WO2020196813A1 - 体組成計、体組成計測プログラム、及びコンピュータ読み取り可能な非一時的記憶媒体 - Google Patents

体組成計、体組成計測プログラム、及びコンピュータ読み取り可能な非一時的記憶媒体 Download PDF

Info

Publication number
WO2020196813A1
WO2020196813A1 PCT/JP2020/013917 JP2020013917W WO2020196813A1 WO 2020196813 A1 WO2020196813 A1 WO 2020196813A1 JP 2020013917 W JP2020013917 W JP 2020013917W WO 2020196813 A1 WO2020196813 A1 WO 2020196813A1
Authority
WO
WIPO (PCT)
Prior art keywords
body composition
measurement
series data
time
composition meter
Prior art date
Application number
PCT/JP2020/013917
Other languages
English (en)
French (fr)
Inventor
敏樹 永濱
笠原 靖弘
Original Assignee
株式会社タニタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タニタ filed Critical 株式会社タニタ
Priority to CN202080024911.1A priority Critical patent/CN113631090A/zh
Priority to EP20776918.3A priority patent/EP3949851A4/en
Publication of WO2020196813A1 publication Critical patent/WO2020196813A1/ja
Priority to US17/485,795 priority patent/US20220007959A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/486Bio-feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/44Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
    • G01G19/50Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons having additional measuring devices, e.g. for height

Definitions

  • the present disclosure relates to a body composition meter that measures body composition based on a measurement of bioelectrical impedance, a body composition measurement program, and a computer-readable non-temporary storage medium that records the program.
  • a body composition meter that measures body composition based on information such as height, weight, age, and gender and bioelectrical impedance of each part of the human body obtained by measurement is known.
  • Japanese Patent Application No. 2011-79574 describes a device having a circuit for detecting an abnormality in measurement of bioelectrical impedance, and the contact impedance increases as the contact area of the sole, which is the contact portion between the human body and the electrode, decreases.
  • a device for appropriately detecting the abnormality is disclosed.
  • Japanese Patent No. 5110277 also discloses a device having a circuit for detecting an abnormality in measurement of bioelectrical impedance, which detects an abnormal value from a measured value of bioelectrical impedance by using a specific determination formula. ing.
  • the present disclosure provides a body composition meter and a body composition measurement program capable of determining a measurement abnormality without changing the circuit configuration of an existing body composition meter by performing waveform analysis of dynamic impedance (DI). That is one of the purposes.
  • DI dynamic impedance
  • One aspect of the body composition meter is a body composition meter that measures body composition based on the measurement of bioelectrical impedance, and includes a bioimpedance measuring unit that acquires time-series data of bioelectrical impedance by measurement and time-series data.
  • a measurement abnormality determination unit for determining the cause or type of measurement abnormality based on the measurement abnormality is provided.
  • the cause or type of measurement abnormality can be determined based on the time-series change of the measured bioelectric impedance. Therefore, the measurement abnormality can be determined without providing a circuit for detecting the measurement abnormality separately from the circuit for measuring the bioelectrical impedance.
  • the measurement abnormality determination unit may determine the cause or type of measurement abnormality based on the trend of time series data.
  • the measurement abnormality determination unit may determine the cause or type of measurement abnormality based on the variation in time series data.
  • measurement abnormalities can be determined using variations such as standard deviation (SD), variance, and unbiased variance of time series data.
  • SD standard deviation
  • variance variance
  • unbiased variance of time series data unbiased variance
  • the bioelectrical impedance may include resistance.
  • measurement abnormalities can be determined mainly based on the resistance electrically derived from extracellular fluid.
  • the bioelectric impedance may include reactance.
  • measurement abnormalities can be determined more accurately, mainly based on reactance electrically derived from the intracellular fluid and cell membrane.
  • a notification unit may be further provided to notify the improvement measures corresponding to the cause or type of measurement abnormality.
  • the user can know the cause of the measurement abnormality and know the improvement measures for normal measurement according to the type of the measurement abnormality.
  • One aspect of the body composition measurement program is a body composition measurement program that controls a body composition meter that measures body composition based on measurement of bioelectrical impedance equipped with a computer, and when the bioelectrical impedance is measured by a computer.
  • the series data is acquired, and the cause or type of the measurement abnormality is determined based on the time series data.
  • FIG. 1 is a diagram showing a body composition meter of the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of a body composition meter according to the first embodiment.
  • FIG. 3A is a diagram showing a time-series waveform of the resistance (R) according to the normal DI of the first embodiment.
  • FIG. 3B is a diagram showing a time-series waveform of reactance (X) according to the normal DI of the first embodiment.
  • FIG. 3C is a diagram showing a locus of time-series data of R and X according to the normal DI of the first embodiment.
  • FIG. 4A is a diagram showing a time-series waveform of R related to DI when the electrodes of the first embodiment are not in contact with each other.
  • FIG. 4B is a diagram showing a time-series waveform of X related to DI when the electrodes of the first embodiment are not in contact with each other.
  • FIG. 4C is a diagram showing a locus of time-series data of R and X related to DI when the electrodes are not in contact with each other in the first embodiment.
  • FIG. 5A is a diagram showing a time-series waveform of R related to DI at the time of drying according to the first embodiment.
  • FIG. 5B is a diagram showing a time-series waveform of X related to DI at the time of drying according to the first embodiment.
  • FIG. 5C is a diagram showing a locus of time-series data of R and X related to DI at the time of drying according to the first embodiment.
  • FIG. 6A is a diagram showing a time-series waveform of R related to DI at the time of body movement according to the first embodiment.
  • FIG. 6B is a diagram showing a time-series waveform of X related to DI at the time of body movement according to the first embodiment.
  • FIG. 6C is a diagram showing a locus of time-series data of R and X related to DI at the time of body movement of the first embodiment.
  • FIG. 7 shows the absolute value (
  • FIG. 8 is a diagram showing an example of notifying the user of the first embodiment of the cause of the measurement abnormality and the improvement measure corresponding to the type.
  • FIG. 9 shows that the measurement abnormality is determined based on the absolute value (
  • FIG. 10 shows the absolute value (
  • FIG. 11 shows the absolute value (
  • FIG. 1 is a diagram showing a body composition meter 10 according to the first embodiment.
  • the body composition meter 10 can measure the body weight and the body composition as biological information.
  • the body composition meter 10 includes a main body unit 20, an input unit 102, and a display unit 106.
  • the main body 20 is provided with a load cell for measuring the weight inside, and can measure the weight of the user.
  • the main body 20 is provided with an energizing electrode 22L and a measuring electrode 24L on the left side of the upper surface, and is provided with an energizing electrode 22R and a measuring electrode 24R on the right side of the upper surface.
  • the user sits barefoot on the main body 20 and stands upright to measure biometric information.
  • the base of the left toe is in contact with the energizing electrode 22L
  • the heel of the left foot is in contact with the measuring electrode 24L
  • the base of the right toe is in contact with the energizing electrode 22R
  • the measuring electrode 24R is contacted.
  • the heel of the right foot comes into contact with.
  • the input unit 102 is an input means for inputting data to the body composition meter 10.
  • the method of inputting information by the input unit 102 may be, for example, a manual method, a method via a recording medium, a method by wired communication, a method by wireless communication, or another method.
  • the manual input method may be, for example, a button type, a dial type, or a touch sensor type.
  • the recording medium of the method via the recording medium may be, for example, a flash memory, a CD-ROM, or a DVD-ROM.
  • the wireless communication by the wireless communication method may be, for example, the Internet, a wireless LAN such as Wi-Fi (registered trademark), or a short-range wireless communication such as Bluetooth (registered trademark) or NFC (Near Field Communication).
  • the input unit 102 is a manual input method and is a button type.
  • the user operates the input unit 102 and inputs data such as the user's height, age, and gender into the body composition meter 10.
  • the body composition meter 10 calculates body composition data by combining this data with body weight and bioelectrical impedance.
  • Body composition data includes, for example, body fat percentage, body fat mass, muscle mass, abdominal muscle / back muscle ratio, body water content, bone mass, visceral fat area, basal metabolism and the like.
  • the output unit 106 is an output means for outputting the measurement result of the body composition meter 10.
  • the measurement result is, for example, body weight, body composition data, and the like.
  • the output unit 106 is, for example, a display panel including an LCD (Liquid Crystal Display) or an OLED (Organic Light Emitting Diode).
  • the output unit 106 may be integrated with the body composition meter 10, or may not be integrated with the body composition meter 10 such as a smartphone or a tablet.
  • the output unit 106 is a display panel including an LCD integrated with the body composition meter 10.
  • the output unit 106 may display, for example, numerical values and characters reflecting the measurement result of the user, a diagram of the standing position at the time of measurement of the user, and may output in voice or other formats. Further, the output unit 106 may display an improvement measure corresponding to the cause or type of the measurement abnormality notified to the user by the notification unit 118, which will be described later.
  • FIG. 2 is a block diagram showing the configuration of the body composition meter 10 of the first embodiment.
  • the body composition meter 10 includes an input unit 102, a storage unit 104, an output unit 106, and a control unit 108.
  • the storage unit 104 is a memory that can store data.
  • the memory may be, for example, a volatile memory (for example, RAM (RandomAccessMemory)), a non-volatile memory (for example, ROM (ReadOnlyMemory)), or the like.
  • the storage unit 104 may be built in the body composition meter 10, or may be provided outside the body composition meter 10 such as an external hard disk drive or an external server. .. In the present embodiment, the storage unit 104 is built in the body composition meter 10.
  • the storage unit 104 is a program executed by the control unit 108, data input by the user to the body composition meter 10 by operating the input unit 102, statistical data for the body composition meter 10 to calculate body composition data, and a body composition meter.
  • the body composition data and the like calculated by 10 are stored.
  • the program may be provided to the body composition meter 10 by downloading the body composition meter 10 from a communication network, or may be provided to the body composition meter 10 via a non-temporary recording medium.
  • the control unit 108 includes an input unit 102, a storage unit 104, an output unit 106, a weight measurement unit 110, a bioelectric impedance measurement unit 112, a parameter value generation unit 114, a measurement abnormality determination unit 116, a notification unit 118, and a body composition data acquisition unit. It is a control device that controls 120.
  • the control unit 108 includes a central processing unit (CPU).
  • the control unit 108 is connected to each unit via telecommunication.
  • the control unit 108 realizes the functions of each unit by executing the program stored in the storage unit 104.
  • the weight measuring unit 110 is a weight measuring means for measuring the weight of the user.
  • the weight measuring unit 110 measures the weight using the load cell described above.
  • the load cell is composed of a strain-causing body of a metal member that deforms according to a load and a strain gauge attached to the strain-causing body.
  • the strain gauge of the load cell bends due to the load of the user, and the strain gauge expands and contracts.
  • the resistance value (output value) of the strain gauge changes according to its expansion and contraction.
  • the weight measuring unit 110 calculates the weight from the difference between the output value (zero point) of the load cell when no load is applied and the output value when a load is applied.
  • the configuration for measuring the body weight using the load cell may be the same as that of a general weight scale.
  • the bioelectrical impedance measuring unit 112 is a measuring means for acquiring time series data of bioelectrical impedance by measurement.
  • the bioelectrical impedance is an electric resistance value obtained by passing a weak current through the body and measuring the ease of flow of this current.
  • the bioelectrical impedance measuring unit 112 measures by passing a weak current through the body through the current-carrying electrode 22L and the like shown in FIG. 1 and the measuring electrode 24L and the like.
  • the bioelectrical impedance can be obtained from the measured current and voltage.
  • the bioelectrical impedance includes a resistance component (resistance: R) mainly electrically derived from extracellular fluid and a capacitive component (reactance: X) mainly electrically derived from intracellular fluid and cell membrane.
  • R resistance component
  • X capacitive component
  • the R and X used for this determination may be R and X obtained by passing a current of a constant frequency, or may be R and X obtained by passing a current of a plurality of frequencies.
  • R and X are R and X obtained by passing a current having a constant frequency.
  • a current having a lower frequency may be used as compared with the case where a current having a higher frequency is used.
  • a current having a lower frequency may be used as compared with the case where a current having a higher frequency is used.
  • the low frequency current is, for example, a current having a frequency of 50 kHz or less.
  • FIG. 3A is a diagram showing a time-series waveform of the resistance (R) related to the normal DI of the first embodiment
  • FIG. 3B is a diagram showing the reactance (X) of the normal DI of the first embodiment
  • 3C is a diagram showing a time-series waveform of the above
  • FIG. 3C is a diagram showing a locus of time-series data of R and X related to the normal DI of the first embodiment.
  • the values of the time-series waveforms of R and X are not fixed when the user is not touching the electrodes (30R, 30X), but immediately after the user starts riding the body composition meter 10.
  • the value stabilizes (32R, 32X).
  • FIG. 3C the locus of the time series data of R and X becomes a set of points gathered in almost one place.
  • FIG. 4A is a diagram showing a time-series waveform of R related to DI when the electrodes are not in contact with each other in the first embodiment
  • FIG. 4B is a diagram showing X related to DI when the electrodes are not in contact with the first embodiment
  • 4C is a diagram showing a time-series waveform of the above
  • FIG. 4C is a diagram showing a locus of time-series data of R and X related to DI when the electrodes of the first embodiment are not in contact with each other.
  • the current value and voltage value are indefinite. Therefore, as compared with the normal measurement of FIG. 3, the R value and the X value are not stable even after the user gets on the vehicle as shown in FIGS. 4A and 4B (42R, 42X). As a result, as shown in FIG. 4C, the locus of the time series data of R and X becomes a set of points scattered throughout.
  • FIG. 5A is a diagram showing a waveform of R related to DI at the time of drying of the first embodiment
  • FIG. 5B is a diagram showing a waveform of X related to DI at the time of drying of the first embodiment
  • FIG. 5C is a diagram showing time series data of R and X related to DI at the time of drying according to the first embodiment.
  • the air layer between the living body and the electrode is increased as compared with the normal measurement in FIG.
  • the adhesion to the electrodes gradually increases due to sweat or the like, so that the R value and the X value become stable.
  • the thickness of the air layer between the living body and the electrodes is thick, so the contact resistance between the skin and the electrodes is large and the electric capacity of the capacitor is small, so the user can use the body composition monitor.
  • the thickness of the air layer becomes thin, the contact resistance between the skin and the electrode becomes small, and the electric capacity of the capacitor becomes large.
  • the reactance (X) increases. That is, as the user rides on the body composition meter 10 and the time elapses, the electric capacity of the capacitor gradually increases, and the reactance (X) gradually increases.
  • the value gradually stabilizes as time passes after the user rides on the body composition meter 10 (52R, 52X), as compared with the normal measurement in FIG.
  • X gradually increases as time passes after the user rides on the body composition meter 10 (52X).
  • FIG. 5C the locus of the time series data of R and X becomes a set of points spreading in the X direction.
  • FIG. 6A is a diagram showing a time-series waveform of R related to DI at the time of body movement of the first embodiment
  • FIG. 6B is a diagram showing the time of X related to DI at the time of body movement of the first embodiment
  • 6C is a diagram showing a series waveform
  • FIG. 6C is a diagram showing a locus of time series data of R and X related to DI at the time of body movement of the first embodiment.
  • the muscle cross section and muscle length of the measurement site change. Since the muscle cross section is related to the resistance (R) and the reactance is related to the reactance (X), when the muscle cross section and the muscle length of the measurement site change, both the resistance (R) and the reactance (X) change. To do. However, the change is small as compared with the case where the electrodes are not contacted.
  • the parameter value generation unit 114 generates parameter values related to time-series changes based on the time-series data of R shown in FIGS. 4 to 6 above.
  • the parameter value generation unit 114 sets the value of the absolute value (
  • FIG. 7 shows the absolute value (
  • the measurement abnormality determination unit 116 includes a table 200 shown in FIG. 7. ⁇ , ⁇ , and ⁇ in the table 200 shown in FIG. 7 are threshold values appropriately determined from the experimental data.
  • the measurement abnormality determination unit 116 refers to this table and determines whether or not the measurement is abnormal based on the parameter
  • and R SD characterize the time series data of R.
  • a parameter that reflects the variation in the value of R is, for example, standard deviation, variance, unbiased variance, and the like.
  • This parameter may be, for example, a parameter based on the data obtained by offsetting the time series data of R with an approximation function described later.
  • this parameter is the standard deviation ( RSD ) based on the data obtained by offsetting the time series data of R with an approximation function described later.
  • the parameter value generation unit 114 generates the R SD value from the time series data of R, and the measurement abnormality determination unit 116 sets the table when the R SD value generated by the parameter value generation unit 114 is larger than ⁇ .
  • the measurement abnormality determination unit 116 sets the table when the R SD value generated by the parameter value generation unit 114 is larger than ⁇ .
  • this parameter may be obtained, for example, from an approximation function of the time series data of R.
  • the approximation method for obtaining the approximation function include the maximum likelihood estimation method and the least squares method.
  • this parameter includes, for example, the absolute value of the slope of the linear function when the linear function is approximated, the coefficient of the variable when the exponential function is approximated, and the like.
  • this parameter is the absolute value (
  • the parameter value generating unit 114 from the time-series data of the R
  • the parameter value generation unit 114 generates the R SD value from the time series data of R, and the measurement abnormality determination unit 116 generates the R SD value generated by the parameter value generation unit 114, which is smaller than ⁇ but larger than ⁇ . In this case, it corresponds to " ⁇ > R SL > ⁇ " in the table 200, and it is determined that there is body movement (hereinafter, this determination is also referred to as "with body movement").
  • the types of abnormalities may be determined according to the priority order of "electrode non-contact", “drying”, and “with body movement”. For example, when “
  • the notification unit 118 is a notification means for notifying the user of the improvement measure corresponding to the cause or type of the measurement abnormality when the measurement abnormality determination unit 116 determines that the measurement abnormality is performed.
  • the notification unit 118 notifies the user via the output of the display unit 106.
  • the "type” of the measurement abnormality is expressed by a combination of the parameters shown in FIG. 7 and the determination result described above, and the "cause” of the measurement abnormality is a form of the cause of the type of the measurement abnormality.
  • the "improvement measure” corresponding to the type of measurement abnormality is a method of eliminating the determination that the measurement abnormality corresponds to any "type". For example, the combination of " XSD > ⁇ " and "electrode non-contact" shown in FIG. 7 is the “type” of the measurement abnormality, and the type of this measurement abnormality is "the leg is not on the left leg electrode".
  • FIG. 8 is a diagram showing an example of notifying the user of the first embodiment of the measurement abnormality.
  • the notification unit 118 notifies the user of the cause or type of the measurement abnormality by graphically displaying the state in which the user's left leg is not touching the electrodes. For example, when notifying the user that the left leg is not touching the electrode, the notification unit 118 lights an LED lamp or the like, displays "the left leg is not on the electrode", or "left". The user may be notified of the measurement abnormality by outputting a voice saying, "The legs are not on the electrodes.”
  • the notification unit 118 may notify the user of the cause or improvement measure according to the type of measurement abnormality. As shown in 304 of FIG. 8, the notification unit 118 may display "Please put it correctly on the left leg electrode” when the electrodes are not in contact with each other. For example, the notification unit 118 may notify “wet your skin or take off your socks” when it is dry, and “do not move and stand still” when you are moving.
  • the body composition data acquisition unit 120 is a means for acquiring the body composition data of the user.
  • the body composition data acquisition unit 120 uses, for example, bioelectrical impedance analysis (BIA) and multiple regression analysis to obtain bioelectric impedance, height, weight, age, gender, and the like. , Acquire body composition data such as body fat percentage.
  • BIOA bioelectrical impedance analysis
  • multiple regression analysis to obtain bioelectric impedance, height, weight, age, gender, and the like.
  • Acquire body composition data such as body fat percentage.
  • FIG. 9 is a flow chart for determining a measurement abnormality based on the absolute value (
  • the flow starts.
  • the body composition meter 10 acquires the waveform of the resistance (R) in an arbitrary section (step S102).
  • the body composition meter 10 When the body composition meter 10 acquires the R waveform in an arbitrary section, it generates a value of
  • step S110: Yes, S112 it is determined whether the value of R SD is " ⁇ > R SD > ⁇ " and is determined to be "with body movement” (step S110: Yes, S112) or not " ⁇ > R SD > ⁇ ". Then (step S110: No), the process proceeds to the step of determining whether or not “ RSD > ⁇ ”.
  • step S114: Yes, S116 when it is determined not to be "R SD> gamma” (step S114: No), the process proceeds to the step of determining whether or not the measurement is abnormal.
  • step S118: No the body composition meter 10 determines that there is no "dryness”, “with body movement”, or “non-contact electrode contact” and is not a “measurement abnormality”
  • step S120 the body weight And the body composition data are acquired and displayed (step S120), and the flow ends.
  • step S118: Yes the body composition meter 10 determines that it corresponds to at least one of "dry”, “with body movement”, and “non-contact electrode contact” (step S118: Yes)
  • “cause of abnormality and remedy” Is notified (step S122)
  • the cause or type of measurement abnormality can be determined based on the time-series change of the measured bioelectric impedance. Therefore, the measurement abnormality can be determined without providing a circuit for detecting the measurement abnormality separately from the circuit for measuring the bioelectrical impedance.
  • trends such as the inclination of the linear function when the time series data is approximated by a linear function, and variations such as standard deviation, variance, and unbiased variance of the time series data are observed.
  • the measurement abnormality can be accurately determined.
  • the user can know the cause or type of the measurement abnormality, and can know the improvement measure for normal measurement corresponding to the cause or type of the measurement abnormality.
  • the body composition meter 10 of the second embodiment has the same basic configuration as the body composition meter 10 of the first embodiment. The difference is that in the first embodiment, the body composition meter 10 determines whether or not there is a measurement abnormality based on the parameter related to the resistance (R), whereas in the second embodiment, it is determined. It is a point to determine whether or not there is a measurement abnormality based on the parameters related to the resistance (R) and the inductance (X). In the following, this difference and the operation flow of the body composition meter will be described.
  • the measurement abnormality determination unit 116 has an absolute value (
  • the table 400 has three partial tables. Of these, the partial table 402 is the same as the table 200 of the first embodiment, and the partial table 404 sets
  • the partial table 406 is a table showing that when “R SD > ⁇ ” or “X SD > ⁇ ”, it is determined that the electrode and the living body are not in correct contact with each other as compared with the normal measurement.
  • > ⁇ or "
  • ⁇ ⁇ R SD ⁇ or " ⁇ ⁇ X SD ⁇ ”
  • the measurement abnormality determination unit 116 refers to the parameter
  • FIG. 11 shows the absolute value (
  • the flow starts.
  • the body composition meter 10 acquires waveforms of R and X in an arbitrary section (step S202).
  • the body composition meter 10 When the body composition meter 10 acquires the waveforms of R and X in an arbitrary section, it generates a value of
  • step S210: Yes, S212 whether the value of R SD and the value of X SD are " ⁇ > R SD > ⁇ or ⁇ > X SD > ⁇ " and is determined to be "with body movement" (step S210: Yes, S212). , " ⁇ > R SD > ⁇ or ⁇ > X SD > ⁇ " (step S210: No), a step of determining whether or not "R SD > ⁇ or X SD > ⁇ ” Proceed to.
  • step S214 whether the value of R SD and the value of X SD are "R SD > ⁇ or X SD > ⁇ " and is determined to be “electrode non-contact” (step S214: Yes, S216) or "R SD ". If it is determined that "> ⁇ or X SD > ⁇ " (step S214: No), the process proceeds to the step of determining whether or not the measurement is abnormal.
  • step S218 determines that there is no "dryness”, “with body movement”, or “non-contact electrode contact” and is not a “measurement abnormality” (step S218: No)
  • the body weight And the body composition data are acquired and displayed (step S220), and the flow ends.
  • step S218: Yes determines that it corresponds to at least one of "dry”, “with body movement”, and “non-contact electrode contact” (step S218: Yes)
  • step S222 "cause of abnormality and remedy”
  • the second embodiment it is based mainly on the resistance (R) electrically derived from the extracellular fluid and the reactance (X) mainly derived from the intracellular fluid and the cell membrane. Therefore, the measurement abnormality can be determined more accurately.
  • the body composition meter 10 determines the measurement abnormality using the parameter related to R, but the measurement abnormality may be determined using the parameter related to X. That is, the measurement abnormality may be determined using the partial table 404.
  • the same threshold value ⁇ is used as “
  • > ⁇ may be used.
  • different thresholds ⁇ and ⁇ and ⁇ and ⁇ may be used to make “ ⁇ > R SD > ⁇ or ⁇ > X SD > ⁇ ” and “R SD > ⁇ or X SD > ⁇ ”.
  • Modification example 4 When the process of notifying the cause of the abnormality and the remedy is performed a predetermined number of times (for example, 5 times) in FIG. 9 or FIG. 11, even if the measurement abnormality is subsequently determined, the body composition data is obtained based on the impedance. It may be calculated. In addition, when the notification process is performed a predetermined number of times with the same "cause of abnormality and remedy", even if it is determined that the measurement abnormality is caused by the same abnormality next time, the body composition data is calculated based on the impedance. May be good. Further, in these cases, the displayed body composition data may be displayed together with the fact that the impedance measurement abnormality was performed or the cause of the impedance measurement abnormality.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

動的インピーダンス(Dynamic Impedance:DI)の波形解析を行うことで、測定異常を判定できる体組成計及び体組成計測プログラムを提供する。生体電気インピーダンスの測定に基づいて体組成を測定する体組成計(10)は、測定により生体電気インピーダンスの時系列データを取得する生体電気インピーダンス測定部(112)と、時系列データに基づいて測定の異常の原因又は種類を判定する測定異常判定部(116)と、を備える。

Description

体組成計、体組成計測プログラム、及びコンピュータ読み取り可能な非一時的記憶媒体 関連出願の相互参照
 本出願では、2019年3月28日に日本国に出願された特許出願番号2019-063487の利益を主張し、当該出願の内容は引用することによりここに組み込まれているものとする。
 本開示は、生体電気インピーダンスの測定に基づいて体組成を測定する体組成計、体組成計測プログラム、及び同プログラムを記録したコンピュータ読み取り可能な非一時的記憶媒体に関する。
 従来、身長、体重、年齢、性別等の情報と測定により得られた人体の各部位の生体電気インピーダンスとに基づいて、体組成を測定する体組成計が知られている。
 生体電気インピーダンスに基づいて体組成を正常に測定するには、生体電気インピーダンスが正常に測定されることが前提となる。特願2011-79574号公報には、生体電気インピーダンスの測定異常を検知する回路を有する装置であって、人体と電極との接触部である足裏の接触面積の低下等に伴い接触インピーダンスが増加する異常がおこると、当該異常を適切に検知する装置が開示されている。
 また、特許第5110277号公報にも、生体電気インピーダンスの測定異常を検知する回路を有する装置であって、生体電気インピーダンスの測定値から特定の判断式を用いて異常値を検知する装置が開示されている。
 しかし、生体電気インピーダンスを取得する回路とは別に測定異常を検知する回路を備えると、体組成計の回路構成が煩雑となる。
 本開示は、動的インピーダンス(Dynamic Impedance:DI)の波形解析を行うことにより、既存の体組成計の回路構成を変えずに、測定異常を判定できる体組成計及び体組成計測プログラムを提供することを目的の一つとする。
 本開示は上記課題を解決するために以下の技術的手段を採用する。特許請求の範囲及びこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示す一例であって、本開示の技術的範囲を限定するものではない。
 一態様の体組成計は、生体電気インピーダンスの測定に基づいて体組成を測定する体組成計であって、測定により生体電気インピーダンスの時系列データを取得する生体インピーダンス測定部と、時系列データに基づいて測定の異常の原因又は種類を判定する測定異常判定部と、を備える。
 この構成により、測定された生体電気インピーダンスの時系列変化に基づいて測定の異常の原因又は種類を判定できる。そのため、生体電気インピーダンスを測定する回路とは別に、測定異常を検出するための回路を備えることなく、測定異常を判定できる。
 測定異常判定部は、時系列データのトレンドに基づいて測定の異常の原因又は種類を判定してもよい。
 この構成により、例えば、時系列データを一次関数近似したときの一次関数の傾き(Slope:SL)等のトレンド(傾向変動)を用いて、測定異常を判定できる。
 測定異常判定部は、時系列データのばらつきに基づいて測定の異常の原因又は種類を判定してもよい。
 この構成により、例えば、時系列データの標準偏差(Standard Deviation:SD)、分散、不偏分散等のばらつきを用いて、測定異常を判定できる。
 生体電気インピーダンスは、レジスタンスを含んでもよい。
 この構成により、主に細胞外液に電気的に由来するレジスタンスに基づいて、測定異常を判定できる。
 生体電気インピーダンスは、リアクタンスを含んでもよい。
 この構成により、主に細胞内液及び細胞膜に電気的に由来するリアクタンスに基づいて、測定異常をより正確に判定できる。
 測定の異常の原因又は種類に対応する改善策を報知する報知部をさらに備えてもよい。
 この構成により、利用者は、測定異常の原因を知り、測定異常の種類に対応して正常に測定するための改善策を知ることができる。
 一態様の体組成計測プログラムは、コンピュータを備えた生体電気インピーダンスを測定に基づいて体組成を測定する体組成計を制御する体組成計測プログラムであって、コンピュータに、測定により生体電気インピーダンスの時系列データを取得させ、時系列データに基づいて測定の異常の原因又は種類を判定させる。
図1は、第1の実施の形態の体組成計を示す図である。 図2は、第1の実施の形態の体組成計の構成を示すブロック図である。 図3Aは、第1の実施の形態の正常のDIに係るレジスタンス(R)の時系列波形を示す図である。 図3Bは、第1の実施の形態の正常のDIに係るリアクタンス(X)の時系列波形を示す図である。 図3Cは、第1の実施の形態の正常のDIに係るRとXとの時系列データの軌跡を示す図である。 図4Aは、第1の実施の形態の電極非接触時のDIに係るRの時系列波形を示す図である。 図4Bは、第1の実施の形態の電極非接触時のDIに係るXの時系列波形を示す図である。 図4Cは、第1の実施の形態の電極非接触時のDIに係るRとXとの時系列データの軌跡を示す図である。 図5Aは、第1の実施の形態の乾燥時のDIに係るRの時系列波形を示す図である。 図5Bは、第1の実施の形態の乾燥時のDIに係るXの時系列波形を示す図である。 図5Cは、第1の実施の形態の乾燥時のDIに係るRとXとの時系列データの軌跡を示す図である。 図6Aは、第1の実施の形態の体動時のDIに係るRの時系列波形を示す図である。 図6Bは、第1の実施の形態の体動時のDIに係るXの時系列波形を示す図である。 図6Cは、第1の実施の形態の体動時のDIに係るRとXとの時系列データの軌跡を示す図である。 図7は、第1の実施の形態のRの時系列データを一次関数近似したときの一次関数の傾きの絶対値(|RSL|)及び標準偏差(RSD)と、電極非接触時、乾燥時及び体動時との関係を示すテーブルの図である。 図8は、第1の実施の形態の利用者に測定異常の原因と種類に対応する改善策とを報知する例を示す図である。 図9は、第1の実施の形態のRの時系列データを一次関数近似したときの一次関数の傾きの絶対値(|RSL|)及び標準偏差(RSD)に基づいて測定異常を判定するフロー図である。 図10は、第2の実施の形態のRの時系列データを一次関数近似したときの一次関数の傾きの絶対値(|RSL|)及び標準偏差(RSD)、並びにXの時系列データを一次関数近似したときの一次関数の傾きの絶対値(|XSL|)及び標準偏差(XSD)と、電極非接触時、乾燥時及び体動時の関係を示すテーブルの図である。 図11は、第2の実施の形態のRの時系列データを一次関数近似したときの一次関数の傾きの絶対値(|RSL|)及び標準偏差(RSD)、並びにXの時系列データを一次関数近似したときの一次関数の傾きの絶対値(|XSL|)及び標準偏差(XSD)に基づいて測定異常を判定するフロー図である。
 以下、図面を参照して本開示の実施の形態を説明する。なお、以下に説明する実施の形態は、本開示を実施する場合の一例を示すものであって、本開示を以下に説明する具体的構成に限定するものではない。本開示の実施にあたっては、実施の形態に応じた具体的構成が適宜採用されてよい。
(第1の実施の形態)
[体組成計10の構成]
 図1は、第1の実施の形態の体組成計10を示す図である。体組成計10は、体重と生体情報としての体組成とを測定できる。体組成計10は、本体部20と、入力部102と、表示部106とを備える。
 本体部20は、内部に体重を計測するためのロードセルを備えており、利用者の体重を測定できる。
 また、本体部20は、上面の左側に通電用電極22L及び測定用電極24Lを備え、上面の右側に通電用電極22R及び測定用電極24Rを備えている。利用者は、裸足で本体部20の上に乗って直立し、生体情報の計測を行う。このとき、通電用電極22Lには左足の指の付け根が接触し、測定用電極24Lには左足のかかとが接触し、通電用電極22Rには右足の指の付け根が接触し、測定用電極24Rには右足のかかとが接触する。
 入力部102は、体組成計10にデータを入力する入力手段である。入力部102による情報の入力方法は、例えば、手動による方法、記録媒体を介する方法、有線通信による方法、無線通信による方法、その他の方法でもよい。
 手動による入力方法は、例えば、ボタン式、ダイヤル式、タッチセンサ式でもよい。記録媒体を介する方法の記録媒体は、例えば、フラッシュメモリ、CD-ROM、DVD-ROMでもよい。無線通信による方法の無線通信は、例えば、インターネット、Wi-Fi(登録商標)などの無線LAN、Bluetooth(登録商標)やNFC(Near Field Communication)などの近距離無線通信でもよい。本実施の形態では、入力部102は、手動による入力方法であり、ボタン式である。
 利用者は入力部102を操作し、体組成計10に利用者の身長、年齢、性別等のデータを入力する。体組成計10は、このデータと、体重と、生体電気インピーダンスとを組み合わせることにより、体組成データを算出する。体組成データは、例えば、体脂肪率、体脂肪量、筋肉量、腹筋/背筋比、体水分量、骨量、内臓脂肪面積、基礎代謝等がある。
 出力部106は、体組成計10の測定結果を出力する出力手段である。測定結果は、例えば、体重、体組成データ等である。出力部106は、例えば、LCD(Liquid Crystal Display)又はOLED(Organic Light Emitting Diode)を備える表示パネルである。出力部106は、体組成計10と一体でもよいし、スマートフォンやタブレット等のように体組成計10と一体でなくてもよい。本実施の形態では、出力部106は、体組成計10と一体のLCDを備える表示パネルである。
 出力部106は、例えば、利用者の測定結果を反映した数値、文字、利用者の測定時の立ち位置の図等を表示してもよいし、音声その他の形式で出力してもよい。また、出力部106は、後述する報知部118が利用者に報知した測定異常の原因又は種類に対応する改善策を表示してもよい。
[体組成計10の機能構成]
 図2は、第1の実施の形態の体組成計10の構成を示すブロック図である。体組成計10は、入力部102と、記憶部104と、出力部106と、制御部108とを備えている。
 記憶部104は、データを記憶できるメモリである。メモリは、例えば、揮発性メモリ(例えば、RAM(Random Access Memory))、不揮発性メモリ(例えば、ROM(Read Only Memory))等でもよい。記憶部104は、図2に示すように、体組成計10に内蔵されていてもよく、あるいは、外付けハードディスクドライブ、外部サーバなどのように体組成計10の外部に備えられていてもよい。本実施の形態では、記憶部104は、体組成計10に内蔵されている。
 記憶部104は、制御部108が実行するプログラム、利用者が入力部102を操作し体組成計10に入力したデータ、体組成計10が体組成データを算出するための統計データ、体組成計10が算出した体組成データ等を記憶する。プログラムは、体組成計10が通信ネットワークからダウンロードすることで体組成計10に提供されてもよく、あるいは、非一時的な記録媒体を介して体組成計10に提供されてもよい。
 制御部108は、入力部102、記憶部104、出力部106、体重測定部110、生体電気インピーダンス測定部112、パラメータ値生成部114、測定異常判定部116、報知部118、体組成データ取得部120を制御する制御装置である。制御部108は、中央処理装置(Central Processing Unit:CPU)を備える。制御部108は、電気通信を介して各部と接続されている。制御部108は、記憶部104に記憶されたプログラムを実行することにより、各部の機能を実現する。
 体重測定部110は、利用者の体重を測定する体重測定手段である。体重測定部110は、上述したロードセルを用いて体重を計測する。具体的には、ロードセルは荷重に応じて変形する金属部材の起歪体と、起歪体に貼られる歪みゲージとにより構成される。利用者が体組成計10の上に乗ると、利用者の荷重によりロードセルの起歪体が撓んで歪ゲージが伸縮する。歪みゲージの抵抗値(出力値)は、その伸縮に応じて変化する。体重測定部110は、荷重がかかっていないときのロードセルの出力値(ゼロ点)と荷重がかかったときの出力値との差から体重を演算する。なお、ロードセルを用いた体重の測定に関する構成は、一般の体重計と同様の構成を用いればよい。
 生体電気インピーダンス測定部112は、測定により生体電気インピーダンスの時系列データを取得する測定手段である。生体電気インピーダンスは、体に微弱な電流を流し、この電流の流れやすさを計測することにより得られる電気抵抗値である。生体電気インピーダンス測定部112は、図1に示した通電用電極22L等と測定用電極24L等とを介して、体に微弱な電流を流し計測する。
 計測された電流と電圧とから、生体電気インピーダンスが得られる。生体電気インピーダンスは、主に細胞外液に電気的に由来する抵抗成分(レジスタンス:R)と、主に細胞内液及び細胞膜に電気的に由来する容量成分(リアクタンス:X)とを含む。このRとXとの時系列データを調べることにより、測定が正常か異常か、測定が異常であるときの異常の原因又は種類を判定できる。なお、この判定に用いるRとXとは、一定の周波数の電流を流して取得されるRとXとでもよいし、複数の周波数の電流を流して取得されるRとXとでもよい。本実施の形態では、RとXとは、一定の周波数の電流を流して取得されるRとXとである。
 特に、リアクタンスXを考慮して測定異常の原因又は種類を判定するときには、周波数が高い電流を用いる場合と比較して周波数が低い電流を用いてもよい。その中でも、特に、電極非接触時及び乾燥時が原因である場合には、周波数が高い電流を用いる場合と比較して周波数が低い電流を用いてもよい。理由としては、電流の周波数が低くなるほど、コンデンサの電気容量の影響が大きくなるからである(X=1/jωCのωが小さいほど、CがXの大小に対する影響が大きくなるからである)。周波数が低い電流とは、例えば、50kHz以下の周波数の電流である。
 まず、測定が正常なときのRとXとの時系列データを説明する。図3Aは、第1の実施の形態の正常のDIに係るレジスタンス(R)の時系列波形を示す図であり、図3Bは、第1の実施の形態の正常のDIに係るリアクタンス(X)の時系列波形を示す図であり、図3Cは、第1の実施の形態の正常のDIに係るRとXとの時系列データの軌跡を示す図である。
 図3A、図3Bに示すとおり、RとXの時系列波形は、利用者が電極に触れていないときは値が定まらないが(30R、30X)、利用者が体組成計10に乗り始めてすぐに値が安定する(32R、32X)。その結果、図3Cに示すとおり、RとXとの時系列データの軌跡は、ほぼ一か所に集まる点の集合となる。
 次に、測定異常なときのRとXとの時系列データを説明する。測定異常なときとは、例えば、図4のように電極と生体とが正しく接触していないとき(以下「電極非接触時」ともいう。)、図5のように皮膚が乾燥しているとき又は靴下を履いているとき(以下「乾燥時」ともいう。)、図6のように体動があるとき(以下「体動時」ともいう。)等である。
 電極非接触時は、図4のような時系列データになる。図4Aは、第1の実施の形態の電極非接触時のDIに係るRの時系列波形を示す図であり、図4Bは、第1の実施の形態の電極非接触時のDIに係るXの時系列波形を示す図であり、図4Cは、第1の実施の形態の電極非接触時のDIに係るRとXとの時系列データの軌跡を示す図である。
 電極非接触時は、電流値及び電圧値が不定となる。そのため、図3の正常測定と比較して、図4A、図4Bに示すとおり利用者が乗った後もRの値とXの値とが安定しない(42R、42X)。その結果、図4Cに示すとおりRとXとの時系列データの軌跡は、全体にばらついた点の集合となる。
 次に、乾燥時のRとXとの時系列データは、図5のような時系列データになる。図5Aは、第1の実施の形態の乾燥時のDIに係るRの波形を示す図であり、図5Bは、第1の実施の形態の乾燥時のDIに係るXの波形を示す図であり、図5Cは、第1の実施の形態の乾燥時のDIに係るRとXとの時系列データを示す図である。
 乾燥時は、図3の正常測定と比較して、生体と電極との間の空気層が増加している。利用者が体組成計10に乗り、時間が経過すると、汗等により徐々に電極との密着性が高まるため、Rの値とXの値とが安定する。
 特に、乾燥時は、生体と電極との間にある空気層の厚みが厚いため、皮膚と電極との間の接触抵抗が大きく且つコンデンサの電気容量が小さくなっており、利用者が体組成計10に乗り時間が経過すると、空気層の厚みが薄くなり、皮膚と電極との間の接触抵抗が小さく且つコンデンサの電気容量が大きくなる。コンデンサの電気容量が大きくなると、リアクタンス(X)が大きくなる。すなわち、利用者が体組成計10に乗り時間が経過するにつれて、コンデンサの電気容量は徐々に大きくなり、リアクタンス(X)は徐々に大きくなる。
 そのため、図5A、図5Bに示すとおり、図3の正常測定と比較して、利用者が体組成計10に乗ってから時間が経過するにつれて徐々に値が安定する(52R、52X)。また、Xは、利用者が体組成計10に乗ってから時間が経過するにつれて徐々に大きくなる(52X)。その結果、図5Cに示すとおり、RとXとの時系列データの軌跡は、X方向に広がった点の集合となる。
 次に、体動時のRとXとの時系列データを説明する。図6Aは、第1の実施の形態の体動時のDIに係るRの時系列波形を示す図であり、図6Bは、第1の実施の形態の体動時のDIに係るXの時系列波形を示す図であり、図6Cは、第1の実施の形態の体動時のDIに係るRとXとの時系列データの軌跡を示す図である。
 体動時は、測定部位の筋断面積と筋長とが変化する。筋断面積はレジスタンス(R)と関係し、筋長はリアクタンス(X)と関係するため、測定部位の筋断面積と筋長とが変化するとレジスタンス(R)とリアクタンス(X)とがともに変化する。もっとも、その変化は、電極非接触時と比較して小さい。
 そのため、図6A、図6Bに示すとおり、図3の正常測定と比較して、利用者が体組成計10に乗り始めた後もRの値とXの値とが値が小さく変化する(62R、62X)。その結果、図6Cに示すとおり、RとXとの時系列データの軌跡は、一か所からやや広がった点の集合となる。
 図2に戻って説明を続ける。パラメータ値生成部114は、以上の図4~図6に示したRの時系列データに基づいて、時系列変化に係るパラメータの値を生成する。本実施の形態では、パラメータ値生成部114は、時系列変化に係るパラメータの値として、Rの時系列データを一次関数近似したときの一次関数の傾きの絶対値(|RSL|)の値と標準偏差(RSD)の値とを生成する。
 図7は、第1の実施の形態のRの時系列データを一次関数近似したときの一次関数の傾きの絶対値(|RSL|)及び標準偏差(RSD)と、電極非接触時、乾燥時及び体動時との関係を示すテーブル200の図である。測定異常判定部116は、図7に示すテーブル200を備えている。図7に示すテーブル200におけるα、β、γは、実験データから適宜決定された閾値である。測定異常判定部116は、このテーブルを参照して、パラメータ値生成部114が生成したパラメータ|RSL|の値とRSDの値とに基づいて測定異常か否か、測定が異常であるときの異常の種類を判定する。以下、パラメータ|RSL|とRSDとが、Rの時系列データを特徴づけていることを具体的に説明する。
 まず、電極非接触時は、正常測定と比較してRの値のばらつきが大きい。そのため、電極と生体とが正しく接触しているか否かは、Rの値のばらつきを反映したパラメータで評価する。このパラメータは、例えば、標準偏差、分散、不偏分散等である。このパラメータは、例えば、Rの時系列データを後述する近似関数でオフセットして得られたデータに基づくパラメータでもよい。本実施の形態では、このパラメータは、Rの時系列データを後述する近似関数でオフセットして得られたデータに基づく標準偏差(RSD)である。
 そこで、パラメータ値生成部114は、Rの時系列データからRSDの値を生成し、測定異常判定部116は、パラメータ値生成部114が生成したRSDの値がγより大きいときは、テーブル200の「RSD>γ」にあたり、電極と生体とが正しく接触していないと判定する(以下、この判定を「電極非接触」ともいう。)。
 次に、乾燥時は、正常測定と比較して時間が経過するにつれて徐々にRの値が安定していく。そのため、皮膚が乾燥しているか否か又は靴下を履いているか否かは、Rの値のトレンド(傾向変動)を反映したパラメータで評価する。このパラメータは、例えば、Rの時系列データの近似関数から取得されてよい。近似関数を求める近似法は、例えば、最尤推定法、最小二乗法等がある。また、最小二乗法で近似関数を求める場合において、このパラメータは、例えば、一次関数近似したときの一次関数の傾きの絶対値、指数関数近似したときの変数の係数等がある。本実施の形態では、このパラメータは、Rの時系列データを最小二乗法に基づいて一次関数近似したときの一次関数の傾きの絶対値(|RSL|)である。
 そこで、パラメータ値生成部114は、Rの時系列データから|RSL|の値を生成し、測定異常判定部116は、パラメータ値生成部114が生成した|RSL|の値がαより大きいときは、テーブル200の「|RSL|>α」にあたり、皮膚が乾燥している又は靴下を履いていると判定する(以下、この判定を「乾燥」ともいう。)。
 次に、体動時は、正常測定と比較してRの値のばらつきがある。そのため、電極非接触時と同様に、体動があるか否かは、標準偏差で評価する。もっとも、電極非接触時と比較すると、体動時のRの値のばらつきは小さい。
 そこで、パラメータ値生成部114は、Rの時系列データからRSDの値を生成し、測定異常判定部116は、パラメータ値生成部114が生成したRSDの値がγより小さいがβより大きいときは、テーブル200の「γ>RSL>β」にあたり、体動があると判定する(以下、この判定を「体動あり」ともいう。)。
 なお、複数の異常の種類が判定されたときは、「電極非接触」、「乾燥」、「体動あり」の優先順位にしたがって異常の種類が判定されてもよい。例えば、「|RSL|>α」且つ「RSD>γ」のときは、図7に示すように、「電極非接触」と判定されてもよい。
 図2に戻って説明を続ける。報知部118は、測定異常判定部116が測定異常と判定したときに、利用者に測定異常の原因又は種類に対応する改善策を報知する報知手段である。報知部118は、表示部106の出力を介して利用者に報知する。
 なお、測定異常の「種類」とは、上述した図7に示すパラメータと判定結果との組み合わせで表現されたものであり、測定異常の「原因」とは、この測定異常の種類を原因の形式で表現したものであり、測定異常の種類に対応する「改善策」とは、測定異常のいずれかの「種類」にあたると判定されることを解消する方法をいう。例えば、図7に示す「XSD>γ」と「電極非接触」との組み合わせが測定異常の「種類」であり、この測定異常の種類を「左脚電極に脚がのっていません」という原因の形式で表現したものが測定異常の「原因」であり、測定異常のうち「電極非接触」と判定されることを解消するために「左脚電極に正しくのせること」が「改善策」である。
 図8を用いて、この報知を具体的に説明する。図8は、第1の実施の形態の利用者に測定異常を報知する例を示す図である。図8の302に示すように、報知部118は、利用者の左脚が電極に触れていない状態をグラフィカルに表示することにより利用者に測定異常の原因ないし種類を報知する。報知部118は、例えば、利用者に左脚が電極に触れていない旨を報知するときは、LEDランプ等を点灯する、「左脚が電極にのっていません」と表示する、「左脚が電極にのっていません」と音声出力する等により利用者に測定異常を報知してもよい。
 また、報知部118は、利用者に測定異常の原因ないし種類に応じた改善策を報知してもよい。図8の304に示すように、報知部118は、電極非接触時は「左脚電極に正しくのせてください」と表示してもよい。報知部118は、例えば、乾燥時は「皮膚を濡らしてください、又は靴下を脱いでください」、体動時は「動かないで、静止してください」と報知してもよい。
 図2に戻って説明を続ける。体組成データ取得部120は、利用者の体組成データの取得手段である。体組成データ取得部120は、例えば、生体電気インピーダンス法(Bioelectrical Impedance Analysis:BIA)と重回帰分析等とを用いることにより、生体電気インピーダンスと、身長と、体重と、年齢と、性別等とから、体脂肪率等の体組成データを取得する。
[体組成計10の動作フロー]
 以下では、上述した体組成計10の構成により第1の実施の形態に係る体組成計10の動作を実現するフローを説明する。図9は、第1の実施の形態のRの傾きを一次関数近似したときの一次関数の絶対値(|RSL|)及び標準偏差(RSD)に基づいて測定異常を判定するフロー図である。利用者が体組成計10にのると、フローが開始する。
 まず、体組成計10は、任意の区間のレジスタンス(R)の波形を取得する(ステップS102)。
 体組成計10は、任意の区間のRの波形を取得すると、|RSL|の値とRSDの値とを生成する(ステップS104)。そして、これらの値が、「|RSL|>α」であるか否か(ステップS106)、「γ>RSD>β」であるか否か(ステップS110)、「RSD>γ」であるか否か(ステップS114)をそれぞれ判定する。
 まず、|RSL|の値が「|RSL|>α」であり「乾燥」と判定されるか(ステップS106:Yes、S108)、「|RSL|>α」ではないと判定されると(ステップS106:No)、「γ>RSD>β」であるか否かを判定するステップに進む。
 次に、RSDの値が「γ>RSD>β」であり「体動あり」と判定されるか(ステップS110:Yes、S112)、「γ>RSD>β」ではないと判定されると(ステップS110:No)、「RSD>γ」であるか否かを判定するステップに進む。
 次に、RSDの値が「RSD>γ」であり「電極非接触」と判定されるか(ステップS114:Yes、S116)、「RSD>γ」ではないと判定されると(ステップS114:No)、「測定異常」であるか否かを判定するステップに進む。
 最後に、体組成計10が、「乾燥」と、「体動あり」と、「電極非接触」とのいずれにもあたらず「測定異常」ではないと判定すると(ステップS118:No)、体重と体組成データとを取得し表示して(ステップS120)、フローは終了する。一方、体組成計10が、「乾燥」と、「体動あり」と、「電極非接触」との少なくとも1つにあたると判定したときは(ステップS118:Yes)、「異常の原因と改善策とを報知」し(ステップS122)、ステップS102に戻る。
 このように、第1の実施の形態によれば、測定された生体電気インピーダンスの時系列変化に基づいて測定の異常の原因又は種類を判定できる。そのため、生体電気インピーダンスを測定する回路とは別に、測定異常を検出するための回路を備えることなく、測定異常を判定できる。
 また、第1の実施の形態によれば、時系列データを一次関数近似したときの一次関数の傾き等のトレンド(傾向変動)や、時系列データの標準偏差、分散、不偏分散等のばらつきを用いることにより、精度よく測定異常を判定できる。
 さらに、第1の実施の形態によれば、利用者は測定異常の原因ないし種類を知り、測定異常の原因ないし種類に対応して正常に測定するための改善策を知ることができる。
(第2の実施の形態)
 第2の実施の形態の体組成計10は、第1の実施の形態の体組成計10と基本的な構成は同じである。相違点は、第1の実施の形態では、体組成計10が、レジスタンス(R)に係るパラメータに基づいて測定異常があるか否かを判定したのに対して、第2の実施の形態では、レジスタンス(R)とインダクタンス(X)とに係るパラメータに基づいて測定異常があるか否かを判定する点である。以下では、この相違点と体組成計の動作フローとを説明する。
[体組成計10の構成]
 測定異常判定部116は、図10に示すように、Rの時系列データを一次関数近似したときの一次関数の傾きの絶対値(|RSL|)及び標準偏差(RSD)並びにXの時系列データを一次関数近似したときの一次関数の傾き(|XSL|)及び標準偏差(XSD)、電極非接触時、乾燥時、及び体動時との関係を示すテーブル400とを備えている。
 テーブル400は、3つの部分テーブルを有する。このうち、部分テーブル402は、第1の実施形態のテーブル200と同じであり、部分テーブル404は、テーブル200の|RSL|>α、β<RSD<γ、RSD>γをそれぞれ|XSL|>α、β<XSD<γ、XSD>γに変更したテーブルであるから、説明を省略する。
 部分テーブル406は、「RSD>γ」又は「XSD>γ」のときは、正常測定と比較して、電極と生体とが正しく接触していないと判定することを示すテーブルである。「|RSL|>α」又は「|XSL|>α」のときは、正常測定と比較して、皮膚が乾燥している又は靴下を履いていると判定することを示すテーブルである。また、「β<RSD<γ」又は「β<XSD<γ」のときは、正常測定と比較して、体動があると判定することを示すテーブルである。
 測定異常判定部116は、このテーブル400を参照して、パラメータ値生成部114が生成したパラメータ|RSL|の値と、RSDの値と、|XSL|の値と、XSDの値とに基づいて、測定異常か否か、測定が異常であるときの異常の種類を判定する。
[体組成計10の動作フロー]
 以下では、上述した体組成計10の構成により第2の実施の形態に係る体組成計10の動作を実現するフローを説明する。図11は、第2の実施の形態のRの時系列データを一次関数近似したときの一次関数の傾きの絶対値(|RSL|)及び標準偏差(RSD)、並びにX時系列データを一次関数近似したときの一次関数の傾きの絶対値(|XSL|)及び標準偏差(XSD)に基づいて測定異常を判定するフロー図である。利用者が体組成計10にのると、フローが開始する。
 まず、体組成計10は、任意の区間のRとXとの波形を取得する(ステップS202)。
 体組成計10は、任意の区間のRとXとの波形を取得すると、|RSL|の値と、RSDの値と、|XSL|の値と、XSDの値とを生成する(ステップS204)。そして、これらの値が、「|RSL|>α or |XSL|>α」であるか否か(ステップS206)、「γ>RSD>β or γ>XSD>β」であるか否か(ステップS210)、「RSD>γ or XSD>γ」であるか否か(ステップS214)をそれぞれ判定する。
 まず、|RSL|の値と|XSL|の値とが、「|RSL|>α or |XSL|>α」であり「乾燥」と判定されるか(ステップS206:Yes、S208)、「|RSL|>α or |XSL|>α」ではないと判定されると(ステップS206:No)、「γ>RSD>β or γ>XSD>β」であるか否かを判定するステップに進む。
 次に、RSDの値とXSDの値とが、「γ>RSD>β or γ>XSD>β」であり「体動あり」と判定されるか(ステップS210:Yes、S212)、「γ>RSD>β or γ>XSD>β」ではないと判定されると(ステップS210:No)、「RSD>γ or XSD>γ」であるか否かを判定するステップに進む。
 次に、RSDの値とXSDの値とが、「RSD>γ or XSD>γ」であり「電極非接触」と判定されるか(ステップS214:Yes、S216)、「RSD>γ or XSD>γ」ではないと判定されると(ステップS214:No)、「測定異常」であるか否かを判定するステップに進む。
 最後に、体組成計10が、「乾燥」と、「体動あり」と、「電極非接触」とのいずれにもあたらず「測定異常」ではないと判定すると(ステップS218:No)、体重と体組成データとを取得し表示して(ステップS220)、フローは終了する。一方、体組成計10が、「乾燥」と、「体動あり」と、「電極非接触」との少なくとも1つにあたると判定したときは(ステップS218:Yes)、「異常の原因と改善策とを報知」し(ステップS222)、ステップS202に戻る。
 このように、第2の実施の形態によれば、主に細胞外液に電気的に由来するレジスタンス(R)と主に細胞内液及び細胞膜に電気的に由来するリアクタンス(X)とに基づいて、測定異常をより正確に判定できる。
[変形例1]
 第1の実施の形態では、体組成計10が、Rに係るパラメータを用いて測定異常を判定したが、Xに係るパラメータを用いて測定異常を判定してもよい。すなわち、部分テーブル404を用いて測定異常を判定してもよい。
[変形例2]
 第2の実施の形態では、例えば、「|RSL|>α or |XSL|>α」として、「|RSL|>α」か「|XSL|>α」の少なくとも1つが満たされれば「乾燥」と判定したが、「|RSL|>α」と「|XSL|>α」とのいずれも満たされれば「乾燥」と判定してもよい。すなわち、「|RSL|>α and |XSL|>α」であれば「乾燥」と判定してもよい。同様に、「γ>RSD>β and γ>XSD>β」であれば「体動あり」と判定し、「RSD>γ and XSD>γ」であれば「電極非接触」と判定してもよい。
[変形例3]
 第2の実施の形態では、例えば、「|RSL|>α or |XSL|>α」として同じ閾値αを用いたが、異なる閾値αとδを用いて「|RSL|>α or |XSL|>δ」としてもよい。同様に、異なる閾値βとε、γとζとを用いて「γ>RSD>β or ζ>XSD>ε」、「RSD>γ or XSD>ζ」としてもよい。
[変形例4]
 図9又は図11で異常の原因と改善策を報知の処理を所定の回数(例えば5回)行った場合には、その次に測定異常と判定されたとしても、そのインピーダンスで体組成データを算出してもよい。また、同じ「異常の原因と改善策」で報知処理が所定の回数行った場合に、その次に同じ異常の原因で測定異常と判定されたとしても、そのインピーダンスで体組成データを算出してもよい。また、これらの場合に、表示される体組成データは、インピーダンスの測定異常であったこと、またはこれに加えてインピーダンスの測定異常の原因を併せて表示してもよい。
 10・・・体組成計
 20・・・本体部
 22L,R・・・通電用電極
 24L,R・・・測定用電極
 102・・・入力部
 104・・・記憶部
 106・・・出力部
 108・・・制御部
 110・・・体重測定部
 112・・・生体電気インピーダンス測定部
 114・・・パラメータ値生成部
 116・・・測定異常判定部
 118・・・報知部
 120・・・体組成データ取得部
 200・・・テーブル
 400・・・テーブル

Claims (8)

  1.  生体電気インピーダンスの測定に基づいて体組成を測定する体組成計であって、
     測定により生体電気インピーダンスの時系列データを取得する生体電気インピーダンス測定部と、
     前記時系列データに基づいて前記測定の異常の原因又は種類を判定する測定異常判定部と、
     を備える、体組成計。
  2.  前記測定異常判定部は、前記時系列データのトレンドに基づいて前記測定の異常の原因又は種類を判定する、請求項1に記載の体組成計。
  3.  前記測定異常判定部は、前記時系列データのばらつきに基づいて前記測定の異常の原因又は種類を判定する、請求項1又は2に記載の体組成計。
  4.  前記生体電気インピーダンスは、レジスタンスを含む、請求項1から3のいずれかに記載の体組成計。
  5.  前記生体電気インピーダンスは、リアクタンスを含む、請求項1から4のいずれかに記載の体組成計。
  6.  前記測定の異常の原因又は種類に対応する改善策を報知する報知部をさらに備える、請求項1から5のいずれかに記載の体組成計。
  7.  コンピュータを備えた生体電気インピーダンスを測定に基づいて体組成を測定する体組成計を制御する体組成計測プログラムであって、
     前記コンピュータに、
     測定により生体電気インピーダンスの時系列データを取得させ、
     前記時系列データに基づいて前記測定の異常の原因又は種類を判定させる、
     体組成計測プログラム。
  8.  コンピュータを備えた生体電気インピーダンスを測定に基づいて体組成を測定する体組成計を制御する体組成計測プログラムであって、
     前記コンピュータに、
     測定により生体電気インピーダンスの時系列データを取得させ、
     前記時系列データに基づいて前記測定の異常の原因又は種類を判定させる、
     体組成計測プログラムを記憶した、コンピュータ読み取り可能な非一時的記憶媒体。
PCT/JP2020/013917 2019-03-28 2020-03-27 体組成計、体組成計測プログラム、及びコンピュータ読み取り可能な非一時的記憶媒体 WO2020196813A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080024911.1A CN113631090A (zh) 2019-03-28 2020-03-27 人体成分分析仪、人体成分测量程序以及计算机可读取的非临时性存储介质
EP20776918.3A EP3949851A4 (en) 2019-03-28 2020-03-27 BODY COMPOSITION MONITORING DEVICE, BODY COMPOSITION MONITORING PROGRAM AND COMPUTER READABLE NON-TRANSITORY STORAGE MEDIA
US17/485,795 US20220007959A1 (en) 2019-03-28 2021-09-27 Body composition analyzer, body composition measurement programm and computer-readable non-transitory storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019063487A JP7381046B2 (ja) 2019-03-28 2019-03-28 体組成計及び体組成計測プログラム
JP2019-063487 2019-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/485,795 Continuation US20220007959A1 (en) 2019-03-28 2021-09-27 Body composition analyzer, body composition measurement programm and computer-readable non-transitory storage medium

Publications (1)

Publication Number Publication Date
WO2020196813A1 true WO2020196813A1 (ja) 2020-10-01

Family

ID=72611568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013917 WO2020196813A1 (ja) 2019-03-28 2020-03-27 体組成計、体組成計測プログラム、及びコンピュータ読み取り可能な非一時的記憶媒体

Country Status (5)

Country Link
US (1) US20220007959A1 (ja)
EP (1) EP3949851A4 (ja)
JP (1) JP7381046B2 (ja)
CN (1) CN113631090A (ja)
WO (1) WO2020196813A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110277B2 (ja) 1971-08-24 1976-04-02
JP2007181524A (ja) * 2006-01-05 2007-07-19 Yamato Scale Co Ltd 体組成計
JP2009112554A (ja) * 2007-11-07 2009-05-28 Sekisui Chem Co Ltd 身体組成推計装置及び身体組成推計方法
JP2011079574A (ja) 2009-10-02 2011-04-21 Yuitto:Kk 液体保存容器
JP2015002779A (ja) * 2013-06-19 2015-01-08 株式会社タニタ 生体測定装置及び生体測定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3240401B2 (ja) * 1994-12-07 2001-12-17 オムロン株式会社 インピーダンス測定装置および健康管理指針アドバイス装置
JP2003093361A (ja) * 2001-09-26 2003-04-02 Matsushita Electric Ind Co Ltd 生体インピーダンス検出装置
JP2005080720A (ja) * 2003-09-05 2005-03-31 Tanita Corp 生体電気インピーダンス測定装置
JP2013192860A (ja) * 2012-03-22 2013-09-30 Tanita Corp 生体情報測定装置、生体情報測定システム、及び、生体情報測定方法
US20180279903A1 (en) * 2012-09-07 2018-10-04 Respiratory Motion, Inc. Spacing of electrodes for bioimpedance measurements
DE102015118770A1 (de) 2015-11-03 2017-05-04 Seca Ag Kombinationsmessgerät zur Messung des Gewichts und mindestens eines weiteren Körperparameters eines Probanden
CN107271780B (zh) * 2017-07-13 2019-06-04 中国医学科学院生物医学工程研究所 一种生物组织电阻抗特征参数异常的检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110277B2 (ja) 1971-08-24 1976-04-02
JP2007181524A (ja) * 2006-01-05 2007-07-19 Yamato Scale Co Ltd 体組成計
JP2009112554A (ja) * 2007-11-07 2009-05-28 Sekisui Chem Co Ltd 身体組成推計装置及び身体組成推計方法
JP2011079574A (ja) 2009-10-02 2011-04-21 Yuitto:Kk 液体保存容器
JP2015002779A (ja) * 2013-06-19 2015-01-08 株式会社タニタ 生体測定装置及び生体測定方法

Also Published As

Publication number Publication date
JP7381046B2 (ja) 2023-11-15
EP3949851A4 (en) 2022-12-21
CN113631090A (zh) 2021-11-09
EP3949851A1 (en) 2022-02-09
JP2020162636A (ja) 2020-10-08
US20220007959A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP4064028B2 (ja) 身体疲労度判定装置
JP3699640B2 (ja) 多周波生体インピーダンス測定による体水分量状態判定装置
JP4646614B2 (ja) 体組成測定装置
JP5208749B2 (ja) 水和状態監視
US11723602B2 (en) Smart scale with plurality of sensors
US20120330167A1 (en) Analysing impedance measurements
JP2002045346A5 (ja)
JP6149274B2 (ja) 筋質評価装置
JP2003199728A (ja) 生活障害関連身体情報判定装置
US20200359931A1 (en) Body Composition Scale and Body Composition Measurement Program
JP2010259776A (ja) 皮下脂肪厚測定装置
JP2009011465A (ja) 体組成測定装置、体組成測定方法
JP5641527B2 (ja) 筋量評価方法および筋量評価装置
WO2012132515A1 (ja) 体重変動を予測する機能を有する体重管理装置
JP4512379B2 (ja) 健康状態判定装置および健康状態判定用プログラム
WO2020196813A1 (ja) 体組成計、体組成計測プログラム、及びコンピュータ読み取り可能な非一時的記憶媒体
JP7386520B2 (ja) コンディション評価装置、コンディション評価方法、及びプログラム
JP2023171493A (ja) 指標の決定
JP4163071B2 (ja) 婦人用体調管理装置
JP4422997B2 (ja) 患部回復状態判定装置、及びプログラム
EP4221582A1 (en) Tissue fluid measurement device
US20200345263A1 (en) Determining a water and a lipid level of skin
JP7173586B2 (ja) 筋肉量推定方法、筋肉量推定装置、及び筋肉量推定プログラム
JP2007181524A (ja) 体組成計
JP2010148971A (ja) 健康状態判定装置および健康状態判定用プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020776918

Country of ref document: EP

Effective date: 20211028