WO2020196454A1 - Hydraulic oil control valve and valve timing adjustment device - Google Patents

Hydraulic oil control valve and valve timing adjustment device Download PDF

Info

Publication number
WO2020196454A1
WO2020196454A1 PCT/JP2020/012843 JP2020012843W WO2020196454A1 WO 2020196454 A1 WO2020196454 A1 WO 2020196454A1 JP 2020012843 W JP2020012843 W JP 2020012843W WO 2020196454 A1 WO2020196454 A1 WO 2020196454A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic oil
sleeve
control valve
spool
inner sleeve
Prior art date
Application number
PCT/JP2020/012843
Other languages
French (fr)
Japanese (ja)
Inventor
太 川村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112020001458.4T priority Critical patent/DE112020001458T5/en
Priority to CN202080023501.5A priority patent/CN113614337B/en
Publication of WO2020196454A1 publication Critical patent/WO2020196454A1/en
Priority to US17/483,239 priority patent/US20220010693A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34456Locking in only one position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials

Definitions

  • the present disclosure relates to a hydraulic oil control valve used in a valve timing adjusting device.
  • Patent Document 1 has a sleeve having a double structure of a tubular outer sleeve and an inner sleeve, the outer sleeve is fastened to the end of a camshaft, and the spool slides inside the inner sleeve to obtain oil.
  • a hydraulic oil control valve that switches the path is disclosed.
  • a hydraulic oil control valve is provided.
  • This hydraulic oil control valve is fixed to the end of one of the drive shaft and the driven shaft that drives the valve to open and close by transmitting power from the drive shaft, and adjusts the valve timing of the valve.
  • it is a hydraulic oil control valve that is arranged and used on the rotating shaft of the valve timing adjusting device to control the flow of hydraulic oil supplied from the hydraulic oil supply source, and has a tubular sleeve and its own.
  • a spool driven by an actuator arranged in contact with one end and sliding axially inside the sleeve in the radial direction, the sleeve being an inner arranged radially outside the spool.
  • An outer sleeve in which a sleeve and a shaft hole along the axial direction are formed, the inner sleeve is inserted into at least a part of the shaft hole in the axial direction, and an axial force in the axial direction is applied.
  • the minimum radial gap between the outer sleeve and the inner sleeve is the said. It is larger than the minimum radial clearance between the inner sleeve and the spool.
  • the minimum radial gap between the outer sleeve and the inner sleeve is the minimum radial gap between the inner sleeve and the spool when no axial force is applied. Greater than.
  • a hydraulic oil control valve that changes the oil passage by sliding the spool, different parts along the axial direction are sealed according to the stroke of the spool. Therefore, the length along the axial direction in the minimum radial gap between the inner sleeve and the spool is set shorter than the stroke of the spool. Therefore, hydraulic oil is likely to leak from the minimum radial gap between the inner sleeve and the spool.
  • the inner sleeve does not move relative to the outer sleeve in the axial direction. Therefore, the length along the axial direction in the minimum radial gap between the outer sleeve and the inner sleeve is set to be relatively long. Therefore, hydraulic oil is less likely to leak from the minimum radial gap between the outer sleeve and the inner sleeve. From these facts, we secured a radial gap that can suppress the deterioration of spool slidability even if the outer sleeve elastically deforms due to the axial force that fixes the hydraulic oil control valve and shrinks in the radial direction.
  • a hydraulic oil control valve is provided.
  • This hydraulic oil control valve is fixed to the end of one of the drive shaft and the driven shaft that drives the valve to open and close by transmitting power from the drive shaft, and adjusts the valve timing of the valve.
  • it is a hydraulic oil control valve that is arranged and used on the rotating shaft of the valve timing adjusting device to control the flow of hydraulic oil supplied from the hydraulic oil supply source, and has a tubular sleeve and its own.
  • a spool driven by an actuator arranged in contact with one end and sliding axially inside the sleeve in the radial direction, the sleeve being an inner arranged radially outside the spool.
  • An outer sleeve in which a sleeve and a shaft hole along the axial direction are formed, the inner sleeve is inserted into at least a part of the shaft hole in the axial direction, and an axial force in the axial direction is applied.
  • the outer sleeve and the inner sleeve have an outer sleeve that can be fixed to the end of one of the shafts, and the outer sleeve and the inner sleeve are in a state where predetermined conditions including the application of the axial force are satisfied. , Contact in the radial direction.
  • the outer sleeve and the inner sleeve come into radial contact with each other in a state where predetermined conditions including the application of axial force are satisfied, so that the outer sleeve and the inner sleeve come into contact with each other in the radial direction. It is possible to suppress an increase in the amount of hydraulic oil leaking from the radial gap between the two.
  • the inner sleeve can be suppressed from expanding in the radial direction due to the radial contact between the outer sleeve and the inner sleeve, it is possible to suppress the expansion of the radial gap between the inner sleeve and the spool, and the gap between the inner sleeve and the spool can be prevented from expanding. It is possible to suppress an increase in the amount of hydraulic oil that leaks.
  • This disclosure can also be realized in various forms. For example, it can be realized in the form of a method for manufacturing a hydraulic oil control valve, a valve timing adjusting device including a hydraulic oil control valve, a method for manufacturing such a valve timing adjusting device, and the like.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a valve timing adjusting device including the hydraulic oil control valve of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross section taken along the line II-II of FIG.
  • FIG. 3 is a cross-sectional view showing a detailed configuration of the hydraulic oil control valve.
  • FIG. 4 is an exploded perspective view showing the detailed configuration of the hydraulic oil control valve in an exploded manner.
  • FIG. 5 is a cross-sectional view showing a state in which the spool is in contact with the stopper.
  • FIG. 6 is a cross-sectional view showing a state in which the spool is located substantially in the center of the sliding range.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of the hydraulic oil control valve of another embodiment 3.
  • the valve timing adjusting device 100 is provided in the power transmission path from the crankshaft 310 to the camshaft 320. More specifically, the valve timing adjusting device 100 is fixedly arranged at the end portion 321 of the cam shaft 320 in the direction along the rotation axis AX of the cam shaft 320 (hereinafter, also referred to as “axial direction AD”). ..
  • the rotation shaft AX of the valve timing adjusting device 100 substantially coincides with the rotation shaft AX of the cam shaft 320.
  • the valve timing adjusting device 100 of the present embodiment adjusts the valve timing of the intake valve 330 among the intake valve 330 and the exhaust valve 340 as valves.
  • a shaft hole portion 322 and a supply hole portion 326 are formed at the end portion 321 of the cam shaft 320.
  • the shaft hole portion 322 is formed in the axial direction AD.
  • a shaft fixing portion 323 for fixing the hydraulic oil control valve 10, which will be described later, is formed on the inner peripheral surface of the shaft hole portion 322.
  • a female screw portion 324 is formed on the shaft fixing portion 323. The female screw portion 324 is screwed with the male screw portion 33 formed in the fixing portion 32 of the hydraulic oil control valve 10.
  • the supply hole portion 326 is formed in the radial direction and communicates the outer peripheral surface of the cam shaft 320 with the shaft hole portion 322. Hydraulic oil is supplied to the supply hole portion 326 from the hydraulic oil supply source 350.
  • the hydraulic oil supply source 350 has an oil pump 351 and an oil pan 352.
  • the oil pump 351 pumps the hydraulic oil stored in the oil pan 352.
  • the valve timing adjusting device 100 includes a housing 120, a vane rotor 130, and a hydraulic oil control valve 10. In FIG. 2, the hydraulic oil control valve 10 is not shown.
  • the housing 120 has a sprocket 121 and a case 122.
  • the sprocket 121 is fitted to the end 321 of the cam shaft 320 and is rotatably supported.
  • the sprocket 121 is formed with a fitting recess 128 at a position corresponding to the lock pin 150 described later.
  • An annular timing chain 360 is hung on the sprocket 121 together with the sprocket 311 of the crankshaft 310.
  • the sprocket 121 is fixed to the case 122 by a plurality of bolts 129. Therefore, the housing 120 rotates in conjunction with the crankshaft 310.
  • the case 122 has a bottomed tubular appearance shape, and the opening end is closed by the sprocket 121. As shown in FIG. 2, the case 122 has a plurality of partition walls 123 formed side by side in the circumferential direction toward the inside in the radial direction. The partition walls 123 adjacent to each other in the circumferential direction function as hydraulic chambers 140, respectively. As shown in FIG. 1, an opening 124 is formed in the central portion of the bottom of the case 122.
  • the vane rotor 130 is housed inside the housing 120 and rotates relative to the housing 120 in the retard or advance direction according to the hydraulic pressure of the hydraulic oil supplied from the hydraulic oil control valve 10 described later. Therefore, the vane rotor 130 functions as a phase conversion unit that converts the phase of the driven shaft with respect to the drive shaft.
  • the vane rotor 130 has a plurality of vanes 131 and a boss 135.
  • the plurality of vanes 131 project radially outward from the boss 135 located at the center of the vane rotor 130, and are formed side by side in the circumferential direction.
  • Each vane 131 is housed in each hydraulic chamber 140, and each hydraulic chamber 140 is divided into a retard chamber 141 and an advance chamber 142 in the circumferential direction.
  • the retard chamber 141 is located on one side in the circumferential direction with respect to the vane 131.
  • the advance chamber 142 is located on the other side of the vane 131 in the circumferential direction.
  • a housing hole 132 is formed in one of the plurality of vanes 131 in the axial direction.
  • the accommodating hole 132 communicates with the retard chamber 141 via the retard chamber side pin control oil passage 133 formed in the vane 131, and communicates with the advance chamber 142 via the advance chamber side pin control oil passage 134. are doing.
  • a lock pin 150 capable of reciprocating in the axial direction AD is arranged in the accommodating hole 132.
  • the lock pin 150 regulates the relative rotation of the vane rotor 130 with respect to the housing 120 and prevents the housing 120 and the vane rotor 130 from colliding in the circumferential direction when the hydraulic pressure is insufficient.
  • the lock pin 150 is urged in the axial direction AD toward the fitting recess 128 formed in the sprocket 121 by the spring 151.
  • the boss 135 has a tubular appearance shape and is fixed to the end portion 321 of the cam shaft 320. Therefore, the vane rotor 130 on which the boss 135 is formed is fixed to the end portion 321 of the cam shaft 320 and rotates integrally with the cam shaft 320.
  • a through hole 136 penetrating in the axial direction AD is formed in the central portion of the boss 135.
  • a hydraulic oil control valve 10 is arranged in the through hole 136.
  • a plurality of retard angle oil passages 137 and a plurality of advance angle oil passages 138 are formed in the boss 135 so as to penetrate in the radial direction. Each retarded oil passage 137 and each advanced angle oil passage 138 are formed side by side in the axial direction AD.
  • Each retarded oil passage 137 communicates the retarded port 27 of the hydraulic oil control valve 10, which will be described later, with the retarded chamber 141.
  • Each advance angle oil passage 138 communicates the advance angle port 28 of the hydraulic oil control valve 10, which will be described later, with the advance angle chamber 142.
  • each retard oil passage 137 and each advance angle oil passage 138 are sealed by an outer sleeve 30 of a hydraulic oil control valve 10 described later.
  • the vane rotor 130 is formed of an aluminum alloy, but is not limited to the aluminum alloy, and may be formed of any metal material such as iron or stainless steel, a resin material, or the like.
  • the hydraulic oil control valve 10 is arranged and used on the rotary shaft AX of the valve timing adjusting device 100, and controls the flow of hydraulic oil supplied from the hydraulic oil supply source 350.
  • the operation of the hydraulic oil control valve 10 is controlled by an instruction from an ECU (not shown) that controls the overall operation of the internal combustion engine 300.
  • the hydraulic oil control valve 10 is driven by a solenoid 160 arranged on the side opposite to the cam shaft 320 side in the axial direction AD.
  • the solenoid 160 has an electromagnetic unit 162 and a shaft 164.
  • the solenoid 160 displaces the shaft 164 in the axial direction AD by energizing the electromagnetic unit 162 according to the instruction of the ECU described above, thereby causing the spool 50 of the hydraulic oil control valve 10 described later to resist the urging force of the spring 60. Presses toward the cam shaft 320 side. As will be described later, the spool 50 slides in the axial direction AD by pressing, so that the oil passage communicating with the retard chamber 141 and the oil passage communicating with the advance chamber 142 can be switched.
  • the hydraulic oil control valve 10 includes a sleeve 20, a spool 50, a spring 60, a fixing member 70, and a check valve 90. Note that FIG. 3 shows a cross section along the rotation axis AX.
  • the sleeve 20 has an outer sleeve 30 and an inner sleeve 40. Both the outer sleeve 30 and the inner sleeve 40 have a substantially tubular appearance shape.
  • the sleeve 20 has a schematic configuration in which the inner sleeve 40 is inserted into the shaft hole 34 formed in the outer sleeve 30.
  • the outer sleeve 30 constitutes the outer shell of the hydraulic oil control valve 10 and is arranged on the outer side in the radial direction of the inner sleeve 40.
  • the outer sleeve 30 has a main body portion 31, a fixing portion 32, a protruding portion 35, a diameter-expanding portion 36, a movement restricting portion 80, and a tool engaging portion 38.
  • a shaft hole 34 along the axial direction AD is formed in the main body portion 31 and the fixed portion 32. The shaft hole 34 is formed so as to penetrate the outer sleeve 30 in the axial direction AD.
  • the main body 31 has a tubular external shape and is arranged in the through hole 136 of the vane 131 as shown in FIG.
  • a plurality of outer retard angle ports 21 and a plurality of outer advance angle ports 22 are formed in the main body 31.
  • the plurality of outer retard angle ports 21 are formed side by side in the circumferential direction, and each communicates the outer peripheral surface of the main body 31 with the shaft hole 34.
  • the plurality of outer advance angle ports 22 are formed on the solenoid 160 side of the outer retard angle port 21 in the axial direction AD.
  • the plurality of outer advance angle ports 22 are formed side by side in the circumferential direction, and each communicates the outer peripheral surface of the main body 31 with the shaft hole 34.
  • the fixed portion 32 has a tubular appearance shape, and is formed so as to be connected to the main body portion 31 in the axial direction AD.
  • the fixing portion 32 is formed to have substantially the same diameter as the main body portion 31, and is inserted into the shaft fixing portion 323 of the cam shaft 320 as shown in FIG.
  • a male screw portion 33 is formed on the fixing portion 32.
  • the male screw portion 33 is screwed with the female screw portion 324 formed on the shaft fixing portion 323.
  • the outer sleeve 30 is configured so that it can be fixed to the end portion 321 of the cam shaft 320 by applying an axial force in the axial direction AD toward the cam shaft 320 side by fastening the male screw portion 33 and the female screw portion 324.
  • the protruding portion 35 is formed so as to protrude outward in the radial direction from the main body portion 31. As shown in FIG. 1, the protruding portion 35 sandwiches the vane rotor 130 with the end portion 321 of the cam shaft 320 in the axial direction AD.
  • a diameter-expanded portion 36 is formed at the end of the main body 31 on the solenoid 160 side.
  • the diameter-expanded portion 36 is formed so that the inner diameter is enlarged as compared with other portions of the main body portion 31.
  • the flange portion 46 of the inner sleeve 40 which will be described later, is arranged in the enlarged diameter portion 36.
  • the movement restricting portion 80 is configured as a step in the radial direction formed by the enlarged diameter portion 36 on the inner peripheral surface of the outer sleeve 30.
  • the movement restricting portion 80 sandwiches the flange portion 46 of the inner sleeve 40, which will be described later, with the fixing member 70 in the axial direction AD.
  • the movement restricting unit 80 restricts the movement of the inner sleeve 40 in the direction away from the electromagnetic unit 162 of the solenoid 160 along the axial direction AD.
  • the tool engaging portion 38 is formed on the solenoid 160 side of the protruding portion 35 in the axial direction AD.
  • the tool engaging portion 38 is configured to be engageable with a tool such as a hexagon socket (not shown), and is used for fastening and fixing the hydraulic oil control valve 10 including the outer sleeve 30 to the end portion 321 of the cam shaft 320.
  • the inner sleeve 40 has a tubular portion 41, a bottom portion 42, a plurality of retard side protrusion walls 43, a plurality of advance angle side protrusion walls 44, a sealing wall 45, a flange portion 46, and a stopper 49. ..
  • the tubular portion 41 has a substantially tubular external shape, and is located inside the outer sleeve 30 in the radial direction over the main body portion 31 and the fixing portion 32 of the outer sleeve 30. As shown in FIGS. 3 and 4, the tubular portion 41 is formed with a retard side supply port SP1, an advance angle side supply port SP2, and a recycling port 47, respectively.
  • the retard angle side supply port SP1 is formed on the bottom portion 42 side of the retard angle side protruding wall 43 in the axial direction AD, and communicates the outer peripheral surface and the inner peripheral surface of the tubular portion 41.
  • a plurality of retard angle side supply ports SP1 are formed side by side over a half circumference in the circumferential direction, but may be formed over the entire circumference or may be a single number.
  • the advance angle side supply port SP2 is formed on the solenoid 160 side of the advance angle side protrusion wall 44 in the axial direction AD, and communicates the outer peripheral surface and the inner peripheral surface of the tubular portion 41.
  • a plurality of advance angle side supply ports SP2 are formed side by side over a half circumference in the circumferential direction, but may be formed over the entire circumference or may be a single number.
  • the retard side supply port SP1 and the advance angle side supply port SP2 communicate with each other with the shaft hole portion 322 of the camshaft 320 shown in FIG.
  • the recycling port 47 is formed between the retard side protruding wall 43 and the advance side protruding wall 44 in the axial direction AD, and forms the outer peripheral surface and the inner peripheral surface of the tubular portion 41. I'm communicating.
  • the recycle port 47 communicates with the retard side supply port SP1 and the advance angle side supply port SP2, respectively.
  • the recycling port 47 is a space between the inner peripheral surface of the main body 31 of the outer sleeve 30 and the outer peripheral surface of the tubular portion 41 of the inner sleeve 40, and is a retarded side adjacent to each other in the circumferential direction.
  • the spaces between the projecting walls 43 and the advancing side projecting walls 44 adjacent to each other in the circumferential direction communicate with the supply ports SP1 and SP2. Therefore, the recycling port 47 functions as a recycling mechanism for returning the hydraulic oil discharged from the retard chamber 141 and the advance chamber 142 to the supply side.
  • a plurality of recycling ports 47 are formed side by side in the circumferential direction, but may be a single number. The operation of the valve timing adjusting device 100 including the operation of switching the oil passage by sliding the spool 50 will be described later.
  • the bottom portion 42 is formed integrally with the tubular portion 41 and is opposite to the solenoid 160 side in the axial direction AD of the tubular portion 41 (hereinafter, also referred to as “camshaft 320 side” for convenience of explanation). It is blocking the end of the.
  • One end of the spring 60 is in contact with the bottom portion 42.
  • the plurality of retard angle side projecting walls 43 are formed side by side in the circumferential direction so as to project radially outward from the tubular portion 41.
  • the retarded-angle side protruding walls 43 adjacent to each other in the circumferential direction communicate with the shaft hole portion 322 of the cam shaft 320 shown in FIG. 1, and the hydraulic oil supplied from the hydraulic oil supply source 350 flows through.
  • an inner retard angle port 23 is formed on each retard angle side projecting wall 43.
  • Each inner retard angle port 23 communicates with the outer peripheral surface and the inner peripheral surface of the retard angle side protruding wall 43, respectively.
  • each inner retard angle port 23 communicates with each outer retard angle port 21 formed on the outer sleeve 30. The axis of the inner retard port 23 deviates from the axis of the outer retard port 21 in the axial direction AD.
  • each of the plurality of advance angle side protrusion walls 44 is formed on the solenoid 160 side of the retard angle side protrusion wall 43 in the axial direction AD.
  • the plurality of advance angle side projecting walls 44 are formed so as to project radially outward from the tubular portion 41 so as to be arranged side by side in the circumferential direction.
  • the advance angle side protruding walls 44 adjacent to each other in the circumferential direction communicate with the shaft hole portion 322 shown in FIG. 1, and the hydraulic oil supplied from the hydraulic oil supply source 350 flows through.
  • an inner advance port 24 is formed on each advance side protruding wall 44.
  • Each inner advance port 24 communicates the outer peripheral surface and the inner peripheral surface of the advance side protruding wall 44, respectively. As shown in FIG. 3, each inner advance port 24 communicates with each outer advance port 22 formed on the outer sleeve 30. The axis of the inner advance port 24 is deviated from the axis of the outer advance port 22 in the axial direction AD.
  • the sealing wall 45 is formed so as to project outward in the radial direction over the entire circumference of the tubular portion 41 on the solenoid 160 side of the advance angle side supply port SP2 in the axial direction AD.
  • the sealing wall 45 seals the inner peripheral surface of the main body 31 of the outer sleeve 30 and the outer peripheral surface of the tubular portion 41 of the inner sleeve 40, so that the hydraulic oil flowing through the hydraulic oil supply oil passage 25 described later is a solenoid. Suppresses leakage to the 160 side.
  • the outer diameter of the sealing wall 45 is formed to be substantially the same as the outer diameter of the retard side protruding wall 43 and the advance side protruding wall 44.
  • the collar portion 46 is formed at the end of the inner sleeve 40 on the solenoid 160 side so as to project outward in the radial direction over the entire circumference of the tubular portion 41.
  • the collar portion 46 is arranged in the enlarged diameter portion 36 of the outer sleeve 30.
  • a plurality of fitting portions 48 are formed in the collar portion 46.
  • the plurality of fitting portions 48 are formed side by side in the circumferential direction at the outer edge portion of the flange portion 46.
  • each fitting portion 48 is formed by cutting off the outer edge portion of the flange portion 46 in a straight line, but the fitting portion 48 may be formed not only in a straight line but also in a curved shape.
  • Each fitting portion 48 is fitted with each fitting protrusion 73 of the fixing member 70, which will be described later.
  • the stopper 49 shown in FIG. 3 is an end portion of the inner sleeve 40 in the axial direction AD and is formed at the end portion on the camshaft 320 side.
  • the stopper 49 is formed so that the inner diameter is smaller than that of the other portion of the tubular portion 41 so that the end portion of the spool 50 on the camshaft 320 side can be brought into contact with the stopper 49.
  • the stopper 49 defines the sliding limit of the spool 50 in the direction away from the electromagnetic portion 162 of the solenoid 160.
  • the space between the shaft hole 34 formed in the outer sleeve 30 and the inner sleeve 40 functions as a hydraulic oil supply oil passage 25.
  • the hydraulic oil supply oil passage 25 communicates with the shaft hole portion 322 of the camshaft 320 shown in FIG. 1, and supplies hydraulic oil supplied from the hydraulic oil supply source 350 to the retard side supply port SP1 and the advance angle side supply port. Lead to SP2.
  • the outer retard angle port 21 and the inner retard angle port 23 form a retard angle port 27 and communicate with the retard angle chamber 141 via the retard angle oil passage 137 shown in FIG.
  • the outer advance angle port 22 and the inner advance angle port 24 form an advance angle port 28, and communicate with the advance angle chamber 142 via the advance angle oil passage 138 shown in FIG.
  • the outer sleeve 30 and the inner sleeve 40 are sealed at least in a part of the axial AD in order to suppress leakage of hydraulic oil. More specifically, the retard side protrusion wall 43 seals between the retard side supply port SP1 and the recycling port 47 and the retard port 27, and the advance side protrusion wall 44 seals the advance angle side supply port SP2. And between the recycle port 47 and the advance port 28 is sealed. Further, the sealing wall 45 seals the hydraulic oil supply oil passage 25 and the outside of the hydraulic oil control valve 10. That is, in the axial direction AD, the range from the retard side protruding wall 43 to the sealing wall 45 is set as the sealing range SA.
  • the radial gap between the outer sleeve 30 and the inner sleeve 40 is minimized.
  • the inner diameter of the main body 31 of the outer sleeve 30 is configured to be substantially constant in the seal range SA.
  • the spool 50 is arranged inside the inner sleeve 40 in the radial direction.
  • the spool 50 is driven by a solenoid 160 arranged in contact with one end of the spool 50 and slides in the axial direction AD.
  • the spool 50 has a spool cylinder portion 51, a spool bottom portion 52, and a spring receiving portion 56. Further, the spool 50 is formed with at least a part of the drain oil passage 53, a drain inflow portion 54, and a drain outflow portion 55.
  • the spool cylinder portion 51 has a substantially tubular appearance shape. On the outer peripheral surface of the spool cylinder portion 51, a retard side seal portion 57, an advance angle side seal portion 58, and a locking portion 59 are arranged in this order from the camshaft 320 side in the axial direction AD, respectively, in the radial direction. It protrudes outward and is formed over the entire circumference.
  • the retard side seal portion 57 and the advance angle side seal portion 58 seal a part of the ports SP1, SP2, 27, 28, and 47 according to the sliding position of the spool 50, respectively.
  • the retard angle side seal portion 57 cuts off the communication between the recycle port 47 and the retard angle port 27 in a state where the spool 50 is closest to the electromagnetic portion 162 of the solenoid 160 as shown in FIG.
  • the advance angle side seal portion 58 cuts off the communication between the advance angle side supply port SP2 and the advance angle port 28 in a state where the spool 50 is closest to the electromagnetic portion 162, and as shown in FIG.
  • the communication between the recycle port 47 and the advance angle port 28 is cut off.
  • “Cut off communication” is equivalent to sealing.
  • the radial gap between the inner sleeve 40 and the spool 50 is minimized in the portion where such sealing property is required. Since different portions along the axial AD are sealed according to the stroke of the spool 50, the sealing lengths of the portions required for such sealing properties along the axial AD are shorter than the stroke of the spool 50.
  • the "stroke of the spool 50” means the length of movement from the position where the spool is closest to the electromagnetic portion 162 of the solenoid 160 to the position where it is farthest away.
  • the locking portion 59 defines the sliding limit of the spool 50 in the direction of approaching the electromagnetic portion 162 of the solenoid 160 by abutting against the fixing member 70.
  • the spool bottom portion 52 is integrally formed with the spool cylinder portion 51, and closes the end portion of the spool cylinder portion 51 on the solenoid 160 side.
  • the spool bottom portion 52 is configured to be able to project toward the solenoid 160 side from the sleeve 20 in the axial direction AD.
  • the spool bottom portion 52 functions as a base end portion of the spool 50.
  • the space surrounded by the spool cylinder portion 51, the spool bottom portion 52, the cylinder portion 41 of the inner sleeve 40, and the bottom portion 42 functions as a drain oil passage 53. Therefore, inside the spool 50, it functions as at least a part of the drain oil passage 53.
  • the hydraulic oil discharged from the retard chamber 141 and the advance chamber 142 flows through the drain oil passage 53.
  • the drain inflow portion 54 is formed between the retard side seal portion 57 and the advance angle side seal portion 58 in the axial direction AD of the spool cylinder portion 51.
  • the drain inflow portion 54 communicates the outer peripheral surface and the inner peripheral surface of the spool cylinder portion 51.
  • the drain inflow portion 54 guides the hydraulic oil discharged from the retard angle chamber 141 and the advance angle chamber 142 to the drain oil passage 53. Further, the drain inflow section 54 communicates with the supply ports SP1 and SP2 via the recycling port 47.
  • the drain outflow portion 55 is formed so as to open radially outward at the spool bottom portion 52, which is one end of the spool 50.
  • the drain outflow portion 55 discharges the hydraulic oil in the drain oil passage 53 to the outside of the hydraulic oil control valve 10. As shown in FIG. 1, the hydraulic oil discharged from the drain outflow portion 55 is collected in the oil pan 352.
  • the spring receiving portion 56 is formed at the end portion of the spool cylinder portion 51 on the camshaft 320 side with an inner diameter enlarged as compared with the other portion of the spool cylinder portion 51. The other end of the spring 60 is brought into contact with the spring receiving portion 56.
  • the outer sleeve 30 and the spool 50 are each made of iron, and the inner sleeve 40 is made of aluminum. Therefore, the coefficient of linear expansion of the inner sleeve 40 is larger than the coefficient of linear expansion of the outer sleeve 30 and the spool 50. Further, the outer sleeve 30 and the spool 50 are harder than the inner sleeve 40. Such hardness may be defined by the hardness measured by using an arbitrary hardness measuring method such as Rockwell hardness and Vickers hardness.
  • the spring 60 is composed of a compression coil spring, and its end is arranged in contact with the bottom 42 of the inner sleeve 40 and the spring receiving portion 56 of the spool 50, respectively.
  • the spring 60 urges the spool 50 toward the solenoid 160 along the axial direction AD.
  • the fixing member 70 is fixed to the end of the outer sleeve 30 on the solenoid 160 side. As shown in FIG. 4, the fixing member 70 has a flat plate portion 71 and a plurality of fitting protrusions 73.
  • the flat plate portion 71 is formed in a flat plate shape along the radial direction.
  • the flat plate portion 71 is not limited to the radial direction, and may be formed along a direction intersecting the axial direction AD.
  • An opening 72 is formed in the substantially center of the flat plate portion 71. As shown in FIG. 3, the spool bottom 52, which is one end of the spool 50, is inserted into the opening 72.
  • the plurality of fitting protrusions 73 project from the flat plate portion 71 in the axial direction AD, and are formed side by side in the circumferential direction.
  • the fitting protrusion 73 is not limited to the axial direction AD, and may be formed so as to protrude in any direction intersecting the radial direction.
  • Each fitting protrusion 73 fits with each fitting portion 48 of the inner sleeve 40, respectively.
  • the fixing member 70 is assembled so that the spool 50 is inserted into the inner sleeve 40 and the fitting protrusion 73 and the fitting portion 48 are fitted, and then the outer sleeve 30 is assembled. It is fixed by caulking.
  • the outer edge portion of the end surface of the fixing member 70 on the solenoid 160 side functions as a caulking portion to be caulked and fixed to the outer sleeve 30.
  • the inner sleeve 40 is restricted from rotating in the circumferential direction with respect to the outer sleeve 30.
  • the inner sleeve 40 and the spool 50 are restricted from coming off from the outer sleeve 30 to the solenoid 160 side in the axial direction AD.
  • the check valve 90 suppresses the backflow of hydraulic oil.
  • the check valve 90 includes two supply check valves 91 and a recycling check valve 92. As shown in FIG. 4, each supply check valve 91 and a recycling check valve 92 are elastically deformed in the radial direction by being formed by winding a strip-shaped thin plate in an annular shape. As shown in FIG. 3, each supply check valve 91 is arranged in contact with the inner peripheral surface of the tubular portion 41 at a position corresponding to the retard side supply port SP1 and the advance angle side supply port SP2. Each supply check valve 91 receives the pressure of the hydraulic oil from the outside in the radial direction, so that the overlapping portion of the strip-shaped thin plates becomes large and shrinks in the radial direction.
  • the recycle check valve 92 is arranged in contact with the outer peripheral surface of the tubular portion 41 at a position corresponding to the recycle port 47.
  • the recycle check valve 92 receives the pressure of the hydraulic oil from the inside in the radial direction, so that the overlapping portion of the strip-shaped thin plates becomes small and expands in the radial direction.
  • the diameter between the outer sleeve 30 and the inner sleeve 40 is not applied to the outer sleeve 30, that is, before the hydraulic oil control valve 10 is fixed to the cam shaft 320.
  • the minimum clearance CL1 which is the minimum value of the directional clearance, is designed to be larger than the minimum clearance CL2, which is the minimum value of the radial clearance between the inner sleeve 40 and the spool 50. More specifically, the radial direction between the inner peripheral surface of the main body 31 of the outer sleeve 30 and the outer peripheral surface of the retard side protruding wall 43, the advance angle side protruding wall 44 and the sealing wall 45 of the inner sleeve 40.
  • the minimum gap CL1 is in the radial direction between the inner peripheral surface of the tubular portion 41 of the inner sleeve 40 and the outer peripheral surfaces of the retard side seal portion 57, the advance angle side seal portion 58 and the locking portion 59 of the spool 50. It is set larger than the minimum gap CL2. The reason for such a setting will be described below.
  • the minimum gap CL1 in which hydraulic oil leakage is unlikely to occur larger than the minimum gap CL2 in which hydraulic oil leakage is likely to occur, the deterioration of the slidability of the spool 50 can be suppressed in the radial direction.
  • an increase in the amount of hydraulic oil leakage can be suppressed as compared with a configuration in which the magnitude relationship of the gap in the radial direction is different from that of the present embodiment.
  • the magnitude relationship between the minimum clearance CL1 and the minimum clearance CL2 is maintained even in a state where an axial force is applied to the outer sleeve 30 and the camshaft 320 is fixed to the end portion 321.
  • crankshaft 310 corresponds to the subordinate concept of the drive shaft in the present disclosure
  • camshaft 320 corresponds to the subordinate concept of the driven shaft in the present disclosure
  • intake valve 330 corresponds to the subordinate concept of the valve in the present disclosure.
  • solenoid 160 corresponds to the subordinate concept of the actuator in the present disclosure.
  • valve timing adjuster As shown in FIG. 1, the hydraulic oil supplied from the hydraulic oil supply source 350 to the supply hole portion 326 flows to the hydraulic oil supply oil passage 25 through the shaft hole portion 322. As shown in FIG. 3, the retard angle port 27 communicates with the retard angle side supply port SP1 in a state where the solenoid 160 is not energized and the spool 50 is closest to the electromagnetic portion 162 of the solenoid 160. As a result, the hydraulic oil in the hydraulic oil supply oil passage 25 is supplied to the retard chamber 141, the vane rotor 130 rotates relative to the housing 120 in the retard direction, and the relative rotation phase of the cam shaft 320 with respect to the crankshaft 310. Changes to the retard side.
  • the advance angle port 28 does not communicate with the advance angle side supply port SP2, but communicates with the recycle port 47.
  • the hydraulic oil discharged from the advance chamber 142 is returned to the retard side supply port SP1 via the recycling port 47 and recirculated.
  • a part of the hydraulic oil discharged from the advance chamber 142 flows into the drain oil passage 53 through the drain inflow portion 54, and is returned to the oil pan 352 through the drain outflow portion 55.
  • the advance port 28 is set. It communicates with the advance side supply port SP2.
  • the hydraulic oil in the hydraulic oil supply oil passage 25 is supplied to the advance chamber 142, the vane rotor 130 rotates relative to the housing 120 in the advance direction, and the relative rotation phase of the cam shaft 320 with respect to the crankshaft 310. Changes to the advance side. Further, in this state, the retard angle port 27 does not communicate with the retard angle side supply port SP1 but communicates with the recycling port 47.
  • the hydraulic oil discharged from the retarded chamber 141 is returned to the advancing side supply port SP2 via the recycling port 47 and recirculated. Further, a part of the hydraulic oil discharged from the retarded chamber 141 flows into the drain oil passage 53 through the drain inflow section 54, and is returned to the oil pan 352 through the drain outflow section 55.
  • the hydraulic oil supplied to the retard chamber 141 or the advance chamber 142 flows into the accommodating hole 132 via the retard chamber side pin control oil passage 133 or the advance chamber side pin control oil passage 134. Therefore, sufficient hydraulic pressure is applied to the retard chamber 141 or the advance chamber 142, and the lock pin 150 escapes from the fitting recess 128 against the urging force of the spring 151 by the hydraulic oil flowing into the accommodating hole 132. Then, the relative rotation of the vane rotor 130 with respect to the housing 120 is allowed.
  • the valve timing adjusting device 100 retards the vane rotor 130 with respect to the housing 120 by relatively reducing the amount of electricity supplied to the solenoid 160. Rotate relative to the direction. As a result, the relative rotation phase of the camshaft 320 with respect to the crankshaft 310 changes to the retard side, and the valve timing is retarded. Further, in the valve timing adjusting device 100, when the relative rotation phase of the cam shaft 320 is on the retard side of the target value, the vane rotor 130 is attached to the housing 120 by relatively increasing the amount of electricity supplied to the solenoid 160. Relative rotation in the advance direction.
  • the valve timing adjusting device 100 suppresses the relative rotation of the vane rotor 130 with respect to the housing 120 by setting the amount of energization to the solenoid 160 to a medium level. As a result, the relative rotation phase of the camshaft 320 with respect to the crankshaft 310 is maintained, and the valve timing is maintained.
  • the minimum radial gap between the outer sleeve 30 and the inner sleeve 40 is not applied.
  • CL1 is larger than the minimum radial clearance CL2 between the inner sleeve 40 and the spool 50.
  • different portions along the axial direction AD are sealed according to the stroke of the spool 50. Therefore, the length along the axial AD in the minimum radial gap CL2 between the inner sleeve 40 and the spool 50 is shorter than the stroke of the spool 50.
  • the outer is caused by the axial force for fixing the hydraulic oil control valve 10.
  • the magnitude relationship of the radial gap is different from that of the present embodiment. It is possible to suppress an increase in the amount of hydraulic oil leakage as compared with the configuration. Therefore, it is possible to suppress an increase in the amount of hydraulic oil leakage while suppressing deterioration of the slidability of the spool 50.
  • the outer sleeve 30 and the inner sleeve Compared with a configuration in which a sealing material or the like for suppressing leakage of hydraulic oil is arranged in the minimum clearance CL1 in the radial direction with 40, an increase in the number of parts can be suppressed and an increase in the assembly process can be suppressed. Therefore, it is possible to suppress an increase in the cost required for manufacturing the hydraulic oil control valve 10. Further, since the sealing material or the like can be omitted, it is possible to suppress deterioration of the slidability of the spool 50 due to the protrusion of the sealing material or the like.
  • the outer sleeve 30 and the inner sleeve 40 are caused by the temperature rise of the hydraulic oil control valve 10 when the valve timing adjusting device 100 is driven.
  • the outer sleeve 30 is harder than the inner sleeve 40, the workability of the inner sleeve 40 can be improved while ensuring the fixing strength of the outer sleeve 30 to the end portion 321 of the cam shaft 320. Therefore, the workability of the ports SP1, SP2, 27, 28, 47 of the sleeve 20 can be improved, and it is possible to suppress the complexity of the manufacturing process for forming the ports SP1, SP2, 27, 28, 47. , The increase in manufacturing cost can be suppressed.
  • the outer sleeve 30 is made of iron and the inner sleeve 40 is made of aluminum, the linear expansion coefficient of the inner sleeve 40 is larger than the linear expansion coefficient of the outer sleeve 30, and the outer sleeve 30 is the inner sleeve.
  • a configuration harder than 40 can be easily realized at the same time.
  • the sleeve 20 has a double structure of the outer sleeve 30 and the inner sleeve 40, the hydraulic oil supply oil passage 25 can be easily realized by the radial gap between the outer sleeve 30 and the inner sleeve 40. Therefore, it is possible to suppress the application of hydraulic pressure to the spool 50 due to the supply of hydraulic oil, and it is possible to suppress deterioration of the slidability of the spool 50. Further, since the sleeve 20 has a double structure, the workability of each port SP1, SP2, 27, 28, 47 can be improved, and the manufacturing process can be suppressed from becoming complicated. Further, since such workability can be improved, the degree of freedom in designing each port SP1, SP2, 27, 28, 47 can be improved, and the mountability of the hydraulic oil control valve 10 and the valve timing adjusting device 100 can be improved.
  • the hydraulic oil control valve 10 of the second embodiment is different from the hydraulic oil control valve of the first embodiment in the dimensional relationship between the minimum clearance CL1 and the minimum clearance CL2. Since the other configurations are the same as those in the first embodiment, the same configurations are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the outer sleeve 30 and the spool 50 are each formed of iron and the inner sleeve 40 is formed of aluminum, as in the hydraulic oil control valve 10 of the first embodiment. Has been done. Therefore, the coefficient of linear expansion of the inner sleeve 40 is larger than the coefficient of linear expansion of the outer sleeve 30, and the inner sleeve 40 thermally expands more than the outer sleeve 30.
  • the linear expansion coefficient of the spool 50 is the same as the linear expansion coefficient of the outer sleeve 30, it is possible to suppress a change in the size of the minimum gap CL2 due to the temperature rise of the hydraulic oil control valve 10. Therefore, deterioration of the slidability of the spool 50 can be suppressed.
  • the phrase "the coefficient of linear expansion of the spool 50 is equivalent to the coefficient of linear expansion of the outer sleeve 30" is not limited to the case where the coefficient of linear expansion of the spool 50 matches the coefficient of linear expansion of the outer sleeve 30, for example, the outer sleeve 30.
  • the coefficient of linear expansion of the spool 50 may be in the range of plus or minus about 20% or less based on the coefficient of linear expansion of. Further, since the linear expansion coefficient of the spool 50 is smaller than the linear expansion coefficient of the inner sleeve 40, it is possible to prevent the minimum gap CL2 from being excessively reduced as the temperature of the hydraulic oil control valve 10 rises, and the spool 50 slides. The deterioration of sexuality can be suppressed.
  • the state in which the outer sleeve 30 is fastened to the end portion 321 of the cam shaft 320 is a subordinate concept of the present disclosure in which the predetermined conditions including the application of the axial force are satisfied. Equivalent to.
  • the outer sleeve 30 and the inner sleeve 40 come into contact with each other in the radial direction when the axial force is applied, so that the outer sleeve 30 and the inner sleeve 40 come into contact with each other. It is possible to suppress an increase in the amount of hydraulic oil leaking from the minimum radial gap CL1. Further, since the inner sleeve 40 can be suppressed from expanding in the radial direction due to the radial contact between the outer sleeve 30 and the inner sleeve 40, the minimum radial clearance CL2 between the inner sleeve 40 and the spool 50 is expanded.
  • the linear expansion coefficient of the spool 50 is the same as the linear expansion coefficient of the outer sleeve 30, it is possible to suppress the change in the size of the minimum gap CL2 due to the temperature rise of the hydraulic oil control valve 10, and the slidability of the spool 50. Deterioration can be suppressed.
  • the outer sleeve 30 and the spool 50 are formed of iron and the inner sleeve 40 is made of aluminum, the coefficient of linear expansion of the inner sleeve 40 is larger than the coefficient of linear expansion of the outer sleeve 30, and the wire of the spool 50. At the same time, it is possible to easily realize a configuration in which the expansion coefficient is equivalent to the linear expansion coefficient of the outer sleeve 30.
  • the spool 50 is made of iron, it is possible to suppress a decrease in the strength of the spool 50. Therefore, in the contact portion between the spool bottom 52 of the spool 50 and the shaft 164 of the solenoid 160, it is omitted to arrange a member different from the spool 50 in order to suppress wear due to rotation of the hydraulic oil control valve 10. it can. Therefore, it is possible to suppress an increase in the number of parts of the hydraulic oil control valve 10 and to prevent the assembly process from becoming complicated, so that it is possible to suppress an increase in the cost required for manufacturing the hydraulic oil control valve 10.
  • the hydraulic oil control valve 10 of the third embodiment is different from the hydraulic oil control valve of the second embodiment in the dimensional relationship between the minimum clearance CL1 and the minimum clearance CL2. Since other configurations are the same as those of the second embodiment, the same configurations are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the outer sleeve 30 and the inner sleeve 40 come into radial contact with each other as the temperature rises when the valve timing adjusting device 100 is driven.
  • the minimum radial clearance CL1 between the outer sleeve 30 and the inner sleeve 40 becomes zero as the temperature of the internal combustion engine 300 rises. Therefore, it is possible to suppress an increase in hydraulic oil leaking from the minimum radial gap CL1 between the outer sleeve 30 and the inner sleeve 40.
  • the temperature difference between the valve timing adjusting device 100 during driving and before driving may be, for example, 100 ° C. or lower, about 150 ° C., or 200 ° C. or higher.
  • the outer sleeve 30 and the spool 50 are each formed of iron and the inner sleeve 40 is formed of aluminum, as in the hydraulic oil control valve 10 of the second embodiment. Has been done. Therefore, the coefficient of linear expansion of the inner sleeve 40 is larger than the coefficient of linear expansion of the outer sleeve 30, and the inner sleeve 40 thermally expands more than the outer sleeve 30.
  • the linear expansion coefficient of the spool 50 is the same as the linear expansion coefficient of the outer sleeve 30, it is possible to suppress a change in the size of the minimum gap CL2 due to the temperature rise of the hydraulic oil control valve 10. Therefore, deterioration of the slidability of the spool 50 can be suppressed.
  • the state in which the temperature rises when the valve timing adjusting device 100 is driven is the environment of the environment in which the valve timing adjusting device is used more than before the axial force is applied and the axial force is applied in the present disclosure. It corresponds to the subordinate concept of a state in which predetermined conditions including that the temperature has risen are satisfied. Further, the temperature of the internal combustion engine 300 corresponds to a subordinate concept of the environmental temperature of the environment in which the valve timing adjusting device is used.
  • the same effect as that of the hydraulic oil control valve 10 of the second embodiment is obtained.
  • the outer sleeve 30 and the inner sleeve 40 come into contact with each other in the radial direction. It is possible to suppress excessive application of a radial load.
  • the outer sleeve 30 and the spool 50 are each made of iron, and the inner sleeve 40 is made of aluminum, but the present disclosure is not limited thereto.
  • the inner sleeve 40 may be formed of any other metal material, or may be formed of a resin material such as polyphenylene sulfide resin, nylon, or phenol resin, and is the same material as the outer sleeve 30 and the spool 50. It may be formed by.
  • the outer sleeve 30 can be easily configured to be harder than the inner sleeve 40.
  • the outer sleeve 30 and the spool 50 may be formed of any metal material such as stainless steel, or the outer sleeve 30 and the spool 50 may be formed of different materials.
  • the linear expansion coefficient of the inner sleeve 40 does not have to be larger than the linear expansion coefficient of the outer sleeve 30, and the outer sleeve 30 does not have to be harder than the inner sleeve 40.
  • the coefficient of linear expansion of the spool 50 does not have to be equal to the coefficient of linear expansion of the outer sleeve 30. Even with such a configuration, the same effect as that of each of the above-described embodiments can be obtained.
  • the magnitude relationship between the minimum clearance CL1 and the minimum clearance CL2 is maintained even in a state where an axial force is applied to the outer sleeve 30 and the camshaft 320 is fixed to the end portion 321. However, it does not have to be maintained. Even with such a configuration, the same effect as that of the first embodiment is obtained.
  • the configuration of the hydraulic oil control valve 10 in each of the above embodiments is merely an example and can be variously changed.
  • an opening 402 is formed at the end 401 of the inner sleeve 40a on the camshaft 320 side, and the tip of the spool 50a is formed in the opening 402.
  • the part 510 may be inserted.
  • the stopper 49 of the inner sleeve 40a may be omitted, and the stopper 85 may be formed at a position of the outer sleeve 30a facing the tip 510 of the spool 50.
  • the drain outflow portion 55a may be formed at the end of the outer sleeve 30a on the camshaft 320 side, and the inside of the shaft hole 34a on the camshaft 320 side of the stopper 85 is together with the inside of the spool 50. It may function as a drain oil passage 53a. Further, in such a configuration, a supply hole 328 for supplying hydraulic oil from the hydraulic oil supply source 350 shown in FIG. 1 may be formed in the main body portion 31a of the outer sleeve 30a.
  • the spool bottom 52a of the spool 50a may not protrude toward the solenoid 160 from the fixing member 70, and the enlarged diameter portion 36 of the outer sleeve 30a may be omitted, instead of the flange portion 46 of the inner sleeve 40a.
  • a locking end portion 46a having substantially the same outer diameter as the sealing wall 45 may be formed. Even with such a configuration, the same effect as that of each of the above-described embodiments can be obtained.
  • the recycling mechanism by the recycling port 47 may be omitted.
  • the inside of the spool 50 may be configured as the hydraulic oil supply oil passage 25, and the space between the shaft hole 34 of the outer sleeve 30 and the outer peripheral surface of the inner sleeve 40 is configured as the drain oil passage 53. You may be.
  • the fastening is not limited to the fastening of the male screw portion 33 and the female screw portion 324, and the axial force in the axial direction AD may be applied and fixed to the end portion 321 of the cam shaft 320 by any fixing method such as welding. ..
  • the solenoid 160 may be driven by any actuator such as an electric motor or an air cylinder. Even with such a configuration, the same effect as that of each of the above-described embodiments can be obtained.
  • the valve timing adjusting device 100 adjusts the valve timing of the intake valve 330 that opens and closes the cam shaft 320, but the valve timing of the exhaust valve 340 may be adjusted. Further, it may be used by being fixed to the end 321 of the camshaft 320 as the driven shaft in which power is transmitted from the crankshaft 310 as the drive shaft via the intermediate shaft, and the camshaft has a double structure. It may be used by being fixed to one end of a drive shaft and a driven shaft.
  • the present disclosure is not limited to each of the above-described embodiments, and can be realized with various configurations within a range not deviating from the purpose.
  • the technical features in each embodiment corresponding to the technical features in the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

A hydraulic oil control valve (10, 10a) arranged on a rotary shaft (AX) of a valve timing adjustment device (100) that adjusts the valve timing of a valve (330) that is driven to open and close by a driven shaft (320) to which power is transmitted from a drive shaft (310) includes a tubular sleeve (20) and a spool (50, 50a) that slides in the axial direction (AD) on the radially inner side of the sleeve, wherein the sleeve has an inner sleeve (40, 40a) arranged on the radially outer side of the sleeve, and an outer sleeve (30, 30a) that is arranged on the radially outer side of the inner sleeve and can be fixed to one shaft end by applying an axial force in the axial direction, and in a state where no axial force is applied, a minimum radial clearance (CL1) between the outer sleeve and the inner sleeve is larger than the minimum radial clearance (CL2) between the inner sleeve and the spool.

Description

作動油制御弁およびバルブタイミング調整装置Hydraulic oil control valve and valve timing adjuster 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年3月25日に出願された日本出願番号2019-055892号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-055892 filed on March 25, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、バルブタイミング調整装置に用いられる作動油制御弁に関する。 The present disclosure relates to a hydraulic oil control valve used in a valve timing adjusting device.
 従来から、内燃機関の吸気バルブや排気バルブのバルブタイミングを調整可能な、油圧式のバルブタイミング調整装置が知られている。油圧式のバルブタイミング調整装置において、ハウジング内でベーンロータが区画形成する各油圧室への作動油の供給および各油圧室からの作動油の排出は、ベーンロータの中央部に設けられた作動油制御弁により実現されることがある。特許文献1には、筒状のアウタースリーブとインナースリーブとの二重構造のスリーブを有し、アウタースリーブがカム軸の端部に締結され、インナースリーブの内側をスプールが摺動することにより油路を切り換える作動油制御弁が開示されている。 Conventionally, a hydraulic valve timing adjusting device that can adjust the valve timing of the intake valve and the exhaust valve of an internal combustion engine has been known. In the hydraulic valve timing adjusting device, the hydraulic oil is supplied to each hydraulic chamber formed by the vane rotor in the housing and the hydraulic oil is discharged from each hydraulic chamber, which is a hydraulic oil control valve provided in the center of the vane rotor. May be realized by. Patent Document 1 has a sleeve having a double structure of a tubular outer sleeve and an inner sleeve, the outer sleeve is fastened to the end of a camshaft, and the spool slides inside the inner sleeve to obtain oil. A hydraulic oil control valve that switches the path is disclosed.
特開2018-115618号公報Japanese Unexamined Patent Publication No. 2018-115618
 特許文献1に記載の作動油制御弁は、二重構造のスリーブを有するため、インナースリーブとスプールとの間に加えて、アウタースリーブとインナースリーブとの間からも作動油が漏れ出るおそれがある。このため、作動油制御弁全体として作動油の漏れ量が増加するおそれがある。そこで、本願発明の発明者は、かかる漏れ量の増加を抑制するために、アウタースリーブとインナースリーブとの間の径方向の隙間を縮小して設計することを想定した。しかしながら、アウタースリーブをカム軸の端部に締結すると、締結の軸力によってアウタースリーブが径方向に縮小し、それに起因してスプールの摺動性が悪化するおそれがあることを本願発明者は見出した。このため、スプールの摺動性の悪化を抑制しつつ作動油の漏れ量の増加を抑制できる技術が望まれている。 Since the hydraulic oil control valve described in Patent Document 1 has a sleeve having a double structure, hydraulic oil may leak not only between the inner sleeve and the spool but also between the outer sleeve and the inner sleeve. .. Therefore, the amount of hydraulic oil leaked from the hydraulic oil control valve as a whole may increase. Therefore, the inventor of the present invention envisions designing by reducing the radial gap between the outer sleeve and the inner sleeve in order to suppress such an increase in the amount of leakage. However, the inventor of the present application has found that when the outer sleeve is fastened to the end of the cam shaft, the outer sleeve shrinks in the radial direction due to the axial force of the fastening, and the slidability of the spool may deteriorate due to this. It was. Therefore, there is a demand for a technique capable of suppressing an increase in the amount of hydraulic oil leakage while suppressing deterioration of spool slidability.
 本開示は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。 This disclosure was made to solve at least a part of the above-mentioned problems, and can be realized in the following forms.
 本開示の一形態によれば、作動油制御弁が提供される。この作動油制御弁は、駆動軸と前記駆動軸から動力が伝達されてバルブを開閉駆動する従動軸とのうちの一方の軸の端部に固定され前記バルブのバルブタイミングを調整するバルブタイミング調整装置において、前記バルブタイミング調整装置の回転軸に配置されて用いられて、作動油供給源から供給される作動油の流動を制御する作動油制御弁であって、筒状のスリーブと、自身の一端に当接して配置されるアクチュエータにより駆動され、前記スリーブの径方向の内側を軸方向に摺動するスプールと、を備え、前記スリーブは、前記スプールの前記径方向の外側に配置されるインナースリーブと、前記軸方向に沿った軸孔が形成されたアウタースリーブであって、前記軸孔の前記軸方向における少なくとも一部に前記インナースリーブが挿入され、前記軸方向の軸力が加えられて前記一方の軸の端部に固定可能なアウタースリーブと、を有し、前記軸力が加えられていない状態において、前記アウタースリーブと前記インナースリーブとの間の前記径方向の最小隙間は、前記インナースリーブと前記スプールとの間の前記径方向の最小隙間よりも大きい。 According to one form of the present disclosure, a hydraulic oil control valve is provided. This hydraulic oil control valve is fixed to the end of one of the drive shaft and the driven shaft that drives the valve to open and close by transmitting power from the drive shaft, and adjusts the valve timing of the valve. In the device, it is a hydraulic oil control valve that is arranged and used on the rotating shaft of the valve timing adjusting device to control the flow of hydraulic oil supplied from the hydraulic oil supply source, and has a tubular sleeve and its own. A spool driven by an actuator arranged in contact with one end and sliding axially inside the sleeve in the radial direction, the sleeve being an inner arranged radially outside the spool. An outer sleeve in which a sleeve and a shaft hole along the axial direction are formed, the inner sleeve is inserted into at least a part of the shaft hole in the axial direction, and an axial force in the axial direction is applied. With an outer sleeve that can be fixed to the end of one of the shafts, and in a state where the axial force is not applied, the minimum radial gap between the outer sleeve and the inner sleeve is the said. It is larger than the minimum radial clearance between the inner sleeve and the spool.
 この形態の作動油制御弁によれば、軸力が加えられていない状態において、アウタースリーブとインナースリーブとの間の径方向の最小隙間が、インナースリーブとスプールとの間の径方向の最小隙間よりも大きい。一般に、スプールの摺動により油路を変更する作動油制御弁では、スプールのストロークに応じて軸方向に沿った異なる部分をシールする。このため、インナースリーブとスプールとの間の径方向の最小隙間における軸方向に沿った長さは、スプールのストロークよりも短く設定される。したがって、インナースリーブとスプールとの間の径方向の最小隙間からは、作動油の漏洩が発生しやすい。また、インナースリーブは、軸方向においてアウタースリーブに対して相対的に移動しない。このため、アウタースリーブとインナースリーブとの間の径方向の最小隙間における軸方向に沿った長さは、比較的長く設定される。したがって、アウタースリーブとインナースリーブとの間の径方向の最小隙間からは、作動油の漏洩が発生しにくい。これらのことから、作動油制御弁を固定する軸力に起因してアウタースリーブが弾性変形して径方向に縮小してもスプールの摺動性の悪化を抑制可能な径方向の隙間を確保した場合に、径方向の隙間の大小関係が本願とは異なる構成と比べて、作動油の漏れ量の増加を抑制できる。したがって、スプールの摺動性の悪化を抑制しつつ、作動油の漏れ量の増加を抑制できる。 According to the hydraulic oil control valve of this form, the minimum radial gap between the outer sleeve and the inner sleeve is the minimum radial gap between the inner sleeve and the spool when no axial force is applied. Greater than. Generally, in a hydraulic oil control valve that changes the oil passage by sliding the spool, different parts along the axial direction are sealed according to the stroke of the spool. Therefore, the length along the axial direction in the minimum radial gap between the inner sleeve and the spool is set shorter than the stroke of the spool. Therefore, hydraulic oil is likely to leak from the minimum radial gap between the inner sleeve and the spool. Further, the inner sleeve does not move relative to the outer sleeve in the axial direction. Therefore, the length along the axial direction in the minimum radial gap between the outer sleeve and the inner sleeve is set to be relatively long. Therefore, hydraulic oil is less likely to leak from the minimum radial gap between the outer sleeve and the inner sleeve. From these facts, we secured a radial gap that can suppress the deterioration of spool slidability even if the outer sleeve elastically deforms due to the axial force that fixes the hydraulic oil control valve and shrinks in the radial direction. In this case, it is possible to suppress an increase in the amount of hydraulic oil leakage as compared with a configuration in which the magnitude relationship of the radial gap is different from that of the present application. Therefore, it is possible to suppress an increase in the amount of hydraulic oil leakage while suppressing deterioration of spool slidability.
 本開示の他の形態によれば、作動油制御弁が提供される。この作動油制御弁は、駆動軸と前記駆動軸から動力が伝達されてバルブを開閉駆動する従動軸とのうちの一方の軸の端部に固定され前記バルブのバルブタイミングを調整するバルブタイミング調整装置において、前記バルブタイミング調整装置の回転軸に配置されて用いられて、作動油供給源から供給される作動油の流動を制御する作動油制御弁であって、筒状のスリーブと、自身の一端に当接して配置されるアクチュエータにより駆動され、前記スリーブの径方向の内側を軸方向に摺動するスプールと、を備え、前記スリーブは、前記スプールの前記径方向の外側に配置されるインナースリーブと、前記軸方向に沿った軸孔が形成されたアウタースリーブであって、前記軸孔の前記軸方向における少なくとも一部に前記インナースリーブが挿入され、前記軸方向の軸力が加えられて前記一方の軸の端部に固定可能なアウタースリーブと、を有し、前記軸力が加えられたことを含む予め定められた条件が満たされた状態において、前記アウタースリーブと前記インナースリーブとは、前記径方向に接触する。 According to another form of the present disclosure, a hydraulic oil control valve is provided. This hydraulic oil control valve is fixed to the end of one of the drive shaft and the driven shaft that drives the valve to open and close by transmitting power from the drive shaft, and adjusts the valve timing of the valve. In the device, it is a hydraulic oil control valve that is arranged and used on the rotating shaft of the valve timing adjusting device to control the flow of hydraulic oil supplied from the hydraulic oil supply source, and has a tubular sleeve and its own. A spool driven by an actuator arranged in contact with one end and sliding axially inside the sleeve in the radial direction, the sleeve being an inner arranged radially outside the spool. An outer sleeve in which a sleeve and a shaft hole along the axial direction are formed, the inner sleeve is inserted into at least a part of the shaft hole in the axial direction, and an axial force in the axial direction is applied. The outer sleeve and the inner sleeve have an outer sleeve that can be fixed to the end of one of the shafts, and the outer sleeve and the inner sleeve are in a state where predetermined conditions including the application of the axial force are satisfied. , Contact in the radial direction.
 この形態の作動油制御弁によれば、軸力が加えられたことを含む予め定められた条件が満たされた状態においてアウタースリーブとインナースリーブとが径方向に接触するので、アウタースリーブとインナースリーブとの径方向の隙間から漏洩する作動油の量の増加を抑制できる。また、アウタースリーブとインナースリーブとの径方向の接触により、インナースリーブが径方向に膨張することを抑制できるので、インナースリーブとスプールとの径方向の隙間が拡大することを抑制でき、かかる隙間から漏洩する作動油の量が増加することを抑制できる。したがって、スプールの摺動性の悪化を抑制可能なインナースリーブとスプールとの径方向の最小隙間を確保した構成においても作動油の漏れ量の増加を抑制できるので、スプールの摺動性の悪化を抑制しつつ作動油の漏れ量の増加を抑制できる。 According to the hydraulic oil control valve of this form, the outer sleeve and the inner sleeve come into radial contact with each other in a state where predetermined conditions including the application of axial force are satisfied, so that the outer sleeve and the inner sleeve come into contact with each other in the radial direction. It is possible to suppress an increase in the amount of hydraulic oil leaking from the radial gap between the two. Further, since the inner sleeve can be suppressed from expanding in the radial direction due to the radial contact between the outer sleeve and the inner sleeve, it is possible to suppress the expansion of the radial gap between the inner sleeve and the spool, and the gap between the inner sleeve and the spool can be prevented from expanding. It is possible to suppress an increase in the amount of hydraulic oil that leaks. Therefore, even in a configuration in which a minimum radial gap between the inner sleeve and the spool, which can suppress deterioration of spool slidability, can be suppressed, an increase in hydraulic oil leakage amount can be suppressed, so that spool slidability deteriorates. It is possible to suppress an increase in the amount of hydraulic oil leakage while suppressing it.
 本開示は、種々の形態で実現することも可能である。例えば、作動油制御弁の製造方法、作動油制御弁を備えるバルブタイミング調整装置、かかるバルブタイミング調整装置の製造方法等の形態で実現することができる。 This disclosure can also be realized in various forms. For example, it can be realized in the form of a method for manufacturing a hydraulic oil control valve, a valve timing adjusting device including a hydraulic oil control valve, a method for manufacturing such a valve timing adjusting device, and the like.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の作動油制御弁を備えるバルブタイミング調整装置の概略構成を示す断面図であり、 図2は、図1のII-II線に沿った断面を示す断面図であり、 図3は、作動油制御弁の詳細構成を示す断面図であり、 図4は、作動油制御弁の詳細構成を分解して示す分解斜視図であり、 図5は、スプールがストッパに当接した状態を示す断面図であり、 図6は、スプールが摺動範囲の略中央に位置する状態を示す断面図であり、 図7は、他の実施形態3の作動油制御弁の概略構成を示す断面図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a cross-sectional view showing a schematic configuration of a valve timing adjusting device including the hydraulic oil control valve of the first embodiment. FIG. 2 is a cross-sectional view showing a cross section taken along the line II-II of FIG. FIG. 3 is a cross-sectional view showing a detailed configuration of the hydraulic oil control valve. FIG. 4 is an exploded perspective view showing the detailed configuration of the hydraulic oil control valve in an exploded manner. FIG. 5 is a cross-sectional view showing a state in which the spool is in contact with the stopper. FIG. 6 is a cross-sectional view showing a state in which the spool is located substantially in the center of the sliding range. FIG. 7 is a cross-sectional view showing a schematic configuration of the hydraulic oil control valve of another embodiment 3.
A.第1実施形態:
A-1.装置構成:
 図1に示すバルブタイミング調整装置100は、図示しない車両が備える内燃機関300において、クランク軸310から動力が伝達されるカム軸320により開閉駆動されるバルブのバルブタイミングを調整する。バルブタイミング調整装置100は、クランク軸310からカム軸320までの動力伝達経路に設けられている。より具体的には、バルブタイミング調整装置100は、カム軸320の回転軸AXに沿った方向(以下、「軸方向AD」とも呼ぶ)において、カム軸320の端部321に固定配置されている。バルブタイミング調整装置100の回転軸AXは、カム軸320の回転軸AXとほぼ一致している。本実施形態のバルブタイミング調整装置100は、バルブとしての吸気弁330と排気弁340とのうち、吸気弁330のバルブタイミングを調整する。
A. First Embodiment:
A-1. Device configuration:
The valve timing adjusting device 100 shown in FIG. 1 adjusts the valve timing of a valve driven to open and close by a camshaft 320 to which power is transmitted from a crankshaft 310 in an internal combustion engine 300 included in a vehicle (not shown). The valve timing adjusting device 100 is provided in the power transmission path from the crankshaft 310 to the camshaft 320. More specifically, the valve timing adjusting device 100 is fixedly arranged at the end portion 321 of the cam shaft 320 in the direction along the rotation axis AX of the cam shaft 320 (hereinafter, also referred to as “axial direction AD”). .. The rotation shaft AX of the valve timing adjusting device 100 substantially coincides with the rotation shaft AX of the cam shaft 320. The valve timing adjusting device 100 of the present embodiment adjusts the valve timing of the intake valve 330 among the intake valve 330 and the exhaust valve 340 as valves.
 カム軸320の端部321には、軸穴部322と、供給穴部326とが形成されている。軸穴部322は、軸方向ADに形成されている。軸穴部322の内周面には、後述する作動油制御弁10を固定するための軸固定部323が形成されている。軸固定部323には、雌ねじ部324が形成されている。雌ねじ部324は、作動油制御弁10の固定部32に形成された雄ねじ部33と螺合する。供給穴部326は、径方向に形成され、カム軸320の外周面と軸穴部322を連通させている。供給穴部326には、作動油供給源350から作動油が供給される。作動油供給源350は、オイルポンプ351とオイルパン352とを有する。オイルポンプ351は、オイルパン352に貯留されている作動油を汲み上げる。 A shaft hole portion 322 and a supply hole portion 326 are formed at the end portion 321 of the cam shaft 320. The shaft hole portion 322 is formed in the axial direction AD. A shaft fixing portion 323 for fixing the hydraulic oil control valve 10, which will be described later, is formed on the inner peripheral surface of the shaft hole portion 322. A female screw portion 324 is formed on the shaft fixing portion 323. The female screw portion 324 is screwed with the male screw portion 33 formed in the fixing portion 32 of the hydraulic oil control valve 10. The supply hole portion 326 is formed in the radial direction and communicates the outer peripheral surface of the cam shaft 320 with the shaft hole portion 322. Hydraulic oil is supplied to the supply hole portion 326 from the hydraulic oil supply source 350. The hydraulic oil supply source 350 has an oil pump 351 and an oil pan 352. The oil pump 351 pumps the hydraulic oil stored in the oil pan 352.
 図1および図2に示すように、バルブタイミング調整装置100は、ハウジング120と、ベーンロータ130と、作動油制御弁10とを備える。図2では、作動油制御弁10の図示を省略している。 As shown in FIGS. 1 and 2, the valve timing adjusting device 100 includes a housing 120, a vane rotor 130, and a hydraulic oil control valve 10. In FIG. 2, the hydraulic oil control valve 10 is not shown.
 図1に示すように、ハウジング120は、スプロケット121と、ケース122とを有する。スプロケット121は、カム軸320の端部321に嵌合され、回転可能に支持されている。スプロケット121には、後述するロックピン150と対応する位置に嵌入凹部128が形成されている。スプロケット121には、クランク軸310のスプロケット311とともに、環状のタイミングチェーン360が掛け渡されている。スプロケット121は、複数のボルト129によってケース122と固定されている。このため、ハウジング120は、クランク軸310と連動して回転する。ケース122は、有底筒状の外観形状を有し、スプロケット121により開口端が塞がれている。図2に示すように、ケース122は、径方向内側に向かって周方向に互いに並んで形成された複数の隔壁部123を有する。周方向において互いに隣り合う各隔壁部123間は、それぞれ油圧室140として機能する。図1に示すように、ケース122の底部の中央部には、開口部124が形成されている。 As shown in FIG. 1, the housing 120 has a sprocket 121 and a case 122. The sprocket 121 is fitted to the end 321 of the cam shaft 320 and is rotatably supported. The sprocket 121 is formed with a fitting recess 128 at a position corresponding to the lock pin 150 described later. An annular timing chain 360 is hung on the sprocket 121 together with the sprocket 311 of the crankshaft 310. The sprocket 121 is fixed to the case 122 by a plurality of bolts 129. Therefore, the housing 120 rotates in conjunction with the crankshaft 310. The case 122 has a bottomed tubular appearance shape, and the opening end is closed by the sprocket 121. As shown in FIG. 2, the case 122 has a plurality of partition walls 123 formed side by side in the circumferential direction toward the inside in the radial direction. The partition walls 123 adjacent to each other in the circumferential direction function as hydraulic chambers 140, respectively. As shown in FIG. 1, an opening 124 is formed in the central portion of the bottom of the case 122.
 ベーンロータ130は、ハウジング120の内部に収容され、後述する作動油制御弁10から供給される作動油の油圧に応じて、ハウジング120に対して遅角方向または進角方向へ相対回転する。このため、ベーンロータ130は、駆動軸に対する従動軸の位相を変換する位相変換部として機能する。ベーンロータ130は、複数のベーン131と、ボス135とを有する。 The vane rotor 130 is housed inside the housing 120 and rotates relative to the housing 120 in the retard or advance direction according to the hydraulic pressure of the hydraulic oil supplied from the hydraulic oil control valve 10 described later. Therefore, the vane rotor 130 functions as a phase conversion unit that converts the phase of the driven shaft with respect to the drive shaft. The vane rotor 130 has a plurality of vanes 131 and a boss 135.
 図2に示すように、複数のベーン131は、ベーンロータ130の中央部に位置するボス135から径方向外側に向かってそれぞれ突出し、周方向に互いに並んで形成されている。各ベーン131は、各油圧室140にそれぞれ収容され、各油圧室140を周方向において遅角室141と進角室142とに区画している。遅角室141は、ベーン131に対して周方向の一方に位置する。進角室142は、ベーン131に対して周方向の他方に位置する。複数のベーン131のうちの1つには、軸方向に収容穴部132が形成されている。収容穴部132は、ベーン131に形成された遅角室側ピン制御油路133を介して遅角室141と連通し、進角室側ピン制御油路134を介して進角室142と連通している。収容穴部132には、軸方向ADに往復動可能なロックピン150が配置されている。ロックピン150は、ハウジング120に対するベーンロータ130の相対回転を規制し、油圧が不十分な状態においてハウジング120とベーンロータ130とが周方向に衝突することを抑制する。ロックピン150は、スプリング151により、スプロケット121に形成された嵌入凹部128側へと軸方向ADに付勢されている。 As shown in FIG. 2, the plurality of vanes 131 project radially outward from the boss 135 located at the center of the vane rotor 130, and are formed side by side in the circumferential direction. Each vane 131 is housed in each hydraulic chamber 140, and each hydraulic chamber 140 is divided into a retard chamber 141 and an advance chamber 142 in the circumferential direction. The retard chamber 141 is located on one side in the circumferential direction with respect to the vane 131. The advance chamber 142 is located on the other side of the vane 131 in the circumferential direction. A housing hole 132 is formed in one of the plurality of vanes 131 in the axial direction. The accommodating hole 132 communicates with the retard chamber 141 via the retard chamber side pin control oil passage 133 formed in the vane 131, and communicates with the advance chamber 142 via the advance chamber side pin control oil passage 134. are doing. A lock pin 150 capable of reciprocating in the axial direction AD is arranged in the accommodating hole 132. The lock pin 150 regulates the relative rotation of the vane rotor 130 with respect to the housing 120 and prevents the housing 120 and the vane rotor 130 from colliding in the circumferential direction when the hydraulic pressure is insufficient. The lock pin 150 is urged in the axial direction AD toward the fitting recess 128 formed in the sprocket 121 by the spring 151.
 ボス135は、筒状の外観形状を有し、カム軸320の端部321に固定されている。したがってボス135が形成されているベーンロータ130は、カム軸320の端部321に固定されて、カム軸320と一体に回転する。ボス135の中央部には、軸方向ADに貫通する貫通孔136が形成されている。貫通孔136には、作動油制御弁10が配置される。ボス135には、複数の遅角油路137と複数の進角油路138とが、径方向に貫通して形成されている。各遅角油路137と各進角油路138とは、軸方向ADにおいて互いに並んで形成されている。各遅角油路137は、後述する作動油制御弁10の遅角ポート27と遅角室141を連通させている。各進角油路138は、後述する作動油制御弁10の進角ポート28と進角室142を連通させている。貫通孔136において、各遅角油路137と各進角油路138との間は、後述する作動油制御弁10のアウタースリーブ30によってシールされている。 The boss 135 has a tubular appearance shape and is fixed to the end portion 321 of the cam shaft 320. Therefore, the vane rotor 130 on which the boss 135 is formed is fixed to the end portion 321 of the cam shaft 320 and rotates integrally with the cam shaft 320. A through hole 136 penetrating in the axial direction AD is formed in the central portion of the boss 135. A hydraulic oil control valve 10 is arranged in the through hole 136. A plurality of retard angle oil passages 137 and a plurality of advance angle oil passages 138 are formed in the boss 135 so as to penetrate in the radial direction. Each retarded oil passage 137 and each advanced angle oil passage 138 are formed side by side in the axial direction AD. Each retarded oil passage 137 communicates the retarded port 27 of the hydraulic oil control valve 10, which will be described later, with the retarded chamber 141. Each advance angle oil passage 138 communicates the advance angle port 28 of the hydraulic oil control valve 10, which will be described later, with the advance angle chamber 142. In the through hole 136, each retard oil passage 137 and each advance angle oil passage 138 are sealed by an outer sleeve 30 of a hydraulic oil control valve 10 described later.
 本実施形態において、ベーンロータ130は、アルミニウム合金により形成されているが、アルミニウム合金に限らず、鉄やステンレス鋼等の任意の金属材料や樹脂材料等により形成されていてもよい。 In the present embodiment, the vane rotor 130 is formed of an aluminum alloy, but is not limited to the aluminum alloy, and may be formed of any metal material such as iron or stainless steel, a resin material, or the like.
 図1に示すように、作動油制御弁10は、バルブタイミング調整装置100の回転軸AXに配置されて用いられ、作動油供給源350から供給される作動油の流動を制御する。作動油制御弁10の動作は、内燃機関300の全体動作を制御する図示しないECUからの指示により制御される。作動油制御弁10は、軸方向ADにおいてカム軸320側とは反対側に配置されたソレノイド160により駆動される。ソレノイド160は、電磁部162とシャフト164とを有する。ソレノイド160は、上述のECUの指示による電磁部162への通電によって、軸方向ADにシャフト164を変位させることにより、後述する作動油制御弁10のスプール50を、バネ60の付勢力に抗してカム軸320側へと押圧する。後述するように、押圧によってスプール50が軸方向ADに摺動することで、遅角室141に連通する油路と進角室142に連通する油路とを切り替えることができる。 As shown in FIG. 1, the hydraulic oil control valve 10 is arranged and used on the rotary shaft AX of the valve timing adjusting device 100, and controls the flow of hydraulic oil supplied from the hydraulic oil supply source 350. The operation of the hydraulic oil control valve 10 is controlled by an instruction from an ECU (not shown) that controls the overall operation of the internal combustion engine 300. The hydraulic oil control valve 10 is driven by a solenoid 160 arranged on the side opposite to the cam shaft 320 side in the axial direction AD. The solenoid 160 has an electromagnetic unit 162 and a shaft 164. The solenoid 160 displaces the shaft 164 in the axial direction AD by energizing the electromagnetic unit 162 according to the instruction of the ECU described above, thereby causing the spool 50 of the hydraulic oil control valve 10 described later to resist the urging force of the spring 60. Presses toward the cam shaft 320 side. As will be described later, the spool 50 slides in the axial direction AD by pressing, so that the oil passage communicating with the retard chamber 141 and the oil passage communicating with the advance chamber 142 can be switched.
 図3および図4に示すように、作動油制御弁10は、スリーブ20と、スプール50と、バネ60と、固定部材70と、チェック弁90とを備える。なお、図3では、回転軸AXに沿った断面を示している。 As shown in FIGS. 3 and 4, the hydraulic oil control valve 10 includes a sleeve 20, a spool 50, a spring 60, a fixing member 70, and a check valve 90. Note that FIG. 3 shows a cross section along the rotation axis AX.
 スリーブ20は、アウタースリーブ30と、インナースリーブ40とを有する。アウタースリーブ30とインナースリーブ40とは、いずれも略筒状の外観形状を有する。スリーブ20は、アウタースリーブ30に形成された軸孔34にインナースリーブ40が挿入された概略構成を有する。 The sleeve 20 has an outer sleeve 30 and an inner sleeve 40. Both the outer sleeve 30 and the inner sleeve 40 have a substantially tubular appearance shape. The sleeve 20 has a schematic configuration in which the inner sleeve 40 is inserted into the shaft hole 34 formed in the outer sleeve 30.
 アウタースリーブ30は、作動油制御弁10の外郭を構成し、インナースリーブ40の径方向外側に配置されている。アウタースリーブ30は、本体部31と、固定部32と、突出部35と、拡径部36と、移動規制部80と、工具係合部38とを有する。本体部31と固定部32とには、軸方向ADに沿った軸孔34が形成されている。軸孔34は、アウタースリーブ30を軸方向ADに貫通して形成されている。 The outer sleeve 30 constitutes the outer shell of the hydraulic oil control valve 10 and is arranged on the outer side in the radial direction of the inner sleeve 40. The outer sleeve 30 has a main body portion 31, a fixing portion 32, a protruding portion 35, a diameter-expanding portion 36, a movement restricting portion 80, and a tool engaging portion 38. A shaft hole 34 along the axial direction AD is formed in the main body portion 31 and the fixed portion 32. The shaft hole 34 is formed so as to penetrate the outer sleeve 30 in the axial direction AD.
 本体部31は、筒状の外観形状を有し、図1に示すようにベーン131の貫通孔136に配置されている。図4に示すように、本体部31には、複数のアウター遅角ポート21と複数のアウター進角ポート22とが形成されている。複数のアウター遅角ポート21は、周方向に互いに並んで形成され、それぞれ本体部31の外周面と軸孔34を連通させている。複数のアウター進角ポート22は、軸方向ADにおいてアウター遅角ポート21よりもソレノイド160側にそれぞれ形成されている。複数のアウター進角ポート22は、周方向に互いに並んで形成され、それぞれ本体部31の外周面と軸孔34を連通させている。 The main body 31 has a tubular external shape and is arranged in the through hole 136 of the vane 131 as shown in FIG. As shown in FIG. 4, a plurality of outer retard angle ports 21 and a plurality of outer advance angle ports 22 are formed in the main body 31. The plurality of outer retard angle ports 21 are formed side by side in the circumferential direction, and each communicates the outer peripheral surface of the main body 31 with the shaft hole 34. The plurality of outer advance angle ports 22 are formed on the solenoid 160 side of the outer retard angle port 21 in the axial direction AD. The plurality of outer advance angle ports 22 are formed side by side in the circumferential direction, and each communicates the outer peripheral surface of the main body 31 with the shaft hole 34.
 固定部32は、筒状の外観形状を有し、軸方向ADにおいて本体部31と連なって形成されている。固定部32は、本体部31と略同じ径に形成され、図1に示すようにカム軸320の軸固定部323に挿入されている。固定部32には、雄ねじ部33が形成されている。雄ねじ部33は、軸固定部323に形成された雌ねじ部324と螺合する。アウタースリーブ30は、雄ねじ部33と雌ねじ部324との締結により、カム軸320側へと向かう軸方向ADの軸力が加えられてカム軸320の端部321に固定可能に構成されている。軸力が加えられて固定されることにより、吸気弁330を押すことによるカム軸320の偏心力によって作動油制御弁10とカム軸320の端部321とがずれることを抑制でき、作動油が漏れることを抑制できる。 The fixed portion 32 has a tubular appearance shape, and is formed so as to be connected to the main body portion 31 in the axial direction AD. The fixing portion 32 is formed to have substantially the same diameter as the main body portion 31, and is inserted into the shaft fixing portion 323 of the cam shaft 320 as shown in FIG. A male screw portion 33 is formed on the fixing portion 32. The male screw portion 33 is screwed with the female screw portion 324 formed on the shaft fixing portion 323. The outer sleeve 30 is configured so that it can be fixed to the end portion 321 of the cam shaft 320 by applying an axial force in the axial direction AD toward the cam shaft 320 side by fastening the male screw portion 33 and the female screw portion 324. By applying axial force and fixing, it is possible to prevent the hydraulic oil control valve 10 and the end 321 of the cam shaft 320 from being displaced due to the eccentric force of the cam shaft 320 by pushing the intake valve 330, and the hydraulic oil Leakage can be suppressed.
 突出部35は、本体部31から径方向外側に突出して形成されている。図1に示すように、突出部35は、ベーンロータ130をカム軸320の端部321との間で軸方向ADに挟み込む。 The protruding portion 35 is formed so as to protrude outward in the radial direction from the main body portion 31. As shown in FIG. 1, the protruding portion 35 sandwiches the vane rotor 130 with the end portion 321 of the cam shaft 320 in the axial direction AD.
 図3に示すように、本体部31のうちソレノイド160側の端部には、拡径部36が形成されている。拡径部36は、本体部31の他部分に比べて内径が拡大して形成されている。拡径部36には、後述するインナースリーブ40の鍔部46が配置される。 As shown in FIG. 3, a diameter-expanded portion 36 is formed at the end of the main body 31 on the solenoid 160 side. The diameter-expanded portion 36 is formed so that the inner diameter is enlarged as compared with other portions of the main body portion 31. The flange portion 46 of the inner sleeve 40, which will be described later, is arranged in the enlarged diameter portion 36.
 移動規制部80は、アウタースリーブ30の内周面において拡径部36によって形成される径方向の段差として構成されている。移動規制部80は、固定部材70との間において、後述するインナースリーブ40の鍔部46を軸方向ADに挟み込む。これにより、移動規制部80は、軸方向ADに沿ったソレノイド160の電磁部162から遠ざかる方向へのインナースリーブ40の移動を規制する。 The movement restricting portion 80 is configured as a step in the radial direction formed by the enlarged diameter portion 36 on the inner peripheral surface of the outer sleeve 30. The movement restricting portion 80 sandwiches the flange portion 46 of the inner sleeve 40, which will be described later, with the fixing member 70 in the axial direction AD. As a result, the movement restricting unit 80 restricts the movement of the inner sleeve 40 in the direction away from the electromagnetic unit 162 of the solenoid 160 along the axial direction AD.
 工具係合部38は、軸方向ADにおいて突出部35よりもソレノイド160側に形成されている。工具係合部38は、図示しない六角ソケット等の工具と係合可能に構成され、アウタースリーブ30を含む作動油制御弁10をカム軸320の端部321に締結固定するために用いられる。 The tool engaging portion 38 is formed on the solenoid 160 side of the protruding portion 35 in the axial direction AD. The tool engaging portion 38 is configured to be engageable with a tool such as a hexagon socket (not shown), and is used for fastening and fixing the hydraulic oil control valve 10 including the outer sleeve 30 to the end portion 321 of the cam shaft 320.
 インナースリーブ40は、筒部41と、底部42と、複数の遅角側突出壁43と、複数の進角側突出壁44と、封止壁45と、鍔部46と、ストッパ49とを有する。 The inner sleeve 40 has a tubular portion 41, a bottom portion 42, a plurality of retard side protrusion walls 43, a plurality of advance angle side protrusion walls 44, a sealing wall 45, a flange portion 46, and a stopper 49. ..
 筒部41は、略筒状の外観形状を有し、アウタースリーブ30の本体部31と固定部32とに亘ってアウタースリーブ30の径方向内側に位置している。図3および図4に示すように、筒部41には、遅角側供給ポートSP1と、進角側供給ポートSP2と、リサイクルポート47とがそれぞれ形成されている。遅角側供給ポートSP1は、軸方向ADにおいて遅角側突出壁43よりも底部42側に形成され、筒部41の外周面と内周面を連通させている。本実施形態において、遅角側供給ポートSP1は、周方向の半周に亘って複数並んで形成されているが、全周に亘って形成されていてもよく、単数であってもよい。進角側供給ポートSP2は、軸方向ADにおいて進角側突出壁44よりもソレノイド160側に形成され、筒部41の外周面と内周面を連通させている。本実施形態において、進角側供給ポートSP2は、周方向の半周に亘って複数並んで形成されているが、全周に亘って形成されていてもよく、単数であってもよい。遅角側供給ポートSP1と進角側供給ポートSP2とは、図1に示すカム軸320の軸穴部322とそれぞれ連通している。図3および図4に示すように、リサイクルポート47は、軸方向ADにおいて遅角側突出壁43と進角側突出壁44との間に形成され、筒部41の外周面と内周面を連通させている。リサイクルポート47は、遅角側供給ポートSP1および進角側供給ポートSP2とそれぞれ連通している。具体的には、リサイクルポート47は、アウタースリーブ30の本体部31の内周面とインナースリーブ40の筒部41の外周面との間の空間であって、周方向に互いに隣り合う遅角側突出壁43の間および周方向に互いに隣り合う進角側突出壁44の間の空間により、各供給ポートSP1、SP2と連通している。このため、リサイクルポート47は、遅角室141および進角室142から排出された作動油を供給側へと戻すリサイクル機構として機能する。本実施形態において、リサイクルポート47は、周方向に複数並んで形成されているが、単数であってもよい。なお、スプール50の摺動による油路の切り替え動作を含めたバルブタイミング調整装置100の動作については、後述する。 The tubular portion 41 has a substantially tubular external shape, and is located inside the outer sleeve 30 in the radial direction over the main body portion 31 and the fixing portion 32 of the outer sleeve 30. As shown in FIGS. 3 and 4, the tubular portion 41 is formed with a retard side supply port SP1, an advance angle side supply port SP2, and a recycling port 47, respectively. The retard angle side supply port SP1 is formed on the bottom portion 42 side of the retard angle side protruding wall 43 in the axial direction AD, and communicates the outer peripheral surface and the inner peripheral surface of the tubular portion 41. In the present embodiment, a plurality of retard angle side supply ports SP1 are formed side by side over a half circumference in the circumferential direction, but may be formed over the entire circumference or may be a single number. The advance angle side supply port SP2 is formed on the solenoid 160 side of the advance angle side protrusion wall 44 in the axial direction AD, and communicates the outer peripheral surface and the inner peripheral surface of the tubular portion 41. In the present embodiment, a plurality of advance angle side supply ports SP2 are formed side by side over a half circumference in the circumferential direction, but may be formed over the entire circumference or may be a single number. The retard side supply port SP1 and the advance angle side supply port SP2 communicate with each other with the shaft hole portion 322 of the camshaft 320 shown in FIG. As shown in FIGS. 3 and 4, the recycling port 47 is formed between the retard side protruding wall 43 and the advance side protruding wall 44 in the axial direction AD, and forms the outer peripheral surface and the inner peripheral surface of the tubular portion 41. I'm communicating. The recycle port 47 communicates with the retard side supply port SP1 and the advance angle side supply port SP2, respectively. Specifically, the recycling port 47 is a space between the inner peripheral surface of the main body 31 of the outer sleeve 30 and the outer peripheral surface of the tubular portion 41 of the inner sleeve 40, and is a retarded side adjacent to each other in the circumferential direction. The spaces between the projecting walls 43 and the advancing side projecting walls 44 adjacent to each other in the circumferential direction communicate with the supply ports SP1 and SP2. Therefore, the recycling port 47 functions as a recycling mechanism for returning the hydraulic oil discharged from the retard chamber 141 and the advance chamber 142 to the supply side. In the present embodiment, a plurality of recycling ports 47 are formed side by side in the circumferential direction, but may be a single number. The operation of the valve timing adjusting device 100 including the operation of switching the oil passage by sliding the spool 50 will be described later.
 図3に示すように、底部42は、筒部41と一体に形成され、筒部41の軸方向ADにおけるソレノイド160側とは反対側(以下、説明の便宜上「カム軸320側」とも呼ぶ)の端部を塞いでいる。底部42には、バネ60の一端が当接している。 As shown in FIG. 3, the bottom portion 42 is formed integrally with the tubular portion 41 and is opposite to the solenoid 160 side in the axial direction AD of the tubular portion 41 (hereinafter, also referred to as “camshaft 320 side” for convenience of explanation). It is blocking the end of the. One end of the spring 60 is in contact with the bottom portion 42.
 図4に示すように、複数の遅角側突出壁43は、筒部41から径方向外側に突出するように、周方向に互いに並んで形成されている。周方向に互いに隣り合う遅角側突出壁43の間は、図1に示すカム軸320の軸穴部322と連通しており、作動油供給源350から供給される作動油が流通する。図3および図4に示すように、各遅角側突出壁43には、それぞれインナー遅角ポート23が形成されている。各インナー遅角ポート23は、それぞれ遅角側突出壁43の外周面と内周面を連通させている。図3に示すように、各インナー遅角ポート23は、それぞれアウタースリーブ30に形成された各アウター遅角ポート21と連通する。インナー遅角ポート23の軸線は、アウター遅角ポート21の軸線と軸方向ADにおいてずれている。 As shown in FIG. 4, the plurality of retard angle side projecting walls 43 are formed side by side in the circumferential direction so as to project radially outward from the tubular portion 41. The retarded-angle side protruding walls 43 adjacent to each other in the circumferential direction communicate with the shaft hole portion 322 of the cam shaft 320 shown in FIG. 1, and the hydraulic oil supplied from the hydraulic oil supply source 350 flows through. As shown in FIGS. 3 and 4, an inner retard angle port 23 is formed on each retard angle side projecting wall 43. Each inner retard angle port 23 communicates with the outer peripheral surface and the inner peripheral surface of the retard angle side protruding wall 43, respectively. As shown in FIG. 3, each inner retard angle port 23 communicates with each outer retard angle port 21 formed on the outer sleeve 30. The axis of the inner retard port 23 deviates from the axis of the outer retard port 21 in the axial direction AD.
 図4に示すように、複数の進角側突出壁44は、それぞれ軸方向ADにおいて遅角側突出壁43よりもソレノイド160側に形成されている。複数の進角側突出壁44は、筒部41から径方向外側に突出するように、周方向に互いに並んで形成されている。周方向に互いに隣り合う進角側突出壁44の間は、図1に示す軸穴部322と連通しており、作動油供給源350から供給される作動油が流通する。図3および図4に示すように、各進角側突出壁44には、それぞれインナー進角ポート24が形成されている。各インナー進角ポート24は、それぞれ進角側突出壁44の外周面と内周面を連通させている。図3に示すように、各インナー進角ポート24は、それぞれアウタースリーブ30に形成された各アウター進角ポート22と連通する。インナー進角ポート24の軸線は、アウター進角ポート22の軸線と軸方向ADにおいてずれている。 As shown in FIG. 4, each of the plurality of advance angle side protrusion walls 44 is formed on the solenoid 160 side of the retard angle side protrusion wall 43 in the axial direction AD. The plurality of advance angle side projecting walls 44 are formed so as to project radially outward from the tubular portion 41 so as to be arranged side by side in the circumferential direction. The advance angle side protruding walls 44 adjacent to each other in the circumferential direction communicate with the shaft hole portion 322 shown in FIG. 1, and the hydraulic oil supplied from the hydraulic oil supply source 350 flows through. As shown in FIGS. 3 and 4, an inner advance port 24 is formed on each advance side protruding wall 44. Each inner advance port 24 communicates the outer peripheral surface and the inner peripheral surface of the advance side protruding wall 44, respectively. As shown in FIG. 3, each inner advance port 24 communicates with each outer advance port 22 formed on the outer sleeve 30. The axis of the inner advance port 24 is deviated from the axis of the outer advance port 22 in the axial direction AD.
 封止壁45は、軸方向ADにおける進角側供給ポートSP2よりもソレノイド160側において、筒部41の全周に亘って径方向外側に向かって突出して形成されている。封止壁45は、アウタースリーブ30の本体部31の内周面とインナースリーブ40の筒部41の外周面とをシールすることにより、後述する作動油供給油路25を流通する作動油がソレノイド160側へと漏れることを抑制する。封止壁45の外径は、遅角側突出壁43および進角側突出壁44の外径と略同じに形成されている。 The sealing wall 45 is formed so as to project outward in the radial direction over the entire circumference of the tubular portion 41 on the solenoid 160 side of the advance angle side supply port SP2 in the axial direction AD. The sealing wall 45 seals the inner peripheral surface of the main body 31 of the outer sleeve 30 and the outer peripheral surface of the tubular portion 41 of the inner sleeve 40, so that the hydraulic oil flowing through the hydraulic oil supply oil passage 25 described later is a solenoid. Suppresses leakage to the 160 side. The outer diameter of the sealing wall 45 is formed to be substantially the same as the outer diameter of the retard side protruding wall 43 and the advance side protruding wall 44.
 鍔部46は、インナースリーブ40のソレノイド160側の端部において、筒部41の全周に亘って径方向外側に向かって突出して形成されている。鍔部46は、アウタースリーブ30の拡径部36に配置されている。図4に示すように、鍔部46には、複数の嵌合部48が形成されている。複数の嵌合部48は、鍔部46の外縁部において周方向に互いに並んで形成されている。本実施形態において、各嵌合部48は、鍔部46の外縁部が直線状に切り落とされて形成されているが、直線状に限らず曲線状に形成されていてもよい。各嵌合部48は、後述する固定部材70の各嵌合突起部73とそれぞれ嵌合する。 The collar portion 46 is formed at the end of the inner sleeve 40 on the solenoid 160 side so as to project outward in the radial direction over the entire circumference of the tubular portion 41. The collar portion 46 is arranged in the enlarged diameter portion 36 of the outer sleeve 30. As shown in FIG. 4, a plurality of fitting portions 48 are formed in the collar portion 46. The plurality of fitting portions 48 are formed side by side in the circumferential direction at the outer edge portion of the flange portion 46. In the present embodiment, each fitting portion 48 is formed by cutting off the outer edge portion of the flange portion 46 in a straight line, but the fitting portion 48 may be formed not only in a straight line but also in a curved shape. Each fitting portion 48 is fitted with each fitting protrusion 73 of the fixing member 70, which will be described later.
 図3に示すストッパ49は、インナースリーブ40の軸方向ADの端部であってカム軸320側の端部に形成されている。ストッパ49は、筒部41の他部分に比べて内径が縮小して形成されることにより、スプール50のカム軸320側の端部が当接可能に構成されている。ストッパ49は、ソレノイド160の電磁部162から遠ざかる方向へのスプール50の摺動限界を規定する。 The stopper 49 shown in FIG. 3 is an end portion of the inner sleeve 40 in the axial direction AD and is formed at the end portion on the camshaft 320 side. The stopper 49 is formed so that the inner diameter is smaller than that of the other portion of the tubular portion 41 so that the end portion of the spool 50 on the camshaft 320 side can be brought into contact with the stopper 49. The stopper 49 defines the sliding limit of the spool 50 in the direction away from the electromagnetic portion 162 of the solenoid 160.
 アウタースリーブ30に形成された軸孔34と、インナースリーブ40との間の空間は、作動油供給油路25として機能する。作動油供給油路25は、図1に示すカム軸320の軸穴部322と連通しており、作動油供給源350から供給される作動油を遅角側供給ポートSP1および進角側供給ポートSP2へと導く。図3に示すように、アウター遅角ポート21とインナー遅角ポート23とは、遅角ポート27を構成し、図2に示す遅角油路137を介して遅角室141と連通する。図3に示すように、アウター進角ポート22とインナー進角ポート24とは、進角ポート28を構成し、図2に示す進角油路138を介して進角室142と連通する。 The space between the shaft hole 34 formed in the outer sleeve 30 and the inner sleeve 40 functions as a hydraulic oil supply oil passage 25. The hydraulic oil supply oil passage 25 communicates with the shaft hole portion 322 of the camshaft 320 shown in FIG. 1, and supplies hydraulic oil supplied from the hydraulic oil supply source 350 to the retard side supply port SP1 and the advance angle side supply port. Lead to SP2. As shown in FIG. 3, the outer retard angle port 21 and the inner retard angle port 23 form a retard angle port 27 and communicate with the retard angle chamber 141 via the retard angle oil passage 137 shown in FIG. As shown in FIG. 3, the outer advance angle port 22 and the inner advance angle port 24 form an advance angle port 28, and communicate with the advance angle chamber 142 via the advance angle oil passage 138 shown in FIG.
 図3に示すように、アウタースリーブ30とインナースリーブ40とは、作動油の漏れを抑制するために、軸方向ADの少なくとも一部においてシールされている。より具体的には、遅角側突出壁43によって、遅角側供給ポートSP1およびリサイクルポート47と遅角ポート27との間がシールされ、進角側突出壁44によって、進角側供給ポートSP2およびリサイクルポート47と進角ポート28との間がシールされている。また、封止壁45によって、作動油供給油路25と作動油制御弁10の外部とがシールされている。すなわち、軸方向ADにおいて遅角側突出壁43から封止壁45までの範囲が、シール範囲SAとして設定されている。シール範囲SAにおいて、アウタースリーブ30とインナースリーブ40との間の径方向の隙間は、最小となっている。また、本実施形態において、アウタースリーブ30の本体部31の内径は、シール範囲SAにおいて略一定に構成されている。 As shown in FIG. 3, the outer sleeve 30 and the inner sleeve 40 are sealed at least in a part of the axial AD in order to suppress leakage of hydraulic oil. More specifically, the retard side protrusion wall 43 seals between the retard side supply port SP1 and the recycling port 47 and the retard port 27, and the advance side protrusion wall 44 seals the advance angle side supply port SP2. And between the recycle port 47 and the advance port 28 is sealed. Further, the sealing wall 45 seals the hydraulic oil supply oil passage 25 and the outside of the hydraulic oil control valve 10. That is, in the axial direction AD, the range from the retard side protruding wall 43 to the sealing wall 45 is set as the sealing range SA. In the seal range SA, the radial gap between the outer sleeve 30 and the inner sleeve 40 is minimized. Further, in the present embodiment, the inner diameter of the main body 31 of the outer sleeve 30 is configured to be substantially constant in the seal range SA.
 スプール50は、インナースリーブ40の径方向内側に配置されている。スプール50は、自身の一端に当接して配置されるソレノイド160により駆動され、軸方向ADに摺動する。スプール50は、スプール筒部51と、スプール底部52と、バネ受け部56とを有する。また、スプール50には、ドレン油路53の少なくとも一部と、ドレン流入部54と、ドレン流出部55とが形成されている。 The spool 50 is arranged inside the inner sleeve 40 in the radial direction. The spool 50 is driven by a solenoid 160 arranged in contact with one end of the spool 50 and slides in the axial direction AD. The spool 50 has a spool cylinder portion 51, a spool bottom portion 52, and a spring receiving portion 56. Further, the spool 50 is formed with at least a part of the drain oil passage 53, a drain inflow portion 54, and a drain outflow portion 55.
 スプール筒部51は、略筒状の外観形状を有する。スプール筒部51の外周面には、遅角側シール部57と、進角側シール部58と、係止部59とが、軸方向ADにおいてカム軸320側からこの順に並んで、それぞれ径方向外側に向かって突出して全周に亘って形成されている。遅角側シール部57と進角側シール部58とは、それぞれスプール50の摺動位置に応じて、各ポートSP1、SP2、27、28、47間のうちの一部をシールする。より具体的には、遅角側シール部57は、図3に示すようにスプール50が最もソレノイド160の電磁部162に近付いた状態において、リサイクルポート47と遅角ポート27との連通を断ち、図5に示すようにスプール50が最も電磁部162から遠ざかった状態において、遅角側供給ポートSP1と遅角ポート27との連通を断つ。進角側シール部58は、図3に示すようにスプール50が最も電磁部162に近付いた状態において、進角側供給ポートSP2と進角ポート28との連通を断ち、図5に示すようにスプール50が最も電磁部162から遠ざかった状態において、リサイクルポート47と進角ポート28との連通を断つ。「連通を断つ」とは、シールすることに相当する。かかるシール性が要求される部分において、インナースリーブ40とスプール50との間の径方向の隙間は、最小となっている。スプール50のストロークに応じて軸方向ADに沿った異なる部分をシールすることから、かかるシール性が要求される部分の軸方向ADに沿ったシール長さは、スプール50のストロークよりもそれぞれ短い。ここで、「スプール50のストローク」とは、スプールがソレノイド160の電磁部162に最も近付いた位置から最も遠ざかった位置までの移動長さを意味する。図3に示すように、係止部59は、固定部材70と当接することにより、ソレノイド160の電磁部162に近付く方向へのスプール50の摺動限界を規定する。 The spool cylinder portion 51 has a substantially tubular appearance shape. On the outer peripheral surface of the spool cylinder portion 51, a retard side seal portion 57, an advance angle side seal portion 58, and a locking portion 59 are arranged in this order from the camshaft 320 side in the axial direction AD, respectively, in the radial direction. It protrudes outward and is formed over the entire circumference. The retard side seal portion 57 and the advance angle side seal portion 58 seal a part of the ports SP1, SP2, 27, 28, and 47 according to the sliding position of the spool 50, respectively. More specifically, the retard angle side seal portion 57 cuts off the communication between the recycle port 47 and the retard angle port 27 in a state where the spool 50 is closest to the electromagnetic portion 162 of the solenoid 160 as shown in FIG. As shown in FIG. 5, when the spool 50 is farthest from the electromagnetic unit 162, the communication between the retard angle side supply port SP1 and the retard angle port 27 is cut off. As shown in FIG. 3, the advance angle side seal portion 58 cuts off the communication between the advance angle side supply port SP2 and the advance angle port 28 in a state where the spool 50 is closest to the electromagnetic portion 162, and as shown in FIG. When the spool 50 is farthest from the electromagnetic unit 162, the communication between the recycle port 47 and the advance angle port 28 is cut off. "Cut off communication" is equivalent to sealing. The radial gap between the inner sleeve 40 and the spool 50 is minimized in the portion where such sealing property is required. Since different portions along the axial AD are sealed according to the stroke of the spool 50, the sealing lengths of the portions required for such sealing properties along the axial AD are shorter than the stroke of the spool 50. Here, the "stroke of the spool 50" means the length of movement from the position where the spool is closest to the electromagnetic portion 162 of the solenoid 160 to the position where it is farthest away. As shown in FIG. 3, the locking portion 59 defines the sliding limit of the spool 50 in the direction of approaching the electromagnetic portion 162 of the solenoid 160 by abutting against the fixing member 70.
 スプール底部52は、スプール筒部51と一体に形成され、スプール筒部51のソレノイド160側の端部を塞いでいる。スプール底部52は、軸方向ADにおいてスリーブ20よりもソレノイド160側に突出可能に構成されている。スプール底部52は、スプール50の基端部として機能する。 The spool bottom portion 52 is integrally formed with the spool cylinder portion 51, and closes the end portion of the spool cylinder portion 51 on the solenoid 160 side. The spool bottom portion 52 is configured to be able to project toward the solenoid 160 side from the sleeve 20 in the axial direction AD. The spool bottom portion 52 functions as a base end portion of the spool 50.
 スプール筒部51とスプール底部52とインナースリーブ40の筒部41と底部42とにより囲まれた空間は、ドレン油路53として機能する。このため、スプール50の内部には、ドレン油路53の少なくとも一部として機能する。ドレン油路53には、遅角室141と進角室142とから排出される作動油が流通する。 The space surrounded by the spool cylinder portion 51, the spool bottom portion 52, the cylinder portion 41 of the inner sleeve 40, and the bottom portion 42 functions as a drain oil passage 53. Therefore, inside the spool 50, it functions as at least a part of the drain oil passage 53. The hydraulic oil discharged from the retard chamber 141 and the advance chamber 142 flows through the drain oil passage 53.
 ドレン流入部54は、スプール筒部51のうち軸方向ADにおいて遅角側シール部57と進角側シール部58との間に形成されている。ドレン流入部54は、スプール筒部51の外周面と内周面を連通させている。ドレン流入部54は、遅角室141と進角室142とから排出される作動油をドレン油路53へと導く。また、ドレン流入部54は、リサイクルポート47を介して各供給ポートSP1、SP2と連通している。 The drain inflow portion 54 is formed between the retard side seal portion 57 and the advance angle side seal portion 58 in the axial direction AD of the spool cylinder portion 51. The drain inflow portion 54 communicates the outer peripheral surface and the inner peripheral surface of the spool cylinder portion 51. The drain inflow portion 54 guides the hydraulic oil discharged from the retard angle chamber 141 and the advance angle chamber 142 to the drain oil passage 53. Further, the drain inflow section 54 communicates with the supply ports SP1 and SP2 via the recycling port 47.
 ドレン流出部55は、スプール50の一端であるスプール底部52において、径方向外側に開口するように形成されている。ドレン流出部55は、ドレン油路53の作動油を作動油制御弁10の外部へと排出する。図1に示すように、ドレン流出部55から排出された作動油は、オイルパン352へと回収される。 The drain outflow portion 55 is formed so as to open radially outward at the spool bottom portion 52, which is one end of the spool 50. The drain outflow portion 55 discharges the hydraulic oil in the drain oil passage 53 to the outside of the hydraulic oil control valve 10. As shown in FIG. 1, the hydraulic oil discharged from the drain outflow portion 55 is collected in the oil pan 352.
 図3に示すように、バネ受け部56は、スプール筒部51のカム軸320側の端部において、スプール筒部51の他部分に比べて内径が拡大されて形成されている。バネ受け部56には、バネ60の他端が当接される。 As shown in FIG. 3, the spring receiving portion 56 is formed at the end portion of the spool cylinder portion 51 on the camshaft 320 side with an inner diameter enlarged as compared with the other portion of the spool cylinder portion 51. The other end of the spring 60 is brought into contact with the spring receiving portion 56.
 本実施形態において、アウタースリーブ30とスプール50とは、それぞれ鉄により形成され、インナースリーブ40は、アルミニウムにより形成されている。このため、インナースリーブ40の線膨張係数は、アウタースリーブ30とスプール50との線膨張係数よりも大きい。また、アウタースリーブ30とスプール50とは、インナースリーブ40よりも硬い。かかる硬さは、例えば、ロックウェル硬さやビッカース硬さ等、任意の硬度測定方法を用いて測定した硬さにより定義されてもよい。 In the present embodiment, the outer sleeve 30 and the spool 50 are each made of iron, and the inner sleeve 40 is made of aluminum. Therefore, the coefficient of linear expansion of the inner sleeve 40 is larger than the coefficient of linear expansion of the outer sleeve 30 and the spool 50. Further, the outer sleeve 30 and the spool 50 are harder than the inner sleeve 40. Such hardness may be defined by the hardness measured by using an arbitrary hardness measuring method such as Rockwell hardness and Vickers hardness.
 バネ60は、圧縮コイルバネにより構成され、自身の端部がインナースリーブ40の底部42とスプール50のバネ受け部56とにそれぞれ当接して配置されている。バネ60は、軸方向ADに沿って、スプール50をソレノイド160側へと付勢している。 The spring 60 is composed of a compression coil spring, and its end is arranged in contact with the bottom 42 of the inner sleeve 40 and the spring receiving portion 56 of the spool 50, respectively. The spring 60 urges the spool 50 toward the solenoid 160 along the axial direction AD.
 固定部材70は、アウタースリーブ30のソレノイド160側の端部に固定されている。図4に示すように、固定部材70は、平板部71と、複数の嵌合突起部73とを有する。 The fixing member 70 is fixed to the end of the outer sleeve 30 on the solenoid 160 side. As shown in FIG. 4, the fixing member 70 has a flat plate portion 71 and a plurality of fitting protrusions 73.
 平板部71は、径方向に沿った平板状に形成されている。平板部71は、径方向に限らず、軸方向ADと交差する方向に沿って形成されていてもよい。平板部71の略中央には、開口72が形成されている。図3に示すように、開口72には、スプール50の一端であるスプール底部52が挿入される。 The flat plate portion 71 is formed in a flat plate shape along the radial direction. The flat plate portion 71 is not limited to the radial direction, and may be formed along a direction intersecting the axial direction AD. An opening 72 is formed in the substantially center of the flat plate portion 71. As shown in FIG. 3, the spool bottom 52, which is one end of the spool 50, is inserted into the opening 72.
 図4に示すように、複数の嵌合突起部73は、平板部71から軸方向ADに向かって突起し、周方向に互いに並んで形成されている。嵌合突起部73は、軸方向ADに限らず、径方向と交差する任意の方向に突出して形成されていてもよい。各嵌合突起部73は、インナースリーブ40の各嵌合部48とそれぞれ嵌合する。 As shown in FIG. 4, the plurality of fitting protrusions 73 project from the flat plate portion 71 in the axial direction AD, and are formed side by side in the circumferential direction. The fitting protrusion 73 is not limited to the axial direction AD, and may be formed so as to protrude in any direction intersecting the radial direction. Each fitting protrusion 73 fits with each fitting portion 48 of the inner sleeve 40, respectively.
 図3に示すように、固定部材70は、インナースリーブ40の内部にスプール50が挿入されて、嵌合突起部73と嵌合部48とが嵌合するように組み付けられた後に、アウタースリーブ30にかしめ固定される。固定部材70のソレノイド160側の端面の外縁部は、アウタースリーブ30にかしめ固定される被かしめ部として機能する。 As shown in FIG. 3, the fixing member 70 is assembled so that the spool 50 is inserted into the inner sleeve 40 and the fitting protrusion 73 and the fitting portion 48 are fitted, and then the outer sleeve 30 is assembled. It is fixed by caulking. The outer edge portion of the end surface of the fixing member 70 on the solenoid 160 side functions as a caulking portion to be caulked and fixed to the outer sleeve 30.
 嵌合突起部73と嵌合部48とが嵌合した状態において固定部材70がアウタースリーブ30に固定されることにより、インナースリーブ40がアウタースリーブ30に対して周方向に回転することが規制される。また、固定部材70がアウタースリーブ30に固定されることにより、インナースリーブ40とスプール50とが、アウタースリーブ30から軸方向ADにおいてソレノイド160側に抜けることがそれぞれ規制される。 By fixing the fixing member 70 to the outer sleeve 30 in a state where the fitting protrusion 73 and the fitting portion 48 are fitted, the inner sleeve 40 is restricted from rotating in the circumferential direction with respect to the outer sleeve 30. To. Further, by fixing the fixing member 70 to the outer sleeve 30, the inner sleeve 40 and the spool 50 are restricted from coming off from the outer sleeve 30 to the solenoid 160 side in the axial direction AD.
 チェック弁90は、作動油の逆流を抑制する。チェック弁90は、2つの供給チェック弁91と、リサイクルチェック弁92とを含んで構成されている。図4に示すように、各供給チェック弁91とリサイクルチェック弁92とは、それぞれ帯状の薄板を環状に巻いて形成されることにより、径方向に弾性変形する。図3に示すように、各供給チェック弁91は、遅角側供給ポートSP1および進角側供給ポートSP2と対応する位置において、それぞれ筒部41の内周面と当接して配置されている。各供給チェック弁91は、径方向外側から作動油の圧力を受けることによって、帯状の薄板の重なり部分が大きくなり、径方向に縮小する。リサイクルチェック弁92は、リサイクルポート47と対応する位置において、筒部41の外周面と当接して配置されている。リサイクルチェック弁92は、径方向内側から作動油の圧力を受けることによって、帯状の薄板の重なり部分が小さくなり、径方向に拡大する。 The check valve 90 suppresses the backflow of hydraulic oil. The check valve 90 includes two supply check valves 91 and a recycling check valve 92. As shown in FIG. 4, each supply check valve 91 and a recycling check valve 92 are elastically deformed in the radial direction by being formed by winding a strip-shaped thin plate in an annular shape. As shown in FIG. 3, each supply check valve 91 is arranged in contact with the inner peripheral surface of the tubular portion 41 at a position corresponding to the retard side supply port SP1 and the advance angle side supply port SP2. Each supply check valve 91 receives the pressure of the hydraulic oil from the outside in the radial direction, so that the overlapping portion of the strip-shaped thin plates becomes large and shrinks in the radial direction. The recycle check valve 92 is arranged in contact with the outer peripheral surface of the tubular portion 41 at a position corresponding to the recycle port 47. The recycle check valve 92 receives the pressure of the hydraulic oil from the inside in the radial direction, so that the overlapping portion of the strip-shaped thin plates becomes small and expands in the radial direction.
 本実施形態の作動油制御弁10は、固定部32が軸固定部323へとねじ込まれることにより、カム軸320側へと向かう軸方向ADの軸力が加えられてカム軸320の端部321に固定される。アウタースリーブ30は、かかる軸力によって弾性変形し、径方向に縮小する。このため、スプール50の摺動性の悪化を抑制可能な径方向の隙間を確保する必要がある。 In the hydraulic oil control valve 10 of the present embodiment, when the fixing portion 32 is screwed into the shaft fixing portion 323, an axial force in the axial direction AD toward the cam shaft 320 side is applied to the end portion 321 of the cam shaft 320. Is fixed to. The outer sleeve 30 elastically deforms due to the applied axial force and shrinks in the radial direction. Therefore, it is necessary to secure a radial gap capable of suppressing deterioration of the slidability of the spool 50.
 本実施形態において、アウタースリーブ30に軸力が加えられていない状態、すなわち、作動油制御弁10がカム軸320に固定される前の状態において、アウタースリーブ30とインナースリーブ40との間の径方向の隙間の最小値である最小隙間CL1は、インナースリーブ40とスプール50との間の径方向の隙間の最小値である最小隙間CL2よりも大きく設計されている。より具体的には、アウタースリーブ30の本体部31の内周面と、インナースリーブ40の遅角側突出壁43、進角側突出壁44および封止壁45の外周面との間の径方向の最小隙間CL1は、インナースリーブ40の筒部41の内周面と、スプール50の遅角側シール部57、進角側シール部58および係止部59の外周面との間の径方向の最小隙間CL2よりも大きく設定されている。このような設定の理由について、以下に説明する。 In the present embodiment, the diameter between the outer sleeve 30 and the inner sleeve 40 is not applied to the outer sleeve 30, that is, before the hydraulic oil control valve 10 is fixed to the cam shaft 320. The minimum clearance CL1, which is the minimum value of the directional clearance, is designed to be larger than the minimum clearance CL2, which is the minimum value of the radial clearance between the inner sleeve 40 and the spool 50. More specifically, the radial direction between the inner peripheral surface of the main body 31 of the outer sleeve 30 and the outer peripheral surface of the retard side protruding wall 43, the advance angle side protruding wall 44 and the sealing wall 45 of the inner sleeve 40. The minimum gap CL1 is in the radial direction between the inner peripheral surface of the tubular portion 41 of the inner sleeve 40 and the outer peripheral surfaces of the retard side seal portion 57, the advance angle side seal portion 58 and the locking portion 59 of the spool 50. It is set larger than the minimum gap CL2. The reason for such a setting will be described below.
 本実施形態の作動油制御弁10では、スプール50のストロークに応じて軸方向ADに沿った異なる部分をシールする。このため、インナースリーブ40とスプール50との間の径方向の最小隙間CL2における軸方向ADに沿った長さは、スプール50のストロークよりも短い。したがって、最小隙間CL2からは、作動油の漏洩が発生しやすい。また、インナースリーブ40は、軸方向ADにおいてアウタースリーブ30に対して相対的に移動しない。このため、アウタースリーブ30とインナースリーブ40との間の径方向の最小隙間CL1における軸方向ADに沿った長さは、比較的長く設定されている。したがって、最小隙間CL1からは、作動油の漏洩が発生しにくい。このため、作動油の漏洩が発生しにくい最小隙間CL1を、作動油の漏洩が発生しやすい最小隙間CL2よりも大きく設定することで、スプール50の摺動性の悪化を抑制可能な径方向の隙間を確保した場合に、径方向の隙間の大小関係が本実施形態とは異なる構成と比べて作動油の漏れ量の増加を抑制できる。 In the hydraulic oil control valve 10 of the present embodiment, different parts along the axial direction AD are sealed according to the stroke of the spool 50. Therefore, the length along the axial AD in the minimum radial gap CL2 between the inner sleeve 40 and the spool 50 is shorter than the stroke of the spool 50. Therefore, hydraulic oil leaks easily from the minimum gap CL2. Further, the inner sleeve 40 does not move relative to the outer sleeve 30 in the axial direction AD. Therefore, the length along the axial AD in the minimum radial gap CL1 between the outer sleeve 30 and the inner sleeve 40 is set to be relatively long. Therefore, leakage of hydraulic oil is unlikely to occur from the minimum gap CL1. Therefore, by setting the minimum gap CL1 in which hydraulic oil leakage is unlikely to occur larger than the minimum gap CL2 in which hydraulic oil leakage is likely to occur, the deterioration of the slidability of the spool 50 can be suppressed in the radial direction. When a gap is secured, an increase in the amount of hydraulic oil leakage can be suppressed as compared with a configuration in which the magnitude relationship of the gap in the radial direction is different from that of the present embodiment.
 本実施形態において、最小隙間CL1と最小隙間CL2との大小関係は、アウタースリーブ30に軸力が加えられてカム軸320の端部321に固定された状態においても維持される。 In the present embodiment, the magnitude relationship between the minimum clearance CL1 and the minimum clearance CL2 is maintained even in a state where an axial force is applied to the outer sleeve 30 and the camshaft 320 is fixed to the end portion 321.
 本実施形態において、クランク軸310は、本開示における駆動軸の下位概念に相当し、カム軸320は、本開示における従動軸の下位概念に相当し、吸気弁330は、本開示におけるバルブの下位概念に相当する。また、ソレノイド160は、本開示におけるアクチュエータの下位概念に相当する。 In the present embodiment, the crankshaft 310 corresponds to the subordinate concept of the drive shaft in the present disclosure, the camshaft 320 corresponds to the subordinate concept of the driven shaft in the present disclosure, and the intake valve 330 corresponds to the subordinate concept of the valve in the present disclosure. Corresponds to the concept. Further, the solenoid 160 corresponds to the subordinate concept of the actuator in the present disclosure.
A-2.バルブタイミング調整装置の動作:
 図1に示すように、作動油供給源350から供給穴部326へと供給された作動油は、軸穴部322を通って作動油供給油路25へと流通する。図3に示す状態のように、ソレノイド160に通電が行われずスプール50が最もソレノイド160の電磁部162に近付いた状態において、遅角ポート27は、遅角側供給ポートSP1と連通する。これにより、作動油供給油路25の作動油が遅角室141へと供給されて、ベーンロータ130がハウジング120に対して遅角方向へ相対回転し、クランク軸310に対するカム軸320の相対回転位相が遅角側へと変化する。また、この状態において、進角ポート28は、進角側供給ポートSP2と連通せず、リサイクルポート47と連通する。これにより、進角室142から排出された作動油は、リサイクルポート47を介して遅角側供給ポートSP1へと戻されて再循環する。また、進角室142から排出された作動油の一部は、ドレン流入部54を介してドレン油路53に流入し、ドレン流出部55を通ってオイルパン352へと戻される。
A-2. Operation of valve timing adjuster:
As shown in FIG. 1, the hydraulic oil supplied from the hydraulic oil supply source 350 to the supply hole portion 326 flows to the hydraulic oil supply oil passage 25 through the shaft hole portion 322. As shown in FIG. 3, the retard angle port 27 communicates with the retard angle side supply port SP1 in a state where the solenoid 160 is not energized and the spool 50 is closest to the electromagnetic portion 162 of the solenoid 160. As a result, the hydraulic oil in the hydraulic oil supply oil passage 25 is supplied to the retard chamber 141, the vane rotor 130 rotates relative to the housing 120 in the retard direction, and the relative rotation phase of the cam shaft 320 with respect to the crankshaft 310. Changes to the retard side. Further, in this state, the advance angle port 28 does not communicate with the advance angle side supply port SP2, but communicates with the recycle port 47. As a result, the hydraulic oil discharged from the advance chamber 142 is returned to the retard side supply port SP1 via the recycling port 47 and recirculated. Further, a part of the hydraulic oil discharged from the advance chamber 142 flows into the drain oil passage 53 through the drain inflow portion 54, and is returned to the oil pan 352 through the drain outflow portion 55.
 図5に示すように、ソレノイド160に通電が行われてスプール50が最もソレノイド160の電磁部162から遠ざかった状態、すなわち、スプール50がストッパ49に当接した状態において、進角ポート28は、進角側供給ポートSP2と連通する。これにより、作動油供給油路25の作動油が進角室142へと供給されて、ベーンロータ130がハウジング120に対して進角方向へ相対回転し、クランク軸310に対するカム軸320の相対回転位相が進角側へと変化する。また、この状態において、遅角ポート27は、遅角側供給ポートSP1と連通せず、リサイクルポート47と連通する。これにより、遅角室141から排出された作動油は、リサイクルポート47を介して進角側供給ポートSP2へと戻されて再循環する。また、遅角室141から排出された作動油の一部は、ドレン流入部54を介してドレン油路53に流入し、ドレン流出部55を通ってオイルパン352へと戻される。 As shown in FIG. 5, when the solenoid 160 is energized and the spool 50 is farthest from the electromagnetic portion 162 of the solenoid 160, that is, when the spool 50 is in contact with the stopper 49, the advance port 28 is set. It communicates with the advance side supply port SP2. As a result, the hydraulic oil in the hydraulic oil supply oil passage 25 is supplied to the advance chamber 142, the vane rotor 130 rotates relative to the housing 120 in the advance direction, and the relative rotation phase of the cam shaft 320 with respect to the crankshaft 310. Changes to the advance side. Further, in this state, the retard angle port 27 does not communicate with the retard angle side supply port SP1 but communicates with the recycling port 47. As a result, the hydraulic oil discharged from the retarded chamber 141 is returned to the advancing side supply port SP2 via the recycling port 47 and recirculated. Further, a part of the hydraulic oil discharged from the retarded chamber 141 flows into the drain oil passage 53 through the drain inflow section 54, and is returned to the oil pan 352 through the drain outflow section 55.
 また、図6に示すように、ソレノイド160に通電が行われてスプール50が摺動範囲の略中央に位置する状態では、遅角ポート27と遅角側供給ポートSP1とが連通し、進角ポート28と進角側供給ポートSP2とが連通する。これにより、作動油供給油路25の作動油が遅角室141と進角室142との両方へと供給されて、ベーンロータ130のハウジング120に対する相対回転が抑制され、クランク軸310に対するカム軸320の相対回転位相が保持される。 Further, as shown in FIG. 6, when the solenoid 160 is energized and the spool 50 is located substantially in the center of the sliding range, the retard angle port 27 and the retard angle side supply port SP1 communicate with each other and advance. The port 28 and the advance side supply port SP2 communicate with each other. As a result, the hydraulic oil in the hydraulic oil supply passage 25 is supplied to both the retard chamber 141 and the advance chamber 142, the relative rotation of the vane rotor 130 with respect to the housing 120 is suppressed, and the cam shaft 320 with respect to the crankshaft 310 is suppressed. The relative rotation phase of is maintained.
 遅角室141または進角室142へと供給される作動油は、遅角室側ピン制御油路133または進角室側ピン制御油路134を介して収容穴部132へと流入する。このため、遅角室141または進角室142に十分な油圧がかけられて、収容穴部132へと流入した作動油によってロックピン150がスプリング151の付勢力に抗して嵌入凹部128から抜け出すと、ハウジング120に対するベーンロータ130の相対回転が許容された状態となる。 The hydraulic oil supplied to the retard chamber 141 or the advance chamber 142 flows into the accommodating hole 132 via the retard chamber side pin control oil passage 133 or the advance chamber side pin control oil passage 134. Therefore, sufficient hydraulic pressure is applied to the retard chamber 141 or the advance chamber 142, and the lock pin 150 escapes from the fitting recess 128 against the urging force of the spring 151 by the hydraulic oil flowing into the accommodating hole 132. Then, the relative rotation of the vane rotor 130 with respect to the housing 120 is allowed.
 バルブタイミング調整装置100は、カム軸320の相対回転位相が目標値よりも進角側である場合、ソレノイド160への通電量を比較的小さくすることによって、ベーンロータ130をハウジング120に対して遅角方向へ相対回転させる。これにより、クランク軸310に対するカム軸320の相対回転位相が遅角側へと変化し、バルブタイミングが遅角する。また、バルブタイミング調整装置100は、カム軸320の相対回転位相が目標値よりも遅角側である場合、ソレノイド160への通電量を比較的大きくすることによって、ベーンロータ130をハウジング120に対して進角方向へ相対回転させる。これにより、クランク軸310に対するカム軸320の相対回転位相が進角側へと変化し、バルブタイミングが進角する。また、バルブタイミング調整装置100は、カム軸320の相対回転位相が目標値と一致する場合、ソレノイド160への通電量を中程度とすることによって、ベーンロータ130のハウジング120に対する相対回転を抑制する。これにより、クランク軸310に対するカム軸320の相対回転位相が保持され、バルブタイミングが保持される。 When the relative rotation phase of the camshaft 320 is on the advance side of the target value, the valve timing adjusting device 100 retards the vane rotor 130 with respect to the housing 120 by relatively reducing the amount of electricity supplied to the solenoid 160. Rotate relative to the direction. As a result, the relative rotation phase of the camshaft 320 with respect to the crankshaft 310 changes to the retard side, and the valve timing is retarded. Further, in the valve timing adjusting device 100, when the relative rotation phase of the cam shaft 320 is on the retard side of the target value, the vane rotor 130 is attached to the housing 120 by relatively increasing the amount of electricity supplied to the solenoid 160. Relative rotation in the advance direction. As a result, the relative rotation phase of the cam shaft 320 with respect to the crank shaft 310 changes to the advance angle side, and the valve timing advances. Further, when the relative rotation phase of the camshaft 320 matches the target value, the valve timing adjusting device 100 suppresses the relative rotation of the vane rotor 130 with respect to the housing 120 by setting the amount of energization to the solenoid 160 to a medium level. As a result, the relative rotation phase of the camshaft 320 with respect to the crankshaft 310 is maintained, and the valve timing is maintained.
 以上説明した第1実施形態のバルブタイミング調整装置100が備える作動油制御弁10によれば、軸力が加えられていない状態において、アウタースリーブ30とインナースリーブ40との間の径方向の最小隙間CL1が、インナースリーブ40とスプール50との間の径方向の最小隙間CL2よりも大きい。ここで、本実施形態の作動油制御弁10では、スプール50のストロークに応じて軸方向ADに沿った異なる部分をシールする。このため、インナースリーブ40とスプール50との間の径方向の最小隙間CL2における軸方向ADに沿った長さは、スプール50のストロークよりも短い。したがって、インナースリーブ40とスプール50との間の径方向の最小隙間CL2からは、作動油の漏洩が発生しやすい。また、インナースリーブ40は、軸方向ADにおいてアウタースリーブ30に対して相対的に移動しない。このため、アウタースリーブ30とインナースリーブ40との間の径方向の最小隙間CL1における軸方向ADに沿った長さは、比較的長く設定されている。したがって、アウタースリーブ30とインナースリーブ40との間の径方向の最小隙間CL1からは、作動油の漏洩が発生しにくい。このため、作動油の漏洩が発生しにくい最小隙間CL1を、作動油の漏洩が発生しやすい最小隙間CL2よりも大きく設定することで、作動油制御弁10を固定する軸力に起因してアウタースリーブ30が弾性変形して径方向に縮小してもスプール50の摺動性の悪化を抑制可能な径方向の隙間を確保した場合に、径方向の隙間の大小関係が本実施形態とは異なる構成と比べて作動油の漏れ量の増加を抑制できる。したがって、スプール50の摺動性の悪化を抑制しつつ、作動油の漏れ量の増加を抑制できる。 According to the hydraulic oil control valve 10 provided in the valve timing adjusting device 100 of the first embodiment described above, the minimum radial gap between the outer sleeve 30 and the inner sleeve 40 is not applied. CL1 is larger than the minimum radial clearance CL2 between the inner sleeve 40 and the spool 50. Here, in the hydraulic oil control valve 10 of the present embodiment, different portions along the axial direction AD are sealed according to the stroke of the spool 50. Therefore, the length along the axial AD in the minimum radial gap CL2 between the inner sleeve 40 and the spool 50 is shorter than the stroke of the spool 50. Therefore, hydraulic oil leaks easily from the minimum radial gap CL2 between the inner sleeve 40 and the spool 50. Further, the inner sleeve 40 does not move relative to the outer sleeve 30 in the axial direction AD. Therefore, the length along the axial AD in the minimum radial gap CL1 between the outer sleeve 30 and the inner sleeve 40 is set to be relatively long. Therefore, leakage of hydraulic oil is unlikely to occur from the minimum radial gap CL1 between the outer sleeve 30 and the inner sleeve 40. Therefore, by setting the minimum clearance CL1 in which hydraulic oil leakage is unlikely to occur larger than the minimum clearance CL2 in which hydraulic oil leakage is likely to occur, the outer is caused by the axial force for fixing the hydraulic oil control valve 10. When a radial gap that can suppress deterioration of the slidability of the spool 50 is secured even if the sleeve 30 is elastically deformed and reduced in the radial direction, the magnitude relationship of the radial gap is different from that of the present embodiment. It is possible to suppress an increase in the amount of hydraulic oil leakage as compared with the configuration. Therefore, it is possible to suppress an increase in the amount of hydraulic oil leakage while suppressing deterioration of the slidability of the spool 50.
 また、最小隙間CL1と最小隙間CL2との大きさの合計値を、最小隙間CL1と最小隙間CL2とに適切に割り振ることにより作動油の漏れ量の増加を抑制するので、アウタースリーブ30とインナースリーブ40との径方向の最小隙間CL1に作動油の漏洩を抑制するためのシール材等を配置する構成と比較して、部品点数の増加を抑制でき、組み付け工程の増加を抑制できる。このため、作動油制御弁10の製造に要するコストの増大を抑制できる。また、かかるシール材等を省略できるので、シール材等のはみ出しに起因してスプール50の摺動性が悪化することを抑制できる。 Further, since the increase in the amount of hydraulic oil leakage is suppressed by appropriately allocating the total value of the sizes of the minimum gap CL1 and the minimum gap CL2 to the minimum gap CL1 and the minimum gap CL2, the outer sleeve 30 and the inner sleeve Compared with a configuration in which a sealing material or the like for suppressing leakage of hydraulic oil is arranged in the minimum clearance CL1 in the radial direction with 40, an increase in the number of parts can be suppressed and an increase in the assembly process can be suppressed. Therefore, it is possible to suppress an increase in the cost required for manufacturing the hydraulic oil control valve 10. Further, since the sealing material or the like can be omitted, it is possible to suppress deterioration of the slidability of the spool 50 due to the protrusion of the sealing material or the like.
 また、インナースリーブ40の線膨張係数がアウタースリーブ30の線膨張係数よりも大きいので、バルブタイミング調整装置100の駆動時における作動油制御弁10の温度上昇に伴って、アウタースリーブ30とインナースリーブ40との径方向の最小隙間CL1を縮小させることができる。このため、最小隙間CL1から漏洩する作動油の量が増加することをさらに抑制できる。 Further, since the coefficient of linear expansion of the inner sleeve 40 is larger than the coefficient of linear expansion of the outer sleeve 30, the outer sleeve 30 and the inner sleeve 40 are caused by the temperature rise of the hydraulic oil control valve 10 when the valve timing adjusting device 100 is driven. The minimum clearance CL1 in the radial direction with and can be reduced. Therefore, it is possible to further suppress an increase in the amount of hydraulic oil leaking from the minimum gap CL1.
 また、アウタースリーブ30がインナースリーブ40よりも硬いので、アウタースリーブ30のカム軸320の端部321への固定強度を確保しつつ、インナースリーブ40の加工性を向上できる。このため、スリーブ20の各ポートSP1、SP2、27、28、47の加工性を向上でき、各ポートSP1、SP2、27、28、47を形成するために製造工程が複雑化することを抑制でき、製造コストの増大を抑制できる。 Further, since the outer sleeve 30 is harder than the inner sleeve 40, the workability of the inner sleeve 40 can be improved while ensuring the fixing strength of the outer sleeve 30 to the end portion 321 of the cam shaft 320. Therefore, the workability of the ports SP1, SP2, 27, 28, 47 of the sleeve 20 can be improved, and it is possible to suppress the complexity of the manufacturing process for forming the ports SP1, SP2, 27, 28, 47. , The increase in manufacturing cost can be suppressed.
 また、アウタースリーブ30が鉄により形成され、インナースリーブ40がアルミニウムにより形成されているので、インナースリーブ40の線膨張係数がアウタースリーブ30の線膨張係数よりも大きい構成と、アウタースリーブ30がインナースリーブ40よりも硬い構成とを同時に容易に実現できる。 Further, since the outer sleeve 30 is made of iron and the inner sleeve 40 is made of aluminum, the linear expansion coefficient of the inner sleeve 40 is larger than the linear expansion coefficient of the outer sleeve 30, and the outer sleeve 30 is the inner sleeve. A configuration harder than 40 can be easily realized at the same time.
 また、スリーブ20がアウタースリーブ30とインナースリーブ40との二重構造を有するので、アウタースリーブ30とインナースリーブ40との径方向の隙間により作動油供給油路25を容易に実現できる。このため、作動油の供給のためにスプール50に油圧がかかることを抑制でき、スプール50の摺動性の悪化を抑制できる。また、スリーブ20が二重構造を有するので、各ポートSP1、SP2、27、28、47の加工性を向上でき、製造工程が複雑化することを抑制できる。また、かかる加工性を向上できるので、各ポートSP1、SP2、27、28、47の設計の自由度を向上でき、作動油制御弁10およびバルブタイミング調整装置100の搭載性を向上できる。 Further, since the sleeve 20 has a double structure of the outer sleeve 30 and the inner sleeve 40, the hydraulic oil supply oil passage 25 can be easily realized by the radial gap between the outer sleeve 30 and the inner sleeve 40. Therefore, it is possible to suppress the application of hydraulic pressure to the spool 50 due to the supply of hydraulic oil, and it is possible to suppress deterioration of the slidability of the spool 50. Further, since the sleeve 20 has a double structure, the workability of each port SP1, SP2, 27, 28, 47 can be improved, and the manufacturing process can be suppressed from becoming complicated. Further, since such workability can be improved, the degree of freedom in designing each port SP1, SP2, 27, 28, 47 can be improved, and the mountability of the hydraulic oil control valve 10 and the valve timing adjusting device 100 can be improved.
B.第2実施形態:
 第2実施形態の作動油制御弁10は、最小隙間CL1と最小隙間CL2との寸法関係において、第1実施形態の作動油制御弁と異なる。その他の構成は、第1実施形態と同じであるので、同一の構成には同一の符号を付し、それらの詳細な説明を省略する。
B. Second embodiment:
The hydraulic oil control valve 10 of the second embodiment is different from the hydraulic oil control valve of the first embodiment in the dimensional relationship between the minimum clearance CL1 and the minimum clearance CL2. Since the other configurations are the same as those in the first embodiment, the same configurations are designated by the same reference numerals, and detailed description thereof will be omitted.
 第2実施形態の作動油制御弁10は、カム軸320の端部321に締結されると、軸力が加えられることによりアウタースリーブ30が弾性変形して径方向に縮小し、アウタースリーブ30とインナースリーブ40とが径方向に接触する。換言すると、アウタースリーブ30とインナースリーブ40との径方向の最小隙間CL1は、アウタースリーブ30の締結によってゼロとなる。このため、アウタースリーブ30とインナースリーブ40との径方向の最小隙間CL1から漏洩する作動油の増加を抑制できる。 When the hydraulic oil control valve 10 of the second embodiment is fastened to the end portion 321 of the cam shaft 320, the outer sleeve 30 elastically deforms due to the application of axial force and shrinks in the radial direction, and the outer sleeve 30 and the outer sleeve 30 The inner sleeve 40 comes into contact with the inner sleeve 40 in the radial direction. In other words, the minimum radial clearance CL1 between the outer sleeve 30 and the inner sleeve 40 becomes zero by fastening the outer sleeve 30. Therefore, it is possible to suppress an increase in hydraulic oil leaking from the minimum radial gap CL1 between the outer sleeve 30 and the inner sleeve 40.
 また、第2実施形態の作動油制御弁10においても、第1実施形態の作動油制御弁10と同様に、アウタースリーブ30とスプール50とがそれぞれ鉄により形成され、インナースリーブ40がアルミニウムにより形成されている。したがって、インナースリーブ40の線膨張係数は、アウタースリーブ30の線膨張係数よりも大きく、インナースリーブ40は、アウタースリーブ30よりも熱膨張する。しかしながら、バルブタイミング調整装置100の駆動により作動油制御弁10の温度が上昇した場合には、既にアウタースリーブ30とインナースリーブ40とが径方向に接触しているので、インナースリーブ40が径方向に膨張することが抑制される。したがって、作動油制御弁10の温度上昇に伴ってインナースリーブ40とスプール50との径方向の最小隙間CL2が拡大することを抑制でき、最小隙間CL2から漏洩する作動油の量が増加することを抑制できる。また、スプール50の線膨張係数がアウタースリーブ30の線膨張係数と同等であるため、作動油制御弁10の温度上昇に伴う最小隙間CL2の大きさの変化を抑制できる。このため、スプール50の摺動性の悪化を抑制できる。なお、「スプール50の線膨張係数がアウタースリーブ30の線膨張係数と同等」とは、スプール50の線膨張係数がアウタースリーブ30の線膨張係数と一致する場合に限らず、例えば、アウタースリーブ30の線膨張係数を基準としてスプール50の線膨張係数がプラスマイナス約20%以内の範囲であってもよい。また、スプール50の線膨張係数がインナースリーブ40の線膨張係数よりも小さいので、作動油制御弁10の温度上昇に伴って最小隙間CL2が過度に縮小することを抑制でき、スプール50の摺動性の悪化を抑制できる。 Further, also in the hydraulic oil control valve 10 of the second embodiment, the outer sleeve 30 and the spool 50 are each formed of iron and the inner sleeve 40 is formed of aluminum, as in the hydraulic oil control valve 10 of the first embodiment. Has been done. Therefore, the coefficient of linear expansion of the inner sleeve 40 is larger than the coefficient of linear expansion of the outer sleeve 30, and the inner sleeve 40 thermally expands more than the outer sleeve 30. However, when the temperature of the hydraulic oil control valve 10 rises due to the drive of the valve timing adjusting device 100, the outer sleeve 30 and the inner sleeve 40 are already in radial contact with each other, so that the inner sleeve 40 is in the radial direction. Expansion is suppressed. Therefore, it is possible to suppress the expansion of the minimum radial clearance CL2 between the inner sleeve 40 and the spool 50 as the temperature of the hydraulic oil control valve 10 rises, and the amount of hydraulic oil leaking from the minimum clearance CL2 increases. Can be suppressed. Further, since the linear expansion coefficient of the spool 50 is the same as the linear expansion coefficient of the outer sleeve 30, it is possible to suppress a change in the size of the minimum gap CL2 due to the temperature rise of the hydraulic oil control valve 10. Therefore, deterioration of the slidability of the spool 50 can be suppressed. The phrase "the coefficient of linear expansion of the spool 50 is equivalent to the coefficient of linear expansion of the outer sleeve 30" is not limited to the case where the coefficient of linear expansion of the spool 50 matches the coefficient of linear expansion of the outer sleeve 30, for example, the outer sleeve 30. The coefficient of linear expansion of the spool 50 may be in the range of plus or minus about 20% or less based on the coefficient of linear expansion of. Further, since the linear expansion coefficient of the spool 50 is smaller than the linear expansion coefficient of the inner sleeve 40, it is possible to prevent the minimum gap CL2 from being excessively reduced as the temperature of the hydraulic oil control valve 10 rises, and the spool 50 slides. The deterioration of sexuality can be suppressed.
 本実施形態において、アウタースリーブ30がカム軸320の端部321に締結された状態は、本開示における、軸力が加えられたことを含む予め定められた条件が満たされた状態の下位概念に相当する。 In the present embodiment, the state in which the outer sleeve 30 is fastened to the end portion 321 of the cam shaft 320 is a subordinate concept of the present disclosure in which the predetermined conditions including the application of the axial force are satisfied. Equivalent to.
 以上説明した第2実施形態の作動油制御弁10によれば、軸力が加えられた状態においてアウタースリーブ30とインナースリーブ40とが径方向に接触するので、アウタースリーブ30とインナースリーブ40との径方向の最小隙間CL1から漏洩する作動油の量の増加を抑制できる。また、アウタースリーブ30とインナースリーブ40との径方向の接触により、インナースリーブ40が径方向に膨張することを抑制できるので、インナースリーブ40とスプール50との径方向の最小隙間CL2が拡大することを抑制でき、最小隙間CL2から漏洩する作動油の量が増加することを抑制できる。したがって、スプール50の摺動性の悪化を抑制可能なインナースリーブ40とスプール50との径方向の最小隙間CL2を確保した構成においても作動油の漏れ量の増加を抑制できるので、スプール50の摺動性の悪化を抑制しつつ作動油の漏れ量の増加を抑制できる。 According to the hydraulic oil control valve 10 of the second embodiment described above, the outer sleeve 30 and the inner sleeve 40 come into contact with each other in the radial direction when the axial force is applied, so that the outer sleeve 30 and the inner sleeve 40 come into contact with each other. It is possible to suppress an increase in the amount of hydraulic oil leaking from the minimum radial gap CL1. Further, since the inner sleeve 40 can be suppressed from expanding in the radial direction due to the radial contact between the outer sleeve 30 and the inner sleeve 40, the minimum radial clearance CL2 between the inner sleeve 40 and the spool 50 is expanded. It is possible to suppress an increase in the amount of hydraulic oil leaking from the minimum gap CL2. Therefore, even in a configuration in which the minimum radial clearance CL2 between the inner sleeve 40 and the spool 50, which can suppress the deterioration of the slidability of the spool 50, can be secured, an increase in the amount of hydraulic oil leakage can be suppressed, so that the spool 50 can be slid. It is possible to suppress an increase in the amount of hydraulic oil leakage while suppressing deterioration of motility.
 また、スプール50の線膨張係数がアウタースリーブ30の線膨張係数と同等であるため、作動油制御弁10の温度上昇に伴う最小隙間CL2の大きさの変化を抑制でき、スプール50の摺動性の悪化を抑制できる。また、アウタースリーブ30とスプール50とが鉄により形成され、インナースリーブ40がアルミニウムにより形成されているので、インナースリーブ40の線膨張係数がアウタースリーブ30の線膨張係数よりも大きく、スプール50の線膨張係数がアウタースリーブ30の線膨張係数と同等である構成を同時に容易に実現できる。また、スプール50が鉄により形成されているので、スプール50の強度が低下することを抑制できる。このため、スプール50のスプール底部52とソレノイド160のシャフト164との接触部において、作動油制御弁10の回転に伴う摩耗を抑制するためにスプール50とは異なる別の部材を配置することを省略できる。したがって、作動油制御弁10の部品点数の増加を抑制でき、組み付け工程が複雑化することを抑制できるので、作動油制御弁10の製造に要するコストが増大することを抑制できる。 Further, since the linear expansion coefficient of the spool 50 is the same as the linear expansion coefficient of the outer sleeve 30, it is possible to suppress the change in the size of the minimum gap CL2 due to the temperature rise of the hydraulic oil control valve 10, and the slidability of the spool 50. Deterioration can be suppressed. Further, since the outer sleeve 30 and the spool 50 are formed of iron and the inner sleeve 40 is made of aluminum, the coefficient of linear expansion of the inner sleeve 40 is larger than the coefficient of linear expansion of the outer sleeve 30, and the wire of the spool 50. At the same time, it is possible to easily realize a configuration in which the expansion coefficient is equivalent to the linear expansion coefficient of the outer sleeve 30. Further, since the spool 50 is made of iron, it is possible to suppress a decrease in the strength of the spool 50. Therefore, in the contact portion between the spool bottom 52 of the spool 50 and the shaft 164 of the solenoid 160, it is omitted to arrange a member different from the spool 50 in order to suppress wear due to rotation of the hydraulic oil control valve 10. it can. Therefore, it is possible to suppress an increase in the number of parts of the hydraulic oil control valve 10 and to prevent the assembly process from becoming complicated, so that it is possible to suppress an increase in the cost required for manufacturing the hydraulic oil control valve 10.
C.第3実施形態:
 第3実施形態の作動油制御弁10は、最小隙間CL1と最小隙間CL2との寸法関係において、第2実施形態の作動油制御弁と異なる。その他の構成は、第2実施形態と同じであるので、同一の構成には同一の符号を付し、それらの詳細な説明を省略する。
C. Third Embodiment:
The hydraulic oil control valve 10 of the third embodiment is different from the hydraulic oil control valve of the second embodiment in the dimensional relationship between the minimum clearance CL1 and the minimum clearance CL2. Since other configurations are the same as those of the second embodiment, the same configurations are designated by the same reference numerals, and detailed description thereof will be omitted.
 第3実施形態の作動油制御弁10は、バルブタイミング調整装置100の駆動時の温度上昇に伴って、アウタースリーブ30とインナースリーブ40とが径方向に接触する。換言すると、アウタースリーブ30とインナースリーブ40との径方向の最小隙間CL1は、内燃機関300の温度上昇によってゼロとなる。このため、アウタースリーブ30とインナースリーブ40との径方向の最小隙間CL1から漏洩する作動油の増加を抑制できる。バルブタイミング調整装置100の駆動時における駆動前との温度差は、例えば、100℃以下であってもよく、150℃程度であってもよく、200℃以上であってもよい。 In the hydraulic oil control valve 10 of the third embodiment, the outer sleeve 30 and the inner sleeve 40 come into radial contact with each other as the temperature rises when the valve timing adjusting device 100 is driven. In other words, the minimum radial clearance CL1 between the outer sleeve 30 and the inner sleeve 40 becomes zero as the temperature of the internal combustion engine 300 rises. Therefore, it is possible to suppress an increase in hydraulic oil leaking from the minimum radial gap CL1 between the outer sleeve 30 and the inner sleeve 40. The temperature difference between the valve timing adjusting device 100 during driving and before driving may be, for example, 100 ° C. or lower, about 150 ° C., or 200 ° C. or higher.
 また、第3実施形態の作動油制御弁10においても、第2実施形態の作動油制御弁10と同様に、アウタースリーブ30とスプール50とがそれぞれ鉄により形成され、インナースリーブ40がアルミニウムにより形成されている。したがって、インナースリーブ40の線膨張係数は、アウタースリーブ30の線膨張係数よりも大きく、インナースリーブ40は、アウタースリーブ30よりも熱膨張する。しかしながら、バルブタイミング調整装置100の駆動により作動油制御弁10の温度が上昇した場合にアウタースリーブ30とインナースリーブ40とが径方向に接触するので、インナースリーブ40が径方向に膨張することが抑制される。したがって、作動油制御弁10の温度上昇に伴ってインナースリーブ40とスプール50との径方向の最小隙間CL2が拡大することを抑制でき、最小隙間CL2から漏洩する作動油の量が増加することを抑制できる。また、スプール50の線膨張係数がアウタースリーブ30の線膨張係数と同等であるため、作動油制御弁10の温度上昇に伴う最小隙間CL2の大きさの変化を抑制できる。このため、スプール50の摺動性の悪化を抑制できる。 Further, also in the hydraulic oil control valve 10 of the third embodiment, the outer sleeve 30 and the spool 50 are each formed of iron and the inner sleeve 40 is formed of aluminum, as in the hydraulic oil control valve 10 of the second embodiment. Has been done. Therefore, the coefficient of linear expansion of the inner sleeve 40 is larger than the coefficient of linear expansion of the outer sleeve 30, and the inner sleeve 40 thermally expands more than the outer sleeve 30. However, when the temperature of the hydraulic oil control valve 10 rises due to the drive of the valve timing adjusting device 100, the outer sleeve 30 and the inner sleeve 40 come into contact with each other in the radial direction, so that the inner sleeve 40 is prevented from expanding in the radial direction. Will be done. Therefore, it is possible to suppress the expansion of the minimum radial clearance CL2 between the inner sleeve 40 and the spool 50 as the temperature of the hydraulic oil control valve 10 rises, and the amount of hydraulic oil leaking from the minimum clearance CL2 increases. Can be suppressed. Further, since the linear expansion coefficient of the spool 50 is the same as the linear expansion coefficient of the outer sleeve 30, it is possible to suppress a change in the size of the minimum gap CL2 due to the temperature rise of the hydraulic oil control valve 10. Therefore, deterioration of the slidability of the spool 50 can be suppressed.
 本実施形態において、バルブタイミング調整装置100の駆動時において温度が上昇した状態は、本開示における、軸力が加えられて軸力が加えられる前よりもバルブタイミング調整装置が使用される環境の環境温度が上昇したことを含む予め定められた条件が満たされた状態の下位概念に相当する。また、内燃機関300の温度は、バルブタイミング調整装置が使用される環境の環境温度の下位概念に相当する。 In the present embodiment, the state in which the temperature rises when the valve timing adjusting device 100 is driven is the environment of the environment in which the valve timing adjusting device is used more than before the axial force is applied and the axial force is applied in the present disclosure. It corresponds to the subordinate concept of a state in which predetermined conditions including that the temperature has risen are satisfied. Further, the temperature of the internal combustion engine 300 corresponds to a subordinate concept of the environmental temperature of the environment in which the valve timing adjusting device is used.
 以上説明した第3実施形態の作動油制御弁10によれば、第2実施形態の作動油制御弁10と同様な効果を奏する。加えて、作動油制御弁10に軸力が加えられ、軸力が加えられる前よりも温度が上昇した状態において、アウタースリーブ30とインナースリーブ40とが径方向に接触するので、アウタースリーブ30に径方向の負荷が過度に加えられることを抑制できる。 According to the hydraulic oil control valve 10 of the third embodiment described above, the same effect as that of the hydraulic oil control valve 10 of the second embodiment is obtained. In addition, when an axial force is applied to the hydraulic oil control valve 10 and the temperature is higher than before the axial force is applied, the outer sleeve 30 and the inner sleeve 40 come into contact with each other in the radial direction. It is possible to suppress excessive application of a radial load.
D.他の実施形態:
(1)上記各実施形態において、アウタースリーブ30とスプール50とは、それぞれ鉄により形成され、インナースリーブ40は、アルミニウムにより形成されていたが、本開示はこれに限定されるものではない。例えば、インナースリーブ40は、他の任意の金属材料により形成されていてもよく、ポリフェニレンサルファイド樹脂やナイロン、フェノール樹脂等の樹脂材料により形成されていてもよく、アウタースリーブ30やスプール50と同じ材料により形成されていてもよい。インナースリーブ40が樹脂により形成される態様においては、アウタースリーブ30がインナースリーブ40よりも硬い構成を容易に実現できる。また、例えば、アウタースリーブ30とスプール50とが、それぞれステンレス鋼等の任意の金属材料により形成されていてもよく、アウタースリーブ30とスプール50とが異なる材料により形成されていてもよい。また、例えば、インナースリーブ40の線膨張係数がアウタースリーブ30の線膨張係数よりも大きくなくてもよく、アウタースリーブ30がインナースリーブ40よりも硬くなくてもよい。また、スプール50の線膨張係数がアウタースリーブ30の線膨張係数と同等でなくてもよい。このような構成によっても、上記各実施形態と同様な効果を奏する。
D. Other embodiments:
(1) In each of the above embodiments, the outer sleeve 30 and the spool 50 are each made of iron, and the inner sleeve 40 is made of aluminum, but the present disclosure is not limited thereto. For example, the inner sleeve 40 may be formed of any other metal material, or may be formed of a resin material such as polyphenylene sulfide resin, nylon, or phenol resin, and is the same material as the outer sleeve 30 and the spool 50. It may be formed by. In the embodiment in which the inner sleeve 40 is made of resin, the outer sleeve 30 can be easily configured to be harder than the inner sleeve 40. Further, for example, the outer sleeve 30 and the spool 50 may be formed of any metal material such as stainless steel, or the outer sleeve 30 and the spool 50 may be formed of different materials. Further, for example, the linear expansion coefficient of the inner sleeve 40 does not have to be larger than the linear expansion coefficient of the outer sleeve 30, and the outer sleeve 30 does not have to be harder than the inner sleeve 40. Further, the coefficient of linear expansion of the spool 50 does not have to be equal to the coefficient of linear expansion of the outer sleeve 30. Even with such a configuration, the same effect as that of each of the above-described embodiments can be obtained.
(2)上記第1実施形態において、最小隙間CL1と最小隙間CL2との大小関係は、アウタースリーブ30に軸力が加えられてカム軸320の端部321に固定された状態においても維持されていたが、維持されていなくてもよい。かかる構成によっても、上記第1実施形態と同様な効果を奏する。 (2) In the first embodiment, the magnitude relationship between the minimum clearance CL1 and the minimum clearance CL2 is maintained even in a state where an axial force is applied to the outer sleeve 30 and the camshaft 320 is fixed to the end portion 321. However, it does not have to be maintained. Even with such a configuration, the same effect as that of the first embodiment is obtained.
(3)上記各実施形態における作動油制御弁10の構成は、あくまで一例であり、種々変更可能である。例えば、図7に示す他の実施形態3の作動油制御弁10aのように、インナースリーブ40aのカム軸320側の端部401に開口部402が形成され、かかる開口部402にスプール50aの先端部510が挿入されていてもよい。また、インナースリーブ40aのストッパ49が省略されて、アウタースリーブ30aにおいてスプール50の先端部510と対向する位置にストッパ85が形成されていてもよい。このような構成によって、アウタースリーブ30aのカム軸320側の端部にドレン流出部55aが形成されていてもよく、ストッパ85よりもカム軸320側における軸孔34aの内部がスプール50の内部とともにドレン油路53aとして機能してもよい。また、かかる構成において、アウタースリーブ30aの本体部31aに、図1に示す作動油供給源350から作動油が供給される供給孔328が形成されていてもよい。また、スプール50aのスプール底部52aが固定部材70よりもソレノイド160側に突出していなくてもよく、アウタースリーブ30aの拡径部36が省略されていてもよく、インナースリーブ40aの鍔部46に代えて封止壁45と略同じ外径を有する係止端部46aが形成されていてもよい。このような構成によっても、上記各実施形態と同様な効果を奏する。 (3) The configuration of the hydraulic oil control valve 10 in each of the above embodiments is merely an example and can be variously changed. For example, like the hydraulic oil control valve 10a of the other embodiment 3 shown in FIG. 7, an opening 402 is formed at the end 401 of the inner sleeve 40a on the camshaft 320 side, and the tip of the spool 50a is formed in the opening 402. The part 510 may be inserted. Further, the stopper 49 of the inner sleeve 40a may be omitted, and the stopper 85 may be formed at a position of the outer sleeve 30a facing the tip 510 of the spool 50. With such a configuration, the drain outflow portion 55a may be formed at the end of the outer sleeve 30a on the camshaft 320 side, and the inside of the shaft hole 34a on the camshaft 320 side of the stopper 85 is together with the inside of the spool 50. It may function as a drain oil passage 53a. Further, in such a configuration, a supply hole 328 for supplying hydraulic oil from the hydraulic oil supply source 350 shown in FIG. 1 may be formed in the main body portion 31a of the outer sleeve 30a. Further, the spool bottom 52a of the spool 50a may not protrude toward the solenoid 160 from the fixing member 70, and the enlarged diameter portion 36 of the outer sleeve 30a may be omitted, instead of the flange portion 46 of the inner sleeve 40a. A locking end portion 46a having substantially the same outer diameter as the sealing wall 45 may be formed. Even with such a configuration, the same effect as that of each of the above-described embodiments can be obtained.
 また、例えば、リサイクルポート47によるリサイクル機構が省略されていてもよい。また、例えば、スプール50の内部が作動油供給油路25として構成されていてもよく、アウタースリーブ30の軸孔34とインナースリーブ40の外周面との間の空間がドレン油路53として構成されていてもよい。また、例えば、雄ねじ部33と雌ねじ部324との締結に限らず、溶接等の任意の固定方法により、軸方向ADの軸力が加えられてカム軸320の端部321に固定されてもよい。また、ソレノイド160に限らず、電動モータやエアシリンダー等の任意のアクチュエータにより駆動されてもよい。このような構成によっても、上記各実施形態と同様な効果を奏する。 Further, for example, the recycling mechanism by the recycling port 47 may be omitted. Further, for example, the inside of the spool 50 may be configured as the hydraulic oil supply oil passage 25, and the space between the shaft hole 34 of the outer sleeve 30 and the outer peripheral surface of the inner sleeve 40 is configured as the drain oil passage 53. You may be. Further, for example, the fastening is not limited to the fastening of the male screw portion 33 and the female screw portion 324, and the axial force in the axial direction AD may be applied and fixed to the end portion 321 of the cam shaft 320 by any fixing method such as welding. .. Further, the solenoid 160 may be driven by any actuator such as an electric motor or an air cylinder. Even with such a configuration, the same effect as that of each of the above-described embodiments can be obtained.
(4)上記各実施形態において、バルブタイミング調整装置100は、カム軸320が開閉駆動する吸気弁330のバルブタイミングを調整していたが、排気弁340のバルブタイミングを調整してもよい。また、駆動軸としてのクランク軸310から中間の軸を介して動力が伝達される従動軸としてのカム軸320の端部321に固定されて用いられてもよく、二重構造のカム軸が備える駆動軸と従動軸とのうちの一方の端部に固定されて用いられてもよい。 (4) In each of the above embodiments, the valve timing adjusting device 100 adjusts the valve timing of the intake valve 330 that opens and closes the cam shaft 320, but the valve timing of the exhaust valve 340 may be adjusted. Further, it may be used by being fixed to the end 321 of the camshaft 320 as the driven shaft in which power is transmitted from the crankshaft 310 as the drive shaft via the intermediate shaft, and the camshaft has a double structure. It may be used by being fixed to one end of a drive shaft and a driven shaft.
 本開示は、上述の各実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to each of the above-described embodiments, and can be realized with various configurations within a range not deviating from the purpose. For example, the technical features in each embodiment corresponding to the technical features in the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

Claims (9)

  1.  駆動軸(310)と前記駆動軸から動力が伝達されてバルブ(330)を開閉駆動する従動軸(320)とのうちの一方の軸の端部(321)に固定され前記バルブのバルブタイミングを調整するバルブタイミング調整装置(100)において、前記バルブタイミング調整装置の回転軸(AX)に配置されて用いられて、作動油供給源(350)から供給される作動油の流動を制御する作動油制御弁(10、10a)であって、
     筒状のスリーブ(20)と、
     自身の一端に当接して配置されるアクチュエータ(160)により駆動され、前記スリーブの径方向の内側を軸方向(AD)に摺動するスプール(50、50a)と、
     を備え、
      前記スリーブは、
      前記スプールの前記径方向の外側に配置されるインナースリーブ(40、40a)と、
      前記軸方向に沿った軸孔(34、34a)が形成されたアウタースリーブ(30、30a)であって、前記軸孔の前記軸方向における少なくとも一部に前記インナースリーブが挿入され、前記軸方向の軸力が加えられて前記一方の軸の端部に固定可能なアウタースリーブと、
      を有し、
      前記軸力が加えられていない状態において、前記アウタースリーブと前記インナースリーブとの間の前記径方向の最小隙間(CL1)は、前記インナースリーブと前記スプールとの間の前記径方向の最小隙間(CL2)よりも大きい、
     作動油制御弁。
    The valve timing of the valve is fixed to the end (321) of one of the drive shaft (310) and the driven shaft (320) that opens and closes the valve (330) by transmitting power from the drive shaft. In the valve timing adjusting device (100) to be adjusted, the hydraulic oil is arranged and used on the rotation shaft (AX) of the valve timing adjusting device to control the flow of the hydraulic oil supplied from the hydraulic oil supply source (350). A control valve (10, 10a)
    Cylindrical sleeve (20) and
    Spools (50, 50a) driven by an actuator (160) arranged in contact with one end of the sleeve and sliding axially (AD) inside the sleeve in the radial direction.
    With
    The sleeve
    An inner sleeve (40, 40a) arranged on the outer side of the spool in the radial direction, and
    An outer sleeve (30, 30a) in which a shaft hole (34, 34a) is formed along the axial direction, and the inner sleeve is inserted into at least a part of the shaft hole in the axial direction. An outer sleeve that can be fixed to the end of one of the shafts by applying the axial force of
    Have,
    In the state where the axial force is not applied, the minimum radial gap (CL1) between the outer sleeve and the inner sleeve is the minimum radial gap (CL1) between the inner sleeve and the spool. Larger than CL2),
    Hydraulic oil control valve.
  2.  請求項1に記載の作動油制御弁において、
     前記インナースリーブの線膨張係数は、前記アウタースリーブの線膨張係数よりも大きい、
     作動油制御弁。
    In the hydraulic oil control valve according to claim 1,
    The coefficient of linear expansion of the inner sleeve is larger than the coefficient of linear expansion of the outer sleeve.
    Hydraulic oil control valve.
  3.  請求項1または請求項2に記載の作動油制御弁において、
     前記アウタースリーブは、前記インナースリーブよりも硬い、
     作動油制御弁。
    In the hydraulic oil control valve according to claim 1 or 2.
    The outer sleeve is harder than the inner sleeve.
    Hydraulic oil control valve.
  4.  請求項1から請求項3までのいずれか一項に記載の作動油制御弁において、
     前記アウタースリーブは、鉄により形成され、
     前記インナースリーブは、アルミニウムまたは樹脂により形成されている、
     作動油制御弁。
    The hydraulic oil control valve according to any one of claims 1 to 3.
    The outer sleeve is made of iron
    The inner sleeve is made of aluminum or resin.
    Hydraulic oil control valve.
  5.  駆動軸(310)と前記駆動軸から動力が伝達されてバルブ(330)を開閉駆動する従動軸(320)とのうちの一方の軸の端部(321)に固定され前記バルブのバルブタイミングを調整するバルブタイミング調整装置(100)において、前記バルブタイミング調整装置の回転軸(AX)に配置されて用いられて、作動油供給源(350)から供給される作動油の流動を制御する作動油制御弁(10、10a)であって、
     筒状のスリーブ(20)と、
     自身の一端に当接して配置されるアクチュエータ(160)により駆動され、前記スリーブの径方向の内側を軸方向(AD)に摺動するスプール(50、50a)と、
     を備え、
      前記スリーブは、
      前記スプールの前記径方向の外側に配置されるインナースリーブ(40、40a)と、
      前記軸方向に沿った軸孔(34、34a)が形成されたアウタースリーブ(30、30a)であって、前記軸孔の前記軸方向における少なくとも一部に前記インナースリーブが挿入され、前記軸方向の軸力が加えられて前記一方の軸の端部に固定可能なアウタースリーブと、
      を有し、
     前記軸力が加えられたことを含む予め定められた条件が満たされた状態において、前記アウタースリーブと前記インナースリーブとは、前記径方向に接触する、
     作動油制御弁。
    The valve timing of the valve is fixed to the end (321) of one of the drive shaft (310) and the driven shaft (320) that opens and closes the valve (330) by transmitting power from the drive shaft. In the valve timing adjusting device (100) to be adjusted, the hydraulic oil is arranged and used on the rotation shaft (AX) of the valve timing adjusting device to control the flow of the hydraulic oil supplied from the hydraulic oil supply source (350). The control valve (10, 10a)
    Cylindrical sleeve (20) and
    Spools (50, 50a) driven by an actuator (160) arranged in contact with one end of the sleeve and sliding axially (AD) inside the sleeve in the radial direction.
    With
    The sleeve
    An inner sleeve (40, 40a) arranged on the outer side of the spool in the radial direction, and
    An outer sleeve (30, 30a) in which a shaft hole (34, 34a) is formed along the axial direction, and the inner sleeve is inserted into at least a part of the shaft hole in the axial direction. An outer sleeve that can be fixed to the end of one of the shafts by applying the axial force of
    Have,
    The outer sleeve and the inner sleeve come into contact with each other in the radial direction in a state in which predetermined conditions including the application of the axial force are satisfied.
    Hydraulic oil control valve.
  6.  請求項5に記載の作動油制御弁において、
     前記予め定められた条件は、前記軸力が加えられて前記軸力が加えられる前よりも前記バルブタイミング調整装置が使用される環境の環境温度が上昇したことを含む、
     作動油制御弁。
    In the hydraulic oil control valve according to claim 5,
    The predetermined conditions include that the environmental temperature of the environment in which the valve timing adjusting device is used is higher than before the axial force is applied and the axial force is applied.
    Hydraulic oil control valve.
  7.  請求項5または請求項6に記載の作動油制御弁において、
     前記インナースリーブの線膨張係数は、前記アウタースリーブの線膨張係数よりも大きく、
     前記スプールの線膨張係数は、前記アウタースリーブの線膨張係数と同等である、
     作動油制御弁。
    In the hydraulic oil control valve according to claim 5 or 6.
    The coefficient of linear expansion of the inner sleeve is larger than the coefficient of linear expansion of the outer sleeve.
    The coefficient of linear expansion of the spool is equivalent to the coefficient of linear expansion of the outer sleeve.
    Hydraulic oil control valve.
  8.  請求項7に記載の作動油制御弁において、
     前記アウタースリーブと前記スプールとは、鉄により形成され、
     前記インナースリーブは、アルミニウムまたは樹脂により形成されている、
     作動油制御弁。
    In the hydraulic oil control valve according to claim 7,
    The outer sleeve and the spool are made of iron.
    The inner sleeve is made of aluminum or resin.
    Hydraulic oil control valve.
  9.  請求項1から請求項8までのいずれか一項に記載の作動油制御弁を備える、
     バルブタイミング調整装置。
    The hydraulic oil control valve according to any one of claims 1 to 8 is provided.
    Valve timing adjuster.
PCT/JP2020/012843 2019-03-25 2020-03-24 Hydraulic oil control valve and valve timing adjustment device WO2020196454A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020001458.4T DE112020001458T5 (en) 2019-03-25 2020-03-24 Hydraulic oil control valve and valve timing adjustment device
CN202080023501.5A CN113614337B (en) 2019-03-25 2020-03-24 Working oil control valve and valve timing adjustment device
US17/483,239 US20220010693A1 (en) 2019-03-25 2021-09-23 Hydraulic oil control valve and valve timing adjustment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-055892 2019-03-25
JP2019055892A JP7226001B2 (en) 2019-03-25 2019-03-25 Hydraulic oil control valve and valve timing adjustment device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/483,239 Continuation US20220010693A1 (en) 2019-03-25 2021-09-23 Hydraulic oil control valve and valve timing adjustment device

Publications (1)

Publication Number Publication Date
WO2020196454A1 true WO2020196454A1 (en) 2020-10-01

Family

ID=72610968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012843 WO2020196454A1 (en) 2019-03-25 2020-03-24 Hydraulic oil control valve and valve timing adjustment device

Country Status (5)

Country Link
US (1) US20220010693A1 (en)
JP (1) JP7226001B2 (en)
CN (1) CN113614337B (en)
DE (1) DE112020001458T5 (en)
WO (1) WO2020196454A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11585248B2 (en) 2019-03-25 2023-02-21 Denso Corporation Hydraulic oil control valve and valve timing adjustment device
US11649741B2 (en) 2019-03-25 2023-05-16 Denso Corporation Hydraulic oil control valve and valve timing adjustment device
US11649740B2 (en) 2019-03-25 2023-05-16 Denso Corporation Hydraulic oil control valve and valve timing adjustment device
US11834971B2 (en) 2019-03-25 2023-12-05 Denso Corporation Hydraulic oil control valve and valve timing adjusting device
US11852052B2 (en) 2019-03-25 2023-12-26 Denso Corporation Hydraulic oil control valve and valve timing adjustment device
US11898471B2 (en) 2019-03-25 2024-02-13 Denso Corporation Valve timing adjustment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117905915B (en) * 2024-03-20 2024-06-04 山东辰榜数控装备有限公司 Hydraulic oil way regulating valve of numerical control machine tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301010A (en) * 2003-03-31 2004-10-28 Denso Corp Oil flow control valve
JP2018115658A (en) * 2017-01-19 2018-07-26 株式会社デンソー Valve timing adjustment device and check valve

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270525B2 (en) * 2009-12-22 2013-08-21 日立オートモティブシステムズ株式会社 Control valve device
JP5182326B2 (en) * 2010-06-09 2013-04-17 トヨタ自動車株式会社 Flow control valve
CA2755894C (en) * 2010-08-25 2013-04-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
MX2016011909A (en) * 2014-03-19 2016-12-05 Hitachi Automotive Systems Ltd Control valve for valve timing control device and valve timing control device for internal combustion engine.
JPWO2016021328A1 (en) 2014-08-04 2017-04-27 日立オートモティブシステムズ株式会社 Hydraulic control valve and valve timing control device for an internal combustion engine using the hydraulic control valve
JP6721334B2 (en) 2015-12-28 2020-07-15 株式会社ミクニ Valve timing change device
JP2018059415A (en) 2016-10-03 2018-04-12 日立オートモティブシステムズ株式会社 Hydraulic control valve and valve timing control device of internal combustion engine
JP6645448B2 (en) 2017-01-19 2020-02-14 株式会社デンソー Valve timing adjustment device
WO2018135584A1 (en) * 2017-01-19 2018-07-26 株式会社デンソー Valve timing adjustment device and check valve
JP6931580B2 (en) 2017-09-20 2021-09-08 東京瓦斯株式会社 Hydrogen production equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301010A (en) * 2003-03-31 2004-10-28 Denso Corp Oil flow control valve
JP2018115658A (en) * 2017-01-19 2018-07-26 株式会社デンソー Valve timing adjustment device and check valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11585248B2 (en) 2019-03-25 2023-02-21 Denso Corporation Hydraulic oil control valve and valve timing adjustment device
US11649741B2 (en) 2019-03-25 2023-05-16 Denso Corporation Hydraulic oil control valve and valve timing adjustment device
US11649740B2 (en) 2019-03-25 2023-05-16 Denso Corporation Hydraulic oil control valve and valve timing adjustment device
US11834971B2 (en) 2019-03-25 2023-12-05 Denso Corporation Hydraulic oil control valve and valve timing adjusting device
US11852052B2 (en) 2019-03-25 2023-12-26 Denso Corporation Hydraulic oil control valve and valve timing adjustment device
US11898471B2 (en) 2019-03-25 2024-02-13 Denso Corporation Valve timing adjustment device

Also Published As

Publication number Publication date
CN113614337B (en) 2024-06-07
JP7226001B2 (en) 2023-02-21
CN113614337A (en) 2021-11-05
DE112020001458T5 (en) 2021-12-23
JP2020159195A (en) 2020-10-01
US20220010693A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2020196454A1 (en) Hydraulic oil control valve and valve timing adjustment device
WO2020196456A1 (en) Hydraulic oil control valve and valve timing adjustment device
WO2020195747A1 (en) Operating oil control valve, and valve timing adjusting device
JP7207062B2 (en) Hydraulic oil control valve and method for manufacturing hydraulic oil control valve
JP7074102B2 (en) Hydraulic oil control valve and valve timing adjuster
WO2020196457A1 (en) Hydraulic oil control valve and valve timing adjusting device
JP7021658B2 (en) Valve timing adjuster
US11649741B2 (en) Hydraulic oil control valve and valve timing adjustment device
JP2020159203A (en) Hydraulic oil control valve
WO2021106890A1 (en) Valve timing adjustment device
WO2021172263A1 (en) Valve timing adjustment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779054

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20779054

Country of ref document: EP

Kind code of ref document: A1