WO2018135584A1 - Valve timing adjustment device and check valve - Google Patents

Valve timing adjustment device and check valve Download PDF

Info

Publication number
WO2018135584A1
WO2018135584A1 PCT/JP2018/001387 JP2018001387W WO2018135584A1 WO 2018135584 A1 WO2018135584 A1 WO 2018135584A1 JP 2018001387 W JP2018001387 W JP 2018001387W WO 2018135584 A1 WO2018135584 A1 WO 2018135584A1
Authority
WO
WIPO (PCT)
Prior art keywords
check valve
supply
valve
recycle
oil passage
Prior art date
Application number
PCT/JP2018/001387
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 満谷
▲ジン▼ 徐
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017246489A external-priority patent/JP6690633B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018000445.7T priority Critical patent/DE112018000445T5/en
Priority to CN201880007251.9A priority patent/CN110192011B/en
Publication of WO2018135584A1 publication Critical patent/WO2018135584A1/en
Priority to US16/502,404 priority patent/US10858967B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive

Definitions

  • This disclosure relates to a valve timing adjusting device and a check valve.
  • valve timing adjusting device that is provided in a power transmission path that transmits power from a driving shaft of an internal combustion engine to a driven shaft and adjusts valve timings of intake valves and exhaust valves that are driven to open and close by the driven shaft.
  • the valve timing adjusting device includes a housing that rotates in conjunction with one of a drive shaft and a driven shaft, and a vane rotor that is fixed to the other end of the drive shaft and the driven shaft, and the vane rotor in the housing.
  • the hydraulic oil is supplied to one of the first hydraulic chamber and the second hydraulic chamber that form a compartment, thereby rotating the vane rotor relative to the housing in the advance direction or the retard direction.
  • the hydraulic oil is supplied by an oil passage switching valve.
  • a supply oil passage for supplying hydraulic oil to a pressure accumulation space in the spool, a first hydraulic chamber or a second hydraulic chamber, and a pressure accumulation in a spool constituting the oil path switching valve.
  • a recycle oil passage formed so as to be connectable to the space is formed.
  • the recycle oil path enables reuse of hydraulic oil from the first hydraulic chamber and the second hydraulic chamber.
  • On the radially inner side of the spool with respect to the supply oil passage the hydraulic oil flow from the hydraulic oil supply source side to the pressure accumulation space side via the supply oil passage is permitted, and the hydraulic oil from the pressure accumulation space side via the supply oil passage is allowed.
  • a supply check valve for restricting the flow of hydraulic oil to the supply source side is provided.
  • the backflow of the hydraulic oil from the pressure accumulation space side to the hydraulic oil supply source side can be suppressed.
  • the flow of hydraulic oil from the first hydraulic chamber or the second hydraulic chamber side to the pressure accumulation space side via the recycle oil passage is allowed and recycled from the pressure accumulation space side.
  • a recycle check valve is provided for restricting the flow of hydraulic oil to the first hydraulic chamber or the second hydraulic chamber via the oil passage. Therefore, it is possible to suppress the backflow of hydraulic oil from the pressure accumulation space side to the first hydraulic chamber or the second hydraulic chamber side via the recycle oil passage.
  • the supply check valve and the recycle check valve have different characteristics regarding valve opening that should be given priority in consideration of pressure loss, response time, and the like.
  • the valve timing adjusting device of Patent Document 1 no consideration is given to the characteristics related to the opening of each of the supply check valve and the recycle check valve.
  • the valve opening pressures of the supply check valve and the recycle check valve may be set to be the same. Therefore, when the valve opening pressure of the supply check valve is set higher than an appropriate value and is difficult to open, the pressure loss when the hydraulic oil passes through the supply check valve increases and is supplied to each hydraulic chamber. There is a risk of increased hydraulic oil pressure loss.
  • a first object of the present disclosure is to provide a valve timing adjusting device with low pressure loss of hydraulic oil supplied to a hydraulic chamber and high response.
  • the flow of fluid that is provided inside a cylindrical tubular member having an inflow hole that communicates the outer peripheral wall and the inner peripheral wall and that flows toward the inner side of the cylindrical member via the inflow hole is disclosed.
  • the check valve includes a valve body formed into a cylindrical shape by winding a single plate material.
  • the valve body has a full range of curvature from the inner end to the outer end of the portion between the inner end that is one end in the circumferential direction and the outer end that is the other end in the circumferential direction. Is constant.
  • the second object of the present disclosure is to provide a check valve capable of suppressing stress generated during deformation.
  • a first aspect of the present disclosure is a valve timing adjustment device that is provided in a power transmission path that transmits power from a drive shaft to a driven shaft of an internal combustion engine and adjusts a valve timing of a valve that is driven to open and close by the driven shaft.
  • the housing rotates in conjunction with the first shaft and is fitted to the end of the second shaft.
  • the second shaft is rotatably supported.
  • the vane rotor is fixed to the end of the second shaft and has a vane that divides the internal space of the housing into a first hydraulic chamber on one side in the circumferential direction and a second hydraulic chamber on the other side in the circumferential direction. It rotates relative to the housing according to the pressure of the hydraulic oil supplied from the source to the first hydraulic chamber and the second hydraulic chamber.
  • the sleeve is formed in a cylindrical shape, and has a supply port communicating with the hydraulic oil supply source, a first control port communicating with the first hydraulic chamber, and a second control port communicating with the second hydraulic chamber. is doing.
  • the spool is formed in a cylindrical shape so as to be capable of reciprocating in the axial direction inside the sleeve, and a pressure accumulation space formed inside, a supply oil passage formed to connect the pressure accumulation space and the supply port, and a pressure accumulation space And a control oil passage formed so as to be connectable to the first control port or the second control port, and a recycle oil passage formed so as to be connectable between the pressure accumulation space and the first control port or the second control port. ing.
  • the recycle oil path enables reuse of hydraulic oil from the first hydraulic chamber and the second hydraulic chamber.
  • the supply check valve When the supply check valve is opened, it allows the flow of hydraulic oil from the hydraulic oil supply source side through the supply oil passage to the pressure accumulation space side.When the valve is closed, the supply check valve passes through the supply oil passage from the pressure accumulation space side. Thus, the flow of hydraulic oil toward the hydraulic oil supply source side is regulated. Therefore, the backflow of the hydraulic oil from the pressure accumulation space side to the hydraulic oil supply source side can be suppressed. Thereby, when the supply pressure of the hydraulic oil supply source is low, it is possible to suppress the hydraulic oil from flowing from the oil passage switching valve side to the hydraulic oil supply source side.
  • the recycle check valve allows the flow of hydraulic oil from the first hydraulic chamber or the second hydraulic chamber side to the pressure accumulation space side through the recycle oil passage when the valve is opened, and from the pressure accumulation space side when the valve is closed.
  • the flow of hydraulic oil toward the first hydraulic chamber or the second hydraulic chamber via the recycle oil passage is regulated. Therefore, it is possible to suppress the backflow of the hydraulic oil from the pressure accumulation space side to the first hydraulic chamber or the second hydraulic chamber side. Thereby, the responsiveness of the valve timing adjusting device can be enhanced in a configuration in which the hydraulic oil can be reused.
  • the characteristics related to the opening of the supply check valve are different from the characteristics related to the opening of the recycle check valve.
  • the degree of pressure loss for example, if the valve opening pressure of the supply check valve is relatively low and set to a characteristic that is easy to open, the pressure loss when the hydraulic oil passes through the supply check valve decreases, The pressure loss of the hydraulic oil supplied to each hydraulic chamber can be reduced.
  • the valve opening pressure of the recycle check valve is relatively high and set to a characteristic that makes it difficult to open, the recycle check valve will follow high-frequency positive and negative cam torque fluctuations at high revolutions. And the responsiveness of the valve timing adjusting device can be improved.
  • the second aspect of the present disclosure is provided inside a cylindrical tubular member having an inflow hole that communicates the outer peripheral wall and the inner peripheral wall, and allows the flow of fluid toward the inner side of the cylindrical member via the inflow hole. And it is a check valve which can regulate the flow of the fluid which goes to the inflow hole from the inside of a cylinder member, Comprising:
  • the valve main body is provided.
  • the valve body is formed in a cylindrical shape by winding a single plate material.
  • the valve body When the check valve is in a free state, the valve body has a constant curvature at a specific portion between an inner end that is one end in the circumferential direction and an outer end that is the other end in the circumferential direction. It has a small curvature part with a curvature smaller than the curvature of a constant curvature part in parts other than a curvature part and the said constant curvature part of the circumferential direction. Therefore, when the check valve is deformed so as to shrink radially inward due to the fluid flow from the inflow hole inside the cylindrical member, the timing at which the deformation of the portion on the inner end side of the valve body starts is set on the outer end side. Can be delayed with respect to the site. As a result, the inner end serves as a support point, and it is possible to suppress the occurrence of stress due to the bias of the load at a position of about 90 ° from the position. Therefore, deformation or breakage of the check valve can be suppressed.
  • FIG. 1 is a cross-sectional view showing a valve timing adjusting device according to a first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, showing only the housing and the vane rotor;
  • FIG. 3A is a view showing a check valve of the valve timing adjusting device according to the first embodiment;
  • FIG. 3B is a view of FIG. 3A as viewed from the direction of arrow IIIB.
  • FIG. 3C is an expanded view of the check valve.
  • FIG. 4 is a cross-sectional view showing the valve timing adjusting device according to the second embodiment, FIG.
  • FIG. 5A is a view showing a check valve of the valve timing adjusting device according to the second embodiment
  • 5B is a cross-sectional view taken along line VB-VB of FIG. 5A
  • FIG. 5C is a diagram showing a supply check valve
  • 6A is a cross-sectional view taken along line VIA-VIA of FIG. 4 and shows only a spool and a check valve
  • 6B is a cross-sectional view taken along the line VIB-VIB of FIG. 4 and shows only the spool and the check valve.
  • FIG. 7 is a cross-sectional view showing a part of the valve timing adjusting device according to the third embodiment.
  • FIG. 8 is a cross-sectional view showing a part of the valve timing adjusting device according to the fourth embodiment.
  • FIG. 9 is a cross-sectional perspective view showing a spool and a check valve of the valve timing adjusting device according to the fourth embodiment.
  • FIG. 10 is a cross-sectional view showing a part of the valve timing adjusting apparatus according to the fifth embodiment.
  • FIG. 11 is a cross-sectional view showing an oil passage switching valve of a valve timing adjusting device according to a sixth embodiment.
  • 12 is a cross-sectional view taken along line XII-XII of FIG.
  • FIG. 13 is a view showing a check valve of the valve timing adjusting device according to the sixth embodiment,
  • FIG. 14 is a view of FIG. 13 viewed from the direction of arrow XIV.
  • FIG. 13 is a cross-sectional perspective view showing a spool and a check valve of the valve timing adjusting device according to the fourth embodiment.
  • FIG. 10 is a cross-sectional view showing a part of the valve timing adjusting apparatus according to the fifth embodiment.
  • FIG. 11 is a cross
  • FIG. 15 is a diagram illustrating a state at the time of maximum deformation of the check valve of the valve timing adjusting device according to the sixth embodiment
  • FIG. 16 is a view showing a check valve according to the first comparative embodiment
  • FIG. 17 is a diagram illustrating a state at the time of maximum deformation of the check valve according to the first comparative embodiment
  • FIG. 18 is a view showing a check valve according to the second comparative embodiment
  • FIG. 19 is a diagram showing a state at the time of maximum deformation of the check valve according to the second comparative embodiment
  • FIG. 20 is a diagram showing the relationship between the angle from the inner end of the valve body and the magnitude of the generated stress at the maximum deformation of the valve body
  • FIG. 21 is a view showing a check valve according to the seventh embodiment.
  • FIG. 22 is a view showing a check valve according to the eighth embodiment.
  • FIG. 23 is a view showing a check valve according to the ninth embodiment.
  • FIG. 24 is a perspective view showing a check valve according to the tenth embodiment,
  • FIG. 25 is a diagram when FIG. 24 is viewed from the direction of the arrow XXV.
  • FIG. 26 is a view showing a check valve according to the third comparative embodiment.
  • a valve timing adjusting device changes the rotational phase of the camshaft 3 with respect to the crankshaft 2 of the engine 1 as an internal combustion engine to thereby change the intake valve 4 of the intake valve 4 or the exhaust valve 5 that the camshaft 3 is driven to open and close.
  • the valve timing is adjusted.
  • the valve timing adjusting device 10 is provided in a power transmission path from the crankshaft 2 to the camshaft 3.
  • the crankshaft 2 corresponds to a “drive shaft”.
  • the cam shaft 3 corresponds to a “driven shaft”.
  • the configuration of the valve timing adjusting device 10 will be described with reference to FIGS. 1 and 2.
  • the valve timing adjusting device 10 includes a housing 20, a vane rotor 30, and an oil passage switching valve 11.
  • the housing 20 includes a sprocket 21 and a case 22.
  • the sprocket 21 is fitted to the end of the cam shaft 3.
  • the camshaft 3 supports the sprocket 21 in a rotatable manner.
  • the chain 6 is wound around the sprocket 21 and the crankshaft 2.
  • the sprocket 21 rotates in conjunction with the crankshaft 2.
  • the case 22 has a bottomed cylindrical shape, and an open end is fixed to the sprocket 21 by a bolt 12 while being combined with the sprocket 21.
  • the case 22 has a plurality of partition walls 23 protruding radially inward.
  • An opening 24 that opens to a space outside the case 22 is formed at the center of the bottom of the case 22.
  • the opening 24 is located on the side opposite to the camshaft 3 with respect to the vane rotor 30.
  • the vane rotor 30 includes a boss 31 and a plurality of vanes 32.
  • the boss 31 has a cylindrical shape and is fixed to the end of the cam shaft 3.
  • the vane 32 protrudes between the partition walls 23 toward the radially outer side from the boss 31.
  • the internal space 200 of the housing 20 is partitioned into a retard chamber 201 and an advance chamber 202 by a vane 32.
  • the retard chamber 201 corresponds to the “first hydraulic chamber” and is located on one side in the circumferential direction with respect to the vane 32.
  • the advance chamber 202 corresponds to the “second hydraulic chamber” and is located on the other side in the circumferential direction with respect to the vane 32.
  • the vane rotor 30 rotates relative to the housing 20 in the retard direction or the advance direction according to the hydraulic pressure in the retard chamber 201 and the advance chamber 202.
  • the oil passage switching valve 11 has a sleeve 40, a spool 50, and a check valve 60.
  • the sleeve 40 includes an inner sleeve 41, an outer sleeve 42, a supply port 43, a first control port 44, a second control port 45, and a locking portion 47.
  • the inner sleeve 41 is formed of a metal having a relatively low hardness, such as aluminum.
  • the inner sleeve 41 has a sleeve tube portion 411 and a sleeve bottom portion 412.
  • the sleeve tube portion 411 is formed in a substantially cylindrical shape.
  • the sleeve bottom 412 is formed integrally with the sleeve cylinder 411 so as to close one end of the sleeve cylinder 411.
  • the outer sleeve 42 is made of a metal such as iron.
  • the outer sleeve 42 has a sleeve cylinder portion 421 and a screw portion 422.
  • the sleeve cylinder portion 421 is formed in a substantially cylindrical shape.
  • the screw part 422 is formed on the outer wall of one end of the sleeve cylinder part 421.
  • the inner sleeve 41 is provided inside the outer sleeve 42 so that the sleeve bottom portion 412 side faces the screw portion 422 side.
  • the outer wall of the inner sleeve 41 and the inner wall of the outer sleeve 42 are fitted.
  • a substantially cylindrical inner space 400 is formed inside the sleeve cylinder portion 411 of the inner sleeve 41 inside the sleeve cylinder portion 421 of the outer sleeve 42.
  • the supply port 43 is formed so as to connect the outer wall and the inner wall of the sleeve tube portion 411 of the inner sleeve 41.
  • the outer wall of the end portion on the sleeve bottom portion 412 side of the sleeve tube portion 411 of the inner sleeve 41 is partially cut away in the circumferential direction.
  • a notch oil passage 431 is formed between the sleeve tube portion 411 and the sleeve tube portion 421.
  • the inner space 400 communicates with the space outside the sleeve 40 via the supply port 43 and the notch oil passage 431.
  • the first control port 44 is formed so as to connect the outer wall of the sleeve tube portion 421 of the outer sleeve 42 and the inner wall of the sleeve tube portion 411 of the inner sleeve 41.
  • a plurality of first control ports 44 are formed in the circumferential direction of the sleeve 40.
  • the second control port 45 is formed to connect the outer wall of the sleeve tube portion 421 of the outer sleeve 42 and the inner wall of the sleeve tube portion 411 of the inner sleeve 41.
  • a plurality of second control ports 45 are formed in the circumferential direction of the sleeve 40.
  • the supply port 43, the first control port 44, and the second control port 45 are formed in this order so as to be arranged at a predetermined interval from one end side of the sleeve 40 toward the other end side.
  • the locking portion 47 is formed in an annular shape so as to protrude radially outward from the outer wall on the other end side of the sleeve cylindrical portion 421.
  • a shaft hole 100 and a supply hole 101 are formed at the end of the cam shaft 3 on the valve timing adjusting device 10 side.
  • the shaft hole portion 100 is formed so as to extend in the axial direction of the cam shaft 3 from the center of the end surface of the cam shaft 3 on the valve timing adjusting device 10 side.
  • the supply hole 101 is formed to extend radially inward from the outer wall of the cam shaft 3 and communicate with the shaft hole 100.
  • the sleeve 40 passes through the inside of the boss 31 of the vane rotor 30 and is fixed to the camshaft 3 so that the screw portion 422 is coupled to the shaft-side screw portion 110 of the camshaft 3.
  • the locking portion 47 of the sleeve 40 locks the end surface of the boss 31 of the vane rotor 30 opposite to the camshaft 3.
  • the vane rotor 30 is fixed to the cam shaft 3 so as to be sandwiched between the cam shaft 3 and the locking portion 47.
  • the sleeve 40 is provided in the central part of the vane rotor 30.
  • An oil pump 8 is connected to the supply hole 101.
  • the oil pump 8 pumps up the hydraulic oil stored in the oil pan 7 and supplies it to the supply hole 101.
  • the hydraulic oil flows into the shaft hole 100.
  • the oil pump 8 corresponds to a “operating oil supply source”.
  • the hydraulic fluid that has flowed into the shaft hole portion 100 flows into the inner space 400 via the notch oil passage 431 and the supply port 43.
  • the first control port 44 communicates with the retard chamber 201 via the retard oil passage 301 formed in the boss 31.
  • the second control port 45 communicates with the advance chamber 202 via an advance oil passage 302 formed in the boss 31.
  • the spool 50 includes a spool cylinder portion 51, a spool lid portion 52, a spool bottom portion 53, a supply oil passage 54, a first control oil passage 55 and a second control oil passage 56 as a control oil passage, and a recycle oil passage 57. Yes.
  • the spool cylinder portion 51 is formed in a substantially cylindrical shape.
  • the spool lid portion 52 is provided so as to close one end portion of the spool cylinder portion 51.
  • the spool lid portion 52 is formed separately from the spool cylinder portion 51.
  • the spool bottom 53 is formed integrally with the spool cylinder 51 so as to close the other end of the spool cylinder 51.
  • a substantially cylindrical pressure accumulation space 500 is formed between the inner wall of the spool cylinder portion 51, the spool lid portion 52, and the spool bottom portion 53.
  • the supply oil passage 54 is formed so as to connect an annular recess formed in the outer wall of the spool cylinder 51 and the inner wall of the spool cylinder 51.
  • four supply oil passages 54 are formed at equal intervals in the circumferential direction of the spool 50.
  • the inner diameter of one supply oil passage 54 is set to be the same as the inner diameter of the other supply oil passage 54.
  • the first control oil passage 55 is formed so as to connect an annular recess formed in the outer wall of the spool cylinder 51 and the inner wall of the spool cylinder 51.
  • four first control oil passages 55 are formed at equal intervals in the circumferential direction of the spool 50.
  • the second control oil passage 56 is formed so as to connect an annular recess formed in the outer wall of the spool cylinder 51 and the inner wall of the spool cylinder 51.
  • four second control oil passages 56 are formed at equal intervals in the circumferential direction of the spool 50.
  • the recycle oil passage 57 is formed so as to connect an annular recess formed in the outer wall of the spool cylinder 51 and the inner wall of the spool cylinder 51.
  • four recycling oil passages 57 are formed at equal intervals in the circumferential direction of the spool 50.
  • the inner diameter of one recycled oil passage 57 is set to be the same as the inner diameter of the other recycled oil passage 57.
  • the inner diameter of one recycle oil passage 57 is set to be the same as the inner diameter of the supply oil passage 54. Therefore, the total flow area of the recycle oil passage 57 is the same as the total flow area of the supply oil passage 54.
  • the supply oil passage 54, the first control oil passage 55, the recycle oil passage 57, and the second control oil passage 56 are spaced in this order from one end side of the spool 50 toward the other end side. It is formed so as to be lined up.
  • the spool 50 is provided inside the sleeve 40, that is, in the inner space 400 such that the spool lid portion 52 faces the sleeve bottom portion 412. The spool 50 can reciprocate in the axial direction in the inner space 400.
  • a locking portion 71 is provided on the opposite side to the sleeve bottom portion 412 of the spool tube portion 51.
  • the locking portion 71 is formed in an annular shape, and is provided so that the outer edge portion is fitted to the inner wall of the outer sleeve 42.
  • the locking portion 71 can lock the end portion of the spool cylinder portion 51 opposite to the spool bottom portion 53. As a result, the spool 50 is prevented from coming off on the side opposite to the sleeve bottom 412.
  • the spool 50 forms a variable volume space 401 between the spool lid portion 52 and the sleeve bottom portion 412 in the inner space 400 of the sleeve 40.
  • the volume of the variable volume space 401 changes when the spool 50 reciprocates in the axial direction.
  • a spring 72 is provided between the spool lid 52 and the sleeve bottom 412. The spring 72 urges the spool 50 toward the locking portion 71. As a result, the spool 50 is pressed against the locking portion 71.
  • a linear solenoid 9 is provided on the opposite side of the spool 50 from the cam shaft 3.
  • the linear solenoid 9 presses the spool 50 against the urging force of the spring 72 toward the camshaft 3 when energized.
  • the spool 50 changes its axial position with respect to the sleeve 40.
  • the movable range of the spool 50 is from a position where the spool 50 abuts on the locking portion 71 to a position where the spool 50 abuts on the sleeve bottom 412.
  • the supply oil passage 54 communicates with the supply port 43 regardless of the position of the spool 50 in the axial direction with respect to the sleeve 40.
  • the check valve 60 includes a supply check valve 61, a recycle check valve 62, and a shaft portion 63.
  • the check valve 60 is formed by winding a thin metal plate 600 as shown in FIG. 3C, for example.
  • the thin plate 600 is set to have a substantially uniform thickness, and includes a supply check valve corresponding portion 601, a recycle check valve corresponding portion 602, and a shaft portion corresponding portion 603.
  • the supply check valve corresponding part 601, the recycle check valve corresponding part 602, and the shaft part corresponding part 603 are formed in a rectangular plate shape.
  • the supply check valve corresponding portion 601 and the recycle check valve corresponding portion 602 are each formed integrally with the shaft portion corresponding portion 603 so as to extend from the longitudinal side of the shaft portion corresponding portion 603 in the short direction.
  • the supply check valve corresponding unit 601 and the recycle check valve corresponding unit 602 satisfy the relationship of w1 ⁇ w2. It is formed (see FIG. 3C).
  • the check valve 60 is formed by winding a shaft portion corresponding portion 603, a supply check valve corresponding portion 601, and a recycle check valve corresponding portion 602 in the short direction of the shaft portion corresponding portion 603.
  • the shaft portion 63 is formed in a substantially cylindrical shape (see FIGS. 3A and 3B). The shaft portion 63 does not overlap the plate material, that is, the shaft portion corresponding portion 603 in the circumferential direction.
  • the supply check valve 61 is formed in a substantially cylindrical shape so as to extend radially outward from the vicinity of one end of the shaft portion 63 and make one round around the shaft portion 63 (see FIGS. 3A and 3B). Thereby, the supply check valve 61 is formed to be elastically deformable in the radial direction. When the supply check valve 61 is deformed radially inward, the outer diameter is reduced. More specifically, the supply check valve 61 has a portion in which plate members, that is, supply check valve corresponding portions 601 overlap each other in the circumferential direction. When this overlap becomes large, it deforms radially inward and contracts in the radial direction, and when the overlap becomes small, it deforms radially outward and expands in the radial direction. A space inside the supply check valve 61 formed in a substantially cylindrical shape is opened in the axial direction of the check valve 60.
  • the recycle check valve 62 is formed in a substantially cylindrical shape so as to extend radially outward from the shaft portion 63 and make one round around the shaft portion 63 (see FIGS. 3A and 3B). Thereby, the recycle check valve 62 is formed to be elastically deformable in the radial direction. When the recycle check valve 62 is deformed radially inward, the outer diameter is reduced. More specifically, the recycle check valve 62 has a portion in which plate members, that is, the recycle check valve corresponding portions 602 overlap each other in the circumferential direction (see FIG. 3B).
  • a space inside the recycle check valve 62 formed in a substantially cylindrical shape is opened in the axial direction of the check valve 60.
  • the width of the supply check valve 61 that is, the length in the axial direction is w1.
  • the width of the recycle check valve 62 that is, the length in the axial direction is w2 (see FIGS. 3A and 3C). Therefore, the supply check valve 61 and the recycle check valve 62 are formed so as to satisfy the relationship of w1 ⁇ w2. Therefore, the supply check valve 61 is easily deformed in the radial direction as compared with the recycle check valve 62. That is, when the same radial force is applied to the supply check valve 61 and the recycle check valve 62, the supply check valve 61 has a larger deformation than the recycle check valve 62.
  • the check valve 60 is provided in the pressure accumulation space 500 so that the supply check valve 61 corresponds to the supply oil passage 54 and the recycle check valve 62 corresponds to the recycle oil passage 57 (see FIG. 1).
  • the shaft portion 63 is located between the spool lid portion 52 and the spool bottom portion 53 and supports the supply check valve 61 and the recycle check valve 62.
  • the hydraulic oil is restricted from flowing out of the spool 50 from the pressure accumulation space 500 via the supply oil passage 54.
  • the supply check valve 61 allows the flow of hydraulic oil from the oil pump 8 side via the supply oil passage 54 to the pressure accumulation space 500 side, and from the pressure accumulation space 500 side via the supply oil passage 54. The flow of hydraulic oil toward the oil pump 8 is restricted.
  • the recycle check valve 62 When the hydraulic oil travels from the retarded angle chamber 201 or the advanced angle chamber 202 side to the pressure accumulating space 500 side via the recycle oil passage 57, the recycle check valve 62 is radially inward by pushing the outer peripheral surface by the hydraulic oil. The valve is deformed and opened, and a gap is formed between the inner wall of the spool 50 and the recycle check valve 62. As a result, the hydraulic oil can flow into the pressure accumulating space 500 via the recycle oil passage 57. On the other hand, when the hydraulic oil travels from the pressure accumulating space 500 side via the recycle oil passage 57 to the retarded angle chamber 201 or the advanced angle chamber 202 side, the recycle check valve 62 has a diameter by pushing the inner peripheral surface by the hydraulic oil.
  • the recycle check valve 62 allows the flow of hydraulic oil from the retard chamber 201 or the advance chamber 202 side through the recycle oil passage 57 to the accumulator space 500 side, and recycle oil from the accumulator space 500 side. The flow of hydraulic oil toward the retard chamber 201 or the advance chamber 202 via the path 57 is restricted.
  • the supply check valve 61 is easily deformed in the radial direction as compared with the recycle check valve 62.
  • the total flow area of the recycle oil passage 57 is the same as the total flow area of the supply oil passage 54. Therefore, the valve opening pressure of the supply check valve 61 is set lower than the valve opening pressure of the recycle check valve 62. That is, it can be said that the characteristics related to the opening of the supply check valve 61 are set to be easier to open than the recycle check valve 62.
  • the supply check valve 61 has a relatively low valve opening pressure and is set to a characteristic that is easy to open, so that the backflow of hydraulic oil from the pressure accumulation space 500 side to the oil pump 8 side is suppressed.
  • the pressure loss of the hydraulic oil from the oil pump 8 side to the pressure accumulation space 500 side can be reduced.
  • the recycle check valve 62 has a characteristic that the valve opening pressure is relatively high and is difficult to open, so that the pressure accumulation space 500 side to the retarding chamber 201 or the advance chamber 202 side.
  • the recycle check valve 62 can follow the cam torque fluctuation while suppressing the backflow of the hydraulic oil.
  • the sleeve 40 further has a breathing hole 402.
  • the breathing hole 402 is formed so as to be recessed radially inward from the outer wall of the inner sleeve 41 and extend in the axial direction of the inner sleeve 41 (see FIG. 1). That is, the breathing hole 402 is formed between the inner sleeve 41 and the outer sleeve 42 outside the inner space 400.
  • the breathing hole 402 is formed so as to communicate with the variable volume space 401 and the outside of the valve timing adjusting device 10, that is, the space opposite to the variable volume space 401 of the sleeve 40, that is, the atmosphere. Thereby, the pressure of the volume variable space 401 can be made equivalent to atmospheric pressure.
  • the oil passage switching valve 11 presses the spool 50 by driving the linear solenoid 9 and connects the advance chamber 202 and the recycled oil passage 57 while connecting the oil pump 8 and the retard chamber 201.
  • a second operating state in which the retard chamber 201 and the recycled oil passage 57 are connected while the oil pump 8 and the advance chamber 202 are connected, and a holding state in which both the retard chamber 201 and the advance chamber 202 are closed. And operate.
  • the hydraulic oil is returned from the advance chamber 202 to the pressure accumulation space 500 while the hydraulic oil is supplied to the retard chamber 201.
  • the hydraulic oil is returned from the retard chamber 201 to the pressure accumulating space 500 while the hydraulic oil is supplied to the advance chamber 202.
  • the hold state the hydraulic oil in the retard chamber 201 and the advance chamber 202 is held.
  • This embodiment further includes a lock pin 73 (see FIGS. 1 and 2).
  • the lock pin 73 is formed in a bottomed cylindrical shape, and is accommodated in an accommodation hole 321 formed in the vane 32 so as to be reciprocally movable in the axial direction.
  • a spring 74 is provided inside the lock pin 73. The spring 74 biases the lock pin 73 toward the sprocket 21 side.
  • a fitting recess 25 is formed on the vane 32 side of the sprocket 21.
  • the lock pin 73 can be inserted into the insertion recess 25 when the vane rotor 30 is at the most retarded position with respect to the housing 20.
  • the lock pin 73 is fitted in the fitting recess 25, the relative rotation of the vane rotor 30 with respect to the housing 20 is restricted.
  • the lock pin 73 is not inserted into the insertion recess 25, relative rotation of the vane rotor 30 with respect to the housing 20 is allowed.
  • a pin control oil passage 303 communicating with the retard chamber 201 is formed between the lock pin 73 of the vane 32 and the advance chamber 202 (see FIG. 2).
  • the pressure of the hydraulic oil flowing into the pin control oil passages 303 and 304 from the retard chamber 201 or the advance chamber 202 acts in a direction in which the lock pin 73 comes out of the fitting recess 25 against the urging force of the spring 74.
  • valve timing adjusting device 10 configured as described above, when hydraulic oil is supplied to the retard chamber 201 or the advance chamber 202, the hydraulic oil flows into the pin control oil paths 303 and 304, and the lock pin 73 is The vane rotor 30 comes out of the fitting recess 25 and is allowed to rotate relative to the housing 20.
  • valve timing adjusting device 10 sets the oil passage switching valve 11 to the first operating state.
  • the vane rotor 30 rotates relative to the housing 20 in the retarding direction, and the rotational phase of the camshaft 3 changes toward the retarding side.
  • valve timing adjusting device 10 places the oil passage switching valve 11 in the second operating state when the rotational phase of the camshaft 3 is retarded from the target value.
  • the vane rotor 30 rotates relative to the housing 20 in the advance direction, and the rotational phase of the camshaft 3 changes toward the advance side.
  • the valve timing adjusting device 10 brings the oil passage switching valve 11 into a holding state when the rotational phase of the camshaft 3 matches the target value. Thereby, the rotational phase of the cam shaft 3 is maintained.
  • the pressure of the variable volume space 401 is equal to the atmospheric pressure by the breathing hole 402
  • the linear solenoid 9 presses the spool 50 the spool 50 is axially inside the sleeve 40. Smooth reciprocation.
  • hydraulic oil accumulates in the variable volume space 401, the hydraulic oil passes through the breathing hole 402 and the valve timing adjusting device 10, which is the space opposite to the camshaft 3, with respect to the oil passage switching valve 11. It is discharged to the outside, that is, to the atmosphere and returned to the oil pan 7.
  • this embodiment adjusts the valve timing of the intake valve 4 that is provided in the power transmission path that transmits power from the crankshaft 2 to the camshaft 3 of the engine 1 and that is driven to open and close by the camshaft 3.
  • the valve timing adjusting device 10 includes a housing 20, a vane rotor 30, a sleeve 40, a spool 50, a supply check valve 61, and a recycle check valve 62.
  • the housing 20 rotates in conjunction with the first shaft, and the end of the second shaft And is rotatably supported by the second shaft.
  • the vane rotor 30 is fixed to the end of the second shaft, and includes a vane 32 that partitions the internal space 200 of the housing 20 into a retard chamber 201 on one side in the circumferential direction and an advance chamber 202 on the other side in the circumferential direction.
  • the oil pump 8 rotates relative to the housing 20 according to the pressure of the hydraulic oil supplied to the retard chamber 201 and the advance chamber 202.
  • the sleeve 40 is formed in a cylindrical shape, and includes a supply port 43 communicating with the oil pump 8, a first control port 44 communicating with the retard chamber 201, and a second control port communicating with the advance chamber 202. 45.
  • the spool 50 is formed in a cylindrical shape so as to be reciprocally movable in the axial direction on the inner side of the sleeve 40, and the pressure accumulation space 500 formed on the inner side, the pressure accumulation space 500 and the supply port 43 are connected to each other.
  • the first control oil passage 55 formed so that the oil passage 54, the pressure accumulation space 500 and the first control port 44 can be connected, and the second control oil passage formed so that the pressure accumulation space 500 and the second control port 45 can be connected.
  • the recycle oil passage 57 allows the hydraulic oil from the retard chamber 201 and the advance chamber 202 to be reused.
  • the recycle check valve 62 When the recycle check valve 62 is opened, the recycle check valve 62 allows the flow of hydraulic oil from the retard chamber 201 or the advance chamber 202 side through the recycle oil passage 57 to the accumulator space 500 side.
  • the flow of hydraulic oil from the space 500 side to the retard chamber 201 or the advance chamber 202 side via the recycle oil passage 57 is regulated. Therefore, it is possible to suppress the backflow of hydraulic oil from the pressure accumulation space 500 side to the retard chamber 201 or the advance chamber 202 side. Thereby, the responsiveness of the valve timing adjustment apparatus 10 can be improved in the structure which can recycle hydraulic fluid.
  • the characteristics related to the opening of the supply check valve 61 are different from the characteristics related to the opening of the recycle check valve 62.
  • the degree of pressure loss for example, if the valve opening pressure of the supply check valve 61 is set to be relatively low and the valve opening characteristic is set to be easy to open, the pressure loss when the hydraulic oil passes through the supply check valve 61 is reduced. In addition, the pressure loss of the hydraulic oil supplied to each hydraulic chamber can be reduced. Further, for example, considering the followability, if the valve opening pressure of the recycle check valve 62 is relatively high and set to a characteristic that is difficult to open, the recycle check valve 62 can be changed to high-frequency positive and negative cam torque fluctuations at high revolutions. Accordingly, the responsiveness of the valve timing adjusting device 10 can be improved.
  • the characteristics related to the opening of the supply check valve 61 are set to characteristics that are easier to open than the recycle check valve 62. Therefore, as described above, the pressure loss of the hydraulic oil supplied to each hydraulic chamber can be reduced and the responsiveness of the valve timing adjusting device 10 can be improved.
  • valve opening pressure of the supply check valve 61 is set lower than the valve opening pressure of the recycle check valve 62. That is, the characteristics related to the opening of the supply check valve 61 are set to characteristics that are easier to open than the recycle check valve 62.
  • the supply check valve 61 is provided inside the spool 50 and closes the supply oil passage 54 when the valve is closed.
  • the recycle check valve 62 is provided inside the spool 50 and closes the recycle oil passage 57 when the valve is closed. In the present embodiment, since the supply check valve 61 and the recycle check valve 62 are both provided inside the spool 50, manufacturing is easy.
  • the supply check valve 61 and the recycle check valve 62 are formed of elastically deformable plates, and have different widths. In the present embodiment, the characteristics regarding the valve opening are made different by making the widths of the supply check valve 61 and the recycle check valve 62 different.
  • the sleeve 40 is disposed at the center of the vane rotor 30. That is, in the present embodiment, the sleeve 40 and the spool 50 that constitute the oil passage switching valve 11 are provided in the central portion of the vane rotor 30. As a result, the oil passage between the oil passage switching valve 11 and the retard chamber 201 and the advance chamber 202 can be shortened, and the responsiveness of the valve timing adjusting device 10 can be improved.
  • FIG. 1 A valve timing adjusting device according to a second embodiment of the present disclosure is shown in FIG.
  • the second embodiment differs from the first embodiment in the configuration of the spool 50 and the check valve 60.
  • five supply oil passages 54 are formed at equal intervals in the circumferential direction of the spool 50 (see FIG. 6A).
  • the inner diameter of one supply oil passage 54 is set to be the same as the inner diameter of the other supply oil passage 54.
  • four recycle oil passages 57 are formed at equal intervals in the circumferential direction of the spool 50 (see FIG. 6B).
  • the inner diameter of one recycled oil passage 57 is set to be the same as the inner diameter of the other recycled oil passage 57.
  • the inner diameter of one recycle oil passage 57 is set to be the same as the inner diameter of the supply oil passage 54. Therefore, the total flow area of the supply oil path 54 is larger than the total flow area of the recycle oil path 57.
  • the check valve 60 includes a supply check valve 61, a recycle check valve 62, and a support member 64.
  • the supply check valve 61, the recycle check valve 62, and the support member 64 are formed separately from each other.
  • the supply check valve 61 and the recycle check valve 62 are formed in a substantially cylindrical shape by, for example, winding a thin metal plate into a cylindrical shape (see FIG. 5).
  • the supply check valve 61 is formed to be elastically deformable in the radial direction. When the supply check valve 61 is deformed radially inward, the outer diameter is reduced. More specifically, the supply check valve 61 has a portion in which the plate materials overlap each other in the circumferential direction (see FIG. 5C).
  • a space inside the supply check valve 61 formed in a substantially cylindrical shape is opened in the axial direction of the check valve 60.
  • the recycle check valve 62 is formed to be elastically deformable in the radial direction. When the recycle check valve 62 is deformed radially inward, the outer diameter is reduced. More specifically, the recycle check valve 62 has a portion in which the plate materials overlap each other in the circumferential direction.
  • a space inside the recycle check valve 62 formed in a substantially cylindrical shape is opened in the axial direction of the check valve 60.
  • the width of the supply check valve 61 that is, the length in the axial direction
  • the width of the recycle check valve 62 that is, the length in the axial direction
  • the deformation amount of the supply check valve 61 and the deformation amount of the recycle check valve 62 are the same.
  • the support member 64 is formed in a shape such that, for example, two rectangular plates are orthogonal to each other. Therefore, the support member 64 is formed so that the cross-sectional shape by a plane orthogonal to the longitudinal direction is substantially a cross (see FIGS. 5B and 6).
  • the support member 64 has notches 641 and 642.
  • the cutout portion 641 is formed so as to be cut out inward from the outer edge portion of one end portion in the longitudinal direction of the support member 64.
  • Four notches 641 are formed at equal intervals in the circumferential direction of the support member 64.
  • the cutout 642 is formed so as to be cut out inward from the outer edge portion on the other end side in the longitudinal direction of the support member 64.
  • Four notches 642 are formed at equal intervals in the circumferential direction of the support member 64.
  • the supply check valve 61 is provided in the notch 641 of the support member 64.
  • the supply check valve 61 can be deformed radially inward at the notch 641.
  • the length of the support member 64 in the longitudinal direction of the notch 641 is set to be slightly larger than the length w3 of the supply check valve 61 in the axial direction.
  • the notch 641 can regulate the relative movement of the supply check valve 61 in the axial direction with respect to the support member 64.
  • the recycle check valve 62 is provided in the notch 642 of the support member 64.
  • the recycle check valve 62 can be deformed radially inward at the notch 642.
  • the length in the longitudinal direction of the support member 64 of the notch 642 is set slightly larger than the axial length w4 of the recycle check valve 62.
  • the notch 642 can restrict the relative movement of the recycle check valve 62 in the axial direction with respect to the support member 64.
  • the check valve 60 is provided in the pressure accumulation space 500 so that the supply check valve 61 corresponds to the supply oil passage 54 and the recycle check valve 62 corresponds to the recycle oil passage 57 (see FIG. 4).
  • the support member 64 is positioned between the spool lid portion 52 and the spool bottom portion 53 and supports the supply check valve 61 and the recycle check valve 62.
  • the recycle check valve 62 When the hydraulic oil travels from the retarded angle chamber 201 or the advanced angle chamber 202 side to the pressure accumulating space 500 side via the recycle oil passage 57, the recycle check valve 62 is radially inward by pushing the outer peripheral surface by the hydraulic oil. The valve is deformed and opened, and a gap is formed between the inner wall of the spool 50 and the recycle check valve 62. As a result, the hydraulic oil can flow into the pressure accumulating space 500 via the recycle oil passage 57. On the other hand, when the hydraulic oil travels from the pressure accumulating space 500 side via the recycle oil passage 57 to the retarded angle chamber 201 or the advanced angle chamber 202 side, the recycle check valve 62 has a diameter by pushing the inner peripheral surface by the hydraulic oil.
  • the ease of deformation of the supply check valve 61 in the radial direction is equivalent to that of the recycle check valve 62.
  • the total flow area of the supply oil passage 54 is larger than the total flow area of the recycle oil passage 57. Therefore, the valve opening pressure of the supply check valve 61 is set lower than the valve opening pressure of the recycle check valve 62. That is, it can be said that the characteristics related to the opening of the supply check valve 61 are set to be easier to open than the recycle check valve 62.
  • the second embodiment is the same as the first embodiment except for the points described above. Therefore, about the structure similar to 1st Embodiment, there can exist an effect similar to 1st Embodiment.
  • the supply check valve 61 and the recycle check valve 62 are formed of elastically deformable plate materials having the same width and thickness.
  • the total flow area of the supply oil passage 54 is different from the total flow area of the recycle oil passage 57.
  • the characteristics relating to the opening of the supply check valve 61 and the characteristics relating to the opening of the recycle check valve 62 are differentiated.
  • the supply check valve 61 and the recycle check valve 62 are formed with the same specifications (width, plate thickness). Thereby, the supply check valve 61 and the recycle check valve 62 can be arranged at predetermined positions without being distinguished. Therefore, it is easy to manufacture without worrying about misassembly.
  • the supply oil passage 54 has the same inner diameter as the inner diameter of the recycle oil passage 57, and the number formed in the spool 50 is different from that of the recycle oil passage 57.
  • the characteristics relating to the opening of the supply check valve 61 and the characteristics relating to the opening of the recycle check valve 62 are differentiated.
  • the supply oil passage 54 and the recycle oil passage 57 can be formed by one cutting tool such as a drill. Therefore, manufacture is easy.
  • FIG. 4 A part of the valve timing adjusting device according to the third embodiment of the present disclosure is shown in FIG.
  • the third embodiment is different from the first embodiment in the configuration of the sleeve 40, the spool 50, the check valve 60, and the like.
  • the sleeve 40 is made of a metal such as iron.
  • the sleeve 40 includes a sleeve tube portion 451, a sleeve bottom portion 452, and a screw portion 453.
  • the sleeve cylinder portion 451 is formed in a substantially cylindrical shape.
  • the sleeve bottom 452 is formed integrally with the sleeve cylinder 451 so as to close one end of the sleeve cylinder 451.
  • the screw portion 453 is formed on the outer wall of the end portion of the sleeve tube portion 451 on the sleeve bottom portion 452 side.
  • the sleeve 40 passes through the inside of the boss 31 of the vane rotor 30 and is fixed to the cam shaft 3 so that the screw portion 453 is coupled to the shaft-side screw portion 110 of the cam shaft 3.
  • a breathing hole 402 is formed in the sleeve bottom 452.
  • the breathing hole 402 is formed so as to penetrate the center of the sleeve bottom 452 in the thickness direction. That is, the breathing hole 402 is connected to the volume variable space 401.
  • the breathing hole 402 is formed to communicate with the outside of the cam shaft 3. Therefore, the variable volume space 401 communicates with the outside of the camshaft 3, that is, the atmosphere via the breathing hole 402. Thereby, the pressure of the volume variable space 401 can be made equivalent to atmospheric pressure.
  • the supply port 43 is formed between the first control port 44 and the second control port 45. A plurality of supply ports 43 are formed in the circumferential direction of the sleeve 40.
  • the spool 50 includes a seal member 58 instead of the spool lid portion 52.
  • the seal member 58 is formed in a substantially cylindrical shape, and is provided inside the spool cylinder portion 51.
  • a substantially cylindrical pressure accumulation space 500 is formed between the outer wall of the seal member 58 and the inner wall of the spool cylinder portion 51.
  • the spool 50 has recycling oil paths 571 and 572 instead of the recycling oil path 57.
  • the recycle oil passage 571 is formed on the side opposite to the sleeve bottom portion 452 with respect to the supply oil passage 54 so as to connect an annular recess formed in the outer wall of the spool tube portion 51 and the inner wall of the spool tube portion 51. .
  • a plurality of the recycle oil passages 571 are formed in the circumferential direction of the spool 50 and the same number as the supply ports 43.
  • the inner diameter of one recycled oil passage 571 is set to be the same as the inner diameter of the other recycled oil passage 571. Further, the inner diameter of one recycle oil passage 571 is set smaller than the inner diameter of the supply port 43.
  • the recycle oil passage 572 is formed on the opposite side of the recycle oil passage 571 from the sleeve bottom portion 452 so as to connect the annular recess formed in the outer wall of the spool tube portion 51 and the inner wall of the spool tube portion 51. .
  • a plurality of the recycle oil passages 572 are formed in the circumferential direction of the spool 50, and the same number as the recycle oil passages 571 is formed.
  • the inner diameter of one recycled oil passage 572 is set to be the same as the inner diameter of the other recycled oil passage 572. Further, the inner diameter of one recycle oil passage 572 is set to be the same as the inner diameter of the recycle oil passage 571.
  • the total flow area of the supply port 43 is set larger than the total flow area of the recycle oil path 571 or the recycle oil path 572.
  • the first control oil passage 55, the second control oil passage 56, and the supply oil passage 54 are integrally formed between the recycle oil passage 571 and the recycle oil passage 572.
  • the check valve 60 includes a supply check valve 61 and recycle check valves 621 and 622.
  • the supply check valve 61 and the recycle check valves 621 and 622 are formed separately.
  • the supply check valve 61 and the recycle check valves 621 and 622 are formed by, for example, winding a thin metal plate into a cylindrical shape.
  • the plate thickness of the thin plate forming the supply check valve 61 is set smaller than the plate thickness of the thin plate forming the recycle check valves 621 and 622.
  • the supply check valve 61 is formed to be elastically deformable in the radial direction. When the supply check valve 61 is deformed radially inward, the outer diameter is reduced.
  • the recycle check valves 621 and 622 are formed to be elastically deformable in the radial direction. When the recycle check valves 621 and 622 are deformed radially inward, the outer diameter is reduced.
  • the inner diameter and outer diameter of the supply check valve 61 are set larger than the outer diameters of the recycle check valves 621 and 622. Further, the width of the supply check valve 61, that is, the length in the axial direction is the same as the length in the axial direction of the recycle check valves 621 and 622.
  • the supply check valve 61 has a plate thickness smaller than that of the recycle check valves 621 and 622 and an outer diameter larger than that of the recycle check valves 621 and 622. Compared to 622, it is easily deformed in the radial direction. That is, when the same radial force is applied to the supply check valve 61 and the recycle check valves 621 and 622, the supply check valve 61 has a larger deformation amount than the recycle check valves 621 and 622.
  • the supply check valve 61 is provided at a position corresponding to the supply port 43 between the sleeve 40 and the spool 50.
  • the recycle check valve 621 is provided at a position corresponding to the recycle oil passage 571 between the spool cylinder 51 and the seal member 58.
  • the recycle check valve 622 is provided at a position corresponding to the recycle oil passage 572 between the spool cylinder 51 and the seal member 58.
  • the hydraulic oil is restricted from flowing out of the sleeve 40 from the pressure accumulation space 500 via the supply oil passage 54 and the supply port 43.
  • the supply check valve 61 allows the flow of hydraulic oil from the oil pump 8 side via the supply oil passage 54 toward the pressure accumulation space 500 side, and allows oil to flow from the pressure accumulation space 500 side via the supply port 43. The flow of hydraulic oil toward the pump 8 side is restricted.
  • the recycle check valves 621 and 622 allow the flow of hydraulic oil from the retard chamber 201 or the advance chamber 202 side to the accumulator space 500 via the recycle oil passages 571 and 572, and the accumulator space 500.
  • the flow of hydraulic oil from the side toward the retard chamber 201 or the advance chamber 202 via the recycle oil passages 571 and 572 is restricted.
  • the supply check valve 61 is more easily deformed in the radial direction than the recycle check valves 621 and 622. Further, the total flow area of the supply port 43 is set to be larger than the total flow area of the recycle oil passage 571 or the recycle oil passage 572. Therefore, the valve opening pressure of the supply check valve 61 is set lower than the valve opening pressures of the recycle check valves 621 and 622. That is, it can be said that the characteristics related to the opening of the supply check valve 61 are set to characteristics that are easier to open than the recycle check valves 621 and 622.
  • the third embodiment is the same as the first embodiment except for the points described above. Therefore, about the structure similar to 1st Embodiment, there can exist an effect similar to 1st Embodiment.
  • the supply check valve 61 is provided outside the spool 50 and closes the supply port 43 when the valve is closed.
  • the recycle check valves 621 and 622 are provided inside the spool 50 and close the recycle oil passages 571 and 572 when the valves are closed.
  • the supply check valve 61 and the recycle check valves 621 and 622 are different in the arrangement location in the oil passage switching valve 11. Therefore, erroneous assembly can be suppressed.
  • FIG. 4 A valve timing adjusting device according to a fourth embodiment of the present disclosure is shown in FIG.
  • the fourth embodiment differs from the first embodiment in the configuration of the sleeve 40, the spool 50, the check valve 60, and the like.
  • the sleeve 40 includes a sleeve tube portion 451, a sleeve bottom portion 452, and a screw portion 453.
  • the supply port 43 is formed so as to connect the outer wall and the inner wall of the sleeve tube portion 451.
  • the supply port 43 communicates with the supply hole portion 101 via a cylindrical gap between the outer wall of the spool 50 and the inner wall of the shaft hole portion 100.
  • the first control port 44 is formed so as to connect the outer wall and the inner wall of the sleeve tube portion 451 on the locking portion 47 side with respect to the supply port 43.
  • the second control port 45 is formed to connect the outer wall and the inner wall of the sleeve tube portion 451 on the locking portion 47 side with respect to the first control port 44.
  • the pin control port 410 is formed between the supply port 43 and the first control port 44 so as to connect the outer wall and the inner wall of the sleeve cylindrical portion 451.
  • the vane rotor 30 is also formed with a pin control oil passage 305 that connects the pin control port 410 and the accommodation hole 321.
  • An insertion recess 26 into which the lock pin 73 can be inserted is formed on the vane 32 side of the case 22.
  • the spring 74 biases the lock pin 73 toward the case 22 side.
  • the pressure of the hydraulic oil flowing into the pin control port 410 and the pin control oil passage 305 acts in a direction in which the lock pin 73 comes out of the fitting recess 26 against the urging force of the spring 74.
  • the spool 50 has a seal member 59 instead of the spool lid portion 52.
  • the seal member 59 is provided inside the spool cylinder portion 51.
  • a pressure accumulation space 500 extending in the axial direction of the spool 50 is formed between the inner wall of the seal member 59 and the inner wall of the spool cylinder portion 51.
  • the supply oil passage 54, the first control oil passage 55, the recycle oil passage 57, and the second control oil passage 56 are spaced in this order from one end side of the spool 50 toward the other end side. It is formed so as to be lined up.
  • the supply oil passage 54, the first control oil passage 55, the recycle oil passage 57, and the second control oil passage 56 communicate the pressure accumulation space 500 and the outside of the spool 50.
  • the flow passage area of the supply oil passage 54 is set to be the same as the flow passage area of the recycle oil passage 57.
  • the supply port 43 and the supply oil passage 54 are not connected.
  • the supply port 43 and the supply oil passage 54 are connected, the first control oil passage 55 and the first control port 44 are connected, and the second control port 45 is recycled.
  • the oil passage 57 is connected. At this time, the first control oil passage 55 and the pin control port 410 are connected.
  • the check valve 60 includes a supply check valve 68 and a recycle check valve 69.
  • the supply check valve 68 and the recycle check valve 69 are formed separately.
  • the supply check valve 68 and the recycle check valve 69 are formed, for example, by bending a thin metal plate.
  • the plate thickness of the thin plate forming the supply check valve 68 is set smaller than the plate thickness of the thin plate forming the recycle check valve 69.
  • the supply check valve 68 and the recycle check valve 69 are formed to be elastically deformable. Since the thickness of the supply check valve 68 is smaller than that of the recycle check valve 69, the supply check valve 68 is more easily deformed than the recycle check valve 69. That is, when the same force is applied to the supply check valve 68 and the recycle check valve 69, the supply check valve 68 has a larger deformation amount than the recycle check valve 69.
  • the supply check valve 68 is provided at a position corresponding to the supply oil passage 54 of the pressure accumulating space 500.
  • the supply check valve 68 is supported by a supply side support portion 591 formed on the inner wall of the seal member 59.
  • the supply side support portion 591 is formed in a shape corresponding to the shape of the supply check valve 68 (see FIGS. 8 and 9).
  • the supply check valve 68 can be elastically deformed in the radial direction of the spool 50.
  • the recycle check valve 69 is provided at a position corresponding to the recycle oil passage 57 of the pressure accumulating space 500.
  • the recycle check valve 69 is supported by a recycle side support portion 592 formed on the inner wall of the seal member 59.
  • the recycle side support portion 592 is formed in a shape corresponding to the shape of the recycle check valve 69 (see FIGS. 8 and 9).
  • the recycle check valve 69 can be elastically deformed in the radial direction of the spool 50.
  • the supply check valve 68 When the hydraulic oil travels from the oil pump 8 side to the pressure accumulating space 500 side via the supply oil passage 54, the supply check valve 68 is deformed and opened inward in the radial direction of the spool 50 to check the supply of the inner wall of the spool 50 and the supply check valve. A gap is formed between the valve 68. As a result, the hydraulic oil can flow into the pressure accumulation space 500 via the supply oil passage 54.
  • the supply check valve 68 when the hydraulic oil travels from the pressure accumulating space 500 side to the oil pump 8 side via the supply oil passage 54, the supply check valve 68 is deformed outwardly in the radial direction of the spool 50 and is closed. It sticks to the inner wall of the spool 50 so as to close it.
  • the hydraulic oil is restricted from flowing out of the spool 50 from the pressure accumulation space 500 via the supply oil passage 54.
  • the supply check valve 68 allows the flow of hydraulic oil from the oil pump 8 side via the supply oil passage 54 to the pressure accumulation space 500 side, and from the pressure accumulation space 500 side via the supply oil passage 54. The flow of hydraulic oil toward the oil pump 8 is restricted.
  • the recycle oil passage 57 is stuck to the inner wall of the spool 50.
  • the hydraulic oil is restricted from flowing out of the spool 50 from the pressure accumulation space 500 via the recycle oil passage 57.
  • the recycle check valve 69 allows the flow of hydraulic oil from the retard chamber 201 or the advance chamber 202 to the accumulator space 500 via the recycle oil passage 57, and the recycle oil from the accumulator space 500 side.
  • the flow of hydraulic oil toward the retard chamber 201 or the advance chamber 202 via the path 57 is restricted.
  • the hydraulic oil passes through the supply port 43, the supply oil passage 54, and the supply check valve 68.
  • the first control oil passage 55 hydraulic oil flows into the pin control port 410 and the pin control oil passage 305, and relative rotation of the vane rotor 30 with respect to the housing 20 is allowed.
  • the hydraulic oil in the pressure accumulating space 500 is supplied to the retard chamber 201 via the first control oil passage 55 and the first control port 44, and the hydraulic oil in the advance chamber 202 passes through the second control port 45.
  • the hydraulic oil flows into the pin control port 410 and the pin control oil passage 305 via the first control oil passage 55, and the vane rotor 30 with respect to the housing 20 flows. Relative rotation is allowed.
  • the hydraulic oil is supplied to the advance chamber 202 via the second control oil passage 56 and the second control port 45, and the hydraulic oil in the retard chamber 201 passes through the first control port 44.
  • the recycle oil passage 57 flows into the concave portion on the radially outer side. The hydraulic fluid that has flowed into the recess is returned to the pressure accumulating space 500 via the recycle oil passage 57 and the recycle check valve 69.
  • the supply check valve 68 is more easily deformed than the recycle check valve 69.
  • the flow passage area of the supply oil passage 54 is set to be the same as the flow passage area of the recycle oil passage 57. Therefore, the valve opening pressure of the supply check valve 68 is set lower than the valve opening pressure of the recycle check valve 69. That is, it can be said that the characteristics related to the opening of the supply check valve 68 are set to characteristics that make it easier to open than the recycle check valve 69.
  • the configuration of the fourth embodiment is the same as that of the first embodiment except for the points described above. Therefore, about the structure similar to 1st Embodiment, there can exist an effect similar to 1st Embodiment.
  • the spool 50 includes the supply side support portion 591 that supports the supply check valve 68 and the recycle side support portion 592 that supports the recycle check valve 69. Therefore, for example, by forming the supply side support portion 591 corresponding to the shape of the supply check valve 68 and forming the recycle side support portion 592 corresponding to the shape of the recycle check valve 69, By making the shape different from the recycle side support portion 592, it is possible to suppress erroneous assembly of the supply check valve 68 and the recycle check valve 69.
  • the supply check valve 68 and the recycle check valve 69 are formed of elastically deformable plate materials, each having a different plate thickness. As a result, the characteristics relating to the opening of the supply check valve 68 and the characteristics relating to the opening of the recycle check valve 69 are made different.
  • FIG. 10 shows a part of the valve timing adjusting device according to the fifth embodiment of the present disclosure.
  • the fifth embodiment differs from the third embodiment in the configuration of the sleeve 40, the spool 50, the check valve 60, and the like.
  • the supply port 43 is formed so as to connect the outer wall and the inner wall of the sleeve tube portion 451.
  • the supply port 43 is connected to the oil pump 8.
  • the first control port 44 is formed so as to connect the outer wall and the inner wall of the sleeve tube portion 451 on the locking portion 47 side with respect to the supply port 43.
  • the second control port 45 is formed to connect the outer wall and the inner wall of the sleeve tube portion 451 on the locking portion 47 side with respect to the first control port 44.
  • the sleeve 40 further includes recycle ports 481 and 482 and drain ports 46 and 49.
  • the recycle port 481 is formed between the first control port 44 and the second control port 45 so as to connect the outer wall and the inner wall of the sleeve cylindrical portion 451.
  • the recycle port 481 communicates with the retardation chamber 201.
  • the inner diameter of the recycle port 481 is set smaller than the inner diameter of the supply port 43.
  • the total flow area of the recycle port 481 is set smaller than the total flow area of the supply port 43.
  • the recycle port 482 is formed between the recycle port 481 and the second control port 45 so as to connect the outer wall and the inner wall of the sleeve cylindrical portion 451.
  • the recycle port 481 communicates with the advance chamber 202.
  • the inner diameter of the recycle port 482 is set smaller than the inner diameter of the supply port 43.
  • the total flow area of the recycle port 482 is set smaller than the total flow area of the supply port 43.
  • the inner diameter of the recycle port 482 is set to be the same as the inner diameter of the recycle port 481. Further, the total flow area of the recycle port 482 is set to be the same as the total flow area of the recycle port 481.
  • the drain port 46 is formed between the supply port 43 and the first control port 44 so as to connect the outer wall and the inner wall of the sleeve cylindrical portion 451.
  • the drain port 46 communicates with the outside of the valve timing adjusting device 10.
  • the drain port 49 is formed in a substantially cylindrical shape between the drain cylinder 49 and the spool 50 on the inner side of the end of the sleeve cylinder part 451 on the locking part 47 side.
  • the drain port 49 communicates with the oil path switching valve 11 on the side opposite to the camshaft 3, that is, on the outside of the valve timing adjusting device 10.
  • the first control oil passage 55 and the recycle oil passage 571 are formed integrally with the supply oil passage 54 on the spool bottom 53 side.
  • the second control oil passage 56 and the recycle oil passage 572 are integrally formed on the spool bottom 53 side with respect to the first control oil passage 55 and the recycle oil passage 571.
  • the check valve 60 includes a supply check valve 61 and recycle check valves 621 and 622.
  • the supply check valve 61 and the recycle check valves 621 and 622 are formed separately.
  • the supply check valve 61 and the recycle check valves 621 and 622 are formed by, for example, winding a thin metal plate into a cylindrical shape.
  • the width and thickness of the thin plate forming the supply check valve 61 are set to be the same as the width and thickness of the thin plate forming the recycle check valves 621 and 622. Therefore, the ease of deformation of the supply check valve 61 is about the same as that of the recycle check valves 621 and 622.
  • the deformation amount of the supply check valve 61 is approximately the same as the deformation amount of the recycle check valves 621 and 622.
  • the supply check valve 61 is provided at a position corresponding to the supply port 43 between the sleeve 40 and the spool 50.
  • the recycle check valve 621 is provided at a position corresponding to the recycle port 481 between the sleeve 40 and the spool 50.
  • the recycle check valve 622 is provided at a position corresponding to the recycle port 482 between the sleeve 40 and the spool 50.
  • the hydraulic oil is restricted from flowing out of the sleeve 40 from the pressure accumulation space 500 via the supply oil passage 54 and the supply port 43.
  • the supply check valve 61 allows the flow of hydraulic oil from the oil pump 8 side via the supply oil passage 54 toward the pressure accumulation space 500 side, and allows oil to flow from the pressure accumulation space 500 side via the supply port 43. The flow of hydraulic oil toward the pump 8 side is restricted.
  • the hydraulic oil is restricted from flowing out of the sleeve 40 from the pressure accumulation space 500 via the recycle oil passage 571.
  • the recycle check valve 621 allows the flow of hydraulic oil from the retarding chamber 201 side to the accumulator space 500 side via the recycle port 481 and the recycle oil passage 571, and the recycle oil passage from the accumulator space 500 side. 571, restricts the flow of hydraulic oil toward the retarded angle chamber 201 via the recycle port 481.
  • the hydraulic oil is restricted from flowing out of the sleeve 40 from the pressure accumulation space 500 via the recycle oil passage 572.
  • the recycle check valve 622 allows the flow of hydraulic oil from the advance chamber 202 side to the pressure accumulation space 500 side via the recycle port 482 and the recycle oil path 572, and the recycle oil path from the pressure accumulation space 500 side. 572, restricts the flow of hydraulic oil toward the advance chamber 202 via the recycle port 482.
  • the ease of deformation of the supply check valve 61 is comparable to that of the recycle check valves 621 and 622.
  • the total flow area of the supply port 43 is set larger than the total flow area of the recycle ports 481 and 482. Therefore, the valve opening pressure of the supply check valve 61 is set lower than the valve opening pressures of the recycle check valves 621 and 622. That is, it can be said that the characteristics related to the opening of the supply check valve 61 are set to characteristics that are easier to open than the recycle check valves 621 and 622.
  • the configuration of the fifth embodiment is the same as that of the third embodiment except for the points described above. Therefore, about the structure similar to 3rd Embodiment, there can exist an effect similar to 3rd Embodiment.
  • the supply check valve 61 and the recycle check valves 621 and 622 are formed with the same specifications (width and plate thickness). Accordingly, the supply check valve 61, the recycle check valve 621, and the recycle check valve 622 can be arranged at predetermined positions without being distinguished from each other. Therefore, it is easy to manufacture without worrying about misassembly.
  • the sleeve 40 further includes the recycle ports 481 and 482 formed so that the pressure accumulating space 500 and the retard chamber 201 or the advance chamber 202 can be connected.
  • the supply check valve 61 is provided outside the spool 50 and closes the supply port 43 when the valve is closed.
  • the recycle check valves 621 and 622 are provided outside the spool 50 and close the recycle ports 481 and 482 when the valves are closed.
  • the supply check valve 61 and the recycle check valves 621 and 622 are both provided between the spool 50 and the sleeve 40. Therefore, the physique in the radial direction of the oil passage switching valve 11 can be reduced.
  • FIG. 6 An oil passage switching valve of a valve timing adjusting device according to a sixth embodiment of the present disclosure is shown in FIG.
  • the sixth embodiment is different from the first embodiment in the configuration of the sleeve 40, the spool 50, the check valve, and the like.
  • the valve timing adjusting device 10 includes a retard supply oil path RRs, an advance supply oil path RAs, a retard drain oil path RRd, an advance drain oil path RAd, and a retard supply check valve 81 as a check valve. And an advance supply check valve 82 and the like.
  • the locking portion 71 is formed in a bottomed cylindrical shape, and the outer peripheral wall is provided so as to be fitted to the inner peripheral wall of the sleeve cylindrical portion 421 of the outer sleeve 42.
  • a hole is formed in the center of the bottom of the locking part 71, and the spool bottom 53 is located inside the hole.
  • the locking part 71 can lock one end of the spool 50 by the bottom part.
  • the locking portion 71 can restrict the movement of the spool 50 to the side opposite to the sleeve bottom portion 412 of the spool 50. As a result, the spool 50 is prevented from falling off from the inner side of the inner sleeve 41.
  • the spool 50 is movable in the axial direction from a position where it comes into contact with the locking portion 71 to a position where it comes into contact with the sleeve bottom 412. That is, the movable range relative to the sleeve 40 is from the position (see FIG. 11) that contacts the locking portion 71 to the position that contacts the sleeve bottom 412.
  • the movable range of the spool 50 is referred to as a “stroke section”.
  • the end of the inner sleeve 41 on the sleeve bottom 412 side has an outer diameter smaller than the inner diameter of the outer sleeve 42.
  • a cylindrical space St ⁇ b> 1 that is a substantially cylindrical space is formed between the outer peripheral wall of the end portion of the inner sleeve 41 on the sleeve bottom 412 side and the inner peripheral wall of the outer sleeve 42.
  • the inner sleeve 41 is formed with an annular recess Ht.
  • the annular recess Ht is formed so as to be recessed annularly radially inward from a position corresponding to the engaging portion 47 of the outer peripheral wall of the inner sleeve 41.
  • an annular space St2 that is an annular space is formed between the annular recess Ht and the inner peripheral wall of the outer sleeve 42.
  • the inner sleeve 41 is formed with a flow channel groove 510.
  • the channel groove 510 is formed so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 41 and to extend in the axial direction of the inner sleeve 41.
  • the channel groove 510 forms an axial supply oil path RsA. That is, the axial supply oil passage RsA is formed so as to extend in the axial direction of the sleeve 40 at the interface T1 between the outer sleeve 42 and the inner sleeve 41.
  • One end of the axial supply oil passage RsA is connected to the cylindrical space St1, and the other end is connected to the annular space St2.
  • the inner sleeve 41 is formed with restriction groove portions 511 and 512.
  • the restriction groove portion 511 is formed so as to be annularly recessed radially outward from a position corresponding to the end portion of the cylindrical space St1 of the inner peripheral wall of the inner sleeve 41.
  • the restriction groove portion 512 is formed so as to be annularly recessed outward in the radial direction from a position corresponding to the annular recessed portion Ht of the inner peripheral wall of the inner sleeve 41.
  • the sleeve 40 has a retard supply opening ORs, an advance supply opening OAs, a retard opening OR, and an advance opening OA.
  • the retard supply opening ORs as the “inflow hole” extends in the radial direction of the sleeve 40 and connects the regulation groove 511 of the inner sleeve 41 as the “tubular member” with the cylindrical space St1 and the axial supply oil passage RsA. It is formed to do.
  • a plurality of retard angle supply openings ORs are formed in the circumferential direction of the inner sleeve 41.
  • the advance angle supply opening OAs as the “inflow hole” extends in the radial direction of the sleeve 40 and is formed so as to connect the restriction groove portion 512 of the inner sleeve 41 with the annular space St2 and the axial supply oil passage RsA.
  • a plurality of advance angle supply openings OAs are formed in the circumferential direction of the inner sleeve 41.
  • the retarded angle opening OR extends in the radial direction of the sleeve 40 and is formed to connect the space inside the inner sleeve 41 and the space outside the outer sleeve 42.
  • a plurality of the retarded angle openings OR are formed in the circumferential direction of the sleeve 40.
  • the retarded angle opening OR communicates with the retarded angle chamber 201 via the retarded oil passage 301.
  • the advance opening OA extends in the radial direction of the sleeve 40 and is formed so as to connect the space inside the inner sleeve 41 and the space outside the outer sleeve 42.
  • the advance opening OA is formed on the locking portion 47 side with respect to the retard opening OR.
  • a plurality of advance opening portions OA are formed in the circumferential direction of the sleeve 40.
  • the advance opening OA communicates with the advance chamber 202 via the advance oil passage 302.
  • the spool 50 has a retard supply recess HRs, a retard drain recess HRd, an advance drain recess HAd, an advance supply recess HAs, and drain openings Od1, Od2.
  • the retard supply recess HRs, the retard drain recess HRd, the advance drain recess HAd, and the advance supply recess HAs are each formed in an annular shape so as to be recessed radially inward from the outer peripheral wall of the spool 50.
  • the retard supply recess HRs, the retard drain recess HRd, the advance drain recess HAd, and the advance supply recess HAs are formed to be aligned in the axial direction of the spool 50 in this order.
  • the retard drain concavity HRd and the advance drain concavity HAd are integrally formed.
  • the retard drain concavity HRd and the advance drain concavity HAd form a specific space Ss between the inner peripheral wall of the inner sleeve 41. That is, the spool 50 forms a specific space Ss between the sleeve 50 and the spool 50.
  • the drain opening Od1 is formed so as to communicate the space inside the spool 50 with the retard drain concavity HRd and the advance drain concavity HAd, that is, the specific space Ss.
  • the drain opening Od2 is formed to communicate the inner space and the outer space at the end of the spool 50 on the spool bottom 53 side.
  • a plurality of drain openings Od1 and Od2 are formed in the circumferential direction of the spool 50, respectively.
  • the retard supply oil path RRs connects the oil pump 8 and the retard chamber 201 via the oil path switching valve 11.
  • the advance angle supply oil path RAs connects the oil pump 8 and the advance angle chamber 202 via the oil path switching valve 11.
  • a retarded drain oil path RRd as a drain oil path connects the retarded chamber 201 and the oil pan 7.
  • An advance drain oil passage RAd as a drain oil passage connects the advance chamber 202 and the oil pan 7.
  • the retard supply oil path RRs includes a supply hole 101, a shaft hole 100, a cylindrical space St1, an axial supply oil path RsA, a retard supply opening ORs, a regulation groove 511, a retard supply recess HRs, and a retard opening.
  • the oil pump 8 and the retard chamber 201 are connected via the part OR and the retard oil passage 301.
  • the advance angle supply oil path RAs includes a supply hole 101, a shaft hole 100, a cylindrical space St1, an axial supply oil path RsA, an advance angle supply opening OAs, a restriction groove 512, an advance angle supply recess HAs, and an advance angle opening.
  • the oil pump 8 and the advance chamber 202 are connected via the part OA and the advance oil passage 302.
  • the retarded drain oil passage RRd connects the retarded chamber 201 and the oil pan 7 via the retarded oil passage 301, the retarded opening OR, the retarded drain recess HRd, and the drain openings Od1 and Od2. Yes.
  • the advance drain oil passage RAd connects the advance chamber 202 and the oil pan 7 via the advance oil passage 302, the advance opening OA, the advance drain recess HAd, and the drain openings Od1, Od2. Yes.
  • the retard angle supply oil path RRs, the advance angle supply oil path RAs, the retard angle drain oil path RRd, and the advance angle drain oil path RAd are partially formed inside the oil path switching valve 11.
  • the oil pump 8 includes a supply hole portion 101, a shaft hole portion 100, a cylindrical space St1, an axial supply oil passage RsA, a retardation supply opening portion ORs, a regulation groove portion 511, and a retardation supply recess portion HRs of the retardation supply oil passage RRs.
  • the retard chamber 201 communicates with the retard chamber 201 via the retard opening OR and the retard oil passage 301. As a result, the hydraulic oil can be supplied from the oil pump 8 to the retard chamber 201 via the retard supply oil passage RRs.
  • the advance chamber 202 enters the oil pan 7 via the advance oil passage 302 of the advance drain oil passage RAd, the advance opening OA, the advance drain recess HAd, and the drain openings Od1 and Od2. Communicate.
  • the hydraulic oil can be discharged from the advance chamber 202 to the oil pan 7 via the advance drain oil path RAd.
  • the oil pump 8 When the spool 50 is positioned between the locking portion 71 and the sleeve bottom portion 412, that is, when the spool 50 is positioned in the middle of the stroke section, the oil pump 8 is supplied with the supply hole portion of the advance supply oil passage RAs. 101, the shaft hole 100, the cylindrical space St1, the axial supply oil passage RsA, the advance supply opening OAs, the regulation groove 512, the advance supply recess HAs, the advance opening OA, and the advance oil passage 302. To communicate with the advance chamber 202. At this time, the oil pump 8 and the retard chamber 201 are in communication with each other through the retard supply oil passage RRs.
  • the hydraulic oil can be supplied from the oil pump 8 to the retard chamber 201 and the advance chamber 202 via the retard supply oil passage RRs and the advance supply oil passage RAs.
  • the retard drain oil passage RRd and the advance drain oil passage RAd are closed by the spool 50, that is, blocked, the hydraulic oil is discharged from the retard chamber 201 and the advance chamber 202 to the oil pan 7. Not.
  • the retard chamber 201 When the spool 50 is in contact with the sleeve bottom 412, that is, when the spool 50 is located at the other end of the stroke section, the retard chamber 201 is connected to the retard oil passage 301 of the retard drain oil passage RRd.
  • the oil pan 7 communicates with the corner opening OR, the retard drain concavity HRd, and the drain openings Od1 and Od2.
  • the oil pump 8 and the advance chamber 202 are in communication with each other through the advance supply oil passage RAs.
  • the hydraulic oil can be discharged from the retard chamber 201 to the oil pan 7 via the retard drain oil passage RRd, and the advance chamber 202 from the oil pump 8 via the advance feed oil passage RAs. Can be supplied with hydraulic oil.
  • a filter 75 is provided inside the end of the outer sleeve 42 on the sleeve bottom 412 side, that is, in the middle of the retard supply oil passage RRs and the advance supply oil passage RAs.
  • the filter 75 is a disk-shaped mesh, for example.
  • the filter 75 can collect foreign substances contained in the hydraulic oil. Therefore, it is possible to suppress the foreign matter from flowing to the downstream side of the filter 75, that is, the side opposite to the oil pump 8.
  • a retard supply check valve 81 and an advance supply check valve 82 are provided as “check valves”.
  • Each of the retard supply check valve 81 and the advance supply check valve 82 is formed in a cylindrical shape by winding a single rectangular plate made of, for example, metal so that the longitudinal direction thereof is along the circumferential direction.
  • the retard supply check valve 81 and the advance supply check valve 82 as “check valves” are inner ends that are one end in the circumferential direction when provided inside the inner sleeve 41 as a “tubular member”. The end is located inside the outer end which is the other end in the circumferential direction.
  • an overlapping portion 830 that is a portion overlapping the inner end portion in the circumferential direction is formed.
  • the configuration related to the shapes and the like of the retard supply check valve 81 and the advance supply check valve 82 will be described in detail later.
  • the retard supply check valve 81 is provided in the regulation groove 511.
  • the retard supply check valve 81 is provided in the regulating groove 511 so as to be elastically deformable in the radial direction.
  • the retard supply check valve 81 is provided on the radially inner side of the inner sleeve 41 with respect to the retard supply opening ORs.
  • the retard supply check valve 81 is provided in the restriction groove 511, and in a state where hydraulic fluid as “fluid” does not flow in the retard supply oil path RRs, that is, in a state where no external force is applied, the overlapping portion 830 is provided. It is the state which overlapped with the inner end part.
  • the retard supply check valve 81 When the hydraulic oil flows from the retard supply opening ORs side to the retard supply recess HRs side in the retard supply oil path RRs, the retard supply check valve 81 is pushed by the hydraulic oil so that the outer peripheral wall is contracted radially inward. That is, the inner diameter is deformed to be reduced. Accordingly, the outer peripheral wall of the retard supply check valve 81 is separated from the retard supply opening ORs, and the hydraulic oil can flow to the retard supply recess HRs side via the retard supply check valve 81. At this time, the overlapping portion 830 is in a state in which a part of the overlapping portion 830 is maintained while the length of the overlapping range between the overlapping portion 830 and the inner end portion of the retard supply check valve 81 is enlarged.
  • the retarded supply check valve 81 When the flow rate of the hydraulic oil flowing through the retarded supply oil passage RRs becomes a predetermined value or less, the retarded supply check valve 81 is deformed so as to expand radially outward, that is, the inner diameter is expanded. Further, when the hydraulic oil flows from the retard supply recess HRs side to the retard supply opening ORs side, the inner peripheral wall of the retard supply check valve 81 is pushed radially outward by the hydraulic oil, and enters the retard supply opening ORs. Abut. Thereby, the flow of the hydraulic oil from the retard supply recess HRs side to the retard supply opening ORs side is restricted.
  • the retard supply check valve 81 functions as a check valve, allows the hydraulic oil to flow from the retard supply opening ORs side to the retard supply recess HRs side, and from the retard supply recess HRs side.
  • the flow of hydraulic oil to the retard supply opening ORs side can be regulated. That is, the retard supply check valve 81 is provided inside the cylindrical inner sleeve 41 having the retard supply opening ORs that communicates the outer peripheral wall and the inner peripheral wall, and the inner via the retard supply opening ORs.
  • the flow of hydraulic oil toward the inner side of the sleeve 41 is allowed, and the flow of hydraulic oil from the inner side of the inner sleeve 41 toward the retard supply opening ORs can be regulated.
  • the retard supply check valve 81 is provided on the oil pump 8 side with respect to the spool 50 of the oil path switching valve 11 in the retard supply oil path RRs, and only the flow of hydraulic oil from the oil pump 8 side to the retard chamber 201 side is provided. Allow.
  • the advance angle supply check valve 82 is provided in the restriction groove portion 512.
  • the advance angle supply check valve 82 is provided in the regulating groove portion 512 so as to be elastically deformable in the radial direction.
  • the advance angle supply check valve 82 is provided on the radially inner side of the inner sleeve 41 with respect to the advance angle supply opening OAs.
  • the advance angle supply check valve 82 is provided in the restriction groove portion 512, and the overlapping portion 830 overlaps the inner end portion in a state where hydraulic oil does not flow in the advance angle supply oil passage RAs, that is, in a state where no external force is acting. (See FIG. 12).
  • the advanced angle supply check valve 82 When hydraulic fluid flows from the advanced angle supply opening OAs side to the advanced angle supply recess HAs side in the advanced angle supply oil path RAs, the advanced angle supply check valve 82 is pushed by the hydraulic oil so that the outer peripheral wall is contracted radially inward. That is, the inner diameter is deformed to be reduced. Thereby, the outer peripheral wall of the advance angle supply check valve 82 is separated from the advance angle supply opening OAs, and the hydraulic fluid can flow to the advance angle supply recess HAs side via the advance angle supply check valve 82. At this time, the overlapping portion 830 is in a state where a part of the overlapping portion 830 is maintained while the overlapping range between the overlapping portion 830 and the inner end portion of the advance angle supply check valve 82 is enlarged.
  • the advance angle supply check valve 82 When the flow rate of the hydraulic oil flowing through the advance angle supply oil passage RAs becomes a predetermined value or less, the advance angle supply check valve 82 is deformed so as to expand radially outward, that is, the inner diameter increases. Further, when the hydraulic oil flows from the advance angle supply recess HAs side to the advance angle supply opening OAs side, the inner peripheral wall of the advance angle supply check valve 82 is pushed radially outward by the hydraulic oil, and enters the advance angle supply opening OAs. Abut. As a result, the flow of hydraulic oil from the advance angle supply recess HAs side to the advance angle supply opening OAs side is restricted.
  • the advance angle supply check valve 82 functions as a check valve, allows the hydraulic oil to flow from the advance angle supply opening OAs side to the advance angle supply recess HAs side, and from the advance angle supply recess HAs side.
  • the flow of hydraulic oil to the advance angle supply opening OAs side can be regulated. That is, the advance angle supply check valve 82 is provided inside the cylindrical inner sleeve 41 having the advance angle supply opening OAs that communicates the outer peripheral wall and the inner peripheral wall, and the inner angle via the advance angle supply opening OAs.
  • the flow of hydraulic oil toward the inside of the sleeve 41 is allowed, and the flow of hydraulic oil toward the advance angle supply opening OAs from the inner side of the inner sleeve 41 can be regulated.
  • the advance angle supply check valve 82 is provided on the oil pump 8 side with respect to the spool 50 of the oil path switching valve 11 in the advance angle oil supply path RAs, and only the flow of hydraulic oil from the oil pump 8 side to the advance chamber 202 side is provided. Allow.
  • the restriction grooves 511 and 512 can restrict the movement of the retard supply check valve 81 and the advance supply check valve 82 in the axial direction, respectively.
  • five advance angle supply openings OAs are formed in the inner sleeve 41.
  • the advance angle supply opening OAs is formed in approximately half of the entire circumferential range of the inner sleeve 41. That is, the advance angle supply opening OAs is formed so as to be biased to a specific portion in the circumferential direction of the inner sleeve 41.
  • the advance angle supply check valve 82 is moved to the opposite side of the advance groove supply opening OAs of the restriction groove 512 by the hydraulic oil. Pressed. Thereby, it is possible to suppress the advance angle supply check valve 82 from dropping from the restriction groove portion 512. Therefore, the restriction groove portion 512 can maintain the function of restricting the movement of the advance angle supply check valve 82 in the axial direction.
  • the retard angle supply openings ORs are also formed in the inner sleeve 41 in the same manner as the advance angle supply openings OAs.
  • the retard supply opening ORs is formed in approximately half of the entire circumferential range of the inner sleeve 41. That is, the retard supply opening ORs is formed at a specific portion in the circumferential direction of the inner sleeve 41. Therefore, when the hydraulic oil flows from the retard supply opening ORs side to the retard supply recess HRs side, the retard supply check valve 81 is moved to the opposite side of the regulation groove portion 511 from the retard supply opening ORs by the hydraulic oil. Pressed. Thereby, it is possible to suppress the retard supply check valve 81 from dropping from the restriction groove 511. Therefore, the regulation groove 511 can maintain the function of regulating the movement of the retard supply check valve 81 in the axial direction.
  • the linear solenoid 9 is provided so as to contact the spool bottom 53.
  • the linear solenoid 9 is energized to press the spool 50 against the urging force of the spring 72 via the spool bottom 53 against the camshaft 3 side.
  • the axial position of the spool 50 with respect to the sleeve 40 changes in the stroke section.
  • the advance angle supply check valve 82 includes a valve body 850.
  • 13 and 14 show the advance angle supply check valve 82 in a state where it is not provided inside the inner sleeve 41, that is, in a free state where no external force is acting.
  • the valve body 850 is formed in a cylindrical shape by winding a single rectangular plate made of, for example, metal so that the longitudinal direction is along the circumferential direction.
  • the valve body 850 has a portion on the inner end 851 side which is one end portion in the circumferential direction on the outer end portion 852 side which is the other end portion in the circumferential direction. It forms so that it may be located inside a site
  • the valve body 850 has a constant curvature portion 861 and a small curvature portion 871.
  • the constant curvature portion 861 is a specific portion of the valve body 850 in the circumferential direction, and one end thereof coincides with the outer end portion 852 and the other end is located between the outer end portion 852 and the inner end portion 851.
  • the small curvature portion 871 is a specific portion in the circumferential direction of the valve body 850, and one end thereof coincides with the other end of the constant curvature portion 861 and the other end coincides with the inner end portion 851.
  • the constant curvature portion 861 has a constant curvature over the entire range from one end to the other when the advance angle supply check valve 82 is in a free state. Further, the small curvature portion 871 has a constant curvature in the entire range from one end to the other end when the advance angle supply check valve 82 is in a free state.
  • the radius r1 of the small curvature portion 871 is smaller than the radius r2 of the constant curvature portion 861 (see FIG. 14).
  • the valve main body 850 has a curvature at a portion other than the constant curvature portion 861 having a constant curvature at a specific portion in the circumferential direction and a portion other than the constant curvature portion 861 at the circumferential direction when the advance supply check valve 82 is in a free state.
  • a small curvature portion 871 smaller than the curvature of the constant curvature portion 861 is provided.
  • the angle ⁇ 1 from one end to the other end of the constant curvature portion 861 is, for example, about 330 °. Further, the angle ⁇ 2 from one end to the other end of the small curvature portion 871 is, for example, about 75 °.
  • the outer end portion 852 of the valve main body 850 is located on the radially outer side of a substantially intermediate position between one end and the other end of the small curvature portion 871. At this time, a gap S1 is formed between the inner peripheral wall of the outer end 852 of the valve body 850 and the outer peripheral wall of the small curvature portion 871 (see FIG. 14).
  • the valve main body 850 when the advance angle supply check valve 82 is in the free state, the valve main body 850 is arranged such that the portion on the inner end portion 851 side is located inside the portion on the outer end portion 852 side, that is, Both ends are formed to overlap in the circumferential direction.
  • FIG. 15 shows the advance angle supply check valve 82 when it is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs inside the inner sleeve 41.
  • the constant curvature portion 861 is deformed so that the radius r3 is smaller than r1 and r2.
  • the radius of the small curvature portion 871 when the advance angle supply check valve 82 is in the free state is r1
  • the radius of the constant curvature portion 861 when the advance angle supply check valve 82 is in the free state is r2, and the advance angle supply.
  • the maximum stress generation point P1 that is the generation point of is the position of about 180 ° from the inner end portion 851.
  • the advance angle supply check valve 85 when the advance angle supply check valve 85 is in the free state, the inner peripheral wall of the outer end 852 of the valve body 850 is in contact with the outer peripheral wall of the portion on the inner end 851 side (see FIG. 16).
  • the advance angle supply check valve 85 according to the first comparative embodiment has the same configuration as the check valve of Patent Document 2 (U.S. Pat. No. 7,600,561) described above.
  • the maximum stress generation point P2 which is the generation point of the maximum stress among the stresses generated in the valve body 850, is a position of about 90 ° from the inner end portion 851.
  • the maximum stress generation point P3 which is the generation point of the maximum stress, is at a position of about 180 ° from the inner end portion 851.
  • FIG. 20 shows a valve for the case where the curvature reduction coefficient R is 0.00 (first comparative embodiment), 0.29, 0.58 (this embodiment), 0.77, 1.00 (second comparative embodiment).
  • the curvature reduction coefficient R is 0.00 (first comparative example)
  • the stress increases when the angle from the inner end 851 is from 0 ° to about 90 °, and from about 90 ° to 180 °.
  • the stress decreases until °. That is, when the curvature reduction coefficient R is 0.00 (first comparative example), the location where the maximum stress is generated is at a position of about 90 ° from the inner end portion 851.
  • the maximum stress is relatively large. Therefore, a large stress is generated at a position of about 90 ° from the inner end portion 851, that is, the stress is concentrated at a specific location, which may cause deformation or breakage of the valve body 850.
  • the stress is substantially 0 when the angle from the inner end 851 is from 0 ° to about 45 °, and about 45 °. From 180 to 180 °. That is, when the curvature reduction coefficient R is 1.00 (second comparative example), the location where the maximum stress is generated is at a position of about 180 ° from the inner end portion 851. The maximum stress is smaller than that in the case where the curvature reduction coefficient R is 0.00 (first comparative example).
  • the stress gradually increases from the angle from the inner end 851 to 0 ° to 180 °. That is, when the curvature reduction coefficient R is 0.58 (this embodiment), the location where the maximum stress is generated is at a position of about 180 ° from the inner end portion 851. The maximum stress is smaller than that in the case where the curvature reduction coefficient R is 1.00 (second comparative example). Therefore, the valve body 850 is smoothly bent from the inner end portion 851 to a position of about 180 °, and stress concentration is avoided while reducing the stress generated in the valve body 850, and sufficient spring force is exerted on the valve body 850. Can be made.
  • the advance angle supply check valve 82 causes the valve body 850 to exert a sufficient spring force while avoiding stress concentration while reducing the stress generated in the valve body 850 at the maximum deformation. This is advantageous over the first and second comparative embodiments.
  • the curvature reduction coefficient R is 0.29
  • the stress generated in the valve body 850 is reduced as compared with the case where the curvature reduction coefficient R is 0.00 (first comparative embodiment).
  • stress concentration can be avoided.
  • the vicinity of the inner end portion 851 of the valve body 850 is compared with the case where the curvature reduction coefficient R is 1.00 (second comparative embodiment).
  • the small curvature portion 871 has the curvature (r1) when the advance angle supply check valve 82 is in a free state (see FIG. 14), and the advance angle supply check valve 82 supplies the advance angle inside the inner sleeve 41. It is set to be larger than the curvature (r3) of the constant curvature portion 861 when it is most deformed by the flow of hydraulic oil from the opening OAs (see FIG. 15).
  • the small curvature portion 871 is formed so as to include the inner end portion 851 of the valve body 850, and when the advance angle supply check valve 82 is provided inside the inner sleeve 41, the small curvature portion 871 is fixed.
  • the end opposite to the curvature portion 861, that is, the inner end portion 851 is separated from the inner peripheral wall of the constant curvature portion 861 (see FIG. 12), and the advance angle supply check valve 82 advances inside the inner sleeve 41.
  • the end opposite to the constant curvature portion 861 that is, the inner end portion 851 of the constant curvature portion 861 until the time when it is most deformed by the flow of hydraulic oil from the corner supply opening OAs (see FIG. 15). Contact the inner wall.
  • the valve main body 850 has the inner end portion 851 separated from the inner peripheral wall of the portion on the outer end portion 852 side when the advance angle supply check valve 82 is provided inside the inner sleeve 41.
  • the inner end portion 851 is located on the outer end portion 852 side until the advance angle supply check valve 82 is most deformed by the flow of hydraulic oil from the advance angle supply opening portion OAs inside the inner sleeve 41. It touches the inner peripheral wall.
  • the inner sleeve 41 as a cylindrical tube member having the retard supply opening ORs and the advance supply opening OAs as the inflow holes communicating the outer peripheral wall and the inner peripheral wall.
  • the retard supply check valve 81 and the advance supply check valve 82 are capable of regulating the flow of hydraulic oil toward the advance supply opening OAs, and include a valve body 850.
  • the valve body 850 is formed in a cylindrical shape by winding a single plate material.
  • the valve body 850 When the retard supply check valve 81 and the advance supply check valve 82 are in a free state, the valve body 850 includes an inner end 851 that is one end in the circumferential direction and an outer end that is the other end in the circumferential direction.
  • the retard supply check valve 81 and the advance supply check valve 82 are deformed so as to be contracted radially inward by the flow of hydraulic oil from the retard supply opening ORs and the advance supply opening OAs inside the inner sleeve 41.
  • the valve is opened, the timing at which the deformation of the portion on the inner end 851 side of the valve main body 850 starts can be delayed with respect to the portion on the outer end 852 side.
  • the inner end portion 851 serves as a support point, and it is possible to suppress the occurrence of stress due to load bias at a position of about 90 ° from the position. Therefore, deformation or breakage of the retard supply check valve 81 and the advance supply check valve 82 can be suppressed.
  • the valve body 850 when the retard supply check valve 81 and the advance supply check valve 82 are in the free state, the valve body 850 is positioned such that the inner end 851 side portion is located inside the outer end 852 side portion. That is, both ends are formed to overlap in the circumferential direction.
  • the small curvature portion 871 is formed at the inner end portion 851 of the valve body 850.
  • the contact point with the portion on the outer end portion 852 side is continuously moved with respect to the diameter reduction, so that the contact position is rapidly increased. It is possible to prevent an extreme inflection point from occurring in the spring load characteristics due to the change.
  • the small curvature portion 871 has the curvature when the retard supply check valve 81 and the advance supply check valve 82 are in the free state, and the retard supply check valve 81 and the advance supply check valve 82 are inner. It is set to be larger than the curvature of the constant curvature portion 861 when it is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs inside the sleeve 41.
  • the small curvature part 871 is set to be equal to or greater than the curvature at the time of the maximum deformation of the entire valve body 850, the entire small curvature part 871 is deformed and a larger spring force can be exerted.
  • the valve main body 850 has the inner end portion 851 on the outer end portion 852 side when the retard supply check valve 81 and the advance supply check valve 82 are provided inside the inner sleeve 41. Until the time when the retard supply check valve 81 and the advance supply check valve 82 are most deformed by the flow of hydraulic oil from the advance supply opening OAs inside the inner sleeve 41. Further, the inner end portion 851 contacts the inner peripheral wall of the portion on the outer end portion 852 side. Therefore, while avoiding stress concentration of the valve body 850, the valve body 850 can exert a spring force at any time from the state set inside the inner sleeve 41 to the maximum deformation.
  • the radius of the small curvature portion 871 is r1 when the retard supply check valve 81 and the advance supply check valve 82 are in the free state, and the retard supply check valve 81 and the advance supply check valve 82 are free.
  • the radius of the constant curvature portion 861 in the state is r2
  • the retard supply check valve 81, and the advance supply check valve 82 are most deformed by the flow of hydraulic oil from the advance supply opening OAs inside the inner sleeve 41.
  • the radius of the constant curvature portion 861 is r3 and the curvature reduction coefficient R is (r2-r1) / (r2-r3)
  • the valve body 850 is formed to satisfy the relationship of R> 0.29. Therefore, stress concentration can be avoided while reducing the stress generated in the valve body 850.
  • the valve body 850 is formed so as to satisfy the relationship of R ⁇ 0.77. Therefore, the bending deformation in the vicinity of the inner end portion 851 of the valve body 850 (from 0 ° to about 45 °) can be increased, and an appropriate spring force can be exerted on the valve body 850.
  • FIG. 21 shows an advance angle supply check valve that is a part of the valve timing adjustment device according to the seventh embodiment of the present disclosure.
  • the seventh embodiment differs from the sixth embodiment in the configuration of the retard supply check valve 81 and the advance supply check valve 82.
  • FIG. 21 shows the lead angle supply check valve 82 in a free state.
  • the valve body 850 in the advance angle supply check valve 82 according to the present embodiment, has a constant curvature portion 861, a small curvature portion 871, and a constant curvature portion 862.
  • the constant curvature portion 861 is a specific portion of the valve body 850 in the circumferential direction, and one end thereof coincides with the outer end portion 852 and the other end is located between the outer end portion 852 and the inner end portion 851. .
  • the small curvature portion 871 is a specific portion in the circumferential direction of the valve main body 850, one end coincides with the other end of the constant curvature portion 861, and the other end is positioned between the outer end portion 852 and the inner end portion 851. is doing.
  • the constant curvature portion 862 is a specific portion of the valve body 850 in the circumferential direction, and one end thereof coincides with the other end of the small curvature portion 871 and the other end thereof coincides with the inner end portion 851.
  • the curvature of the constant curvature portion 861 and the constant curvature portion 862 are constant over the entire range from one end to the other when the advance angle supply check valve 82 is in a free state. Further, the small curvature portion 871 has a constant curvature in the entire range from one end to the other end when the advance angle supply check valve 82 is in a free state.
  • the radius r1 of the small curvature portion 871 is smaller than the radius r2 of the constant curvature portion 861 and the constant curvature portion 862 (see FIG. 21).
  • the valve body 850 includes a constant curvature portion 861, a constant curvature portion 862, and a circumferential constant curvature portion 861, each having a constant curvature at a specific portion in the circumferential direction, when the advance supply check valve 82 is in a free state.
  • a portion other than the constant curvature portion 862 has a constant curvature portion 861 and a small curvature portion 871 smaller than the curvature of the constant curvature portion 862.
  • the small curvature portion 871 is formed between the inner end portion 851 and the outer end portion 852 of the valve body 850 and at a position away from each of the inner end portion 851 and the outer end portion 852.
  • the angle ⁇ 1 from one end of the constant curvature portion 861 to the other end is, for example, about 270 °. Further, the angle ⁇ 2 from one end of the small curvature portion 871 to the other end is, for example, about 70 °. Further, the angle ⁇ 3 from one end of the constant curvature portion 862 to the other end is, for example, about 35 °.
  • the outer end portion 852 of the valve body 850 is located on the radially outer side of the constant curvature portion 862. At this time, a gap S2 is formed between the inner peripheral wall of the outer end 852 of the valve body 850 and the outer peripheral wall of the constant curvature portion 862 (see FIG.
  • the valve main body 850 when the advance angle supply check valve 82 is in the free state, the valve main body 850 is arranged such that the portion on the inner end portion 851 side is located inside the portion on the outer end portion 852 side, that is, Both ends are formed to overlap in the circumferential direction.
  • the configuration of the retard supply check valve 81 is the same as the configuration of the advance supply check valve 82.
  • the valve main body 850 includes the inner peripheral portion 851 that is one end portion in the circumferential direction and the peripheral portion when the retard supply check valve 81 and the advance supply check valve 82 are in the free state.
  • a constant curvature portion 861 having a constant curvature
  • a constant curvature portion 862 having a constant curvature
  • a constant curvature portion 862 having a constant curvature
  • a constant curvature portion 862 and a constant curvature portion 861 in the circumferential direction
  • the portion has a small curvature portion 871 whose curvature is smaller than the curvature of the constant curvature portion 861 and the constant curvature portion 862.
  • the valve body 850 is positioned such that the inner end 851 side portion is located inside the outer end 852 side portion. That is, both ends are formed to overlap in the circumferential direction.
  • the small curvature portion 871 is formed between the inner end portion 851 and the outer end portion 852. Note that the small curvature portion 871 is formed at a predetermined distance from each of the inner end portion 851 and the outer end portion 852 and does not overlap the outer end portion 852 in the circumferential direction.
  • FIG. 22 shows an advance angle supply check valve that is a part of the valve timing adjusting device according to the eighth embodiment of the present disclosure.
  • the eighth embodiment differs from the sixth embodiment in the configuration of the retard supply check valve 81 and the advance supply check valve 82.
  • FIG. 22 shows the lead angle supply check valve 82 in a free state.
  • the small curvature portion 871 is formed so that the radius gradually decreases from one end to the other end.
  • the radius of one end of the small curvature portion 871, that is, the end portion on the constant curvature portion 861 side is r2
  • the radius of the other end of the small curvature portion 871, that is, the inner end portion 851 is r4
  • the average of r2 and r4 is r1 It is.
  • the configuration of the retard supply check valve 81 is the same as the configuration of the advance supply check valve 82. In the present embodiment, as in the sixth embodiment, deformation or breakage of the retard supply check valve 81 and the advance supply check valve 82 can be suppressed.
  • FIG. 23 shows an advance angle supply check valve that is a part of the valve timing adjustment device according to the ninth embodiment of the present disclosure.
  • the ninth embodiment differs from the sixth embodiment in the configuration of the retard supply check valve 81 and the advance supply check valve 82.
  • FIG. 23 shows the lead angle supply check valve 82 in a free state.
  • the valve main body 850 includes a constant curvature portion 861, a small curvature portion 871, and a small curvature portion 872.
  • the constant curvature portion 861 is a specific portion of the valve body 850 in the circumferential direction, and one end thereof coincides with the outer end portion 852 and the other end is located between the outer end portion 852 and the inner end portion 851.
  • the small curvature portion 871 is a specific portion in the circumferential direction of the valve main body 850, one end coincides with the other end of the constant curvature portion 861, and the other end is positioned between the outer end portion 852 and the inner end portion 851. is doing.
  • the small curvature portion 872 is a specific portion in the circumferential direction of the valve body 850, and one end coincides with the other end of the small curvature portion 871 and the other end coincides with the inner end portion 851.
  • the angle ⁇ 1 from one end to the other end of the constant curvature portion 861 is, for example, about 330 °. Further, the angle ⁇ 2 from one end to the other end of the small curvature portion 871 is, for example, about 45 °. The angle ⁇ 3 from one end to the other end of the small curvature portion 872 is, for example, about 45 °.
  • the constant curvature portion 861 has a constant curvature over the entire range from one end to the other when the advance angle supply check valve 82 is in a free state. Further, the small curvature portion 871 and the small curvature portion 872 each have a constant curvature over the entire range from one end to the other end when the advance angle supply check valve 82 is in a free state.
  • the radius r5 of the small curvature portion 871 is smaller than the radius r2 of the constant curvature portion 861.
  • the radius r6 of the small curvature portion 872 is smaller than the radius r5 of the small curvature portion 871 (see FIG. 23).
  • the average of r5 and r6 is r1.
  • the configuration of the retard supply check valve 81 is the same as the configuration of the advance supply check valve 82. In the present embodiment, as in the sixth embodiment, deformation or breakage of the retard supply check valve 81 and the advance supply check valve 82 can be suppressed.
  • FIGS. 10th Embodiment A check valve that is a part of the valve timing adjusting device according to the tenth embodiment of the present disclosure is shown in FIGS.
  • the tenth embodiment differs from the first embodiment in the configuration of the supply check valve 61 and the recycle check valve 62. Since the configuration of the recycle check valve 62 is the same as that of the supply check valve 61, only the configuration of the supply check valve 61 will be described, and the description of the configuration of the recycle check valve 62 will be omitted.
  • the supply check valve 61 includes a valve main body 850, a small curvature portion 875, and a flat surface portion 881.
  • the valve body 850 has a constant curvature portion 861 and a small curvature portion 871.
  • the constant curvature portion 861 is a specific portion of the valve body 850 in the circumferential direction, and one end thereof coincides with the outer end portion 852 and the other end is located between the outer end portion 852 and the inner end portion 851.
  • the small curvature portion 871 is a specific portion in the circumferential direction of the valve body 850, and one end coincides with the other end of the constant curvature portion 861 and the other end coincides with the inner end portion 851.
  • the small curvature portion 875 has one end coinciding with the other end of the small curvature portion 871, that is, the inner end portion 851 of the valve main body 850.
  • the flat portion 881 is formed in a flat shape.
  • the flat portion 881 is formed integrally with the valve body 850, the small curvature portion 875, and the shaft portion 63 so that one end is connected to the other end of the small curvature portion 875 and the other end is connected to the shaft portion 63.
  • the shaft portion 63, the flat surface portion 881, and the small curvature portion 875 support the valve body 850.
  • the angle ⁇ 1 from one end of the constant curvature portion 861 to the other end is, for example, about 270 °. Further, the angle ⁇ 2 from one end to the other end of the small curvature portion 871 is, for example, about 90 °. Further, the angle ⁇ 3 from one end to the other end of the small curvature portion 875 is, for example, about 90 °.
  • the outer end 852 of the valve main body 850 is located on the radially outer side near one end of the small curvature portion 875. At this time, a gap S1 is formed between the inner peripheral wall of the outer end 852 of the valve body 850 and the outer peripheral wall of the small curvature portion 875 (see FIG. 25).
  • the valve main body 850 is formed so that the inner end portion 851 and the outer end portion 852 do not overlap in the circumferential direction when the supply check valve 61 is in a free state.
  • the constant curvature portion 861 has a constant curvature over the entire range from one end to the other when the supply check valve 61 is in a free state. Further, the small curvature portion 871 and the small curvature portion 875 each have a constant curvature in the entire range from one end to the other end when the supply check valve 61 is in a free state.
  • the radius r1 of the small curvature portion 871 is smaller than the radius r2 of the constant curvature portion 861. Further, the radius r7 of the small curvature portion 875 is smaller than the radius r1 of the small curvature portion 871 (see FIG. 25).
  • the valve main body 850 does not have the small curvature portion 871, but has a constant curvature (from the outer end portion 852 to one end of the small curvature portion 875, that is, the inner end portion 851). It can also be said that it has the constant curvature portion 861 of r2).
  • the angle ⁇ 1 from one end to the other end of the constant curvature portion 861 is, for example, about 270 °.
  • the angle ⁇ 2 from one end to the other end of the small curvature portion 871 is, for example, about 90 °. Therefore, when the supply check valve 65 is in a free state, the inner peripheral wall of the outer end 852 of the valve body 850 and the outer peripheral wall of the small curvature portion 871 are in contact (see FIG. 26).
  • the supply check valve 65 of the third comparison form has the same configuration as the supply check valve 61 according to the first embodiment.
  • the inner end 851 serves as a support point, and the maximum stress generated in the valve body 850
  • the maximum stress generation location which is the location where the stress is generated, is a position about 90 ° from the inner end portion 851.
  • the supply check valve 61 according to the present embodiment when the supply check valve 61 according to the present embodiment is most deformed by the flow of hydraulic oil from the supply oil passage 54 inside the spool 50, the maximum of the stresses generated in the valve body 850 is the maximum stress generation location.
  • the stress generation point is at a position of about 180 ° from the inner end 851.
  • the magnitude of the maximum stress is smaller than the maximum stress generated in the supply check valve 65 of the third comparison form.
  • the supply check valve 61 according to the present embodiment is superior to the third comparative embodiment in that stress concentration can be avoided while reducing the stress generated in the valve body 850 at the maximum deformation.
  • the present embodiment is provided inside the spool 50 as a cylindrical tube member having the supply oil passage 54 and the recycle oil passage 57 as the inflow holes that communicate the outer peripheral wall and the inner peripheral wall. Allow the flow of hydraulic oil toward the inside of the spool 50 via the supply oil path 54 and the recycle oil path 57, and regulate the flow of hydraulic oil toward the supply oil path 54 and the recycle oil path 57 from the inside of the spool 50
  • the supply check valve 61 and the recycle check valve 62 are provided with a valve body 850.
  • the valve body 850 is formed in a cylindrical shape by winding a single plate material.
  • the valve main body 850 is between the inner end 851 that is one end in the circumferential direction and the outer end 852 that is the other end in the circumferential direction.
  • the constant curvature portion 861 having a constant curvature at the specific portion and the small curvature portion 871 having a curvature smaller than the curvature of the constant curvature portion 861 at a portion other than the constant curvature portion 861 in the circumferential direction.
  • the valve main body 850 is formed so that the inner end portion 851 and the outer end portion 852 do not overlap in the circumferential direction when the supply check valve 61 and the recycle check valve 62 are in a free state.
  • the oil passage switching valve 11 may be disposed at a location other than the central portion of the vane rotor 30, for example, outside the housing 20.
  • the first control oil passage 55 that can be connected to the first control port and the second control oil passage 56 that can be connected to the second control port are shown as control oil passages formed in the spool 50. It was.
  • a common control oil path that can be connected to the first control port and the second control port may be formed in the spool 50.
  • a drain oil passage connected to each control port may be formed in the spool.
  • the valve body 850 is preferably formed so as to satisfy the relationship of 0.29 ⁇ R ⁇ 0.77.
  • the small curvature portion 871 is formed so as to include the inner end portion 851 of the valve body 850, and the advance angle supply check valve 82 is provided inside the inner sleeve 41.
  • the end opposite to the constant curvature portion 861, that is, the inner end portion 851 is separated from the inner peripheral wall of the constant curvature portion 861 (see FIG. 12), and the advance angle supply check valve 82 is located on the inner sleeve 41.
  • the end opposite to the constant curvature portion 861, that is, the inner end portion 851 has a constant curvature until it is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs (see FIG. 15).
  • the small curvature portion 871 is an end portion on the opposite side to the constant curvature portion 861 when the advance angle supply check valve 82 is provided inside the inner sleeve 41. That is, the inner end portion 851 may be in contact with the inner peripheral wall of the constant curvature portion 861. That is, in the valve body 850, when the advance angle supply check valve 82 is provided inside the inner sleeve 41, the inner end portion 851 may be in contact with the inner peripheral wall of the portion on the outer end portion 852 side.
  • the valve body 850 can exert a spring force from the state set inside the inner sleeve 41 while avoiding stress concentration of the valve body 850.
  • the housing 20 and the crankshaft 2 may be connected by a transmission member such as a belt instead of the chain 6.
  • crankshaft 2 is the “first axis” and the camshaft 3 is the “second axis” has been described.
  • the crankshaft 2 may be a “second shaft” and the camshaft 3 may be a “first shaft”. That is, the vane rotor 30 may be fixed to the end of the crankshaft 2 and the housing 20 may rotate in conjunction with the camshaft 3.
  • the valve timing adjusting device 10 of the present disclosure may adjust the valve timing of the exhaust valve 5 of the engine 1.
  • the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the gist thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A supply check valve (61) that: permits the flow of hydraulic oil when the valve is opened, from a hydraulic oil supply source (8) side to a pressure accumulation space (500) side via a supply oil passage (54); and, when the valve is closed, restricts the flow of hydraulic oil from the pressure accumulation space (500) side to the hydraulic oil supply source (8) side via the supply oil passage (54). A recycle check valve (62) that: permits the flow of hydraulic oil, when the valve is opened, from a retard chamber- or advance chamber-side to the pressure accumulation space (500) side via a recycled oil passage (57); and, when the valve is closed, restricts the flow of hydraulic oil from the pressure accumulation space (500) side to the retard chamber- or advance chamber-side via the recycled oil passage (57). The characteristics pertaining to the opening of the supply check valve (61) differ from the characteristics pertaining to the opening of the recycle check valve (62).

Description

バルブタイミング調整装置およびチェック弁Valve timing adjusting device and check valve 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年1月19日に出願された特許出願番号2017-7516号、および、2017年12月22日に出願された特許出願番号2017-246489号に基づくものであり、ここにその記載内容を援用する。 This application is based on Patent Application No. 2017-7516 filed on January 19, 2017 and Patent Application No. 2017-2446489 filed on December 22, 2017. The description is incorporated.
 本開示は、バルブタイミング調整装置およびチェック弁に関する。 This disclosure relates to a valve timing adjusting device and a check valve.
 従来、内燃機関の駆動軸から従動軸まで動力を伝達する動力伝達経路に設けられ、従動軸により開閉駆動される吸気弁および排気弁のバルブタイミングを調整するバルブタイミング調整装置が知られている。バルブタイミング調整装置は、油圧式の場合、駆動軸および従動軸の一方と連動して回転するハウジングと、駆動軸および従動軸の他方の端部に固定されるベーンロータとを備え、ハウジング内でベーンロータが区画形成する第1油圧室および第2油圧室の一方に作動油を供給することによって、ハウジングに対してベーンロータを進角方向または遅角方向へ相対回転させる。上記作動油の供給は油路切換弁が行う。 2. Description of the Related Art Conventionally, there is known a valve timing adjusting device that is provided in a power transmission path that transmits power from a driving shaft of an internal combustion engine to a driven shaft and adjusts valve timings of intake valves and exhaust valves that are driven to open and close by the driven shaft. In the case of a hydraulic type, the valve timing adjusting device includes a housing that rotates in conjunction with one of a drive shaft and a driven shaft, and a vane rotor that is fixed to the other end of the drive shaft and the driven shaft, and the vane rotor in the housing. The hydraulic oil is supplied to one of the first hydraulic chamber and the second hydraulic chamber that form a compartment, thereby rotating the vane rotor relative to the housing in the advance direction or the retard direction. The hydraulic oil is supplied by an oil passage switching valve.
米国特許出願公開第2016/0024978号明細書US Patent Application Publication No. 2016/0024978 米国特許第7600531号明細書US Patent No. 7600531
 例えば、特許文献1のバルブタイミング調整装置では、油路切換弁を構成するスプールに、スプール内の蓄圧空間に作動油を供給するための供給油路、第1油圧室または第2油圧室と蓄圧空間とを接続可能に形成されたリサイクル油路が形成されている。リサイクル油路により、第1油圧室および第2油圧室からの作動油の再利用が可能である。供給油路に対しスプールの径方向内側には、作動油供給源側から供給油路を経由した蓄圧空間側への作動油の流れを許容し、蓄圧空間側から供給油路を経由した作動油供給源側への作動油の流れを規制する供給チェック弁が設けられている。そのため、蓄圧空間側から作動油供給源側への作動油の逆流を抑制可能である。また、リサイクル油路に対しスプールの径方向内側には、第1油圧室または第2油圧室側からリサイクル油路を経由した蓄圧空間側への作動油の流れを許容し、蓄圧空間側からリサイクル油路を経由した第1油圧室または第2油圧室側への作動油の流れを規制するリサイクルチェック弁が設けられている。そのため、蓄圧空間側からリサイクル油路を経由した第1油圧室または第2油圧室側への作動油の逆流を抑制可能である。 For example, in the valve timing adjusting device of Patent Document 1, a supply oil passage for supplying hydraulic oil to a pressure accumulation space in the spool, a first hydraulic chamber or a second hydraulic chamber, and a pressure accumulation in a spool constituting the oil path switching valve. A recycle oil passage formed so as to be connectable to the space is formed. The recycle oil path enables reuse of hydraulic oil from the first hydraulic chamber and the second hydraulic chamber. On the radially inner side of the spool with respect to the supply oil passage, the hydraulic oil flow from the hydraulic oil supply source side to the pressure accumulation space side via the supply oil passage is permitted, and the hydraulic oil from the pressure accumulation space side via the supply oil passage is allowed. A supply check valve for restricting the flow of hydraulic oil to the supply source side is provided. Therefore, the backflow of the hydraulic oil from the pressure accumulation space side to the hydraulic oil supply source side can be suppressed. Also, on the inner side in the radial direction of the spool with respect to the recycle oil passage, the flow of hydraulic oil from the first hydraulic chamber or the second hydraulic chamber side to the pressure accumulation space side via the recycle oil passage is allowed and recycled from the pressure accumulation space side. A recycle check valve is provided for restricting the flow of hydraulic oil to the first hydraulic chamber or the second hydraulic chamber via the oil passage. Therefore, it is possible to suppress the backflow of hydraulic oil from the pressure accumulation space side to the first hydraulic chamber or the second hydraulic chamber side via the recycle oil passage.
 ところで、供給チェック弁とリサイクルチェック弁とは、それぞれ、圧損や応答時間等を考慮し、優先されるべき開弁に関する特性が異なる。しかしながら、特許文献1のバルブタイミング調整装置では、供給チェック弁およびリサイクルチェック弁それぞれの開弁に関する特性について、何ら考慮されていない。そのため、供給チェック弁およびリサイクルチェック弁の開弁圧が同じに設定されるおそれがある。よって、供給チェック弁の開弁圧が適切な値よりも高く設定されており開弁し難い特性の場合、作動油が供給チェック弁を通過するときの圧損が増大し、各油圧室に供給する作動油の圧損が増大するおそれがある。また、リサイクルチェック弁の開弁圧が適切な値よりも低く設定されており開弁し易い特性の場合、リサイクルチェック弁が、高回転時の高周波の正負のカムトルク変動に追従できず、バルブタイミング調整装置の応答性が低下するおそれがある。
 本開示の第1の目的は、油圧室に供給する作動油の圧損が低く、応答性の高いバルブタイミング調整装置を提供することにある。
By the way, the supply check valve and the recycle check valve have different characteristics regarding valve opening that should be given priority in consideration of pressure loss, response time, and the like. However, in the valve timing adjusting device of Patent Document 1, no consideration is given to the characteristics related to the opening of each of the supply check valve and the recycle check valve. For this reason, the valve opening pressures of the supply check valve and the recycle check valve may be set to be the same. Therefore, when the valve opening pressure of the supply check valve is set higher than an appropriate value and is difficult to open, the pressure loss when the hydraulic oil passes through the supply check valve increases and is supplied to each hydraulic chamber. There is a risk of increased hydraulic oil pressure loss. In addition, when the valve opening pressure of the recycle check valve is set lower than an appropriate value and the valve is easy to open, the recycle check valve cannot follow high-frequency positive and negative cam torque fluctuations at high rotation, and valve timing There is a possibility that the responsiveness of the adjusting device is lowered.
A first object of the present disclosure is to provide a valve timing adjusting device with low pressure loss of hydraulic oil supplied to a hydraulic chamber and high response.
 また、例えば、特許文献2には、外周壁と内周壁とを連通する流入穴を有する筒状の筒部材の内側に設けられ、流入穴を経由して筒部材の内側へ向かう流体の流れを許容し、筒部材の内側から流入穴へ向かう流体の流れを規制可能なチェック弁が開示されている。ここで、当該チェック弁は、単一の板材を巻くことにより筒状に形成された弁本体を備えている。当該弁本体は、周方向の一方の端部である内端部と周方向の他方の端部である外端部との間の部位のうち内端部から外端部までの全範囲の曲率が一定である。そのため、チェック弁が筒部材の内側において流入穴からの流体の流れにより径方向内側に縮まるよう変形し開弁したとき、内端部が支持点となり、当該位置から約90°の位置に荷重の偏りによる大きな応力が発生するおそれがある。これにより、チェック弁の変形または破損を招くおそれがある。
 本開示の第2の目的は、変形時に発生する応力を抑制可能なチェック弁を提供することにある。
Further, for example, in Patent Document 2, the flow of fluid that is provided inside a cylindrical tubular member having an inflow hole that communicates the outer peripheral wall and the inner peripheral wall and that flows toward the inner side of the cylindrical member via the inflow hole. A check valve that allows and restricts the flow of fluid from the inside of the cylindrical member toward the inflow hole is disclosed. Here, the check valve includes a valve body formed into a cylindrical shape by winding a single plate material. The valve body has a full range of curvature from the inner end to the outer end of the portion between the inner end that is one end in the circumferential direction and the outer end that is the other end in the circumferential direction. Is constant. For this reason, when the check valve is deformed and opened to shrink radially inward due to the flow of fluid from the inflow hole on the inner side of the cylindrical member, the inner end serves as a support point, and the load is applied to a position about 90 ° from the position. There is a risk of generating a large stress due to the bias. This may cause deformation or breakage of the check valve.
The second object of the present disclosure is to provide a check valve capable of suppressing stress generated during deformation.
 本開示の第1の態様は、内燃機関の駆動軸から従動軸まで動力を伝達する動力伝達経路に設けられ、従動軸により開閉駆動されるバルブのバルブタイミングを調整するバルブタイミング調整装置であって、ハウジングとベーンロータとスリーブとスプールと供給チェック弁とリサイクルチェック弁とを備えている。 A first aspect of the present disclosure is a valve timing adjustment device that is provided in a power transmission path that transmits power from a drive shaft to a driven shaft of an internal combustion engine and adjusts a valve timing of a valve that is driven to open and close by the driven shaft. , A housing, a vane rotor, a sleeve, a spool, a supply check valve, and a recycle check valve.
 駆動軸および従動軸の一方を第1軸とし、駆動軸および従動軸の他方を第2軸とすると、ハウジングは、第1軸と連動して回転し、第2軸の端部に嵌合し、第2軸により回転可能に支持される。 When one of the drive shaft and the driven shaft is a first shaft and the other of the drive shaft and the driven shaft is a second shaft, the housing rotates in conjunction with the first shaft and is fitted to the end of the second shaft. The second shaft is rotatably supported.
 ベーンロータは、第2軸の端部に固定され、ハウジングの内部空間を周方向の一方側の第1油圧室と周方向の他方側の第2油圧室とに仕切るベーンを有し、作動油供給源から第1油圧室および第2油圧室に供給される作動油の圧力に応じてハウジングに対して相対回転する。 The vane rotor is fixed to the end of the second shaft and has a vane that divides the internal space of the housing into a first hydraulic chamber on one side in the circumferential direction and a second hydraulic chamber on the other side in the circumferential direction. It rotates relative to the housing according to the pressure of the hydraulic oil supplied from the source to the first hydraulic chamber and the second hydraulic chamber.
 スリーブは、筒状に形成され、作動油供給源に連通する供給ポート、第1油圧室に連通している第1制御ポート、および、第2油圧室に連通している第2制御ポートを有している。 The sleeve is formed in a cylindrical shape, and has a supply port communicating with the hydraulic oil supply source, a first control port communicating with the first hydraulic chamber, and a second control port communicating with the second hydraulic chamber. is doing.
 スプールは、筒状に形成され、スリーブの内側において軸方向へ往復移動可能に設けられ、内側に形成された蓄圧空間、蓄圧空間と供給ポートとを接続するよう形成された供給油路、蓄圧空間と第1制御ポートまたは第2制御ポートとを接続可能に形成された制御油路、および、蓄圧空間と第1制御ポートまたは第2制御ポートとを接続可能に形成されたリサイクル油路を有している。リサイクル油路により、第1油圧室および第2油圧室からの作動油の再利用が可能である。 The spool is formed in a cylindrical shape so as to be capable of reciprocating in the axial direction inside the sleeve, and a pressure accumulation space formed inside, a supply oil passage formed to connect the pressure accumulation space and the supply port, and a pressure accumulation space And a control oil passage formed so as to be connectable to the first control port or the second control port, and a recycle oil passage formed so as to be connectable between the pressure accumulation space and the first control port or the second control port. ing. The recycle oil path enables reuse of hydraulic oil from the first hydraulic chamber and the second hydraulic chamber.
 供給チェック弁は、開弁したとき、作動油供給源側から供給油路を経由して蓄圧空間側へ向かう作動油の流れを許容し、閉弁したとき、蓄圧空間側から供給油路を経由して作動油供給源側へ向かう作動油の流れを規制する。そのため、蓄圧空間側から作動油供給源側への作動油の逆流を抑制可能である。これにより、作動油供給源の供給圧が低い場合に、油路切換弁側から作動油供給源側に作動油が流れるのを抑制することができる。 When the supply check valve is opened, it allows the flow of hydraulic oil from the hydraulic oil supply source side through the supply oil passage to the pressure accumulation space side.When the valve is closed, the supply check valve passes through the supply oil passage from the pressure accumulation space side. Thus, the flow of hydraulic oil toward the hydraulic oil supply source side is regulated. Therefore, the backflow of the hydraulic oil from the pressure accumulation space side to the hydraulic oil supply source side can be suppressed. Thereby, when the supply pressure of the hydraulic oil supply source is low, it is possible to suppress the hydraulic oil from flowing from the oil passage switching valve side to the hydraulic oil supply source side.
 リサイクルチェック弁は、開弁したとき、第1油圧室または第2油圧室側からリサイクル油路を経由して蓄圧空間側へ向かう作動油の流れを許容し、閉弁したとき、蓄圧空間側からリサイクル油路を経由して第1油圧室または第2油圧室側へ向かう作動油の流れを規制する。そのため、蓄圧空間側から第1油圧室または第2油圧室側への作動油の逆流を抑制可能である。これにより、作動油の再利用が可能な構成において、バルブタイミング調整装置の応答性を高めることができる。 The recycle check valve allows the flow of hydraulic oil from the first hydraulic chamber or the second hydraulic chamber side to the pressure accumulation space side through the recycle oil passage when the valve is opened, and from the pressure accumulation space side when the valve is closed. The flow of hydraulic oil toward the first hydraulic chamber or the second hydraulic chamber via the recycle oil passage is regulated. Therefore, it is possible to suppress the backflow of the hydraulic oil from the pressure accumulation space side to the first hydraulic chamber or the second hydraulic chamber side. Thereby, the responsiveness of the valve timing adjusting device can be enhanced in a configuration in which the hydraulic oil can be reused.
 本開示では、供給チェック弁の開弁に関する特性は、リサイクルチェック弁の開弁に関する特性と異なる。ここで、例えば圧損の程度を考慮し、供給チェック弁の開弁圧を比較的低くし、開弁し易い特性に設定すれば、作動油が供給チェック弁を通過するときの圧損が低下し、各油圧室に供給する作動油の圧損を低くすることができる。また、例えば追従性を考慮し、リサイクルチェック弁の開弁圧を比較的高くし、開弁し難い特性に設定すれば、リサイクルチェック弁を、高回転時の高周波の正負のカムトルク変動に追従させることができ、バルブタイミング調整装置の応答性を高めることができる。 In this disclosure, the characteristics related to the opening of the supply check valve are different from the characteristics related to the opening of the recycle check valve. Here, considering the degree of pressure loss, for example, if the valve opening pressure of the supply check valve is relatively low and set to a characteristic that is easy to open, the pressure loss when the hydraulic oil passes through the supply check valve decreases, The pressure loss of the hydraulic oil supplied to each hydraulic chamber can be reduced. Also, for example, considering the followability, if the valve opening pressure of the recycle check valve is relatively high and set to a characteristic that makes it difficult to open, the recycle check valve will follow high-frequency positive and negative cam torque fluctuations at high revolutions. And the responsiveness of the valve timing adjusting device can be improved.
 本開示の第2の態様は、外周壁と内周壁とを連通する流入穴を有する筒状の筒部材の内側に設けられ、流入穴を経由して筒部材の内側へ向かう流体の流れを許容し、筒部材の内側から流入穴へ向かう流体の流れを規制可能なチェック弁であって、弁本体を備えている。弁本体は、単一の板材を巻くことにより筒状に形成されている。 The second aspect of the present disclosure is provided inside a cylindrical tubular member having an inflow hole that communicates the outer peripheral wall and the inner peripheral wall, and allows the flow of fluid toward the inner side of the cylindrical member via the inflow hole. And it is a check valve which can regulate the flow of the fluid which goes to the inflow hole from the inside of a cylinder member, Comprising: The valve main body is provided. The valve body is formed in a cylindrical shape by winding a single plate material.
 弁本体は、チェック弁が自由状態のとき、周方向の一方の端部である内端部と周方向の他方の端部である外端部との間の特定の部位において曲率が一定の定曲率部、および、周方向の前記定曲率部以外の部位において曲率が定曲率部の曲率より小さい小曲率部を有している。そのため、チェック弁が筒部材の内側において流入穴からの流体の流れにより径方向内側に縮まるよう変形し開弁したとき、弁本体の内端部側の部位の変形が始まるタイミングを外端部側の部位に対して遅らせることができる。これにより、内端部が支持点となり、当該位置から約90°の位置に荷重の偏りによる応力が発生するのを抑制することができる。したがって、チェック弁の変形または破損を抑制することができる。 When the check valve is in a free state, the valve body has a constant curvature at a specific portion between an inner end that is one end in the circumferential direction and an outer end that is the other end in the circumferential direction. It has a small curvature part with a curvature smaller than the curvature of a constant curvature part in parts other than a curvature part and the said constant curvature part of the circumferential direction. Therefore, when the check valve is deformed so as to shrink radially inward due to the fluid flow from the inflow hole inside the cylindrical member, the timing at which the deformation of the portion on the inner end side of the valve body starts is set on the outer end side. Can be delayed with respect to the site. As a result, the inner end serves as a support point, and it is possible to suppress the occurrence of stress due to the bias of the load at a position of about 90 ° from the position. Therefore, deformation or breakage of the check valve can be suppressed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるバルブタイミング調整装置を示す断面図であり、 図2は、図1のII-II線断面であって、ハウジングおよびベーンロータのみを示す図であり、 図3Aは、第1実施形態によるバルブタイミング調整装置のチェック弁を示す図であり、 図3Bは、図3Aを矢印IIIB方向から見た図であり、 図3Cは、チェック弁を展開した図であり、 図4は、第2実施形態によるバルブタイミング調整装置を示す断面図であり、 図5Aは、第2実施形態によるバルブタイミング調整装置のチェック弁を示す図であり、 図5Bは、図5AのVB-VB線断面図であり、 図5Cは、供給チェック弁を示す図であり、 図6Aは、図4のVIA-VIA線断面図であって、スプールおよびチェック弁のみを示す図であり、 図6Bは、図4のVIB-VIB線断面図であって、スプールおよびチェック弁のみを示す図であり、 図7は、第3実施形態によるバルブタイミング調整装置の一部を示す断面図であり、 図8は、第4実施形態によるバルブタイミング調整装置の一部を示す断面図であり、 図9は、第4実施形態によるバルブタイミング調整装置のスプールおよびチェック弁を示す断面斜視図であり、 図10は、第5実施形態によるバルブタイミング調整装置の一部を示す断面図であり、 図11は、第6実施形態によるバルブタイミング調整装置の油路切換弁を示す断面図であり、 図12は、図11のXII-XII線断面図であり、 図13は、第6実施形態によるバルブタイミング調整装置のチェック弁を示す図であり、 図14は、図13を矢印XIV方向から見た図であり、 図15は、第6実施形態によるバルブタイミング調整装置のチェック弁の最大変形時の状態を示す図であり、 図16は、第1比較形態によるチェック弁を示す図であり、 図17は、第1比較形態によるチェック弁の最大変形時の状態を示す図であり、 図18は、第2比較形態によるチェック弁を示す図であり、 図19は、第2比較形態によるチェック弁の最大変形時の状態を示す図であり、 図20は、弁本体の最大変形時における弁本体の内端部からの角度と発生する応力の大きさとの関係を示す図であり、 図21は、第7実施形態によるチェック弁を示す図であり、 図22は、第8実施形態によるチェック弁を示す図であり、 図23は、第9実施形態によるチェック弁を示す図であり、 図24は、第10実施形態によるチェック弁を示す斜視図であり、 図25は、図24を矢印XXV方向から見た図であり、 図26は、第3比較形態によるチェック弁を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a cross-sectional view showing a valve timing adjusting device according to a first embodiment. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, showing only the housing and the vane rotor; FIG. 3A is a view showing a check valve of the valve timing adjusting device according to the first embodiment; FIG. 3B is a view of FIG. 3A as viewed from the direction of arrow IIIB. FIG. 3C is an expanded view of the check valve. FIG. 4 is a cross-sectional view showing the valve timing adjusting device according to the second embodiment, FIG. 5A is a view showing a check valve of the valve timing adjusting device according to the second embodiment; 5B is a cross-sectional view taken along line VB-VB of FIG. 5A. FIG. 5C is a diagram showing a supply check valve; 6A is a cross-sectional view taken along line VIA-VIA of FIG. 4 and shows only a spool and a check valve; 6B is a cross-sectional view taken along the line VIB-VIB of FIG. 4 and shows only the spool and the check valve. FIG. 7 is a cross-sectional view showing a part of the valve timing adjusting device according to the third embodiment. FIG. 8 is a cross-sectional view showing a part of the valve timing adjusting device according to the fourth embodiment. FIG. 9 is a cross-sectional perspective view showing a spool and a check valve of the valve timing adjusting device according to the fourth embodiment. FIG. 10 is a cross-sectional view showing a part of the valve timing adjusting apparatus according to the fifth embodiment. FIG. 11 is a cross-sectional view showing an oil passage switching valve of a valve timing adjusting device according to a sixth embodiment. 12 is a cross-sectional view taken along line XII-XII of FIG. FIG. 13 is a view showing a check valve of the valve timing adjusting device according to the sixth embodiment, FIG. 14 is a view of FIG. 13 viewed from the direction of arrow XIV. FIG. 15 is a diagram illustrating a state at the time of maximum deformation of the check valve of the valve timing adjusting device according to the sixth embodiment, FIG. 16 is a view showing a check valve according to the first comparative embodiment, FIG. 17 is a diagram illustrating a state at the time of maximum deformation of the check valve according to the first comparative embodiment, FIG. 18 is a view showing a check valve according to the second comparative embodiment, FIG. 19 is a diagram showing a state at the time of maximum deformation of the check valve according to the second comparative embodiment, FIG. 20 is a diagram showing the relationship between the angle from the inner end of the valve body and the magnitude of the generated stress at the maximum deformation of the valve body, FIG. 21 is a view showing a check valve according to the seventh embodiment. FIG. 22 is a view showing a check valve according to the eighth embodiment. FIG. 23 is a view showing a check valve according to the ninth embodiment. FIG. 24 is a perspective view showing a check valve according to the tenth embodiment, FIG. 25 is a diagram when FIG. 24 is viewed from the direction of the arrow XXV. FIG. 26 is a view showing a check valve according to the third comparative embodiment.
 以下、本開示の複数の実施形態によるバルブタイミング調整装置を図面に基づき説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。
  (第1実施形態)
Hereinafter, valve timing adjustment devices according to a plurality of embodiments of the present disclosure will be described with reference to the drawings. Note that, in a plurality of embodiments, substantially the same components are denoted by the same reference numerals, and description thereof is omitted.
(First embodiment)
 本開示の第1実施形態によるバルブタイミング調整装置を図1に示す。バルブタイミング調整装置10は、内燃機関としてのエンジン1のクランク軸2に対するカム軸3の回転位相を変化させることによって、カム軸3が開閉駆動する吸気弁4または排気弁5のうち吸気弁4のバルブタイミングを調整するものである。バルブタイミング調整装置10は、クランク軸2からカム軸3までの動力伝達経路に設けられている。クランク軸2は、「駆動軸」に対応する。カム軸3は、「従動軸」に対応する。
 バルブタイミング調整装置10の構成について図1、図2に基づき説明する。
 バルブタイミング調整装置10は、ハウジング20とベーンロータ30と油路切換弁11とを備えている。
A valve timing adjusting device according to a first embodiment of the present disclosure is shown in FIG. The valve timing adjusting device 10 changes the rotational phase of the camshaft 3 with respect to the crankshaft 2 of the engine 1 as an internal combustion engine to thereby change the intake valve 4 of the intake valve 4 or the exhaust valve 5 that the camshaft 3 is driven to open and close. The valve timing is adjusted. The valve timing adjusting device 10 is provided in a power transmission path from the crankshaft 2 to the camshaft 3. The crankshaft 2 corresponds to a “drive shaft”. The cam shaft 3 corresponds to a “driven shaft”.
The configuration of the valve timing adjusting device 10 will be described with reference to FIGS. 1 and 2.
The valve timing adjusting device 10 includes a housing 20, a vane rotor 30, and an oil passage switching valve 11.
 ハウジング20は、スプロケット21およびケース22から構成されている。スプロケット21は、カム軸3の端部に嵌合している。カム軸3は、スプロケット21を回転可能に支持している。チェーン6は、スプロケット21とクランク軸2とに巻き掛けられている。スプロケット21は、クランク軸2と連動して回転する。ケース22は、有底筒状であり、開口端がスプロケット21に組み合わされつつボルト12によりスプロケット21に固定されている。ケース22は、径方向内側に突き出す複数の隔壁部23を形成している。ケース22の底部の中央には、ケース22外の空間に開口する開口部24が形成されている。開口部24は、ベーンロータ30に対してカム軸3とは反対側に位置する。 The housing 20 includes a sprocket 21 and a case 22. The sprocket 21 is fitted to the end of the cam shaft 3. The camshaft 3 supports the sprocket 21 in a rotatable manner. The chain 6 is wound around the sprocket 21 and the crankshaft 2. The sprocket 21 rotates in conjunction with the crankshaft 2. The case 22 has a bottomed cylindrical shape, and an open end is fixed to the sprocket 21 by a bolt 12 while being combined with the sprocket 21. The case 22 has a plurality of partition walls 23 protruding radially inward. An opening 24 that opens to a space outside the case 22 is formed at the center of the bottom of the case 22. The opening 24 is located on the side opposite to the camshaft 3 with respect to the vane rotor 30.
 ベーンロータ30は、ボス31、および、複数のベーン32を有している。ボス31は、筒状であり、カム軸3の端部に固定されている。ベーン32は、ボス31から径方向外側に向かって各隔壁部23間に突き出している。ハウジング20の内部空間200は、ベーン32により遅角室201と進角室202とに仕切られている。遅角室201は、「第1油圧室」に対応し、ベーン32に対して周方向の一方に位置している。進角室202は、「第2油圧室」に対応し、ベーン32に対して周方向の他方に位置している。ベーンロータ30は、遅角室201および進角室202の油圧に応じて、ハウジング20に対して遅角方向または進角方向へ相対回転する。
 油路切換弁11は、スリーブ40、スプール50、チェック弁60を有している。
 スリーブ40は、インナースリーブ41、アウタースリーブ42、供給ポート43、第1制御ポート44、第2制御ポート45、係止部47を有している。
The vane rotor 30 includes a boss 31 and a plurality of vanes 32. The boss 31 has a cylindrical shape and is fixed to the end of the cam shaft 3. The vane 32 protrudes between the partition walls 23 toward the radially outer side from the boss 31. The internal space 200 of the housing 20 is partitioned into a retard chamber 201 and an advance chamber 202 by a vane 32. The retard chamber 201 corresponds to the “first hydraulic chamber” and is located on one side in the circumferential direction with respect to the vane 32. The advance chamber 202 corresponds to the “second hydraulic chamber” and is located on the other side in the circumferential direction with respect to the vane 32. The vane rotor 30 rotates relative to the housing 20 in the retard direction or the advance direction according to the hydraulic pressure in the retard chamber 201 and the advance chamber 202.
The oil passage switching valve 11 has a sleeve 40, a spool 50, and a check valve 60.
The sleeve 40 includes an inner sleeve 41, an outer sleeve 42, a supply port 43, a first control port 44, a second control port 45, and a locking portion 47.
 インナースリーブ41は、例えばアルミニウム等、比較的硬度の低い金属により形成されている。インナースリーブ41は、スリーブ筒部411、スリーブ底部412を有している。スリーブ筒部411は、略円筒状に形成されている。スリーブ底部412は、スリーブ筒部411の一方の端部を塞ぐようにしてスリーブ筒部411と一体に形成されている。 The inner sleeve 41 is formed of a metal having a relatively low hardness, such as aluminum. The inner sleeve 41 has a sleeve tube portion 411 and a sleeve bottom portion 412. The sleeve tube portion 411 is formed in a substantially cylindrical shape. The sleeve bottom 412 is formed integrally with the sleeve cylinder 411 so as to close one end of the sleeve cylinder 411.
 アウタースリーブ42は、例えば鉄等の金属により形成されている。アウタースリーブ42は、スリーブ筒部421、ねじ部422を有している。スリーブ筒部421は、略円筒状に形成されている。ねじ部422は、スリーブ筒部421の一方の端部の外壁に形成されている。 The outer sleeve 42 is made of a metal such as iron. The outer sleeve 42 has a sleeve cylinder portion 421 and a screw portion 422. The sleeve cylinder portion 421 is formed in a substantially cylindrical shape. The screw part 422 is formed on the outer wall of one end of the sleeve cylinder part 421.
 インナースリーブ41は、スリーブ底部412側がねじ部422側を向くようアウタースリーブ42の内側に設けられている。ここで、インナースリーブ41の外壁とアウタースリーブ42の内壁とは嵌合している。アウタースリーブ42のスリーブ筒部421の内側におけるインナースリーブ41のスリーブ筒部411の内側には、略円筒状の内側空間400が形成されている。 The inner sleeve 41 is provided inside the outer sleeve 42 so that the sleeve bottom portion 412 side faces the screw portion 422 side. Here, the outer wall of the inner sleeve 41 and the inner wall of the outer sleeve 42 are fitted. A substantially cylindrical inner space 400 is formed inside the sleeve cylinder portion 411 of the inner sleeve 41 inside the sleeve cylinder portion 421 of the outer sleeve 42.
 供給ポート43は、インナースリーブ41のスリーブ筒部411の外壁と内壁とを接続するよう形成されている。インナースリーブ41のスリーブ筒部411のスリーブ底部412側の端部は、外壁が周方向に一部切り欠かれている。これにより、スリーブ筒部411とスリーブ筒部421との間に切欠油路431が形成されている。内側空間400は、供給ポート43、切欠油路431を経由してスリーブ40の外側の空間に連通している。 The supply port 43 is formed so as to connect the outer wall and the inner wall of the sleeve tube portion 411 of the inner sleeve 41. The outer wall of the end portion on the sleeve bottom portion 412 side of the sleeve tube portion 411 of the inner sleeve 41 is partially cut away in the circumferential direction. Thereby, a notch oil passage 431 is formed between the sleeve tube portion 411 and the sleeve tube portion 421. The inner space 400 communicates with the space outside the sleeve 40 via the supply port 43 and the notch oil passage 431.
 第1制御ポート44は、アウタースリーブ42のスリーブ筒部421の外壁とインナースリーブ41のスリーブ筒部411の内壁とを接続するよう形成されている。第1制御ポート44は、スリーブ40の周方向に複数形成されている。 The first control port 44 is formed so as to connect the outer wall of the sleeve tube portion 421 of the outer sleeve 42 and the inner wall of the sleeve tube portion 411 of the inner sleeve 41. A plurality of first control ports 44 are formed in the circumferential direction of the sleeve 40.
 第2制御ポート45は、アウタースリーブ42のスリーブ筒部421の外壁とインナースリーブ41のスリーブ筒部411の内壁とを接続するよう形成されている。第2制御ポート45は、スリーブ40の周方向に複数形成されている。
 供給ポート43、第1制御ポート44、第2制御ポート45は、この順で、スリーブ40の一方の端部側から他方の端部側に向かって所定の間隔を空けて並ぶよう形成されている。
 係止部47は、スリーブ筒部421の他方の端部側の外壁から径方向外側へ突出するよう環状に形成されている。
The second control port 45 is formed to connect the outer wall of the sleeve tube portion 421 of the outer sleeve 42 and the inner wall of the sleeve tube portion 411 of the inner sleeve 41. A plurality of second control ports 45 are formed in the circumferential direction of the sleeve 40.
The supply port 43, the first control port 44, and the second control port 45 are formed in this order so as to be arranged at a predetermined interval from one end side of the sleeve 40 toward the other end side. .
The locking portion 47 is formed in an annular shape so as to protrude radially outward from the outer wall on the other end side of the sleeve cylindrical portion 421.
 カム軸3のバルブタイミング調整装置10側の端部には、軸穴部100、供給穴部101が形成されている。軸穴部100は、カム軸3のバルブタイミング調整装置10側の端面の中央からカム軸3の軸方向に延びるようにして形成されている。供給穴部101は、カム軸3の外壁から径方向内側に延びて軸穴部100に連通するよう形成されている。
 カム軸3の軸穴部100の内壁には、スリーブ40のねじ部422にねじ結合可能な軸側ねじ部110が形成されている。
A shaft hole 100 and a supply hole 101 are formed at the end of the cam shaft 3 on the valve timing adjusting device 10 side. The shaft hole portion 100 is formed so as to extend in the axial direction of the cam shaft 3 from the center of the end surface of the cam shaft 3 on the valve timing adjusting device 10 side. The supply hole 101 is formed to extend radially inward from the outer wall of the cam shaft 3 and communicate with the shaft hole 100.
On the inner wall of the shaft hole portion 100 of the cam shaft 3, a shaft side screw portion 110 that can be screwed to the screw portion 422 of the sleeve 40 is formed.
 スリーブ40は、ベーンロータ30のボス31の内側を通り、ねじ部422がカム軸3の軸側ねじ部110に結合するようにしてカム軸3に固定される。このとき、スリーブ40の係止部47は、ベーンロータ30のボス31のカム軸3とは反対側の端面を係止する。これにより、ベーンロータ30は、カム軸3と係止部47とに挟み込まれるようにしてカム軸3に固定される。このように、スリーブ40は、ベーンロータ30の中央部に設けられる。 The sleeve 40 passes through the inside of the boss 31 of the vane rotor 30 and is fixed to the camshaft 3 so that the screw portion 422 is coupled to the shaft-side screw portion 110 of the camshaft 3. At this time, the locking portion 47 of the sleeve 40 locks the end surface of the boss 31 of the vane rotor 30 opposite to the camshaft 3. Accordingly, the vane rotor 30 is fixed to the cam shaft 3 so as to be sandwiched between the cam shaft 3 and the locking portion 47. Thus, the sleeve 40 is provided in the central part of the vane rotor 30.
 供給穴部101には、オイルポンプ8が接続される。オイルポンプ8は、オイルパン7に貯留されている作動油を汲み上げ、供給穴部101に供給する。これにより、軸穴部100には、作動油が流入する。ここで、オイルポンプ8は、「作動油供給源」に対応している。
 軸穴部100に流入した作動油は、切欠油路431、供給ポート43を経由して内側空間400に流入する。
An oil pump 8 is connected to the supply hole 101. The oil pump 8 pumps up the hydraulic oil stored in the oil pan 7 and supplies it to the supply hole 101. As a result, the hydraulic oil flows into the shaft hole 100. Here, the oil pump 8 corresponds to a “operating oil supply source”.
The hydraulic fluid that has flowed into the shaft hole portion 100 flows into the inner space 400 via the notch oil passage 431 and the supply port 43.
 また、スリーブ40がベーンロータ30の中央部に設けられた状態において、第1制御ポート44は、ボス31に形成された遅角油路301を経由して遅角室201に連通している。また、第2制御ポート45は、ボス31に形成された進角油路302を経由して進角室202に連通している。
 スプール50は、スプール筒部51、スプール蓋部52、スプール底部53、供給油路54、制御油路としての第1制御油路55および第2制御油路56、リサイクル油路57を有している。
Further, in a state where the sleeve 40 is provided in the central portion of the vane rotor 30, the first control port 44 communicates with the retard chamber 201 via the retard oil passage 301 formed in the boss 31. The second control port 45 communicates with the advance chamber 202 via an advance oil passage 302 formed in the boss 31.
The spool 50 includes a spool cylinder portion 51, a spool lid portion 52, a spool bottom portion 53, a supply oil passage 54, a first control oil passage 55 and a second control oil passage 56 as a control oil passage, and a recycle oil passage 57. Yes.
 スプール筒部51は、略円筒状に形成されている。スプール蓋部52は、スプール筒部51の一方の端部を塞ぐようにして設けられている。本実施形態では、スプール蓋部52は、スプール筒部51とは別体に形成されている。スプール底部53は、スプール筒部51の他方の端部を塞ぐようにしてスプール筒部51と一体に形成されている。スプール筒部51の内壁とスプール蓋部52とスプール底部53との間に略円筒状の蓄圧空間500が形成されている。 The spool cylinder portion 51 is formed in a substantially cylindrical shape. The spool lid portion 52 is provided so as to close one end portion of the spool cylinder portion 51. In the present embodiment, the spool lid portion 52 is formed separately from the spool cylinder portion 51. The spool bottom 53 is formed integrally with the spool cylinder 51 so as to close the other end of the spool cylinder 51. A substantially cylindrical pressure accumulation space 500 is formed between the inner wall of the spool cylinder portion 51, the spool lid portion 52, and the spool bottom portion 53.
 供給油路54は、スプール筒部51の外壁に形成された環状の凹部とスプール筒部51の内壁とを接続するよう形成されている。本実施形態では、供給油路54は、スプール50の周方向に等間隔で4つ形成されている。1つの供給油路54の内径は、他の供給油路54の内径と同じに設定されている。 The supply oil passage 54 is formed so as to connect an annular recess formed in the outer wall of the spool cylinder 51 and the inner wall of the spool cylinder 51. In the present embodiment, four supply oil passages 54 are formed at equal intervals in the circumferential direction of the spool 50. The inner diameter of one supply oil passage 54 is set to be the same as the inner diameter of the other supply oil passage 54.
 第1制御油路55は、スプール筒部51の外壁に形成された環状の凹部とスプール筒部51の内壁とを接続するよう形成されている。本実施形態では、第1制御油路55は、スプール50の周方向に等間隔で4つ形成されている。 The first control oil passage 55 is formed so as to connect an annular recess formed in the outer wall of the spool cylinder 51 and the inner wall of the spool cylinder 51. In the present embodiment, four first control oil passages 55 are formed at equal intervals in the circumferential direction of the spool 50.
 第2制御油路56は、スプール筒部51の外壁に形成された環状の凹部とスプール筒部51の内壁とを接続するよう形成されている。本実施形態では、第2制御油路56は、スプール50の周方向に等間隔で4つ形成されている。 The second control oil passage 56 is formed so as to connect an annular recess formed in the outer wall of the spool cylinder 51 and the inner wall of the spool cylinder 51. In the present embodiment, four second control oil passages 56 are formed at equal intervals in the circumferential direction of the spool 50.
 リサイクル油路57は、スプール筒部51の外壁に形成された環状の凹部とスプール筒部51の内壁とを接続するよう形成されている。本実施形態では、リサイクル油路57は、スプール50の周方向に等間隔で4つ形成されている。1つのリサイクル油路57の内径は、他のリサイクル油路57の内径と同じに設定されている。また、1つのリサイクル油路57の内径は、供給油路54の内径と同じに設定されている。そのため、リサイクル油路57の流路面積の合計は、供給油路54の流路面積の合計と同じである。
 供給油路54、第1制御油路55、リサイクル油路57、第2制御油路56は、この順で、スプール50の一方の端部側から他方の端部側に向かって所定の間隔を空けて並ぶよう形成されている。
 スプール50は、スプール蓋部52がスリーブ底部412を向くようにしてスリーブ40の内側、すなわち、内側空間400に設けられる。スプール50は、内側空間400において軸方向へ往復移動可能である。
The recycle oil passage 57 is formed so as to connect an annular recess formed in the outer wall of the spool cylinder 51 and the inner wall of the spool cylinder 51. In the present embodiment, four recycling oil passages 57 are formed at equal intervals in the circumferential direction of the spool 50. The inner diameter of one recycled oil passage 57 is set to be the same as the inner diameter of the other recycled oil passage 57. Further, the inner diameter of one recycle oil passage 57 is set to be the same as the inner diameter of the supply oil passage 54. Therefore, the total flow area of the recycle oil passage 57 is the same as the total flow area of the supply oil passage 54.
The supply oil passage 54, the first control oil passage 55, the recycle oil passage 57, and the second control oil passage 56 are spaced in this order from one end side of the spool 50 toward the other end side. It is formed so as to be lined up.
The spool 50 is provided inside the sleeve 40, that is, in the inner space 400 such that the spool lid portion 52 faces the sleeve bottom portion 412. The spool 50 can reciprocate in the axial direction in the inner space 400.
 スプール筒部51のスリーブ底部412とは反対側には、係止部71が設けられている。係止部71は、環状に形成されており、外縁部がアウタースリーブ42の内壁に嵌合するようにして設けられている。係止部71は、スプール筒部51のスプール底部53とは反対側の端部を係止可能である。これにより、スプール50は、スリーブ底部412とは反対側への抜けが防止されている。 A locking portion 71 is provided on the opposite side to the sleeve bottom portion 412 of the spool tube portion 51. The locking portion 71 is formed in an annular shape, and is provided so that the outer edge portion is fitted to the inner wall of the outer sleeve 42. The locking portion 71 can lock the end portion of the spool cylinder portion 51 opposite to the spool bottom portion 53. As a result, the spool 50 is prevented from coming off on the side opposite to the sleeve bottom 412.
 スプール50は、スリーブ40の内側空間400において、スプール蓋部52とスリーブ底部412との間に容積可変空間401を形成している。容積可変空間401は、スプール50が軸方向に往復移動すると、容積が可変する。 The spool 50 forms a variable volume space 401 between the spool lid portion 52 and the sleeve bottom portion 412 in the inner space 400 of the sleeve 40. The volume of the variable volume space 401 changes when the spool 50 reciprocates in the axial direction.
 スプール蓋部52とスリーブ底部412との間には、スプリング72が設けられている。スプリング72は、スプール50を係止部71側に付勢している。これにより、スプール50は、係止部71に押し付けられる。 A spring 72 is provided between the spool lid 52 and the sleeve bottom 412. The spring 72 urges the spool 50 toward the locking portion 71. As a result, the spool 50 is pressed against the locking portion 71.
 スプール50のカム軸3とは反対側に、リニアソレノイド9が設けられる。リニアソレノイド9は、通電により、スプール50をスプリング72の付勢力に抗してカム軸3側へ押圧する。こにより、スプール50は、スリーブ40に対する軸方向の位置が変化する。なお、スプール50の可動範囲は、スプール50が係止部71に当接する位置からスプール50がスリーブ底部412に当接する位置までである。
 供給油路54は、スプール50がスリーブ40に対し軸方向のどの位置にあっても、供給ポート43に連通している。
A linear solenoid 9 is provided on the opposite side of the spool 50 from the cam shaft 3. The linear solenoid 9 presses the spool 50 against the urging force of the spring 72 toward the camshaft 3 when energized. As a result, the spool 50 changes its axial position with respect to the sleeve 40. The movable range of the spool 50 is from a position where the spool 50 abuts on the locking portion 71 to a position where the spool 50 abuts on the sleeve bottom 412.
The supply oil passage 54 communicates with the supply port 43 regardless of the position of the spool 50 in the axial direction with respect to the sleeve 40.
 スプール50が係止部71に当接する位置にあるとき(図1参照)、第1制御油路55と第1制御ポート44とが連通し、第2制御ポート45とリサイクル油路57とが連通する。これにより、オイルポンプ8と遅角室201とが接続し、進角室202とリサイクル油路57とが接続する。 When the spool 50 is in a position where it abuts against the locking portion 71 (see FIG. 1), the first control oil passage 55 and the first control port 44 communicate with each other, and the second control port 45 and the recycle oil passage 57 communicate with each other. To do. As a result, the oil pump 8 and the retard chamber 201 are connected, and the advance chamber 202 and the recycled oil passage 57 are connected.
 スプール50がスリーブ底部412に当接する位置にあるとき、第2制御油路56と第2制御ポート45とが連通し、第1制御ポート44とリサイクル油路57とが連通する。これにより、オイルポンプ8と進角室202とが接続し、遅角室201とリサイクル油路57とが接続する。 When the spool 50 is in a position where it abuts against the sleeve bottom 412, the second control oil passage 56 and the second control port 45 communicate with each other, and the first control port 44 and the recycle oil passage 57 communicate with each other. Thereby, the oil pump 8 and the advance chamber 202 are connected, and the retard chamber 201 and the recycled oil passage 57 are connected.
 スプール50が係止部71とスリーブ底部412との中間位置にあるとき、第1制御油路55、リサイクル油路57、第2制御油路56と第1制御ポート44、第2制御ポート45との連通は遮断される。これにより、遅角室201および進角室202が共に閉鎖される。
 図3に示すように、チェック弁60は、供給チェック弁61、リサイクルチェック弁62、軸部63を有している。
When the spool 50 is at an intermediate position between the locking portion 71 and the sleeve bottom portion 412, the first control oil passage 55, the recycle oil passage 57, the second control oil passage 56, the first control port 44, and the second control port 45 Communication is blocked. As a result, both the retard chamber 201 and the advance chamber 202 are closed.
As shown in FIG. 3, the check valve 60 includes a supply check valve 61, a recycle check valve 62, and a shaft portion 63.
 チェック弁60は、例えば図3Cに示すような金属製の薄板600を巻くことにより形成されている。薄板600は、板厚が略均一に設定されており、供給チェック弁対応部601、リサイクルチェック弁対応部602、軸部対応部603を有している。供給チェック弁対応部601、リサイクルチェック弁対応部602、軸部対応部603は矩形板状に形成されている。供給チェック弁対応部601、リサイクルチェック弁対応部602は、それぞれ、軸部対応部603の長手方向の辺から短手方向へ延びるよう軸部対応部603と一体に形成されている。ここで、供給チェック弁対応部601の幅をw1、リサイクルチェック弁対応部602の幅をw2とすると、供給チェック弁対応部601およびリサイクルチェック弁対応部602は、w1<w2の関係を満たすよう形成されている(図3C参照)。チェック弁60は、軸部対応部603、供給チェック弁対応部601、リサイクルチェック弁対応部602を、軸部対応部603の短手方向に巻くことにより形成されている。
 軸部63は、略円筒状に形成されている(図3A、図3B参照)。なお、軸部63は、周方向において板材すなわち軸部対応部603同士は重なっていない。
The check valve 60 is formed by winding a thin metal plate 600 as shown in FIG. 3C, for example. The thin plate 600 is set to have a substantially uniform thickness, and includes a supply check valve corresponding portion 601, a recycle check valve corresponding portion 602, and a shaft portion corresponding portion 603. The supply check valve corresponding part 601, the recycle check valve corresponding part 602, and the shaft part corresponding part 603 are formed in a rectangular plate shape. The supply check valve corresponding portion 601 and the recycle check valve corresponding portion 602 are each formed integrally with the shaft portion corresponding portion 603 so as to extend from the longitudinal side of the shaft portion corresponding portion 603 in the short direction. Here, when the width of the supply check valve corresponding unit 601 is w1 and the width of the recycle check valve corresponding unit 602 is w2, the supply check valve corresponding unit 601 and the recycle check valve corresponding unit 602 satisfy the relationship of w1 <w2. It is formed (see FIG. 3C). The check valve 60 is formed by winding a shaft portion corresponding portion 603, a supply check valve corresponding portion 601, and a recycle check valve corresponding portion 602 in the short direction of the shaft portion corresponding portion 603.
The shaft portion 63 is formed in a substantially cylindrical shape (see FIGS. 3A and 3B). The shaft portion 63 does not overlap the plate material, that is, the shaft portion corresponding portion 603 in the circumferential direction.
 供給チェック弁61は、軸部63の一方の端部近傍から径方向外側に延びて軸部63の周囲を1周するよう略円筒状に形成されている(図3A、図3B参照)。これにより、供給チェック弁61は、径方向に弾性変形可能に形成されている。供給チェック弁61は、径方向内側に変形すると、外径が縮小する。より詳細には、供給チェック弁61は、周方向において板材すなわち供給チェック弁対応部601同士が互いに重なった部分を有している。この重なりが大きくなることで径方向内側に変形し径方向に縮み、重なりが小さくなることで径方向外側に変形し径方向に拡がる。略円筒状に形成された供給チェック弁61の内側の空間は、チェック弁60の軸方向に開放されている。 The supply check valve 61 is formed in a substantially cylindrical shape so as to extend radially outward from the vicinity of one end of the shaft portion 63 and make one round around the shaft portion 63 (see FIGS. 3A and 3B). Thereby, the supply check valve 61 is formed to be elastically deformable in the radial direction. When the supply check valve 61 is deformed radially inward, the outer diameter is reduced. More specifically, the supply check valve 61 has a portion in which plate members, that is, supply check valve corresponding portions 601 overlap each other in the circumferential direction. When this overlap becomes large, it deforms radially inward and contracts in the radial direction, and when the overlap becomes small, it deforms radially outward and expands in the radial direction. A space inside the supply check valve 61 formed in a substantially cylindrical shape is opened in the axial direction of the check valve 60.
 リサイクルチェック弁62は、軸部63から径方向外側に延びて軸部63の周囲を1周するよう略円筒状に形成されている(図3A、図3B参照)。これにより、リサイクルチェック弁62は、径方向に弾性変形可能に形成されている。リサイクルチェック弁62は、径方向内側に変形すると、外径が縮小する。より詳細には、リサイクルチェック弁62は、周方向において板材すなわちリサイクルチェック弁対応部602同士が互いに重なった部分を有している(図3B参照)。この重なりが大きくなることで径方向内側に変形し径方向に縮み、重なりが小さくなることで径方向外側に変形し径方向に拡がる。略円筒状に形成されたリサイクルチェック弁62の内側の空間は、チェック弁60の軸方向に開放されている。 The recycle check valve 62 is formed in a substantially cylindrical shape so as to extend radially outward from the shaft portion 63 and make one round around the shaft portion 63 (see FIGS. 3A and 3B). Thereby, the recycle check valve 62 is formed to be elastically deformable in the radial direction. When the recycle check valve 62 is deformed radially inward, the outer diameter is reduced. More specifically, the recycle check valve 62 has a portion in which plate members, that is, the recycle check valve corresponding portions 602 overlap each other in the circumferential direction (see FIG. 3B). When this overlap becomes large, it deforms radially inward and contracts in the radial direction, and when the overlap becomes small, it deforms radially outward and expands in the radial direction. A space inside the recycle check valve 62 formed in a substantially cylindrical shape is opened in the axial direction of the check valve 60.
 ここで、供給チェック弁61の幅、すなわち、軸方向の長さはw1である。また、リサイクルチェック弁62の幅、すなわち、軸方向の長さはw2である(図3A、図3C参照)。よって、供給チェック弁61およびリサイクルチェック弁62は、w1<w2の関係を満たすよう形成されている。そのため、供給チェック弁61は、リサイクルチェック弁62と比べ、径方向に変形し易い。つまり、供給チェック弁61とリサイクルチェック弁62とに径方向内側への同じ力が作用したとき、供給チェック弁61の方が、リサイクルチェック弁62よりも変形量が大きくなる。 Here, the width of the supply check valve 61, that is, the length in the axial direction is w1. The width of the recycle check valve 62, that is, the length in the axial direction is w2 (see FIGS. 3A and 3C). Therefore, the supply check valve 61 and the recycle check valve 62 are formed so as to satisfy the relationship of w1 <w2. Therefore, the supply check valve 61 is easily deformed in the radial direction as compared with the recycle check valve 62. That is, when the same radial force is applied to the supply check valve 61 and the recycle check valve 62, the supply check valve 61 has a larger deformation than the recycle check valve 62.
 チェック弁60は、供給チェック弁61が供給油路54に対応し、リサイクルチェック弁62がリサイクル油路57に対応するよう、蓄圧空間500に設けられている(図1参照)。軸部63は、スプール蓋部52とスプール底部53との間に位置し、供給チェック弁61およびリサイクルチェック弁62を支持している。 The check valve 60 is provided in the pressure accumulation space 500 so that the supply check valve 61 corresponds to the supply oil passage 54 and the recycle check valve 62 corresponds to the recycle oil passage 57 (see FIG. 1). The shaft portion 63 is located between the spool lid portion 52 and the spool bottom portion 53 and supports the supply check valve 61 and the recycle check valve 62.
 作動油がオイルポンプ8側から供給油路54を経由して蓄圧空間500側へ向かうとき、供給チェック弁61は、作動油により外周面が押されることで径方向内側に変形し開弁し、スプール50の内壁と供給チェック弁61との間に隙間が形成される。これにより、作動油は、供給油路54を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側から供給油路54を経由してオイルポンプ8側へ向かうとき、供給チェック弁61は、作動油により内周面が押されることで径方向外側に変形し閉弁し、供給油路54を塞ぐようにしてスプール50の内壁に張り付く。これにより、作動油は、供給油路54を経由した蓄圧空間500からスプール50の外部への流出が規制される。このように、供給チェック弁61は、オイルポンプ8側から供給油路54を経由して蓄圧空間500側へ向かう作動油の流れを許容し、蓄圧空間500側から供給油路54を経由してオイルポンプ8側へ向かう作動油の流れを規制する。 When the hydraulic oil travels from the oil pump 8 side via the supply oil passage 54 to the pressure accumulating space 500 side, the supply check valve 61 is deformed and opened radially inward by the outer peripheral surface being pushed by the hydraulic oil, A gap is formed between the inner wall of the spool 50 and the supply check valve 61. As a result, the hydraulic oil can flow into the pressure accumulation space 500 via the supply oil passage 54. On the other hand, when the hydraulic oil moves from the pressure accumulating space 500 side to the oil pump 8 side via the supply oil passage 54, the supply check valve 61 is deformed radially outward by the inner peripheral surface being pushed by the hydraulic oil and closed. Then, it sticks to the inner wall of the spool 50 so as to close the supply oil passage 54. As a result, the hydraulic oil is restricted from flowing out of the spool 50 from the pressure accumulation space 500 via the supply oil passage 54. In this manner, the supply check valve 61 allows the flow of hydraulic oil from the oil pump 8 side via the supply oil passage 54 to the pressure accumulation space 500 side, and from the pressure accumulation space 500 side via the supply oil passage 54. The flow of hydraulic oil toward the oil pump 8 is restricted.
 作動油が遅角室201または進角室202側からリサイクル油路57を経由して蓄圧空間500側へ向かうとき、リサイクルチェック弁62は、作動油により外周面が押されることで径方向内側に変形し開弁し、スプール50の内壁とリサイクルチェック弁62との間に隙間が形成される。これにより、作動油は、リサイクル油路57を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側からリサイクル油路57を経由して遅角室201または進角室202側へ向かうとき、リサイクルチェック弁62は、作動油により内周面が押されることで径方向外側に変形し閉弁し、リサイクル油路57を塞ぐようにしてスプール50の内壁に張り付く。これにより、作動油は、リサイクル油路57を経由した蓄圧空間500からスプール50の外部への流出が規制される。このように、リサイクルチェック弁62は、遅角室201または進角室202側からリサイクル油路57を経由して蓄圧空間500側へ向かう作動油の流れを許容し、蓄圧空間500側からリサイクル油路57を経由して遅角室201または進角室202側へ向かう作動油の流れを規制する。 When the hydraulic oil travels from the retarded angle chamber 201 or the advanced angle chamber 202 side to the pressure accumulating space 500 side via the recycle oil passage 57, the recycle check valve 62 is radially inward by pushing the outer peripheral surface by the hydraulic oil. The valve is deformed and opened, and a gap is formed between the inner wall of the spool 50 and the recycle check valve 62. As a result, the hydraulic oil can flow into the pressure accumulating space 500 via the recycle oil passage 57. On the other hand, when the hydraulic oil travels from the pressure accumulating space 500 side via the recycle oil passage 57 to the retarded angle chamber 201 or the advanced angle chamber 202 side, the recycle check valve 62 has a diameter by pushing the inner peripheral surface by the hydraulic oil. It deforms outward in the direction and closes, and sticks to the inner wall of the spool 50 so as to close the recycled oil passage 57. As a result, the hydraulic oil is restricted from flowing out of the spool 50 from the pressure accumulation space 500 via the recycle oil passage 57. As described above, the recycle check valve 62 allows the flow of hydraulic oil from the retard chamber 201 or the advance chamber 202 side through the recycle oil passage 57 to the accumulator space 500 side, and recycle oil from the accumulator space 500 side. The flow of hydraulic oil toward the retard chamber 201 or the advance chamber 202 via the path 57 is restricted.
 上述したように、供給チェック弁61は、リサイクルチェック弁62と比べ、径方向に変形し易い。また、リサイクル油路57の流路面積の合計は、供給油路54の流路面積の合計と同じである。そのため、供給チェック弁61の開弁圧は、リサイクルチェック弁62の開弁圧より低く設定されている。つまり、供給チェック弁61の開弁に関する特性は、リサイクルチェック弁62と比べ、開弁し易い特性に設定されているということができる。 As described above, the supply check valve 61 is easily deformed in the radial direction as compared with the recycle check valve 62. In addition, the total flow area of the recycle oil passage 57 is the same as the total flow area of the supply oil passage 54. Therefore, the valve opening pressure of the supply check valve 61 is set lower than the valve opening pressure of the recycle check valve 62. That is, it can be said that the characteristics related to the opening of the supply check valve 61 are set to be easier to open than the recycle check valve 62.
 本実施形態では、供給チェック弁61は、開弁圧が比較的低く、開弁し易い特性に設定されているため、蓄圧空間500側からオイルポンプ8側への作動油の逆流を抑制しつつ、オイルポンプ8側から蓄圧空間500側への作動油の圧損を低減することができる。 In the present embodiment, the supply check valve 61 has a relatively low valve opening pressure and is set to a characteristic that is easy to open, so that the backflow of hydraulic oil from the pressure accumulation space 500 side to the oil pump 8 side is suppressed. The pressure loss of the hydraulic oil from the oil pump 8 side to the pressure accumulation space 500 side can be reduced.
 バルブタイミング調整装置10が高速で回転するとき、高周波の正負のカムトルク変動がリサイクルチェック弁62に作用する。そのため、リサイクルチェック弁62がカムトルク変動に追従できなくなることが懸念される。しかしながら、本実施形態では、リサイクルチェック弁62は、開弁圧が比較的高く、開弁し難い特性に設定されているため、蓄圧空間500側から遅角室201または進角室202側への作動油の逆流を抑制しつつ、リサイクルチェック弁62をカムトルク変動に追従させることができる。
 本実施形態では、スリーブ40は、呼吸穴402をさらに有している。
When the valve timing adjusting device 10 rotates at a high speed, high-frequency positive and negative cam torque fluctuations act on the recycle check valve 62. Therefore, there is a concern that the recycle check valve 62 cannot follow the cam torque fluctuation. However, in the present embodiment, the recycle check valve 62 has a characteristic that the valve opening pressure is relatively high and is difficult to open, so that the pressure accumulation space 500 side to the retarding chamber 201 or the advance chamber 202 side. The recycle check valve 62 can follow the cam torque fluctuation while suppressing the backflow of the hydraulic oil.
In the present embodiment, the sleeve 40 further has a breathing hole 402.
 呼吸穴402は、インナースリーブ41の外壁から径方向内側へ凹み、インナースリーブ41の軸方向へ延びるようにして形成されている(図1参照)。つまり、呼吸穴402は、内側空間400の外側において、インナースリーブ41とアウタースリーブ42との間に形成されている。呼吸穴402は、容積可変空間401と、スリーブ40の容積可変空間401とは反対側の空間であるバルブタイミング調整装置10の外部、すなわち、大気とを連通するよう形成されている。これにより、容積可変空間401の圧力を大気圧と同等にすることができる。 The breathing hole 402 is formed so as to be recessed radially inward from the outer wall of the inner sleeve 41 and extend in the axial direction of the inner sleeve 41 (see FIG. 1). That is, the breathing hole 402 is formed between the inner sleeve 41 and the outer sleeve 42 outside the inner space 400. The breathing hole 402 is formed so as to communicate with the variable volume space 401 and the outside of the valve timing adjusting device 10, that is, the space opposite to the variable volume space 401 of the sleeve 40, that is, the atmosphere. Thereby, the pressure of the volume variable space 401 can be made equivalent to atmospheric pressure.
 油路切換弁11は、リニアソレノイド9の駆動によりスプール50を押圧し、オイルポンプ8と遅角室201とを接続しつつ、進角室202とリサイクル油路57とを接続する第1作動状態と、オイルポンプ8と進角室202とを接続しつつ、遅角室201とリサイクル油路57とを接続する第2作動状態と、遅角室201および進角室202を共に閉鎖する保持状態と、に作動する。第1作動状態では、遅角室201に作動油が供給されつつ進角室202から作動油が蓄圧空間500に戻される。第2作動状態では、進角室202に作動油が供給されつつ遅角室201から作動油が蓄圧空間500に戻される。保持状態では、遅角室201および進角室202の作動油が保持される。 The oil passage switching valve 11 presses the spool 50 by driving the linear solenoid 9 and connects the advance chamber 202 and the recycled oil passage 57 while connecting the oil pump 8 and the retard chamber 201. A second operating state in which the retard chamber 201 and the recycled oil passage 57 are connected while the oil pump 8 and the advance chamber 202 are connected, and a holding state in which both the retard chamber 201 and the advance chamber 202 are closed. And operate. In the first operation state, the hydraulic oil is returned from the advance chamber 202 to the pressure accumulation space 500 while the hydraulic oil is supplied to the retard chamber 201. In the second operation state, the hydraulic oil is returned from the retard chamber 201 to the pressure accumulating space 500 while the hydraulic oil is supplied to the advance chamber 202. In the hold state, the hydraulic oil in the retard chamber 201 and the advance chamber 202 is held.
 本実施形態は、ロックピン73をさらに備えている(図1、図2参照)。ロックピン73は、有底円筒状に形成され、ベーン32に形成された収容穴部321に軸方向に往復移動可能に収容されている。ロックピン73の内側には、スプリング74が設けられている。スプリング74は、ロックピン73をスプロケット21側へ付勢している。スプロケット21のベーン32側には、嵌入凹部25が形成されている。 This embodiment further includes a lock pin 73 (see FIGS. 1 and 2). The lock pin 73 is formed in a bottomed cylindrical shape, and is accommodated in an accommodation hole 321 formed in the vane 32 so as to be reciprocally movable in the axial direction. A spring 74 is provided inside the lock pin 73. The spring 74 biases the lock pin 73 toward the sprocket 21 side. A fitting recess 25 is formed on the vane 32 side of the sprocket 21.
 ロックピン73は、ハウジング20に対しベーンロータ30が最遅角位置にあるとき、嵌入凹部25に嵌入可能である。ロックピン73が嵌入凹部25に嵌入しているとき、ハウジング20に対するベーンロータ30の相対回転が規制される。一方、ロックピン73が嵌入凹部25に嵌入していないとき、ハウジング20に対するベーンロータ30の相対回転が許容される。 The lock pin 73 can be inserted into the insertion recess 25 when the vane rotor 30 is at the most retarded position with respect to the housing 20. When the lock pin 73 is fitted in the fitting recess 25, the relative rotation of the vane rotor 30 with respect to the housing 20 is restricted. On the other hand, when the lock pin 73 is not inserted into the insertion recess 25, relative rotation of the vane rotor 30 with respect to the housing 20 is allowed.
 ベーン32のロックピン73と遅角室201との間には、遅角室201に連通するピン制御油路303が形成されている。また、ベーン32のロックピン73と進角室202との間には、進角室202に連通するピン制御油路304が形成されている(図2参照)。遅角室201または進角室202からピン制御油路303、304に流入する作動油の圧力は、ロックピン73がスプリング74の付勢力に抗して嵌入凹部25から抜け出す方向に働く。
 以上のように構成されたバルブタイミング調整装置10では、遅角室201または進角室202に作動油が供給されると、ピン制御油路303、304に作動油が流入し、ロックピン73が嵌入凹部25から抜け出し、ハウジング20に対するベーンロータ30の相対回転が許容された状態となる。
Between the lock pin 73 of the vane 32 and the retard chamber 201, a pin control oil passage 303 communicating with the retard chamber 201 is formed. Further, a pin control oil passage 304 communicating with the advance chamber 202 is formed between the lock pin 73 of the vane 32 and the advance chamber 202 (see FIG. 2). The pressure of the hydraulic oil flowing into the pin control oil passages 303 and 304 from the retard chamber 201 or the advance chamber 202 acts in a direction in which the lock pin 73 comes out of the fitting recess 25 against the urging force of the spring 74.
In the valve timing adjusting device 10 configured as described above, when hydraulic oil is supplied to the retard chamber 201 or the advance chamber 202, the hydraulic oil flows into the pin control oil paths 303 and 304, and the lock pin 73 is The vane rotor 30 comes out of the fitting recess 25 and is allowed to rotate relative to the housing 20.
 バルブタイミング調整装置10は、カム軸3の回転位相が目標値よりも進角側である場合、油路切換弁11を第1作動状態とする。これにより、ベーンロータ30がハウジング20に対して遅角方向へ相対回転し、カム軸3の回転位相が遅角側へ変化する。 When the rotational phase of the camshaft 3 is on the more advanced side than the target value, the valve timing adjusting device 10 sets the oil passage switching valve 11 to the first operating state. As a result, the vane rotor 30 rotates relative to the housing 20 in the retarding direction, and the rotational phase of the camshaft 3 changes toward the retarding side.
 また、バルブタイミング調整装置10は、カム軸3の回転位相が目標値よりも遅角側である場合、油路切換弁11を第2作動状態とする。これにより、ベーンロータ30がハウジング20に対して進角方向へ相対回転し、カム軸3の回転位相が進角側へ変化する。
 また、バルブタイミング調整装置10は、カム軸3の回転位相が目標値と一致する場合、油路切換弁11を保持状態とする。これにより、カム軸3の回転位相が保持される。
Further, the valve timing adjusting device 10 places the oil passage switching valve 11 in the second operating state when the rotational phase of the camshaft 3 is retarded from the target value. As a result, the vane rotor 30 rotates relative to the housing 20 in the advance direction, and the rotational phase of the camshaft 3 changes toward the advance side.
Further, the valve timing adjusting device 10 brings the oil passage switching valve 11 into a holding state when the rotational phase of the camshaft 3 matches the target value. Thereby, the rotational phase of the cam shaft 3 is maintained.
 本実施形態では、呼吸穴402により、容積可変空間401の圧力が大気圧と同等になっているため、リニアソレノイド9がスプール50を押圧するとき、スプール50は、スリーブ40の内側において軸方向に円滑に往復移動することができる。なお、容積可変空間401に作動油が溜まった場合、当該作動油は、呼吸穴402を経由して油路切換弁11に対しカム軸3とは反対側の空間であるバルブタイミング調整装置10の外部、すなわち、大気へ排出され、オイルパン7に戻される。 In the present embodiment, since the pressure of the variable volume space 401 is equal to the atmospheric pressure by the breathing hole 402, when the linear solenoid 9 presses the spool 50, the spool 50 is axially inside the sleeve 40. Smooth reciprocation. When hydraulic oil accumulates in the variable volume space 401, the hydraulic oil passes through the breathing hole 402 and the valve timing adjusting device 10, which is the space opposite to the camshaft 3, with respect to the oil passage switching valve 11. It is discharged to the outside, that is, to the atmosphere and returned to the oil pan 7.
 以上説明したように、本実施形態は、エンジン1のクランク軸2からカム軸3まで動力を伝達する動力伝達経路に設けられ、カム軸3により開閉駆動される吸気弁4のバルブタイミングを調整するバルブタイミング調整装置10であって、ハウジング20とベーンロータ30とスリーブ40とスプール50と供給チェック弁61とリサイクルチェック弁62とを備えている。
 クランク軸2およびカム軸3の一方を第1軸とし、クランク軸2およびカム軸3の他方を第2軸とすると、ハウジング20は、第1軸と連動して回転し、第2軸の端部に嵌合し、第2軸により回転可能に支持される。
As described above, this embodiment adjusts the valve timing of the intake valve 4 that is provided in the power transmission path that transmits power from the crankshaft 2 to the camshaft 3 of the engine 1 and that is driven to open and close by the camshaft 3. The valve timing adjusting device 10 includes a housing 20, a vane rotor 30, a sleeve 40, a spool 50, a supply check valve 61, and a recycle check valve 62.
When one of the crankshaft 2 and the camshaft 3 is a first shaft and the other of the crankshaft 2 and the camshaft 3 is a second shaft, the housing 20 rotates in conjunction with the first shaft, and the end of the second shaft And is rotatably supported by the second shaft.
 ベーンロータ30は、第2軸の端部に固定され、ハウジング20の内部空間200を周方向の一方側の遅角室201と周方向の他方側の進角室202とに仕切るベーン32を有し、オイルポンプ8から遅角室201および進角室202に供給される作動油の圧力に応じてハウジング20に対して相対回転する。 The vane rotor 30 is fixed to the end of the second shaft, and includes a vane 32 that partitions the internal space 200 of the housing 20 into a retard chamber 201 on one side in the circumferential direction and an advance chamber 202 on the other side in the circumferential direction. The oil pump 8 rotates relative to the housing 20 according to the pressure of the hydraulic oil supplied to the retard chamber 201 and the advance chamber 202.
 スリーブ40は、筒状に形成され、オイルポンプ8に連通する供給ポート43、遅角室201に連通している第1制御ポート44、および、進角室202に連通している第2制御ポート45を有している。 The sleeve 40 is formed in a cylindrical shape, and includes a supply port 43 communicating with the oil pump 8, a first control port 44 communicating with the retard chamber 201, and a second control port communicating with the advance chamber 202. 45.
 スプール50は、筒状に形成され、スリーブ40の内側において軸方向へ往復移動可能に設けられ、内側に形成された蓄圧空間500、蓄圧空間500と供給ポート43とを接続するよう形成された供給油路54、蓄圧空間500と第1制御ポート44とを接続可能に形成された第1制御油路55、蓄圧空間500と第2制御ポート45とを接続可能に形成された第2制御油路56、および、蓄圧空間500と第1制御ポート44または第2制御ポート45とを接続可能に形成されたリサイクル油路57を有している。リサイクル油路57により、遅角室201および進角室202からの作動油の再利用が可能である。 The spool 50 is formed in a cylindrical shape so as to be reciprocally movable in the axial direction on the inner side of the sleeve 40, and the pressure accumulation space 500 formed on the inner side, the pressure accumulation space 500 and the supply port 43 are connected to each other. The first control oil passage 55 formed so that the oil passage 54, the pressure accumulation space 500 and the first control port 44 can be connected, and the second control oil passage formed so that the pressure accumulation space 500 and the second control port 45 can be connected. 56, and a recycle oil passage 57 formed so that the pressure accumulation space 500 and the first control port 44 or the second control port 45 can be connected. The recycle oil passage 57 allows the hydraulic oil from the retard chamber 201 and the advance chamber 202 to be reused.
 供給チェック弁61は、開弁したとき、オイルポンプ8側から供給油路54を経由して蓄圧空間500側へ向かう作動油の流れを許容し、閉弁したとき、蓄圧空間500側から供給油路54を経由してオイルポンプ8側へ向かう作動油の流れを規制する。そのため、蓄圧空間500側からオイルポンプ8側への作動油の逆流を抑制可能である。これにより、オイルポンプ8の供給圧が低い場合に、油路切換弁11側からオイルポンプ8側に作動油が流れるのを抑制することができる。 When the supply check valve 61 is opened, the flow of hydraulic oil from the oil pump 8 side to the pressure accumulation space 500 side via the supply oil passage 54 is allowed, and when the valve is closed, the supply oil is supplied from the pressure accumulation space 500 side. The flow of hydraulic oil toward the oil pump 8 via the path 54 is restricted. Therefore, the backflow of the hydraulic oil from the pressure accumulation space 500 side to the oil pump 8 side can be suppressed. Thereby, when the supply pressure of the oil pump 8 is low, it is possible to suppress the hydraulic oil from flowing from the oil passage switching valve 11 side to the oil pump 8 side.
 リサイクルチェック弁62は、開弁したとき、遅角室201または進角室202側からリサイクル油路57を経由して蓄圧空間500側へ向かう作動油の流れを許容し、閉弁したとき、蓄圧空間500側からリサイクル油路57を経由して遅角室201または進角室202側へ向かう作動油の流れを規制する。そのため、蓄圧空間500側から遅角室201または進角室202側への作動油の逆流を抑制可能である。これにより、作動油の再利用が可能な構成において、バルブタイミング調整装置10の応答性を高めることができる。 When the recycle check valve 62 is opened, the recycle check valve 62 allows the flow of hydraulic oil from the retard chamber 201 or the advance chamber 202 side through the recycle oil passage 57 to the accumulator space 500 side. The flow of hydraulic oil from the space 500 side to the retard chamber 201 or the advance chamber 202 side via the recycle oil passage 57 is regulated. Therefore, it is possible to suppress the backflow of hydraulic oil from the pressure accumulation space 500 side to the retard chamber 201 or the advance chamber 202 side. Thereby, the responsiveness of the valve timing adjustment apparatus 10 can be improved in the structure which can recycle hydraulic fluid.
 本実施形態では、供給チェック弁61の開弁に関する特性は、リサイクルチェック弁62の開弁に関する特性と異なる。ここで、例えば圧損の程度を考慮し、供給チェック弁61の開弁圧を比較的低くし、開弁し易い特性に設定すれば、作動油が供給チェック弁61を通過するときの圧損が低下し、各油圧室に供給する作動油の圧損を低くすることができる。また、例えば追従性を考慮し、リサイクルチェック弁62の開弁圧を比較的高くし、開弁し難い特性に設定すれば、リサイクルチェック弁62を、高回転時の高周波の正負のカムトルク変動に追従させることができ、バルブタイミング調整装置10の応答性を高めることができる。 In this embodiment, the characteristics related to the opening of the supply check valve 61 are different from the characteristics related to the opening of the recycle check valve 62. Here, considering the degree of pressure loss, for example, if the valve opening pressure of the supply check valve 61 is set to be relatively low and the valve opening characteristic is set to be easy to open, the pressure loss when the hydraulic oil passes through the supply check valve 61 is reduced. In addition, the pressure loss of the hydraulic oil supplied to each hydraulic chamber can be reduced. Further, for example, considering the followability, if the valve opening pressure of the recycle check valve 62 is relatively high and set to a characteristic that is difficult to open, the recycle check valve 62 can be changed to high-frequency positive and negative cam torque fluctuations at high revolutions. Accordingly, the responsiveness of the valve timing adjusting device 10 can be improved.
 また、本実施形態では、供給チェック弁61の開弁に関する特性は、リサイクルチェック弁62と比べ、開弁し易い特性に設定されている。そのため、上述のように、各油圧室に供給する作動油の圧損を低くするとともに、バルブタイミング調整装置10の応答性を高めることができる。 Further, in the present embodiment, the characteristics related to the opening of the supply check valve 61 are set to characteristics that are easier to open than the recycle check valve 62. Therefore, as described above, the pressure loss of the hydraulic oil supplied to each hydraulic chamber can be reduced and the responsiveness of the valve timing adjusting device 10 can be improved.
 また、本実施形態では、供給チェック弁61の開弁圧は、リサイクルチェック弁62の開弁圧より低く設定されている。つまり、供給チェック弁61の開弁に関する特性は、リサイクルチェック弁62と比べ、開弁し易い特性に設定されている。 In this embodiment, the valve opening pressure of the supply check valve 61 is set lower than the valve opening pressure of the recycle check valve 62. That is, the characteristics related to the opening of the supply check valve 61 are set to characteristics that are easier to open than the recycle check valve 62.
 また、本実施形態では、供給チェック弁61は、スプール50の内側に設けられ、閉弁時、供給油路54を塞ぐ。リサイクルチェック弁62は、スプール50の内側に設けられ、閉弁時、リサイクル油路57を塞ぐ。本実施形態では、供給チェック弁61とリサイクルチェック弁62とが、いずれもスプール50の内側に設けられる構成のため、製造が容易である。 In the present embodiment, the supply check valve 61 is provided inside the spool 50 and closes the supply oil passage 54 when the valve is closed. The recycle check valve 62 is provided inside the spool 50 and closes the recycle oil passage 57 when the valve is closed. In the present embodiment, since the supply check valve 61 and the recycle check valve 62 are both provided inside the spool 50, manufacturing is easy.
 また、本実施形態では、供給チェック弁61およびリサイクルチェック弁62は、弾性変形可能な板材から形成されており、それぞれ、幅が異なる。本実施形態では、供給チェック弁61とリサイクルチェック弁62との幅を異ならせることにより、開弁に関する特性を異ならせている。
 また、本実施形態では、スリーブ40は、ベーンロータ30の中央部に配置されている。つまり、本実施形態では、油路切換弁11を構成するスリーブ40およびスプール50が、ベーンロータ30の中央部に設けられている。これにより、油路切換弁11と遅角室201および進角室202との油路経路を短くし、バルブタイミング調整装置10の応答性の向上を図ることができる。
In the present embodiment, the supply check valve 61 and the recycle check valve 62 are formed of elastically deformable plates, and have different widths. In the present embodiment, the characteristics regarding the valve opening are made different by making the widths of the supply check valve 61 and the recycle check valve 62 different.
In the present embodiment, the sleeve 40 is disposed at the center of the vane rotor 30. That is, in the present embodiment, the sleeve 40 and the spool 50 that constitute the oil passage switching valve 11 are provided in the central portion of the vane rotor 30. As a result, the oil passage between the oil passage switching valve 11 and the retard chamber 201 and the advance chamber 202 can be shortened, and the responsiveness of the valve timing adjusting device 10 can be improved.
  (第2実施形態)
 本開示の第2実施形態によるバルブタイミング調整装置を図4に示す。第2実施形態は、スプール50、チェック弁60の構成等が第1実施形態と異なる。
(Second Embodiment)
A valve timing adjusting device according to a second embodiment of the present disclosure is shown in FIG. The second embodiment differs from the first embodiment in the configuration of the spool 50 and the check valve 60.
 本実施形態では、供給油路54は、スプール50の周方向に等間隔で5つ形成されている(図6A参照)。1つの供給油路54の内径は、他の供給油路54の内径と同じに設定されている。リサイクル油路57は、第1実施形態と同様、スプール50の周方向に等間隔で4つ形成されている(図6B参照)。1つのリサイクル油路57の内径は、他のリサイクル油路57の内径と同じに設定されている。また、1つのリサイクル油路57の内径は、供給油路54の内径と同じに設定されている。そのため、供給油路54の流路面積の合計は、リサイクル油路57の流路面積の合計より大きい。
 チェック弁60は、供給チェック弁61、リサイクルチェック弁62、支持部材64を有している。
In the present embodiment, five supply oil passages 54 are formed at equal intervals in the circumferential direction of the spool 50 (see FIG. 6A). The inner diameter of one supply oil passage 54 is set to be the same as the inner diameter of the other supply oil passage 54. As in the first embodiment, four recycle oil passages 57 are formed at equal intervals in the circumferential direction of the spool 50 (see FIG. 6B). The inner diameter of one recycled oil passage 57 is set to be the same as the inner diameter of the other recycled oil passage 57. Further, the inner diameter of one recycle oil passage 57 is set to be the same as the inner diameter of the supply oil passage 54. Therefore, the total flow area of the supply oil path 54 is larger than the total flow area of the recycle oil path 57.
The check valve 60 includes a supply check valve 61, a recycle check valve 62, and a support member 64.
 供給チェック弁61、リサイクルチェック弁62、支持部材64は、それぞれ、別体に形成されている。供給チェック弁61、リサイクルチェック弁62は、第1実施形態と同様、例えば金属製の薄板を筒状に巻くことにより略円筒状に形成されている(図5参照)。供給チェック弁61は、径方向に弾性変形可能に形成されている。供給チェック弁61は、径方向内側に変形すると、外径が縮小する。より詳細には、供給チェック弁61は、周方向において板材同士が互いに重なった部分を有している(図5C参照)。この重なりが大きくなることで径方向内側に変形し径方向に縮み、重なりが小さくなることで径方向外側に変形し径方向に拡がる。略円筒状に形成された供給チェック弁61の内側の空間は、チェック弁60の軸方向に開放されている。リサイクルチェック弁62は、径方向に弾性変形可能に形成されている。リサイクルチェック弁62は、径方向内側に変形すると、外径が縮小する。より詳細には、リサイクルチェック弁62は、周方向において板材同士が互いに重なった部分を有している。この重なりが大きくなることで径方向内側に変形し径方向に縮み、重なりが小さくなることで径方向外側に変形し径方向に拡がる。略円筒状に形成されたリサイクルチェック弁62の内側の空間は、チェック弁60の軸方向に開放されている。 The supply check valve 61, the recycle check valve 62, and the support member 64 are formed separately from each other. As in the first embodiment, the supply check valve 61 and the recycle check valve 62 are formed in a substantially cylindrical shape by, for example, winding a thin metal plate into a cylindrical shape (see FIG. 5). The supply check valve 61 is formed to be elastically deformable in the radial direction. When the supply check valve 61 is deformed radially inward, the outer diameter is reduced. More specifically, the supply check valve 61 has a portion in which the plate materials overlap each other in the circumferential direction (see FIG. 5C). When this overlap becomes large, it deforms radially inward and contracts in the radial direction, and when the overlap becomes small, it deforms radially outward and expands in the radial direction. A space inside the supply check valve 61 formed in a substantially cylindrical shape is opened in the axial direction of the check valve 60. The recycle check valve 62 is formed to be elastically deformable in the radial direction. When the recycle check valve 62 is deformed radially inward, the outer diameter is reduced. More specifically, the recycle check valve 62 has a portion in which the plate materials overlap each other in the circumferential direction. When this overlap becomes large, it deforms radially inward and contracts in the radial direction, and when the overlap becomes small, it deforms radially outward and expands in the radial direction. A space inside the recycle check valve 62 formed in a substantially cylindrical shape is opened in the axial direction of the check valve 60.
 ここで、供給チェック弁61の幅、すなわち、軸方向の長さをw3とし、リサイクルチェック弁62の幅、すなわち、軸方向の長さをw4とすると、供給チェック弁61およびリサイクルチェック弁62は、w3=w4の関係を満たすよう形成されている(図5A参照)。そのため、供給チェック弁61の径方向の変形し易さは、リサイクルチェック弁62と同等である。つまり、供給チェック弁61とリサイクルチェック弁62とに径方向内側への同じ力が作用したとき、供給チェック弁61の変形量とリサイクルチェック弁62の変形量とは同じになる。 Here, when the width of the supply check valve 61, that is, the length in the axial direction is w3, and the width of the recycle check valve 62, that is, the length in the axial direction is w4, the supply check valve 61 and the recycle check valve 62 are , W3 = w4 (see FIG. 5A). Therefore, the ease of deformation of the supply check valve 61 in the radial direction is equivalent to that of the recycle check valve 62. In other words, when the same radial force is applied to the supply check valve 61 and the recycle check valve 62, the deformation amount of the supply check valve 61 and the deformation amount of the recycle check valve 62 are the same.
 図5A、図5Bに示すように、支持部材64は、例えば長方形の2つの板材が互いに直交するような形状に形成されている。そのため、支持部材64は、長手方向に直交する平面による断面形状が略十字となるよう形成されている(図5B、図6参照) As shown in FIGS. 5A and 5B, the support member 64 is formed in a shape such that, for example, two rectangular plates are orthogonal to each other. Therefore, the support member 64 is formed so that the cross-sectional shape by a plane orthogonal to the longitudinal direction is substantially a cross (see FIGS. 5B and 6).
 支持部材64は、切欠部641、642を有している。切欠部641は、支持部材64の長手方向の一方の端部の外縁部から内側へ切り欠かれるようにして形成されている。切欠部641は、支持部材64の周方向に等間隔で4つ形成されている。切欠部642は、支持部材64の長手方向の他方の端部側の外縁部から内側へ切り欠かれるようにして形成されている。切欠部642は、支持部材64の周方向に等間隔で4つ形成されている。 The support member 64 has notches 641 and 642. The cutout portion 641 is formed so as to be cut out inward from the outer edge portion of one end portion in the longitudinal direction of the support member 64. Four notches 641 are formed at equal intervals in the circumferential direction of the support member 64. The cutout 642 is formed so as to be cut out inward from the outer edge portion on the other end side in the longitudinal direction of the support member 64. Four notches 642 are formed at equal intervals in the circumferential direction of the support member 64.
 供給チェック弁61は、支持部材64の切欠部641に設けられている。供給チェック弁61は、切欠部641において径方向内側へ変形可能である。切欠部641の支持部材64の長手方向の長さは、供給チェック弁61の軸方向の長さw3よりやや大きく設定されている。切欠部641は、支持部材64に対する供給チェック弁61の軸方向の相対移動を規制可能である。 The supply check valve 61 is provided in the notch 641 of the support member 64. The supply check valve 61 can be deformed radially inward at the notch 641. The length of the support member 64 in the longitudinal direction of the notch 641 is set to be slightly larger than the length w3 of the supply check valve 61 in the axial direction. The notch 641 can regulate the relative movement of the supply check valve 61 in the axial direction with respect to the support member 64.
 リサイクルチェック弁62は、支持部材64の切欠部642に設けられている。リサイクルチェック弁62は、切欠部642において径方向内側へ変形可能である。切欠部642の支持部材64の長手方向の長さは、リサイクルチェック弁62の軸方向の長さw4よりやや大きく設定されている。切欠部642は、支持部材64に対するリサイクルチェック弁62の軸方向の相対移動を規制可能である。 The recycle check valve 62 is provided in the notch 642 of the support member 64. The recycle check valve 62 can be deformed radially inward at the notch 642. The length in the longitudinal direction of the support member 64 of the notch 642 is set slightly larger than the axial length w4 of the recycle check valve 62. The notch 642 can restrict the relative movement of the recycle check valve 62 in the axial direction with respect to the support member 64.
 チェック弁60は、供給チェック弁61が供給油路54に対応し、リサイクルチェック弁62がリサイクル油路57に対応するよう、蓄圧空間500に設けられている(図4参照)。支持部材64は、スプール蓋部52とスプール底部53との間に位置し、供給チェック弁61およびリサイクルチェック弁62を支持している。 The check valve 60 is provided in the pressure accumulation space 500 so that the supply check valve 61 corresponds to the supply oil passage 54 and the recycle check valve 62 corresponds to the recycle oil passage 57 (see FIG. 4). The support member 64 is positioned between the spool lid portion 52 and the spool bottom portion 53 and supports the supply check valve 61 and the recycle check valve 62.
 作動油がオイルポンプ8側から供給油路54を経由して蓄圧空間500側へ向かうとき、供給チェック弁61は、作動油により外周面が押されることで径方向内側に変形し開弁し、スプール50の内壁と供給チェック弁61との間に隙間が形成される。これにより、作動油は、供給油路54を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側から供給油路54を経由してオイルポンプ8側へ向かうとき、供給チェック弁61は、作動油により内周面が押されることで径方向外側に変形し閉弁し、供給油路54を塞ぐようにしてスプール50の内壁に張り付く。これにより、作動油は、供給油路54を経由した蓄圧空間500からスプール50の外部への流出が規制される。 When the hydraulic oil travels from the oil pump 8 side via the supply oil passage 54 to the pressure accumulating space 500 side, the supply check valve 61 is deformed and opened radially inward by the outer peripheral surface being pushed by the hydraulic oil, A gap is formed between the inner wall of the spool 50 and the supply check valve 61. As a result, the hydraulic oil can flow into the pressure accumulation space 500 via the supply oil passage 54. On the other hand, when the hydraulic oil moves from the pressure accumulating space 500 side to the oil pump 8 side via the supply oil passage 54, the supply check valve 61 is deformed radially outward by the inner peripheral surface being pushed by the hydraulic oil and closed. Then, it sticks to the inner wall of the spool 50 so as to close the supply oil passage 54. As a result, the hydraulic oil is restricted from flowing out of the spool 50 from the pressure accumulation space 500 via the supply oil passage 54.
 作動油が遅角室201または進角室202側からリサイクル油路57を経由して蓄圧空間500側へ向かうとき、リサイクルチェック弁62は、作動油により外周面が押されることで径方向内側に変形し開弁し、スプール50の内壁とリサイクルチェック弁62との間に隙間が形成される。これにより、作動油は、リサイクル油路57を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側からリサイクル油路57を経由して遅角室201または進角室202側へ向かうとき、リサイクルチェック弁62は、作動油により内周面が押されることで径方向外側に変形し閉弁し、リサイクル油路57を塞ぐようにしてスプール50の内壁に張り付く。これにより、作動油は、リサイクル油路57を経由した蓄圧空間500からスプール50の外部への流出が規制される。 When the hydraulic oil travels from the retarded angle chamber 201 or the advanced angle chamber 202 side to the pressure accumulating space 500 side via the recycle oil passage 57, the recycle check valve 62 is radially inward by pushing the outer peripheral surface by the hydraulic oil. The valve is deformed and opened, and a gap is formed between the inner wall of the spool 50 and the recycle check valve 62. As a result, the hydraulic oil can flow into the pressure accumulating space 500 via the recycle oil passage 57. On the other hand, when the hydraulic oil travels from the pressure accumulating space 500 side via the recycle oil passage 57 to the retarded angle chamber 201 or the advanced angle chamber 202 side, the recycle check valve 62 has a diameter by pushing the inner peripheral surface by the hydraulic oil. It deforms outward in the direction and closes, and sticks to the inner wall of the spool 50 so as to close the recycled oil passage 57. As a result, the hydraulic oil is restricted from flowing out of the spool 50 from the pressure accumulation space 500 via the recycle oil passage 57.
 上述したように、供給チェック弁61の径方向の変形し易さは、リサイクルチェック弁62と同等である。また、供給油路54の流路面積の合計は、リサイクル油路57の流路面積の合計より大きい。そのため、供給チェック弁61の開弁圧は、リサイクルチェック弁62の開弁圧より低く設定されている。つまり、供給チェック弁61の開弁に関する特性は、リサイクルチェック弁62と比べ、開弁し易い特性に設定されているということができる。
 第2実施形態は、上述した点以外の構成は、第1実施形態と同様である。そのため、第1実施形態と同様の構成については、第1実施形態と同様の効果を奏することができる。
As described above, the ease of deformation of the supply check valve 61 in the radial direction is equivalent to that of the recycle check valve 62. Further, the total flow area of the supply oil passage 54 is larger than the total flow area of the recycle oil passage 57. Therefore, the valve opening pressure of the supply check valve 61 is set lower than the valve opening pressure of the recycle check valve 62. That is, it can be said that the characteristics related to the opening of the supply check valve 61 are set to be easier to open than the recycle check valve 62.
The second embodiment is the same as the first embodiment except for the points described above. Therefore, about the structure similar to 1st Embodiment, there can exist an effect similar to 1st Embodiment.
 以上説明したように、本実施形態では、供給チェック弁61およびリサイクルチェック弁62は、同一の幅および板厚の弾性変形可能な板材から形成されている。供給油路54の流路面積の合計は、リサイクル油路57の流路面積の合計と異なる。これにより、供給チェック弁61の開弁に関する特性とリサイクルチェック弁62の開弁に関する特性とを異ならせている。本実施形態では、供給チェック弁61およびリサイクルチェック弁62は、同一の仕様(幅、板厚)で形成されている。これにより、供給チェック弁61とリサイクルチェック弁62とを区別することなく、所定の位置に配置することができる。そのため、誤組付の心配なく、製造が容易である。 As described above, in this embodiment, the supply check valve 61 and the recycle check valve 62 are formed of elastically deformable plate materials having the same width and thickness. The total flow area of the supply oil passage 54 is different from the total flow area of the recycle oil passage 57. As a result, the characteristics relating to the opening of the supply check valve 61 and the characteristics relating to the opening of the recycle check valve 62 are differentiated. In the present embodiment, the supply check valve 61 and the recycle check valve 62 are formed with the same specifications (width, plate thickness). Thereby, the supply check valve 61 and the recycle check valve 62 can be arranged at predetermined positions without being distinguished. Therefore, it is easy to manufacture without worrying about misassembly.
 また、本実施形態では、供給油路54は、内径がリサイクル油路57の内径と同じであり、スプール50に形成される個数がリサイクル油路57と異なる。これにより、供給チェック弁61の開弁に関する特性とリサイクルチェック弁62の開弁に関する特性とを異ならせている。また、供給油路54の内径とリサイクル油路57の内径とが同じため、1つのドリル等切削工具により供給油路54およびリサイクル油路57を形成することができる。そのため、製造が容易である。 Further, in the present embodiment, the supply oil passage 54 has the same inner diameter as the inner diameter of the recycle oil passage 57, and the number formed in the spool 50 is different from that of the recycle oil passage 57. As a result, the characteristics relating to the opening of the supply check valve 61 and the characteristics relating to the opening of the recycle check valve 62 are differentiated. Further, since the inner diameter of the supply oil passage 54 and the inner diameter of the recycle oil passage 57 are the same, the supply oil passage 54 and the recycle oil passage 57 can be formed by one cutting tool such as a drill. Therefore, manufacture is easy.
  (第3実施形態)
 本開示の第3実施形態によるバルブタイミング調整装置の一部を図7に示す。第3実施形態は、スリーブ40、スプール50、チェック弁60の構成等が第1実施形態と異なる。
 スリーブ40は、例えば鉄等の金属により形成されている。スリーブ40は、スリーブ筒部451、スリーブ底部452、ねじ部453を有している。
(Third embodiment)
A part of the valve timing adjusting device according to the third embodiment of the present disclosure is shown in FIG. The third embodiment is different from the first embodiment in the configuration of the sleeve 40, the spool 50, the check valve 60, and the like.
The sleeve 40 is made of a metal such as iron. The sleeve 40 includes a sleeve tube portion 451, a sleeve bottom portion 452, and a screw portion 453.
 スリーブ筒部451は、略円筒状に形成されている。スリーブ底部452は、スリーブ筒部451の一方の端部を塞ぐようスリーブ筒部451と一体に形成されている。ねじ部453は、スリーブ筒部451のスリーブ底部452側の端部の外壁に形成されている。
 スリーブ40は、ベーンロータ30のボス31の内側を通り、ねじ部453がカム軸3の軸側ねじ部110に結合するようにしてカム軸3に固定される。
The sleeve cylinder portion 451 is formed in a substantially cylindrical shape. The sleeve bottom 452 is formed integrally with the sleeve cylinder 451 so as to close one end of the sleeve cylinder 451. The screw portion 453 is formed on the outer wall of the end portion of the sleeve tube portion 451 on the sleeve bottom portion 452 side.
The sleeve 40 passes through the inside of the boss 31 of the vane rotor 30 and is fixed to the cam shaft 3 so that the screw portion 453 is coupled to the shaft-side screw portion 110 of the cam shaft 3.
 スリーブ底部452には、呼吸穴402が形成されている。呼吸穴402は、スリーブ底部452の中央を板厚方向に貫くようにして形成されている。すなわち、呼吸穴402は、容積可変空間401に接続している。 A breathing hole 402 is formed in the sleeve bottom 452. The breathing hole 402 is formed so as to penetrate the center of the sleeve bottom 452 in the thickness direction. That is, the breathing hole 402 is connected to the volume variable space 401.
 呼吸穴402は、カム軸3の外部に連通するよう形成されている。そのため、容積可変空間401は、呼吸穴402を経由してカム軸3の外部、すなわち、大気に連通する。これにより、容積可変空間401の圧力を大気圧と同等にすることができる。本実施形態では、呼吸穴402により、容積可変空間401の圧力が大気圧と同等になっているため、リニアソレノイド9がスプール50を押圧するとき、スプール50は、スリーブ40の内側において軸方向に円滑に往復移動することができる。
 本実施形態では、供給ポート43は、第1制御ポート44と第2制御ポート45との間に形成されている。供給ポート43は、スリーブ40の周方向に複数形成されている。
The breathing hole 402 is formed to communicate with the outside of the cam shaft 3. Therefore, the variable volume space 401 communicates with the outside of the camshaft 3, that is, the atmosphere via the breathing hole 402. Thereby, the pressure of the volume variable space 401 can be made equivalent to atmospheric pressure. In the present embodiment, since the pressure of the variable volume space 401 is equal to the atmospheric pressure by the breathing hole 402, when the linear solenoid 9 presses the spool 50, the spool 50 is axially inside the sleeve 40. Smooth reciprocation.
In the present embodiment, the supply port 43 is formed between the first control port 44 and the second control port 45. A plurality of supply ports 43 are formed in the circumferential direction of the sleeve 40.
 スプール50は、スプール蓋部52に代えて、シール部材58を有している。シール部材58は、略円筒状に形成され、スプール筒部51の内側に設けられている。シール部材58の外壁とスプール筒部51の内壁との間に、略円筒状の蓄圧空間500が形成されている。
 本実施形態では、スプール50は、リサイクル油路57に代えて、リサイクル油路571、572を有している。
The spool 50 includes a seal member 58 instead of the spool lid portion 52. The seal member 58 is formed in a substantially cylindrical shape, and is provided inside the spool cylinder portion 51. A substantially cylindrical pressure accumulation space 500 is formed between the outer wall of the seal member 58 and the inner wall of the spool cylinder portion 51.
In the present embodiment, the spool 50 has recycling oil paths 571 and 572 instead of the recycling oil path 57.
 リサイクル油路571は、供給油路54に対しスリーブ底部452とは反対側において、スプール筒部51の外壁に形成された環状の凹部とスプール筒部51の内壁とを接続するよう形成されている。リサイクル油路571は、スプール50の周方向に複数、供給ポート43と同数形成されている。1つのリサイクル油路571の内径は、他のリサイクル油路571の内径と同じに設定されている。また、1つのリサイクル油路571の内径は、供給ポート43の内径より小さく設定されている。 The recycle oil passage 571 is formed on the side opposite to the sleeve bottom portion 452 with respect to the supply oil passage 54 so as to connect an annular recess formed in the outer wall of the spool tube portion 51 and the inner wall of the spool tube portion 51. . A plurality of the recycle oil passages 571 are formed in the circumferential direction of the spool 50 and the same number as the supply ports 43. The inner diameter of one recycled oil passage 571 is set to be the same as the inner diameter of the other recycled oil passage 571. Further, the inner diameter of one recycle oil passage 571 is set smaller than the inner diameter of the supply port 43.
 リサイクル油路572は、リサイクル油路571に対しスリーブ底部452とは反対側において、スプール筒部51の外壁に形成された環状の凹部とスプール筒部51の内壁とを接続するよう形成されている。リサイクル油路572は、スプール50の周方向に複数、リサイクル油路571と同数形成されている。1つのリサイクル油路572の内径は、他のリサイクル油路572の内径と同じに設定されている。また、1つのリサイクル油路572の内径は、リサイクル油路571の内径と同じに設定されている。
 供給ポート43の流路面積の合計は、リサイクル油路571またはリサイクル油路572の流路面積の合計よりも大きく設定されている。
 本実施形態では、第1制御油路55、第2制御油路56、供給油路54は、リサイクル油路571とリサイクル油路572との間において一体に形成されている。
 チェック弁60は、供給チェック弁61、リサイクルチェック弁621、622を有している。
The recycle oil passage 572 is formed on the opposite side of the recycle oil passage 571 from the sleeve bottom portion 452 so as to connect the annular recess formed in the outer wall of the spool tube portion 51 and the inner wall of the spool tube portion 51. . A plurality of the recycle oil passages 572 are formed in the circumferential direction of the spool 50, and the same number as the recycle oil passages 571 is formed. The inner diameter of one recycled oil passage 572 is set to be the same as the inner diameter of the other recycled oil passage 572. Further, the inner diameter of one recycle oil passage 572 is set to be the same as the inner diameter of the recycle oil passage 571.
The total flow area of the supply port 43 is set larger than the total flow area of the recycle oil path 571 or the recycle oil path 572.
In the present embodiment, the first control oil passage 55, the second control oil passage 56, and the supply oil passage 54 are integrally formed between the recycle oil passage 571 and the recycle oil passage 572.
The check valve 60 includes a supply check valve 61 and recycle check valves 621 and 622.
 供給チェック弁61、リサイクルチェック弁621、622は、それぞれ別体に形成されている。供給チェック弁61、リサイクルチェック弁621、622は、第1実施形態と同様、例えば金属製の薄板を筒状に巻くことにより形成されている。ここで、供給チェック弁61を形成する薄板の板厚は、リサイクルチェック弁621、622を形成する薄板の板厚よりも小さく設定されている。 The supply check valve 61 and the recycle check valves 621 and 622 are formed separately. As in the first embodiment, the supply check valve 61 and the recycle check valves 621 and 622 are formed by, for example, winding a thin metal plate into a cylindrical shape. Here, the plate thickness of the thin plate forming the supply check valve 61 is set smaller than the plate thickness of the thin plate forming the recycle check valves 621 and 622.
 供給チェック弁61は、径方向に弾性変形可能に形成されている。供給チェック弁61は、径方向内側に変形すると、外径が縮小する。リサイクルチェック弁621、622は、径方向に弾性変形可能に形成されている。リサイクルチェック弁621、622は、径方向内側に変形すると、外径が縮小する。 The supply check valve 61 is formed to be elastically deformable in the radial direction. When the supply check valve 61 is deformed radially inward, the outer diameter is reduced. The recycle check valves 621 and 622 are formed to be elastically deformable in the radial direction. When the recycle check valves 621 and 622 are deformed radially inward, the outer diameter is reduced.
 ここで、供給チェック弁61の内径および外径は、リサイクルチェック弁621、622の外径よりも大きく設定されている。また、供給チェック弁61の幅、すなわち、軸方向の長さは、リサイクルチェック弁621、622の軸方向の長さと同じである。 Here, the inner diameter and outer diameter of the supply check valve 61 are set larger than the outer diameters of the recycle check valves 621 and 622. Further, the width of the supply check valve 61, that is, the length in the axial direction is the same as the length in the axial direction of the recycle check valves 621 and 622.
 供給チェック弁61は、板厚がリサイクルチェック弁621、622の板厚よりも小さく、外径がリサイクルチェック弁621、622の外径よりも大きいため、供給チェック弁61は、リサイクルチェック弁621、622と比べ、径方向に変形し易い。つまり、供給チェック弁61とリサイクルチェック弁621、622とに径方向内側への同じ力が作用したとき、供給チェック弁61の方が、リサイクルチェック弁621、622よりも変形量が大きくなる。 The supply check valve 61 has a plate thickness smaller than that of the recycle check valves 621 and 622 and an outer diameter larger than that of the recycle check valves 621 and 622. Compared to 622, it is easily deformed in the radial direction. That is, when the same radial force is applied to the supply check valve 61 and the recycle check valves 621 and 622, the supply check valve 61 has a larger deformation amount than the recycle check valves 621 and 622.
 供給チェック弁61は、スリーブ40とスプール50との間において供給ポート43に対応する位置に設けられている。リサイクルチェック弁621は、スプール筒部51とシール部材58との間においてリサイクル油路571に対応する位置に設けられている。リサイクルチェック弁622は、スプール筒部51とシール部材58との間においてリサイクル油路572に対応する位置に設けられている。 The supply check valve 61 is provided at a position corresponding to the supply port 43 between the sleeve 40 and the spool 50. The recycle check valve 621 is provided at a position corresponding to the recycle oil passage 571 between the spool cylinder 51 and the seal member 58. The recycle check valve 622 is provided at a position corresponding to the recycle oil passage 572 between the spool cylinder 51 and the seal member 58.
 作動油がオイルポンプ8側から供給油路54を経由して蓄圧空間500側へ向かうとき、供給チェック弁61は、径方向内側に変形し開弁し、スリーブ40の内壁と供給チェック弁61との間に隙間が形成される。これにより、作動油は、供給ポート43、供給油路54を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側から供給ポート43を経由してオイルポンプ8側へ向かうとき、供給チェック弁61は、径方向外側に変形し閉弁し、供給ポート43を塞ぐようにしてスリーブ40の内壁に張り付く。これにより、作動油は、供給油路54、供給ポート43を経由した蓄圧空間500からスリーブ40の外部への流出が規制される。このように、供給チェック弁61は、オイルポンプ8側から供給油路54を経由して蓄圧空間500側へ向かう作動油の流れを許容し、蓄圧空間500側から供給ポート43を経由してオイルポンプ8側へ向かう作動油の流れを規制する。 When the hydraulic oil travels from the oil pump 8 side to the pressure accumulating space 500 side via the supply oil passage 54, the supply check valve 61 is deformed radially inward and opened, and the inner wall of the sleeve 40, the supply check valve 61, A gap is formed between the two. As a result, the hydraulic oil can flow into the pressure accumulation space 500 via the supply port 43 and the supply oil passage 54. On the other hand, when the hydraulic oil travels from the pressure accumulating space 500 side to the oil pump 8 side via the supply port 43, the supply check valve 61 is deformed radially outward and closed to close the supply port 43. Stick to 40 inner walls. As a result, the hydraulic oil is restricted from flowing out of the sleeve 40 from the pressure accumulation space 500 via the supply oil passage 54 and the supply port 43. In this way, the supply check valve 61 allows the flow of hydraulic oil from the oil pump 8 side via the supply oil passage 54 toward the pressure accumulation space 500 side, and allows oil to flow from the pressure accumulation space 500 side via the supply port 43. The flow of hydraulic oil toward the pump 8 side is restricted.
 作動油が遅角室201または進角室202側からリサイクル油路571、572を経由して蓄圧空間500側へ向かうとき、リサイクルチェック弁621、622は、それぞれ、径方向内側に変形し開弁し、スプール50の内壁とリサイクルチェック弁621、622との間に隙間が形成される。これにより、作動油は、リサイクル油路571、572を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側からリサイクル油路571、572を経由して遅角室201または進角室202側へ向かうとき、リサイクルチェック弁621、622は、径方向外側に変形し閉弁し、リサイクル油路571、572を塞ぐようにしてスプール50の内壁に張り付く。これにより、作動油は、リサイクル油路571、572を経由した蓄圧空間500からスプール50の外部への流出が規制される。このように、リサイクルチェック弁621、622は、遅角室201または進角室202側からリサイクル油路571、572を経由して蓄圧空間500側へ向かう作動油の流れを許容し、蓄圧空間500側からリサイクル油路571、572を経由して遅角室201または進角室202側へ向かう作動油の流れを規制する。 When the hydraulic oil travels from the retard chamber 201 or the advance chamber 202 side to the pressure accumulation space 500 side via the recycle oil passages 571 and 572, the recycle check valves 621 and 622 are respectively deformed radially inward to open the valve. In addition, a gap is formed between the inner wall of the spool 50 and the recycle check valves 621 and 622. As a result, the hydraulic oil can flow into the pressure accumulation space 500 via the recycle oil passages 571 and 572. On the other hand, when the hydraulic oil goes from the pressure accumulating space 500 side to the retard chamber 201 or the advance chamber 202 side via the recycle oil passages 571 and 572, the recycle check valves 621 and 622 are deformed radially outward and closed. Then, it sticks to the inner wall of the spool 50 so as to close the recycled oil passages 571 and 572. As a result, the hydraulic oil is restricted from flowing out of the spool 50 from the pressure accumulating space 500 via the recycle oil passages 571 and 572. In this way, the recycle check valves 621 and 622 allow the flow of hydraulic oil from the retard chamber 201 or the advance chamber 202 side to the accumulator space 500 via the recycle oil passages 571 and 572, and the accumulator space 500. The flow of hydraulic oil from the side toward the retard chamber 201 or the advance chamber 202 via the recycle oil passages 571 and 572 is restricted.
 本実施形態では、スプール50が係止部71に当接する位置にあるとき(図7参照)、作動油が第2制御ポート45を経由して進角室202に供給され、遅角室201の作動油が第1制御ポート44を経由して、リサイクル油路571の径方向外側の凹部に流れる。当該凹部に流れた作動油は、リサイクル油路571およびリサイクルチェック弁621を経由して蓄圧空間500に戻される。 In this embodiment, when the spool 50 is in a position where it abuts against the locking portion 71 (see FIG. 7), the hydraulic oil is supplied to the advance chamber 202 via the second control port 45, and the retard chamber 201 The hydraulic oil flows through the first control port 44 into the concave portion on the radially outer side of the recycle oil passage 571. The hydraulic oil that has flowed into the recess is returned to the pressure accumulating space 500 via the recycle oil passage 571 and the recycle check valve 621.
 また、スプール50がスリーブ底部452に当接する位置にあるとき、作動油が第1制御ポート44を経由して遅角室201に供給され、進角室202の作動油が第2制御ポート45を経由して、リサイクル油路572の径方向外側の凹部に流れる。当該凹部に流れた作動油は、リサイクル油路572およびリサイクルチェック弁622を経由して蓄圧空間500に戻される。 When the spool 50 is in a position where it abuts against the sleeve bottom 452, the hydraulic oil is supplied to the retard chamber 201 via the first control port 44, and the hydraulic oil in the advance chamber 202 passes through the second control port 45. Via, it flows into the concave portion on the radially outer side of the recycle oil passage 572. The hydraulic oil that has flowed into the recess is returned to the pressure accumulating space 500 via the recycle oil passage 572 and the recycle check valve 622.
 上述したように、供給チェック弁61は、リサイクルチェック弁621、622と比べ、径方向に変形し易い。また、供給ポート43の流路面積の合計は、リサイクル油路571またはリサイクル油路572の流路面積の合計よりも大きく設定されている。そのため、供給チェック弁61の開弁圧は、リサイクルチェック弁621、622の開弁圧より低く設定されている。つまり、供給チェック弁61の開弁に関する特性は、リサイクルチェック弁621、622と比べ、開弁し易い特性に設定されているということができる。
 第3実施形態は、上述した点以外の構成は、第1実施形態と同様である。そのため、第1実施形態と同様の構成については、第1実施形態と同様の効果を奏することができる。
As described above, the supply check valve 61 is more easily deformed in the radial direction than the recycle check valves 621 and 622. Further, the total flow area of the supply port 43 is set to be larger than the total flow area of the recycle oil passage 571 or the recycle oil passage 572. Therefore, the valve opening pressure of the supply check valve 61 is set lower than the valve opening pressures of the recycle check valves 621 and 622. That is, it can be said that the characteristics related to the opening of the supply check valve 61 are set to characteristics that are easier to open than the recycle check valves 621 and 622.
The third embodiment is the same as the first embodiment except for the points described above. Therefore, about the structure similar to 1st Embodiment, there can exist an effect similar to 1st Embodiment.
 以上説明したように、本実施形態では、供給チェック弁61は、スプール50の外側に設けられ、閉弁時、供給ポート43を塞ぐ。リサイクルチェック弁621、622は、スプール50の内側に設けられ、閉弁時、リサイクル油路571、572を塞ぐ。本実施形態では、供給チェック弁61とリサイクルチェック弁621、622とは、油路切換弁11における配置箇所が異なる。そのため、誤組付を抑制することができる。 As described above, in this embodiment, the supply check valve 61 is provided outside the spool 50 and closes the supply port 43 when the valve is closed. The recycle check valves 621 and 622 are provided inside the spool 50 and close the recycle oil passages 571 and 572 when the valves are closed. In the present embodiment, the supply check valve 61 and the recycle check valves 621 and 622 are different in the arrangement location in the oil passage switching valve 11. Therefore, erroneous assembly can be suppressed.
  (第4実施形態)
 本開示の第4実施形態によるバルブタイミング調整装置を図8に示す。第4実施形態は、スリーブ40、スプール50、チェック弁60の構成等が第1実施形態と異なる。
 スリーブ40は、第3実施形態と同様、スリーブ筒部451、スリーブ底部452、ねじ部453を有している。
 供給ポート43は、スリーブ筒部451の外壁と内壁とを接続するよう形成されている。供給ポート43は、スプール50の外壁と軸穴部100の内壁との間の筒状の隙間を経由して供給穴部101に連通している。
 第1制御ポート44は、供給ポート43に対し係止部47側においてスリーブ筒部451の外壁と内壁とを接続するよう形成されている。
 第2制御ポート45は、第1制御ポート44に対し係止部47側においてスリーブ筒部451の外壁と内壁とを接続するよう形成されている。
(Fourth embodiment)
A valve timing adjusting device according to a fourth embodiment of the present disclosure is shown in FIG. The fourth embodiment differs from the first embodiment in the configuration of the sleeve 40, the spool 50, the check valve 60, and the like.
Similar to the third embodiment, the sleeve 40 includes a sleeve tube portion 451, a sleeve bottom portion 452, and a screw portion 453.
The supply port 43 is formed so as to connect the outer wall and the inner wall of the sleeve tube portion 451. The supply port 43 communicates with the supply hole portion 101 via a cylindrical gap between the outer wall of the spool 50 and the inner wall of the shaft hole portion 100.
The first control port 44 is formed so as to connect the outer wall and the inner wall of the sleeve tube portion 451 on the locking portion 47 side with respect to the supply port 43.
The second control port 45 is formed to connect the outer wall and the inner wall of the sleeve tube portion 451 on the locking portion 47 side with respect to the first control port 44.
 本実施形態では、供給ポート43と第1制御ポート44との間においてスリーブ筒部451の外壁と内壁とを接続するようピン制御ポート410が形成されている。また、ベーンロータ30には、ピン制御ポート410と収容穴部321とを接続するピン制御油路305が形成されている。また、ケース22のベーン32側には、ロックピン73が嵌入可能な嵌入凹部26が形成されている。スプリング74は、ロックピン73をケース22側へ付勢している。ピン制御ポート410、ピン制御油路305に流入する作動油の圧力は、ロックピン73がスプリング74の付勢力に抗して嵌入凹部26から抜け出す方向に働く。ロックピン73が嵌入凹部26に嵌入しているとき、ハウジング20に対するベーンロータ30の相対回転が規制され、ロックピン73が嵌入凹部26に嵌入していないとき、ハウジング20に対するベーンロータ30の相対回転が許容される。 In the present embodiment, the pin control port 410 is formed between the supply port 43 and the first control port 44 so as to connect the outer wall and the inner wall of the sleeve cylindrical portion 451. The vane rotor 30 is also formed with a pin control oil passage 305 that connects the pin control port 410 and the accommodation hole 321. An insertion recess 26 into which the lock pin 73 can be inserted is formed on the vane 32 side of the case 22. The spring 74 biases the lock pin 73 toward the case 22 side. The pressure of the hydraulic oil flowing into the pin control port 410 and the pin control oil passage 305 acts in a direction in which the lock pin 73 comes out of the fitting recess 26 against the urging force of the spring 74. When the lock pin 73 is inserted into the insertion recess 26, the relative rotation of the vane rotor 30 with respect to the housing 20 is restricted, and when the lock pin 73 is not inserted into the insertion recess 26, relative rotation of the vane rotor 30 with respect to the housing 20 is allowed. Is done.
 スプール50は、スプール蓋部52に代えて、シール部材59を有している。シール部材59は、スプール筒部51の内側に設けられている。シール部材59の内壁とスプール筒部51の内壁との間に、スプール50の軸方向に延びる蓄圧空間500が形成されている。 The spool 50 has a seal member 59 instead of the spool lid portion 52. The seal member 59 is provided inside the spool cylinder portion 51. A pressure accumulation space 500 extending in the axial direction of the spool 50 is formed between the inner wall of the seal member 59 and the inner wall of the spool cylinder portion 51.
 供給油路54、第1制御油路55、リサイクル油路57、第2制御油路56は、この順で、スプール50の一方の端部側から他方の端部側に向かって所定の間隔を空けて並ぶよう形成されている。供給油路54、第1制御油路55、リサイクル油路57、第2制御油路56は、蓄圧空間500とスプール50の外部とを連通している。ここで、供給油路54の流路面積は、リサイクル油路57の流路面積と同じに設定されている。 The supply oil passage 54, the first control oil passage 55, the recycle oil passage 57, and the second control oil passage 56 are spaced in this order from one end side of the spool 50 toward the other end side. It is formed so as to be lined up. The supply oil passage 54, the first control oil passage 55, the recycle oil passage 57, and the second control oil passage 56 communicate the pressure accumulation space 500 and the outside of the spool 50. Here, the flow passage area of the supply oil passage 54 is set to be the same as the flow passage area of the recycle oil passage 57.
 本実施形態では、スプール50が係止部71に当接する位置にあるとき(図8参照)、供給ポート43と供給油路54とは接続していない。スプール50がカム軸3側に所定量移動すると、供給ポート43と供給油路54とが接続し、第1制御油路55と第1制御ポート44とが接続し、第2制御ポート45とリサイクル油路57とが接続する。また、このとき、第1制御油路55とピン制御ポート410とが接続する。 In this embodiment, when the spool 50 is in a position where it abuts against the locking portion 71 (see FIG. 8), the supply port 43 and the supply oil passage 54 are not connected. When the spool 50 moves to the camshaft 3 side by a predetermined amount, the supply port 43 and the supply oil passage 54 are connected, the first control oil passage 55 and the first control port 44 are connected, and the second control port 45 is recycled. The oil passage 57 is connected. At this time, the first control oil passage 55 and the pin control port 410 are connected.
 スプール50がスリーブ底部412に当接する位置にあるとき、供給ポート43と供給油路54とが接続し、第2制御油路56と第2制御ポート45とが接続し、第1制御ポート44とリサイクル油路57とが接続する。また、このとき、第1制御油路55とピン制御ポート410とが接続する。
 チェック弁60は、供給チェック弁68、リサイクルチェック弁69を有している。
When the spool 50 is in a position where it abuts against the sleeve bottom 412, the supply port 43 and the supply oil passage 54 are connected, the second control oil passage 56 and the second control port 45 are connected, and the first control port 44 Recycle oil passage 57 is connected. At this time, the first control oil passage 55 and the pin control port 410 are connected.
The check valve 60 includes a supply check valve 68 and a recycle check valve 69.
 供給チェック弁68、リサイクルチェック弁69は、それぞれ、別体に形成されている。供給チェック弁68、リサイクルチェック弁69は、例えば金属の薄板を折り曲げることにより形成されている。ここで、供給チェック弁68を形成する薄板の板厚は、リサイクルチェック弁69を形成する薄板の板厚よりも小さく設定されている。 The supply check valve 68 and the recycle check valve 69 are formed separately. The supply check valve 68 and the recycle check valve 69 are formed, for example, by bending a thin metal plate. Here, the plate thickness of the thin plate forming the supply check valve 68 is set smaller than the plate thickness of the thin plate forming the recycle check valve 69.
 供給チェック弁68、リサイクルチェック弁69は、弾性変形可能に形成されている。供給チェック弁68は、板厚がリサイクルチェック弁69の板厚よりも小さいため、供給チェック弁68は、リサイクルチェック弁69と比べ、変形し易い。つまり、供給チェック弁68とリサイクルチェック弁69とに同じ力が作用したとき、供給チェック弁68の方が、リサイクルチェック弁69よりも変形量が大きくなる。 The supply check valve 68 and the recycle check valve 69 are formed to be elastically deformable. Since the thickness of the supply check valve 68 is smaller than that of the recycle check valve 69, the supply check valve 68 is more easily deformed than the recycle check valve 69. That is, when the same force is applied to the supply check valve 68 and the recycle check valve 69, the supply check valve 68 has a larger deformation amount than the recycle check valve 69.
 供給チェック弁68は、蓄圧空間500の供給油路54に対応する位置に設けられている。供給チェック弁68は、シール部材59の内壁に形成された供給側支持部591に支持されている。ここで、供給側支持部591は、供給チェック弁68の形状に対応する形状に形成されている(図8、図9参照)。供給チェック弁68は、スプール50の径方向に弾性変形可能である。 The supply check valve 68 is provided at a position corresponding to the supply oil passage 54 of the pressure accumulating space 500. The supply check valve 68 is supported by a supply side support portion 591 formed on the inner wall of the seal member 59. Here, the supply side support portion 591 is formed in a shape corresponding to the shape of the supply check valve 68 (see FIGS. 8 and 9). The supply check valve 68 can be elastically deformed in the radial direction of the spool 50.
 リサイクルチェック弁69は、蓄圧空間500のリサイクル油路57に対応する位置に設けられている。リサイクルチェック弁69は、シール部材59の内壁に形成されたリサイクル側支持部592に支持されている。ここで、リサイクル側支持部592は、リサイクルチェック弁69の形状に対応する形状に形成されている(図8、図9参照)。リサイクルチェック弁69は、スプール50の径方向に弾性変形可能である。 The recycle check valve 69 is provided at a position corresponding to the recycle oil passage 57 of the pressure accumulating space 500. The recycle check valve 69 is supported by a recycle side support portion 592 formed on the inner wall of the seal member 59. Here, the recycle side support portion 592 is formed in a shape corresponding to the shape of the recycle check valve 69 (see FIGS. 8 and 9). The recycle check valve 69 can be elastically deformed in the radial direction of the spool 50.
 作動油がオイルポンプ8側から供給油路54を経由して蓄圧空間500側へ向かうとき、供給チェック弁68は、スプール50の径方向内側に変形し開弁し、スプール50の内壁と供給チェック弁68との間に隙間が形成される。これにより、作動油は、供給油路54を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側から供給油路54を経由してオイルポンプ8側へ向かうとき、供給チェック弁68は、スプール50の径方向外側に変形し閉弁し、供給油路54を塞ぐようにしてスプール50の内壁に張り付く。これにより、作動油は、供給油路54を経由した蓄圧空間500からスプール50の外部への流出が規制される。このように、供給チェック弁68は、オイルポンプ8側から供給油路54を経由して蓄圧空間500側へ向かう作動油の流れを許容し、蓄圧空間500側から供給油路54を経由してオイルポンプ8側へ向かう作動油の流れを規制する。 When the hydraulic oil travels from the oil pump 8 side to the pressure accumulating space 500 side via the supply oil passage 54, the supply check valve 68 is deformed and opened inward in the radial direction of the spool 50 to check the supply of the inner wall of the spool 50 and the supply check valve. A gap is formed between the valve 68. As a result, the hydraulic oil can flow into the pressure accumulation space 500 via the supply oil passage 54. On the other hand, when the hydraulic oil travels from the pressure accumulating space 500 side to the oil pump 8 side via the supply oil passage 54, the supply check valve 68 is deformed outwardly in the radial direction of the spool 50 and is closed. It sticks to the inner wall of the spool 50 so as to close it. As a result, the hydraulic oil is restricted from flowing out of the spool 50 from the pressure accumulation space 500 via the supply oil passage 54. In this way, the supply check valve 68 allows the flow of hydraulic oil from the oil pump 8 side via the supply oil passage 54 to the pressure accumulation space 500 side, and from the pressure accumulation space 500 side via the supply oil passage 54. The flow of hydraulic oil toward the oil pump 8 is restricted.
 作動油が遅角室201または進角室202側からリサイクル油路57を経由して蓄圧空間500側へ向かうとき、リサイクルチェック弁69は、スプール50の径方向内側に変形し開弁し、スプール50の内壁とリサイクルチェック弁69との間に隙間が形成される。これにより、作動油は、リサイクル油路57を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側からリサイクル油路57を経由して遅角室201または進角室202側へ向かうとき、リサイクルチェック弁69は、スプール50の径方向外側に変形し閉弁し、リサイクル油路57を塞ぐようにしてスプール50の内壁に張り付く。これにより、作動油は、リサイクル油路57を経由した蓄圧空間500からスプール50の外部への流出が規制される。このように、リサイクルチェック弁69は、遅角室201または進角室202側からリサイクル油路57を経由して蓄圧空間500側へ向かう作動油の流れを許容し、蓄圧空間500側からリサイクル油路57を経由して遅角室201または進角室202側へ向かう作動油の流れを規制する。 When the hydraulic oil travels from the retarded angle chamber 201 or the advanced angle chamber 202 toward the pressure accumulating space 500 via the recycle oil passage 57, the recycle check valve 69 is deformed inward in the radial direction of the spool 50 and opened. A gap is formed between the 50 inner walls and the recycle check valve 69. As a result, the hydraulic oil can flow into the pressure accumulating space 500 via the recycle oil passage 57. On the other hand, when the hydraulic oil travels from the pressure accumulation space 500 side to the retard chamber 201 or the advance chamber 202 side via the recycle oil passage 57, the recycle check valve 69 is deformed outward in the radial direction of the spool 50 and closed. Then, the recycle oil passage 57 is stuck to the inner wall of the spool 50. As a result, the hydraulic oil is restricted from flowing out of the spool 50 from the pressure accumulation space 500 via the recycle oil passage 57. In this way, the recycle check valve 69 allows the flow of hydraulic oil from the retard chamber 201 or the advance chamber 202 to the accumulator space 500 via the recycle oil passage 57, and the recycle oil from the accumulator space 500 side. The flow of hydraulic oil toward the retard chamber 201 or the advance chamber 202 via the path 57 is restricted.
 本実施形態では、スプール50が係止部71に当接する位置(図8参照)から所定量カム軸3側に移動したとき、作動油が供給ポート43、供給油路54、供給チェック弁68を経由して蓄圧空間500に流入し、第1制御油路55を経由して、ピン制御ポート410、ピン制御油路305に作動油が流入し、ハウジング20に対するベーンロータ30の相対回転が許容される。また、このとき、蓄圧空間500の作動油が第1制御油路55、第1制御ポート44を経由して遅角室201に供給され、進角室202の作動油が第2制御ポート45を経由して、リサイクル油路57の径方向外側の凹部に流れる。当該凹部に流れた作動油は、リサイクル油路57およびリサイクルチェック弁69を経由して蓄圧空間500に戻される。 In the present embodiment, when the spool 50 moves to the camshaft 3 side by a predetermined amount from the position where the spool 50 abuts on the locking portion 71 (see FIG. 8), the hydraulic oil passes through the supply port 43, the supply oil passage 54, and the supply check valve 68. Via the first control oil passage 55, hydraulic oil flows into the pin control port 410 and the pin control oil passage 305, and relative rotation of the vane rotor 30 with respect to the housing 20 is allowed. . At this time, the hydraulic oil in the pressure accumulating space 500 is supplied to the retard chamber 201 via the first control oil passage 55 and the first control port 44, and the hydraulic oil in the advance chamber 202 passes through the second control port 45. Via, it flows into the concave portion on the radially outer side of the recycled oil passage 57. The hydraulic fluid that has flowed into the recess is returned to the pressure accumulating space 500 via the recycle oil passage 57 and the recycle check valve 69.
 また、スプール50がスリーブ底部452に当接する位置にあるとき、第1制御油路55を経由して、ピン制御ポート410、ピン制御油路305に作動油が流入し、ハウジング20に対するベーンロータ30の相対回転が許容される。また、このとき、作動油が第2制御油路56、第2制御ポート45を経由して進角室202に供給され、遅角室201の作動油が第1制御ポート44を経由して、リサイクル油路57の径方向外側の凹部に流れる。当該凹部に流れた作動油は、リサイクル油路57およびリサイクルチェック弁69を経由して蓄圧空間500に戻される。 Further, when the spool 50 is in a position where it abuts against the sleeve bottom 452, the hydraulic oil flows into the pin control port 410 and the pin control oil passage 305 via the first control oil passage 55, and the vane rotor 30 with respect to the housing 20 flows. Relative rotation is allowed. At this time, the hydraulic oil is supplied to the advance chamber 202 via the second control oil passage 56 and the second control port 45, and the hydraulic oil in the retard chamber 201 passes through the first control port 44. The recycle oil passage 57 flows into the concave portion on the radially outer side. The hydraulic fluid that has flowed into the recess is returned to the pressure accumulating space 500 via the recycle oil passage 57 and the recycle check valve 69.
 上述したように、供給チェック弁68は、リサイクルチェック弁69と比べ、変形し易い。また、供給油路54の流路面積は、リサイクル油路57の流路面積と同じに設定されている。そのため、供給チェック弁68の開弁圧は、リサイクルチェック弁69の開弁圧より低く設定されている。つまり、供給チェック弁68の開弁に関する特性は、リサイクルチェック弁69と比べ、開弁し易い特性に設定されているということができる。
 第4実施形態は、上述した点以外の構成は、第1実施形態と同様である。そのため、第1実施形態と同様の構成については、第1実施形態と同様の効果を奏することができる。
As described above, the supply check valve 68 is more easily deformed than the recycle check valve 69. The flow passage area of the supply oil passage 54 is set to be the same as the flow passage area of the recycle oil passage 57. Therefore, the valve opening pressure of the supply check valve 68 is set lower than the valve opening pressure of the recycle check valve 69. That is, it can be said that the characteristics related to the opening of the supply check valve 68 are set to characteristics that make it easier to open than the recycle check valve 69.
The configuration of the fourth embodiment is the same as that of the first embodiment except for the points described above. Therefore, about the structure similar to 1st Embodiment, there can exist an effect similar to 1st Embodiment.
 以上説明したように、本実施形態では、スプール50は、供給チェック弁68を支持する供給側支持部591、および、リサイクルチェック弁69を支持するリサイクル側支持部592を有している。そのため、例えば、供給チェック弁68の形状に対応するよう供給側支持部591を形成し、リサイクルチェック弁69の形状に対応するようリサイクル側支持部592を形成することで、供給側支持部591とリサイクル側支持部592との形状を異ならせることにより、供給チェック弁68およびリサイクルチェック弁69の誤組付を抑制することができる。 As described above, in this embodiment, the spool 50 includes the supply side support portion 591 that supports the supply check valve 68 and the recycle side support portion 592 that supports the recycle check valve 69. Therefore, for example, by forming the supply side support portion 591 corresponding to the shape of the supply check valve 68 and forming the recycle side support portion 592 corresponding to the shape of the recycle check valve 69, By making the shape different from the recycle side support portion 592, it is possible to suppress erroneous assembly of the supply check valve 68 and the recycle check valve 69.
 また、本実施形態では、供給チェック弁68およびリサイクルチェック弁69は、弾性変形可能な板材から形成されており、それぞれ、板厚が異なる。これにより、供給チェック弁68の開弁に関する特性とリサイクルチェック弁69の開弁に関する特性とを異ならせている。 In the present embodiment, the supply check valve 68 and the recycle check valve 69 are formed of elastically deformable plate materials, each having a different plate thickness. As a result, the characteristics relating to the opening of the supply check valve 68 and the characteristics relating to the opening of the recycle check valve 69 are made different.
  (第5実施形態)
 本開示の第5実施形態によるバルブタイミング調整装置の一部を図10に示す。第5実施形態は、スリーブ40、スプール50、チェック弁60の構成等が第3実施形態と異なる。
 供給ポート43は、スリーブ筒部451の外壁と内壁とを接続するよう形成されている。供給ポート43は、オイルポンプ8に接続される。
 第1制御ポート44は、供給ポート43に対し係止部47側においてスリーブ筒部451の外壁と内壁とを接続するよう形成されている。
 第2制御ポート45は、第1制御ポート44に対し係止部47側においてスリーブ筒部451の外壁と内壁とを接続するよう形成されている。
 本実施形態では、スリーブ40は、リサイクルポート481、482、ドレンポート46、49をさらに有している。
(Fifth embodiment)
FIG. 10 shows a part of the valve timing adjusting device according to the fifth embodiment of the present disclosure. The fifth embodiment differs from the third embodiment in the configuration of the sleeve 40, the spool 50, the check valve 60, and the like.
The supply port 43 is formed so as to connect the outer wall and the inner wall of the sleeve tube portion 451. The supply port 43 is connected to the oil pump 8.
The first control port 44 is formed so as to connect the outer wall and the inner wall of the sleeve tube portion 451 on the locking portion 47 side with respect to the supply port 43.
The second control port 45 is formed to connect the outer wall and the inner wall of the sleeve tube portion 451 on the locking portion 47 side with respect to the first control port 44.
In the present embodiment, the sleeve 40 further includes recycle ports 481 and 482 and drain ports 46 and 49.
 リサイクルポート481は、第1制御ポート44と第2制御ポート45との間においてスリーブ筒部451の外壁と内壁とを接続するよう形成されている。リサイクルポート481は、遅角室201に連通している。リサイクルポート481の内径は、供給ポート43の内径より小さく設定されている。リサイクルポート481の流路面積の合計は、供給ポート43の流路面積の合計よりも小さく設定されている。 The recycle port 481 is formed between the first control port 44 and the second control port 45 so as to connect the outer wall and the inner wall of the sleeve cylindrical portion 451. The recycle port 481 communicates with the retardation chamber 201. The inner diameter of the recycle port 481 is set smaller than the inner diameter of the supply port 43. The total flow area of the recycle port 481 is set smaller than the total flow area of the supply port 43.
 リサイクルポート482は、リサイクルポート481と第2制御ポート45との間においてスリーブ筒部451の外壁と内壁とを接続するよう形成されている。リサイクルポート481は、進角室202に連通している。リサイクルポート482の内径は、供給ポート43の内径より小さく設定されている。リサイクルポート482の流路面積の合計は、供給ポート43の流路面積の合計よりも小さく設定されている。なお、リサイクルポート482の内径は、リサイクルポート481の内径と同じに設定されている。また、リサイクルポート482の流路面積の合計は、リサイクルポート481の流路面積の合計と同じに設定されている。 The recycle port 482 is formed between the recycle port 481 and the second control port 45 so as to connect the outer wall and the inner wall of the sleeve cylindrical portion 451. The recycle port 481 communicates with the advance chamber 202. The inner diameter of the recycle port 482 is set smaller than the inner diameter of the supply port 43. The total flow area of the recycle port 482 is set smaller than the total flow area of the supply port 43. The inner diameter of the recycle port 482 is set to be the same as the inner diameter of the recycle port 481. Further, the total flow area of the recycle port 482 is set to be the same as the total flow area of the recycle port 481.
 ドレンポート46は、供給ポート43と第1制御ポート44との間においてスリーブ筒部451の外壁と内壁とを接続するよう形成されている。ドレンポート46は、バルブタイミング調整装置10の外部に連通している。 The drain port 46 is formed between the supply port 43 and the first control port 44 so as to connect the outer wall and the inner wall of the sleeve cylindrical portion 451. The drain port 46 communicates with the outside of the valve timing adjusting device 10.
 ドレンポート49は、スリーブ筒部451の係止部47側の端部の内側においてスプール50との間に略円筒状に形成されている。ドレンポート49は、油路切換弁11に対しカム軸3とは反対側、すなわち、バルブタイミング調整装置10の外部に連通している。
 本実施形態では、第1制御油路55とリサイクル油路571とは、供給油路54に対しスプール底部53側において一体に形成されている。
 第2制御油路56とリサイクル油路572とは、第1制御油路55およびリサイクル油路571に対しスプール底部53側において一体に形成されている。
 チェック弁60は、供給チェック弁61、リサイクルチェック弁621、622を有している。
The drain port 49 is formed in a substantially cylindrical shape between the drain cylinder 49 and the spool 50 on the inner side of the end of the sleeve cylinder part 451 on the locking part 47 side. The drain port 49 communicates with the oil path switching valve 11 on the side opposite to the camshaft 3, that is, on the outside of the valve timing adjusting device 10.
In the present embodiment, the first control oil passage 55 and the recycle oil passage 571 are formed integrally with the supply oil passage 54 on the spool bottom 53 side.
The second control oil passage 56 and the recycle oil passage 572 are integrally formed on the spool bottom 53 side with respect to the first control oil passage 55 and the recycle oil passage 571.
The check valve 60 includes a supply check valve 61 and recycle check valves 621 and 622.
 供給チェック弁61、リサイクルチェック弁621、622は、それぞれ別体に形成されている。供給チェック弁61、リサイクルチェック弁621、622は、第3実施形態と同様、例えば金属製の薄板を筒状に巻くことにより形成されている。ここで、供給チェック弁61を形成する薄板の幅および板厚は、リサイクルチェック弁621、622を形成する薄板の幅および板厚と同じに設定されている。そのため、供給チェック弁61の変形のし易さは、リサイクルチェック弁621、622と同程度である。つまり、供給チェック弁61とリサイクルチェック弁621、622とに径方向内側への同じ力が作用したとき、供給チェック弁61の変形量は、リサイクルチェック弁621、622の変形量と同程度となる。 The supply check valve 61 and the recycle check valves 621 and 622 are formed separately. As in the third embodiment, the supply check valve 61 and the recycle check valves 621 and 622 are formed by, for example, winding a thin metal plate into a cylindrical shape. Here, the width and thickness of the thin plate forming the supply check valve 61 are set to be the same as the width and thickness of the thin plate forming the recycle check valves 621 and 622. Therefore, the ease of deformation of the supply check valve 61 is about the same as that of the recycle check valves 621 and 622. In other words, when the same radial force is applied to the supply check valve 61 and the recycle check valves 621 and 622, the deformation amount of the supply check valve 61 is approximately the same as the deformation amount of the recycle check valves 621 and 622. .
 供給チェック弁61は、スリーブ40とスプール50との間において供給ポート43に対応する位置に設けられている。リサイクルチェック弁621は、スリーブ40とスプール50との間においてリサイクルポート481に対応する位置に設けられている。リサイクルチェック弁622は、スリーブ40とスプール50との間においてリサイクルポート482に対応する位置に設けられている。 The supply check valve 61 is provided at a position corresponding to the supply port 43 between the sleeve 40 and the spool 50. The recycle check valve 621 is provided at a position corresponding to the recycle port 481 between the sleeve 40 and the spool 50. The recycle check valve 622 is provided at a position corresponding to the recycle port 482 between the sleeve 40 and the spool 50.
 作動油がオイルポンプ8側から供給油路54を経由して蓄圧空間500側へ向かうとき、供給チェック弁61は、径方向内側に変形し開弁し、スリーブ40の内壁と供給チェック弁61との間に隙間が形成される。これにより、作動油は、供給ポート43、供給油路54を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側から供給ポート43を経由してオイルポンプ8側へ向かうとき、供給チェック弁61は、径方向外側に変形し閉弁し、供給ポート43を塞ぐようにしてスリーブ40の内壁に張り付く。これにより、作動油は、供給油路54、供給ポート43を経由した蓄圧空間500からスリーブ40の外部への流出が規制される。このように、供給チェック弁61は、オイルポンプ8側から供給油路54を経由して蓄圧空間500側へ向かう作動油の流れを許容し、蓄圧空間500側から供給ポート43を経由してオイルポンプ8側へ向かう作動油の流れを規制する。 When the hydraulic oil travels from the oil pump 8 side to the pressure accumulating space 500 side via the supply oil passage 54, the supply check valve 61 is deformed radially inward and opened, and the inner wall of the sleeve 40, the supply check valve 61, A gap is formed between the two. As a result, the hydraulic oil can flow into the pressure accumulation space 500 via the supply port 43 and the supply oil passage 54. On the other hand, when the hydraulic oil travels from the pressure accumulating space 500 side to the oil pump 8 side via the supply port 43, the supply check valve 61 is deformed radially outward and closed to close the supply port 43. Stick to 40 inner walls. As a result, the hydraulic oil is restricted from flowing out of the sleeve 40 from the pressure accumulation space 500 via the supply oil passage 54 and the supply port 43. In this way, the supply check valve 61 allows the flow of hydraulic oil from the oil pump 8 side via the supply oil passage 54 toward the pressure accumulation space 500 side, and allows oil to flow from the pressure accumulation space 500 side via the supply port 43. The flow of hydraulic oil toward the pump 8 side is restricted.
 作動油が遅角室201側からリサイクルポート481、リサイクル油路571を経由して蓄圧空間500側へ向かうとき、リサイクルチェック弁621は、径方向内側に変形し開弁し、スリーブ40の内壁とリサイクルチェック弁621との間に隙間が形成される。これにより、作動油は、リサイクル油路571を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側からリサイクル油路571、リサイクルポート481を経由して遅角室201側へ向かうとき、リサイクルチェック弁621は、径方向外側に変形し閉弁し、リサイクルポート481を塞ぐようにしてスリーブ40の内壁に張り付く。これにより、作動油は、リサイクル油路571を経由した蓄圧空間500からスリーブ40の外部への流出が規制される。このように、リサイクルチェック弁621は、遅角室201側からリサイクルポート481、リサイクル油路571を経由して蓄圧空間500側へ向かう作動油の流れを許容し、蓄圧空間500側からリサイクル油路571、リサイクルポート481を経由して遅角室201側へ向かう作動油の流れを規制する。 When the hydraulic oil travels from the retarding chamber 201 side to the pressure accumulating space 500 side via the recycle port 481 and the recycle oil passage 571, the recycle check valve 621 is deformed radially inward and opened, and the inner wall of the sleeve 40 A gap is formed with the recycle check valve 621. As a result, the hydraulic oil can flow into the pressure accumulating space 500 via the recycle oil passage 571. On the other hand, when the hydraulic oil travels from the pressure accumulating space 500 side to the retarded chamber 201 side via the recycle oil passage 571 and the recycle port 481, the recycle check valve 621 is deformed radially outward and closed, and the recycle port 481 is closed. Is attached to the inner wall of the sleeve 40. Thus, the hydraulic oil is restricted from flowing out of the sleeve 40 from the pressure accumulation space 500 via the recycle oil passage 571. Thus, the recycle check valve 621 allows the flow of hydraulic oil from the retarding chamber 201 side to the accumulator space 500 side via the recycle port 481 and the recycle oil passage 571, and the recycle oil passage from the accumulator space 500 side. 571, restricts the flow of hydraulic oil toward the retarded angle chamber 201 via the recycle port 481.
 作動油が進角室202側からリサイクルポート482、リサイクル油路572を経由して蓄圧空間500側へ向かうとき、リサイクルチェック弁622は、径方向内側に変形し開弁し、スリーブ40の内壁とリサイクルチェック弁622との間に隙間が形成される。これにより、作動油は、リサイクル油路572を経由して蓄圧空間500へ流入可能である。一方、作動油が蓄圧空間500側からリサイクル油路572、リサイクルポート482を経由して進角室202側へ向かうとき、リサイクルチェック弁622は、径方向外側に変形し閉弁し、リサイクルポート482を塞ぐようにしてスリーブ40の内壁に張り付く。これにより、作動油は、リサイクル油路572を経由した蓄圧空間500からスリーブ40の外部への流出が規制される。このように、リサイクルチェック弁622は、進角室202側からリサイクルポート482、リサイクル油路572を経由して蓄圧空間500側へ向かう作動油の流れを許容し、蓄圧空間500側からリサイクル油路572、リサイクルポート482を経由して進角室202側へ向かう作動油の流れを規制する。 When the hydraulic oil travels from the advance chamber 202 side to the pressure accumulation space 500 side via the recycle port 482 and the recycle oil passage 572, the recycle check valve 622 is deformed radially inward and opened, A gap is formed with the recycle check valve 622. As a result, the hydraulic oil can flow into the pressure accumulating space 500 via the recycle oil passage 572. On the other hand, when the hydraulic oil travels from the pressure accumulating space 500 side to the advance chamber 202 side via the recycle oil passage 572 and the recycle port 482, the recycle check valve 622 is deformed radially outward and closed, and the recycle port 482 is closed. Is attached to the inner wall of the sleeve 40. Accordingly, the hydraulic oil is restricted from flowing out of the sleeve 40 from the pressure accumulation space 500 via the recycle oil passage 572. As described above, the recycle check valve 622 allows the flow of hydraulic oil from the advance chamber 202 side to the pressure accumulation space 500 side via the recycle port 482 and the recycle oil path 572, and the recycle oil path from the pressure accumulation space 500 side. 572, restricts the flow of hydraulic oil toward the advance chamber 202 via the recycle port 482.
 本実施形態では、スプール50が係止部71に当接する位置にあるとき(図10参照)、作動油が第2制御ポート45を経由して進角室202に供給され、遅角室201の作動油が、リサイクルポート481、リサイクルチェック弁621を経由して蓄圧空間500に戻されるとともに、第1制御ポート44、ドレンポート46を経由してバルブタイミング調整装置10の外部へ排出される。 In the present embodiment, when the spool 50 is in a position where it abuts against the locking portion 71 (see FIG. 10), hydraulic oil is supplied to the advance chamber 202 via the second control port 45, and The hydraulic oil is returned to the pressure accumulating space 500 via the recycle port 481 and the recycle check valve 621, and is discharged to the outside of the valve timing adjusting device 10 via the first control port 44 and the drain port 46.
 また、スプール50がスリーブ底部452に当接する位置にあるとき、作動油が第1制御ポート44を経由して遅角室201に供給され、進角室202の作動油が、リサイクルポート482、リサイクルチェック弁622を経由して蓄圧空間500に戻されるとともに、第2制御ポート45、ドレンポート49を経由してバルブタイミング調整装置10の外部へ排出される。 When the spool 50 is in a position where it abuts against the sleeve bottom 452, the hydraulic oil is supplied to the retard chamber 201 via the first control port 44, and the hydraulic oil in the advance chamber 202 is recycled to the recycle port 482. The pressure is returned to the pressure accumulating space 500 via the check valve 622 and discharged to the outside of the valve timing adjusting device 10 via the second control port 45 and the drain port 49.
 上述したように、供給チェック弁61の変形のし易さは、リサイクルチェック弁621、622と同程度である。また、供給ポート43の流路面積の合計は、リサイクルポート481、482それぞれの流路面積の合計よりも大きく設定されている。そのため、供給チェック弁61の開弁圧は、リサイクルチェック弁621、622の開弁圧より低く設定されている。つまり、供給チェック弁61の開弁に関する特性は、リサイクルチェック弁621、622と比べ、開弁し易い特性に設定されているということができる。
 第5実施形態は、上述した点以外の構成は、第3実施形態と同様である。そのため、第3実施形態と同様の構成については、第3実施形態と同様の効果を奏することができる。
As described above, the ease of deformation of the supply check valve 61 is comparable to that of the recycle check valves 621 and 622. Further, the total flow area of the supply port 43 is set larger than the total flow area of the recycle ports 481 and 482. Therefore, the valve opening pressure of the supply check valve 61 is set lower than the valve opening pressures of the recycle check valves 621 and 622. That is, it can be said that the characteristics related to the opening of the supply check valve 61 are set to characteristics that are easier to open than the recycle check valves 621 and 622.
The configuration of the fifth embodiment is the same as that of the third embodiment except for the points described above. Therefore, about the structure similar to 3rd Embodiment, there can exist an effect similar to 3rd Embodiment.
 なお、本実施形態では、供給チェック弁61、リサイクルチェック弁621、622は、同一の仕様(幅、板厚)で形成されている。これにより、供給チェック弁61とリサイクルチェック弁621とリサイクルチェック弁622とを区別することなく、所定の位置に配置することができる。そのため、誤組付の心配なく、製造が容易である。
 以上説明したように、本実施形態では、スリーブ40は、蓄圧空間500と遅角室201または進角室202とを接続可能に形成されたリサイクルポート481、482をさらに有している。
 供給チェック弁61は、スプール50の外側に設けられ、閉弁時、供給ポート43を塞ぐ。
 リサイクルチェック弁621、622は、スプール50の外側に設けられ、閉弁時、リサイクルポート481、482を塞ぐ。
 本実施形態では、供給チェック弁61、リサイクルチェック弁621、622がいずれもスプール50とスリーブ40との間に設けられている。そのため、油路切換弁11の径方向の体格を小さくすることができる。
In the present embodiment, the supply check valve 61 and the recycle check valves 621 and 622 are formed with the same specifications (width and plate thickness). Accordingly, the supply check valve 61, the recycle check valve 621, and the recycle check valve 622 can be arranged at predetermined positions without being distinguished from each other. Therefore, it is easy to manufacture without worrying about misassembly.
As described above, in the present embodiment, the sleeve 40 further includes the recycle ports 481 and 482 formed so that the pressure accumulating space 500 and the retard chamber 201 or the advance chamber 202 can be connected.
The supply check valve 61 is provided outside the spool 50 and closes the supply port 43 when the valve is closed.
The recycle check valves 621 and 622 are provided outside the spool 50 and close the recycle ports 481 and 482 when the valves are closed.
In the present embodiment, the supply check valve 61 and the recycle check valves 621 and 622 are both provided between the spool 50 and the sleeve 40. Therefore, the physique in the radial direction of the oil passage switching valve 11 can be reduced.
  (第6実施形態)
 本開示の第6実施形態によるバルブタイミング調整装置の油路切換弁を図11に示す。第6実施形態は、スリーブ40、スプール50、チェック弁の構成等が第1実施形態と異なる。
(Sixth embodiment)
An oil passage switching valve of a valve timing adjusting device according to a sixth embodiment of the present disclosure is shown in FIG. The sixth embodiment is different from the first embodiment in the configuration of the sleeve 40, the spool 50, the check valve, and the like.
 本実施形態では、バルブタイミング調整装置10は、遅角供給油路RRs、進角供給油路RAs、遅角ドレン油路RRd、進角ドレン油路RAd、チェック弁としての遅角供給チェック弁81および進角供給チェック弁82等を備えている。 In the present embodiment, the valve timing adjusting device 10 includes a retard supply oil path RRs, an advance supply oil path RAs, a retard drain oil path RRd, an advance drain oil path RAd, and a retard supply check valve 81 as a check valve. And an advance supply check valve 82 and the like.
 本実施形態では、係止部71は有底筒状に形成され、外周壁がアウタースリーブ42のスリーブ筒部421の内周壁に嵌合するよう設けられている。係止部71の底部の中央には、穴部が形成されており、当該穴部の内側にスプール底部53が位置している。 In the present embodiment, the locking portion 71 is formed in a bottomed cylindrical shape, and the outer peripheral wall is provided so as to be fitted to the inner peripheral wall of the sleeve cylindrical portion 421 of the outer sleeve 42. A hole is formed in the center of the bottom of the locking part 71, and the spool bottom 53 is located inside the hole.
 係止部71は、底部により、スプール50の一端を係止可能である。係止部71は、スプール50のスリーブ底部412とは反対側へのスプール50の移動を規制可能である。これにより、スプール50は、インナースリーブ41の内側からの脱落が抑制されている。 The locking part 71 can lock one end of the spool 50 by the bottom part. The locking portion 71 can restrict the movement of the spool 50 to the side opposite to the sleeve bottom portion 412 of the spool 50. As a result, the spool 50 is prevented from falling off from the inner side of the inner sleeve 41.
 スプール50は、係止部71に当接する位置から、スリーブ底部412に当接する位置まで、軸方向に移動可能である。すなわち、係止部71に当接する位置(図11参照)から、スリーブ底部412に当接する位置までが、スリーブ40に対する移動可能範囲である。以下、このスプール50の移動可能範囲を「ストローク区間」と呼ぶ。 The spool 50 is movable in the axial direction from a position where it comes into contact with the locking portion 71 to a position where it comes into contact with the sleeve bottom 412. That is, the movable range relative to the sleeve 40 is from the position (see FIG. 11) that contacts the locking portion 71 to the position that contacts the sleeve bottom 412. Hereinafter, the movable range of the spool 50 is referred to as a “stroke section”.
 図11に示すように、インナースリーブ41のスリーブ底部412側の端部は、外径がアウタースリーブ42の内径より小さく形成されている。これにより、インナースリーブ41のスリーブ底部412側の端部の外周壁とアウタースリーブ42の内周壁との間には、略円筒状の空間である筒状空間St1が形成されている。 As shown in FIG. 11, the end of the inner sleeve 41 on the sleeve bottom 412 side has an outer diameter smaller than the inner diameter of the outer sleeve 42. Thereby, a cylindrical space St <b> 1 that is a substantially cylindrical space is formed between the outer peripheral wall of the end portion of the inner sleeve 41 on the sleeve bottom 412 side and the inner peripheral wall of the outer sleeve 42.
 また、インナースリーブ41には、環状凹部Htが形成されている。環状凹部Htは、インナースリーブ41の外周壁の係止部47に対応する位置から径方向内側へ環状に凹むよう形成されている。これにより、環状凹部Htとアウタースリーブ42の内周壁との間には、環状の空間である環状空間St2が形成されている。 Further, the inner sleeve 41 is formed with an annular recess Ht. The annular recess Ht is formed so as to be recessed annularly radially inward from a position corresponding to the engaging portion 47 of the outer peripheral wall of the inner sleeve 41. Thus, an annular space St2 that is an annular space is formed between the annular recess Ht and the inner peripheral wall of the outer sleeve 42.
 また、インナースリーブ41には、流路溝部510が形成されている。流路溝部510は、インナースリーブ41の外周壁から径方向内側へ凹み、かつ、インナースリーブ41の軸方向へ延びるようにして形成されている。流路溝部510は、軸方向供給油路RsAを形成している。すなわち、軸方向供給油路RsAは、アウタースリーブ42とインナースリーブ41との界面T1においてスリーブ40の軸方向に延びるよう形成されている。軸方向供給油路RsAは、一端が筒状空間St1に接続し、他端が環状空間St2に接続している。 Further, the inner sleeve 41 is formed with a flow channel groove 510. The channel groove 510 is formed so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 41 and to extend in the axial direction of the inner sleeve 41. The channel groove 510 forms an axial supply oil path RsA. That is, the axial supply oil passage RsA is formed so as to extend in the axial direction of the sleeve 40 at the interface T1 between the outer sleeve 42 and the inner sleeve 41. One end of the axial supply oil passage RsA is connected to the cylindrical space St1, and the other end is connected to the annular space St2.
 また、インナースリーブ41には、規制溝部511、512が形成されている。規制溝部511は、インナースリーブ41の内周壁の筒状空間St1の端部に対応する位置から径方向外側へ環状に凹むよう形成されている。規制溝部512は、インナースリーブ41の内周壁の環状凹部Htに対応する位置から径方向外側へ環状に凹むよう形成されている。 Further, the inner sleeve 41 is formed with restriction groove portions 511 and 512. The restriction groove portion 511 is formed so as to be annularly recessed radially outward from a position corresponding to the end portion of the cylindrical space St1 of the inner peripheral wall of the inner sleeve 41. The restriction groove portion 512 is formed so as to be annularly recessed outward in the radial direction from a position corresponding to the annular recessed portion Ht of the inner peripheral wall of the inner sleeve 41.
 スリーブ40は、遅角供給開口部ORs、進角供給開口部OAs、遅角開口部OR、進角開口部OAを有している。「流入穴」としての遅角供給開口部ORsは、スリーブ40の径方向に延びて「筒部材」としてのインナースリーブ41の規制溝部511と筒状空間St1および軸方向供給油路RsAとを接続するよう形成されている。なお、遅角供給開口部ORsは、インナースリーブ41の周方向に複数形成されている。 The sleeve 40 has a retard supply opening ORs, an advance supply opening OAs, a retard opening OR, and an advance opening OA. The retard supply opening ORs as the “inflow hole” extends in the radial direction of the sleeve 40 and connects the regulation groove 511 of the inner sleeve 41 as the “tubular member” with the cylindrical space St1 and the axial supply oil passage RsA. It is formed to do. A plurality of retard angle supply openings ORs are formed in the circumferential direction of the inner sleeve 41.
 「流入穴」としての進角供給開口部OAsは、スリーブ40の径方向に延びてインナースリーブ41の規制溝部512と環状空間St2および軸方向供給油路RsAとを接続するよう形成されている。なお、進角供給開口部OAsは、インナースリーブ41の周方向に複数形成されている。 The advance angle supply opening OAs as the “inflow hole” extends in the radial direction of the sleeve 40 and is formed so as to connect the restriction groove portion 512 of the inner sleeve 41 with the annular space St2 and the axial supply oil passage RsA. A plurality of advance angle supply openings OAs are formed in the circumferential direction of the inner sleeve 41.
 遅角開口部ORは、スリーブ40の径方向に延びてインナースリーブ41の内側の空間とアウタースリーブ42の外側の空間とを接続するよう形成されている。なお、遅角開口部ORは、スリーブ40の周方向に複数形成されている。遅角開口部ORは、遅角油路301を経由して遅角室201に連通している。 The retarded angle opening OR extends in the radial direction of the sleeve 40 and is formed to connect the space inside the inner sleeve 41 and the space outside the outer sleeve 42. A plurality of the retarded angle openings OR are formed in the circumferential direction of the sleeve 40. The retarded angle opening OR communicates with the retarded angle chamber 201 via the retarded oil passage 301.
 進角開口部OAは、スリーブ40の径方向に延びてインナースリーブ41の内側の空間とアウタースリーブ42の外側の空間とを接続するよう形成されている。進角開口部OAは、遅角開口部ORに対し係止部47側に形成されている。なお、進角開口部OAは、スリーブ40の周方向に複数形成されている。進角開口部OAは、進角油路302を経由して進角室202に連通している。 The advance opening OA extends in the radial direction of the sleeve 40 and is formed so as to connect the space inside the inner sleeve 41 and the space outside the outer sleeve 42. The advance opening OA is formed on the locking portion 47 side with respect to the retard opening OR. A plurality of advance opening portions OA are formed in the circumferential direction of the sleeve 40. The advance opening OA communicates with the advance chamber 202 via the advance oil passage 302.
 スプール50は、遅角供給凹部HRs、遅角ドレン凹部HRd、進角ドレン凹部HAd、進角供給凹部HAs、ドレン開口部Od1、Od2を有している。遅角供給凹部HRs、遅角ドレン凹部HRd、進角ドレン凹部HAd、進角供給凹部HAsは、それぞれ、スプール50の外周壁から径方向内側へ凹むようにして環状に形成されている。遅角供給凹部HRs、遅角ドレン凹部HRd、進角ドレン凹部HAd、進角供給凹部HAsは、この順でスプール50の軸方向に並ぶよう形成されている。また、遅角ドレン凹部HRdと進角ドレン凹部HAdとは、一体に形成されている。遅角ドレン凹部HRdおよび進角ドレン凹部HAdは、インナースリーブ41の内周壁との間に特定空間Ssを形成している。すなわち、スプール50は、スリーブ40との間に特定空間Ssを形成している。 The spool 50 has a retard supply recess HRs, a retard drain recess HRd, an advance drain recess HAd, an advance supply recess HAs, and drain openings Od1, Od2. The retard supply recess HRs, the retard drain recess HRd, the advance drain recess HAd, and the advance supply recess HAs are each formed in an annular shape so as to be recessed radially inward from the outer peripheral wall of the spool 50. The retard supply recess HRs, the retard drain recess HRd, the advance drain recess HAd, and the advance supply recess HAs are formed to be aligned in the axial direction of the spool 50 in this order. The retard drain concavity HRd and the advance drain concavity HAd are integrally formed. The retard drain concavity HRd and the advance drain concavity HAd form a specific space Ss between the inner peripheral wall of the inner sleeve 41. That is, the spool 50 forms a specific space Ss between the sleeve 50 and the spool 50.
 ドレン開口部Od1は、スプール50の内側の空間と遅角ドレン凹部HRdおよび進角ドレン凹部HAd、すなわち、特定空間Ssとを連通するよう形成されている。ドレン開口部Od2は、スプール50のスプール底部53側の端部において内側の空間と外側の空間とを連通するよう形成されている。なお、ドレン開口部Od1、Od2は、それぞれ、スプール50の周方向に複数形成されている。 The drain opening Od1 is formed so as to communicate the space inside the spool 50 with the retard drain concavity HRd and the advance drain concavity HAd, that is, the specific space Ss. The drain opening Od2 is formed to communicate the inner space and the outer space at the end of the spool 50 on the spool bottom 53 side. A plurality of drain openings Od1 and Od2 are formed in the circumferential direction of the spool 50, respectively.
 遅角供給油路RRsは、油路切換弁11を経由してオイルポンプ8と遅角室201とを接続している。進角供給油路RAsは、油路切換弁11を経由してオイルポンプ8と進角室202とを接続している。ドレン油路としての遅角ドレン油路RRdは、遅角室201とオイルパン7とを接続している。ドレン油路としての進角ドレン油路RAdは、進角室202とオイルパン7とを接続している。 The retard supply oil path RRs connects the oil pump 8 and the retard chamber 201 via the oil path switching valve 11. The advance angle supply oil path RAs connects the oil pump 8 and the advance angle chamber 202 via the oil path switching valve 11. A retarded drain oil path RRd as a drain oil path connects the retarded chamber 201 and the oil pan 7. An advance drain oil passage RAd as a drain oil passage connects the advance chamber 202 and the oil pan 7.
 遅角供給油路RRsは、供給穴部101、軸穴部100、筒状空間St1、軸方向供給油路RsA、遅角供給開口部ORs、規制溝部511、遅角供給凹部HRs、遅角開口部OR、遅角油路301を経由して、オイルポンプ8と遅角室201とを接続している。進角供給油路RAsは、供給穴部101、軸穴部100、筒状空間St1、軸方向供給油路RsA、進角供給開口部OAs、規制溝部512、進角供給凹部HAs、進角開口部OA、進角油路302を経由して、オイルポンプ8と進角室202とを接続している。 The retard supply oil path RRs includes a supply hole 101, a shaft hole 100, a cylindrical space St1, an axial supply oil path RsA, a retard supply opening ORs, a regulation groove 511, a retard supply recess HRs, and a retard opening. The oil pump 8 and the retard chamber 201 are connected via the part OR and the retard oil passage 301. The advance angle supply oil path RAs includes a supply hole 101, a shaft hole 100, a cylindrical space St1, an axial supply oil path RsA, an advance angle supply opening OAs, a restriction groove 512, an advance angle supply recess HAs, and an advance angle opening. The oil pump 8 and the advance chamber 202 are connected via the part OA and the advance oil passage 302.
 遅角ドレン油路RRdは、遅角油路301、遅角開口部OR、遅角ドレン凹部HRd、ドレン開口部Od1、Od2を経由して、遅角室201とオイルパン7とを接続している。進角ドレン油路RAdは、進角油路302、進角開口部OA、進角ドレン凹部HAd、ドレン開口部Od1、Od2を経由して、進角室202とオイルパン7とを接続している。このように、遅角供給油路RRs、進角供給油路RAs、遅角ドレン油路RRd、進角ドレン油路RAdは、一部が油路切換弁11の内部に形成されている。 The retarded drain oil passage RRd connects the retarded chamber 201 and the oil pan 7 via the retarded oil passage 301, the retarded opening OR, the retarded drain recess HRd, and the drain openings Od1 and Od2. Yes. The advance drain oil passage RAd connects the advance chamber 202 and the oil pan 7 via the advance oil passage 302, the advance opening OA, the advance drain recess HAd, and the drain openings Od1, Od2. Yes. In this way, the retard angle supply oil path RRs, the advance angle supply oil path RAs, the retard angle drain oil path RRd, and the advance angle drain oil path RAd are partially formed inside the oil path switching valve 11.
 スプール50が係止部71に当接しているとき(図11参照)、すなわち、スプール50がストローク区間の一方の端部に位置するとき、スプール50が遅角開口部ORを開いているため、オイルポンプ8は、遅角供給油路RRsの供給穴部101、軸穴部100、筒状空間St1、軸方向供給油路RsA、遅角供給開口部ORs、規制溝部511、遅角供給凹部HRs、遅角開口部OR、遅角油路301を経由して遅角室201に連通する。これにより、オイルポンプ8から遅角供給油路RRsを経由して遅角室201に作動油を供給することができる。また、このとき、進角室202は、進角ドレン油路RAdの進角油路302、進角開口部OA、進角ドレン凹部HAd、ドレン開口部Od1、Od2を経由してオイルパン7に連通する。これにより、進角室202から進角ドレン油路RAdを経由してオイルパン7に作動油を排出することができる。 When the spool 50 is in contact with the locking portion 71 (see FIG. 11), that is, when the spool 50 is positioned at one end of the stroke section, the spool 50 opens the retard opening OR, The oil pump 8 includes a supply hole portion 101, a shaft hole portion 100, a cylindrical space St1, an axial supply oil passage RsA, a retardation supply opening portion ORs, a regulation groove portion 511, and a retardation supply recess portion HRs of the retardation supply oil passage RRs. The retard chamber 201 communicates with the retard chamber 201 via the retard opening OR and the retard oil passage 301. As a result, the hydraulic oil can be supplied from the oil pump 8 to the retard chamber 201 via the retard supply oil passage RRs. At this time, the advance chamber 202 enters the oil pan 7 via the advance oil passage 302 of the advance drain oil passage RAd, the advance opening OA, the advance drain recess HAd, and the drain openings Od1 and Od2. Communicate. As a result, the hydraulic oil can be discharged from the advance chamber 202 to the oil pan 7 via the advance drain oil path RAd.
 スプール50が係止部71とスリーブ底部412との間に位置しているとき、すなわち、スプール50がストローク区間の中間に位置するとき、オイルポンプ8は、進角供給油路RAsの供給穴部101、軸穴部100、筒状空間St1、軸方向供給油路RsA、進角供給開口部OAs、規制溝部512、進角供給凹部HAs、進角開口部OA、進角油路302を経由して進角室202に連通する。なお、このとき、遅角供給油路RRsによりオイルポンプ8と遅角室201とは連通している。これにより、オイルポンプ8から遅角供給油路RRs、進角供給油路RAsを経由して遅角室201、進角室202に作動油を供給することができる。ただし、スプール50により遅角ドレン油路RRdおよび進角ドレン油路RAdは閉じられている、すなわち、遮断されているため、作動油は遅角室201および進角室202からオイルパン7に排出されない。 When the spool 50 is positioned between the locking portion 71 and the sleeve bottom portion 412, that is, when the spool 50 is positioned in the middle of the stroke section, the oil pump 8 is supplied with the supply hole portion of the advance supply oil passage RAs. 101, the shaft hole 100, the cylindrical space St1, the axial supply oil passage RsA, the advance supply opening OAs, the regulation groove 512, the advance supply recess HAs, the advance opening OA, and the advance oil passage 302. To communicate with the advance chamber 202. At this time, the oil pump 8 and the retard chamber 201 are in communication with each other through the retard supply oil passage RRs. Accordingly, the hydraulic oil can be supplied from the oil pump 8 to the retard chamber 201 and the advance chamber 202 via the retard supply oil passage RRs and the advance supply oil passage RAs. However, since the retard drain oil passage RRd and the advance drain oil passage RAd are closed by the spool 50, that is, blocked, the hydraulic oil is discharged from the retard chamber 201 and the advance chamber 202 to the oil pan 7. Not.
 スプール50がスリーブ底部412に当接しているとき、すなわち、スプール50がストローク区間の他方の端部に位置するとき、遅角室201は、遅角ドレン油路RRdの遅角油路301、遅角開口部OR、遅角ドレン凹部HRd、ドレン開口部Od1、Od2を経由してオイルパン7に連通する。なお、このとき、進角供給油路RAsによりオイルポンプ8と進角室202とは連通している。これにより、遅角室201から遅角ドレン油路RRdを経由してオイルパン7に作動油を排出することができるとともに、オイルポンプ8から進角供給油路RAsを経由して進角室202に作動油を供給することができる。 When the spool 50 is in contact with the sleeve bottom 412, that is, when the spool 50 is located at the other end of the stroke section, the retard chamber 201 is connected to the retard oil passage 301 of the retard drain oil passage RRd. The oil pan 7 communicates with the corner opening OR, the retard drain concavity HRd, and the drain openings Od1 and Od2. At this time, the oil pump 8 and the advance chamber 202 are in communication with each other through the advance supply oil passage RAs. As a result, the hydraulic oil can be discharged from the retard chamber 201 to the oil pan 7 via the retard drain oil passage RRd, and the advance chamber 202 from the oil pump 8 via the advance feed oil passage RAs. Can be supplied with hydraulic oil.
 アウタースリーブ42のスリーブ底部412側の端部の内側、すなわち、遅角供給油路RRsおよび進角供給油路RAsの途中には、フィルタ75が設けられている。フィルタ75は、例えば円板状のメッシュである。フィルタ75は、作動油に含まれる異物を捕集可能である。そのため、フィルタ75の下流側、すなわち、オイルポンプ8とは反対側に異物が流れるのを抑制することができる。 A filter 75 is provided inside the end of the outer sleeve 42 on the sleeve bottom 412 side, that is, in the middle of the retard supply oil passage RRs and the advance supply oil passage RAs. The filter 75 is a disk-shaped mesh, for example. The filter 75 can collect foreign substances contained in the hydraulic oil. Therefore, it is possible to suppress the foreign matter from flowing to the downstream side of the filter 75, that is, the side opposite to the oil pump 8.
 本実施形態では、「チェック弁」としての遅角供給チェック弁81および進角供給チェック弁82を備えている。遅角供給チェック弁81および進角供給チェック弁82は、それぞれ、例えば金属からなる単一の長方形の板材を長手方向が周方向に沿うよう巻くことにより筒状に形成されている。「チェック弁」としての遅角供給チェック弁81および進角供給チェック弁82は、「筒部材」としてのインナースリーブ41の内側に設けられた状態のとき、周方向の一方の端部である内端部が、周方向の他方の端部である外端部の内側に位置している。ここで、遅角供給チェック弁81および進角供給チェック弁82の外端部には、内端部と周方向で重なる部位である重なり部830が形成されている。遅角供給チェック弁81および進角供給チェック弁82の形状等に関する構成については、後に詳述する。 In this embodiment, a retard supply check valve 81 and an advance supply check valve 82 are provided as “check valves”. Each of the retard supply check valve 81 and the advance supply check valve 82 is formed in a cylindrical shape by winding a single rectangular plate made of, for example, metal so that the longitudinal direction thereof is along the circumferential direction. The retard supply check valve 81 and the advance supply check valve 82 as “check valves” are inner ends that are one end in the circumferential direction when provided inside the inner sleeve 41 as a “tubular member”. The end is located inside the outer end which is the other end in the circumferential direction. Here, at the outer end portions of the retard supply check valve 81 and the advance supply check valve 82, an overlapping portion 830 that is a portion overlapping the inner end portion in the circumferential direction is formed. The configuration related to the shapes and the like of the retard supply check valve 81 and the advance supply check valve 82 will be described in detail later.
 遅角供給チェック弁81は、規制溝部511に設けられている。遅角供給チェック弁81は、規制溝部511において径方向に弾性変形可能に設けられている。遅角供給チェック弁81は、遅角供給開口部ORsに対しインナースリーブ41の径方向内側に設けられている。遅角供給チェック弁81は、規制溝部511に設けられ、遅角供給油路RRsに「流体」としての作動油が流れていない状態、すなわち、外力が作用していない状態では、重なり部830が内端部に重なった状態である。 The retard supply check valve 81 is provided in the regulation groove 511. The retard supply check valve 81 is provided in the regulating groove 511 so as to be elastically deformable in the radial direction. The retard supply check valve 81 is provided on the radially inner side of the inner sleeve 41 with respect to the retard supply opening ORs. The retard supply check valve 81 is provided in the restriction groove 511, and in a state where hydraulic fluid as “fluid” does not flow in the retard supply oil path RRs, that is, in a state where no external force is applied, the overlapping portion 830 is provided. It is the state which overlapped with the inner end part.
 作動油が遅角供給油路RRsにおいて遅角供給開口部ORs側から遅角供給凹部HRs側へ流れるとき、遅角供給チェック弁81は、外周壁が作動油により押され径方向内側へ縮まるよう、すなわち、内径が縮小するようにして変形する。これにより、遅角供給チェック弁81の外周壁が遅角供給開口部ORsから離間し、作動油は、遅角供給チェック弁81を経由して遅角供給凹部HRs側へ流れることができる。このとき、重なり部830は、重なり部830と遅角供給チェック弁81の内端部との重なり範囲の長さを拡大しながら一部が重なった状態を維持した状態となる。 When the hydraulic oil flows from the retard supply opening ORs side to the retard supply recess HRs side in the retard supply oil path RRs, the retard supply check valve 81 is pushed by the hydraulic oil so that the outer peripheral wall is contracted radially inward. That is, the inner diameter is deformed to be reduced. Accordingly, the outer peripheral wall of the retard supply check valve 81 is separated from the retard supply opening ORs, and the hydraulic oil can flow to the retard supply recess HRs side via the retard supply check valve 81. At this time, the overlapping portion 830 is in a state in which a part of the overlapping portion 830 is maintained while the length of the overlapping range between the overlapping portion 830 and the inner end portion of the retard supply check valve 81 is enlarged.
 遅角供給油路RRsを流れる作動油の流量が所定値以下になると、遅角供給チェック弁81は、径方向外側へ拡がるよう、すなわち、内径が拡大するようにして変形する。さらに、作動油が遅角供給凹部HRs側から遅角供給開口部ORs側へ流れる場合、遅角供給チェック弁81の内周壁が作動油により径方向外側へ押され、遅角供給開口部ORsに当接する。これにより、遅角供給凹部HRs側から遅角供給開口部ORs側への作動油の流れが規制される。 When the flow rate of the hydraulic oil flowing through the retarded supply oil passage RRs becomes a predetermined value or less, the retarded supply check valve 81 is deformed so as to expand radially outward, that is, the inner diameter is expanded. Further, when the hydraulic oil flows from the retard supply recess HRs side to the retard supply opening ORs side, the inner peripheral wall of the retard supply check valve 81 is pushed radially outward by the hydraulic oil, and enters the retard supply opening ORs. Abut. Thereby, the flow of the hydraulic oil from the retard supply recess HRs side to the retard supply opening ORs side is restricted.
 このように、遅角供給チェック弁81は、逆止弁として機能し、遅角供給開口部ORs側から遅角供給凹部HRs側への作動油の流れを許容し、遅角供給凹部HRs側から遅角供給開口部ORs側への作動油の流れを規制可能である。すなわち、遅角供給チェック弁81は、外周壁と内周壁とを連通する遅角供給開口部ORsを有する筒状のインナースリーブ41の内側に設けられ、遅角供給開口部ORsを経由してインナースリーブ41の内側へ向かう作動油の流れを許容し、インナースリーブ41の内側から遅角供給開口部ORsへ向かう作動油の流れを規制可能である。遅角供給チェック弁81は、遅角供給油路RRsにおいて油路切換弁11のスプール50に対しオイルポンプ8側に設けられ、オイルポンプ8側から遅角室201側への作動油の流れのみ許容する。 In this way, the retard supply check valve 81 functions as a check valve, allows the hydraulic oil to flow from the retard supply opening ORs side to the retard supply recess HRs side, and from the retard supply recess HRs side. The flow of hydraulic oil to the retard supply opening ORs side can be regulated. That is, the retard supply check valve 81 is provided inside the cylindrical inner sleeve 41 having the retard supply opening ORs that communicates the outer peripheral wall and the inner peripheral wall, and the inner via the retard supply opening ORs. The flow of hydraulic oil toward the inner side of the sleeve 41 is allowed, and the flow of hydraulic oil from the inner side of the inner sleeve 41 toward the retard supply opening ORs can be regulated. The retard supply check valve 81 is provided on the oil pump 8 side with respect to the spool 50 of the oil path switching valve 11 in the retard supply oil path RRs, and only the flow of hydraulic oil from the oil pump 8 side to the retard chamber 201 side is provided. Allow.
 進角供給チェック弁82は、規制溝部512に設けられている。進角供給チェック弁82は、規制溝部512において径方向に弾性変形可能に設けられている。進角供給チェック弁82は、進角供給開口部OAsに対しインナースリーブ41の径方向内側に設けられている。進角供給チェック弁82は、規制溝部512に設けられ、進角供給油路RAsに作動油が流れていない状態、すなわち、外力が作用していない状態では、重なり部830が内端部に重なった状態である(図12参照)。 The advance angle supply check valve 82 is provided in the restriction groove portion 512. The advance angle supply check valve 82 is provided in the regulating groove portion 512 so as to be elastically deformable in the radial direction. The advance angle supply check valve 82 is provided on the radially inner side of the inner sleeve 41 with respect to the advance angle supply opening OAs. The advance angle supply check valve 82 is provided in the restriction groove portion 512, and the overlapping portion 830 overlaps the inner end portion in a state where hydraulic oil does not flow in the advance angle supply oil passage RAs, that is, in a state where no external force is acting. (See FIG. 12).
 作動油が進角供給油路RAsにおいて進角供給開口部OAs側から進角供給凹部HAs側へ流れるとき、進角供給チェック弁82は、外周壁が作動油により押され径方向内側へ縮まるよう、すなわち、内径が縮小するようにして変形する。これにより、進角供給チェック弁82の外周壁が進角供給開口部OAsから離間し、作動油は、進角供給チェック弁82を経由して進角供給凹部HAs側へ流れることができる。このとき、重なり部830は、重なり部830と進角供給チェック弁82の内端部との重なり範囲の長さを拡大しながら一部が重なった状態を維持した状態となる。 When hydraulic fluid flows from the advanced angle supply opening OAs side to the advanced angle supply recess HAs side in the advanced angle supply oil path RAs, the advanced angle supply check valve 82 is pushed by the hydraulic oil so that the outer peripheral wall is contracted radially inward. That is, the inner diameter is deformed to be reduced. Thereby, the outer peripheral wall of the advance angle supply check valve 82 is separated from the advance angle supply opening OAs, and the hydraulic fluid can flow to the advance angle supply recess HAs side via the advance angle supply check valve 82. At this time, the overlapping portion 830 is in a state where a part of the overlapping portion 830 is maintained while the overlapping range between the overlapping portion 830 and the inner end portion of the advance angle supply check valve 82 is enlarged.
 進角供給油路RAsを流れる作動油の流量が所定値以下になると、進角供給チェック弁82は、径方向外側へ拡がるよう、すなわち、内径が拡大するようにして変形する。さらに、作動油が進角供給凹部HAs側から進角供給開口部OAs側へ流れる場合、進角供給チェック弁82の内周壁が作動油により径方向外側へ押され、進角供給開口部OAsに当接する。これにより、進角供給凹部HAs側から進角供給開口部OAs側への作動油の流れが規制される。 When the flow rate of the hydraulic oil flowing through the advance angle supply oil passage RAs becomes a predetermined value or less, the advance angle supply check valve 82 is deformed so as to expand radially outward, that is, the inner diameter increases. Further, when the hydraulic oil flows from the advance angle supply recess HAs side to the advance angle supply opening OAs side, the inner peripheral wall of the advance angle supply check valve 82 is pushed radially outward by the hydraulic oil, and enters the advance angle supply opening OAs. Abut. As a result, the flow of hydraulic oil from the advance angle supply recess HAs side to the advance angle supply opening OAs side is restricted.
 このように、進角供給チェック弁82は、逆止弁として機能し、進角供給開口部OAs側から進角供給凹部HAs側への作動油の流れを許容し、進角供給凹部HAs側から進角供給開口部OAs側への作動油の流れを規制可能である。すなわち、進角供給チェック弁82は、外周壁と内周壁とを連通する進角供給開口部OAsを有する筒状のインナースリーブ41の内側に設けられ、進角供給開口部OAsを経由してインナースリーブ41の内側へ向かう作動油の流れを許容し、インナースリーブ41の内側から進角供給開口部OAsへ向かう作動油の流れを規制可能である。進角供給チェック弁82は、進角供給油路RAsにおいて油路切換弁11のスプール50に対しオイルポンプ8側に設けられ、オイルポンプ8側から進角室202側への作動油の流れのみ許容する。 In this way, the advance angle supply check valve 82 functions as a check valve, allows the hydraulic oil to flow from the advance angle supply opening OAs side to the advance angle supply recess HAs side, and from the advance angle supply recess HAs side. The flow of hydraulic oil to the advance angle supply opening OAs side can be regulated. That is, the advance angle supply check valve 82 is provided inside the cylindrical inner sleeve 41 having the advance angle supply opening OAs that communicates the outer peripheral wall and the inner peripheral wall, and the inner angle via the advance angle supply opening OAs. The flow of hydraulic oil toward the inside of the sleeve 41 is allowed, and the flow of hydraulic oil toward the advance angle supply opening OAs from the inner side of the inner sleeve 41 can be regulated. The advance angle supply check valve 82 is provided on the oil pump 8 side with respect to the spool 50 of the oil path switching valve 11 in the advance angle oil supply path RAs, and only the flow of hydraulic oil from the oil pump 8 side to the advance chamber 202 side is provided. Allow.
 規制溝部511、512は、それぞれ、遅角供給チェック弁81、進角供給チェック弁82の軸方向の移動を規制可能である。図12に示すように、進角供給開口部OAsは、インナースリーブ41に5つ形成されている。進角供給開口部OAsは、インナースリーブ41の周方向の全範囲のうち概ね半分の範囲に形成されている。すなわち、進角供給開口部OAsは、インナースリーブ41の周方向における特定の部位に偏って形成されている。そのため、作動油が進角供給開口部OAs側から進角供給凹部HAs側へ流れるとき、進角供給チェック弁82は、作動油によって、規制溝部512の進角供給開口部OAsとは反対側に押し付けられる。これにより、進角供給チェック弁82が規制溝部512から脱落するのを抑制することができる。したがって、規制溝部512は、進角供給チェック弁82の軸方向の移動を規制する機能を維持することができる。 The restriction grooves 511 and 512 can restrict the movement of the retard supply check valve 81 and the advance supply check valve 82 in the axial direction, respectively. As shown in FIG. 12, five advance angle supply openings OAs are formed in the inner sleeve 41. The advance angle supply opening OAs is formed in approximately half of the entire circumferential range of the inner sleeve 41. That is, the advance angle supply opening OAs is formed so as to be biased to a specific portion in the circumferential direction of the inner sleeve 41. Therefore, when the hydraulic oil flows from the advance angle supply opening OAs side to the advance angle supply recess HAs side, the advance angle supply check valve 82 is moved to the opposite side of the advance groove supply opening OAs of the restriction groove 512 by the hydraulic oil. Pressed. Thereby, it is possible to suppress the advance angle supply check valve 82 from dropping from the restriction groove portion 512. Therefore, the restriction groove portion 512 can maintain the function of restricting the movement of the advance angle supply check valve 82 in the axial direction.
 遅角供給開口部ORsも、進角供給開口部OAsと同様、インナースリーブ41に5つ形成されている。遅角供給開口部ORsは、インナースリーブ41の周方向の全範囲のうち概ね半分の範囲に形成されている。すなわち、遅角供給開口部ORsは、インナースリーブ41の周方向における特定の部位に偏って形成されている。そのため、作動油が遅角供給開口部ORs側から遅角供給凹部HRs側へ流れるとき、遅角供給チェック弁81は、作動油によって、規制溝部511の遅角供給開口部ORsとは反対側に押し付けられる。これにより、遅角供給チェック弁81が規制溝部511から脱落するのを抑制することができる。したがって、規制溝部511は、遅角供給チェック弁81の軸方向の移動を規制する機能を維持することができる。 The retard angle supply openings ORs are also formed in the inner sleeve 41 in the same manner as the advance angle supply openings OAs. The retard supply opening ORs is formed in approximately half of the entire circumferential range of the inner sleeve 41. That is, the retard supply opening ORs is formed at a specific portion in the circumferential direction of the inner sleeve 41. Therefore, when the hydraulic oil flows from the retard supply opening ORs side to the retard supply recess HRs side, the retard supply check valve 81 is moved to the opposite side of the regulation groove portion 511 from the retard supply opening ORs by the hydraulic oil. Pressed. Thereby, it is possible to suppress the retard supply check valve 81 from dropping from the restriction groove 511. Therefore, the regulation groove 511 can maintain the function of regulating the movement of the retard supply check valve 81 in the axial direction.
 リニアソレノイド9は、スプール底部53に当接するようにして設けられる。リニアソレノイド9は、通電により、スプール底部53を介してスプール50をスプリング72の付勢力に抗してカム軸3側へ押圧する。これにより、スプール50は、ストローク区間においてスリーブ40に対する軸方向の位置が変化する。 The linear solenoid 9 is provided so as to contact the spool bottom 53. The linear solenoid 9 is energized to press the spool 50 against the urging force of the spring 72 via the spool bottom 53 against the camshaft 3 side. As a result, the axial position of the spool 50 with respect to the sleeve 40 changes in the stroke section.
 次に、遅角供給チェック弁81および進角供給チェック弁82の形状等に関する構成について、詳細に説明する。なお、遅角供給チェック弁81の構成は進角供給チェック弁82の構成と同様のため、進角供給チェック弁82の構成についてのみ説明し、遅角供給チェック弁81の構成についての説明は省略する。 Next, the configuration related to the shape and the like of the retard supply check valve 81 and the advance supply check valve 82 will be described in detail. Since the configuration of the retard supply check valve 81 is the same as that of the advance supply check valve 82, only the configuration of the advance supply check valve 82 will be described, and the description of the configuration of the retard supply check valve 81 will be omitted. To do.
 図13、図14に示すように、進角供給チェック弁82は、弁本体850を備えている。なお、図13、図14には、インナースリーブ41の内側に設けられていない状態、すなわち、外力が作用していない自由状態のときの進角供給チェック弁82を示している。弁本体850は、例えば金属からなる単一の長方形の板材を長手方向が周方向に沿うよう巻くことにより筒状に形成されている。弁本体850は、進角供給チェック弁82が自由状態のとき、周方向の一方の端部である内端部851側の部位が、周方向の他方の端部である外端部852側の部位の内側に位置するよう形成されている(図14参照)。 As shown in FIGS. 13 and 14, the advance angle supply check valve 82 includes a valve body 850. 13 and 14 show the advance angle supply check valve 82 in a state where it is not provided inside the inner sleeve 41, that is, in a free state where no external force is acting. The valve body 850 is formed in a cylindrical shape by winding a single rectangular plate made of, for example, metal so that the longitudinal direction is along the circumferential direction. When the advance angle supply check valve 82 is in a free state, the valve body 850 has a portion on the inner end 851 side which is one end portion in the circumferential direction on the outer end portion 852 side which is the other end portion in the circumferential direction. It forms so that it may be located inside a site | part (refer FIG. 14).
 弁本体850は、定曲率部861、小曲率部871を有している。定曲率部861は、弁本体850の周方向の特定の部位であって、一端が外端部852に一致し、他端が外端部852と内端部851との間に位置している。小曲率部871は、弁本体850の周方向の特定の部位であって、一端が定曲率部861の他端に一致し、他端が内端部851に一致する。 The valve body 850 has a constant curvature portion 861 and a small curvature portion 871. The constant curvature portion 861 is a specific portion of the valve body 850 in the circumferential direction, and one end thereof coincides with the outer end portion 852 and the other end is located between the outer end portion 852 and the inner end portion 851. . The small curvature portion 871 is a specific portion in the circumferential direction of the valve body 850, and one end thereof coincides with the other end of the constant curvature portion 861 and the other end coincides with the inner end portion 851.
 定曲率部861は、進角供給チェック弁82が自由状態のとき、一端から他端までの全範囲において曲率が一定である。また、小曲率部871は、進角供給チェック弁82が自由状態のとき、一端から他端までの全範囲において曲率が一定である。ここで、小曲率部871の半径r1は、定曲率部861の半径r2より小さい(図14参照)。つまり、弁本体850は、進角供給チェック弁82が自由状態のとき、周方向の特定の部位において曲率が一定の定曲率部861、および、周方向の定曲率部861以外の部位において曲率が定曲率部861の曲率より小さい小曲率部871を有している。 The constant curvature portion 861 has a constant curvature over the entire range from one end to the other when the advance angle supply check valve 82 is in a free state. Further, the small curvature portion 871 has a constant curvature in the entire range from one end to the other end when the advance angle supply check valve 82 is in a free state. Here, the radius r1 of the small curvature portion 871 is smaller than the radius r2 of the constant curvature portion 861 (see FIG. 14). That is, the valve main body 850 has a curvature at a portion other than the constant curvature portion 861 having a constant curvature at a specific portion in the circumferential direction and a portion other than the constant curvature portion 861 at the circumferential direction when the advance supply check valve 82 is in a free state. A small curvature portion 871 smaller than the curvature of the constant curvature portion 861 is provided.
 定曲率部861の一端から他端までの角度θ1は、例えば約330°である。また、小曲率部871の一端から他端までの角度θ2は、例えば約75°である。進角供給チェック弁82が自由状態のとき、弁本体850の外端部852は、小曲率部871の一端と他端との概ね中間位置の径方向外側に位置している。また、このとき、弁本体850の外端部852の内周壁と小曲率部871の外周壁との間には隙間S1が形成されている(図14参照)。このように、本実施形態では、弁本体850は、進角供給チェック弁82が自由状態のとき、内端部851側の部位が外端部852側の部位の内側に位置するよう、すなわち、両端部が周方向でオーバーラップするよう形成されている。 The angle θ1 from one end to the other end of the constant curvature portion 861 is, for example, about 330 °. Further, the angle θ2 from one end to the other end of the small curvature portion 871 is, for example, about 75 °. When the advance angle supply check valve 82 is in a free state, the outer end portion 852 of the valve main body 850 is located on the radially outer side of a substantially intermediate position between one end and the other end of the small curvature portion 871. At this time, a gap S1 is formed between the inner peripheral wall of the outer end 852 of the valve body 850 and the outer peripheral wall of the small curvature portion 871 (see FIG. 14). Thus, in this embodiment, when the advance angle supply check valve 82 is in the free state, the valve main body 850 is arranged such that the portion on the inner end portion 851 side is located inside the portion on the outer end portion 852 side, that is, Both ends are formed to overlap in the circumferential direction.
 図15に、インナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したときの進角供給チェック弁82を示す。このとき、定曲率部861は、半径r3がr1、r2より小さくなるよう変形している。本実施形態では、進角供給チェック弁82が自由状態のときの小曲率部871の半径をr1、進角供給チェック弁82が自由状態のときの定曲率部861の半径をr2、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したときの定曲率部861の半径をr3、曲率縮小係数Rを(r2-r1)/(r2-r3)とすると、弁本体850は、R=0.58の関係を満たすよう形成されている。 FIG. 15 shows the advance angle supply check valve 82 when it is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs inside the inner sleeve 41. At this time, the constant curvature portion 861 is deformed so that the radius r3 is smaller than r1 and r2. In this embodiment, the radius of the small curvature portion 871 when the advance angle supply check valve 82 is in the free state is r1, the radius of the constant curvature portion 861 when the advance angle supply check valve 82 is in the free state is r2, and the advance angle supply. When the check valve 82 is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs inside the inner sleeve 41, the radius of the constant curvature portion 861 is r3, and the curvature reduction coefficient R is (r2-r1) / (r2 -R3), the valve body 850 is formed to satisfy the relationship of R = 0.58.
 図15に示すように、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したとき、弁本体850に発生する応力のうち最大の応力の発生箇所である最大応力発生箇所P1は、内端部851から約180°の位置である。 As shown in FIG. 15, when the advance angle supply check valve 82 is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs inside the inner sleeve 41, the maximum stress among the stresses generated in the valve body 850. The maximum stress generation point P1 that is the generation point of is the position of about 180 ° from the inner end portion 851.
 次に、本実施形態による進角供給チェック弁82と第1比較形態および第2比較形態とを比較することにより、第1比較形態および第2比較形態に対する本実施形態の優位な点を明らかにする。 Next, by comparing the advance angle supply check valve 82 according to the present embodiment with the first comparative embodiment and the second comparative embodiment, the advantages of the present embodiment over the first comparative embodiment and the second comparative embodiment are clarified. To do.
 図16に示す第1比較形態による進角供給チェック弁85は、弁本体850がR=0.00の関係を満たすよう形成されている点で本実施形態による進角供給チェック弁82と異なる。つまり、第1比較形態による進角供給チェック弁85が自由状態のときの小曲率部871の半径r1は、定曲率部861の半径r2と同じである。よって、第1比較形態による進角供給チェック弁85では、弁本体850は、小曲率部871を有さず、外端部852から内端部851まで一定の曲率(r2)の定曲率部861を有しているということもできる。そのため、進角供給チェック弁85が自由状態のとき、弁本体850の外端部852の内周壁と内端部851側の部位の外周壁とは接触している(図16参照)。第1比較形態による進角供給チェック弁85は、上述した特許文献2(米国特許第7600531号明細書)のチェック弁と同様の構成である。 16 is different from the advance supply check valve 82 according to the present embodiment in that the valve main body 850 is formed so as to satisfy the relationship of R = 0.00. That is, the radius r1 of the small curvature portion 871 when the advance angle supply check valve 85 according to the first comparative embodiment is in the free state is the same as the radius r2 of the constant curvature portion 861. Therefore, in the advance angle supply check valve 85 according to the first comparative embodiment, the valve body 850 does not have the small curvature portion 871, and the constant curvature portion 861 having a constant curvature (r2) from the outer end portion 852 to the inner end portion 851. It can also be said that it has. Therefore, when the advance angle supply check valve 85 is in the free state, the inner peripheral wall of the outer end 852 of the valve body 850 is in contact with the outer peripheral wall of the portion on the inner end 851 side (see FIG. 16). The advance angle supply check valve 85 according to the first comparative embodiment has the same configuration as the check valve of Patent Document 2 (U.S. Pat. No. 7,600,561) described above.
 図17に示すように、第1比較形態による進角供給チェック弁85がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したとき、内端部851が支持点となり、弁本体850に発生する応力のうち最大の応力の発生箇所である最大応力発生箇所P2は、内端部851から約90°の位置である。 As shown in FIG. 17, when the advance angle supply check valve 85 according to the first comparative embodiment is deformed most by the flow of hydraulic oil from the advance angle supply opening OAs inside the inner sleeve 41, the inner end portion 851 is the support point. Thus, the maximum stress generation point P2, which is the generation point of the maximum stress among the stresses generated in the valve body 850, is a position of about 90 ° from the inner end portion 851.
 図18に示す第2比較形態による進角供給チェック弁86は、弁本体850がR=1.00の関係を満たすよう形成されている点で本実施形態による進角供給チェック弁82と異なる。つまり、第2比較形態による進角供給チェック弁86が自由状態のときの小曲率部871の半径r1は、本実施形態による進角供給チェック弁82の小曲率部871の半径r1より小さい。そのため、第2比較形態による進角供給チェック弁86が自由状態のとき弁本体850の外端部852の内周壁と小曲率部871の外周壁との間に形成される隙間S1は、本実施形態による進角供給チェック弁82における隙間S1より大きい。 18 is different from the advance supply check valve 82 according to the present embodiment in that the valve main body 850 is formed so as to satisfy the relationship of R = 1.00. That is, the radius r1 of the small curvature portion 871 when the advance angle supply check valve 86 according to the second comparative embodiment is in the free state is smaller than the radius r1 of the small curvature portion 871 of the advance angle supply check valve 82 according to the present embodiment. Therefore, the clearance S1 formed between the inner peripheral wall of the outer end 852 of the valve body 850 and the outer peripheral wall of the small curvature portion 871 when the advance supply check valve 86 according to the second comparative embodiment is in the free state is the present embodiment. It is larger than the clearance S1 in the advance angle supply check valve 82 according to the form.
 図19に示すように、第2比較形態による進角供給チェック弁86がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したとき、弁本体850に発生する応力のうち最大の応力の発生箇所である最大応力発生箇所P3は、内端部851から約180°の位置である。 As shown in FIG. 19, when the advance angle supply check valve 86 according to the second comparative embodiment is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs inside the inner sleeve 41, the stress generated in the valve body 850 Among them, the maximum stress generation point P3, which is the generation point of the maximum stress, is at a position of about 180 ° from the inner end portion 851.
 図20に、曲率縮小係数Rが0.00(第1比較形態)、0.29、0.58(本実施形態)、0.77、1.00(第2比較形態)の場合について、弁本体850がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したとき、弁本体850の内端部851からの角度(位置)と発生する応力の大きさとの関係を示す。 FIG. 20 shows a valve for the case where the curvature reduction coefficient R is 0.00 (first comparative embodiment), 0.29, 0.58 (this embodiment), 0.77, 1.00 (second comparative embodiment). When the main body 850 is most deformed by the flow of hydraulic oil from the advance supply opening OAs inside the inner sleeve 41, the relationship between the angle (position) from the inner end 851 of the valve main body 850 and the magnitude of the generated stress. Indicates.
 図20に示すように、曲率縮小係数Rが0.00(第1比較形態)の場合、内端部851からの角度が0°から約90°までは応力が上昇し、約90°から180°までは応力が低下する。つまり、曲率縮小係数Rが0.00(第1比較形態)の場合、最大の応力の発生箇所は内端部851から約90°の位置である。また、当該最大の応力は、比較的大きい。そのため、内端部851から約90°の位置に大きな応力が発生、すなわち、特定の箇所に応力が集中し、弁本体850の変形または破損を招くおそれがある。 As shown in FIG. 20, when the curvature reduction coefficient R is 0.00 (first comparative example), the stress increases when the angle from the inner end 851 is from 0 ° to about 90 °, and from about 90 ° to 180 °. The stress decreases until °. That is, when the curvature reduction coefficient R is 0.00 (first comparative example), the location where the maximum stress is generated is at a position of about 90 ° from the inner end portion 851. The maximum stress is relatively large. Therefore, a large stress is generated at a position of about 90 ° from the inner end portion 851, that is, the stress is concentrated at a specific location, which may cause deformation or breakage of the valve body 850.
 図20に示すように、曲率縮小係数Rが1.00(第2比較形態)の場合、内端部851からの角度が0°から約45°までは応力は略0であり、約45°から180°までは応力が上昇する。つまり、曲率縮小係数Rが1.00(第2比較形態)の場合、最大の応力の発生箇所は内端部851から約180°の位置である。また、当該最大の応力は、曲率縮小係数Rが0.00(第1比較形態)の場合と比べ、小さい。そのため、弁本体850に発生する応力を低減しながら応力集中を回避できるものの、弁本体850の内端部851近傍(0°から約45°)の撓み変形が過小となり、弁本体850に十分なばね力を発揮させることができないおそれがある。 As shown in FIG. 20, when the curvature reduction coefficient R is 1.00 (second comparative example), the stress is substantially 0 when the angle from the inner end 851 is from 0 ° to about 45 °, and about 45 °. From 180 to 180 °. That is, when the curvature reduction coefficient R is 1.00 (second comparative example), the location where the maximum stress is generated is at a position of about 180 ° from the inner end portion 851. The maximum stress is smaller than that in the case where the curvature reduction coefficient R is 0.00 (first comparative example). Therefore, although stress concentration can be avoided while reducing the stress generated in the valve body 850, the bending deformation in the vicinity of the inner end portion 851 (from 0 ° to about 45 °) of the valve body 850 becomes excessively small, which is sufficient for the valve body 850. There is a possibility that the spring force cannot be exerted.
 図20に示すように、曲率縮小係数Rが0.58(本実施形態)の場合、内端部851からの角度が0°から180°まで応力が徐々に上昇する。つまり、曲率縮小係数Rが0.58(本実施形態)の場合、最大の応力の発生箇所は内端部851から約180°の位置である。また、当該最大の応力は、曲率縮小係数Rが1.00(第2比較形態)の場合と比べ、小さい。そのため、内端部851から約180°の位置まで弁本体850を滑らかに撓ませ、弁本体850に発生する応力を低減しながら応力集中を回避しつつ、弁本体850に十分なばね力を発揮させることができる。このように、本実施形態による進角供給チェック弁82は、最大変形時、弁本体850に発生する応力を低減しながら応力集中を回避しつつ、弁本体850に十分なばね力を発揮させることができる点で、第1比較形態および第2比較形態に対し優位である。 As shown in FIG. 20, when the curvature reduction coefficient R is 0.58 (this embodiment), the stress gradually increases from the angle from the inner end 851 to 0 ° to 180 °. That is, when the curvature reduction coefficient R is 0.58 (this embodiment), the location where the maximum stress is generated is at a position of about 180 ° from the inner end portion 851. The maximum stress is smaller than that in the case where the curvature reduction coefficient R is 1.00 (second comparative example). Therefore, the valve body 850 is smoothly bent from the inner end portion 851 to a position of about 180 °, and stress concentration is avoided while reducing the stress generated in the valve body 850, and sufficient spring force is exerted on the valve body 850. Can be made. As described above, the advance angle supply check valve 82 according to the present embodiment causes the valve body 850 to exert a sufficient spring force while avoiding stress concentration while reducing the stress generated in the valve body 850 at the maximum deformation. This is advantageous over the first and second comparative embodiments.
 なお、図20に示すように、曲率縮小係数Rが0.29の場合でも、曲率縮小係数Rが0.00(第1比較形態)の場合と比べ、弁本体850に発生する応力を低減しながら応力集中を回避できる。また、曲率縮小係数Rが0.77の場合でも、曲率縮小係数Rが1.00(第2比較形態)の場合と比べ、弁本体850の内端部851近傍(0°から約45°)の撓み変形を大きくでき、弁本体850に適度なばね力を発揮させることができる。 As shown in FIG. 20, even when the curvature reduction coefficient R is 0.29, the stress generated in the valve body 850 is reduced as compared with the case where the curvature reduction coefficient R is 0.00 (first comparative embodiment). However, stress concentration can be avoided. Further, even when the curvature reduction coefficient R is 0.77, the vicinity of the inner end portion 851 of the valve body 850 (from 0 ° to about 45 °) is compared with the case where the curvature reduction coefficient R is 1.00 (second comparative embodiment). Can be increased, and the valve body 850 can exhibit an appropriate spring force.
 本実施形態では、小曲率部871は、進角供給チェック弁82が自由状態のとき(図14参照)の曲率(r1)が、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したとき(図15参照)の定曲率部861の曲率(r3)より大きくなるよう設定されている。 In the present embodiment, the small curvature portion 871 has the curvature (r1) when the advance angle supply check valve 82 is in a free state (see FIG. 14), and the advance angle supply check valve 82 supplies the advance angle inside the inner sleeve 41. It is set to be larger than the curvature (r3) of the constant curvature portion 861 when it is most deformed by the flow of hydraulic oil from the opening OAs (see FIG. 15).
 また、本実施形態では、小曲率部871は、弁本体850の内端部851を含むよう形成されており、進角供給チェック弁82がインナースリーブ41の内側に設けられた状態のとき、定曲率部861とは反対側の端部、すなわち、内端部851が定曲率部861の内周壁から離間しており(図12参照)、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形するとき(図15参照)までの間に、定曲率部861とは反対側の端部、すなわち、内端部851が定曲率部861の内周壁に接触する。 Further, in the present embodiment, the small curvature portion 871 is formed so as to include the inner end portion 851 of the valve body 850, and when the advance angle supply check valve 82 is provided inside the inner sleeve 41, the small curvature portion 871 is fixed. The end opposite to the curvature portion 861, that is, the inner end portion 851 is separated from the inner peripheral wall of the constant curvature portion 861 (see FIG. 12), and the advance angle supply check valve 82 advances inside the inner sleeve 41. The end opposite to the constant curvature portion 861, that is, the inner end portion 851 of the constant curvature portion 861 until the time when it is most deformed by the flow of hydraulic oil from the corner supply opening OAs (see FIG. 15). Contact the inner wall.
 つまり、本実施形態では、弁本体850は、進角供給チェック弁82がインナースリーブ41の内側に設けられた状態のとき、内端部851が外端部852側の部位の内周壁から離間しており、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形するときまでの間に、内端部851が外端部852側の部位の内周壁に接触する。 That is, in the present embodiment, the valve main body 850 has the inner end portion 851 separated from the inner peripheral wall of the portion on the outer end portion 852 side when the advance angle supply check valve 82 is provided inside the inner sleeve 41. The inner end portion 851 is located on the outer end portion 852 side until the advance angle supply check valve 82 is most deformed by the flow of hydraulic oil from the advance angle supply opening portion OAs inside the inner sleeve 41. It touches the inner peripheral wall.
 以上説明したように、本実施形態は、外周壁と内周壁とを連通する流入穴としての遅角供給開口部ORs、進角供給開口部OAsを有する筒状の筒部材としてのインナースリーブ41の内側に設けられ、遅角供給開口部ORs、進角供給開口部OAsを経由してインナースリーブ41の内側へ向かう作動油の流れを許容し、インナースリーブ41の内側から遅角供給開口部ORs、進角供給開口部OAsへ向かう作動油の流れを規制可能な遅角供給チェック弁81、進角供給チェック弁82であって、弁本体850を備えている。弁本体850は、単一の板材を巻くことにより筒状に形成されている。 As described above, in the present embodiment, the inner sleeve 41 as a cylindrical tube member having the retard supply opening ORs and the advance supply opening OAs as the inflow holes communicating the outer peripheral wall and the inner peripheral wall. Provided inside, allowing the flow of hydraulic oil toward the inside of the inner sleeve 41 via the retard supply opening ORs and the advance supply opening OAs, the retard supply opening ORs from the inner sleeve 41, The retard supply check valve 81 and the advance supply check valve 82 are capable of regulating the flow of hydraulic oil toward the advance supply opening OAs, and include a valve body 850. The valve body 850 is formed in a cylindrical shape by winding a single plate material.
 弁本体850は、遅角供給チェック弁81、進角供給チェック弁82が自由状態のとき、周方向の一方の端部である内端部851と周方向の他方の端部である外端部852との間の特定の部位において曲率が一定の定曲率部861、および、周方向の定曲率部861以外の部位において曲率が定曲率部861の曲率より小さい小曲率部871を有している。そのため、遅角供給チェック弁81、進角供給チェック弁82がインナースリーブ41の内側において遅角供給開口部ORs、進角供給開口部OAsからの作動油の流れにより径方向内側に縮まるよう変形し開弁したとき、弁本体850の内端部851側の部位の変形が始まるタイミングを外端部852側の部位に対して遅らせることができる。これにより、内端部851が支持点となり、当該位置から約90°の位置に荷重の偏りによる応力が発生するのを抑制することができる。したがって、遅角供給チェック弁81、進角供給チェック弁82の変形または破損を抑制することができる。なお、本実施形態では、弁本体850は、遅角供給チェック弁81、進角供給チェック弁82が自由状態のとき、内端部851側の部位が外端部852側の部位の内側に位置するよう、すなわち、両端部が周方向でオーバーラップするよう形成されている。 When the retard supply check valve 81 and the advance supply check valve 82 are in a free state, the valve body 850 includes an inner end 851 that is one end in the circumferential direction and an outer end that is the other end in the circumferential direction. A constant curvature portion 861 having a constant curvature at a specific portion between the 852 and a small curvature portion 871 having a curvature smaller than the curvature of the constant curvature portion 861 at a portion other than the constant curvature portion 861 in the circumferential direction. . Therefore, the retard supply check valve 81 and the advance supply check valve 82 are deformed so as to be contracted radially inward by the flow of hydraulic oil from the retard supply opening ORs and the advance supply opening OAs inside the inner sleeve 41. When the valve is opened, the timing at which the deformation of the portion on the inner end 851 side of the valve main body 850 starts can be delayed with respect to the portion on the outer end 852 side. As a result, the inner end portion 851 serves as a support point, and it is possible to suppress the occurrence of stress due to load bias at a position of about 90 ° from the position. Therefore, deformation or breakage of the retard supply check valve 81 and the advance supply check valve 82 can be suppressed. In the present embodiment, when the retard supply check valve 81 and the advance supply check valve 82 are in the free state, the valve body 850 is positioned such that the inner end 851 side portion is located inside the outer end 852 side portion. That is, both ends are formed to overlap in the circumferential direction.
 また、本実施形態では、小曲率部871は、弁本体850の内端部851に形成されている。小曲率部871を弁本体850の内端部851に寄せることで、外端部852側の部位との接触点が径縮小に対して連続的に移動していくことにより、接触位置の急激な変化によってばね荷重特性に極端な変曲点が発生するのを防ぐことができる。 In this embodiment, the small curvature portion 871 is formed at the inner end portion 851 of the valve body 850. By bringing the small curvature portion 871 toward the inner end portion 851 of the valve body 850, the contact point with the portion on the outer end portion 852 side is continuously moved with respect to the diameter reduction, so that the contact position is rapidly increased. It is possible to prevent an extreme inflection point from occurring in the spring load characteristics due to the change.
 また、本実施形態では、小曲率部871は、遅角供給チェック弁81、進角供給チェック弁82が自由状態のときの曲率が、遅角供給チェック弁81、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したときの定曲率部861の曲率より大きくなるよう設定されている。このように、小曲率部871が弁本体850全体の最大変形時の曲率以上に設定されていることで、小曲率部871全体が変形し、より大きなばね力を発揮させることができる。 Further, in the present embodiment, the small curvature portion 871 has the curvature when the retard supply check valve 81 and the advance supply check valve 82 are in the free state, and the retard supply check valve 81 and the advance supply check valve 82 are inner. It is set to be larger than the curvature of the constant curvature portion 861 when it is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs inside the sleeve 41. Thus, since the small curvature part 871 is set to be equal to or greater than the curvature at the time of the maximum deformation of the entire valve body 850, the entire small curvature part 871 is deformed and a larger spring force can be exerted.
 また、本実施形態では、弁本体850は、遅角供給チェック弁81、進角供給チェック弁82がインナースリーブ41の内側に設けられた状態のとき、内端部851が外端部852側の部位の内周壁から離間しており、遅角供給チェック弁81、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形するときまでの間に、内端部851が外端部852側の部位の内周壁に接触する。そのため、弁本体850の応力集中を回避しつつ、弁本体850は、インナースリーブ41の内側にセットされた状態から最大変形時までのいずれかの時点でばね力を発揮することができる。 In the present embodiment, the valve main body 850 has the inner end portion 851 on the outer end portion 852 side when the retard supply check valve 81 and the advance supply check valve 82 are provided inside the inner sleeve 41. Until the time when the retard supply check valve 81 and the advance supply check valve 82 are most deformed by the flow of hydraulic oil from the advance supply opening OAs inside the inner sleeve 41. Further, the inner end portion 851 contacts the inner peripheral wall of the portion on the outer end portion 852 side. Therefore, while avoiding stress concentration of the valve body 850, the valve body 850 can exert a spring force at any time from the state set inside the inner sleeve 41 to the maximum deformation.
 また、本実施形態では、遅角供給チェック弁81、進角供給チェック弁82が自由状態のときの小曲率部871の半径をr1、遅角供給チェック弁81、進角供給チェック弁82が自由状態のときの定曲率部861の半径をr2、遅角供給チェック弁81、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したときの定曲率部861の半径をr3、曲率縮小係数Rを(r2-r1)/(r2-r3)とすると、弁本体850は、R>0.29の関係を満たすよう形成されている。そのため、弁本体850に発生する応力を低減しながら応力集中を回避できる。 In this embodiment, the radius of the small curvature portion 871 is r1 when the retard supply check valve 81 and the advance supply check valve 82 are in the free state, and the retard supply check valve 81 and the advance supply check valve 82 are free. When the radius of the constant curvature portion 861 in the state is r2, the retard supply check valve 81, and the advance supply check valve 82 are most deformed by the flow of hydraulic oil from the advance supply opening OAs inside the inner sleeve 41. When the radius of the constant curvature portion 861 is r3 and the curvature reduction coefficient R is (r2-r1) / (r2-r3), the valve body 850 is formed to satisfy the relationship of R> 0.29. Therefore, stress concentration can be avoided while reducing the stress generated in the valve body 850.
 また、本実施形態では、弁本体850は、R<0.77の関係を満たすよう形成されている。そのため、弁本体850の内端部851近傍(0°から約45°)の撓み変形を大きくでき、弁本体850に適度なばね力を発揮させることができる。なお、本実施形態では、弁本体850は、R=0.58の関係を満たすよう形成されているため、内端部851から約180°の位置まで弁本体850を滑らかに撓ませ、弁本体850に発生する応力を低減しながら応力集中を回避しつつ、弁本体850に十分なばね力を発揮させることができる。 In this embodiment, the valve body 850 is formed so as to satisfy the relationship of R <0.77. Therefore, the bending deformation in the vicinity of the inner end portion 851 of the valve body 850 (from 0 ° to about 45 °) can be increased, and an appropriate spring force can be exerted on the valve body 850. In this embodiment, the valve body 850 is formed so as to satisfy the relationship of R = 0.58. Therefore, the valve body 850 is smoothly bent from the inner end portion 851 to a position of about 180 °, and the valve body A sufficient spring force can be exerted on the valve body 850 while avoiding stress concentration while reducing stress generated in the 850.
  (第7実施形態)
 本開示の第7実施形態によるバルブタイミング調整装置の一部である進角供給チェック弁を図21に示す。第7実施形態は、遅角供給チェック弁81、進角供給チェック弁82の構成が第6実施形態と異なる。
(Seventh embodiment)
FIG. 21 shows an advance angle supply check valve that is a part of the valve timing adjustment device according to the seventh embodiment of the present disclosure. The seventh embodiment differs from the sixth embodiment in the configuration of the retard supply check valve 81 and the advance supply check valve 82.
 図21には、自由状態の進角供給チェック弁82を示している。図21に示すように、本実施形態による進角供給チェック弁82では、弁本体850は、定曲率部861、小曲率部871、定曲率部862を有している。定曲率部861は、弁本体850の周方向の特定の部位であって、一端が外端部852に一致し、他端が外端部852と内端部851との間に位置している。小曲率部871は、弁本体850の周方向の特定の部位であって、一端が定曲率部861の他端に一致し、他端が外端部852と内端部851との間に位置している。定曲率部862は、弁本体850の周方向の特定の部位であって、一端が小曲率部871の他端に一致し、他端が内端部851に一致する。 FIG. 21 shows the lead angle supply check valve 82 in a free state. As shown in FIG. 21, in the advance angle supply check valve 82 according to the present embodiment, the valve body 850 has a constant curvature portion 861, a small curvature portion 871, and a constant curvature portion 862. The constant curvature portion 861 is a specific portion of the valve body 850 in the circumferential direction, and one end thereof coincides with the outer end portion 852 and the other end is located between the outer end portion 852 and the inner end portion 851. . The small curvature portion 871 is a specific portion in the circumferential direction of the valve main body 850, one end coincides with the other end of the constant curvature portion 861, and the other end is positioned between the outer end portion 852 and the inner end portion 851. is doing. The constant curvature portion 862 is a specific portion of the valve body 850 in the circumferential direction, and one end thereof coincides with the other end of the small curvature portion 871 and the other end thereof coincides with the inner end portion 851.
 定曲率部861、定曲率部862は、進角供給チェック弁82が自由状態のとき、一端から他端までの全範囲において曲率が一定である。また、小曲率部871は、進角供給チェック弁82が自由状態のとき、一端から他端までの全範囲において曲率が一定である。ここで、小曲率部871の半径r1は、定曲率部861、定曲率部862の半径r2より小さい(図21参照)。つまり、弁本体850は、進角供給チェック弁82が自由状態のとき、周方向の特定の部位において曲率が一定の定曲率部861、定曲率部862、および、周方向の定曲率部861、定曲率部862以外の部位において曲率が定曲率部861、定曲率部862の曲率より小さい小曲率部871を有している。言い換えれば、小曲率部871は、弁本体850の内端部851と外端部852との間、内端部851および外端部852のそれぞれから離れた位置に形成されている。 The curvature of the constant curvature portion 861 and the constant curvature portion 862 are constant over the entire range from one end to the other when the advance angle supply check valve 82 is in a free state. Further, the small curvature portion 871 has a constant curvature in the entire range from one end to the other end when the advance angle supply check valve 82 is in a free state. Here, the radius r1 of the small curvature portion 871 is smaller than the radius r2 of the constant curvature portion 861 and the constant curvature portion 862 (see FIG. 21). That is, the valve body 850 includes a constant curvature portion 861, a constant curvature portion 862, and a circumferential constant curvature portion 861, each having a constant curvature at a specific portion in the circumferential direction, when the advance supply check valve 82 is in a free state. A portion other than the constant curvature portion 862 has a constant curvature portion 861 and a small curvature portion 871 smaller than the curvature of the constant curvature portion 862. In other words, the small curvature portion 871 is formed between the inner end portion 851 and the outer end portion 852 of the valve body 850 and at a position away from each of the inner end portion 851 and the outer end portion 852.
 定曲率部861の一端から他端までの角度θ1は、例えば約270°である。また、小曲率部871の一端から他端までの角度θ2は、例えば約70°である。また、定曲率部862の一端から他端までの角度θ3は、例えば約35°である。進角供給チェック弁82が自由状態のとき、弁本体850の外端部852は、定曲率部862の径方向外側に位置している。また、このとき、弁本体850の外端部852の内周壁と定曲率部862の外周壁との間には隙間S2が形成されている(図21参照)。このように、本実施形態では、弁本体850は、進角供給チェック弁82が自由状態のとき、内端部851側の部位が外端部852側の部位の内側に位置するよう、すなわち、両端部が周方向でオーバーラップするよう形成されている。遅角供給チェック弁81の構成は、進角供給チェック弁82の構成と同様である。 The angle θ1 from one end of the constant curvature portion 861 to the other end is, for example, about 270 °. Further, the angle θ2 from one end of the small curvature portion 871 to the other end is, for example, about 70 °. Further, the angle θ3 from one end of the constant curvature portion 862 to the other end is, for example, about 35 °. When the advance angle supply check valve 82 is in a free state, the outer end portion 852 of the valve body 850 is located on the radially outer side of the constant curvature portion 862. At this time, a gap S2 is formed between the inner peripheral wall of the outer end 852 of the valve body 850 and the outer peripheral wall of the constant curvature portion 862 (see FIG. 21). Thus, in this embodiment, when the advance angle supply check valve 82 is in the free state, the valve main body 850 is arranged such that the portion on the inner end portion 851 side is located inside the portion on the outer end portion 852 side, that is, Both ends are formed to overlap in the circumferential direction. The configuration of the retard supply check valve 81 is the same as the configuration of the advance supply check valve 82.
 以上説明したように、本実施形態では、弁本体850は、遅角供給チェック弁81、進角供給チェック弁82が自由状態のとき、周方向の一方の端部である内端部851と周方向の他方の端部である外端部852との間の特定の部位において曲率が一定の定曲率部861、定曲率部862、および、周方向の定曲率部861、定曲率部862以外の部位において曲率が定曲率部861、定曲率部862の曲率より小さい小曲率部871を有している。よって、本実施形態では、第6実施形態と同様、遅角供給チェック弁81、進角供給チェック弁82の変形または破損を抑制することができる。なお、本実施形態では、弁本体850は、遅角供給チェック弁81、進角供給チェック弁82が自由状態のとき、内端部851側の部位が外端部852側の部位の内側に位置するよう、すなわち、両端部が周方向でオーバーラップするよう形成されている。 As described above, in the present embodiment, the valve main body 850 includes the inner peripheral portion 851 that is one end portion in the circumferential direction and the peripheral portion when the retard supply check valve 81 and the advance supply check valve 82 are in the free state. Other than the outer end 852 which is the other end in the direction, a constant curvature portion 861 having a constant curvature, a constant curvature portion 862, and a constant curvature portion 861 in the circumferential direction, and other than the constant curvature portion 862 The portion has a small curvature portion 871 whose curvature is smaller than the curvature of the constant curvature portion 861 and the constant curvature portion 862. Therefore, in the present embodiment, as in the sixth embodiment, deformation or breakage of the retard supply check valve 81 and the advance supply check valve 82 can be suppressed. In the present embodiment, when the retard supply check valve 81 and the advance supply check valve 82 are in the free state, the valve body 850 is positioned such that the inner end 851 side portion is located inside the outer end 852 side portion. That is, both ends are formed to overlap in the circumferential direction.
 また、本実施形態では、小曲率部871は、内端部851と外端部852との間に形成されている。なお、小曲率部871は、内端部851および外端部852のそれぞれから所定距離離れた位置に形成されており、周方向において外端部852とオーバーラップしていない。 In the present embodiment, the small curvature portion 871 is formed between the inner end portion 851 and the outer end portion 852. Note that the small curvature portion 871 is formed at a predetermined distance from each of the inner end portion 851 and the outer end portion 852 and does not overlap the outer end portion 852 in the circumferential direction.
  (第8実施形態)
 本開示の第8実施形態によるバルブタイミング調整装置の一部である進角供給チェック弁を図22に示す。第8実施形態は、遅角供給チェック弁81、進角供給チェック弁82の構成が第6実施形態と異なる。
(Eighth embodiment)
FIG. 22 shows an advance angle supply check valve that is a part of the valve timing adjusting device according to the eighth embodiment of the present disclosure. The eighth embodiment differs from the sixth embodiment in the configuration of the retard supply check valve 81 and the advance supply check valve 82.
 図22には、自由状態の進角供給チェック弁82を示している。本実施形態では、小曲率部871は、一端から他端にかけて半径が徐々に小さくなるよう形成されている。小曲率部871の一端、すなわち、定曲率部861側の端部の半径はr2、小曲率部871の他端、すなわち、内端部851の半径はr4であり、r2とr4の平均はr1である。ここで、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したときの定曲率部861の半径をr3、曲率縮小係数Rを(r2-r1)/(r2-r3)とすると、弁本体850は、R=0.58の関係を満たすよう形成されている。遅角供給チェック弁81の構成は、進角供給チェック弁82の構成と同様である。本実施形態では、第6実施形態と同様、遅角供給チェック弁81、進角供給チェック弁82の変形または破損を抑制することができる。 FIG. 22 shows the lead angle supply check valve 82 in a free state. In the present embodiment, the small curvature portion 871 is formed so that the radius gradually decreases from one end to the other end. The radius of one end of the small curvature portion 871, that is, the end portion on the constant curvature portion 861 side is r2, the radius of the other end of the small curvature portion 871, that is, the inner end portion 851, is r4, and the average of r2 and r4 is r1 It is. Here, when the advance angle supply check valve 82 is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs inside the inner sleeve 41, the radius of the constant curvature portion 861 is r3, and the curvature reduction coefficient R is (r2). Assuming −r1) / (r2−r3), the valve body 850 is formed to satisfy the relationship of R = 0.58. The configuration of the retard supply check valve 81 is the same as the configuration of the advance supply check valve 82. In the present embodiment, as in the sixth embodiment, deformation or breakage of the retard supply check valve 81 and the advance supply check valve 82 can be suppressed.
  (第9実施形態)
 本開示の第9実施形態によるバルブタイミング調整装置の一部である進角供給チェック弁を図23に示す。第9実施形態は、遅角供給チェック弁81、進角供給チェック弁82の構成が第6実施形態と異なる。
(Ninth embodiment)
FIG. 23 shows an advance angle supply check valve that is a part of the valve timing adjustment device according to the ninth embodiment of the present disclosure. The ninth embodiment differs from the sixth embodiment in the configuration of the retard supply check valve 81 and the advance supply check valve 82.
 図23には、自由状態の進角供給チェック弁82を示している。本実施形態では、弁本体850は、定曲率部861、小曲率部871、小曲率部872を有している。定曲率部861は、弁本体850の周方向の特定の部位であって、一端が外端部852に一致し、他端が外端部852と内端部851との間に位置している。小曲率部871は、弁本体850の周方向の特定の部位であって、一端が定曲率部861の他端に一致し、他端が外端部852と内端部851との間に位置している。小曲率部872は、弁本体850の周方向の特定の部位であって、一端が小曲率部871の他端に一致し、他端が内端部851に一致する。 FIG. 23 shows the lead angle supply check valve 82 in a free state. In the present embodiment, the valve main body 850 includes a constant curvature portion 861, a small curvature portion 871, and a small curvature portion 872. The constant curvature portion 861 is a specific portion of the valve body 850 in the circumferential direction, and one end thereof coincides with the outer end portion 852 and the other end is located between the outer end portion 852 and the inner end portion 851. . The small curvature portion 871 is a specific portion in the circumferential direction of the valve main body 850, one end coincides with the other end of the constant curvature portion 861, and the other end is positioned between the outer end portion 852 and the inner end portion 851. is doing. The small curvature portion 872 is a specific portion in the circumferential direction of the valve body 850, and one end coincides with the other end of the small curvature portion 871 and the other end coincides with the inner end portion 851.
 定曲率部861の一端から他端までの角度θ1は、例えば約330°である。また、小曲率部871の一端から他端までの角度θ2は、例えば約45°である。また、小曲率部872の一端から他端までの角度θ3は、例えば約45°である。進角供給チェック弁82が自由状態のとき、弁本体850の外端部852は、小曲率部871の他端近傍の径方向外側に位置している(図23参照)。 The angle θ1 from one end to the other end of the constant curvature portion 861 is, for example, about 330 °. Further, the angle θ2 from one end to the other end of the small curvature portion 871 is, for example, about 45 °. The angle θ3 from one end to the other end of the small curvature portion 872 is, for example, about 45 °. When the advance angle supply check valve 82 is in a free state, the outer end portion 852 of the valve body 850 is located on the radially outer side near the other end of the small curvature portion 871 (see FIG. 23).
 定曲率部861は、進角供給チェック弁82が自由状態のとき、一端から他端までの全範囲において曲率が一定である。また、小曲率部871、小曲率部872は、それぞれ、進角供給チェック弁82が自由状態のとき、一端から他端までの全範囲において曲率が一定である。ここで、小曲率部871の半径r5は、定曲率部861の半径r2より小さい。また、小曲率部872の半径r6は、小曲率部871の半径r5より小さい(図23参照)。なお、r5とr6の平均はr1である。ここで、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形したときの定曲率部861の半径をr3、曲率縮小係数Rを(r2-r1)/(r2-r3)とすると、弁本体850は、R=0.58の関係を満たすよう形成されている。遅角供給チェック弁81の構成は、進角供給チェック弁82の構成と同様である。本実施形態では、第6実施形態と同様、遅角供給チェック弁81、進角供給チェック弁82の変形または破損を抑制することができる。 The constant curvature portion 861 has a constant curvature over the entire range from one end to the other when the advance angle supply check valve 82 is in a free state. Further, the small curvature portion 871 and the small curvature portion 872 each have a constant curvature over the entire range from one end to the other end when the advance angle supply check valve 82 is in a free state. Here, the radius r5 of the small curvature portion 871 is smaller than the radius r2 of the constant curvature portion 861. Further, the radius r6 of the small curvature portion 872 is smaller than the radius r5 of the small curvature portion 871 (see FIG. 23). The average of r5 and r6 is r1. Here, when the advance angle supply check valve 82 is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs inside the inner sleeve 41, the radius of the constant curvature portion 861 is r3, and the curvature reduction coefficient R is (r2). Assuming −r1) / (r2−r3), the valve body 850 is formed to satisfy the relationship of R = 0.58. The configuration of the retard supply check valve 81 is the same as the configuration of the advance supply check valve 82. In the present embodiment, as in the sixth embodiment, deformation or breakage of the retard supply check valve 81 and the advance supply check valve 82 can be suppressed.
  (第10実施形態)
 本開示の第10実施形態によるバルブタイミング調整装置の一部であるチェック弁を図24、図25に示す。第10実施形態は、供給チェック弁61、リサイクルチェック弁62の構成が第1実施形態と異なる。なお、リサイクルチェック弁62の構成は供給チェック弁61の構成と同様のため、供給チェック弁61の構成についてのみ説明し、リサイクルチェック弁62の構成についての説明は省略する。
(10th Embodiment)
A check valve that is a part of the valve timing adjusting device according to the tenth embodiment of the present disclosure is shown in FIGS. The tenth embodiment differs from the first embodiment in the configuration of the supply check valve 61 and the recycle check valve 62. Since the configuration of the recycle check valve 62 is the same as that of the supply check valve 61, only the configuration of the supply check valve 61 will be described, and the description of the configuration of the recycle check valve 62 will be omitted.
 図24、図25には、自由状態のチェック弁60の供給チェック弁61を示している。本実施形態では、供給チェック弁61は、弁本体850、小曲率部875、平面部881を備えている。弁本体850は、定曲率部861、小曲率部871を有している。定曲率部861は、弁本体850の周方向の特定の部位であって、一端が外端部852に一致し、他端が外端部852と内端部851との間に位置している。小曲率部871は、弁本体850の周方向の特定の部位であって、一端が定曲率部861の他端に一致し、他端が内端部851に一致している。 24 and 25 show the supply check valve 61 of the check valve 60 in a free state. In the present embodiment, the supply check valve 61 includes a valve main body 850, a small curvature portion 875, and a flat surface portion 881. The valve body 850 has a constant curvature portion 861 and a small curvature portion 871. The constant curvature portion 861 is a specific portion of the valve body 850 in the circumferential direction, and one end thereof coincides with the outer end portion 852 and the other end is located between the outer end portion 852 and the inner end portion 851. . The small curvature portion 871 is a specific portion in the circumferential direction of the valve body 850, and one end coincides with the other end of the constant curvature portion 861 and the other end coincides with the inner end portion 851.
 小曲率部875は、一端が小曲率部871の他端、すなわち、弁本体850の内端部851に一致している。平面部881は、平面状に形成されている。平面部881は、一端が小曲率部875の他端に接続し、他端が軸部63に接続するよう弁本体850、小曲率部875および軸部63と一体に形成されている。軸部63、平面部881および小曲率部875は、弁本体850を支持している。 The small curvature portion 875 has one end coinciding with the other end of the small curvature portion 871, that is, the inner end portion 851 of the valve main body 850. The flat portion 881 is formed in a flat shape. The flat portion 881 is formed integrally with the valve body 850, the small curvature portion 875, and the shaft portion 63 so that one end is connected to the other end of the small curvature portion 875 and the other end is connected to the shaft portion 63. The shaft portion 63, the flat surface portion 881, and the small curvature portion 875 support the valve body 850.
 定曲率部861の一端から他端までの角度θ1は、例えば約270°である。また、小曲率部871の一端から他端までの角度θ2は、例えば約90°である。また、小曲率部875の一端から他端までの角度θ3は、例えば約90°である。供給チェック弁61が自由状態のとき、弁本体850の外端部852は、小曲率部875の一端近傍の径方向外側に位置している。このとき、弁本体850の外端部852の内周壁と小曲率部875の外周壁との間には隙間S1が形成されている(図25参照)。このように、本実施形態では、弁本体850は、供給チェック弁61が自由状態のとき、内端部851と外端部852とが周方向でオーバーラップしないよう形成されている。 The angle θ1 from one end of the constant curvature portion 861 to the other end is, for example, about 270 °. Further, the angle θ2 from one end to the other end of the small curvature portion 871 is, for example, about 90 °. Further, the angle θ3 from one end to the other end of the small curvature portion 875 is, for example, about 90 °. When the supply check valve 61 is in a free state, the outer end 852 of the valve main body 850 is located on the radially outer side near one end of the small curvature portion 875. At this time, a gap S1 is formed between the inner peripheral wall of the outer end 852 of the valve body 850 and the outer peripheral wall of the small curvature portion 875 (see FIG. 25). Thus, in this embodiment, the valve main body 850 is formed so that the inner end portion 851 and the outer end portion 852 do not overlap in the circumferential direction when the supply check valve 61 is in a free state.
 定曲率部861は、供給チェック弁61が自由状態のとき、一端から他端までの全範囲において曲率が一定である。また、小曲率部871、小曲率部875は、それぞれ、供給チェック弁61が自由状態のとき、一端から他端までの全範囲において曲率が一定である。ここで、小曲率部871の半径r1は、定曲率部861の半径r2より小さい。また、小曲率部875の半径r7は、小曲率部871の半径r1より小さい(図25参照)。ここで、供給チェック弁61がスプール50の内側において供給油路54からの作動油の流れにより最も変形したときの定曲率部861の半径をr3、曲率縮小係数Rを(r2-r1)/(r2-r3)とすると、弁本体850は、R=0.58の関係を満たすよう形成されている。さらに、r3>r7となるようにr3の寸法が調整されているため、小曲率部875は、供給チェック弁61が最も変形したときでも変形せず、ばね力を発揮しない。 The constant curvature portion 861 has a constant curvature over the entire range from one end to the other when the supply check valve 61 is in a free state. Further, the small curvature portion 871 and the small curvature portion 875 each have a constant curvature in the entire range from one end to the other end when the supply check valve 61 is in a free state. Here, the radius r1 of the small curvature portion 871 is smaller than the radius r2 of the constant curvature portion 861. Further, the radius r7 of the small curvature portion 875 is smaller than the radius r1 of the small curvature portion 871 (see FIG. 25). Here, when the supply check valve 61 is most deformed by the flow of hydraulic oil from the supply oil passage 54 inside the spool 50, the radius of the constant curvature portion 861 is r3, and the curvature reduction coefficient R is (r2-r1) / ( Assuming that r2-r3), the valve body 850 is formed to satisfy the relationship of R = 0.58. Further, since the dimension of r3 is adjusted so that r3> r7, the small curvature portion 875 does not deform even when the supply check valve 61 is most deformed, and does not exert a spring force.
 次に、本実施形態による供給チェック弁61と第3比較形態とを比較することにより、第3比較形態に対する本実施形態の優位な点を明らかにする。 Next, by comparing the supply check valve 61 according to the present embodiment with the third comparative embodiment, the advantages of the present embodiment over the third comparative embodiment will be clarified.
 図26に示す第3比較形態による供給チェック弁65は、小曲率部871の半径r1が定曲率部861の半径r2と同じである点で本実施形態による供給チェック弁61と異なる。よって、第3比較形態による供給チェック弁65では、弁本体850は、小曲率部871を有さず、外端部852から小曲率部875の一端、すなわち、内端部851まで一定の曲率(r2)の定曲率部861を有しているということもできる。また、第3比較形態による供給チェック弁65では、定曲率部861の一端から他端までの角度θ1は、例えば約270°である。また、小曲率部871の一端から他端までの角度θ2は、例えば約90°である。そのため、供給チェック弁65が自由状態のとき、弁本体850の外端部852の内周壁と小曲率部871の外周壁とは接触している(図26参照)。第3比較形態による供給チェック弁65は、弁本体850がR=0.00の関係を満たすよう形成されている。第3比較形態の供給チェック弁65は、第1実施形態による供給チェック弁61と同様の構成である。 26 is different from the supply check valve 61 according to the present embodiment in that the radius r1 of the small curvature portion 871 is the same as the radius r2 of the constant curvature portion 861. Therefore, in the supply check valve 65 according to the third comparative embodiment, the valve main body 850 does not have the small curvature portion 871, but has a constant curvature (from the outer end portion 852 to one end of the small curvature portion 875, that is, the inner end portion 851). It can also be said that it has the constant curvature portion 861 of r2). In the supply check valve 65 according to the third comparative embodiment, the angle θ1 from one end to the other end of the constant curvature portion 861 is, for example, about 270 °. Further, the angle θ2 from one end to the other end of the small curvature portion 871 is, for example, about 90 °. Therefore, when the supply check valve 65 is in a free state, the inner peripheral wall of the outer end 852 of the valve body 850 and the outer peripheral wall of the small curvature portion 871 are in contact (see FIG. 26). The supply check valve 65 according to the third comparative embodiment is formed so that the valve body 850 satisfies the relationship of R = 0.00. The supply check valve 65 of the third comparison form has the same configuration as the supply check valve 61 according to the first embodiment.
 第3比較形態の供給チェック弁65がスプール50の内側において供給油路54からの作動油の流れにより最も変形したとき、内端部851が支持点となり、弁本体850に発生する応力のうち最大の応力の発生箇所である最大応力発生箇所は、内端部851から約90°の位置である。 When the supply check valve 65 of the third comparative embodiment is most deformed by the flow of hydraulic oil from the supply oil passage 54 inside the spool 50, the inner end 851 serves as a support point, and the maximum stress generated in the valve body 850 The maximum stress generation location, which is the location where the stress is generated, is a position about 90 ° from the inner end portion 851.
 一方、本実施形態による供給チェック弁61がスプール50の内側において供給油路54からの作動油の流れにより最も変形したとき、弁本体850に発生する応力のうち最大の応力の発生箇所である最大応力発生箇所は、内端部851から約180°の位置である。また、当該最大の応力の大きさは、第3比較形態の供給チェック弁65に発生する最大の応力より小さい。このように、本実施形態による供給チェック弁61は、最大変形時、弁本体850に発生する応力を低減しながら応力集中を回避できる点で、第3比較形態に対し優位である。 On the other hand, when the supply check valve 61 according to the present embodiment is most deformed by the flow of hydraulic oil from the supply oil passage 54 inside the spool 50, the maximum of the stresses generated in the valve body 850 is the maximum stress generation location. The stress generation point is at a position of about 180 ° from the inner end 851. Further, the magnitude of the maximum stress is smaller than the maximum stress generated in the supply check valve 65 of the third comparison form. As described above, the supply check valve 61 according to the present embodiment is superior to the third comparative embodiment in that stress concentration can be avoided while reducing the stress generated in the valve body 850 at the maximum deformation.
 以上説明したように、本実施形態は、外周壁と内周壁とを連通する流入穴としての供給油路54、リサイクル油路57を有する筒状の筒部材としてのスプール50の内側に設けられ、供給油路54、リサイクル油路57を経由してスプール50の内側へ向かう作動油の流れを許容し、スプール50の内側から供給油路54、リサイクル油路57へ向かう作動油の流れを規制可能な供給チェック弁61、リサイクルチェック弁62であって、弁本体850を備えている。弁本体850は、単一の板材を巻くことにより筒状に形成されている。 As described above, the present embodiment is provided inside the spool 50 as a cylindrical tube member having the supply oil passage 54 and the recycle oil passage 57 as the inflow holes that communicate the outer peripheral wall and the inner peripheral wall. Allow the flow of hydraulic oil toward the inside of the spool 50 via the supply oil path 54 and the recycle oil path 57, and regulate the flow of hydraulic oil toward the supply oil path 54 and the recycle oil path 57 from the inside of the spool 50 The supply check valve 61 and the recycle check valve 62 are provided with a valve body 850. The valve body 850 is formed in a cylindrical shape by winding a single plate material.
 弁本体850は、供給チェック弁61、リサイクルチェック弁62が自由状態のとき、周方向の一方の端部である内端部851と周方向の他方の端部である外端部852との間の特定の部位において曲率が一定の定曲率部861、および、周方向の定曲率部861以外の部位において曲率が定曲率部861の曲率より小さい小曲率部871を有している。よって、供給チェック弁61、リサイクルチェック弁62がスプール50の内側において供給油路54、リサイクル油路57からの作動油の流れにより径方向内側に縮まるよう変形し開弁したとき、弁本体850の内端部851側の部位の変形が始まるタイミングを外端部852側の部位に対して遅らせることができる。これにより、内端部851が支持点となり、当該位置から約90°の位置に荷重の偏りによる応力が発生するのを抑制することができる。したがって、供給チェック弁61、リサイクルチェック弁62の変形または破損を抑制することができる。なお、本実施形態では、弁本体850は、供給チェック弁61、リサイクルチェック弁62が自由状態のとき、内端部851と外端部852とが周方向でオーバーラップしないよう形成されている。 When the supply check valve 61 and the recycle check valve 62 are in a free state, the valve main body 850 is between the inner end 851 that is one end in the circumferential direction and the outer end 852 that is the other end in the circumferential direction. The constant curvature portion 861 having a constant curvature at the specific portion and the small curvature portion 871 having a curvature smaller than the curvature of the constant curvature portion 861 at a portion other than the constant curvature portion 861 in the circumferential direction. Therefore, when the supply check valve 61 and the recycle check valve 62 are deformed so as to shrink radially inward due to the flow of hydraulic oil from the supply oil passage 54 and the recycle oil passage 57 inside the spool 50, The timing at which the deformation of the portion on the inner end 851 side can be delayed with respect to the portion on the outer end 852 side. As a result, the inner end portion 851 serves as a support point, and it is possible to suppress the occurrence of stress due to load bias at a position of about 90 ° from the position. Therefore, deformation or breakage of the supply check valve 61 and the recycle check valve 62 can be suppressed. In this embodiment, the valve main body 850 is formed so that the inner end portion 851 and the outer end portion 852 do not overlap in the circumferential direction when the supply check valve 61 and the recycle check valve 62 are in a free state.
  (他の実施形態)
 上述の実施形態では、油路切換弁11を構成するスリーブ40およびスプール50が、ベーンロータ30の中央部に配置される例を示した。これに対し、本開示の他の実施形態では、油路切換弁11は、ベーンロータ30の中央部以外の場所、例えばハウジング20の外部に配置してもよい。
(Other embodiments)
In the above-described embodiment, the example in which the sleeve 40 and the spool 50 constituting the oil passage switching valve 11 are arranged in the central portion of the vane rotor 30 has been shown. On the other hand, in another embodiment of the present disclosure, the oil passage switching valve 11 may be disposed at a location other than the central portion of the vane rotor 30, for example, outside the housing 20.
 また、上述の実施形態では、スプール50に形成される制御油路として、第1制御ポートに接続可能な第1制御油路55、第2制御ポートに接続可能な第2制御油路56を示した。これに対し、本開示の他の実施形態では、第1制御ポートおよび第2制御ポートに接続可能な共通の制御油路をスプール50に形成してもよい。この場合、各制御ポートそれぞれに接続するドレン油路をスプールに形成してもよい。 In the above-described embodiment, the first control oil passage 55 that can be connected to the first control port and the second control oil passage 56 that can be connected to the second control port are shown as control oil passages formed in the spool 50. It was. On the other hand, in another embodiment of the present disclosure, a common control oil path that can be connected to the first control port and the second control port may be formed in the spool 50. In this case, a drain oil passage connected to each control port may be formed in the spool.
 また、上述の第6実施形態では、弁本体850がR=0.58の関係を満たすよう形成される例を示した。これに対し、本開示の他の実施形態では、弁本体850がR=0.58の関係を満たすよう形成されていなくてもよい。ただし、発揮できる効果の観点からは、弁本体850は、0.29<R<0.77の関係を満たすよう形成されていることが好ましい。 Further, in the above-described sixth embodiment, the example in which the valve body 850 is formed to satisfy the relationship of R = 0.58 has been shown. On the other hand, in other embodiments of the present disclosure, the valve body 850 may not be formed to satisfy the relationship of R = 0.58. However, from the viewpoint of the effect that can be exhibited, the valve body 850 is preferably formed so as to satisfy the relationship of 0.29 <R <0.77.
 また、上述の第6実施形態では、小曲率部871は、弁本体850の内端部851を含むよう形成されており、進角供給チェック弁82がインナースリーブ41の内側に設けられた状態のとき、定曲率部861とは反対側の端部、すなわち、内端部851が定曲率部861の内周壁から離間しており(図12参照)、進角供給チェック弁82がインナースリーブ41の内側において進角供給開口部OAsからの作動油の流れにより最も変形するとき(図15参照)までの間に、定曲率部861とは反対側の端部、すなわち、内端部851が定曲率部861の内周壁に接触する例を示した。これに対し、本開示の他の実施形態では、小曲率部871は、進角供給チェック弁82がインナースリーブ41の内側に設けられた状態のとき、定曲率部861とは反対側の端部、すなわち、内端部851が定曲率部861の内周壁に接触していてもよい。つまり、弁本体850は、進角供給チェック弁82がインナースリーブ41の内側に設けられた状態のとき、内端部851が外端部852側の部位の内周壁に接触していてもよい。この形態では、弁本体850の応力集中を回避しつつ、弁本体850は、インナースリーブ41の内側にセットされた状態からばね力を発揮することができる。 Further, in the above-described sixth embodiment, the small curvature portion 871 is formed so as to include the inner end portion 851 of the valve body 850, and the advance angle supply check valve 82 is provided inside the inner sleeve 41. At this time, the end opposite to the constant curvature portion 861, that is, the inner end portion 851 is separated from the inner peripheral wall of the constant curvature portion 861 (see FIG. 12), and the advance angle supply check valve 82 is located on the inner sleeve 41. The end opposite to the constant curvature portion 861, that is, the inner end portion 851 has a constant curvature until it is most deformed by the flow of hydraulic oil from the advance angle supply opening OAs (see FIG. 15). The example which contacts the internal peripheral wall of the part 861 was shown. On the other hand, in another embodiment of the present disclosure, the small curvature portion 871 is an end portion on the opposite side to the constant curvature portion 861 when the advance angle supply check valve 82 is provided inside the inner sleeve 41. That is, the inner end portion 851 may be in contact with the inner peripheral wall of the constant curvature portion 861. That is, in the valve body 850, when the advance angle supply check valve 82 is provided inside the inner sleeve 41, the inner end portion 851 may be in contact with the inner peripheral wall of the portion on the outer end portion 852 side. In this embodiment, the valve body 850 can exert a spring force from the state set inside the inner sleeve 41 while avoiding stress concentration of the valve body 850.
 また、本開示の他の実施形態では、チェーン6に代えて、例えばベルト等の伝達部材によりハウジング20とクランク軸2とが連結されていてもよい。 Further, in another embodiment of the present disclosure, the housing 20 and the crankshaft 2 may be connected by a transmission member such as a belt instead of the chain 6.
 また、上述の実施形態では、クランク軸2を「第1軸」とし、カム軸3を「第2軸」とする例を示した。これに対し、本開示の他の実施形態では、クランク軸2を「第2軸」とし、カム軸3を「第1軸」としてもよい。すなわち、ベーンロータ30がクランク軸2の端部に固定され、ハウジング20がカム軸3に連動して回転してもよい。
 本開示のバルブタイミング調整装置10は、エンジン1の排気弁5のバルブタイミングを調整することとしてもよい。
 このように、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。
Further, in the above-described embodiment, an example in which the crankshaft 2 is the “first axis” and the camshaft 3 is the “second axis” has been described. On the other hand, in another embodiment of the present disclosure, the crankshaft 2 may be a “second shaft” and the camshaft 3 may be a “first shaft”. That is, the vane rotor 30 may be fixed to the end of the crankshaft 2 and the housing 20 may rotate in conjunction with the camshaft 3.
The valve timing adjusting device 10 of the present disclosure may adjust the valve timing of the exhaust valve 5 of the engine 1.
Thus, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the gist thereof.
 本開示は、実施形態に基づき記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described based on embodiments. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and modifications within the equivalent scope. Also, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (19)

  1.  内燃機関(1)の駆動軸(2)から従動軸(3)まで動力を伝達する動力伝達経路に設けられ、前記従動軸により開閉駆動されるバルブ(4、5)のバルブタイミングを調整するバルブタイミング調整装置(10)であって、
     前記駆動軸および前記従動軸の一方を第1軸とし、前記駆動軸および前記従動軸の他方を第2軸とすると、
     前記第1軸と連動して回転し、前記第2軸の端部に嵌合し、前記第2軸により回転可能に支持されるハウジング(20)と、
     前記第2軸の端部に固定され、前記ハウジングの内部空間(200)を周方向の一方側の第1油圧室(201)と周方向の他方側の第2油圧室(202)とに仕切るベーン(32)を有し、作動油供給源(8)から前記第1油圧室および前記第2油圧室に供給される作動油の圧力に応じて前記ハウジングに対して相対回転するベーンロータ(30)と、
     前記作動油供給源に連通する供給ポート(43)、前記第1油圧室に連通している第1制御ポート(44)、および、前記第2油圧室に連通している第2制御ポート(45)を有する筒状のスリーブ(40)と、
     前記スリーブの内側において軸方向へ往復移動可能に設けられ、内側に形成された蓄圧空間(500)、前記蓄圧空間と前記供給ポートとを接続するよう形成された供給油路(54)、前記蓄圧空間と前記第1制御ポートまたは前記第2制御ポートとを接続可能に形成された制御油路(55、56)、および、前記蓄圧空間と前記第1制御ポートまたは前記第2制御ポートとを接続可能に形成されたリサイクル油路(57、571、572)を有する筒状のスプール(50)と、
     開弁したとき、前記作動油供給源側から前記供給油路を経由して前記蓄圧空間側へ向かう作動油の流れを許容し、閉弁したとき、前記蓄圧空間側から前記供給油路を経由して前記作動油供給源側へ向かう作動油の流れを規制する供給チェック弁(61、68)と、
     開弁したとき、前記第1油圧室または前記第2油圧室側から前記リサイクル油路を経由して前記蓄圧空間側へ向かう作動油の流れを許容し、閉弁したとき、前記蓄圧空間側から前記リサイクル油路を経由して前記第1油圧室または前記第2油圧室側へ向かう作動油の流れを規制するリサイクルチェック弁(62、621、622、69)と、を備え、
     前記供給チェック弁の開弁に関する特性は、前記リサイクルチェック弁の開弁に関する特性と異なるバルブタイミング調整装置。
    A valve that is provided in a power transmission path for transmitting power from the drive shaft (2) to the driven shaft (3) of the internal combustion engine (1) and adjusts the valve timing of the valves (4, 5) that are driven to open and close by the driven shaft. A timing adjustment device (10) comprising:
    When one of the drive shaft and the driven shaft is a first axis and the other of the drive shaft and the driven shaft is a second axis,
    A housing (20) that rotates in conjunction with the first shaft, engages with an end of the second shaft, and is rotatably supported by the second shaft;
    Fixed to the end of the second shaft, the internal space (200) of the housing is partitioned into a first hydraulic chamber (201) on one circumferential side and a second hydraulic chamber (202) on the other circumferential side. A vane rotor (30) having a vane (32) and rotating relative to the housing according to the pressure of hydraulic oil supplied from the hydraulic oil supply source (8) to the first hydraulic chamber and the second hydraulic chamber. When,
    A supply port (43) communicating with the hydraulic oil supply source, a first control port (44) communicating with the first hydraulic chamber, and a second control port (45) communicating with the second hydraulic chamber A cylindrical sleeve (40) having
    A pressure accumulating space (500) provided inside the sleeve so as to be reciprocally movable in the axial direction, a supply oil passage (54) formed to connect the pressure accumulating space and the supply port, and the pressure accumulating A control oil passage (55, 56) formed so that the space and the first control port or the second control port can be connected, and the pressure accumulation space and the first control port or the second control port are connected A cylindrical spool (50) having a recycle oil passage (57, 571, 572) formed possible;
    When the valve is opened, the flow of hydraulic oil from the hydraulic oil supply source side to the pressure accumulation space side via the supply oil path is allowed, and when the valve is closed, the pressure accumulation space side is routed through the supply oil path. Supply check valves (61, 68) for regulating the flow of hydraulic oil toward the hydraulic oil supply source side,
    When the valve is opened, the flow of hydraulic oil from the first hydraulic chamber or the second hydraulic chamber side to the pressure accumulating space side via the recycle oil passage is allowed, and when the valve is closed, the pressure accumulating space side A recycle check valve (62, 621, 622, 69) that regulates the flow of hydraulic oil toward the first hydraulic chamber or the second hydraulic chamber via the recycle oil passage,
    The valve timing adjusting device is different in characteristics relating to opening of the supply check valve from those relating to opening of the recycle check valve.
  2.  前記供給チェック弁の開弁に関する特性は、前記リサイクルチェック弁と比べ、開弁し易い特性に設定されている請求項1に記載のバルブタイミング調整装置。 2. The valve timing adjusting device according to claim 1, wherein the characteristics relating to the opening of the supply check valve are set to characteristics that are easier to open than the recycle check valve.
  3.  前記供給チェック弁の開弁圧は、前記リサイクルチェック弁の開弁圧より低く設定されている請求項1または2に記載のバルブタイミング調整装置。 The valve timing adjusting device according to claim 1 or 2, wherein a valve opening pressure of the supply check valve is set lower than a valve opening pressure of the recycle check valve.
  4.  前記供給チェック弁は、前記スプールの内側に設けられ、閉弁時、前記供給油路を塞ぎ、
     前記リサイクルチェック弁は、前記スプールの内側に設けられ、閉弁時、前記リサイクル油路を塞ぐ請求項1~3のいずれか一項に記載のバルブタイミング調整装置。
    The supply check valve is provided inside the spool, and closes the supply oil passage when the valve is closed,
    The valve timing adjusting device according to any one of claims 1 to 3, wherein the recycle check valve is provided inside the spool and closes the recycle oil passage when the valve is closed.
  5.  前記スプールは、前記供給チェック弁を支持する供給側支持部(591)、および、前記リサイクルチェック弁を支持するリサイクル側支持部(592)を有している請求項4に記載のバルブタイミング調整装置。 The valve timing adjusting device according to claim 4, wherein the spool has a supply side support portion (591) for supporting the supply check valve and a recycle side support portion (592) for supporting the recycle check valve. .
  6.  前記供給チェック弁および前記リサイクルチェック弁は、弾性変形可能な板材から形成されており、それぞれ、幅または板厚が異なる請求項1~5のいずれか一項に記載のバルブタイミング調整装置。 The valve timing adjusting device according to any one of claims 1 to 5, wherein the supply check valve and the recycle check valve are formed of elastically deformable plate materials, each having a different width or plate thickness.
  7.  前記供給チェック弁および前記リサイクルチェック弁は、同一の幅および板厚の弾性変形可能な板材から形成されており、
     前記供給油路の流路面積の合計は、前記リサイクル油路の流路面積の合計と異なる請求項1~5のいずれか一項に記載のバルブタイミング調整装置。
    The supply check valve and the recycle check valve are formed of elastically deformable plate materials having the same width and thickness,
    The valve timing adjusting device according to any one of claims 1 to 5, wherein a total flow area of the supply oil path is different from a total flow area of the recycle oil path.
  8.  前記供給油路は、内径が前記リサイクル油路の内径と同じであり、前記スプールに形成される個数が前記リサイクル油路と異なる請求項7に記載のバルブタイミング調整装置。 The valve timing adjusting device according to claim 7, wherein the supply oil passage has an inner diameter that is the same as an inner diameter of the recycle oil passage, and the number of spools formed in the spool is different from that of the recycle oil passage.
  9.  前記供給チェック弁は、前記スプールの外側に設けられ、閉弁時、前記供給ポートを塞ぎ、
     前記リサイクルチェック弁は、前記スプールの内側に設けられ、閉弁時、前記リサイクル油路を塞ぐ請求項1~3のいずれか一項に記載のバルブタイミング調整装置。
    The supply check valve is provided outside the spool, and closes the supply port when the valve is closed,
    The valve timing adjusting device according to any one of claims 1 to 3, wherein the recycle check valve is provided inside the spool and closes the recycle oil passage when the valve is closed.
  10.  前記スリーブは、前記蓄圧空間と前記第1油圧室または前記第2油圧室とを接続可能に形成されたリサイクルポート(481、482)をさらに有し、
     前記供給チェック弁は、前記スプールの外側に設けられ、閉弁時、前記供給ポートを塞ぎ、
     前記リサイクルチェック弁は、前記スプールの外側に設けられ、閉弁時、前記リサイクルポートを塞ぐ請求項1~3のいずれか一項に記載のバルブタイミング調整装置。
    The sleeve further includes a recycle port (481, 482) formed so as to be connectable to the pressure accumulation space and the first hydraulic chamber or the second hydraulic chamber.
    The supply check valve is provided outside the spool, and closes the supply port when the valve is closed,
    The valve timing adjusting device according to any one of claims 1 to 3, wherein the recycle check valve is provided outside the spool and closes the recycle port when the valve is closed.
  11.  前記スリーブは、前記ベーンロータの中央部に配置されている請求項1~10のいずれか一項に記載のバルブタイミング調整装置。 The valve timing adjusting device according to any one of claims 1 to 10, wherein the sleeve is disposed at a central portion of the vane rotor.
  12.  外周壁と内周壁とを連通する流入穴(ORs、OAs、54、57)を有する筒状の筒部材(41、50)の内側に設けられ、前記流入穴を経由して前記筒部材の内側へ向かう流体の流れを許容し、前記筒部材の内側から前記流入穴へ向かう流体の流れを規制可能なチェック弁(61、62、81、82)であって、
     単一の板材を巻くことにより筒状に形成された弁本体(850)を備え、
     前記弁本体は、前記チェック弁が自由状態のとき、周方向の一方の端部である内端部(851)と周方向の他方の端部である外端部(852)との間の特定の部位において曲率が一定の定曲率部(861、862)、および、周方向の前記定曲率部以外の部位において曲率が前記定曲率部の曲率より小さい小曲率部(871、872)を有しているチェック弁。
    Provided inside a cylindrical tube member (41, 50) having an inflow hole (ORs, OAs, 54, 57) communicating with the outer peripheral wall and the inner peripheral wall, and inside the cylindrical member via the inflow hole A check valve (61, 62, 81, 82) capable of regulating the flow of fluid toward the inflow hole from the inside of the cylindrical member,
    A valve body (850) formed into a cylindrical shape by winding a single plate material,
    When the check valve is in a free state, the valve body is specified between an inner end (851) that is one end in the circumferential direction and an outer end (852) that is the other end in the circumferential direction. And constant curvature portions (861, 862) having a constant curvature in the region, and small curvature portions (871, 872) having a curvature smaller than the curvature of the constant curvature portion in the region other than the constant curvature portion in the circumferential direction. Check valve.
  13.  前記小曲率部は、前記内端部に形成されている請求項12に記載のチェック弁。 The check valve according to claim 12, wherein the small curvature portion is formed at the inner end portion.
  14.  前記小曲率部は、前記内端部と前記外端部との間に形成されている請求項12に記載のチェック弁。 The check valve according to claim 12, wherein the small curvature portion is formed between the inner end portion and the outer end portion.
  15.  前記小曲率部は、前記チェック弁が自由状態のときの曲率が、前記チェック弁が前記筒部材の内側において前記流入穴からの流体の流れにより最も変形したときの前記定曲率部の曲率より大きくなるよう設定されている請求項12~14のいずれか一項に記載のチェック弁。 The small curvature portion is larger in curvature when the check valve is in a free state than the curvature of the constant curvature portion when the check valve is most deformed by the flow of fluid from the inflow hole inside the cylindrical member. The check valve according to any one of claims 12 to 14, which is set to be
  16.  前記弁本体は、前記チェック弁が前記筒部材の内側に設けられた状態のとき、前記内端部が前記外端部側の部位の内周壁から離間しており、前記チェック弁が前記筒部材の内側において前記流入穴からの流体の流れにより最も変形するときまでの間に、前記内端部が前記外端部側の部位の内周壁に接触する請求項12~15のいずれか一項に記載のチェック弁。 In the valve body, when the check valve is provided inside the cylindrical member, the inner end portion is separated from an inner peripheral wall of a portion on the outer end portion side, and the check valve is connected to the cylindrical member. The inner end portion contacts the inner peripheral wall of the outer end portion side until the innermost wall is deformed most by the fluid flow from the inflow hole. Check valve described.
  17.  前記弁本体は、前記チェック弁が前記筒部材の内側に設けられた状態のとき、前記内端部が前記外端部側の部位の内周壁に接触している請求項12~15のいずれか一項に記載のチェック弁。 16. The valve main body according to claim 12, wherein the inner end portion is in contact with an inner peripheral wall of a portion on the outer end portion side when the check valve is provided inside the cylindrical member. The check valve according to one item.
  18.  前記チェック弁が自由状態のときの前記小曲率部の半径をr1、前記チェック弁が自由状態のときの前記定曲率部の半径をr2、前記チェック弁が前記筒部材の内側において前記流入穴からの流体の流れにより最も変形したときの前記定曲率部の半径をr3、曲率縮小係数Rを(r2-r1)/(r2-r3)とすると、
     前記弁本体は、R>0.29の関係を満たすよう形成されている請求項12~17のいずれか一項に記載のチェック弁。
    The radius of the small curvature portion when the check valve is in a free state is r1, the radius of the constant curvature portion when the check valve is in a free state is r2, and the check valve is inside the cylindrical member from the inflow hole. When the radius of the constant curvature portion when deformed most by the flow of the fluid is r3 and the curvature reduction coefficient R is (r2-r1) / (r2-r3),
    The check valve according to any one of claims 12 to 17, wherein the valve body is formed so as to satisfy a relationship of R> 0.29.
  19.  前記弁本体は、R<0.77の関係を満たすよう形成されている請求項18に記載のチェック弁。 The check valve according to claim 18, wherein the valve body is formed so as to satisfy a relationship of R <0.77.
PCT/JP2018/001387 2017-01-19 2018-01-18 Valve timing adjustment device and check valve WO2018135584A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018000445.7T DE112018000445T5 (en) 2017-01-19 2018-01-18 VALVE timing adjustment device and check valve
CN201880007251.9A CN110192011B (en) 2017-01-19 2018-01-18 Valve timing adjusting device and check valve
US16/502,404 US10858967B2 (en) 2017-01-19 2019-07-03 Valve timing adjustment device and check valve

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017007516 2017-01-19
JP2017-007516 2017-01-19
JP2017-246489 2017-12-22
JP2017246489A JP6690633B2 (en) 2017-01-19 2017-12-22 Valve timing adjustment device and check valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/502,404 Continuation US10858967B2 (en) 2017-01-19 2019-07-03 Valve timing adjustment device and check valve

Publications (1)

Publication Number Publication Date
WO2018135584A1 true WO2018135584A1 (en) 2018-07-26

Family

ID=62909240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001387 WO2018135584A1 (en) 2017-01-19 2018-01-18 Valve timing adjustment device and check valve

Country Status (1)

Country Link
WO (1) WO2018135584A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458559B2 (en) 2016-10-06 2019-10-29 Borgwarner, Inc. Double flapper valve for a variable cam timing system
CN110836133A (en) * 2018-08-16 2020-02-25 舍弗勒技术股份两合公司 Camshaft phaser
US10858965B2 (en) 2017-01-19 2020-12-08 Denso Corporation Valve timing adjustment device
US10876440B2 (en) 2017-01-19 2020-12-29 Denso Corporation Valve timing adjustment device
US10914204B2 (en) 2017-01-19 2021-02-09 Denso Corporation Valve timing adjustment device
US11008903B2 (en) 2017-04-21 2021-05-18 Denso Corporation Valve timing adjustment device
US11111827B2 (en) 2016-10-06 2021-09-07 Borgwarner, Inc. Double flapper valve for a variable cam timing system
CN113614337A (en) * 2019-03-25 2021-11-05 株式会社电装 Working oil control valve and valve timing adjusting device
CN115461529A (en) * 2020-04-17 2022-12-09 株式会社电装 Working oil control valve and valve timing adjustment device
CN113614337B (en) * 2019-03-25 2024-06-07 株式会社电装 Working oil control valve and valve timing adjustment device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183985U (en) * 1982-06-01 1983-12-07 三洋電機株式会社 rotary compressor
WO2010143284A1 (en) * 2009-06-10 2010-12-16 日鍛バルブ株式会社 Hydraulic lash adjuster for internal combustion engine
JP2011226474A (en) * 2010-04-10 2011-11-10 Hydraulik-Ring Gmbh Oscillating-motor camshaft adjuster having hydraulic valve
WO2013079693A1 (en) * 2011-12-02 2013-06-06 Continental Automotive Gmbh Valve arrangement
JP2013151923A (en) * 2012-01-26 2013-08-08 Denso Corp Valve timing adjusting device and assembling method thereof
JP2015129564A (en) * 2014-01-08 2015-07-16 トヨタ自動車株式会社 Manufacturing method of oil control valve
US20160024978A1 (en) * 2014-07-25 2016-01-28 Delphi Technologies, Inc. Camshaft phaser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183985U (en) * 1982-06-01 1983-12-07 三洋電機株式会社 rotary compressor
WO2010143284A1 (en) * 2009-06-10 2010-12-16 日鍛バルブ株式会社 Hydraulic lash adjuster for internal combustion engine
JP2011226474A (en) * 2010-04-10 2011-11-10 Hydraulik-Ring Gmbh Oscillating-motor camshaft adjuster having hydraulic valve
WO2013079693A1 (en) * 2011-12-02 2013-06-06 Continental Automotive Gmbh Valve arrangement
JP2013151923A (en) * 2012-01-26 2013-08-08 Denso Corp Valve timing adjusting device and assembling method thereof
JP2015129564A (en) * 2014-01-08 2015-07-16 トヨタ自動車株式会社 Manufacturing method of oil control valve
US20160024978A1 (en) * 2014-07-25 2016-01-28 Delphi Technologies, Inc. Camshaft phaser

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458559B2 (en) 2016-10-06 2019-10-29 Borgwarner, Inc. Double flapper valve for a variable cam timing system
US11111827B2 (en) 2016-10-06 2021-09-07 Borgwarner, Inc. Double flapper valve for a variable cam timing system
US10858965B2 (en) 2017-01-19 2020-12-08 Denso Corporation Valve timing adjustment device
US10876440B2 (en) 2017-01-19 2020-12-29 Denso Corporation Valve timing adjustment device
US10914204B2 (en) 2017-01-19 2021-02-09 Denso Corporation Valve timing adjustment device
US11008903B2 (en) 2017-04-21 2021-05-18 Denso Corporation Valve timing adjustment device
CN110836133A (en) * 2018-08-16 2020-02-25 舍弗勒技术股份两合公司 Camshaft phaser
CN110836133B (en) * 2018-08-16 2023-04-14 舍弗勒技术股份两合公司 Camshaft phaser
CN113614337A (en) * 2019-03-25 2021-11-05 株式会社电装 Working oil control valve and valve timing adjusting device
CN113614337B (en) * 2019-03-25 2024-06-07 株式会社电装 Working oil control valve and valve timing adjustment device
CN115461529A (en) * 2020-04-17 2022-12-09 株式会社电装 Working oil control valve and valve timing adjustment device

Similar Documents

Publication Publication Date Title
WO2018135584A1 (en) Valve timing adjustment device and check valve
JP6690633B2 (en) Valve timing adjustment device and check valve
WO2018135586A1 (en) Valve timing adjustment device
JP6790925B2 (en) Hydraulic oil control valve and valve timing adjustment device using this
CN110192010B (en) Valve timing adjusting device
CN110192008B (en) Valve timing adjusting device
JP6645448B2 (en) Valve timing adjustment device
JP7040769B2 (en) Fluid control valve and valve timing adjustment device using this
JP6733594B2 (en) Valve timing adjustment device
CN113396273B (en) Valve timing adjusting device
JP7136455B2 (en) FLUID CONTROL VALVE AND VALVE TIMING ADJUSTMENT USING THE SAME
WO2021106892A1 (en) Valve timing adjustment device
WO2019181880A1 (en) Valve device
JP7251878B2 (en) FLUID CONTROL VALVE AND VALVE TIMING ADJUSTMENT USING THE SAME
JP6947115B2 (en) Check valve
WO2019181863A1 (en) Valve device
CN113439153B (en) Valve timing adjusting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742069

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18742069

Country of ref document: EP

Kind code of ref document: A1