至少一个第一估计距离和至少一个第二估计距离,所述至少一个估计距离均小于或等于预设距离阈值,所述至少一个第二估计距离均大于所述预设距离阈值;
    将所述第一数据集合中与所述至少一个第一估计距离对应的参数,以及所述第二数据集合中与所述至少一个第二估计距离对应的参数,确定为输出距离集合。
  8. 根据权利要求1或2所述的方法,其特征在于,所述至少一个信号参数为以下参数中的任一种:幅值、能量、或者信噪比,所述根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合,包括如下至少一项:
    确定所述至少一个信号参数均小于或等于预设参数阈值,将所述第一数据集合确定为输出距离集合;
    或,
    确定所述至少一个信号参数均大于预设参数阈值,将所述第二数据集合确定为输 出距离集合。
  9. 根据权利要求1或2所述的方法,其特征在于,所述至少一个信号参数为以下参数中的任一种:幅值、能量、或者信噪比,所述至少一个信号参数分别与所述第一数据集合中的参数一一对应,且和所述第二数据集合中的参数一一对应,所述根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合,包括:
    确定所述至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,所述至少一个第一信号参数均小于或等于预设参数阈值,所述至少一个第二信号参数均大于所述预设参数阈值;
    将所述第一数据集合中与所述至少一个第一信号参数对应的参数,以及所述第二数据集合中与所述至少一个第二信号参数对应的参数,确定为输出距离集合。
  10. 根据权利要求1或2所述的方法,其特征在于,所述至少一个信号参数包括以下参数中的任一种:幅值、能量、或者信噪比,所述至少一个信号参数分别与所述第一数据集合中的参数一一对应,且和所述第二数据集合中的参数一一对应,所述根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合,包括:
    确定所述至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,所述至少一个第一信号参数和所述至少一个第二信号参数均大于预设参数阈值,且所述至少一个第一信号参数和所述至少一个第二信号参数分别在所述第二数据集合中对应的两个参数的数据差小于或等于数据差阈值;
    将所述第一数据集合中与所述至少一个第一信号参数对应的参数,以及所述第二数据集合中与所述至少一个第二信号参数对应的参数,确定为输出距离集合。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第二数据集合还包括杂波位置,所述根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,将所述第一数据集合或所述第二数据集合中的至少一个参数确定为输出距离集合之前,所述方法还包括:
    根据所述杂波位置剔除所述第一数据集合中与所述杂波位置对应的参数。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第二数据集合还包括饱和回波位置,所述根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合之前,所述方法还包括:
    根据所述饱和回波位置剔除所述第一数据集合中与所述饱和回波位置对应的参数。
  13. 一种基于探测信号的测距装置,其特征在于,所述探测信号经过反射形成的信号为回波信号,所述装置包括:
    时间数字转换(TDC)测距单元,用于基于TDC的测距方式对所述回波信号进行处理,以确定第一数据集合,所述第一数据集合包括如下参数:至少一个第一距离或至少一个第一飞行时间;
    模拟数字转换(ADC)测距单元,用于基于ADC的测距方式对所述回波信号进行处理,以确定第二数据集合,所述第二数据集合包括如下参数:至少一个第二距离或至少一个第二飞行时间;
    控制单元,用于根据所述探测信号的实际发射功率、至少一个估计距离、或者所述回波信号的至少一个信号参数中的至少一项分别与预设的阈值之间的关系,根据所述第一数据集合或所述第二数据集合中的至少一个参数确定输出距离集合。
  14. 根据权利要求13所述的装置,其特征在于,所述控制单元,具体用于执行以下步骤中的至少一种:
    将所述至少一个第一距离确定为所述输出距离集合;
    根据所述至少一个第一飞行时间分别计算至少一个第三距离,将所述至少一个第三距离确定为所述输出距离集合;
    将所述至少一个第二距离确定为所述输出距离集合;
    或,
    根据所述至少一个第二飞行时间分别计算至少一个第四距离,将所述至少一个第四距离确定为所述输出距离集合。
  15. 根据权利要求13或14所述的装置,其特征在于,所述控制单元具体用于:
    确定所述实际发射功率大于或等于预设功率阈值,将所述第一数据集合确定为输出距离集合;
    或,
    确定所述实际发射功率小于预设功率阈值,将所述第二数据集合确定为输出距离集合。
  16. 根据权利要求13或14所述的装置,其特征在于,所述控制单元具体用于:
    确定所述实际发射功率大于或等于预设功率阈值,将所述第一数据集合确定为输出距离集合;
    确定所述实际发射功率小于预设功率阈值之后,确定所述至少一个估计距离均小于或等于预设距离阈值,将所述第一数据集合确定为输出距离集合;
    或,
    确定所述实际发射功率小于预设功率阈值之后,确定所述至少一个估计距离均大于预设距离阈值,将所述第二数据集合确定为输出距离集合。
  17. 根据权利要求13或14所述的装置,其特征在于,所述控制单元具体用于:
    确定所述至少一个估计距离均小于或等于预设距离阈值,将所述第一数据集合确定为输出距离集合;
    或,
    确定所述至少一个估计距离均大于预设距离阈值,将所述第二数据集合确定为输出距离集合。
  18. 根据权利要求13或14所述的装置,其特征在于,所述控制单元具体用于:
    确定所述至少一个估计距离均小于或等于预设距离阈值之后,确定所述探测信号的实际发射功率小于预设功率阈值,将所述第一数据集合确定为输出距离集合;
    或,
    确定所述至少一个估计距离均大于预设距离阈值之后,确定所述探测信号的实际发射功率小于预设功率阈值,将所述第二数据集合确定为输出距离集合。
  19. 根据权利要求13或14所述的装置,其特征在于,所述控制单元具体用于:
    确定所述至少一个估计距离中的至少一个第一估计距离和至少一个第二估计距离,所述至少一个估计距离均小于或等于预设距离阈值,所述至少一个第二估计距离均大于所述预设距离阈值;
    将所述第一数据集合中与所述至少一个第一估计距离对应的参数,以及所述第二数据集合中与所述至少一个第二估计距离对应的参数,确定为输出距离集合;
    其中,所述至少一个估计距离分别与所述第一数据集合中的参数一一对应,且和所述第二数据集合中的参数一一对应。
  20. 根据权利要求13或14所述的装置,其特征在于,所述控制单元具体用于:
    确定所述至少一个信号参数均小于或等于预设参数阈值,将所述第一数据集合确定为输出距离集合;
    或,
    确定所述至少一个信号参数均大于预设参数阈值,将所述第二数据集合确定为输出距离集合;
    其中,所述至少一个信号参数为以下参数中的任一种:幅值、能量、或者信噪比。
  21. 根据权利要求13或14所述的装置,其特征在于,所述至少一个信号参数包括以下参数中的任一种:幅值、能量、或者信噪比,所述至少一个信号参数分别与所述第一数据集合中的参数一一对应,且和所述第二数据集合中的参数一一对应,所述控制单元具体用于:
    确定所述至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,所述至少一个第一信号参数均小于或等于预设参数阈值,所述至少一个第二信号参数均大于所述预设参数阈值;
    将所述第一数据集合中与所述至少一个第一信号参数对应的参数,以及所述第二数据集合中与所述至少一个第二信号参数对应的参数,确定为输出距离集合;
    所述至少一个信号参数为以下参数中的任一种:幅值、能量、或者信噪比,所述至少一个信号参数分别与所述第一数据集合中的参数一一对应,且和所述第二数据集合中的参数一一对应。
  22. 根据权利要求13或14所述的装置,其特征在于,所述至少一个信号参数包括以下参数中的任一种:幅值、能量、或者信噪比,所述至少一个信号参数分别与所述第一数据集合中的参数一一对应,且和所述第二数据集合中的参数一一对应,所述控制单元具体用于:
    确定所述至少一个信号参数中的至少一个第一信号参数和至少一个第二信号参数,所述至少一个第一信号参数和所述至少一个第二信号参数均大于预设参数阈值,且所述至少一个第一信号参数和所述至少一个第二信号参数分别在所述第二数据集合 中对应的两个参数的数据差小于或等于数据差阈值;
    将所述第一数据集合中与所述至少一个第一信号参数对应的参数,以及所述第二数据集合中与所述至少一个第二信号参数对应的参数,确定为输出距离集合。
  23. 根据权利要求13-22任一项所述的装置,其特征在于,所述第二数据集合还包括杂波位置,所述控制单元还用于:
    根据所述杂波位置剔除所述第一数据集合中与所述杂波位置对应的参数。
  24. 根据权利要求13-22任一项所述的装置,其特征在于,所述第二数据集合还包括饱和回波位置,所述控制单元还用于:
    根据所述饱和回波位置剔除所述第一数据集合中与所述饱和回波位置对应的参数。
  25. 根据权利要求13-24任一项所述的装置,其特征在于,所述控制单元,还用于:
    开启或关闭所述TDC测距单元和所述ADC测距单元。
  26. 根据权利要求25所述的装置,其特征在于,所述控制单元,具体用于:
    确定所述探测信号的实际发射功率大于或等于预设功率阈值,开启所述TDC测距单元;
    确定所述探测信号的实际发射功率小于所述预设功率阈值时,开启所述ADC测距单元。
  27. 根据权利要求25或13所述的装置,其特征在于,所述控制单元,还具体用于:
    确定所述ADC测距单元故障,开启所述TDC测距单元;
    确定所述TDC测距单元故障,开启所述ADC测距单元。
  28. 根据权利要求13-27任一项所述的装置,其特征在于,所述控制单元,还用于:
    配置所述TDC测距单元的第一测量参数,所述第一测量参数包括所述第一距离或所述第一飞行时间;
    配置所述ADC测距单元的第二测量参数,所述第二测量参数包括所述第二距离或所述第二飞行时间。
  29. 根据权利要求28所述的装置,其特征在于,所述第二测量参数还包括以下参数中的至少一项:幅值、能量、信噪比、杂波位置、或者饱和回波位置。
  30. 一种基于探测信号的测距装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有指令,当所述处理器运行所述指令时,使得所述装置执行如权利要求1-12任一项所述的基于探测信号的测距方法。
  31. 一种计算机存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行权利要求1-12任一项所述的基于探测信号的测距方法。
  32. 一种移动平台,其特征在于,所述移动平台包括探测信号发射器,探测信号接收器,以及如权利要求13-29任一项所述的基于探测信号的测距装置。
PCT/CN2019/080678 2019-03-29 2019-03-29 一种基于探测信号的测距方法及装置 WO2020199048A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021557691A JP2022528382A (ja) 2019-03-29 2019-03-29 検出信号に基づくレンジング方法及び装置
CN201980060407.4A CN112740075B (zh) 2019-03-29 2019-03-29 一种基于探测信号的测距方法及装置
PCT/CN2019/080678 WO2020199048A1 (zh) 2019-03-29 2019-03-29 一种基于探测信号的测距方法及装置
EP19923530.0A EP3936896A4 (en) 2019-03-29 2019-03-29 METHOD AND DEVICE FOR MEASURING DISTANCE BASED ON A DETECTION SIGNAL
US17/486,946 US20220011414A1 (en) 2019-03-29 2021-09-28 Ranging method and apparatus based on detection signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080678 WO2020199048A1 (zh) 2019-03-29 2019-03-29 一种基于探测信号的测距方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/486,946 Continuation US20220011414A1 (en) 2019-03-29 2021-09-28 Ranging method and apparatus based on detection signal

Publications (1)

Publication Number Publication Date
WO2020199048A1 true WO2020199048A1 (zh) 2020-10-08

Family

ID=72664879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080678 WO2020199048A1 (zh) 2019-03-29 2019-03-29 一种基于探测信号的测距方法及装置

Country Status (5)

Country Link
US (1) US20220011414A1 (zh)
EP (1) EP3936896A4 (zh)
JP (1) JP2022528382A (zh)
CN (1) CN112740075B (zh)
WO (1) WO2020199048A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114814863A (zh) * 2022-04-22 2022-07-29 北京一径科技有限公司 一种基于sipm的回波检测方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490579A (zh) * 2006-07-17 2009-07-22 莱卡地球系统公开股份有限公司 光学测距方法和相应的光学测距装置
CN106199622A (zh) * 2015-05-29 2016-12-07 赫克斯冈技术中心 时间测量电路和具有这种时间测量电路的光电测距仪
US20180045816A1 (en) * 2016-08-11 2018-02-15 Qualcomm Incorporated System and method for measuring reference and returned light beams in an optical system
CN108139481A (zh) * 2015-09-29 2018-06-08 高通股份有限公司 具有反射信号强度测量的lidar系统
US20180203102A1 (en) * 2017-01-18 2018-07-19 Analog Devices Global Depth sensing with multiple light sources
CN108732553A (zh) * 2018-06-01 2018-11-02 北京航空航天大学 一种激光雷达波形时刻鉴别方法与在线测距系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504145B2 (ja) * 1998-06-12 2004-03-08 日本信号株式会社 物体検出装置
CN101005689A (zh) * 2006-06-23 2007-07-25 华为技术有限公司 用户终端的调度优先级的设置方法及基站节点
CN101001363B (zh) * 2006-06-29 2011-01-12 华为技术有限公司 一种数据单播的系统和方法
US7965384B2 (en) * 2007-09-27 2011-06-21 Omron Scientific Technologies, Inc. Clutter rejection in active object detection systems
CA2710212C (en) * 2007-12-21 2014-12-09 Leddartech Inc. Detection and ranging methods and systems
JP2012122951A (ja) * 2010-12-10 2012-06-28 Denso Corp 距離測定装置および距離測定プログラム
JP6149506B2 (ja) * 2013-05-20 2017-06-21 株式会社デンソー レーダ装置
US10754015B2 (en) * 2016-02-18 2020-08-25 Aeye, Inc. Adaptive ladar receiver
EP3415950B1 (de) * 2017-06-13 2020-05-27 Hexagon Technology Center GmbH Distanzmesser mit spad-anordnung und range walk kompensation
EP3450915B1 (de) * 2017-08-30 2020-11-25 Hexagon Technology Center GmbH Totalstation oder theodolit mit scanfunktionalität und einstellbaren empfangsbereichen des empfängers
CN107589425B (zh) * 2017-10-17 2019-11-26 广州极飞科技有限公司 超声波测距设备及其回波信号检测方法、装置和飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101490579A (zh) * 2006-07-17 2009-07-22 莱卡地球系统公开股份有限公司 光学测距方法和相应的光学测距装置
CN106199622A (zh) * 2015-05-29 2016-12-07 赫克斯冈技术中心 时间测量电路和具有这种时间测量电路的光电测距仪
CN108139481A (zh) * 2015-09-29 2018-06-08 高通股份有限公司 具有反射信号强度测量的lidar系统
US20180045816A1 (en) * 2016-08-11 2018-02-15 Qualcomm Incorporated System and method for measuring reference and returned light beams in an optical system
US20180203102A1 (en) * 2017-01-18 2018-07-19 Analog Devices Global Depth sensing with multiple light sources
CN108732553A (zh) * 2018-06-01 2018-11-02 北京航空航天大学 一种激光雷达波形时刻鉴别方法与在线测距系统

Also Published As

Publication number Publication date
EP3936896A4 (en) 2022-02-23
CN112740075A (zh) 2021-04-30
CN112740075B (zh) 2022-05-13
JP2022528382A (ja) 2022-06-10
US20220011414A1 (en) 2022-01-13
EP3936896A1 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
US20220137210A1 (en) Radar based mapping and localization for autonomous vehicles
WO2021077287A1 (zh) 一种检测方法、检测装置以及存储介质
US20220018943A1 (en) Ranging Method, Radar, and Vehicle-Mounted Radar
US11945467B2 (en) Identification of proxy calibration targets for a fleet of vehicles
CN112639529B (zh) 一种激光雷达和智能车辆
US11630209B2 (en) Laser waveform embedding
US11594037B1 (en) Vehicle sensor calibration and verification
WO2021189268A1 (zh) 一种雷达信号发射和接收方法及雷达
US20220244395A1 (en) Calibration and Localization of a Light Detection and Ranging (Lidar) Device Using a Previously Calibrated and Localized Lidar Device
US20220011414A1 (en) Ranging method and apparatus based on detection signal
CN115222791B (zh) 目标关联方法、装置、可读存储介质及芯片
WO2020164121A1 (zh) 一种雷达以及增益控制方法
CN112740067B (zh) 用于雷达测距的方法、设备、雷达和车载系统
CN115407344B (zh) 栅格地图创建方法、装置、车辆及可读存储介质
WO2020154903A1 (zh) 一种确定高程的方法、装置及雷达
CN115179930B (zh) 车辆控制方法、装置、车辆及可读存储介质
US20230019007A1 (en) Beat Frequency Signal Processing Method and Apparatus
US20230184910A1 (en) Lower Power Linearization of Lidar Signals
US20230194676A1 (en) Two-Step Return Calibration for Lidar Cross-Talk Mitigation
CN115685294A (zh) 一种信号干扰处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021557691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019923530

Country of ref document: EP

Effective date: 20211006