WO2020196587A1 - 電極および電気化学測定システム - Google Patents

電極および電気化学測定システム Download PDF

Info

Publication number
WO2020196587A1
WO2020196587A1 PCT/JP2020/013228 JP2020013228W WO2020196587A1 WO 2020196587 A1 WO2020196587 A1 WO 2020196587A1 JP 2020013228 W JP2020013228 W JP 2020013228W WO 2020196587 A1 WO2020196587 A1 WO 2020196587A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive carbon
carbon
carbon layer
thickness direction
Prior art date
Application number
PCT/JP2020/013228
Other languages
English (en)
French (fr)
Inventor
一斗 山形
基希 拝師
光伸 竹本
皓也 大須賀
加藤 大
鎌田 智之
Original Assignee
日東電工株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 日東電工株式会社
Priority to CN202080021125.6A priority Critical patent/CN113574370A/zh
Priority to US17/598,969 priority patent/US20220214299A1/en
Priority to EP20778581.7A priority patent/EP3951375A4/en
Priority to KR1020217030833A priority patent/KR20210144722A/ko
Publication of WO2020196587A1 publication Critical patent/WO2020196587A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Definitions

  • the present invention relates to an electrode and an electrochemical measurement system, and more particularly to an electrode and an electrochemical measurement system including the electrode.
  • a carbon electrode composed of a microcrystal domain composed of sp 2 bond and sp 3 bond is known as an electrode for electrochemical measurement having high sensitivity (see, for example, Patent Document 1 below).
  • the metal ions contained in the aqueous solution at a low concentration are reduced and concentrated (deposited) on the surface of the electrode, and then the reduced and concentrated metal is oxidatively eluted, and the metal ions in the aqueous solution are generated based on the current value at this time.
  • Anodic-stripping-voltammetry (ASV) which measures with high sensitivity, is known (see, for example, Patent Document 2 below).
  • Patent Document 1 it is considered to use the carbon electrode described in Patent Document 1 for the anodic-stripping-voltammetry of Patent Document 2.
  • the metal ions cannot be sufficiently reduced and concentrated on the surface of the carbon electrode, and therefore, there is a problem that the metal ions cannot be measured with high sensitivity. Further, even if the metal ions can be reduced and concentrated on the surface of the electrode in a small amount, the metal cannot be oxidized and eluted, and the metal ions cannot be measured with high sensitivity.
  • the present invention is to provide an electrode and an electrochemical measurement system having excellent sensitivity.
  • the present invention [1] includes a base material and a conductive carbon layer arranged on one side in the thickness direction of the base material and having sp 2 bond and sp 3 bond, and one side in the thickness direction of the conductive carbon layer. Includes electrodes in which the oxygen concentration ratio to carbon is 0.07 or less.
  • the present invention [2] includes the electrode according to [1], wherein the conductive carbon layer has a thickness of 5 nm or more and 200 nm or less.
  • the present invention [3] includes the electrode according to [1] or [2], wherein the surface roughness Ra of one surface of the conductive carbon layer in the thickness direction is 1.0 nm or less.
  • the present invention [4] includes the electrode according to any one of [1] to [3], which is an electrode for electrochemical measurement.
  • the present invention [5] includes the electrode according to [4], wherein the electrochemical measurement is anodic-stripping-voltammetry and is a working electrode.
  • the present invention [6] includes an electrochemical measurement system including the electrode according to [4] or [5].
  • the concentration ratio of oxygen to carbon on one side in the thickness direction of the conductive carbon layer is 0.07 or less, so that the measurement target can be measured with high sensitivity.
  • the object to be measured can be sufficiently reduced and concentrated on one surface in the thickness direction of the electrode, and this can be reliably oxidized. It can be eluted. The current value at the time of oxidative elution of the measurement target becomes sufficient.
  • the measurement target can be sufficiently reduced at a lower potential, and the measurement sensitivity can be increased.
  • the oxygen concentration ratio to carbon is 0.07 or less, the peak current at the time of oxidative elution in anodic-stripping-voltammetry can be increased, so that the measurement sensitivity can be further improved.
  • FIG. 1 shows a cross-sectional view of an embodiment of the electrode of the present invention.
  • FIG. 2 shows a schematic diagram of an electrochemical system using the electrodes of FIG.
  • FIG. 3 shows a CV chart of Example 1.
  • FIG. 4 shows a spectrum measured by X-ray photoelectron spectroscopy (wide scan analysis) on one side of the electrode of Example 1 in the thickness direction.
  • FIG. 5 shows a spectrum measured by X-ray photoelectron spectroscopy (narrow scan analysis) on one side of the electrode of Example 1 in the thickness direction.
  • a carbon electrode which is an embodiment of the electrode of the present invention, will be described with reference to FIG.
  • the carbon electrode 1 has a film shape (including a sheet shape) having a predetermined thickness, and has a flat one surface in the thickness direction and the other surface.
  • the carbon electrode 1 includes a base material 2 and a conductive carbon layer 3 arranged on one side in the thickness direction of the base material 2. That is, the carbon electrode 1 includes the base material 2 and the conductive carbon layer 3 on one side in the thickness direction in order.
  • the carbon electrode 1 is composed of a base material 2 and a conductive carbon layer 3. Each layer will be described in detail below.
  • the base material 2 forms the other surface in the thickness direction of the carbon electrode 1 and has a film shape.
  • the base material 2 supports the conductive carbon layer 3.
  • Examples of the base material 2 include an inorganic base material and an organic base material.
  • Examples of the inorganic base material include a silicon substrate and a glass substrate.
  • the organic base material examples include polymer films.
  • polyester resin for example, polyethylene terephthalate, polyethylene naphthalate
  • acetate resin for example, polyether sulfone resin, polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin (for example, polycycloolefin polymer)
  • examples thereof include (meth) acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl alcohol resin, polyallylate resin, and polyphenylene sulfide resin.
  • the thickness of the base material is, for example, 2 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the conductive carbon layer 3 has conductivity and plays a role as an electrode.
  • the conductive carbon layer 3 forms one surface of the carbon electrode 1 in the thickness direction.
  • the conductive carbon layer 3 comes into contact with the entire surface of the base material 2 on one side in the thickness direction.
  • the conductive carbon layer 3 is formed of carbon having sp 2 bonds and sp 3 bonds. That is, the conductive carbon layer 3 is a layer having a graphite-type structure and a diamond structure. As a result, the conductive carbon layer 3 has good conductivity, and the sensitivity to the measurement target is sufficiently improved. In particular, when used for anodic-stripping-voltammetry, the measurement target (specifically, metal ions) can be sufficiently reduced and concentrated, and the reduced and concentrated measurement target can be reliably oxidized and eluted. Can be done.
  • the ratio of the number of atoms having sp 3 bonds (sp 3 / sp 3 + sp 2 ) to the sum of the number of atoms having sp 3 bonds and the number of atoms having sp 2 bonds is preferably 0.1 or more, for example. Is 0.2 or more, and is, for example, 0.9 or less, preferably 0.5 or less.
  • the above ratio can be calculated based on the peak intensity of the sp 2 bond and the peak intensity of the sp 3 bond in the spectrum obtained by measuring one surface of the conductive carbon layer 3 in the thickness direction by X-ray photoelectron spectroscopy. .. Specifically, it will be described later in Examples.
  • the oxygen concentration ratio (O / C) to carbon on one side of the conductive carbon layer 3 in the thickness direction is 0.07 or less.
  • the sensitivity of the carbon electrode 1 can be sufficiently improved.
  • the measurement target when used as a working electrode for anodic-stripping-voltammetry, the measurement target can be sufficiently reduced and concentrated on the surface of the conductive carbon layer 3, so that the measurement target can be measured with high sensitivity.
  • the oxygen concentration ratio (O / C) is 0.07 or less, the peak current at the time of oxidative elution of the measurement target can be sufficiently increased, and therefore the measurement sensitivity can be further increased.
  • the lower limit of the oxygen concentration ratio (O / C) is not particularly limited.
  • the oxygen concentration ratio (O / C) is, for example, 0.00 or more, 0.01 or more, 0.02 or more, and further 0.03 or more.
  • the concentration ratio can be calculated based on the peak area of C1s and the peak area of O1s in the spectrum obtained by measuring one surface of the conductive carbon layer 3 in the thickness direction by X-ray photoelectron spectroscopy. Specifically, it will be described later in Examples.
  • the surface roughness Ra of one surface of the conductive carbon layer 3 in the thickness direction is preferably 1.0 nm or less, and is, for example, 0.05 nm or more.
  • the surface roughness is equal to or less than the above upper limit, when the carbon electrode 1 is used as an electrode for electrochemical measurement, current noise can be suppressed and more sensitive measurement becomes possible.
  • the surface roughness Ra can be measured by observing a 500 nm square on one side of the conductive carbon layer 3 in the thickness direction using an atomic force microscope. Specifically, it will be described later in Examples.
  • the surface resistance value of the conductive carbon layer 3 on one surface in the thickness direction is, for example, 1.0 ⁇ 10 4 ⁇ / ⁇ or less, preferably 1.0 ⁇ 10 3 ⁇ / ⁇ or less.
  • the surface resistance value is JIS K It can be measured by the 4-terminal method according to 7194.
  • the thickness of the conductive carbon layer 3 is, for example, 5 nm or more, more preferably 10 nm or more, and for example, 200 nm or less, more preferably 100 nm or less.
  • the thickness of the conductive carbon layer 3 is at least the above lower limit, the conductive carbon layer 3 is excellent in film formation property and stable electrode characteristics can be exhibited.
  • the thickness of the conductive carbon layer 3 is not more than the above upper limit, the thin film is thinned and the flexibility is excellent, so that the handleability is good.
  • the thickness of the conductive carbon layer 3 can be calculated by measuring its X-ray reflectance. Specifically, it will be described later in Examples.
  • the conductive carbon layer 3 may contain other additives (including other elements) in addition to carbon and oxygen. Further, the conductive carbon layer may be composed of a plurality of layers having different structures, compositions, additive concentrations, etc., and the conductive carbon layer 3 has a stepwise structure, composition, additive concentration, etc. The configuration may change (in a gradation pattern).
  • the thickness of the carbon electrode 1 is the total thickness of the base material 2 and the conductive carbon layer 3, and specifically, for example, 2 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably. Is 500 ⁇ m or less.
  • the method for manufacturing carbon electrode 1 is, for example, a first step of preparing a base material 2, a second step of providing a carbon thin film on the base material 2, and a surface treatment of the carbon thin film to carry conductive carbon. A third step of forming the layer 3 is provided in order.
  • a known or commercially available base material 2 is prepared. If necessary, one surface of the prepared base material 2 in the thickness direction can be subjected to a base treatment and / or a known cleaning.
  • a carbon thin film is provided on one side of the base material 2 in the thickness direction.
  • a carbon thin film is formed on one surface of the base material 2 in the thickness direction by a dry method.
  • examples of the dry method include a PVD method (physical vapor deposition method) and a CVD method (chemical vapor deposition method), and a PVD method is preferable.
  • Examples of the PVD method include a sputtering method, a vacuum vapor deposition method, a laser vapor deposition method, and an ion plating method (arc vapor deposition method, etc.). From the viewpoint of reducing the hydrogen contained in the conductive carbon layer 3 and more reliably forming the conductive carbon layer 3, a sputtering method is preferable.
  • Examples of the sputtering method include an unbalanced magnetron sputtering method (UBM sputtering method), a high-power pulse sputtering method, an electronic cyclotron resonance sputtering method, an RF sputtering method, a DC sputtering method (DC magnetron sputtering method, etc.), and a DC pulse sputtering method. , Ion beam sputtering method and the like.
  • UBM sputtering method unbalanced magnetron sputtering method
  • a high-power pulse sputtering method an electronic cyclotron resonance sputtering method
  • an RF sputtering method a DC sputtering method (DC magnetron sputtering method, etc.)
  • DC pulse sputtering method DC pulse sputtering method
  • the target material includes carbon (preferably sintered carbon).
  • the target material may contain a known additive from the viewpoint of film quality adjustment and process stability.
  • Examples of the sputter gas include an inert gas such as Ar and Xe.
  • the sputtering method is carried out under vacuum.
  • the pressure during sputtering is, for example, 1 Pa or less, preferably 0.7 Pa or less, from the viewpoint of suppressing a decrease in the sputtering rate, discharging stability, and the like.
  • the film formation temperature (base material temperature) is, for example, 200 ° C. or lower, preferably 120 ° C. or lower, and for example, ⁇ 40 ° C. or higher, preferably 0 ° C. or higher.
  • the target material, sputtering conditions, and the like may be appropriately set and the sputtering method may be performed a plurality of times.
  • the carbon thin film is surface-treated to form the conductive carbon layer 3.
  • Examples of the surface treatment of the carbon thin film include ion milling, ion impact treatment (ion bombard), and electrolytic polishing.
  • ion milling is preferably mentioned from the viewpoint of ensuring the flatness of the conductive carbon layer 3.
  • the carbon thin film is irradiated with an ion beam in the presence of the above-mentioned inert gas (specifically, Ar) to scrape the surface of the carbon thin film.
  • Ion milling can be performed with a known ion milling device.
  • Ion milling is performed under vacuum.
  • the pressure during ion milling is, for example, 1 Pa or less, for example, 1 ⁇ 10 ⁇ 2 Pa or more from the viewpoint of plasma stability and the like.
  • the oxygen concentration on one side of the carbon thin film in the thickness direction is adjusted (decreased), and the conductive carbon layer 3 is formed.
  • the carbon electrode 1 in which the base material 2 and the conductive carbon layer 3 are sequentially provided toward one side in the thickness direction is manufactured.
  • the electrode for electrochemical measurement and the electrode for electrochemical measurement system carbon electrode 1 can be used as various electrodes, preferably an electrode for electrochemical measurement for carrying out an electrochemical measurement method, specifically, cyclic. It can be used as an working electrode (working electrode) for carrying out voltammetry (CV) or as a working electrode (working electrode) for carrying out anodic-stripping-voltammetry (ASV).
  • working electrode working electrode
  • ASV anodic-stripping-voltammetry
  • an insulating layer patterned in a desired shape is provided on one surface of the carbon electrode 1 in the thickness direction from the viewpoint of adjusting the exposed surface (electrode surface) of the conductive carbon layer 3. You may. Further, the entire carbon electrode 1 or the conductive carbon layer 3 may be patterned in a desired shape. Examples of the insulating layer include the polymer film described above for the base material 2.
  • This electrochemical measurement system 4 includes a carbon electrode 1, a reference electrode, a potentiometer for measuring the electromotive force between these electrodes, and an aqueous solution (electrolyte solution).
  • the electrochemical measurement system 4 controls a carbon electrode 1 as an example of an working electrode, a reference electrode 5, a counter electrode (counter electrode) 6, and their electrode potentials. It is provided with a potentiostat 7 to be used, a current meter for measuring the current flowing between the carbon electrode 1 and the counter electrode 6 (not shown because it is incorporated in the potentiostat), and an aqueous solution 8 (see FIG. 2). ).
  • Examples of the reference electrode 5 include a silver / silver chloride electrode, a saturated calomel electrode, and a standard hydrogen electrode.
  • Examples of the counter electrode 6 include a platinum electrode, a gold electrode, a nickel electrode, and the like.
  • the aqueous solution 8 includes an aqueous solution containing a measurement target.
  • Examples of the measurement target include metal ions, for example, peroxides such as hydrogen peroxide.
  • Metal ions include iron ion, lead ion, gold ion, platinum ion, silver ion, copper ion, chromium ion, cadmium ion, mercury ion, zinc ion, arsenic ion, manganese ion, cobalt ion, nickel ion, molybdenum ion, Examples thereof include heavy metal ions such as tungsten ion, tin ion, bismuth ion, uranium ion and plutonium ion. Peroxides are preferred, and hydrogen peroxide is more preferred.
  • the concentration of the object to be measured in the aqueous solution 8 is low, for example, 10,000 ⁇ g / mL or less, 1,000 ⁇ g / mL or less, 100 ⁇ g / mL or less, further 10 ⁇ g / mL or less, and further. Is 1 ⁇ g / mL or less, and is, for example, 100 ng / mL or more, and further 500 ng / mL or more.
  • the conductive carbon layer 3 has an sp 2 bond and an sp 3 bond.
  • the concentration ratio of oxygen to carbon on one side of the conductive carbon layer 3 in the thickness direction is 0.07 or less.
  • This line has a curve 5 that protrudes downward (minus side, reduction current side) in the vertical direction.
  • a line segment 7 passing through two shoulder portions 9 is formed on the curve, the current difference between the line segment 7 and the curve 5 is measured, and the point where the largest current difference is obtained is determined as the reduction peak potential V1 on the minus side. Be done.
  • the concentration ratio of oxygen to carbon is as low as 0.07 or less, the reduction peak potential V1 is remarkably low as shown in Table 1. Then, the carbon electrode 1 can reduce hydrogen peroxide at a lower potential, so that the sensitivity can be improved.
  • the oxygen concentration ratio to carbon is as low as 0.07 or less, the peak current value at the time of oxidative elution of the measurement target is high, and therefore the sensitivity of the measurement target can be further increased.
  • the carbon electrode 1 in the electrochemical measurement system 4 specifically, the carbon electrode 1 in the cyclic voltammetry is excellent in sensitivity.
  • the electrochemical measurement system 4 for performing anodic-stripping-voltammetry includes a carbon electrode 1, a reference electrode, a potentiometer for measuring the electromotive force between these electrodes, and an aqueous solution (electrolyte solution).
  • Examples of the measurement target contained in the aqueous solution 8 include the above-mentioned metal ions, preferably heavy metal ions.
  • the measurement target when performing anodic-stripping-voltammetry, the measurement target can be sufficiently reduced and concentrated on one surface of the conductive carbon layer 3 in the thickness direction.
  • the concentration ratio of oxygen to carbon is 0.07 or less, the peak current value in oxidative elution can be increased. Then, it is not easily affected by background noise, and it becomes easy to detect the measurement target. Therefore, the resolution for detecting the measurement target can be increased.
  • the oxygen concentration ratio to carbon is 0.08 or more, the peak current value in oxidative elution cannot be increased, and if it is easily affected by background noise, it becomes difficult to detect the measurement target. Therefore, the resolution for detecting the measurement target cannot be increased.
  • the current value at the time of oxidative elution of the measurement target is sufficient.
  • the measurement target can be measured with high sensitivity.
  • the carbon electrode 1 shown in FIG. 1 is composed of a base material 2 and a conductive carbon layer 3.
  • a conductive carbon layer 3 For example, although not shown, between the base material 2 and the conductive carbon layer 3, or on the base material 2.
  • one or more functional layers may be provided on the lower side. Examples of the functional layer include a gas barrier layer, a conductive layer, an adhesion layer, and a surface smoothing layer.
  • Examples and comparative examples are shown below, and the present invention will be described in more detail.
  • the present invention is not limited to Examples and Comparative Examples.
  • specific numerical values such as the compounding ratio (content ratio), physical property values, and parameters used in the following description are the compounding ratios corresponding to those described in the above-mentioned "Form for carrying out the invention”. Substitute the upper limit value (value defined as “less than or equal to” or “less than”) or the lower limit value (value defined as "greater than or equal to” or “excess”) such as content ratio), physical property value, and parameters. be able to.
  • Example 1 A base material 2 made of a silicon substrate having a thickness of 300 ⁇ m was prepared (implementation of the first step).
  • a carbon thin film having a thickness of 35 nm was formed on one surface in the thickness direction by the UBM sputtering method.
  • the conditions of the UBM sputtering method are as follows.
  • Target material Sintered carbon Argon gas pressure: 0.6Pa
  • Target power 400W
  • an intermediate (laminated body) including the base material 2 and the carbon thin film was obtained.
  • the carbon electrode 1 provided with the base material 2 and the conductive carbon layer 3 was produced.
  • Example 2 As shown in Table 1, the carbon electrode 1 was produced by performing the same treatment as in Example 1 except that the thickness of the conductive carbon layer 3 and the surface roughness Ra on one surface in the thickness direction thereof were changed.
  • Example 3 After ion milling, the carbon electrode 1 was produced in the same manner as in Example 1 except that the conductive carbon layer 3 was irradiated with ultraviolet rays (illuminance 20 mW / cm 2 , 30 seconds).
  • Example 3 the conductive carbon layer 3 after ion milling was irradiated with ultraviolet rays in order to make it an experimental example of an oxygen concentration ratio (O / C) different from that in Example 1.
  • Example 1 After ion milling, the carbon electrode 1 was produced in the same manner as in Example 1 except that the conductive carbon layer 3 was irradiated with ultraviolet rays (illuminance 20 mW / cm 2 , 300 seconds).
  • Comparative Example 1 the conductive carbon layer 3 after ion milling was irradiated with ultraviolet rays in order to make it an experimental example of an oxygen concentration ratio (O / C) different from that of Example 1.
  • Comparative Example 2 a voltage was applied (electrochemical treatment) to a carbon thin film in order to make a comparative experimental example of an oxygen concentration ratio (O / C) different from that of Example 1.
  • Comparative Example 3 a carbon thin film was applied with a voltage (electrochemical treatment) in order to make a comparative experimental example of an oxygen concentration ratio (O / C) different from that of Example 1.
  • the ratio of sp 3 bonds of the number of carbon atoms are both about 0.4 Met.
  • Measuring device X-ray photoelectron spectroscopy (XPS) device (manufactured by Shimadzu Corporation, trade name "AXIS Nova")
  • X-ray source Rowland circle diameter 500 mm with monochromator AlK ⁇ (1486.6 eV), 15 kV, 10 mA
  • Photoelectron spectrometer Orbital radius 165 mm, electrostatic double hemispherical analyzer / spherical mirror analyzer combined detector: Delay line detector (DLD) system
  • Energy resolution Ag3d5 / 2 Photoelectron peak is half width 0.48 eV or less
  • Charge neutralization Uniform low-energy electron irradiation (measurement of thickness)
  • the X-ray reflectivity was measured using a powder X-ray diffractometer (“RINT-2200” manufactured by Rigaku Corporation) under the following ⁇ measurement conditions>, and the acquired measurement data was analyzed with analysis
  • a two-layer model of the base material 2 and the conductive carbon layer 3 was adopted under the following ⁇ analysis conditions>, and the target thickness and surface roughness of the conductive carbon layer 3 were 0.5 nm and the density was 1.
  • the thickness of the conductive carbon layer 3 was calculated by inputting 95 g / cm 3 as an initial value and then performing a minimum square fitting with the measured value. The results are shown in Table 1.
  • Measuring device Powder X-ray diffractometer (manufactured by Rigaku, "RINT-2000")
  • Light source Cu-K ⁇ ray (wavelength: 1,5418 ⁇ ), 40kV, 40mA
  • Optical system Parallel beam optical system Divergence slit: 0.05 mm
  • Light receiving slit 0.05 mm
  • Monochromatic / parallelization Multi-layer Gobel mirror is used
  • Measurement mode ⁇ / 2 ⁇ Scan mode Measurement range (2 ⁇ ): 0.3 to 2.0 °
  • An insulating tape having a hole with a diameter of 2 mm is attached to one surface of the conductive carbon layer 3 in the thickness direction of the carbon electrodes 1 of Examples 1 to 3 and Comparative Examples 1 to 3, and the exposed area of the conductive carbon layer 3 is attached.
  • the carbon electrode 1, the reference electrode 5 (silver-silver chloride: Ag / AgCl), and the counter electrode 6 (platinum: Pt) were inserted into an ammonia buffer solution (pH 8.0). Further, the carbon electrode 1, the reference electrode 5, and the counter electrode 6 were connected to the Potentiostat 7 (ALS1240B manufactured by CHI Instruments).
  • ASV Anadic-Stripping-Voltammetry
  • the frequency was set to 40 Hz
  • the potential increase was 2 mV
  • the amplitude was 25 mV
  • the square wave voltammetry was measured to oxidize and elute zinc on one surface of the conductive carbon layer 3.
  • An insulating tape having a hole with a diameter of 2 mm is attached to one surface of the conductive carbon layer 3 in the thickness direction of the carbon electrodes 1 of Examples 1 to 3 and Comparative Examples 1 to 3, and the exposed area of the conductive carbon layer 3 is attached.
  • the carbon electrode 1, the reference electrode 5 (silver-silver chloride: Ag / AgCl), and the counter electrode 6 (platinum: Pt) were inserted into a 50 mmol / L phosphate buffer solution (pH 7.0).
  • the sweep speed was set to 0.1 V / s, and a voltage was applied to the carbon electrode 1 from 0 V to the minus side. As a result, the reduction reaction of hydrogen peroxide in the solution was carried out.
  • Example 1 The CV chart of Example 1 is transcribed in FIG.
  • the reduction peak potential V1 was ⁇ 1.0 V or higher and 0 V or lower. Therefore, the potential is such that hydrogen peroxide can be sufficiently reduced at a lower potential, that is, the sensitivity is good.
  • the reduction peak potential V1 was less than ⁇ 1.0 V. That is, a higher reduction voltage is required to reduce hydrogen peroxide, which means that the sensitivity is lowered.
  • Comparative Example 1 is included in the present invention because the oxygen concentration ratio (O / C) to carbon is 0.08 and the oxygen concentration ratio (O / C) to carbon is outside the range of 0.07 or less. I can't.
  • the detection of Z by ASV of the present invention is “possible” and the detection of H 2 O 2 by CV is also “good”, the peak current at the time of Zn oxidation elution is oxygen with respect to carbon.
  • the concentration ratio (O / C) of is 0.07, which is significantly lower than the peak current of Example 3. Therefore, the measurement sensitivity of Comparative Example 1 is significantly lower than that of Example 3.
  • Carbon electrodes are used in electrochemical measurement systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】感度に優れる電極および電気化学測定システムを提供する。 【解決手段】カーボン電極1は、基材2と、基材2の厚み方向一方側に配置され、sp結合およびsp結合を有する導電性カーボン層3とを備える。導電性カーボン層3の厚み方向一方面において、炭素に対する酸素の濃度比(O/C)が、0.07以下である。

Description

電極および電気化学測定システム
 本発明は、電極および電気化学測定システムに関し、詳しくは、電極、および、それを備える電気化学測定システムに関する。
 従来、高い感度を有する電気化学測定用電極として、sp結合およびsp結合からなる微結晶ドメインから構成される炭素電極が知られている(例えば、下記特許文献1参照。)。
 また、水溶液中に低濃度で含まれる金属イオンを電極の表面で還元濃縮(堆積)させ、次いで、還元濃縮した金属を酸化溶出させ、このときの電流値に基づいて、水溶液中の金属イオンを高い感度で測定するアノーディック-ストリッピング-ボルタンメトリー(Anodic stripping voltammetry)(ASV)が知られている(例えば、下記特許文献2参照。)。
特開2006-90875号公報 特開2011-85531号公報
 近年、より一層高い感度を有する電極が求められる。
 とりわけ、特許文献1に記載の炭素電極を、特許文献2のアノーディック-ストリッピング-ボルタンメトリーに用いることが検討される。
 しかし、この場合には、金属イオンを炭素電極の表面に十分に還元濃縮させることができず、そのため、金属イオンを高い感度で測定できないという不具合がある。また、たとえ、金属イオンを電極の表面に微量で還元濃縮させることができても、かかる金属が酸化溶出することができず、やはり、金属イオンを高い感度で測定できないという不具合がある。
 さらに、従来から知られるサイクリックボルタンメトリー(CV)を用いる場合、対象物質の検出に必要な還元電圧が高くなると、測定感度が低下するという不具合がある。
 本発明は、感度に優れる電極および電気化学測定システムを提供することにある。
 本発明[1]は、基材と、前記基材の厚み方向一方側に配置され、sp結合およびsp結合を有する導電性カーボン層とを備え、前記導電性カーボン層の厚み方向一方面において、炭素に対する酸素の濃度比が、0.07以下である、電極を含む。
 本発明[2]は、前記導電性カーボン層の厚みが、5nm以上、200nm以下である、[1]に記載の電極を含む。
 本発明[3]は、前記導電性カーボン層の厚み方向一方面の表面粗さRaが、1.0nm以下である、[1]または[2]に記載の電極を含む。
 本発明[4]は、電気化学測定用の電極である、[1]~[3]のいずれか一項に記載の電極を含む。
 本発明[5]は、前記電気化学測定が、アノーディック-ストリッピング-ボルタンメトリーであって、作用電極である、[4]に記載の電極を含む。
 本発明[6]は、[4]または[5]に記載の電極を備える、電気化学測定システムを含む。
 本発明の電極および電気化学測定システムによれば、導電性カーボン層の厚み方向一方面において、炭素に対する酸素の濃度比が、0.07以下であるので、測定対象を高い感度で測定できる。
 とりわけ、上記した濃度比が0.07以下であるので、アノーディック-ストリッピング-ボルタンメトリーにおいて、電極の厚み方向一方面に測定対象を十分に還元濃縮させることができ、また、これを確実に酸化溶出させることができる。測定対象を酸化溶出させる際の電流値が十分となる。
 さらにサイクリックボルタンメトリーにおいて、測定対象をより低電位で十分に還元させることができ、測定感度を高めることが可能となる。
 さらに、炭素に対する酸素の濃度比が、0.07以下であるので、アノーディック-ストリッピング-ボルタンメトリーにおける酸化溶出時のピーク電流を高くできるので、測定感度をより一層高めることができる。
図1は、本発明の電極の一実施形態の断面図を示す。 図2は、図1の電極を用いた電気化学システムの模式図を示す。 図3は、実施例1のCVチャートを示す。 図4は、実施例1の電極の厚み方向一方面をX線光電子分光法(ワイドスキャン分析)により測定したスペクトルを示す。 図5は、実施例1の電極の厚み方向一方面をX線光電子分光法(ナロースキャン分析)により測定したスペクトルを示す。
 <一実施形態>
 本発明の電極の一実施形態であるカーボン電極を、図1を参照して説明する。
 1.カーボン電極
 図1に示すように、カーボン電極1は、所定の厚みを有するフィルム形状(シート形状を含む)を有し、平坦な厚み方向一方面および他方面を有する。
 具体的には、カーボン電極1は、基材2と、基材2の厚み方向一方側に配置される導電性カーボン層3とを備える。すなわち、カーボン電極1は、基材2と、導電性カーボン層3とを厚み方向一方側に順に備える。好ましくは、カーボン電極1は、基材2および導電性カーボン層3からなる。以下、各層を詳述する。
 2.基材
 基材2は、カーボン電極1の厚み方向他方面を形成しており、フィルム形状を有する。
基材2は、導電性カーボン層3を支持する。
 基材2としては、例えば、無機基材、有機基材などが挙げられる。
 無機基材としては、例えば、シリコン基板、ガラス基板などが挙げられる。
 有機基材としては、例えば、高分子フィルムが挙げられる。高分子フィルムの材料として、例えば、ポリエステル樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、アセテート樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂(例えば、ポリシクロオレフィンポリマー)、(メタ)アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、ポリアリレート樹脂、ポリフェニレンサルファイド樹脂などが挙げられる。
 基材の厚みは、例えば、2μm以上、好ましくは、20μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下である。
 3.導電性カーボン層
 導電性カーボン層3は、導電性を有しており、電極としての役割を担う。導電性カーボン層3は、カーボン電極1の厚み方向一方面を形成する。導電性カーボン層3は、基材2の厚み方向一方面全面に接触する。
 導電性カーボン層3は、sp結合およびsp結合を有する炭素から形成されている。すなわち、導電性カーボン層3は、グラファイト型構造およびダイヤモンド構造を有する層である。これにより、導電性カーボン層3は、良好な導電性を備え、測定対象に対する感度が十分に向上される。とりわけ、アノーディック-ストリッピング-ボルタンメトリーに用いる際に、測定対象(具体的には、金属イオン)を十分に還元濃縮させることができ、また、還元濃縮された測定対象を確実に酸化溶出させることができる。
 sp結合している原子数およびsp結合している原子数との和に対するsp結合している原子数の比率(sp/sp+sp)は、例えば、0.1以上、好ましくは、0.2以上であり、また、例えば、0.9以下、好ましくは、0.5以下である。
 上記比率は、導電性カーボン層3の厚み方向一方面をX線光電子分光法により測定して得られるスペクトルにおいて、sp結合のピーク強度およびsp結合のピーク強度に基づいて算出することができる。具体的には、実施例にて後述する。
 導電性カーボン層3の厚み方向一方面において、炭素に対する酸素の濃度比(O/C)は、0.07以下である。
 酸素の濃度比(O/C)が、0.07以下であるので、カーボン電極1の感度を十分に向上させることができる。とりわけ、アノーディック-ストリッピング-ボルタンメトリーの作用電極として用いるときに、測定対象を導電性カーボン層3の表面に十分に還元濃縮させることができ、そのため、測定対象を高い感度で測定できる。
 さらに、酸素の濃度比(O/C)が、0.07以下であるので、測定対象を酸化溶出させるときのピーク電流を十分に高くでき、そのため、測定感度をより一層高くできる。
 一方、酸素の濃度比(O/C)の下限は、特に制限されない。酸素の濃度比(O/C)は、例えば、0.00超過、また、0.01以上、また、0.02以上、さらには、0.03以上である。
 上記濃度比は、導電性カーボン層3の厚み方向一方面をX線光電子分光法により測定して得られるスペクトルにおいて、C1sのピーク面積およびO1sのピーク面積に基づいて算出することができる。具体的には、実施例にて後述する。
 導電性カーボン層3の厚み方向一方面の表面粗さRaは、好ましくは、1.0nm以下であり、また、例えば、0.05nm以上である。表面粗さが上記上限以下であれば、カーボン電極1を電気化学測定用の電極として用いた場合に、電流のノイズを抑制することができ、より感度良い測定が可能となる。
 表面粗さRaは、原子間力顕微鏡を用いて、導電性カーボン層3の厚み方向一方面の500nm角を観察することにより、測定することができる。具体的には、実施例にて後述する。
 導電性カーボン層3の厚み方向一方面における表面抵抗値は、例えば、1.0×10Ω/□以下、好ましくは、1.0×10Ω/□以下である。表面抵抗値は、JIS K
 7194に準じて、4端子法により測定することができる。
 導電性カーボン層3の厚みは、例えば、5nm以上、より好ましくは、10nm以上であり、また、例えば、200nm以下、より好ましくは、100nm以下である。導電性カーボン層3の厚みが上記下限以上であれば、導電性カーボン層3の成膜性に優れ、安定した電極特性を発現することができる。一方、導電性カーボン層3の厚みが上記上限以下であれば、薄膜化を図るとともに、可撓性に優れるため、取扱い性が良好となる。
 導電性カーボン層3の厚みは、そのX線反射率を測定することにより算出することができる。具体的には、実施例にて後述する。
 なお、導電性カーボン層3は、炭素および酸素以外にもその他の添加剤(他の元素を含む)を含有していてもよい。また、導電性カーボン層は、構造、組成、添加剤濃度などが異なる複数の層から構成であってもよく、また、導電性カーボン層3は、構造、組成、添加剤濃度などが段階的に(グラデーション状に)変化する構成であってもよい。
 このカーボン電極1の厚みは、基材2および導電性カーボン層3の総厚みであって、具体的には、例えば、2μm以上、好ましくは、20μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下である。
 4.カーボン電極の製造方法
 カーボン電極1の製造方法は、例えば、基材2を用意する第1工程、基材2にカーボン薄膜を設ける第2工程、および、カーボン薄膜を表面処理して、導電性カーボン層3を生成する第3工程を、順に備える。
 第1工程では、公知または市販の基材2を用意する。なお、必要に応じて、用意した基材2の厚み方向一方面に、下地処理、および/または、公知の洗浄を施すことができる。
 第2工程では、基材2の厚み方向一方面に、カーボン薄膜を設ける。
 好ましくは、乾式方法により、基材2の厚み方向一方面にカーボン薄膜を形成する。
 乾式方法としては、乾式方法としては、例えば、PVD法(物理蒸着法)、CVD法(化学蒸着法)が挙げられ、好ましくは、PVD法が挙げられる。
 PVD法としては、例えば、スパッタ法、真空蒸着法、レーザー蒸着法、イオンプレーティング法(アーク蒸着法など)などが挙げられる。導電性カーボン層3に含まれる水素を低減して、より確実に導電性カーボン層3を成膜できる観点から、好ましくは、スパッタ法が挙げられる。
 スパッタ法としては、例えば、アンバランストマグネトロンスパッタ法(UBMスパッタ法)、大電力パルススパッタ法、電子サイクロトロン共鳴スパッタ法、RFスパッタ法、DCスパッタ法(DCマグネトロンスパッタ法など)、DCパルススパッタ法、イオンビームスパッタ法などが挙げられる。
 sp結合およびsp結合の比が所望範囲である導電性カーボンを容易に成膜できる観点、また、成膜レートおよび基材2への密着性を向上させることができる観点から、より好ましくは、UMBスパッタ法が挙げられる。
 スパッタ法を採用する場合、ターゲット材としては、カーボン(好ましくは、焼結カーボン)が挙げられる。なお、ターゲット材は、膜質調整やプロセス安定の観点から、公知の添加剤を含有していてもよい。
 スパッタガスとしては、例えば、Ar、Xeなどの不活性ガスが挙げられる。
 スパッタ法は、真空下で実施される。具体的には、スパッタ時の圧力は、スパッタリングレートの低下抑制、放電安定性などの観点から、例えば、1Pa以下、好ましくは、0.7Pa以下である。
 成膜温度(基材温度)は、例えば、200℃以下、好ましくは、120℃以下であり、また、例えば、-40℃以上、好ましくは、0℃以上である。
 また、所望厚みの導電性カーボン層3を形成するために、ターゲット材やスパッタの条件などを適宜設定して複数回スパッタ法を実施してもよい。
 これにより、基材2とカーボン薄膜とを厚み方向一方側に向かって順に備える中間体が得られる。
 第3工程では、カーボン薄膜を表面処理して、導電性カーボン層3を生成する。
 カーボン薄膜の表面処理としては、例えば、イオンミリング、イオン衝撃処理(イオンボンバード)、電解研磨などが挙げられる。カーボン薄膜の表面処理として、好ましくは、導電性カーボン層3の平坦性確保の観点から、イオンミリングが挙げられる。
 また、これらは、単独または併用することができ、好ましくは、イオンミリングの単独処理が挙げられる。
 イオンミリングは、上記した不活性ガス(具体的には、Ar)の存在下、イオンビームをカーボン薄膜に照射し、カーボン薄膜の表面を削る。イオンミリングは、公知のイオンミリング装置で実施できる。
 イオンミリングは、真空下で実施される。具体的には、イオンミリング時の圧力は、プラズマ安定性などの観点から、例えば、1Pa以下、例えば、1×10-2Pa以上である。
 これにより、カーボン薄膜の厚み方向一方面の酸素濃度が調整されて(減少して)、導電性カーボン層3が形成される。これにより、基材2と導電性カーボン層3とを厚み方向一方側に向かって順に備えるカーボン電極1が製造される。
 5.電気化学測定用電極、および、電気化学測定システム
 カーボン電極1は、各種の電極として用いることができ、好ましくは、電気化学測定法を実施する電気化学測定用の電極、具体的には、サイクリックボルタンメトリー(CV)を実施する作用電極(作用極)や、アノーディック-ストリッピング-ボルタンメトリー(ASV)を実施する作用電極(作用極)として用いることができる。
 カーボン電極1を電極として用いる場合、カーボン電極1の厚み方向一方面には、導電性カーボン層3の露出面(電極面)を調整する観点から、所望形状にパターニングされた絶縁層が設けられていてもよい。また、カーボン電極1全体、または、導電性カーボン層3が、所望の形状にパターニングされていてもよい。絶縁層としては、基材2で上述した高分子フィルムなどが挙げられる。
 次に、作用電極としてカーボン電極1を用いる電気化学測定システム4について詳述する。
 この電気化学測定システム4は、カーボン電極1と、参照電極と、これらの電極間の起電力を測定する電位差計と、水溶液(電解液)とを備える。
 具体的には、図2に示すように、この電気化学測定システム4は、作用電極の一例としてのカーボン電極1と、参照電極5と、対向電極(対極)6と、これらの電極電位を制御するポテンシオスタット7と、カーボン電極1および対向電極6の間に流れる電流を測定する電流計(ポテンシオスタットに組み込まれているため、図示せず)と、水溶液8とを備える(図2参照)。
 参照電極5としては、例えば、銀/塩化銀電極、飽和カロメル電極、標準水素電極などが挙げられる。
 対向電極6としては、例えば、白金電極、金電極、ニッケル電極などが挙げられる。
 水溶液8としては、測定対象を含む水溶液が挙げられる。
 測定対象としては、例えば、金属イオン、例えば、過酸化水素などの過酸化物などが挙げられる。金属イオンとしては、鉄イオン、鉛イオン、金イオン、白金イオン、銀イオン、銅イオン、クロムイオン、カドミウムイオン、水銀イオン、亜鉛イオン、ヒ素イオン、マンガンイオン、コバルトイオン、ニッケルイオン、モリブデンイオン、タングステンイオン、錫イオン、ビスマスイオン、ウランイオン、プルトニウムイオンなどの重金属イオンが挙げられる。好ましくは、過酸化物、より好ましくは、過酸化水素が挙げられる。
 水溶液8中における測定対象は、その濃度が低いことが許容され、例えば、10,000μg/mL以下、1,000μg/mL以下、さらには、100μg/mL以下、さらには、10μg/mL以下、さらには、1μg/mL以下であり、また、例えば、100ng/mL以上、さらには、500ng/mL以上である。
 そして、カーボン電極1および電気化学測定システム4によれば、導電性カーボン層3が、sp結合およびsp結合を有する。導電性カーボン層3の厚み方向一方面において、炭素に対する酸素の濃度比が、0.07以下である。
 そのため、電気化学測定システム4で電気化学測定、具体的には、サイクリックボルタンメトリーを実施するときに、カーボン電極1(作用電極)にかける電位を0Vからマイナス側に掃引(走査)したときに、横軸を電位とし、縦軸を電流とする電位-電流線が得られる。
 この線は、縦方向に下側(マイナス側、還元電流側)に向かって突出する曲線5を有する。曲線において2つの肩部9を通過する線分7を形成し、線分7と曲線5との電流差を測定し、最も大きな電流差が得られる点が、マイナス側の還元ピーク電位V1として求められる。
 この一実施形態では、炭素に対する酸素の濃度比が0.07以下と低いため、表1に示すように、還元ピーク電位V1が顕著に低くなる。そうすると、このカーボン電極1は、より低電位で過酸化水素を還元反応させることができるので、そのため、感度を向上させることができる。
 加えて、炭素に対する酸素の濃度比が0.07以下と低いため、測定対象の酸化溶出時におけるピーク電流値を高く、そのため、測定対象の感度をより一層高くできる。
 従って、電気化学測定システム4におけるカーボン電極1、具体的には、サイクリックボルタンメトリにおけるカーボン電極1は、感度に優れる。
 次に、上記したカーボン電極1を、アノーディック-ストリッピング-ボルタンメトリー(ASV)の作用電極(作用極)として用いる具体例を説明する。
 なお、ASVにおいて、上記と同一の構成については、その記載を省略する。
 アノーディック-ストリッピング-ボルタンメトリーを実施する電気化学測定システム4は、カーボン電極1と、参照電極と、これらの電極間の起電力を測定する電位差計と、水溶液(電解液)とを備える。
 水溶液8に含まれる測定対象としては、上記した金属イオン、好ましくは、重金属イオンが挙げられる。
 そして、この上記した電気化学測定システム4では、アノーディック-ストリッピング-ボルタンメトリーを実施するときに、導電性カーボン層3の厚み方向一方面に測定対象を十分に還元濃縮させることができる。
 また、炭素に対する酸素の濃度比が0.07以下であることから、酸化溶出におけるピーク電流値を高くできる。そうすると、バックグラウンドノイズの影響を受けにくく、測定対象の検出が容易となる。従って、測定対象を検出する分解能を上げることができる。
 一方、炭素に対する酸素の濃度比が0.08以上であれば、酸化溶出におけるピーク電流値を高くできず、すると、バックグラウンドノイズの影響を受け易く、測定対象の検出が困難となる。従って、測定対象を検出する分解能を上げることができない。
 従って、本実施形態におけるアノーディック-ストリッピング-ボルタンメトリーを実施する電気化学測定システム4では、測定対象を酸化溶出させる際の電流値が十分となる。その結果、測定対象を高い感度で測定できる。
 6.変形例
 図1に示すカーボン電極1は、基材2および導電性カーボン層3からなるが、例えば、図示しないが、基材2と導電性カーボン層3との間に、または、基材2の下側に、1または2以上の機能層をさらに備えていてもよい。機能層としては、例えば、ガスバリア層、導電層、密着層、表面平滑層などが挙げられる。
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
 (実施例1)
 厚みが300μmであるシリコン基板からなる基材2を用意した(第1工程の実施)。
 次いで、UBMスパッタ法によって、その厚み方向一方面に、厚みが35nmであるカーボン薄膜を形成した。なお、UBMスパッタ法の条件は、以下の通りである。
ターゲット材:焼結カーボン
アルゴンガス圧:0.6Pa
ターゲットパワー:400W
基材温度:120℃以下
DCバイアス(シリコン基板と焼結カーボンターゲット間):75V
 これにより、基材2およびカーボン薄膜を備える中間体(積層体)を得た。
 その後、中間体におけるカーボン薄膜に、イオンミリングを実施した。条件は、以下の通りである。
<イオンミリング>
イオンミリング装置:3-IBE(伯東社製)
アルゴンガス圧:4×10-2Pa
 これによって、カーボン薄膜から導電性カーボン層3を生成した(第3工程の実施)。
 これにより、基材2および導電性カーボン層3を備えるカーボン電極1を作製した。
 (実施例2)
 表1に記載の通り、導電性カーボン層3の厚みと、その厚み方向一方面の表面粗さRaとを変更した以外は、実施例1と同様に処理して、カーボン電極1を作製した。
 (実施例3)
 イオンミリング後、導電性カーボン層3に対する紫外線(照度20mW/cm、30秒)照射を実施した以外は、実施例1と同様にして、カーボン電極1を作製した。
 なお、実施例3では、実施例1と異なる酸素の濃度比(O/C)の実験例とするために、イオンミリング後の導電性カーボン層3に紫外線照射した。
 (比較例1)
 イオンミリング後、導電性カーボン層3に対する紫外線(照度20mW/cm、300秒)照射を実施した以外は、実施例1と同様にして、カーボン電極1を作製した。
 なお、比較例1では、実施例1と異なる酸素の濃度比(O/C)の実験例とするために、イオンミリング後の導電性カーボン層3に紫外線照射した。
 (比較例2)
 イオンミリングに代えて、0Vおよび2.3V間で電圧を往復させる電圧印加サイクルを10回実施することによって、カーボン薄膜の厚み方向一方面を酸化処理して、導電性カーボン層3を生成した以外は、実施例1と同様にして、カーボン電極1を作製した。
 なお、比較例2では、実施例1と異なる酸素の濃度比(O/C)の比較実験例とするために、カーボン薄膜を電圧印加(電気化学的処理)した。
 (比較例3)
 イオンミリングに代えて、0Vおよび2.3V間で電圧を往復させる電圧印加サイクルを12回実施することによって、カーボン薄膜の厚み方向一方面を酸化処理して、導電性カーボン層3を生成した以外は、実施例1と同様にして、カーボン電極1を作製した。
 なお、比較例3では、実施例1と異なる酸素の濃度比(O/C)の比較実験例とするために、カーボン薄膜を電圧印加(電気化学的処理)した。
  <評価>
 (酸素濃度比の測定)(spおよびspの測定)
 各実施例および各比較例の導電性カーボン層3の厚み方向一方面に対して、下記の<測定条件>にてX線光電子分光法を実施した。これにより得られたスペクトルグラフ(図4および図5参照)から各ピーク面積を求め、濃度比および炭素原子数比を算出した。炭素に対する酸素の濃度比(O/C)を、表1に示す。sp結合している炭素原子数とsp結合している炭素原子数との和に対する、sp結合の炭素原子数の比(sp/sp+sp)は、いずれも約0.4であった。
 <測定条件>
 測定装置:X線光電子分光分析(XPS)装置(島津製作所社製、商品名「AXIS Nova」)
 X線源:Rowland円直径500mmモノクロメータ付AlKα(1486.6eV)、15kV、10mA 
 光電子分光器:軌道半径165mm、静電二重半球型アナライザー/球面鏡アナライザー複合型
 検出器:ディレイラインディテクター(DLD)システム
 エネルギー分解能:Ag3d5/2光電子ピークが半値幅0.48 eV以下
 帯電中和:均一低エネルギー電子照射
 (厚みの測定)
 X線反射率法を測定原理とし、粉末X線回折装置(リガク社製、「RINT-2200」)を用いて、下記の<測定条件>にてX線反射率を測定し、取得した測定データを解析ソフト(リガク社製、「GXRR3」)で解析することで、各実施例および各比較例の導電性カーボン層3の厚みを算出した。
 解析については、下記の<解析条件>にて、基材2と導電性カーボン層3との2層モデルを採用し、導電性カーボン層3の狙い厚みと表面粗さ0.5nmと密度1.95g/cmを初期値として入力し、その後、実測値との最小自乗フィッティングを実施することによって、導電性カーボン層3の厚みを算出した。結果を表1に示す。
 <測定条件>
 測定装置:粉末X線回折装置(リガク社製、「RINT-2000」)
 光源:Cu-Kα線(波長:1,5418Å)、40kV、40mA
 光学系:平行ビーム光学系
 発散スリット:0.05mm
 受光スリット:0.05mm
 単色化・平行化:多層ゲーベルミラー使用
 測定モード:θ/2θスキャンモード
 測定範囲(2θ):0.3~2.0°
 <解析条件>
 解析ソフト:リガク社製、「GXRR3」
 解析手法:最小自乗フィッティング
 解析範囲(2θ):2θ=0.3~2.0°
 (表面粗さの測定)
 各実施例および各比較例の導電性カーボン層3の厚み方向一方面の算術平均表面粗さRaを、原子間力顕微鏡(Digital Instruments社製 製品名「NanoscopeIV」)を用いて、500nm×500nmの範囲で、測定した。その結果を表1に示す。
 [測定例1]
(ASVによる亜鉛の測定)
 実施例1~3および比較例1~3のカーボン電極1における導電性カーボン層3の厚み方向一方面に、直径2mmの穴を開けた絶縁テープを貼り付けて、導電性カーボン層3の露出面積を3.14mmに設定した。このカーボン電極1と、参照電極5(銀-塩化銀:Ag/AgCl)と、対向電極6(白金:Pt)とを、アンモニア緩衝液(pH8.0)に挿入した。また、カーボン電極1と、参照電極5と、対向電極6とを、ポテンシオスタット7(CHIインスツルメンツ社製、ALS1240B)に接続した。
 その後、アンモニア緩衝液中の亜鉛濃度が100ng/mLとなるように、塩化亜鉛を微量添加して、低濃度塩化亜鉛水溶液を調製した。
 その後、ASV(アノーディック-ストリッピング-ボルタンメトリー)を実施した。
 具体的には、まず、還元電位-1.4V、堆積時間120秒に設定して、カーボン電極1に電圧を印加した。これにより、低濃度塩化亜鉛水溶液中の亜鉛イオンを導電性カーボン層3の厚み方向一方面に還元濃縮(堆積)させた。
 続いて、周波数40Hz、電位増加分2mV、振幅25mVに設定して、矩形波ボルタンメトリー測定して、導電性カーボン層3の一方面上に、亜鉛を酸化溶出させた。
 そして、実施例1~3では、酸化電流増加が観察された。
 しかし、比較例1~3では、酸化電流増加が観察されなかった。つまり、亜鉛イオンの還元濃縮が阻害されたか、あるいは、亜鉛の酸化溶出がされたと推測される。
 [測定例2]
 (Zn酸化におけるピーク電流値)
 実施例1および実施例3~比較例3のカーボン電極1について、上の測定例1における亜鉛の酸化溶出の際におけるピーク電流値を取得した。その結果を表1に記載する。なお、上の測定は、合計2回実施し、その平均をピーク電流値として取得した。
 そして、実施例1および3では、炭素に対する酸素の濃度比が、0.07以下であるので、ピーク電流値が9.5×10-7A以上と高く、そのため、亜鉛の検出感度が優れる。
 対して、比較例1~3では、炭素に対する酸素の濃度比が0.08以上であるので、ピーク電流値が6.7×10-7A以下と低く、そのため、亜鉛の検出感度が十分でない。
 [測定例3]
(CVによる過酸化水素の測定)
 実施例1~3および比較例1~3のカーボン電極1における導電性カーボン層3の厚み方向一方面に、直径2mmの穴を開けた絶縁テープを貼り付けて、導電性カーボン層3の露出面積を3.14mmに設定した。このカーボン電極1と、参照電極5(銀-塩化銀:Ag/AgCl)と、対向電極6(白金:Pt)とを、50mmol/Lリン酸緩衝液(pH7.0)に挿入した。さらに、上記したリン酸緩衝液に、過酸化水素濃度が200μモル/L(6.8μg/1mL)となるように、過酸化水素を添加した。また、カーボン電極1と、参照電極5と、対向電極6とを、ポテンシオスタット7(CHIインスツルメンツ社製、ALS1240B)に接続した。
 その後、リン酸緩衝液中の過酸化水素濃度が7ng/mL(0.2mM)となるように、過酸化水素を微量添加して、低濃度過酸化水素水溶液を調製した。
 その後、CV(サイクリックボルタンメトリー)を実施した。
 具体的には、掃引速度を0.1V/sに設定して、カーボン電極1に電圧を0Vからマイナス側に印加した。これにより、溶液中の過酸化水素の還元反応させた。
 実施例1のCVチャートを図3に転記する。
 下記の通りに従って評価した。
 良好:還元ピーク電位V1が、-1.0V以上、0V以下であった。そのため、過酸化水素をより低電位で十分に還元させることのできる電位であること、つまり、感度が良好であることを意味する
 不良:還元ピーク電位V1が、-1.0V未満であった。つまり、過酸化水素を還元させるのにより高い還元電圧が必要であり、感度の低下が起こることを意味する。
 (比較例1の位置付け)
 比較例1は、炭素に対する酸素の濃度比(O/C)が0.08であり、炭素に対する酸素の濃度比(O/C)が0.07以下の範囲外にあるため、本発明に含まれない。比較例1は、本発明のASVによるZの検出が「可」であり、また、CVによるHの検出も「良好」であるものの、Zn酸化溶出時のピーク電流は、炭素に対する酸素の濃度比(O/C)が0.07である実施例3のピーク電流より著しく低い。従って、比較例1の測定感度は、実施例3のそれより顕著に低い。
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
カーボン電極は、電気化学測定システムに用いられる。
1 カーボン電極
2 基材
3 導電性カーボン層
4 電気化学測定システム

Claims (6)

  1.  基材と、
     前記基材の厚み方向一方側に配置され、sp結合およびsp結合を有する導電性カーボン層とを備え、
     前記導電性カーボン層の厚み方向一方面において、炭素に対する酸素の濃度比が、0.07以下であることを特徴とする、電極。
  2.  前記導電性カーボン層の厚みが、5nm以上、200nm以下であることを特徴とする、請求項1に記載の電極。
  3.  前記導電性カーボン層の厚み方向一方面の表面粗さRaが、1.0nm以下であることを特徴とする、請求項1または2に記載の電極。
  4.  電気化学測定用の電極であることを特徴とする、請求項1に記載の電極。
  5.  前記電気化学測定が、アノーディック-ストリッピング-ボルタンメトリーであって、
    作用電極であることを特徴とする、請求項4に記載の電極。
  6.  請求項4に記載の電極を備えることを特徴とする、電気化学測定システム。
PCT/JP2020/013228 2019-03-28 2020-03-25 電極および電気化学測定システム WO2020196587A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080021125.6A CN113574370A (zh) 2019-03-28 2020-03-25 电极及电化学测定系统
US17/598,969 US20220214299A1 (en) 2019-03-28 2020-03-25 Electrode and electrochemical measurement system
EP20778581.7A EP3951375A4 (en) 2019-03-28 2020-03-25 ELECTRODE AND ELECTROCHEMICAL MEASUREMENT SYSTEM
KR1020217030833A KR20210144722A (ko) 2019-03-28 2020-03-25 전극 및 전기 화학 측정 시스템

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019064138 2019-03-28
JP2019-064138 2019-03-28
JP2019177621 2019-09-27
JP2019-177621 2019-09-27
JP2020046682A JP6752432B1 (ja) 2019-03-28 2020-03-17 電極および電気化学測定システム
JP2020-046682 2020-03-17

Publications (1)

Publication Number Publication Date
WO2020196587A1 true WO2020196587A1 (ja) 2020-10-01

Family

ID=72333550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013228 WO2020196587A1 (ja) 2019-03-28 2020-03-25 電極および電気化学測定システム

Country Status (7)

Country Link
US (1) US20220214299A1 (ja)
EP (1) EP3951375A4 (ja)
JP (1) JP6752432B1 (ja)
KR (1) KR20210144722A (ja)
CN (1) CN113574370A (ja)
TW (1) TW202043764A (ja)
WO (1) WO2020196587A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202715A1 (ja) * 2021-03-23 2022-09-29 日東電工株式会社 電極

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116457655A (zh) * 2020-09-30 2023-07-18 日东电工株式会社 电极
WO2022202941A1 (ja) * 2021-03-23 2022-09-29 日東電工株式会社 電極およびその製造方法
JPWO2022210176A1 (ja) * 2021-03-31 2022-10-06
WO2024071292A1 (ja) * 2022-09-30 2024-04-04 日東電工株式会社 電極および電気化学測定システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090875A (ja) 2004-09-24 2006-04-06 National Institute Of Advanced Industrial & Technology 電気化学測定用炭素電極及びその製造方法
WO2010004690A1 (ja) * 2008-07-09 2010-01-14 日本電気株式会社 炭素電極、電気化学センサ、および炭素電極の製造方法
JP2011085531A (ja) 2009-10-16 2011-04-28 Hokuto Denko Kk 食品中のカドミウム測定方法及び測定装置
JP2016070885A (ja) * 2014-10-01 2016-05-09 国立研究開発法人産業技術総合研究所 合金ナノ粒子含有カーボン電極、当該電極を含む装置、及び、当該電極の製造方法
JP2018155728A (ja) * 2017-03-15 2018-10-04 学校法人東京理科大学 導電性ダイヤモンドライクカーボンマイクロ電極
JP2019105637A (ja) * 2017-12-11 2019-06-27 日東電工株式会社 電極フィルムおよび電気化学測定システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2762430A1 (en) * 2009-05-22 2011-02-10 William Marsh Rice University Highly oxidized graphene oxide and methods for production thereof
GB2520496B (en) * 2013-11-20 2020-05-27 Univ Manchester Production of graphene oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090875A (ja) 2004-09-24 2006-04-06 National Institute Of Advanced Industrial & Technology 電気化学測定用炭素電極及びその製造方法
WO2010004690A1 (ja) * 2008-07-09 2010-01-14 日本電気株式会社 炭素電極、電気化学センサ、および炭素電極の製造方法
JP2011085531A (ja) 2009-10-16 2011-04-28 Hokuto Denko Kk 食品中のカドミウム測定方法及び測定装置
JP2016070885A (ja) * 2014-10-01 2016-05-09 国立研究開発法人産業技術総合研究所 合金ナノ粒子含有カーボン電極、当該電極を含む装置、及び、当該電極の製造方法
JP2018155728A (ja) * 2017-03-15 2018-10-04 学校法人東京理科大学 導電性ダイヤモンドライクカーボンマイクロ電極
JP2019105637A (ja) * 2017-12-11 2019-06-27 日東電工株式会社 電極フィルムおよび電気化学測定システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KATO, DAI ET AL.: "Evaluation of Electrokinetic Parameters for All DNA Bases with Sputter Deposited Nanocarbon Film Ele", ANALYTICAL CHEMISTRY, vol. 84, 2012, pages 10607 - 10613, XP055735051, DOI: 10.1021/ac301964e *
KURITA, RYOJI ET AL.: "An sp2 and sp3 Hybrid Nanocrystal line Carbon Film Electrode for Anodic Stripping Voltammetry and Its Application for Electrochemical Immunoassay", ANALYTICAL SCIENCES, vol. 28, January 2012 (2012-01-01), pages 13 - 20, XP055744373 *
See also references of EP3951375A4
ZENG, AIPING ET AL.: "Diamond-like carbon(DLC) films as electrochemical electrodes", DIAMOND & RELATED MATERIALS, vol. 43, 2014, pages 12 - 22, XP055135227, DOI: 10.1016/j.diamond.2014.01.003 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202715A1 (ja) * 2021-03-23 2022-09-29 日東電工株式会社 電極

Also Published As

Publication number Publication date
JP6752432B1 (ja) 2020-09-09
JP2021056205A (ja) 2021-04-08
CN113574370A (zh) 2021-10-29
TW202043764A (zh) 2020-12-01
EP3951375A4 (en) 2022-11-09
KR20210144722A (ko) 2021-11-30
US20220214299A1 (en) 2022-07-07
EP3951375A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
JP6752432B1 (ja) 電極および電気化学測定システム
JP6810330B2 (ja) 電極および電気化学測定システム
Armstrong et al. Electrochemical and surface characteristics of tin oxide and indium oxide electrodes
Laurila et al. New electrochemically improved tetrahedral amorphous carbon films for biological applications
JP2019105637A (ja) 電極フィルムおよび電気化学測定システム
EP4130728A1 (en) Electrode
Kim et al. Iridium oxide dendrite as a highly efficient dual electro-catalyst for water splitting and sensing of H2O2
Winiarski et al. The influence of molybdenum on the electrodeposition and properties of ternary Zn–Fe–Mo alloy coatings
Negi et al. Effect of sputtering pressure on pulsed-DC sputtered iridium oxide films
Wei et al. Surface functionalization of wafer-scale two-dimensional WO3 nanofilms by NM electrodeposition (NM= Ag, Pt, Pd) for electrochemical H2O2 reduction improvement
Bojinov et al. Coupling between dissolution and passivation revisited–Kinetic parameters of anodic oxidation of titanium alloys in a fluoride-containing electrolyte
Neuberger et al. From bulk to atoms: the influence of particle and cluster size on the hydrogen evolution reaction
Li et al. Insight into oxygen reduction activity and pathway on pure titanium using scanning electrochemical microscopy and theoretical calculations
JP4368108B2 (ja) 銀電極表面のインピーダンスの低下方法、金属表面のインピーダンスの低下方法、銀電極および金属表面
JP6404069B2 (ja) 合金ナノ粒子含有カーボン電極、当該電極を含む装置、及び、当該電極の製造方法
US20220140341A1 (en) Electrode and electrochemical measurement system
Sliozberg et al. CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction
Gong et al. Electrochemical Atomic Layer Etching of Ruthenium
EP4224157A1 (en) Electrode
WO2019117112A1 (ja) 電極フィルムおよび電気化学測定システム
WO2022210387A1 (ja) 電極
Valiulienė et al. Investigation of the interaction between Co sulfide coatings and Cu (I) ions by cyclic voltammetry and XPS
Vonau et al. PLD as possible tool for the fabrication of chemosensors based on amorphous membranes
Hahn et al. In situ synchrotron far-infrared spectromicroscopy of a copper electrode at grazing incidence angle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020778581

Country of ref document: EP

Effective date: 20211028