WO2020196317A1 - Authentication device and film - Google Patents

Authentication device and film Download PDF

Info

Publication number
WO2020196317A1
WO2020196317A1 PCT/JP2020/012450 JP2020012450W WO2020196317A1 WO 2020196317 A1 WO2020196317 A1 WO 2020196317A1 JP 2020012450 W JP2020012450 W JP 2020012450W WO 2020196317 A1 WO2020196317 A1 WO 2020196317A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
authentication device
light source
light
wavelength
Prior art date
Application number
PCT/JP2020/012450
Other languages
French (fr)
Japanese (ja)
Inventor
遠山秀旦
松居久登
合田亘
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020217029171A priority Critical patent/KR20210143754A/en
Priority to JP2020534999A priority patent/JPWO2020196317A1/ja
Priority to CN202080021395.7A priority patent/CN113574427B/en
Publication of WO2020196317A1 publication Critical patent/WO2020196317A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • the present invention relates to an authentication device having a light source, a polarizer, a film, and a light sensitivity sensor.
  • biometric authentication devices such as fingerprint authentication, iris authentication, vein authentication, and face authentication have been improved in accuracy and cost reduction, and are beginning to be used in various electronic products such as mobile phones and vehicles. Since it is expected that it will be used in vehicles and electronic payments in the future, there is a demand for an authentication device that has further accuracy, lower cost, and durability for long-term use.
  • an optical authentication device irradiates an object to be authenticated with light emitted from a light source, receives and images the reflected light with a light sensitivity sensor, and preliminarily captures a patterned image. Authentication is performed by matching with the registered pattern.
  • a polarizing element is used to suppress the reflection of external light.
  • a film of a thermoplastic resin such as polyester or polycarbonate for the outermost layer, deterioration of the authentication function due to breakage or scratches is prevented.
  • the film has polarization or optical rotation
  • the light from the light source is polarized / rotated, and as a result, the polarized / rotated light is blocked by the polarizer before reaching the light sensitivity sensor.
  • the problem of reduced sex arises.
  • the first method is to use an unstretched or slightly stretched film such as optically isotropic polycarbonate as a protective film.
  • an unstretched or slightly stretched film such as optically isotropic polycarbonate
  • a film having a low draw ratio is easily broken and has difficulty in impact resistance.
  • a polycarbonate film having high impact resistance has a problem that it is expensive.
  • the second method is to use an oriented polyester film as a protective film and make the main alignment axis of the oriented polyester film parallel to the transmission axis of the polarizer to substantially eliminate the polarization of the protective film.
  • a method has a problem that if the direction of the main orientation axis and the transmission axis of the polarizer deviate by only a few degrees, the polarization property becomes apparent and the authenticity is lowered.
  • OLED Organic Light Emitting Diode
  • the present invention is intended to solve the above problems, and an object of the present invention is to provide an authentication device in which the authenticity does not depend on the orientation angle of the film.
  • the present invention is intended to solve the above problems. That is, it is an authentication device having a light source, a polarizer, a film, and a light sensitivity sensor, and the film is arranged between the polarizer and the object to be authenticated, and satisfies the following (1) and (2). It is a characteristic authentication device. (1) The transmittance of the light beam emitted from the light source is 70% or more and 100% or less at the wavelength of the strongest intensity of the light ray. (2) There is an integer n that satisfies the following equation (I).
  • A is the wavelength (nm) showing the strongest intensity in the light beam emitted from the light source
  • Re is the wavelength when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using the parallel Nicol rotation method.
  • an authentication device whose authenticity does not depend on the orientation angle of the film.
  • an inexpensive film can be used, and the durability of the light source and the impact resistance of the screen can be improved.
  • the authentication device of the present invention is an authentication device having a light source, a polarizer, a film, and a light sensitivity sensor, and a film satisfying the following (1) and (2) is arranged between the polarizer and the object to be authenticated.
  • Authentication device (1)
  • the film has a transmittance of 70% or more and 100% or less at a wavelength having the strongest intensity of light emitted from the light source.
  • the wavelength having the strongest intensity of the light beam emitted from the light source is A (nm), and the in-plane phase difference of the wavelength 587.8 nm at an incident angle of 0 ° measured by the parallel Nicol rotation method of the film is Re.
  • (nm) is set, the following equation (I') is satisfied.
  • (I') A ⁇ n-150 ⁇ Re ⁇ A ⁇ n + 150
  • n is an integer.
  • the authentication device of the present invention is an authentication device having a light source, a polarizer, a film, and a photosensitivity sensor, wherein the film is arranged between the polarizer and the object to be authenticated, and the following ( It is an authentication device characterized by satisfying 1) and (2).
  • the transmittance of the light beam emitted from the light source is 70% or more and 100% or less at the wavelength of the strongest intensity of the light ray.
  • n There is an integer n that satisfies the following equation (I).
  • A is the wavelength (nm) showing the strongest intensity in the light beam emitted from the light source
  • Re is the wavelength when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using the parallel Nicol rotation method.
  • the authentication device of the present invention includes a light source (1), a polarizer (2), a film (3), and a light sensitivity sensor (4) as shown in FIG. It is preferable that the light source, the polarizer, and the film are arranged in this order. Hereinafter, these configurations will be described.
  • the type of light source constituting the authentication device of the present invention can be any light source as long as it emits light in a wavelength region that can be detected by the light sensitivity sensor.
  • any light source such as a hot cathode tube, a cold cathode tube, a fluorescent light source such as an inorganic EL, an organic electroluminescence element light source (organic EL), a light emitting diode (LED), or an incandescent light source can be used.
  • organic EL or LED is a suitable light source.
  • the in-plane phase difference of the film is an approximately integer of the wavelength having the strongest intensity of the light emitted from the light source (the wavelength having the strongest intensity of the light emitted from the light source may be referred to as the light source wavelength). It is important to double the adjustment to improve the authenticity. It is preferable to use a light source having a narrow emission wavelength band and an adjustable emission wavelength, because the more light having a wavelength far from the in-plane phase difference of the film is, the lower the authenticity is.
  • the half width of the peak having the strongest intensity of the light beam emitted from the light source is preferably 5 nm or more and 150 nm or less. It is more preferably 5 nm or more and 70 nm or less.
  • the orientation angle referred to here refers to the angle formed by the transmission axis of the polarizer and the main alignment axis of the film.
  • the main orientation axis of the film represents the direction of the slow axis determined by the measurement method described later.
  • a flexible organic EL can be preferably used.
  • an organic EL When an organic EL is used as a light source, it is particularly preferable to have a configuration that shields ultraviolet rays, which will be described later. By blocking ultraviolet rays, it is possible to compensate for the drawback of organic EL, which is easily deteriorated by ultraviolet rays, while incorporating the advantages of organic EL such as flexibility.
  • the light source may have one type of emission peak or may have two or more types of emission peaks, but one having one type of emission peak is preferable in order to increase the color purity. It is also preferable to use a plurality of light sources having different types of emission peaks in any combination from the viewpoint of improving security. When a plurality of light sources are used, it is preferable to use a film suitable for each light source (the in-plane phase difference is approximately an integral multiple of the light source wavelength).
  • the authentication device of the present invention needs to include a light sensitivity sensor in order to recognize the light reflected from the object.
  • the photosensitivity sensor include a Charge-Coupled Device (CCD) and a Complementary metal-xide-semiconductor (CMOS).
  • CCD Charge-Coupled Device
  • CMOS Complementary metal-xide-semiconductor
  • the authentication device of the present invention needs to include a polarizer in order to prevent erroneous authentication due to the incident of external light.
  • the external light referred to here refers to light that is incident on the light sensitivity sensor side of the film other than the light emitted from the light source.
  • the material of the polarizer can be arbitrarily selected, and can be formed by, for example, dyeing a polyvinyl alcohol (PVA) film with a dichroic material such as an iodine compound and performing a stretching treatment.
  • PVA polyvinyl alcohol
  • VF-PS # 7500 manufactured by Kuraray or the like can be applied.
  • the authentication device of the present invention needs to have a configuration including a film.
  • the film needs to have a transmittance (light source light transmittance) of 70% or more and 100% or less at a wavelength having the strongest intensity of light rays emitted from a light source. If the transmittance is less than 70%, the light may not sufficiently reach the light sensitivity sensor and the authenticity may be deteriorated. More preferably, it is 80% or more and 100% or less.
  • the wavelength (light source wavelength) showing the strongest intensity in the light beam emitted from the light source is A (nm), and the wavelength 587 at an incident angle of 0 ° measured by the parallel Nicol rotation method of the film.
  • the in-plane phase difference of .8 nm is Re (nm)
  • n is an integer.
  • the authentication device of the present invention is an authentication device having a light source, a polarizer, a film, and a photosensitivity sensor, wherein the film is arranged between the polarizer and the object to be authenticated, and the following ( It is an authentication device characterized by satisfying 1) and (2).
  • the transmittance of the light beam emitted from the light source is 70% or more and 100% or less at the wavelength of the strongest intensity of the light ray.
  • n There is an integer n that satisfies the following equation (I).
  • A is the wavelength (nm) showing the strongest intensity in the light beam emitted from the light source
  • Re is the wavelength when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using the parallel Nicol rotation method.
  • Equation (I) indicates that the in-plane phase difference of the film is approximately an integral multiple of the light source wavelength (range from an integral multiple to ⁇ 150 nm).
  • the in-plane phase difference of the film is preferably in the range of ⁇ 120 nm from an integral multiple of the light source wavelength, and more preferably in the range of ⁇ 100 nm.
  • the in-plane phase difference of the film is not within the above range, the light emitted from the light source is polarized when it passes through the film, so that the influence of light absorption by the polarizer becomes large, and the deterioration of the authenticity becomes a problem.
  • the degree of polarization depends on the orientation angle.
  • the in-plane phase difference is preferably 400 nm or more, more preferably 600 nm or more, and further preferably 800 nm or more.
  • one of the means for adjusting the in-plane retardation is to adjust the stretch ratio, but from the viewpoint of improving the film strength, it is not preferable to strongly stretch in only one direction, so that the in-plane position is set.
  • the phase difference is preferably less than 3000 nm. Since the in-plane retardation is greatly affected by the film thickness, it is difficult to produce a film with an in-plane retardation of less than 3000 nm if the film thickness is too thick.
  • the thickness is 10 ⁇ m or more and less than 100 ⁇ m from the viewpoint of ease of in-plane phase difference adjustment. It is more preferably 15 ⁇ m or more and less than 50 ⁇ m.
  • the in-plane phase difference is most preferably measured at the wavelength of the light source, but the measurement is performed at 587.8 nm due to the stability of the light intensity of the measuring device.
  • the difference between the in-plane phase difference at the wavelength of the light source and the in-plane phase difference at the wavelength that can be measured by the measuring device is preferably 40 nm or less.
  • the mechanism by which the light absorption by the polarizer increases when the in-plane phase difference is not within the above range will be described.
  • the light emitted from the light source passes through the polarizer and the film in this order, then reaches the authentication object, and the light reflected by the authentication object is emitted. It passes through the film and the polarizer in that order, and is detected by the light sensitivity sensor. The path of light is shown by an arrow as shown in FIG.
  • the polarizer absorbs light in a specific polarized state and transmits only light in other polarized states. Therefore, when the light emitted from the light source passes through the polarizer, it becomes linearly polarized light or circularly polarized light.
  • the film is non-polarizing (optically isotropic)
  • the light emitted from the light source passing through the polarizer and incident on the film, and reflected by the object to be certified and incident on the film.
  • the polarized light does not change its polarization state before and after passing through the film. Therefore, if the film is non-polarizing (optically isotropic), the film is emitted from the light source, passes through the polarizer, passes through the film, and is reflected by the object to be certified. Since the polarization state does not change until it passes through and is incident on the polarizer, it passes through without being absorbed by the polarizer and is recognized by the optical sensitivity sensor.
  • the film is polarized, the light emitted from the light source and passing through the polarizer changes its polarization state when it passes through the film and when it passes through the film after being reflected by the object to be certified. .. Therefore, some light is absorbed by the polarizer and cannot pass through. Therefore, the intensity of the light reaching the optical sensitivity sensor is reduced, which leads to a decrease in authenticity.
  • the polarization property of the film is generated by the optical path length difference between the main orientation axis direction and the direction perpendicular to the main orientation axis, that is, the in-plane phase difference. Light that oscillates in the main orientation axis is faster or slower than light that oscillates in the vertical direction, so that the two lights are out of phase and polarized.
  • the in-plane phase difference is set to be approximately an integral multiple of the light source wavelength, so that the phase shift is approximately an integral multiple of 2 ⁇ , and the phase shift is substantially close to zero. If the phase shift is small, the decrease in light intensity after transmission through the polarizer can be suppressed even if the orientation angle is shifted. Therefore, if the in-plane phase difference of the film is within the range of the above formula (I), the deterioration of the authenticity can be suppressed.
  • the transmittance is high regardless of the orientation angle.
  • the authentication performance is also confirmed by the method described later, and if the authentication performance becomes A or B by adjusting the in-plane phase difference, it is confirmed that the screen protection application of the in-screen fingerprint authentication smartphone shows good authentication performance. did.
  • smartphone models include Vivo's X20Plus UD, X21, and NEX.
  • the surface will be an integral multiple of the wavelength with the second strongest intensity of the light rays emitted from the light source. It is preferable to use a film having an internal phase difference.
  • the wavelength showing the second strongest intensity in the light beam emitted from the light source is B (nm), and the in-plane position when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using the parallel Nicol rotation method.
  • the phase difference is Re (nm)
  • the “wavelength showing the second strongest intensity” here is selected from the wavelengths that peak when the wavelength dependence of the intensity of the light rays of each light source is plotted.
  • the “peak” here refers to the wavelength that becomes the maximum value when plotting the wavelength dependence of the emission intensity of light rays.
  • the “maximum value” here refers to a wavelength at which the sign changes from positive to negative when the intensity of light rays is differentiated by wavelength.
  • the second point above excludes that noise is regarded as the peak of B. Therefore, depending on the noise level when measuring the wavelength dependence of the intensity of the light rays of each light source, even an intensity of 1/100 or more of A may be regarded as noise.
  • the one with the strongest intensity is the “wavelength showing the strongest intensity (A)” and the one with the weakest intensity is the “second strongest intensity”.
  • the wavelength (B) indicating the above.
  • the in-plane phase difference of the film is a common multiple of the "wavelength having the strongest intensity" of each light source.
  • the important role is not limited to imaging for authentication, but also includes a role of influencing an object to cause a change and eliminating an influence other than the object.
  • the method for keeping the in-plane phase difference of the film within the above range is not limited, but it is achieved by adjusting the refractive index of the resin and the stretching ratio and stretching temperature.
  • polyesters such as polyethylene terephthalate (abbreviation: PET) and polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose triacetate (abbreviation: TAC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC cellulose triacetate
  • At least a film made of polyester is preferably used in terms of physical properties such as cost, availability, width of the process window during film formation, strength and elongation at break.
  • the polyester described in the present invention is a condensed polymer obtained by polymerization of an aromatic dicarboxylic acid or a monomer containing an aliphatic dicarboxylic acid and a diol as main constituents.
  • a transesterification reaction transesterification method
  • a direct esterification reaction direct polymerization method
  • examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 4,4'-.
  • Examples thereof include diphenyldicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, and 4,4'-diphenylsulfone dicarboxylic acid.
  • Examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, sebacic acid, dimer acid, dodecandioic acid, 1,4-cyclohexanedicarboxylic acid and ester derivatives thereof. Of these, terephthalic acid and 2,6-naphthalenedicarboxylic acid, which exhibit a high refractive index, are preferably used.
  • One of these dicarboxylic acid components may be used, or two or more of them may be used in combination.
  • diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. , 1,6-Hexanediol, 1,2-Cyclohexanedimethanol, 1,3-Cyclohexanedimethanol, 1,4-Cyclohexanedimethanol, Diethylene glycol, Triethylene glycol, Polyalkylene glycol, 2,2-Bis (4--) Hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like can be mentioned. Of these, ethylene glycol is preferably used. Only one type of these diol components may be used, or two or more types may be used in combination.
  • the resin A contains a crystalline resin A as a main component and the resin C contains an amorphous resin C as a main component, it is preferable from the viewpoint that the in-plane phase difference can be easily adjusted.
  • the resin having a low refractive index an amorphous resin or the like whose refractive index does not easily increase during stretching can be used.
  • the crystalline resin examples include polyethylene terephthalate and its copolymer, polyethylene naphthalate and its copolymer, polybutylene terephthalate and its copolymer, polybutylene naphthalate and its copolymer, and polyhexamethylene terephthalate. And its copolymer, polyhexamethylenenaphthalate and its copolymer, and the like can also be used.
  • the copolymerization component it is preferable that one or more of the above-mentioned dicarboxylic acid component and diol component are copolymerized.
  • the resin having a low refractive index is not particularly limited, and is not particularly limited.
  • Chain polyolefins such as polyethylene, polypropylene, poly (4-methylpentene-1), and polyacetal, ring-open metathesis polymerization of norbornenes, addition polymerization, and others.
  • Alicyclic polyolefins which are addition copolymers with olefins, biodegradable polymers such as polylactic acid and polybutylsuccinate, polyamides such as nylon 6, nylon 11, nylon 12, and nylon 66, aramid, and polymethylmethacrylate.
  • the resin C contains polyester as a constituent component from the viewpoints of strength, heat resistance, transparency and versatility, particularly from the viewpoint of adhesion to the crystalline resin and stackability.
  • the resin having a low refractive index may be a copolymer or a mixture.
  • polyester containing isophthalic acid can reduce crystallinity, so that in-plane phase difference can be easily suppressed, and even if biaxially stretched, the refractive index in the thickness direction is unlikely to decrease. Therefore, even if the incident angle of the light from the light source changes, the occurrence of rainbow unevenness can be suppressed.
  • a polyester containing spiroglycol as a copolymerization component is preferable. Polyester containing spiroglycol is less likely to be oriented in film deformation due to biaxial stretching or Boeing, so in-plane retardation fluctuation in the width direction is less likely to occur.
  • amorphous resin since the glass transition point has the effect of increasing, the increase in the heat shrinkage rate due to the use of the amorphous resin can be suppressed.
  • Other preferable copolymer amorphous components include cyclohexanedimethanol, neopentyl glycol, cyclohexanedicarboxylic acid, isosorbide and the like.
  • the above film may be an unstretched film or a stretched film, but a film stretched in at least one direction is preferable from the viewpoint of strength, in-plane retardation adjustment, and productivity.
  • a film stretched in at least one direction is preferable from the viewpoint of strength, in-plane retardation adjustment, and productivity.
  • the elongation at the breaking point can be improved by stretching the film appropriately and the scattering of debris due to the surface breakage can be prevented. ..
  • the molecules in the film are oriented and the in-plane phase difference can be improved.
  • the stretching ratio in the width direction By increasing the stretching ratio in the width direction, the in-plane retardation and the main orientation axis become uniform in the width direction, and the usable product width can be increased, which is preferable.
  • the stretching ratio and the stretching temperature it is necessary to adjust the stretching ratio and the stretching temperature in order to make the in-plane phase difference a substantially integer multiple of the light source wavelength.
  • the stretching ratio and stretching temperature have a great influence on the physical properties important for using the film, such as the strength of the film and the elongation at the breaking point, the strength of the film, the elongation at the breaking point and the target in-plane phase difference are compatible. It's difficult to do. Therefore, as a method for adjusting the in-plane phase difference, it is preferable to use a film in which five or more layers of two or more kinds of resins are alternately laminated. This is because by adjusting the refractive index of the resin used in addition to the stretching ratio and the stretching temperature, it becomes easy to achieve both the strength and elongation at the breaking point and the design of the in-plane phase difference.
  • PT (0) and PT (45)) measured by the following methods satisfy the following formulas (III) and (IV).
  • IV) 1 ⁇ PT (45) / PT (0) ⁇ 0.6 Measurement is performed using a spectrophotometer using a 50 W tungsten lamp as a light source.
  • the amount of transmitted light at the wavelength having the strongest intensity of the light beam emitted from the light source is measured (background measurement).
  • the amount of transmitted light obtained by background measurement when the light source was turned off was defined as PT (D)
  • the amount of transmitted light when the light source was turned on was defined as PT (L).
  • the film is placed between two polarizers so that the surface of the film is perpendicular to the optical axis of the spectrophotometer.
  • the amount of transmitted light at the wavelength having the strongest intensity of the light rays emitted from the light source is measured.
  • PT'(0) be the amount of transmitted light when the angle formed by the transmission axes of the two polarizing elements and the main orientation axis of the film is 0 °
  • PT'(45) be the amount of transmitted light when the angle is 45 °.
  • PT (0) and PT (45) are obtained from the following formulas.
  • PT (0) (PT'(0) -PT (D)) / (PT (L) -PT (D))
  • PT (45) (PT'(45) -PT (D)) / (PT (L) -PT (D))
  • the PT (45) obtained above is understood to be the transmittance when pasted at an angle at which the transmittance is considered to be the lowest.
  • Formula (III) shows that it is preferable that the transmittance is 0.65 or more even in the state where the transmittance is the lowest. If the transmittance is 0.65 or less, it may lead to a decrease in authenticity.
  • the PT (0) obtained above represents the transparency when the film is attached at an orientation angle of 0 °, that is, an ideal angle from the viewpoint of improving the transmittance.
  • the ratio of PT (45) to (PT (45) / PT (0)) indicates the degree to which the transmittance decreases when the film is attached at an angle deviating from the ideal angle. If the ratio of PT (0) and PT (45) is not within the above range, that is, PT (45) is larger than PT (0) or PT (45) is too small compared to PT (0).
  • the transmission axis of the polarizer and the main orientation axis of the film are parallel in order to improve the authenticity of the authentication device. It is necessary to install it so that it becomes, and productivity may decrease. More preferably, it is 0.75 or more and less than 1.0.
  • the film applicable to the present invention can be produced under specific film-forming conditions, although it is a conventionally known general film-forming method as long as the refractive index, stretching ratio, and stretching temperature of the resin can be adjusted.
  • a resin as a material is melted by an extruder, extruded by an annular die or a T-die, and rapidly cooled to produce an unstretched film that is substantially amorphous and not oriented.
  • the unstretched film is stretched uniaxially, tenter-type sequentially biaxially stretched, tenter-type simultaneous biaxially stretched, tubular-type simultaneous biaxially stretched, or the like, by a known method such as a longitudinal direction (conveyance direction, vertical axis) of the film.
  • a biaxially stretched film can be produced by stretching in a direction (direction, MD direction) or a direction perpendicular to the longitudinal direction of the film (width direction, horizontal axis direction, TD direction).
  • the draw ratio in this case can be appropriately selected according to the resin used as the raw material of the film, but is preferably in the range of 2 to 10 times in the vertical axis direction and the horizontal axis direction, respectively. It is also preferable to perform heat treatment after stretching in order to suppress shrinkage during processing as an authentication device.
  • the elongation at the breaking point at 25 ° C. in both the main orientation axis direction and the direction orthogonal to the main orientation axis is 30% or more and 300% or less at the time of processing. It is preferable from the viewpoint of improving the handleability and the strength of the film. It is more preferably 50% or more and 200% or less. If the elongation at the breaking point is 30% or less, the possibility of breaking during processing or damage to the surface of the authentication device increases, which is not preferable. On the other hand, if it exceeds 300%, the slack during processing and the strength as a film are lowered, which may lead to a decrease in authenticity due to scratches and dents.
  • the transmission axis of the polarizer and the main orientation axis of the film are parallel from the viewpoint of transmittance and thus authentication. Therefore, it is preferable that the direction of the main orientation axis of the film is constant in the MD direction and the TD direction of the film.
  • the method for making the orientation angle constant is not particularly limited, but for example, by increasing the draw ratio in the MD direction or the TD direction with respect to the other draw ratio, 100 ° C. in the main orientation axis direction and the direction orthogonal to the main orientation axis.
  • the ratio (maximum value / minimum value) of the maximum value and the minimum value of the heat shrinkage rate after the treatment for 30 minutes can be set to a certain value or more.
  • the ratio of the maximum value to the minimum value is preferably 1.7 or more, more preferably 2.0 or more, still more preferably 3.0 or more.
  • the thickness of the film is preferably in the range of 3 to 200 ⁇ m, more preferably in the range of 10 to 150 ⁇ m, and particularly preferably in the range of 20 to 120 ⁇ m. Within the above range, the thickness of the entire authentication device can be reduced while ensuring the strength required for processing.
  • the angle formed by the main orientation axis of the film and the transmission axis of the polarizer is less than 10 ° from the viewpoint of suppressing deterioration of authenticity. If it exceeds 10 °, the range of the in-plane phase difference with good authenticity becomes narrow, and the variation in the in-plane phase difference in the film surface may lead to a decrease in the authenticity.
  • a phenomenon called Boeing described in JP-A-2010-240977 occurs, so that the range in which the orientation angles are aligned to the extent that they do not affect the authenticity is limited, and the orientation angles are aligned. The range that is not included is the production loss.
  • the direction of the main orientation axis is constant over a wide width of the film by setting the longitudinal stretching ratio to 3.5 times or less and / and the transverse stretching ratio to 3.5 times or more. It is preferable from the viewpoint of productivity because it is close to. It is more preferable that the longitudinal stretching ratio is 3.2 times or less and / and the transverse stretching ratio is 4 times or more, the longitudinal stretching ratio is 2.9 times or less and / and the transverse stretching ratio is 4.5 times. The above is particularly preferable.
  • a multi-layered film is preferable because it makes it easier to suppress changes in the orientation angle in the width direction.
  • the above-mentioned film used in the authentication device of the present invention preferably has small in-plane phase difference unevenness in the film surface from the viewpoint of reducing unevenness in authentication.
  • a method for evaluating unevenness for example, both ends (A, B) indicating the maximum length in the film surface, both ends of a straight film that is orthogonal to the straight line AB connecting the points A and B, and passes through the midpoint of the straight line AB ( A method of measuring the in-plane phase difference of a total of 4 points of C and D) can be mentioned. It is preferable that the difference between the maximum value and the minimum value of the in-plane phase difference of the obtained four points is 200 nm or less.
  • the difference in in-plane phase difference is more preferably 150 nm or less, and particularly preferably 100 nm or less.
  • the method is not particularly limited, but it is preferable to stabilize the stress applied to the film as a whole by stretching 2.7 times or more at a time when the film is stretched.
  • the film shields ultraviolet rays (here, light having a wavelength of 410 nm or less).
  • ultraviolet rays light having a wavelength of 410 nm or less.
  • the light source is made of an organic material such as OLED, an ultraviolet shielding effect is particularly desired. It is most preferable to completely block light of 410 nm or less, but for example, by setting the light transmittance at a wavelength of 380 nm to 5% or less, it is possible to prevent deterioration of the internal polarizer and the light source.
  • the method of shielding ultraviolet rays is not particularly limited, but it is preferable to reflect ultraviolet light by a multilayer structure.
  • the setting of the reflection wavelength can be determined by the layer thickness of each layer of the multilayer laminated film as described in Japanese Patent Application Laid-Open No. 2016-215643.
  • UV absorbers may be used or used in combination with a reflective design.
  • the ultraviolet absorber that can be used in the present invention, it is preferable to use a benzotriazole-based, benzophenone-based, benzoate-based, or triazine-based agent having a molecular weight of 300 g / mol or more.
  • the ultraviolet absorber one of these may be selected, or two or more of them may be used in combination.
  • the molecular weight is more preferably 400 g / mol or more, and further preferably 500 g / mol or more.
  • Many UV absorbers with high molecular weight have long-chain alkyl chains attached to the basic aromatic ring skeleton, which inhibit stacking between UV absorbers and crystallize in the resin to increase haze. It is desirable because it does not cause problems such as inviting.
  • the ultraviolet absorber that can be added is not particularly limited as the benzotriazole-based ultraviolet absorber, and is, for example, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy). -3', 5'-ditertiary butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3'-third butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-Hydroxy-5'-third octylphenyl) benzotriazole, 2- (2'-hydroxy-3', 5'-dicumylphenyl) benzotriazole, 2- (2'-hydroxy-3'-th Examples include 2- (2'-hydroxyphenyl) benzotriazoles such as tributyl-5'-carboxyphenyl) benzotriazoles and 2,2'-methylenebis (4-terioctyl-6-benzotriazolyl) phenols.
  • the benzophenone-based ultraviolet absorber is not particularly limited, and for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 5,5'-methylenebis (2-). 2-Hydroxybenzophenones such as hydroxy-4-methoxybenzophenone) can be mentioned.
  • the benzoate-based ultraviolet absorber is not particularly limited, and is, for example, phenylsalicylate, resorcinol monobenzoate, 2,4-ditertiary butylphenyl-3,5-ditertiary butyl-4-hydroxybenzoate, 2,4-.
  • examples thereof include di-tertiary amylphenyl-3-3,5-di-tertiary butyl-4-hydroxybenzoate and hexadecyl-3,5-di-tertiary butyl-4-hydroxybenzoate.
  • the triazine-based ultraviolet absorber is not particularly limited, but is 2- (2-hydroxy-4-octoxyphenyl) -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- (2- (2-). Hydroxy-4-hexyloxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-propoxy-5-methylphenyl) -4,6-bis (2,4-dimethylphenyl)- s-Triazine, 2- (2-Hydroxy-4-hexyloxyphenyl) -4,6-dibiphenyl-s-Triazine, 2,4-bis (2-hydroxy-4-octoxyphenyl) -6- (2) , 4-Dimethylphenyl) -s-Triazine, 2,4,6-Tris (2-hydroxy-4-octoxyphenyl) -s-Triazine, 2- (4-isooctyloxycarbonyleth
  • UV absorbers include, for example, phenylsalicylate, t-butylphenylsalicylate, p-octylphenylsalicylate, etc. for salicylic acid, and other natural products (eg, oryzanol, shea butter, bicarine) Etc.), biological systems (eg, keratinocytes, melanin, urocanin, etc.) and the like can also be used.
  • a hindered amine compound can also be used in combination with these ultraviolet absorbers as a stabilizer.
  • Inorganic UV absorbers are not preferable because they are incompatible with the base resin and lead to an increase in haze, which deteriorates visibility when an image is displayed on an authentication device.
  • an ultraviolet absorber When an ultraviolet absorber is used, it may be added to the A layer including the outermost layer of the laminated biaxially oriented film, which is a preferred embodiment of the present invention, the B layer which is the inner layer, or both. Above all, it is most preferable that the ultraviolet absorber is contained only in the B layer.
  • an ultraviolet absorber When an ultraviolet absorber is added to the outermost layer, a phenomenon in which the added ultraviolet absorber is deposited on the film surface and a phenomenon in which the added ultraviolet absorber is volatilized are likely to occur, which contaminates the film forming machine and processes the precipitate. It is not preferable because it has an adverse effect on the above.
  • the outermost layer acts as a lid to prevent the UV absorber from volatilizing, so that the precipitation phenomenon is less likely to occur, which is preferable.
  • the film surface may be coated with a coating that imparts functionality such as scratch resistance.
  • a coating method a method can be used in which a curable resin is used as a main component, a cross-linking agent such as melamine or oxazoline is added, and the resin is cured by ultraviolet light.
  • the curable resin is preferably highly transparent and durable, and for example, acrylic resin, urethane resin, fluorine resin, silicon resin, polycarbonate resin, and vinyl chloride resin can be used alone or in combination.
  • the curable resin is preferably made of an active energy ray-curable resin such as an acrylic resin typified by a polyacrylate resin.
  • the curable resin is preferably made of a thermosetting urethane resin.
  • the melanin pigment When the authentication device, for example, recognizes the distribution pattern of the melanin pigment existing in the epidermis, the melanin pigment strongly absorbs blue light from ultraviolet rays, so that the light source wavelength is blue light (the maximum peak wavelength is 415 nm or more and 495 nm).
  • the maximum peak wavelength is 415 nm or more and 495 nm.
  • the point that a clear pattern can be obtained is that the in-plane phase difference of the film is in the range of ⁇ 120 nm from an integral multiple of the light source wavelength, that is, the existence of an integer n satisfying the following equation (V). Is preferable.
  • the light source wavelength is in the infrared region (maximum peak wavelength is 800 nm or more and 1200 nm or less) because hemoglobin has a strong absorption peak in the infrared region.
  • the in-plane phase difference of the film is in the range of an integral multiple of the light source wavelength to ⁇ 150 nm, that is, the existence of an integer n satisfying the following equation (VIII) is obtained from the viewpoint of obtaining a clear pattern. ..
  • the light source wavelength is green (the wavelength of the maximum peak is 495 nm or more and 570 nm or less), that is, an integer n satisfying the following equation (VI) exists.
  • yellow to red maximum peak wavelength is 570 nm or more and 800 nm or less
  • the in-plane phase difference of the film is set to be a substantially common multiple of each light source wavelength using the film. It is preferable to use films having different in-plane retardation for each light source.
  • the area of the area that can be authenticated in the authentication device of the present invention is not particularly limited, and is appropriately adjusted depending on the object to be authenticated and the application. Since the authentication device of the present invention uses a film having a uniform in-plane retardation and a main orientation axis, a large area of an authenticable region can be taken. In other words, the authentication device of the present invention, the area of authentication available space is 100 cm 2 or more, further 225 cm 2 or more, further can be suitably used for 400 cm 2 or more devices.
  • the authentication device of the present invention can accurately recognize various authentication objects, and is therefore suitably used for an authentication device that targets at least one of fingerprint, iris, face, handprint, body shape, and vein. be able to. Further, the authentication device of the present invention can improve the authentication accuracy even if the angle formed by the transmission axis of the polarizer and the main orientation axis of the film is large, so that the yield can be reduced.
  • the unevenness of the in-plane phase difference is orthogonal to both ends (A, B) showing the maximum length in the film plane and the straight line AB connecting the points A and B, and both ends (C) of the straight line passing through the midpoint of the straight line AB. , D), the in-plane phase difference at 4 points was measured, and the difference between the maximum value and the minimum value was used.
  • PT (45) and PT (0) Cut the polarizing element used in the authentication device or the polarizing element having the same degree of polarization as the polarizing element used (TS wire grid polarizing film (manufactured by Edmond Optics Japan Co., Ltd.)) into two sheets.
  • the surfaces of the two polarizers are arranged so as to be perpendicular to the optical axis of the spectrophotometer using a 50 W tungsten lamp as the light source, and the transmission axes of the two polarizers are arranged to be parallel to each other. Perform background measurement with the light off and the light source on.
  • PT (D) be the amount of transmitted light measured when the light source is off
  • PT (L) be the amount of transmitted light measured when the light source is on.
  • PT'(0) be the amount of transmitted light when the angle formed by the transmission axes of the two polarizing elements and the main orientation axis of the film is 0 °
  • PT'(45) be the amount of transmitted light when the angle is 45 °.
  • PT (0) and PT (45) are obtained from the following formulas.
  • PT (0) (PT'(0) -PT (D)) / (PT (L) -PT (D))
  • PT (45) (PT'(45) -PT (D)) / (PT (L) -PT (D)) C.
  • the transmittance at an incident angle of 0 ° was measured using a spectrophotometer manufactured by Hitachi High-Technologies Corporation (U-4100 Spectrophotometer). Measurement conditions: The slit was set to 2 nm, the gain was set to 2, and the scanning speed was set to 600 nm / min. The sample was cut out from the film at 5 locations ⁇ 4 cm ⁇ 4 cm at different locations, and the average value measured for each was used.
  • Aluminum oxide was used for the reflector of the integrating sphere, the double beam direct ratio metering method was used for the metering method, and the prism and grating / grating type double monochrome were used for the spectroscope.
  • the light source light transmittance indicates the transmittance at the wavelength having the strongest intensity of the light beam emitted from the light source of the authentication device.
  • the film is cut out from the center of the sample width in a width of 10 mm x 150 mm. Measurement was performed according to JIS-C-2151 and ASTM-D-882 using a digital micrometer (HKT-1208 manufactured by Matsuo Sangyo) and a tensile tester (RTG1210). The sample was gripped in the main orientation axis direction with a chuck, pulled at a speed of 200 mm / min, and the strength when the sample was cut (broken) (the value obtained by dividing the tensile load value by the cross-sectional area of the test piece) and the elongation were determined. The tensile elongation was calculated by the following formula.
  • Light source wavelength and half width of light source A optical fiber of NA0.22 was attached to a mini spectrophotometer (C10083MD, C9914GB) manufactured by Hamamatsu Photonics, and the light of the light source was measured.
  • the wavelength having the highest intensity in the range of 320 nm or more and 1500 nm or less is defined as the light source wavelength, and the peak width at half the intensity of the peak intensity of the light source wavelength is defined as the half width.
  • the central portion of the film was measured according to JIS-C-2151 using a thickness digital micrometer (HKT-1208 manufactured by Matsuo Sangyo Co., Ltd.). The measurement was performed three times, and the average value was used.
  • the light source durability authentication device was maintained in a light source lighting state for 1000 hours under an atmosphere of 23 ° C. and 65 RH%, and changes in authentication performance before and after the test were evaluated.
  • the judgment criteria are as follows.
  • ⁇ FRR and ⁇ FAR indicate the values obtained by subtracting the FRR and FAR before the test from the FRR and FAR after the test, respectively.
  • the impact value was measured by a film impact tester (manufactured by Toyo Seiki Seisakusho) using a hemispherical impact head with a diameter of 1/2 inch in an atmosphere of a temperature of 23 ° C. and a humidity of 65% RH. The measurement was performed 5 times per sample. Further, the impact value for each measurement was divided by the film thickness attached to the measurement sample to obtain the impact value per unit thickness, which was obtained from the average value of the five measurements. The measured values were evaluated as follows. A: 1.0 N ⁇ m / mm or more B: 0.5 N ⁇ m / mm or more and less than 1.0 N ⁇ m / mm C: Less than 0.5 N ⁇ m / mm.
  • Example 1 As the light source and the light sensitivity sensor, a ClearID FS9500 manufactured by Synaptics (light source wavelength 525 nm, light source half width 30 nm) was used.
  • a polarizer As the polarizer, VF-PS # 7500 manufactured by Kuraray was used as a general polarizing film having a degree of polarization of 80% or more. The film was prepared by the following method.
  • Resin A Polyethylene terephthalate (PET) (intrinsic viscosity: 0.65)
  • Resin B Polyethylene terephthalate (PET / SPG / CHDC) in which 25 mol% of spiroglycol is copolymerized with respect to the entire diol component and 30 mol% of cyclohexanedicarboxylic acid is copolymerized with respect to the entire dicarboxylic acid component (intrinsic viscosity: 0.72).
  • Resin C Resin B (90% by weight) and UV absorber 2,2'-methylenebis [6- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethyl) Butyl) phenol] (10% by weight) was mixed using an extruder and pelletized.
  • Resin D Resin A (90% by weight) and 2,2'-methylenebis [6- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethyl), which is an ultraviolet absorber. Butyl) phenol] (10% by weight) was mixed using an extruder and pelletized.
  • Resin E Polyethylene terephthalate (PET) containing 0.8% by weight of divinylbenzene / styrene copolymer particles having an average particle size of 0.70 ⁇ m and 1.5% by weight of aggregated alumina particles having an average secondary particle size of 0.08 ⁇ m. ) (Intrinsic viscosity: 0.65).
  • thermoplastic resin A was used as the resin constituting the A layer
  • resin C was used as the resin constituting the B layer.
  • the intrinsic viscosity of this resin C was 0.72, and the in-plane average refractive index after film formation was 1.55.
  • a clear ID (light source, light sensitivity sensor), a polarizer, and a film were adhered in this order using an optically clear adhesive (OCA) to obtain an authentication device.
  • OCA optically clear adhesive
  • the main orientation axis of the film was arranged so as to be parallel to the transmission axis of the polarizer.
  • the area that can be authenticated by the authentication device is 1 cm 2 .
  • the characteristics of the obtained authentication device are shown in Tables 2 and 4. An authentication device with excellent authentication and durability was obtained.
  • Example 2 An authentication device was obtained in the same manner as in Example 1 except that the main orientation axis of the film attached to the device was 45 ° with respect to the transmission axis of the polarizer. As shown in Table 2, an authentication device having excellent authenticity and durability was obtained.
  • Example 3 A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the width direction was 5.5 times. An authentication device with excellent authentication and durability was obtained.
  • Example 4 A film and an authentication device were obtained in the same manner as in Example 1 except that the stretching ratio in the longitudinal direction was 3.0 times. An authentication device with excellent authentication and durability was obtained.
  • Example 5 An authentication device was obtained in the same manner as in Example 4 except that the main orientation axis of the film was set to 10 ° with respect to the transmission axis of the polarizer. An authentication device with good authenticity and excellent durability was obtained.
  • Example 6 An authentication device was obtained in the same manner as in Example 4 except that the main orientation axis of the film was 45 ° with respect to the transmission axis of the polarizer. An authentication device with good authenticity and excellent durability was obtained.
  • Example 7 A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the longitudinal direction was set to 2.6 times. An authentication device with good authenticity and excellent durability was obtained.
  • Example 8 A film and an authentication device were obtained in the same manner as in Example 2 except that the resin D was used as the resin constituting the B layer. An authentication device with good authenticity and durability was obtained.
  • Example 9 A film and an authentication device were obtained in the same manner as in Example 2 except that the temperature for stretching in the longitudinal direction was 90 ° C. and the temperature for stretching in the width direction was 120 ° C. An authentication device with good authenticity and excellent durability was obtained.
  • Example 10 A film and an authentication device were obtained in the same manner as in Example 2 except that the Panasonic BM ET-200 was used as a light source and a light sensitivity sensor instead of ClearID to set the elongation ratio in the longitudinal direction to 3.2 times. An authentication device with excellent authentication and durability was obtained.
  • Example 11 A film and an authentication device were obtained in the same manner as in Example 2 except that a 3-layer feed block (A layer is 2 outer layers and B layer is 1 inner layer) is used. It has become an authentication device with excellent authenticity.
  • Example 12 A film and an authentication device were obtained in the same manner as in Example 2 except that resin B was used as the resin constituting the B layer. It has become an authentication device with excellent authenticity.
  • Example 13 A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the longitudinal direction was 1.05 times and the stretching ratio in the width direction was 1.05 times and no heat treatment was performed. It has become an authentication device with excellent authenticity.
  • Example 14 A film and an authentication device were obtained in the same manner as in Example 2 except that a polycarbonate film (Teijin Panlite PC-7129) was used as the film. It has become an authentication device with excellent authenticity.
  • a polycarbonate film Teijin Panlite PC-7129
  • Example 15 An authentication device was obtained in the same manner as in Example 1 except that the certifiable area was 50 cm 2 . It has become an authentication device with excellent authenticity.
  • Example 16 A film and an authentication device were obtained in the same manner as in Example 15 except that the stretching ratio in the longitudinal direction was 4.2 times and the stretching ratio in the width direction was 2.3 times. It became an authentication device with good authentication performance.
  • Example 17 A film and an authentication device were obtained in the same manner as in Example 1 except that the stretching ratio in the width direction was 4.4 times.
  • the measurement when measuring the in-plane phase difference, the measurement was performed with the light source wavelength set to 587.8 nm and the light source wavelength set to 525 nm with a color filter.
  • the results measured at 525 nm are shown in parentheses in the Re (nm) column in Table 3.
  • Example 18 A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the width direction was 4.4 times.
  • the measurement when measuring the in-plane phase difference, the measurement was performed with the light source wavelength set to 587.8 nm and the light source wavelength set to 525 nm with a color filter.
  • the results measured at 525 nm are shown in parentheses in the Re (nm) column in Table 3.
  • Example 19 An authentication device was obtained in the same manner as in Example 2 except that the light source and light sensitivity sensor of ClearID and the light source and light sensitivity sensor of BM ET-200 were used at the same time.
  • the intensity of the light beam of the light source was higher in ClearID. Only the data from the ClearID optical sensitivity sensor has become an authentication device with excellent authenticity.
  • the measurement results at 525 nm are shown outside the parentheses, and the results at 850 nm are shown inside the parentheses.
  • Example 20 A film and an authentication device were obtained in the same manner as in Example 19 except that the stretching ratio in the width direction was set to 5.7 times.
  • the intensity of the light beam of the light source was higher in ClearID.
  • Data from both the ClearID optical sensitivity sensor and the BM ET-200 optical sensitivity sensor have become authentication devices with excellent authenticity.
  • Tables 3 and 4 for the items in which the light source wavelength is required for measurement, the measurement results at 525 nm are shown outside the parentheses, and the results at 850 nm are shown inside the parentheses.
  • Example 21 A film and an authentication device were obtained in the same manner as in Example 5 except that the heat treatment temperature was set to 240 ° C. As shown in Table 4, the authentication device has good authenticity.
  • Example 22 A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the longitudinal direction was 2.6 times and the stretching ratio in the width direction was 4.0 times. As shown in Table 4, although the in-plane phase difference varies slightly, the authentication device has good authentication performance as a whole.
  • Example 23 A film and an authentication device were obtained in the same manner as in Example 5 except that the resin E was used instead of the resin A. As shown in Table 4, the authentication device has good authenticity.
  • Example 24 A film and an authentication device were obtained in the same manner as in Example 2 except that a 9-layer feed block (A layer is the outer 5 layers and B layer is the inner 4 layers) is used. As shown in Table 4, the authentication device has excellent authentication properties.
  • Example 25 A 101-layer feed block (51 layers on the outside for the A layer and 50 layers on the inside for the B layer) was used, and the film and certification were performed in the same manner as in Example 2 except that the discharge amount was adjusted to make the thickness after stretching 18 ⁇ m. Got the device. Although the impact resistance is slightly reduced due to the thinning, the film can be applied to applications that require a thin film. As shown in Table 4, the authentication device has excellent authentication properties.
  • Example 1 A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the longitudinal direction was 3.2 times and the main orientation axis of the film was 10 ° with respect to the transmission axis of the polarizer. It became an authentication device with slightly inferior authentication performance.
  • Example 2 A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the longitudinal direction was 3.2 times. It became an authentication device with poor authentication performance.
  • Example 3 A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the width direction was 4.9 times. It became an authentication device with poor authentication performance.
  • Comparative Example 4 A film and an authentication device were obtained in the same manner as in Comparative Example 2 except that the stretching ratio in the longitudinal direction was 3.2 times and the stretching ratio in the width direction was 4.4 times. It became an authentication device with poor authentication performance.
  • the authentication performance does not depend on the orientation angle of the film, and the film absorbs and reflects ultraviolet rays to improve the durability of the light source and the polarizer.
  • inexpensive polyester is used as the raw material of the film. Can be. Therefore, it has good certification performance and durability, is inexpensive, and is excellent in productivity.
  • Light source 2 Polarizer 3: Film 4: Light sensitivity sensor 5: Light emitted from the light source reflected by the object to be authenticated 6: Light emitted from the light source

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention addresses the problem of providing an authentication device in which authentication performance thereof is not dependent on an alignment angle of a film. This authentication device has a light source, a polarizer, a film, and a photosensitive sensor, wherein the film having specific characteristics is disposed between the polarizer and an object to be authenticated.

Description

認証デバイスおよびフィルムAuthentication devices and films
本発明は、光源、偏光子、フィルム、光感度センサーを有する認証デバイスに関するものである。 The present invention relates to an authentication device having a light source, a polarizer, a film, and a light sensitivity sensor.
 近年の画像処理技術およびデータ解析技術の発展に伴い、多様な認証システムが実用化されている。特に指紋認証、虹彩認証、静脈認証、顔認証などの生体認証デバイスは、精度の向上と低コスト化が進み、携帯電話や車両など様々な電子製品において使用され始めている。今後さらに車両や電子決済などで使用されていくと予想されることから、更なる精度や低コスト化、また長期で使用する場合の耐久性を持った認証デバイスが求められている。 With the development of image processing technology and data analysis technology in recent years, various authentication systems have been put into practical use. In particular, biometric authentication devices such as fingerprint authentication, iris authentication, vein authentication, and face authentication have been improved in accuracy and cost reduction, and are beginning to be used in various electronic products such as mobile phones and vehicles. Since it is expected that it will be used in vehicles and electronic payments in the future, there is a demand for an authentication device that has further accuracy, lower cost, and durability for long-term use.
 特許文献1に示されているように、一般に光学式の認証デバイスは光源から発した光を認証対象物に照射し、反射した光を光感度センサーで受光、撮像し、パターン化した画像をあらかじめ登録されているパターンとマッチングすることで認証を行う。そのような認証デバイスでは、光源から発した以外の光が入射してしまうと誤認証の原因となるため、偏光子を用いて外光の反射を抑えている場合が多い。また、最表層にはポリエステルやポリカーボネートなど熱可塑性樹脂のフィルムを用いることで、破損やキズによる認証機能低下を防いでいる。 As shown in Patent Document 1, in general, an optical authentication device irradiates an object to be authenticated with light emitted from a light source, receives and images the reflected light with a light sensitivity sensor, and preliminarily captures a patterned image. Authentication is performed by matching with the registered pattern. In such an authentication device, if light other than that emitted from the light source is incident, it causes erroneous authentication. Therefore, in many cases, a polarizing element is used to suppress the reflection of external light. Moreover, by using a film of a thermoplastic resin such as polyester or polycarbonate for the outermost layer, deterioration of the authentication function due to breakage or scratches is prevented.
国際公開2017/126153号International Publication No. 2017/126153
 しかしながら、前記フィルムに偏光性や旋光性がある場合、光源からの光が偏光/旋光されてしまう結果、偏光/旋光された光は光感度センサーに届くまでに偏光子によって遮断されるため、認証性が低下するという問題が発生する。 However, if the film has polarization or optical rotation, the light from the light source is polarized / rotated, and as a result, the polarized / rotated light is blocked by the polarizer before reaching the light sensitivity sensor. The problem of reduced sex arises.
 かかる問題に対しては二通りの対策が考えられる。一つ目は光学的にほぼ等方なポリカーボネートなどの未延伸、もしくは微延伸フィルムを保護フィルムとする方法がある。しかしながら、延伸倍率の低いフィルムは割れやすく、耐衝撃性に難がある。また、耐衝撃性の高いポリカーボネートフィルムは高価であるという課題を有する。 There are two possible countermeasures for this problem. The first method is to use an unstretched or slightly stretched film such as optically isotropic polycarbonate as a protective film. However, a film having a low draw ratio is easily broken and has difficulty in impact resistance. Further, a polycarbonate film having high impact resistance has a problem that it is expensive.
 二つ目は配向せしめたポリエステルフィルムを保護フィルムとして用い、配向ポリエステルフィルムの主配向軸を偏光子の透過軸と平行にすることで、保護フィルムでの偏光を実質的に無くす方法である。しかしながら、かかる方法では、主配向軸の方向と、偏光子の透過軸が、わずか数度ずれると偏光性が顕在化してしまい、認証性が低下するという課題を有する。 The second method is to use an oriented polyester film as a protective film and make the main alignment axis of the oriented polyester film parallel to the transmission axis of the polarizer to substantially eliminate the polarization of the protective film. However, such a method has a problem that if the direction of the main orientation axis and the transmission axis of the polarizer deviate by only a few degrees, the polarization property becomes apparent and the authenticity is lowered.
 また光源としてOLED(Organic Light Emitting Diode)を用いている認証デバイスでは、紫外線などによるOLEDの劣化が長期使用のためのネックになっており、OLEDの耐久性を向上させることが認証デバイスの耐用年数向上に直結する課題となっている。 In addition, in an authentication device that uses an OLED (Organic Light Emitting Diode) as a light source, deterioration of the OLED due to ultraviolet rays or the like is a bottleneck for long-term use, and improving the durability of the OLED is the useful life of the authentication device. This is an issue that is directly linked to improvement.
 本発明は、上記の課題を解決せんとするものであって、フィルムの配向角に認証性が依存することのない認証デバイスを提供することを課題とする。 The present invention is intended to solve the above problems, and an object of the present invention is to provide an authentication device in which the authenticity does not depend on the orientation angle of the film.
 本発明は、上記の課題を解決せんとするものである。すなわち、光源、偏光子、フィルム、光感度センサーを有する認証デバイスであって、前記のフィルムは偏光子と認証対象物の間に配置され、かつ下記(1)および(2)を満足することを特徴とする認証デバイスである。
(1)前記光源から出射する光線の透過率が、当該光線の最も強い強度の波長において70%以上100%以下であること。
(2)下記(I)式を満足する整数nが存在すること。
(I)A×n-150 ≦ Re ≦ A×n+150
ここで、Aは前記光源から出射する光線において最も強い強度を示す波長(nm)であり、Reは前記フィルムを平行ニコル回転法を用いて入射角0°での波長587.8nmで測定したときの面内位相差(nm)である。
The present invention is intended to solve the above problems. That is, it is an authentication device having a light source, a polarizer, a film, and a light sensitivity sensor, and the film is arranged between the polarizer and the object to be authenticated, and satisfies the following (1) and (2). It is a characteristic authentication device.
(1) The transmittance of the light beam emitted from the light source is 70% or more and 100% or less at the wavelength of the strongest intensity of the light ray.
(2) There is an integer n that satisfies the following equation (I).
(I) A × n-150 ≦ Re ≦ A × n + 150
Here, A is the wavelength (nm) showing the strongest intensity in the light beam emitted from the light source, and Re is the wavelength when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using the parallel Nicol rotation method. In-plane phase difference (nm).
 本発明に依れば、フィルムの配向角に認証性が依存することのない認証デバイスを提供できる。また、安価なフィルムを用いることができ、光源の耐久性および画面の耐衝撃性を向上させることができる。 According to the present invention, it is possible to provide an authentication device whose authenticity does not depend on the orientation angle of the film. In addition, an inexpensive film can be used, and the durability of the light source and the impact resistance of the screen can be improved.
本発明の認証デバイスの構成の一例を模式的に示す図である。It is a figure which shows typically an example of the structure of the authentication device of this invention. 本発明の認証デバイスで認証に用いる光の動きの一例を示す図である。It is a figure which shows an example of the movement of light used for authentication in the authentication device of this invention.
 以下、本発明の実施の形態について詳細に述べるが、本発明は以下の実施例を含む実施の形態に限定して解釈されるものではなく、発明の目的を達成できて、かつ、発明の要旨を逸脱しない範囲においての種々の変更は当然ありうる。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not construed as being limited to embodiments including the following examples, and the object of the invention can be achieved and the gist of the invention can be achieved. Of course, various changes can be made without departing from the above.
 本発明の認証デバイスは、光源、偏光子、フィルム、光感度センサーを有する認証デバイスであって、偏光子と認証対象物の間に下記(1)および(2)を満足するフィルムが配置されている認証デバイスである。
(1)前記フィルムが、前記光源から出射する光の最も強い強度を持つ波長における透過率が70%以上100%以下であること。
(2)前記光源から出射する光線の最も強い強度を持つ波長をA(nm)、前記フィルムの平行ニコル回転法で測定される入射角0°での波長587.8nmの面内位相差をRe(nm)としたとき、下記(I´)式を満足すること。
(I´)A×n-150 ≦ Re < A×n+150
ただし、nは整数である。
The authentication device of the present invention is an authentication device having a light source, a polarizer, a film, and a light sensitivity sensor, and a film satisfying the following (1) and (2) is arranged between the polarizer and the object to be authenticated. Authentication device.
(1) The film has a transmittance of 70% or more and 100% or less at a wavelength having the strongest intensity of light emitted from the light source.
(2) The wavelength having the strongest intensity of the light beam emitted from the light source is A (nm), and the in-plane phase difference of the wavelength 587.8 nm at an incident angle of 0 ° measured by the parallel Nicol rotation method of the film is Re. When (nm) is set, the following equation (I') is satisfied.
(I') A × n-150 ≦ Re <A × n + 150
However, n is an integer.
 より詳細には、本発明の認証デバイスは、光源、偏光子、フィルム、および光感度センサーを有する認証デバイスであって、前記のフィルムは偏光子と認証対象物の間に配置され、かつ下記(1)および(2)を満足することを特徴とする認証デバイスである。
(1)前記光源から出射する光線の透過率が、当該光線の最も強い強度の波長において70%以上100%以下であること。
(2)下記(I)式を満足する整数nが存在すること。
(I)A×n-150 ≦ Re ≦ A×n+150
ここで、Aは前記光源から出射する光線において最も強い強度を示す波長(nm)であり、Reは前記フィルムを平行ニコル回転法を用いて入射角0°での波長587.8nmで測定したときの面内位相差(nm)である。
More specifically, the authentication device of the present invention is an authentication device having a light source, a polarizer, a film, and a photosensitivity sensor, wherein the film is arranged between the polarizer and the object to be authenticated, and the following ( It is an authentication device characterized by satisfying 1) and (2).
(1) The transmittance of the light beam emitted from the light source is 70% or more and 100% or less at the wavelength of the strongest intensity of the light ray.
(2) There is an integer n that satisfies the following equation (I).
(I) A × n-150 ≦ Re ≦ A × n + 150
Here, A is the wavelength (nm) showing the strongest intensity in the light beam emitted from the light source, and Re is the wavelength when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using the parallel Nicol rotation method. In-plane phase difference (nm).
 本発明の認証デバイスは、図1に示す通り光源(1)、偏光子(2)、フィルム(3)、光感度センサー(4)を含んでなる。光源、偏光子、フィルムの順で配置されてなることが好ましい。以下、これらの構成について記載する。 The authentication device of the present invention includes a light source (1), a polarizer (2), a film (3), and a light sensitivity sensor (4) as shown in FIG. It is preferable that the light source, the polarizer, and the film are arranged in this order. Hereinafter, these configurations will be described.
 〈光源〉
 本発明の認証デバイスを構成する光源の種類は、光感度センサーで検知可能な波長領域に発光を示すものであればいずれの光源でも用いることができる。例えば、熱陰極管や冷陰極管、無機ELなどの蛍光性光源、有機エレクトロルミネッセンス素子光源(有機EL)、発光ダイオード(LED)、白熱光源などいずれの光源でも利用可能である。特には有機ELまたはLEDが好適な光源である。後述するように、フィルムの面内位相差を前記光源から出射する光の最も強い強度を持つ波長(光源から出射する光の最も強い強度を持つ波長を、光源波長という場合がある)の略整数倍に調整することが認証性向上のために重要となる。フィルムの面内位相差の略約数から離れた波長の光が多いほど認証性の低下につながるため、発光波長帯域が狭く、また発光波長を調整可能な光源を用いることが好ましい。光源から出射する光線の最も強い強度を有するピークの半値幅は5nm以上150nm以下であることが好ましい。5nm以上70nm以下であることが更に好ましい。5nm以上50nm以下であることが特に好ましい。波長帯域が狭くフィルムの面内位相差の整数倍に近しいほど、認証性に影響を与える、フィルムの配向角依存性を抑えることができる。ここでいう配向角とは、偏光子の透過軸とフィルムの主配向軸のなす角を指す。なお、本発明においてフィルムの主配向軸は、後述する測定方法により求められる遅相軸の方向を表す。また、湾曲したディスプレイなどの表面に該認証デバイスを設置する場合は柔軟な有機ELを好ましく用いることができる。
<light source>
The type of light source constituting the authentication device of the present invention can be any light source as long as it emits light in a wavelength region that can be detected by the light sensitivity sensor. For example, any light source such as a hot cathode tube, a cold cathode tube, a fluorescent light source such as an inorganic EL, an organic electroluminescence element light source (organic EL), a light emitting diode (LED), or an incandescent light source can be used. In particular, organic EL or LED is a suitable light source. As will be described later, the in-plane phase difference of the film is an approximately integer of the wavelength having the strongest intensity of the light emitted from the light source (the wavelength having the strongest intensity of the light emitted from the light source may be referred to as the light source wavelength). It is important to double the adjustment to improve the authenticity. It is preferable to use a light source having a narrow emission wavelength band and an adjustable emission wavelength, because the more light having a wavelength far from the in-plane phase difference of the film is, the lower the authenticity is. The half width of the peak having the strongest intensity of the light beam emitted from the light source is preferably 5 nm or more and 150 nm or less. It is more preferably 5 nm or more and 70 nm or less. It is particularly preferably 5 nm or more and 50 nm or less. The narrower the wavelength band and the closer to an integral multiple of the in-plane phase difference of the film, the more the dependence on the orientation angle of the film, which affects the authenticity, can be suppressed. The orientation angle referred to here refers to the angle formed by the transmission axis of the polarizer and the main alignment axis of the film. In the present invention, the main orientation axis of the film represents the direction of the slow axis determined by the measurement method described later. Further, when the authentication device is installed on the surface of a curved display or the like, a flexible organic EL can be preferably used.
 有機ELを光源とする場合は、後述する、紫外線を遮へいする構成とすることが特に好ましい。紫外線を遮へいすることにより、フレキシブル性などの有機ELの優れる点を取り入れながら、紫外線劣化しやすいという有機ELの欠点を補うことが出来る。 When an organic EL is used as a light source, it is particularly preferable to have a configuration that shields ultraviolet rays, which will be described later. By blocking ultraviolet rays, it is possible to compensate for the drawback of organic EL, which is easily deteriorated by ultraviolet rays, while incorporating the advantages of organic EL such as flexibility.
 光源は1種類の発光ピークを持つものでもよく、2種類以上の発光ピークを持つものでもよいが、色純度を高めるためには1種類の発光ピークを持つものが好ましい。また、発光ピークの種類の異なる複数の光源を任意に組み合わせて使用することも、セキュリティ向上などの点から好ましい。複数の光源を使用する場合は、それぞれの光源に適した(面内位相差が光源波長の略整数倍となっている)フィルムを用いることが好ましい。 The light source may have one type of emission peak or may have two or more types of emission peaks, but one having one type of emission peak is preferable in order to increase the color purity. It is also preferable to use a plurality of light sources having different types of emission peaks in any combination from the viewpoint of improving security. When a plurality of light sources are used, it is preferable to use a film suitable for each light source (the in-plane phase difference is approximately an integral multiple of the light source wavelength).
 〈光感度センサー〉
 本発明の認証デバイスは、対象から反射してきた光を認識するために光感度センサーを含む構成とすることが必要である。光感度センサーとしては、Charge―Coupled Device(CCD)、Complementary metal―oxide―semiconductor(CMOS)などが上げられる。中でもCMOS(Live MOS、裏面照射型CMOS、積層型CMOS、曲面CMOS、有機薄膜CMOS、Foveonなどを含む)を用いることが、製造コストや読み出しスピードの観点から好ましい。特に有機薄膜CMOSと後述する紫外線遮へいを組み合わせることで、薄膜などの有機薄膜CMOSを得ながらにして、紫外線劣化しやすいという有機薄膜CMOSの難点を補うことが出来る。
<Light sensitivity sensor>
The authentication device of the present invention needs to include a light sensitivity sensor in order to recognize the light reflected from the object. Examples of the photosensitivity sensor include a Charge-Coupled Device (CCD) and a Complementary metal-xide-semiconductor (CMOS). Among them, it is preferable to use CMOS (including Live MOS, back-illuminated CMOS, laminated CMOS, curved CMOS, organic thin film CMOS, Foveon, etc.) from the viewpoint of manufacturing cost and readout speed. In particular, by combining the organic thin film CMOS and the ultraviolet shielding shield described later, it is possible to compensate for the difficulty of the organic thin film CMOS that the ultraviolet rays are easily deteriorated while obtaining the organic thin film CMOS such as a thin film.
 〈偏光子〉
 本発明の認証デバイスには、外光の入射による誤認証を防止するために、偏光子を含む構成とすることが必要である。ここでいう外光とは、光源から発された光以外でフィルムより光感度センサー側に入射する光を指す。偏光子の素材としては、任意に選択することができるが、例えばポリビニルアルコール(PVA)フィルムをヨウ素化合物等の二色性材料により染色し、延伸処理を行うことにより形成することができる。PVAフィルムは、一例として、クラレ製VF-PS#7500などを適用することができる。
<Polarizer>
The authentication device of the present invention needs to include a polarizer in order to prevent erroneous authentication due to the incident of external light. The external light referred to here refers to light that is incident on the light sensitivity sensor side of the film other than the light emitted from the light source. The material of the polarizer can be arbitrarily selected, and can be formed by, for example, dyeing a polyvinyl alcohol (PVA) film with a dichroic material such as an iodine compound and performing a stretching treatment. As an example of the PVA film, VF-PS # 7500 manufactured by Kuraray or the like can be applied.
 〈フィルム〉
 本発明の認証デバイスは、フィルムを含む構成とすることが必要である。前記フィルムは、光源から出射する光線の最も強い強度を持つ波長における透過率(光源光線透過率)が70%以上100%以下であることが必要となる。透過率が70%未満の場合、光が十分に光感度センサーに届かず認証性が低下する場合がある。より好ましくは80%以上100%以下である。
<the film>
The authentication device of the present invention needs to have a configuration including a film. The film needs to have a transmittance (light source light transmittance) of 70% or more and 100% or less at a wavelength having the strongest intensity of light rays emitted from a light source. If the transmittance is less than 70%, the light may not sufficiently reach the light sensitivity sensor and the authenticity may be deteriorated. More preferably, it is 80% or more and 100% or less.
 また、本発明の認証デバイスでは、光源から出射する光線において最も強い強度を示す波長(光源波長)をA(nm)、前記フィルムの平行ニコル回転法で測定される入射角0°での波長587.8nmの面内位相差をRe(nm)としたとき、(I´)式を満足することが必要である。
(I´)A×n-150 ≦ Re < A×n+150
ただし、nは整数である。
Further, in the authentication device of the present invention, the wavelength (light source wavelength) showing the strongest intensity in the light beam emitted from the light source is A (nm), and the wavelength 587 at an incident angle of 0 ° measured by the parallel Nicol rotation method of the film. When the in-plane phase difference of .8 nm is Re (nm), it is necessary to satisfy the equation (I').
(I') A × n-150 ≦ Re <A × n + 150
However, n is an integer.
 より詳細には、本発明の認証デバイスは、光源、偏光子、フィルム、および光感度センサーを有する認証デバイスであって、前記のフィルムは偏光子と認証対象物の間に配置され、かつ下記(1)および(2)を満足することを特徴とする認証デバイスである。
(1)前記光源から出射する光線の透過率が、当該光線の最も強い強度の波長において70%以上100%以下であること。
(2)下記(I)式を満足する整数nが存在すること。
(I)A×n-150 ≦ Re ≦ A×n+150
 ここで、Aは前記光源から出射する光線において最も強い強度を示す波長(nm)であり、Reは前記フィルムを平行ニコル回転法を用いて入射角0°での波長587.8nmで測定したときの面内位相差(nm)である。
More specifically, the authentication device of the present invention is an authentication device having a light source, a polarizer, a film, and a photosensitivity sensor, wherein the film is arranged between the polarizer and the object to be authenticated, and the following ( It is an authentication device characterized by satisfying 1) and (2).
(1) The transmittance of the light beam emitted from the light source is 70% or more and 100% or less at the wavelength of the strongest intensity of the light ray.
(2) There is an integer n that satisfies the following equation (I).
(I) A × n-150 ≦ Re ≦ A × n + 150
Here, A is the wavelength (nm) showing the strongest intensity in the light beam emitted from the light source, and Re is the wavelength when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using the parallel Nicol rotation method. In-plane phase difference (nm).
 (I)式はフィルムの面内位相差が、光源波長の略整数倍(整数倍から±150nmの範囲)であることを示している。フィルムの面内位相差は光源波長の整数倍から±120nmの範囲であることが好ましく、±100nmの範囲であることがさらに好ましい。フィルムの面内位相差が上記範囲内でない場合は、光源から射出した光がフィルムを通過した時に偏光されるため、偏光子による光吸収の影響が大きくなり、認証性の低下が問題となる。なお、偏光の度合いは配向角に依存することになる。また、プロセスウィンドウを広げる観点からは面内位相差は400nm以上であることが好ましく、600nm以上がより好ましく、800nm以上がさらに好ましい。また、後述するように面内位相差調節の手段のひとつとして延伸倍率を調整することが挙げられるが、フィルム強度向上の観点からは一方向にのみ強く延伸することは好ましくないため、面内位相差3000nm未満であることが好ましい。面内位相差はフィルム厚みの影響を大きく受けるため、フィルム厚みが厚すぎる場合は面内位相差3000nm未満のフィルムを作成することは困難であり、同様にフィルム厚みが薄すぎると面内位相差400nm以上のフィルムを作成することは困難である。面内位相差を上記の好ましい範囲とするためには、厚み10μm以上100μm未満とすることが面内位相差調節の容易さの観点から好ましい。15μm以上50μm未満であることがさらに好ましい。 Equation (I) indicates that the in-plane phase difference of the film is approximately an integral multiple of the light source wavelength (range from an integral multiple to ± 150 nm). The in-plane phase difference of the film is preferably in the range of ± 120 nm from an integral multiple of the light source wavelength, and more preferably in the range of ± 100 nm. When the in-plane phase difference of the film is not within the above range, the light emitted from the light source is polarized when it passes through the film, so that the influence of light absorption by the polarizer becomes large, and the deterioration of the authenticity becomes a problem. The degree of polarization depends on the orientation angle. Further, from the viewpoint of widening the process window, the in-plane phase difference is preferably 400 nm or more, more preferably 600 nm or more, and further preferably 800 nm or more. Further, as described later, one of the means for adjusting the in-plane retardation is to adjust the stretch ratio, but from the viewpoint of improving the film strength, it is not preferable to strongly stretch in only one direction, so that the in-plane position is set. The phase difference is preferably less than 3000 nm. Since the in-plane retardation is greatly affected by the film thickness, it is difficult to produce a film with an in-plane retardation of less than 3000 nm if the film thickness is too thick. Similarly, if the film thickness is too thin, the in-plane retardation It is difficult to make a film of 400 nm or more. In order to keep the in-plane phase difference within the above preferable range, it is preferable that the thickness is 10 μm or more and less than 100 μm from the viewpoint of ease of in-plane phase difference adjustment. It is more preferably 15 μm or more and less than 50 μm.
 また延伸倍率を下げることによって面内位相差を0に近づけることにより、認証性を向上させることも可能であるが、フィルムがもろくなるため耐衝撃性の観点からは好ましくない。 It is also possible to improve the authenticity by making the in-plane phase difference close to 0 by lowering the draw ratio, but it is not preferable from the viewpoint of impact resistance because the film becomes brittle.
 なお、面内位相差は光源波長にて測定することが最も好ましいが、測定装置の光強度安定性から587.8nmにて測定を行っている。光源波長での面内位相差と、測定装置にて測定可能な波長での面内位相差の差が40nm以下であることが好ましい。 The in-plane phase difference is most preferably measured at the wavelength of the light source, but the measurement is performed at 587.8 nm due to the stability of the light intensity of the measuring device. The difference between the in-plane phase difference at the wavelength of the light source and the in-plane phase difference at the wavelength that can be measured by the measuring device is preferably 40 nm or less.
 面内位相差が上記範囲内でない場合に偏光子による光吸収が大きくなるメカニズムについて説明する。本発明の認証デバイスにおいて認証対象物を認証する際、光源から射出された光は、偏光子、フィルムの順に通過した後、認証対象物に到達し、認証対象物にて反射された光は、フィルム、偏光子の順に通過し、光感度センサーで検出される。光の経路を矢印で示すと、図2のようになる。 The mechanism by which the light absorption by the polarizer increases when the in-plane phase difference is not within the above range will be described. When the authentication object is authenticated by the authentication device of the present invention, the light emitted from the light source passes through the polarizer and the film in this order, then reaches the authentication object, and the light reflected by the authentication object is emitted. It passes through the film and the polarizer in that order, and is detected by the light sensitivity sensor. The path of light is shown by an arrow as shown in FIG.
 偏光子は、特定の偏光状態の光を吸収し、その他の偏光状態の光のみを透過する。そのため、光源から射出された光が偏光子を通過すると、直線偏光または円偏光となる。フィルムに偏光性がない(光学的に等方性)である場合には、光源から射出されて偏光子を通過してフィルムに入射する光、および、認証対象物にて反射されてフィルムに入射する光は、フィルムを通過前後で偏光状態は変わることがない。そのため、フィルムに偏光性がない(光学的に等方性)である場合は、光源から射出されて偏光子を通過した後、フィルムを通過する際、および、認証対象物にて反射後フィルムを通過して偏光子に入射するまで偏光状態は変わらないため、偏光子で吸収されることなく通過し、光感度センサーにより認識されることとなる。 The polarizer absorbs light in a specific polarized state and transmits only light in other polarized states. Therefore, when the light emitted from the light source passes through the polarizer, it becomes linearly polarized light or circularly polarized light. When the film is non-polarizing (optically isotropic), the light emitted from the light source, passing through the polarizer and incident on the film, and reflected by the object to be certified and incident on the film. The polarized light does not change its polarization state before and after passing through the film. Therefore, if the film is non-polarizing (optically isotropic), the film is emitted from the light source, passes through the polarizer, passes through the film, and is reflected by the object to be certified. Since the polarization state does not change until it passes through and is incident on the polarizer, it passes through without being absorbed by the polarizer and is recognized by the optical sensitivity sensor.
 しかしながら、フィルムに偏光性がある場合は、光源から射出されて偏光子を通過した光は、フィルムを通過する際、および、認証対象物により反射した後にフィルムを通過する際に偏光状態が変化する。そのため、一部の光は偏光子で吸収され、通過することができない。そのため、光感度センサーまで届く光の強度が低下し、認証性の低下に繋がる。フィルムの偏光性は主配向軸方向と主配向軸に垂直な方向の光路長差、つまり面内位相差により発生する。主配向軸方向に振動する光が垂直方向に振動する光に比べて速いまたは遅いことで二つの光の位相がずれ、偏光される。 However, if the film is polarized, the light emitted from the light source and passing through the polarizer changes its polarization state when it passes through the film and when it passes through the film after being reflected by the object to be certified. .. Therefore, some light is absorbed by the polarizer and cannot pass through. Therefore, the intensity of the light reaching the optical sensitivity sensor is reduced, which leads to a decrease in authenticity. The polarization property of the film is generated by the optical path length difference between the main orientation axis direction and the direction perpendicular to the main orientation axis, that is, the in-plane phase difference. Light that oscillates in the main orientation axis is faster or slower than light that oscillates in the vertical direction, so that the two lights are out of phase and polarized.
 一方、本発明の認証デバイスでは、面内位相差を光源波長の略整数倍とすることで、位相のずれを2πの略整数倍とし、実質的に位相のずれをゼロに近くしている。位相のずれが小さくなれば、配向角がずれていても偏光子透過後の光の強度の低下は抑えられる。よって、フィルムの面内位相差が上記(I)式の範囲内であれば、認証性の低下を抑えることができる。 On the other hand, in the authentication device of the present invention, the in-plane phase difference is set to be approximately an integral multiple of the light source wavelength, so that the phase shift is approximately an integral multiple of 2π, and the phase shift is substantially close to zero. If the phase shift is small, the decrease in light intensity after transmission through the polarizer can be suppressed even if the orientation angle is shifted. Therefore, if the in-plane phase difference of the film is within the range of the above formula (I), the deterioration of the authenticity can be suppressed.
 例えば光源波長が525nmである場合には面内位相差が525nmの整数倍の時は配向角に依存せず高い透過率となることを見出した。認証性についても後述の方法で確認を行い、面内位相差を調整することで認証性がA又はBとなれば、画面内指紋認証スマートフォンの画面保護用途として良好な認証性能を示すことを確認した。スマートフォンの機種としては、例えば、Vivo製 X20 Plus UD、X21、NEXが挙げられる。 For example, it was found that when the light source wavelength is 525 nm and the in-plane phase difference is an integral multiple of 525 nm, the transmittance is high regardless of the orientation angle. The authentication performance is also confirmed by the method described later, and if the authentication performance becomes A or B by adjusting the in-plane phase difference, it is confirmed that the screen protection application of the in-screen fingerprint authentication smartphone shows good authentication performance. did. Examples of smartphone models include Vivo's X20Plus UD, X21, and NEX.
 また、光源が複数色存在しており、いずれの色も光感度センサーに受光させたい場合は、光源から出射する光線の2番目に強い強度を持つ波長に対しても整数倍となるような面内位相差を持つフィルムとすることが好ましい。 In addition, if there are multiple colors of light sources and you want the light sensitivity sensor to receive any of these colors, the surface will be an integral multiple of the wavelength with the second strongest intensity of the light rays emitted from the light source. It is preferable to use a film having an internal phase difference.
 つまり、光源から出射する光線において2番目に強い強度を示す波長をB(nm)、前記フィルムを平行ニコル回転法を用いて入射角0°での波長587.8nmで測定したときの面内位相差をRe(nm)としたとき、下記(II)式を満足する整数mが存在することが好ましい。
(II)B×m-150 ≦ Re ≦ B×m+150。
That is, the wavelength showing the second strongest intensity in the light beam emitted from the light source is B (nm), and the in-plane position when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using the parallel Nicol rotation method. When the phase difference is Re (nm), it is preferable that an integer m satisfying the following equation (II) exists.
(II) B × m-150 ≦ Re ≦ B × m + 150.
 なお、ここでいう「2番目に強い強度を示す波長」は各光源の光線の強度の波長依存性をプロットしたときにピークとなる波長から選ばれる。ここでいう「ピーク」とは光線の発光強度の波長依存性をプロットしたときに極大値となる波長のことを指す。ここでいう「極大値」とは光線の強度を波長で微分したときに、符号が正から負に変化する波長を指す。光源が一つの場合は、ピークとなる波長の内、「最も強い強度を示す波長(A)」の次に強い強度であり、かつ次の2点に該当しない波長を「2番目に強い強度を示す波長(B)」とする。ただし、Aの強度をP(A)、Bの強度をP(B)とする。
1.A-20<B<A+20
2.P(B)×100<P(A)
 上記の1点目は、Aのピークの先端が割れた状態やAのピークに肩がある状態の時に、Bのピークとみなされることを除外している。そのため、ピーク形状によってはAの±20nmの範囲にとどまらず除外範囲を広げることが必要な場合も考えられる。
The “wavelength showing the second strongest intensity” here is selected from the wavelengths that peak when the wavelength dependence of the intensity of the light rays of each light source is plotted. The "peak" here refers to the wavelength that becomes the maximum value when plotting the wavelength dependence of the emission intensity of light rays. The "maximum value" here refers to a wavelength at which the sign changes from positive to negative when the intensity of light rays is differentiated by wavelength. When there is only one light source, among the peak wavelengths, the wavelength that has the second strongest intensity after the "wavelength showing the strongest intensity (A)" and does not correspond to the following two points is the "second strongest intensity". The indicated wavelength (B) ”. However, the strength of A is P (A), and the strength of B is P (B).
1. 1. A-20 <B <A + 20
2. 2. P (B) x 100 <P (A)
The first point above excludes that when the tip of the peak of A is cracked or the peak of A has a shoulder, it is regarded as the peak of B. Therefore, depending on the peak shape, it may be necessary to extend the exclusion range beyond the range of ± 20 nm of A.
 上記の2点目はノイズがBのピークとしてみなされることを除外している。そのため、各光源の光線の強度の波長依存性を測定する際のノイズレベルによっては、Aの100分の一以上の強度でもノイズとみなすべき場合がある。 The second point above excludes that noise is regarded as the peak of B. Therefore, depending on the noise level when measuring the wavelength dependence of the intensity of the light rays of each light source, even an intensity of 1/100 or more of A may be regarded as noise.
 光源が二つの場合は、それぞれの光源で「最も強い強度を持つ波長」のうち、強度が強い方を「最も強い強度を示す波長(A)」、強度が弱い方を「2番目に強い強度を示す波長(B)」とする。 When there are two light sources, of the "wavelengths with the strongest intensity" for each light source, the one with the strongest intensity is the "wavelength showing the strongest intensity (A)" and the one with the weakest intensity is the "second strongest intensity". The wavelength (B) indicating the above.
 同様にして、光源が三つ以上の場合であっても、フィルムの面内位相差を、それぞれの光源の「最も強い強度を持つ波長」の公倍数とすることが好ましい。 Similarly, even when there are three or more light sources, it is preferable that the in-plane phase difference of the film is a common multiple of the "wavelength having the strongest intensity" of each light source.
 また、それぞれの光源で「最も強い強度を持つ波長」ではなかったとしても、認証デバイスの構造上重要な役割を持つ波長に対しては整数倍となる面内位相差を持つフィルムを用いることが好ましい。ここでいう重要な役割とは、認証のための撮像に限定されず、対象物に影響を与えて変化を起こす役割や対象物以外の影響の排除なども含まれる。 Also, even if it is not the "wavelength with the strongest intensity" for each light source, it is possible to use a film with an in-plane phase difference that is an integral multiple of the wavelength that plays an important role in the structure of the authentication device. preferable. The important role here is not limited to imaging for authentication, but also includes a role of influencing an object to cause a change and eliminating an influence other than the object.
 フィルムの面内位相差を上記範囲内とするための方法は限定されないが、樹脂の屈折率の調整や延伸倍率および延伸温度を調整することにより達成される。 The method for keeping the in-plane phase difference of the film within the above range is not limited, but it is achieved by adjusting the refractive index of the resin and the stretching ratio and stretching temperature.
 本発明のフィルムを構成する樹脂としては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(登録商標)(商品名、JSR社製)及びアペル(登録商標)(商品名、三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。 Examples of the resin constituting the film of the present invention include polyesters such as polyethylene terephthalate (abbreviation: PET) and polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose triacetate (abbreviation: TAC). , Cellulose acetate butyrate, Cellulose acetate propionate (abbreviation: CAP), Cellulose acetate phthalate, Cellulose acetate and other cellulose esters and their derivatives, Polyvinylidene chloride, Polyvinyl alcohol, Polyethylene vinyl alcohol, Syndiotactic polystyrene, Polycarbonate (abbreviation: PC), norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether sulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon , Polymethylmethacrylate, acrylic and polyarylates, cycloolefin resins such as Arton (registered trademark) (trade name, manufactured by JSR) and Apel (registered trademark) (trade name, manufactured by Mitsui Chemicals). it can.
 これらの樹脂のうち、コストや入手の容易性、製膜時のプロセスウィンドウの広さ、強度や破断点伸度など物性の点では少なくともポリエステルを構成材料とするフィルムが好ましく用いられる。 Of these resins, at least a film made of polyester is preferably used in terms of physical properties such as cost, availability, width of the process window during film formation, strength and elongation at break.
 本発明で述べるところのポリエステルとは、芳香族ジカルボン酸または脂肪族ジカルボン酸とジオールとを主たる構成成分とする単量体からの重合により得られる縮重合体のことである。ポリエステルの工業的製造方法としては、公知の如く、エステル交換反応(エステル交換法)や直接エステル化反応(直接重合法)が用いられる。ここで、芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4′-ジフェニルジカルボン酸、4,4´-ジフェニルエーテルジカルボン酸、4,4´-ジフェニルスルホンジカルボン酸などを挙げることができる。脂肪族ジカルボン酸としては、例えば、アジピン酸、スベリン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、1,4-シクロヘキサンジカルボン酸とそれらのエステル誘導体などが挙げられる。中でも高い屈折率を発現するテレフタル酸と2,6-ナフタレンジカルボン酸が好ましく用いられる。ジカルボン酸成分はこれらのうち1種類を用いても良く、2種類以上を併用して用いても良い。 The polyester described in the present invention is a condensed polymer obtained by polymerization of an aromatic dicarboxylic acid or a monomer containing an aliphatic dicarboxylic acid and a diol as main constituents. As a known method for producing polyester, a transesterification reaction (transesterification method) or a direct esterification reaction (direct polymerization method) is used. Here, examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 4,4'-. Examples thereof include diphenyldicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, and 4,4'-diphenylsulfone dicarboxylic acid. Examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, sebacic acid, dimer acid, dodecandioic acid, 1,4-cyclohexanedicarboxylic acid and ester derivatives thereof. Of these, terephthalic acid and 2,6-naphthalenedicarboxylic acid, which exhibit a high refractive index, are preferably used. One of these dicarboxylic acid components may be used, or two or more of them may be used in combination.
 また、ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、イソソルベート、スピログリコールなどを挙げることができる。中でもエチレングリコールが好ましく用いられる。これらのジオール成分は1種類のみ用いてもよく、2種類以上を併用して用いてもよい。 Examples of the diol component include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. , 1,6-Hexanediol, 1,2-Cyclohexanedimethanol, 1,3-Cyclohexanedimethanol, 1,4-Cyclohexanedimethanol, Diethylene glycol, Triethylene glycol, Polyalkylene glycol, 2,2-Bis (4--) Hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like can be mentioned. Of these, ethylene glycol is preferably used. Only one type of these diol components may be used, or two or more types may be used in combination.
 フィルム強度の向上と延伸性の向上の観点からは、樹脂Aからなる層と樹脂Aとは異なる樹脂Cからなる層を交互に5層以上積層した積層フィルムであることが好ましい。さらに、前記樹脂Aが結晶性樹脂Aを主成分とし、前記樹脂Cが非晶性樹脂Cを主成分とすると、面内位相差の調節が容易となる観点から好ましい。低屈折率の樹脂としては、延伸時に屈折率の上昇しにくい非晶性樹脂などを用いることができる。 From the viewpoint of improving the film strength and the stretchability, it is preferable to use a laminated film in which five or more layers made of resin A and layers made of resin C different from resin A are alternately laminated. Further, when the resin A contains a crystalline resin A as a main component and the resin C contains an amorphous resin C as a main component, it is preferable from the viewpoint that the in-plane phase difference can be easily adjusted. As the resin having a low refractive index, an amorphous resin or the like whose refractive index does not easily increase during stretching can be used.
 結晶性樹脂としては、例えば、ポリエチレンテレフタレートおよびその共重合体、ポリエチレンナフタレートおよびその共重合体、ポリブチレンテレフタレートおよびその共重合体、ポリブチレンナフタレートおよびその共重合体、さらにはポリヘキサメチレンテレフタレートおよびその共重合体、ポリヘキサメチレンナフタレートおよびその共重合体などを用いることも出来る。このとき、共重合成分としては、前記のジカルボン酸成分およびジオール成分が、それぞれ1種類以上、共重合されていることが好ましい。 Examples of the crystalline resin include polyethylene terephthalate and its copolymer, polyethylene naphthalate and its copolymer, polybutylene terephthalate and its copolymer, polybutylene naphthalate and its copolymer, and polyhexamethylene terephthalate. And its copolymer, polyhexamethylenenaphthalate and its copolymer, and the like can also be used. At this time, as the copolymerization component, it is preferable that one or more of the above-mentioned dicarboxylic acid component and diol component are copolymerized.
 低屈折率の樹脂としては、特に限定されるものではなく、ポリエチレン、ポリプロピレン、ポリ(4-メチルペンテン-1),ポリアセタールなどの鎖状ポリオレフィン、ノルボルネン類の開環メタセシス重合,付加重合,他のオレフィン類との付加共重合体である脂環族ポリオレフィン、ポリ乳酸,ポリブチルサクシネートなどの生分解性ポリマー、ナイロン6,ナイロン11,ナイロン12,ナイロン66などのポリアミド、アラミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルブチラール、エチレン酢酸ビニルコポリマー、ポリアセタール、ポリグルコール酸、ポリスチレン、スチレン共重合ポリメタクリル酸メチル、ポリカーボネート、ポリプロピレンテレフタレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートなどのポリエステル、ポリエーテルサルフォン、ポリエーテルエーテルケトン、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミド、ポリアリレート、4フッ化エチレン樹脂、3フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、4フッ化エチレン-6フッ化プロピレン共重合体、ポリフッ化ビニリデンなどを用いることができる。この中で、強度や耐熱性、透明性および汎用性の観点から、特にまた、結晶性樹脂との密着性および積層性の観点からも、樹脂Cとしてポリエステルを構成成分として含むことが最も好ましい。ここで、低屈折率の樹脂は、共重合体であっても、混合物であってもよい。 The resin having a low refractive index is not particularly limited, and is not particularly limited. Chain polyolefins such as polyethylene, polypropylene, poly (4-methylpentene-1), and polyacetal, ring-open metathesis polymerization of norbornenes, addition polymerization, and others. Alicyclic polyolefins, which are addition copolymers with olefins, biodegradable polymers such as polylactic acid and polybutylsuccinate, polyamides such as nylon 6, nylon 11, nylon 12, and nylon 66, aramid, and polymethylmethacrylate. Polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl acetate copolymer, polyacetal, polyglucolic acid, polystyrene, styrene copolymer polymethylmethacrylate, polycarbonate, polypropylene terephthalate, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2 , 6-Polypropylene such as naphthalate, polyether sulfone, polyether ether ketone, modified polyphenylene ether, polyphenylene sulfide, polyetherimide, polyimide, polyarylate, tetrafluoride ethylene resin, trifluoroethylene resin, trifluoride chloride An ethylene resin, an ethylene tetrafluoride-6 propylene fluoride copolymer, a polyvinylidene fluoride, or the like can be used. Among these, it is most preferable that the resin C contains polyester as a constituent component from the viewpoints of strength, heat resistance, transparency and versatility, particularly from the viewpoint of adhesion to the crystalline resin and stackability. Here, the resin having a low refractive index may be a copolymer or a mixture.
 例えば、イソフタル酸を含むポリエステルは、結晶性を低下させることができるために、容易に面内位相差を抑制することができ、かつ、二軸延伸しても厚み方向の屈折率が低下しにくいために、光源からの光の入射角が変化しても虹ムラの発生を抑えられる。また、他の好ましい非晶性ポリエステルとしては、共重合成分としてスピログリコールを含むポリエステルが好ましい。スピログリコールを含むポリエステルは、二軸延伸やボーイングによるフィルム変形において配向しにくいため幅方向の面内位相差変動が生じにくい。また、ガラス転移点が上がる効果があるため、非晶性樹脂を用いることによる熱収縮率の増加を抑えられる。他に好ましい共重合非晶成分としては、シクロヘキサンジメタノール、ネオペンチルグリコール、シクロヘキサンジカルボン酸、イソソルビドなどが挙げられる。 For example, polyester containing isophthalic acid can reduce crystallinity, so that in-plane phase difference can be easily suppressed, and even if biaxially stretched, the refractive index in the thickness direction is unlikely to decrease. Therefore, even if the incident angle of the light from the light source changes, the occurrence of rainbow unevenness can be suppressed. Further, as another preferable amorphous polyester, a polyester containing spiroglycol as a copolymerization component is preferable. Polyester containing spiroglycol is less likely to be oriented in film deformation due to biaxial stretching or Boeing, so in-plane retardation fluctuation in the width direction is less likely to occur. Moreover, since the glass transition point has the effect of increasing, the increase in the heat shrinkage rate due to the use of the amorphous resin can be suppressed. Other preferable copolymer amorphous components include cyclohexanedimethanol, neopentyl glycol, cyclohexanedicarboxylic acid, isosorbide and the like.
 また、上記のフィルムは、未延伸フィルムでもよく、延伸フィルムでもよいが、強度や面内位相差調節、生産性の観点からは少なくとも一方向に延伸したフィルムが好ましい。特に認証デバイスのフィルムがガラスなど割れる可能性のある素材で支持されている場合は、適度に延伸することにより破断点伸度を向上させ、表面が破損することによる破片の飛散を防止できることが好ましい。長手方向、幅方向どちらかの延伸倍率を大きくすることで、フィルム内の分子が配向し、面内位相差を向上させることができる。幅方向の延伸倍率を大きくすることで、面内位相差および主配向軸が幅方向に均一となり、使用可能な製品幅を大きく取ることができるため好ましい。熱収縮率を低減させるために延伸後に熱処理を行う場合、熱処理しながら幅方向にさらに延伸する、熱処理前に一旦冷却する、延伸時の温度と熱処理時の温度差を小さくする、などの方法を用いることによっても、面内位相差および主配向軸が幅方向に均一となり、使用可能な製品幅を大きく取ることができるため好ましい。また、延伸温度を低くすると延伸時の配向が付きやすく、これによっても面内位相差を向上させることができる。逆に延伸時の温度を高めると分子が配向しないまま延伸されるため面内位相差は高まりにくい。本発明では面内位相差を光源波長の略整数倍とするために、延伸倍率および延伸温度を調整することが必要となる。しかしながら、延伸倍率、延伸温度はフィルムの強度や破断点伸度など、フィルムを使用する上で重要な物性に大きく影響するため、フィルムの強度や破断点伸度と狙いの面内位相差を両立することは難しい。そのため、面内位相差を調整する手法として、2種類以上の樹脂を交互に5層以上積層したフィルムを用いることが好ましい。延伸倍率、延伸温度に加えて、用いる樹脂の屈折率を調整することで、フィルムの強度や破断点伸度と面内位相差の設計の両立が容易になるためである。 The above film may be an unstretched film or a stretched film, but a film stretched in at least one direction is preferable from the viewpoint of strength, in-plane retardation adjustment, and productivity. In particular, when the film of the authentication device is supported by a material that may break such as glass, it is preferable that the elongation at the breaking point can be improved by stretching the film appropriately and the scattering of debris due to the surface breakage can be prevented. .. By increasing the draw ratio in either the longitudinal direction or the width direction, the molecules in the film are oriented and the in-plane phase difference can be improved. By increasing the stretching ratio in the width direction, the in-plane retardation and the main orientation axis become uniform in the width direction, and the usable product width can be increased, which is preferable. When heat treatment is performed after stretching in order to reduce the heat shrinkage rate, methods such as further stretching in the width direction during heat treatment, cooling once before heat treatment, and reducing the temperature difference between the stretching temperature and the heat treatment are used. It is also preferable to use the product because the in-plane phase difference and the main orientation axis become uniform in the width direction and the usable product width can be increased. Further, when the stretching temperature is lowered, orientation during stretching is likely to occur, which also makes it possible to improve the in-plane phase difference. On the contrary, when the temperature at the time of stretching is increased, the molecules are stretched without being oriented, so that the in-plane phase difference is unlikely to increase. In the present invention, it is necessary to adjust the stretching ratio and the stretching temperature in order to make the in-plane phase difference a substantially integer multiple of the light source wavelength. However, since the stretching ratio and stretching temperature have a great influence on the physical properties important for using the film, such as the strength of the film and the elongation at the breaking point, the strength of the film, the elongation at the breaking point and the target in-plane phase difference are compatible. It's difficult to do. Therefore, as a method for adjusting the in-plane phase difference, it is preferable to use a film in which five or more layers of two or more kinds of resins are alternately laminated. This is because by adjusting the refractive index of the resin used in addition to the stretching ratio and the stretching temperature, it becomes easy to achieve both the strength and elongation at the breaking point and the design of the in-plane phase difference.
 また、本発明の認証デバイスでは、以下の方法で測定されるPT(0)および、PT(45))が下記式(III)および式(IV)を満足することが好ましい。
(III) PT(45) ≧ 0.65
(IV)1 ≧ PT(45)/ PT(0)≧ 0.6
 [PT(0)、およびPT(45)の測定方法]
(1)50Wタングステンランプを光源とした分光光度計を用いて測定を行う。
(2)偏光子を2枚にカットし、2枚の偏光子の面が分光光度計の光軸に垂直になるように、かつ2枚の偏光子の透過軸同士が平行になるように配置する。
(3)2枚の偏光子について、前記光源から出射する光線の最も強い強度を持つ波長における透過光量の測定(バックグラウンド測定)を行う。バックグラウンド測定で得られた光源消灯状態での透過光量をPT(D)、光源点灯状態での透過光量をPT(L)とした。
(4)2枚の偏光子の間に前記フィルムをフィルムの面が分光光度計の光軸に垂直になるように配置する。
(5)前記フィルムのみを分光光度計の光軸に垂直な面内で回転させつつ、前記光源から出射する光線の最も強い強度を持つ波長における透過光量の測定を行う。2枚の偏光子の透過軸と前記フィルムの主配向軸のなす角が0°のときの透過光量をPT’(0)、45°のときの透過光量をPT’(45)とする。
(6)下記式よりPT(0)、およびPT(45)を得る。
PT(0)=(PT’(0)- PT(D))/(PT(L)- PT(D))
PT(45)=(PT’(45)- PT(D))/(PT(L)- PT(D))
 上記にて求められるPT(45)は、最も透過度が低下すると考えられる角度で貼り付けた場合の透過度であると解される。式(III)は、最も透過度が低下した状態でも、透過度が0.65以上となることが好ましいことを示している。透過度が0.65以下となると、認証性の低下に繋がる場合がある。
Further, in the authentication device of the present invention, it is preferable that PT (0) and PT (45)) measured by the following methods satisfy the following formulas (III) and (IV).
(III) PT (45) ≧ 0.65
(IV) 1 ≧ PT (45) / PT (0) ≧ 0.6
[Measuring method of PT (0) and PT (45)]
(1) Measurement is performed using a spectrophotometer using a 50 W tungsten lamp as a light source.
(2) Cut the polarizer into two pieces and arrange them so that the surfaces of the two polarizers are perpendicular to the optical axis of the spectrophotometer and the transmission axes of the two polarizers are parallel to each other. To do.
(3) With respect to the two polarizing elements, the amount of transmitted light at the wavelength having the strongest intensity of the light beam emitted from the light source is measured (background measurement). The amount of transmitted light obtained by background measurement when the light source was turned off was defined as PT (D), and the amount of transmitted light when the light source was turned on was defined as PT (L).
(4) The film is placed between two polarizers so that the surface of the film is perpendicular to the optical axis of the spectrophotometer.
(5) While rotating only the film in a plane perpendicular to the optical axis of the spectrophotometer, the amount of transmitted light at the wavelength having the strongest intensity of the light rays emitted from the light source is measured. Let PT'(0) be the amount of transmitted light when the angle formed by the transmission axes of the two polarizing elements and the main orientation axis of the film is 0 °, and PT'(45) be the amount of transmitted light when the angle is 45 °.
(6) PT (0) and PT (45) are obtained from the following formulas.
PT (0) = (PT'(0) -PT (D)) / (PT (L) -PT (D))
PT (45) = (PT'(45) -PT (D)) / (PT (L) -PT (D))
The PT (45) obtained above is understood to be the transmittance when pasted at an angle at which the transmittance is considered to be the lowest. Formula (III) shows that it is preferable that the transmittance is 0.65 or more even in the state where the transmittance is the lowest. If the transmittance is 0.65 or less, it may lead to a decrease in authenticity.
 上記にて求められるPT(0)は配向角が0°、つまり透過度向上の観点から理想的な角度でフィルムを貼り付けた場合の透過度を表す。PT(45)との比の(PT(45)/ PT(0))はフィルムの貼り付け方が理想的な角度からずれた場合に、透過度が低下する度合いを表す。PT(0)、PT(45)の比が上記範囲内にない場合、すなわち、PT(45)がPT(0)よりも大きかったり、PT(45)がPT(0)に比べて小さすぎたりする場合、すなわち、PT(45)/ PT(0)が0.6より小さい場合には、認証デバイスの認証性を良好にするためには、偏光子の透過軸とフィルムの主配向軸が平行になるように設置することが必要となり、生産性が低下する場合がある。より好ましくは0.75以上1.0未満である。 The PT (0) obtained above represents the transparency when the film is attached at an orientation angle of 0 °, that is, an ideal angle from the viewpoint of improving the transmittance. The ratio of PT (45) to (PT (45) / PT (0)) indicates the degree to which the transmittance decreases when the film is attached at an angle deviating from the ideal angle. If the ratio of PT (0) and PT (45) is not within the above range, that is, PT (45) is larger than PT (0) or PT (45) is too small compared to PT (0). In other words, when PT (45) / PT (0) is smaller than 0.6, the transmission axis of the polarizer and the main orientation axis of the film are parallel in order to improve the authenticity of the authentication device. It is necessary to install it so that it becomes, and productivity may decrease. More preferably, it is 0.75 or more and less than 1.0.
 本発明に適用可能なフィルムは、樹脂の屈折率、延伸倍率、延伸温度を調節できれば、従来公知の一般的な製膜方法ではあるが、特定の製膜条件により製造することが可能である。例えば、材料となる樹脂を押出機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸のフィルムを製造することができる。前述したように、面内位相差の調節とフィルム強度向上を両立するためには2種類以上の樹脂を積層することも好ましい。同様の観点から2種類の樹脂が交互に5層以上積層された構造を含むことが特に好ましい。さらに、また、未延伸のフィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、フィルムの長手方向(搬送方向、縦軸方向、MD方向)、又はフィルムの長手方向と直角の方向(幅方向、横軸方向、TD方向)に延伸することにより、二軸延伸したフィルムを製造することができる。この場合の延伸倍率は、フィルムの原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍の範囲内であることが好ましい。認証デバイスとして加工する際の収縮を抑えるために、延伸後に熱処理を施すことも好ましい。 The film applicable to the present invention can be produced under specific film-forming conditions, although it is a conventionally known general film-forming method as long as the refractive index, stretching ratio, and stretching temperature of the resin can be adjusted. For example, a resin as a material is melted by an extruder, extruded by an annular die or a T-die, and rapidly cooled to produce an unstretched film that is substantially amorphous and not oriented. As described above, in order to both adjust the in-plane phase difference and improve the film strength, it is also preferable to laminate two or more kinds of resins. From the same viewpoint, it is particularly preferable to include a structure in which five or more layers of two types of resins are alternately laminated. Furthermore, the unstretched film is stretched uniaxially, tenter-type sequentially biaxially stretched, tenter-type simultaneous biaxially stretched, tubular-type simultaneous biaxially stretched, or the like, by a known method such as a longitudinal direction (conveyance direction, vertical axis) of the film. A biaxially stretched film can be produced by stretching in a direction (direction, MD direction) or a direction perpendicular to the longitudinal direction of the film (width direction, horizontal axis direction, TD direction). The draw ratio in this case can be appropriately selected according to the resin used as the raw material of the film, but is preferably in the range of 2 to 10 times in the vertical axis direction and the horizontal axis direction, respectively. It is also preferable to perform heat treatment after stretching in order to suppress shrinkage during processing as an authentication device.
 上記条件の範囲内で製膜することにより、フィルムの主配向軸方向および主配向軸と直交する方向の25℃における破断点伸度がいずれも30%以上300%以下であることが、加工時のハンドリング性向上とフィルムとしての強度向上の観点から好ましい。50%以上200%以下であることがさらに好ましい。破断点伸度が30%以下の場合、加工時の破断や認証デバイスの表面の破損の可能性が高まるため好ましくない。また、300%を超えると加工時のたるみやフィルムとしての強度が低くなることによる、傷や凹みによる認証性の低下につながる場合がある。 By forming the film within the above conditions, the elongation at the breaking point at 25 ° C. in both the main orientation axis direction and the direction orthogonal to the main orientation axis is 30% or more and 300% or less at the time of processing. It is preferable from the viewpoint of improving the handleability and the strength of the film. It is more preferably 50% or more and 200% or less. If the elongation at the breaking point is 30% or less, the possibility of breaking during processing or damage to the surface of the authentication device increases, which is not preferable. On the other hand, if it exceeds 300%, the slack during processing and the strength as a film are lowered, which may lead to a decrease in authenticity due to scratches and dents.
 また後述するように、認証デバイスに設置する際に、透過率ひいては認証性の観点から偏光子の透過軸とフィルムの主配向軸が平行であることが好ましい。そのため、フィルムの主配向軸の方向がフィルムのMD方向、TD方向で一定であることが好ましい。配向角を一定にする手法は特に限定されないが、例えばMD方向またはTD方向の延伸倍率を他方の延伸倍率に対して大きくすることで、主配向軸方向および主配向軸と直交する方向の100℃で30分処理した際の熱収縮率の最大値と最小値の比(最大値/最小値)を一定の値以上とすることが上げられる。好ましくは最大値と最小値の比が1.7以上、更に好ましくは2.0以上、さらに好ましくは3.0以上である。 Further, as will be described later, when it is installed in the authentication device, it is preferable that the transmission axis of the polarizer and the main orientation axis of the film are parallel from the viewpoint of transmittance and thus authentication. Therefore, it is preferable that the direction of the main orientation axis of the film is constant in the MD direction and the TD direction of the film. The method for making the orientation angle constant is not particularly limited, but for example, by increasing the draw ratio in the MD direction or the TD direction with respect to the other draw ratio, 100 ° C. in the main orientation axis direction and the direction orthogonal to the main orientation axis. The ratio (maximum value / minimum value) of the maximum value and the minimum value of the heat shrinkage rate after the treatment for 30 minutes can be set to a certain value or more. The ratio of the maximum value to the minimum value is preferably 1.7 or more, more preferably 2.0 or more, still more preferably 3.0 or more.
 フィルムの厚さとしては、3~200μmの範囲内にあることが好ましいが、より好ましくは10~150μmの範囲内であり、特に好ましくは、20~120μmの範囲内である。上記範囲内とすることで、加工時に必要な強度を担保しつつ、認証デバイス全体の厚みを薄くすることが出来る。 The thickness of the film is preferably in the range of 3 to 200 μm, more preferably in the range of 10 to 150 μm, and particularly preferably in the range of 20 to 120 μm. Within the above range, the thickness of the entire authentication device can be reduced while ensuring the strength required for processing.
 また、フィルムの主配向軸と、上記偏光子の透過軸のなす角度が10°未満であることが認証性の低下を抑える観点から好ましい。10°を超える場合には、認証性が良好な面内位相差の範囲が狭くなり、フィルム面内での面内位相差のばらつきが認証性の低下につながる場合がある。しかし、フィルム製膜時には、特開2010-240976号公報に記載のボーイングという現象が発生するため、配向角が、認証性に影響を与えない程度に揃っている範囲は限られ、配向角が揃っていない範囲は生産ロスとなる。本発明のフィルム製膜条件において、縦延伸倍率を3.5倍以下、または/かつ、横延伸倍率は3.5倍以上とすることでフィルムの広い幅に渡って主配向軸の向きが一定に近くなるため、生産性の観点から好ましい。縦延伸倍率を3.2倍以下、または/かつ、横延伸倍率を4倍以上とすることがさらに好ましく、縦延伸倍率を2.9倍以下、または/かつ、横延伸倍率を4.5倍以上とすることが特に好ましい。その他、多層構造のフィルムとすることで幅方向の配向角の変化を抑えやすくなるため、好ましい。 Further, it is preferable that the angle formed by the main orientation axis of the film and the transmission axis of the polarizer is less than 10 ° from the viewpoint of suppressing deterioration of authenticity. If it exceeds 10 °, the range of the in-plane phase difference with good authenticity becomes narrow, and the variation in the in-plane phase difference in the film surface may lead to a decrease in the authenticity. However, at the time of film forming, a phenomenon called Boeing described in JP-A-2010-240977 occurs, so that the range in which the orientation angles are aligned to the extent that they do not affect the authenticity is limited, and the orientation angles are aligned. The range that is not included is the production loss. Under the film-forming conditions of the present invention, the direction of the main orientation axis is constant over a wide width of the film by setting the longitudinal stretching ratio to 3.5 times or less and / and the transverse stretching ratio to 3.5 times or more. It is preferable from the viewpoint of productivity because it is close to. It is more preferable that the longitudinal stretching ratio is 3.2 times or less and / and the transverse stretching ratio is 4 times or more, the longitudinal stretching ratio is 2.9 times or less and / and the transverse stretching ratio is 4.5 times. The above is particularly preferable. In addition, a multi-layered film is preferable because it makes it easier to suppress changes in the orientation angle in the width direction.
 本発明の認証デバイスで用いられる上記のフィルムは、認証性のムラ低減の観点から、フィルム面内での面内位相差のムラが小さい方が好ましい。ムラの評価方法としては例えば、フィルム面内において最大長を示す両端(A,B)、点A、Bを結ぶ直線ABと直交し、かつ、直線ABの中点を通る直線のフィルムの両端(C,D)の合計4点の面内位相差を測定する方法があげられる。得られた4点の面内位相差の最大値と最小値の差が200nm以下であることが好ましい。上記面内位相差の差が150nm以下であることがさらに好ましく、100nm以下であることが特に好ましい。面内位相差を上記範囲内とするためには、特に手法は限定されないが、フィルム延伸時に一度に2.7倍以上延伸することで、フィルムにかかる応力を全体で安定させることが好ましい。 The above-mentioned film used in the authentication device of the present invention preferably has small in-plane phase difference unevenness in the film surface from the viewpoint of reducing unevenness in authentication. As a method for evaluating unevenness, for example, both ends (A, B) indicating the maximum length in the film surface, both ends of a straight film that is orthogonal to the straight line AB connecting the points A and B, and passes through the midpoint of the straight line AB ( A method of measuring the in-plane phase difference of a total of 4 points of C and D) can be mentioned. It is preferable that the difference between the maximum value and the minimum value of the in-plane phase difference of the obtained four points is 200 nm or less. The difference in in-plane phase difference is more preferably 150 nm or less, and particularly preferably 100 nm or less. In order to keep the in-plane phase difference within the above range, the method is not particularly limited, but it is preferable to stabilize the stress applied to the film as a whole by stretching 2.7 times or more at a time when the film is stretched.
 また内部の偏光子および光源の劣化を防ぐために、フィルムは紫外線(ここでは410nm以下の波長を有する光とする)を遮蔽することが好ましい。光源がOLEDなど有機材料によって構成されている場合は、特に紫外線遮蔽効果が望まれる。410nm以下の光を完全に遮断することが最も好ましいが、例えば波長380nmの光線透過率が5%以下とすることで内部の偏光子および光源の劣化を防ぐことが可能になる。紫外線を遮蔽する方法は特に限定されないが、多層構造によって紫外光を反射させることが好ましい。反射波長の設定は特開2016-215643号に記載されている通り、多層積層フィルムの各層の層厚みによって決定することができる。反射以外に紫外線吸収剤を使用、または反射設計と併用してもよい。 Further, in order to prevent deterioration of the internal polarizer and the light source, it is preferable that the film shields ultraviolet rays (here, light having a wavelength of 410 nm or less). When the light source is made of an organic material such as OLED, an ultraviolet shielding effect is particularly desired. It is most preferable to completely block light of 410 nm or less, but for example, by setting the light transmittance at a wavelength of 380 nm to 5% or less, it is possible to prevent deterioration of the internal polarizer and the light source. The method of shielding ultraviolet rays is not particularly limited, but it is preferable to reflect ultraviolet light by a multilayer structure. The setting of the reflection wavelength can be determined by the layer thickness of each layer of the multilayer laminated film as described in Japanese Patent Application Laid-Open No. 2016-215643. In addition to reflection, UV absorbers may be used or used in combination with a reflective design.
 本発明で利用することができる紫外線吸収剤として、分子量が300g/mol以上の、ベンゾトリアゾール系、ベンゾフェノン系、ベンゾエート系、トリアジン系のものを用いることが好ましい。紫外線吸収剤は、これらのうち1種類を選択してもよく、2種類以上を併用しても良い。分子量と紫外線吸収剤をはじめとする添加剤の昇華性とは関連があり、分子量が大きい添加剤を利用した場合には、昇華は起こりにくい。分子量は、400g/mol以上がより好ましく、500g/mol以上がさらに好ましい。分子量が高い紫外線吸収剤は、基本の芳香族環骨格に長鎖アルキル鎖が付属しているものが多く、これらが紫外線吸収剤同士のスタッキングを阻害し、樹脂内において結晶化してヘイズの増加を招くなどの問題点を生じなくなるため望ましい。 As the ultraviolet absorber that can be used in the present invention, it is preferable to use a benzotriazole-based, benzophenone-based, benzoate-based, or triazine-based agent having a molecular weight of 300 g / mol or more. As the ultraviolet absorber, one of these may be selected, or two or more of them may be used in combination. There is a relationship between the molecular weight and the sublimation property of additives such as ultraviolet absorbers, and sublimation is unlikely to occur when an additive having a large molecular weight is used. The molecular weight is more preferably 400 g / mol or more, and further preferably 500 g / mol or more. Many UV absorbers with high molecular weight have long-chain alkyl chains attached to the basic aromatic ring skeleton, which inhibit stacking between UV absorbers and crystallize in the resin to increase haze. It is desirable because it does not cause problems such as inviting.
 添加することが出来る紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤としては、特に限定されないが、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-第三オクチル-6-ベンゾトリアゾリル)フェノール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類等が挙げられる。
ベンゾフェノン系紫外線吸収剤としては、特に限定されないが、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類が挙げられる。
The ultraviolet absorber that can be added is not particularly limited as the benzotriazole-based ultraviolet absorber, and is, for example, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy). -3', 5'-ditertiary butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3'-third butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-Hydroxy-5'-third octylphenyl) benzotriazole, 2- (2'-hydroxy-3', 5'-dicumylphenyl) benzotriazole, 2- (2'-hydroxy-3'-th Examples include 2- (2'-hydroxyphenyl) benzotriazoles such as tributyl-5'-carboxyphenyl) benzotriazoles and 2,2'-methylenebis (4-terioctyl-6-benzotriazolyl) phenols. Be done.
The benzophenone-based ultraviolet absorber is not particularly limited, and for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 5,5'-methylenebis (2-). 2-Hydroxybenzophenones such as hydroxy-4-methoxybenzophenone) can be mentioned.
 ベンゾエート系紫外線吸収剤としては、特に限定されないが、例えば、フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ第三アミルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート等が挙げられる。 The benzoate-based ultraviolet absorber is not particularly limited, and is, for example, phenylsalicylate, resorcinol monobenzoate, 2,4-ditertiary butylphenyl-3,5-ditertiary butyl-4-hydroxybenzoate, 2,4-. Examples thereof include di-tertiary amylphenyl-3-3,5-di-tertiary butyl-4-hydroxybenzoate and hexadecyl-3,5-di-tertiary butyl-4-hydroxybenzoate.
 トリアジン系紫外線吸収剤としては、特に限定されないが、2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル) -4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-4,6-ジビフェニル-s-トリアジン、2,4-ビス(2-ヒドロキシ-4-オクトキシフェニル)-6-(2,4-ジメチルフェニル)-s-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-オクトキシフェニル)-s-トリアジン、2-(4-イソオクチルオキシカルボニルエトキシフェニル)-4,6-ジフェニル-s-トリアジン等のトリアリールトリアジン類等が挙げられる。 The triazine-based ultraviolet absorber is not particularly limited, but is 2- (2-hydroxy-4-octoxyphenyl) -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- (2- (2-). Hydroxy-4-hexyloxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-propoxy-5-methylphenyl) -4,6-bis (2,4-dimethylphenyl)- s-Triazine, 2- (2-Hydroxy-4-hexyloxyphenyl) -4,6-dibiphenyl-s-Triazine, 2,4-bis (2-hydroxy-4-octoxyphenyl) -6- (2) , 4-Dimethylphenyl) -s-Triazine, 2,4,6-Tris (2-hydroxy-4-octoxyphenyl) -s-Triazine, 2- (4-isooctyloxycarbonylethoxyphenyl) -4,6 Examples thereof include triaryltriazines such as -diphenyl-s-triazine.
 その他の紫外線吸収剤として、サリチル酸系では、たとえば、フェニルサリチレート、t-ブチルフェニルサリチレート、p-オクチルフェニルサリチレート等、その他では、天然物系(たとえば、オリザノール、シアバター、バイカリン等)、生体系(たとえば、角質細胞、メラニン、ウロカニン等)なども利用することが出来る。これらの紫外線吸収剤には、安定剤としてヒンダードアミン系化合物も併用することが出来る。無機系の紫外線吸収剤はベースとなる樹脂と相溶せずヘイズの上昇につながり、認証デバイスに画像表示した際の視認性を悪化させるため、好ましくない。 Other UV absorbers include, for example, phenylsalicylate, t-butylphenylsalicylate, p-octylphenylsalicylate, etc. for salicylic acid, and other natural products (eg, oryzanol, shea butter, bicarine) Etc.), biological systems (eg, keratinocytes, melanin, urocanin, etc.) and the like can also be used. A hindered amine compound can also be used in combination with these ultraviolet absorbers as a stabilizer. Inorganic UV absorbers are not preferable because they are incompatible with the base resin and lead to an increase in haze, which deteriorates visibility when an image is displayed on an authentication device.
 紫外線吸収剤を利用する場合、本発明の好ましい態様である積層した二軸配向フィルムの最外層を含むA層もしくは内層であるB層あるいはその両方に添加してもよい。中でも、B層にのみ紫外線吸収剤を含有することが最も好ましい。最外層に紫外線吸収剤を添加すると、添加した紫外線吸収剤がフィルム表面に析出する現象、およびそれが揮散する現象が発生しやすくなり、これによってフィルム製膜機が汚染され、析出物が加工工程において悪影響を及ぼすため好ましくないものである。内層にのみ添加することで、最外層が紫外線吸収剤の揮散を防ぐフタとしての役割を果たすため、析出現象が起こりにくくなり好ましいものである。 When an ultraviolet absorber is used, it may be added to the A layer including the outermost layer of the laminated biaxially oriented film, which is a preferred embodiment of the present invention, the B layer which is the inner layer, or both. Above all, it is most preferable that the ultraviolet absorber is contained only in the B layer. When an ultraviolet absorber is added to the outermost layer, a phenomenon in which the added ultraviolet absorber is deposited on the film surface and a phenomenon in which the added ultraviolet absorber is volatilized are likely to occur, which contaminates the film forming machine and processes the precipitate. It is not preferable because it has an adverse effect on the above. By adding it only to the inner layer, the outermost layer acts as a lid to prevent the UV absorber from volatilizing, so that the precipitation phenomenon is less likely to occur, which is preferable.
 フィルム表面に耐傷つき性などの機能性を付与するコーティングを施しても良い。コーティング方法としては硬化性樹脂を主成分として、メラミン・オキサゾリンなどの架橋剤を加えて、紫外光によって硬化させる方法を用いることができる。 The film surface may be coated with a coating that imparts functionality such as scratch resistance. As a coating method, a method can be used in which a curable resin is used as a main component, a cross-linking agent such as melamine or oxazoline is added, and the resin is cured by ultraviolet light.
 硬化性樹脂としては高透明で耐久性があるものが好ましく、例えば、アクリル樹脂、ウレタン樹脂、フッソ系樹脂、シリコン樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂を単独または混合して使用できる。特に、硬化性や可撓性、生産性の点において、硬化性樹脂はポリアクリレート樹脂に代表されるアクリル樹脂などの活性エネルギー線硬化型樹脂からなることが好ましい。また、曲面追従性が求められる部位に適用するフィルムに求められる、折り曲げ時の耐擦傷性を付加する場合、硬化性樹脂は熱硬化性ウレタン樹脂からなることが好ましい。 The curable resin is preferably highly transparent and durable, and for example, acrylic resin, urethane resin, fluorine resin, silicon resin, polycarbonate resin, and vinyl chloride resin can be used alone or in combination. In particular, in terms of curability, flexibility, and productivity, the curable resin is preferably made of an active energy ray-curable resin such as an acrylic resin typified by a polyacrylate resin. Further, when adding scratch resistance at the time of bending, which is required for a film applied to a portion where curved surface followability is required, the curable resin is preferably made of a thermosetting urethane resin.
 また認証デバイスが、例えば表皮に存在するメラニン色素の分布パターンを認識対象とする場合は、メラニン色素が紫外線から青色光を強く吸収するため、光源波長が青色光(最大ピークの波長が415nm以上495nm以下)であり、フィルムの面内位相差が、光源波長の整数倍から±120nmの範囲であること、すなわち下記(V)式を満たす整数nが存在することが、明瞭なパターンを得られる点から好ましい。光源波長が415nmよりも短い場合は、紫外線による光源の劣化やメラニン色素以外による吸収も大きくなることによる誤認証が問題となる場合がある。
(V)A×n-120 ≦ Re ≦ A×n+120、 かつ、415 ≦ A ≦ 495。
When the authentication device, for example, recognizes the distribution pattern of the melanin pigment existing in the epidermis, the melanin pigment strongly absorbs blue light from ultraviolet rays, so that the light source wavelength is blue light (the maximum peak wavelength is 415 nm or more and 495 nm). The point that a clear pattern can be obtained is that the in-plane phase difference of the film is in the range of ± 120 nm from an integral multiple of the light source wavelength, that is, the existence of an integer n satisfying the following equation (V). Is preferable. If the wavelength of the light source is shorter than 415 nm, there may be a problem of erroneous authentication due to deterioration of the light source due to ultraviolet rays and increased absorption by other than the melanin pigment.
(V) A × n-120 ≦ Re ≦ A × n + 120, and 415 ≦ A ≦ 495.
 また、例えば静脈認証のようにヘモグロビンの分布パターンを認識対象とする場合には、ヘモグロビンが赤外線域に強い吸収ピークを持つことため、光源波長が赤外線域(最大ピークの波長が800nm以上1200nm以下)であり、フィルムの面内位相差が、光源波長の整数倍から±150nmの範囲であること、すなわち下記(VIII)式を満たす整数nが存在することが、明瞭なパターンを得られる点から好ましい。また、網膜、虹彩、顔認証などの場合も認証対象者が光を直接見ることになるため、認証対象者の不快感を和らげることができる点から赤外線を用いることが好ましい場合がある。
(VIII)A×n-150 ≦ Re ≦ A×n+150、かつ、800 ≦ A ≦ 1200。
Further, when the distribution pattern of hemoglobin is to be recognized as in vein recognition, for example, the light source wavelength is in the infrared region (maximum peak wavelength is 800 nm or more and 1200 nm or less) because hemoglobin has a strong absorption peak in the infrared region. It is preferable that the in-plane phase difference of the film is in the range of an integral multiple of the light source wavelength to ± 150 nm, that is, the existence of an integer n satisfying the following equation (VIII) is obtained from the viewpoint of obtaining a clear pattern. .. Further, in the case of retina, iris, face recognition, etc., since the authentication target person directly sees the light, it may be preferable to use infrared rays from the viewpoint of alleviating the discomfort of the authentication target person.
(VIII) A × n-150 ≦ Re ≦ A × n + 150, and 800 ≦ A ≦ 1200.
 同様に認証対象の色や意匠性などによって、光源波長が緑色(最大ピークの波長が495nm以上570nm以下)、すなわち下記(VI)式を満たす整数nが存在することが好ましい場合がある。また黄~赤色(最大ピークの波長が570nm以上800nm以下))、すなわち下記(VII)式を満たす整数nが存在ことであることが好ましい場合がある。
(VI)A×n-100 ≦ Re ≦ A×n+100、かつ、495 ≦ A ≦ 570。
(VII)A×n-120 ≦ Re ≦ A×n+120、かつ、570 ≦ A ≦ 800。
Similarly, depending on the color and design of the subject to be certified, it may be preferable that the light source wavelength is green (the wavelength of the maximum peak is 495 nm or more and 570 nm or less), that is, an integer n satisfying the following equation (VI) exists. Further, it may be preferable that yellow to red (maximum peak wavelength is 570 nm or more and 800 nm or less), that is, an integer n satisfying the following equation (VII) exists.
(VI) A × n-100 ≦ Re ≦ A × n + 100 and 495 ≦ A ≦ 570.
(VII) A × n-120 ≦ Re ≦ A × n + 120 and 570 ≦ A ≦ 800.
 また上記の波長を複数組み合わせることも認証精度の向上のために有効であるが、本発明の効果を得るためには、フィルムの面内位相差を使用している各光源波長の略公倍数とすること、もしくは各光源に対して異なる面内位相差のフィルムを用いることが好ましい。 It is also effective to combine a plurality of the above wavelengths for improving the authentication accuracy, but in order to obtain the effect of the present invention, the in-plane phase difference of the film is set to be a substantially common multiple of each light source wavelength using the film. It is preferable to use films having different in-plane retardation for each light source.
 本発明の認証デバイスにおける認証可能な領域の面積は特に限定されるものではなく、認証対象物や用途によって適宜調節される。本発明の認証デバイスは、均一な面内位相差および主配向軸を持つフィルムを用いているため、認証可能な領域の面積を大きく取ることができる。すなわち、本発明の認証デバイスは、認証可能な領域の面積が100cm以上、さらには225cm以上、さらには400cm以上のデバイスに好適に用いることができる。 The area of the area that can be authenticated in the authentication device of the present invention is not particularly limited, and is appropriately adjusted depending on the object to be authenticated and the application. Since the authentication device of the present invention uses a film having a uniform in-plane retardation and a main orientation axis, a large area of an authenticable region can be taken. In other words, the authentication device of the present invention, the area of authentication available space is 100 cm 2 or more, further 225 cm 2 or more, further can be suitably used for 400 cm 2 or more devices.
 本発明の認証デバイスは、上記の通り、さまざまな認証対象物を精度よく認識できるため、指紋、虹彩、顔、手形、体形、静脈の少なくとも1種を認証の対象とする認証デバイスに好適に用いることができる。また、本発明の認証デバイスは、偏光子の透過軸とフィルムの主配向軸のなす角が大きくとも認証精度を良好にできるため、歩留まりを低減できる。 As described above, the authentication device of the present invention can accurately recognize various authentication objects, and is therefore suitably used for an authentication device that targets at least one of fingerprint, iris, face, handprint, body shape, and vein. be able to. Further, the authentication device of the present invention can improve the authentication accuracy even if the angle formed by the transmission axis of the polarizer and the main orientation axis of the film is large, so that the yield can be reduced.
 [特性の評価方法]
フィルムの評価
A.面内位相差(Re)および面内位相差の差(Δ位相差)
 王子計測機器(株)製、「KOBRA-21ADH」を用い、入射角0°における波長587.8nmの面内位相差および遅相軸を測定した。遅相軸の方向を主配向軸とした。サンプルはフィルムから場所を変えて5カ所×4cm×4cmで切り出し、それぞれ測定した平均値を用いた。
[Characteristic evaluation method]
Film evaluation A. In-plane phase difference (Re) and in-plane phase difference difference (Δ phase difference)
Using "KOBRA-21ADH" manufactured by Oji Measuring Instruments Co., Ltd., the in-plane phase difference and the slow axis at a wavelength of 587.8 nm at an incident angle of 0 ° were measured. The direction of the slow axis was taken as the main orientation axis. The sample was cut out from the film at 5 locations × 4 cm × 4 cm at different locations, and the average value measured for each was used.
 面内位相差のムラはフィルム面内において最大長を示す両端(A,B)、点A、Bを結ぶ直線ABと直交し、かつ、直線ABの中点を通る直線のフィルムの両端(C,D)の合計4点の面内位相差を測定し、最大値と最小値の差を用いた。 The unevenness of the in-plane phase difference is orthogonal to both ends (A, B) showing the maximum length in the film plane and the straight line AB connecting the points A and B, and both ends (C) of the straight line passing through the midpoint of the straight line AB. , D), the in-plane phase difference at 4 points was measured, and the difference between the maximum value and the minimum value was used.
 B.PT(45)およびPT(0)
(1)認証デバイスに用いられている偏光子、または用いられている偏光子と同等の偏光度を有する偏光子(TSワイヤーグリッド偏光フィルム(エドモンドオプティクスジャパン(株)製))を2枚にカットし、2枚の偏光子の面が50Wタングステンランプを光源とした分光光度計の光軸に垂直になるように、かつ2枚の偏光子の透過軸同士が平行になるように配置し、光源消灯状態と光源点灯状態でのバックグラウンド測定を行う。光源消灯状態で測定された透過光量をPT(D)、光源点灯状態で測定された透過光量をPT(L)とする。
(2)2枚の偏光子の間に前記フィルムをフィルムの面が分光光度計の光軸に垂直になるように配置する。
(3)前記フィルムのみを分光光度計の光軸に垂直な面内で回転させつつ、前記光源から出射する光線の最も強い強度を持つ波長における透過光量の測定を行う。2枚の偏光子の透過軸と前記フィルムの主配向軸のなす角が0°のときの透過光量をPT’(0)、45°のときの透過光量をPT’(45)とする。
(4)下記式よりPT(0)、PT(45)を得る。
PT(0)=(PT’(0)- PT(D))/(PT(L)- PT(D))
PT(45)=(PT’(45)- PT(D))/(PT(L)- PT(D))
 C.光源光線透過率および380nm透過率
 (株)日立ハイテクノロジーズ製 分光光度計(U-4100 Spectrophotometer)を用いて入射角度=0°における透過率を測定した。
測定条件:スリットは2nmとし、ゲインは2と設定し、走査速度を600nm/分とした。サンプルはフィルムから場所を変えて5カ所×4cm×4cmで切り出しそれぞれ測定した平均値を用いた。
B. PT (45) and PT (0)
(1) Cut the polarizing element used in the authentication device or the polarizing element having the same degree of polarization as the polarizing element used (TS wire grid polarizing film (manufactured by Edmond Optics Japan Co., Ltd.)) into two sheets. The surfaces of the two polarizers are arranged so as to be perpendicular to the optical axis of the spectrophotometer using a 50 W tungsten lamp as the light source, and the transmission axes of the two polarizers are arranged to be parallel to each other. Perform background measurement with the light off and the light source on. Let PT (D) be the amount of transmitted light measured when the light source is off, and let PT (L) be the amount of transmitted light measured when the light source is on.
(2) The film is placed between two polarizers so that the surface of the film is perpendicular to the optical axis of the spectrophotometer.
(3) While rotating only the film in a plane perpendicular to the optical axis of the spectrophotometer, the amount of transmitted light at the wavelength having the strongest intensity of the light rays emitted from the light source is measured. Let PT'(0) be the amount of transmitted light when the angle formed by the transmission axes of the two polarizing elements and the main orientation axis of the film is 0 °, and PT'(45) be the amount of transmitted light when the angle is 45 °.
(4) PT (0) and PT (45) are obtained from the following formulas.
PT (0) = (PT'(0) -PT (D)) / (PT (L) -PT (D))
PT (45) = (PT'(45) -PT (D)) / (PT (L) -PT (D))
C. Light Source Transmittance and 380 nm Transmittance The transmittance at an incident angle of 0 ° was measured using a spectrophotometer manufactured by Hitachi High-Technologies Corporation (U-4100 Spectrophotometer).
Measurement conditions: The slit was set to 2 nm, the gain was set to 2, and the scanning speed was set to 600 nm / min. The sample was cut out from the film at 5 locations × 4 cm × 4 cm at different locations, and the average value measured for each was used.
 積分球の反射板は酸化アルミニウムを用いており、測光方式はダブルビーム直接比率測光方式、分光器はプリズム、グレーティング・グレーティング形ダブルモノクロを用いた。 Aluminum oxide was used for the reflector of the integrating sphere, the double beam direct ratio metering method was used for the metering method, and the prism and grating / grating type double monochrome were used for the spectroscope.
 光源光線透過率とは、認証デバイスの光源から出射する光線の最も強い強度を持つ波長における透過率を示す。 The light source light transmittance indicates the transmittance at the wavelength having the strongest intensity of the light beam emitted from the light source of the authentication device.
 D.破断点伸度
 フィルムをサンプル幅中央部から10mm幅×150mm幅で切り出し。デジタル式マイクロメーター(松尾産業製HKT-1208)、引張試験機(RTG1210)を用い、JIS―C―2151、ASTM―D―882に準じて測定を行った。主配向軸方向にチャックで把持して、速度200mm/minで引張、試料が切断(破断)したときの強度(引張荷重値を試験片の断面積で除した値)、および伸びを求めた。引張伸びは次の式によって算出した。
引張伸び(%)=100×(L―Lo)/Lo
Lo:試験前の試料長さ L:破断時の試料長さ
 測定は5回行い、その平均値を用いた。同様にして、主配向軸と直交する方向の破断点伸度も測定した。測定は25℃に保たれた部屋で行った。
D. Break point elongation The film is cut out from the center of the sample width in a width of 10 mm x 150 mm. Measurement was performed according to JIS-C-2151 and ASTM-D-882 using a digital micrometer (HKT-1208 manufactured by Matsuo Sangyo) and a tensile tester (RTG1210). The sample was gripped in the main orientation axis direction with a chuck, pulled at a speed of 200 mm / min, and the strength when the sample was cut (broken) (the value obtained by dividing the tensile load value by the cross-sectional area of the test piece) and the elongation were determined. The tensile elongation was calculated by the following formula.
Tensile elongation (%) = 100 × (L-Lo) / Lo
Lo: Sample length before test L: Sample length at break The measurement was performed 5 times, and the average value was used. Similarly, the elongation at the breaking point in the direction orthogonal to the main orientation axis was also measured. The measurement was performed in a room kept at 25 ° C.
 E.光源波長および光源半値幅
 浜松ホトニクス製ミニ分光光度器(C10083MD、C9914GB)にNA0.22の光ファイバーを取り付け、光源の光を計測した。320nm以上1500nm以下の範囲で最も高い強度を持つ波長を光源波長、光源波長のピークの強度の1/2の強度におけるピークの幅を半値幅とする。
E. Light source wavelength and half width of light source A optical fiber of NA0.22 was attached to a mini spectrophotometer (C10083MD, C9914GB) manufactured by Hamamatsu Photonics, and the light of the light source was measured. The wavelength having the highest intensity in the range of 320 nm or more and 1500 nm or less is defined as the light source wavelength, and the peak width at half the intensity of the peak intensity of the light source wavelength is defined as the half width.
 F.厚み
 デジタル式マイクロメーター(松尾産業製HKT-1208)を用いて、JIS―C―2151に準じてフィルム中央部分を測定した。測定は3回行い、その平均値を用いた。
F. The central portion of the film was measured according to JIS-C-2151 using a thickness digital micrometer (HKT-1208 manufactured by Matsuo Sangyo Co., Ltd.). The measurement was performed three times, and the average value was used.
 認証デバイスの評価
 G.認証性
 23℃65RH%の環境で、認証対象物αを登録する。実施例10の場合は虹彩、それ以外の場合は指紋を認証対象物とする。その後、認証対象物αと登録していない認証対象物βを交互に200回ずつ認証デバイスに認識させる。認識させる時間は2秒ずつとする。αを拒否する確率(本人拒否率:FRR)、βを受け入れる確率(他人受入率:FAR)から以下のように評価する。Aを良好、Bを可、C、Dを不適とした。
A:FRR≦1.0%、FAR≦0.5%
B:1.0%<FRR≦3.0%、FAR≦0.5%
C:3.0%<FRR≦5.0%もしくは/かつ、0.5%<FAR≦1.0%
D:5.0%<FRRもしくは、1.0%<FAR。
Evaluation of authentication device G. Certibility Register the certification target α in an environment of 23 ° C. and 65RH%. In the case of Example 10, the iris is used as the authentication target, and in other cases, the fingerprint is used as the authentication target. After that, the authentication object α and the unregistered authentication object β are alternately recognized by the authentication device 200 times each. The recognition time is 2 seconds each. The probability of rejecting α (false rejection rate: FRR) and the probability of accepting β (false acceptance rate: FAR) are evaluated as follows. A was good, B was acceptable, and C and D were unsuitable.
A: FRR ≤ 1.0%, FAR ≤ 0.5%
B: 1.0% <FRR ≤ 3.0%, FAR ≤ 0.5%
C: 3.0% <FRR ≤ 5.0% or / and 0.5% <FAR ≤ 1.0%
D: 5.0% <FRR or 1.0% <FAR.
 H.光源耐久性
 認証デバイスを23℃65RH%雰囲気下で光源点灯状態を1000h維持し、試験前後での認証性能の変化を評価した。判定基準は以下のとおりである。ただし、ΔFRR、ΔFARはそれぞれ試験後のFRR、FARから試験前のFRR、FARを引いた値を示す。
A:ΔFRR=0、かつΔFAR=0。
B:「0<ΔFRR≦1.0、かつ0<ΔFAR≦0.5」
C:「1.0<ΔFRR≦2.0、かつ0<ΔFAR≦0.5」、「0<ΔFRR≦1.0、かつ0.5<ΔFAR≦1.5」または「1.0<ΔFRR≦2.0、かつ0.5<ΔFAR≦1.5」
D:A、B、Cのいずれにも当てはまらない。
H. The light source durability authentication device was maintained in a light source lighting state for 1000 hours under an atmosphere of 23 ° C. and 65 RH%, and changes in authentication performance before and after the test were evaluated. The judgment criteria are as follows. However, ΔFRR and ΔFAR indicate the values obtained by subtracting the FRR and FAR before the test from the FRR and FAR after the test, respectively.
A: ΔFRR = 0 and ΔFAR = 0.
B: "0 <ΔFRR≤1.0 and 0 <ΔFAR≤0.5"
C: "1.0 <ΔFRR ≤ 2.0 and 0 <ΔFAR ≤ 0.5", "0 <ΔFRR ≤ 1.0 and 0.5 <ΔFAR ≤ 1.5" or "1.0 <ΔFRR" ≤2.0 and 0.5 <ΔFAR≤1.5"
D: Not applicable to any of A, B, and C.
 I.衝撃耐久性
 フィルムインパクトテスター(東洋精機製作所製)により、直径1/2インチの半球状衝撃頭を用い、温度23℃、湿度65%RHの雰囲気下においてインパクト値の測定を行った。測定は1サンプルにつき5回行った。さらに、1回毎のインパクト値を測定サンプルに付属のフィルム厚みで割り返し、単位厚みあたりのインパクト値とし、5回の測定の平均値から求めた。測定値から下記のように評価した。  
A:1.0N・m/mm以上  
B:0.5N・m/mm以上1.0N・m/mm未満  
C:0.5N・m/mm未満。
I. Impact Durability The impact value was measured by a film impact tester (manufactured by Toyo Seiki Seisakusho) using a hemispherical impact head with a diameter of 1/2 inch in an atmosphere of a temperature of 23 ° C. and a humidity of 65% RH. The measurement was performed 5 times per sample. Further, the impact value for each measurement was divided by the film thickness attached to the measurement sample to obtain the impact value per unit thickness, which was obtained from the average value of the five measurements. The measured values were evaluated as follows.
A: 1.0 N ・ m / mm or more
B: 0.5 N ・ m / mm or more and less than 1.0 N ・ m / mm
C: Less than 0.5 N ・ m / mm.
 J:熱収縮率
 フィルムのMD方向およびTD方向のそれぞれについて、幅10mm、長さ200mm(測定方向)の試料を5本切り出し、両端から25mmの位置に標線として印しを付けて、万能投影機で標線間の距離を測定し試長(10)とする。次に、試験片を紙に挟み込み荷重ゼロの状態で100℃に保温されたオーブン内で、30分加熱後に取り出して、室温で冷却後、寸法(11)を万能投影機で測定して下記式にて求め、5本の平均値を熱収縮率とした。
熱収縮率={(10-11)/10}×100(%)  
J: Heat shrinkage rate Five samples with a width of 10 mm and a length of 200 mm (measurement direction) are cut out in each of the MD direction and TD direction of the film, and marked as marked lines at positions 25 mm from both ends for universal projection. Measure the distance between the marked lines with a machine and use it as the test length (10). Next, the test piece was sandwiched between papers and placed in an oven kept at 100 ° C. with no load, heated for 30 minutes, taken out, cooled at room temperature, and then the dimension (11) was measured with a universal projector and the following formula was used. The average value of 5 pieces was taken as the heat shrinkage rate.
Heat shrinkage = {(10-11) / 10} x 100 (%)
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not necessarily limited thereto.
 (実施例1)
光源および光感度センサーはSynaptics製ClearID FS9500(光源波長525nm、光源半値幅30nm)を用いた。
偏光子は偏光度80%以上の一般的な偏光フィルムとしてクラレ製VF-PS#7500を用いた。フィルムは以下の方法で作成した。
(Example 1)
As the light source and the light sensitivity sensor, a ClearID FS9500 manufactured by Synaptics (light source wavelength 525 nm, light source half width 30 nm) was used.
As the polarizer, VF-PS # 7500 manufactured by Kuraray was used as a general polarizing film having a degree of polarization of 80% or more. The film was prepared by the following method.
 (フィルム作成に用いた樹脂)
樹脂A:ポリエチレンテレフタレート(PET)(固有粘度:0.65)
樹脂B:ジオール成分全体に対してスピログリコール25mol%、ジカルボン酸成分全体に対してシクロヘキサンジカルボン酸30mol%を共重合したポリエチレンテレフタレート(PET/SPG/CHDC)(固有粘度:0.72)
樹脂C:樹脂B(90重量%)と紫外線吸収剤である2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3,-テトラメチルブチル)フェノール](10重量%)を押し出し機を用いて混合し、ペレット化した。
樹脂D:樹脂A(90重量%)と紫外線吸収剤である2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3,-テトラメチルブチル)フェノール](10重量%)を押し出し機を用いて混合し、ペレット化した。
樹脂E:平均粒径0.70μmのジビニルベンゼン/スチレン共重合体粒子を0.8重量%と平均二次粒径0.08μmの凝集アルミナ粒子を1.5重量%含有した、ポリエチレンテレフタレート(PET)(固有粘度:0.65)。
(Resin used for film making)
Resin A: Polyethylene terephthalate (PET) (intrinsic viscosity: 0.65)
Resin B: Polyethylene terephthalate (PET / SPG / CHDC) in which 25 mol% of spiroglycol is copolymerized with respect to the entire diol component and 30 mol% of cyclohexanedicarboxylic acid is copolymerized with respect to the entire dicarboxylic acid component (intrinsic viscosity: 0.72).
Resin C: Resin B (90% by weight) and UV absorber 2,2'-methylenebis [6- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethyl) Butyl) phenol] (10% by weight) was mixed using an extruder and pelletized.
Resin D: Resin A (90% by weight) and 2,2'-methylenebis [6- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethyl), which is an ultraviolet absorber. Butyl) phenol] (10% by weight) was mixed using an extruder and pelletized.
Resin E: Polyethylene terephthalate (PET) containing 0.8% by weight of divinylbenzene / styrene copolymer particles having an average particle size of 0.70 μm and 1.5% by weight of aggregated alumina particles having an average secondary particle size of 0.08 μm. ) (Intrinsic viscosity: 0.65).
 (フィルムの作成)
 A層を構成する樹脂として樹脂A、B層を構成する樹脂として樹脂Cを用いた。なお、この樹脂Cの固有粘度は0.72の非晶性樹脂で、フィルム化した後の面内平均屈折率は1.55であった。熱可塑性樹脂Aおよび熱可塑性樹脂Cを、それぞれ、押出機にて280℃で溶融させ、FSSタイプのリーフディスクフィルタを5枚介した後、ギアポンプにて吐出比(積層比)が樹脂A/樹脂C=1.5/1となり、かつ二軸延伸後のフィルム厚みが35μmとなるように計量しながら、201層フィードブロック(A層が101層、B層が100層)にて交互に合流させた。次いで、Tダイに供給し、シート状に成形した後、ワイヤーで8kVの静電印可電圧をかけながら、表面温度25℃に保たれたキャスティングドラム上で急冷固化し、未延伸多層積層フィルムを得た。この未延伸フィルムに逐次二軸延伸を実施した。まず105℃でテフロン(登録商標)ロールにて搬送した後に、長手方向に、出力を500Wとした赤外線ヒーターで加熱しながら、95℃で2.8倍延伸して一軸延伸フィルムを得た。この一軸延伸フィルムをテンター内で幅方向に100℃で4.5倍延伸し、続いて220℃で熱固定し、その際幅方向に1.7%弛緩し搬送工程にて冷却させた後、エッジを切断後に巻き取り、フィルムを得た。得られたフィルムの物性を表1および表3に示す。
(Creation of film)
Resin A was used as the resin constituting the A layer, and resin C was used as the resin constituting the B layer. The intrinsic viscosity of this resin C was 0.72, and the in-plane average refractive index after film formation was 1.55. The thermoplastic resin A and the thermoplastic resin C are each melted at 280 ° C. by an extruder, passed through five FSS type leaf disc filters, and then the discharge ratio (lamination ratio) is resin A / resin by a gear pump. While measuring so that C = 1.5 / 1 and the film thickness after biaxial stretching is 35 μm, they are alternately merged by a 201-layer feed block (101 layers for A layer and 100 layers for B layer). It was. Next, it was supplied to a T-die, molded into a sheet, and then rapidly cooled and solidified on a casting drum maintained at a surface temperature of 25 ° C. while applying an electrostatically applied voltage of 8 kV with a wire to obtain an unstretched multilayer laminated film. It was. This unstretched film was sequentially biaxially stretched. First, the film was conveyed by a Teflon (registered trademark) roll at 105 ° C., and then stretched 2.8 times at 95 ° C. while heating with an infrared heater having an output of 500 W in the longitudinal direction to obtain a uniaxially stretched film. This uniaxially stretched film was stretched 4.5 times in the width direction at 100 ° C. and then heat-fixed at 220 ° C., at which time it was relaxed by 1.7% in the width direction and cooled in a transporting step. After cutting the edges, they were wound up to obtain a film. The physical properties of the obtained film are shown in Tables 1 and 3.
 (認証デバイスの作成)
 ClearID(光源、光感度センサー)、偏光子、フィルムの順に光学用透明粘着剤(OCA:Optically Clear Adhesive)を用いて接着し、認証デバイスを得た。その際、フィルムの主配向軸が偏光子の透過軸と平行になるように配置した。認証デバイスの認証可能面積は1cmとした。得られた認証デバイスの特性を表2および表4に示す。優れた認証性と耐久性を有する認証デバイスが得られた。
(Creating an authentication device)
A clear ID (light source, light sensitivity sensor), a polarizer, and a film were adhered in this order using an optically clear adhesive (OCA) to obtain an authentication device. At that time, the main orientation axis of the film was arranged so as to be parallel to the transmission axis of the polarizer. The area that can be authenticated by the authentication device is 1 cm 2 . The characteristics of the obtained authentication device are shown in Tables 2 and 4. An authentication device with excellent authentication and durability was obtained.
 (実施例2)
 デバイスに貼りつけるフィルムの主配向軸を偏光子の透過軸に対して45°とした以外は実施例1と同様にして認証デバイスを得た。表2に示すように、優れた認証性と耐久性を有する認証デバイスが得られた。
(Example 2)
An authentication device was obtained in the same manner as in Example 1 except that the main orientation axis of the film attached to the device was 45 ° with respect to the transmission axis of the polarizer. As shown in Table 2, an authentication device having excellent authenticity and durability was obtained.
 (実施例3)
 幅方向の延伸倍率を5.5倍とする以外は実施例2と同様にしてフィルム、および認証デバイスを得た。優れた認証性と耐久性を有する認証デバイスが得られた。
(Example 3)
A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the width direction was 5.5 times. An authentication device with excellent authentication and durability was obtained.
 (実施例4)
 長手方向の延伸倍率を3.0倍とする以外は実施例1と同様にしてフィルム、および認証デバイスを得た。優れた認証性と耐久性を有する認証デバイスが得られた。
(Example 4)
A film and an authentication device were obtained in the same manner as in Example 1 except that the stretching ratio in the longitudinal direction was 3.0 times. An authentication device with excellent authentication and durability was obtained.
 (実施例5)
 フィルムの主配向軸を偏光子の透過軸に対して10°とした以外は実施例4と同様にして認証デバイスを得た。良好な認証性と優れた耐久性を有する認証デバイスが得られた。
(Example 5)
An authentication device was obtained in the same manner as in Example 4 except that the main orientation axis of the film was set to 10 ° with respect to the transmission axis of the polarizer. An authentication device with good authenticity and excellent durability was obtained.
 (実施例6)
 フィルムの主配向軸を偏光子の透過軸に対して45°とした以外は実施例4と同様にして認証デバイスを得た。良好な認証性と優れた耐久性を有する認証デバイスが得られた。
(Example 6)
An authentication device was obtained in the same manner as in Example 4 except that the main orientation axis of the film was 45 ° with respect to the transmission axis of the polarizer. An authentication device with good authenticity and excellent durability was obtained.
 (実施例7)
 長手方向の延伸倍率を2.6倍とする以外は実施例2と同様にしてフィルム、および認証デバイスを得た。良好な認証性と優れた耐久性を有する認証デバイスが得られた。
(Example 7)
A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the longitudinal direction was set to 2.6 times. An authentication device with good authenticity and excellent durability was obtained.
 (実施例8)
 B層を構成する樹脂として樹脂Dを用いる以外は実施例2と同様にしてフィルム、および認証デバイスを得た。良好な認証性と耐久性を有する認証デバイスが得られた。
(Example 8)
A film and an authentication device were obtained in the same manner as in Example 2 except that the resin D was used as the resin constituting the B layer. An authentication device with good authenticity and durability was obtained.
 (実施例9)
 長手方向に延伸する際の温度を90℃、幅方向に延伸する際の温度を120℃とする以外は実施例2と同様にしてフィルム、および認証デバイスを得た。良好な認証性と優れた耐久性を有する認証デバイスが得られた。
(Example 9)
A film and an authentication device were obtained in the same manner as in Example 2 except that the temperature for stretching in the longitudinal direction was 90 ° C. and the temperature for stretching in the width direction was 120 ° C. An authentication device with good authenticity and excellent durability was obtained.
 (実施例10)
 ClearIDの代わりにパナソニック製BM ET-200を光源および光感度センサーとして用いて、長手方向の延伸倍率を3.2倍とする以外は実施例2と同様にしてフィルム、および認証デバイスを得た。優れた認証性と耐久性を有する認証デバイスが得られた。
(Example 10)
A film and an authentication device were obtained in the same manner as in Example 2 except that the Panasonic BM ET-200 was used as a light source and a light sensitivity sensor instead of ClearID to set the elongation ratio in the longitudinal direction to 3.2 times. An authentication device with excellent authentication and durability was obtained.
 (実施例11)
 3層フィードブロック(A層が外側2層、B層が内側1層)を用いる以外は実施例2と同様にしてフィルム、および認証デバイスを得た。優れた認証性を有する認証デバイスとなった。
(Example 11)
A film and an authentication device were obtained in the same manner as in Example 2 except that a 3-layer feed block (A layer is 2 outer layers and B layer is 1 inner layer) is used. It has become an authentication device with excellent authenticity.
 (実施例12)
 B層を構成する樹脂として、樹脂Bを用いる以外は実施例2と同様にしてフィルム、および認証デバイスを得た。優れた認証性を有する認証デバイスとなった。
(Example 12)
A film and an authentication device were obtained in the same manner as in Example 2 except that resin B was used as the resin constituting the B layer. It has become an authentication device with excellent authenticity.
 (実施例13)
長手方向の延伸倍率を1.05倍、幅方向の延伸倍率を1.05倍として、熱処理を行わない以外は実施例2と同様にしてフィルム、および認証デバイスを得た。優れた認証性を有する認証デバイスとなった。
(Example 13)
A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the longitudinal direction was 1.05 times and the stretching ratio in the width direction was 1.05 times and no heat treatment was performed. It has become an authentication device with excellent authenticity.
 (実施例14)
フィルムとしてポリカーボネートフィルム(帝人製パンライト PC-7129)を用いる以外は実施例2と同様にしてフィルム、および認証デバイスを得た。優れた認証性を有する認証デバイスとなった。
(Example 14)
A film and an authentication device were obtained in the same manner as in Example 2 except that a polycarbonate film (Teijin Panlite PC-7129) was used as the film. It has become an authentication device with excellent authenticity.
 (実施例15)
認証可能面積を50cmとする以外は実施例1と同様にして認証デバイスを得た。優れた認証性を有する認証デバイスとなった。
(Example 15)
An authentication device was obtained in the same manner as in Example 1 except that the certifiable area was 50 cm 2 . It has become an authentication device with excellent authenticity.
 (実施例16)
長手方向の延伸倍率を4.2倍、幅方向の延伸倍率を2.3倍とする以外は実施例15と同様にしてフィルム、および認証デバイスを得た。良好な認証性を有する認証デバイスとなった。
(Example 16)
A film and an authentication device were obtained in the same manner as in Example 15 except that the stretching ratio in the longitudinal direction was 4.2 times and the stretching ratio in the width direction was 2.3 times. It became an authentication device with good authentication performance.
 (実施例17)
 幅方向の延伸倍率を4.4倍とする以外は実施例1と同様にしてフィルム、および認証デバイスを得た。なお、本フィルムは面内位相差を測定する際に、光源波長を587.8nmとして測定するとともに、カラーフィルターにて光源波長を525nmとしても測定を行った。525nmにて測定した結果は、表3内のRe(nm)の列のかっこ内に示している。表4に示すように、認証性試験にて、FRR=0%の特に優れた認証性を有する認証デバイスとなった。
(Example 17)
A film and an authentication device were obtained in the same manner as in Example 1 except that the stretching ratio in the width direction was 4.4 times. In this film, when measuring the in-plane phase difference, the measurement was performed with the light source wavelength set to 587.8 nm and the light source wavelength set to 525 nm with a color filter. The results measured at 525 nm are shown in parentheses in the Re (nm) column in Table 3. As shown in Table 4, in the authentication test, it became an authentication device having a particularly excellent authentication property with FRR = 0%.
 (実施例18)
 幅方向の延伸倍率を4.4倍とする以外は実施例2と同様にしてフィルム、および認証デバイスを得た。なお、本フィルムは面内位相差を測定する際に、光源波長を587.8nmとして測定するとともに、カラーフィルターにて光源波長を525nmとしても測定を行った。525nmにて測定した結果は、表3内のRe(nm)の列のかっこ内に示している。表4に示すように、認証性試験にて、FRR=0%の特に優れた認証性を有する認証デバイスとなった。
(Example 18)
A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the width direction was 4.4 times. In this film, when measuring the in-plane phase difference, the measurement was performed with the light source wavelength set to 587.8 nm and the light source wavelength set to 525 nm with a color filter. The results measured at 525 nm are shown in parentheses in the Re (nm) column in Table 3. As shown in Table 4, in the authentication test, it became an authentication device having a particularly excellent authentication property with FRR = 0%.
 (実施例19)
 ClearIDの光源および光感度センサーと、BM ET-200の光源および光感度センサーを同時に用いる以外は実施例2と同様にして認証デバイスを得た。ClearIDとBM ET-200ではClearIDの方が光源の光線の強度が高かった。ClearIDの光感度センサーからのデータのみ優れた認証性を有する認証デバイスとなった。表3および表4内の測定項目の内、光源波長が測定に必要な項目については、かっこ外に525nmでの測定結果を記載し、かっこ内に850nmでの結果を記載している。
(Example 19)
An authentication device was obtained in the same manner as in Example 2 except that the light source and light sensitivity sensor of ClearID and the light source and light sensitivity sensor of BM ET-200 were used at the same time. In ClearID and BM ET-200, the intensity of the light beam of the light source was higher in ClearID. Only the data from the ClearID optical sensitivity sensor has become an authentication device with excellent authenticity. Among the measurement items in Tables 3 and 4, for the items in which the light source wavelength is required for measurement, the measurement results at 525 nm are shown outside the parentheses, and the results at 850 nm are shown inside the parentheses.
 (実施例20)
 幅方向の延伸倍率を5.7倍とする以外は実施例19と同様にしてフィルム、および認証デバイスを得た。ClearIDとBM ET-200ではClearIDの方が光源の光線の強度が高かった。ClearIDの光感度センサーと、BM ET-200の光感度センサーのいずれからのデータも優れた認証性を有する認証デバイスとなった。表3および表4内の測定項目の内、光源波長が測定に必要な項目については、かっこ外に525nmでの測定結果を記載し、かっこ内に850nmでの結果を記載している。
(Example 20)
A film and an authentication device were obtained in the same manner as in Example 19 except that the stretching ratio in the width direction was set to 5.7 times. In ClearID and BM ET-200, the intensity of the light beam of the light source was higher in ClearID. Data from both the ClearID optical sensitivity sensor and the BM ET-200 optical sensitivity sensor have become authentication devices with excellent authenticity. Among the measurement items in Tables 3 and 4, for the items in which the light source wavelength is required for measurement, the measurement results at 525 nm are shown outside the parentheses, and the results at 850 nm are shown inside the parentheses.
 (実施例21)
 熱処理温度を240℃とする以外は実施例5と同様にしてフィルム、および認証デバイスを得た。表4に示すように、良好な認証性を有する認証デバイスとなった。
(Example 21)
A film and an authentication device were obtained in the same manner as in Example 5 except that the heat treatment temperature was set to 240 ° C. As shown in Table 4, the authentication device has good authenticity.
 (実施例22)
 長手方向の延伸倍率を2.6倍、幅方向の延伸倍率を4.0倍とする以外は実施例2と同様にしてフィルム、および認証デバイスを得た。表4に示すように、面内位相差のバラつきがやや大きいものの、全体としては良好な認証性を有する認証デバイスとなった。
(Example 22)
A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the longitudinal direction was 2.6 times and the stretching ratio in the width direction was 4.0 times. As shown in Table 4, although the in-plane phase difference varies slightly, the authentication device has good authentication performance as a whole.
 (実施例23)
 樹脂Aの代わりに樹脂Eを用いる以外は実施例5と同様にしてフィルム、および認証デバイスを得た。表4に示すように、良好な認証性を有する認証デバイスとなった。
(Example 23)
A film and an authentication device were obtained in the same manner as in Example 5 except that the resin E was used instead of the resin A. As shown in Table 4, the authentication device has good authenticity.
 (実施例24)
 9層フィードブロック(A層が外側5層、B層が内側4層)を用いる以外は実施例2と同様にしてフィルム、および認証デバイスを得た。表4に示すように、優れた認証性を有する認証デバイスとなった。
(Example 24)
A film and an authentication device were obtained in the same manner as in Example 2 except that a 9-layer feed block (A layer is the outer 5 layers and B layer is the inner 4 layers) is used. As shown in Table 4, the authentication device has excellent authentication properties.
 (実施例25)
 101層フィードブロック(A層が外側51層、B層が内側50層)を用いるとともに、吐出量を調整して延伸後の厚みを18μmとした以外は実施例2と同様にしてフィルム、および認証デバイスを得た。薄膜化により耐衝撃性はやや低下するが、薄膜が求められる用途にも適用可能なフィルムとなった。表4に示すように優れた認証性を有する認証デバイスとなった。
(Example 25)
A 101-layer feed block (51 layers on the outside for the A layer and 50 layers on the inside for the B layer) was used, and the film and certification were performed in the same manner as in Example 2 except that the discharge amount was adjusted to make the thickness after stretching 18 μm. Got the device. Although the impact resistance is slightly reduced due to the thinning, the film can be applied to applications that require a thin film. As shown in Table 4, the authentication device has excellent authentication properties.
 (比較例1)
 長手方向の延伸倍率を3.2倍として、フィルムの主配向軸を偏光子の透過軸に対して10°とする以外は実施例2と同様にしてフィルム、および認証デバイスを得た。認証性にやや劣る認証デバイスとなった。
(Comparative Example 1)
A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the longitudinal direction was 3.2 times and the main orientation axis of the film was 10 ° with respect to the transmission axis of the polarizer. It became an authentication device with slightly inferior authentication performance.
 (比較例2)
 長手方向の延伸倍率を3.2倍とする以外は実施例2と同様にしてフィルム、および認証デバイスを得た。認証性に劣る認証デバイスとなった。
(Comparative Example 2)
A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the longitudinal direction was 3.2 times. It became an authentication device with poor authentication performance.
 (比較例3)
幅方向の延伸倍率を4.9倍とする以外は実施例2と同様にしてフィルム、および認証デバイスを得た。認証性に劣る認証デバイスとなった。
(Comparative Example 3)
A film and an authentication device were obtained in the same manner as in Example 2 except that the stretching ratio in the width direction was 4.9 times. It became an authentication device with poor authentication performance.
 (比較例4)
 長手方向の延伸倍率を3.2倍、幅方向の延伸倍率を4.4倍とする以外は比較例2と同様にしてフィルム、および認証デバイスを得た。認証性に劣る認証デバイスとなった。
(Comparative Example 4)
A film and an authentication device were obtained in the same manner as in Comparative Example 2 except that the stretching ratio in the longitudinal direction was 3.2 times and the stretching ratio in the width direction was 4.4 times. It became an authentication device with poor authentication performance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
本発明の認証デバイスは、認証性能がフィルムの配向角に依存することなく、紫外線をフィルムが吸収、反射することにより光源、偏光子の耐久性を高めており、また安価なポリエステルをフィルムの原料とすることができるものである。そのため、良好な認証性能と耐久性を有し、安価かつ生産性に優れている。 In the authentication device of the present invention, the authentication performance does not depend on the orientation angle of the film, and the film absorbs and reflects ultraviolet rays to improve the durability of the light source and the polarizer. In addition, inexpensive polyester is used as the raw material of the film. Can be. Therefore, it has good certification performance and durability, is inexpensive, and is excellent in productivity.
1:光源
2:偏光子
3:フィルム
4:光感度センサー
5:光源から射出された光が認証対象物で反射された光
6:光源から射出された光
1: Light source 2: Polarizer 3: Film 4: Light sensitivity sensor 5: Light emitted from the light source reflected by the object to be authenticated 6: Light emitted from the light source

Claims (20)

  1.  光源、偏光子、フィルム、および光感度センサーを有する認証デバイスであって、前記のフィルムは偏光子と認証対象物の間に配置され、かつ下記(1)および(2)を満足することを特徴とする認証デバイス。
    (1)前記光源から出射する光線の透過率が、当該光線の最も強い強度の波長において70%以上100%以下であること。
    (2)下記(I)式を満足する整数nが存在すること。
    (I)A×n-150 ≦ Re ≦ A×n+150
    ここで、Aは前記光源から出射する光線において最も強い強度を示す波長(nm)であり、
    Reは前記フィルムを平行ニコル回転法を用いて入射角0°での波長587.8nmで測定したときの面内位相差(nm)である。
    An authentication device having a light source, a polarizer, a film, and a photosensitivity sensor, wherein the film is arranged between the polarizer and an object to be authenticated and satisfies the following (1) and (2). Authentication device.
    (1) The transmittance of the light beam emitted from the light source is 70% or more and 100% or less at the wavelength of the strongest intensity of the light ray.
    (2) There is an integer n that satisfies the following equation (I).
    (I) A × n-150 ≦ Re ≦ A × n + 150
    Here, A is a wavelength (nm) showing the strongest intensity in the light beam emitted from the light source.
    Re is the in-plane phase difference (nm) when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using a parallel Nicol rotation method.
  2.  前記(I)式を満足するとともに、下記(II)式を満足する整数mが存在する請求項1に記載の認証デバイス。
    (II)B×m-150 ≦ Re ≦ B×m+150
    ここで、Bは前記光源から出射する光線において2番目に強い強度を示す波長(nm)であり、
    Reは前記フィルムを平行ニコル回転法を用いて入射角0°での波長587.8nmで測定したときの面内位相差(nm)である。
    The authentication device according to claim 1, wherein an integer m satisfying the above equation (I) and satisfying the following equation (II) exists.
    (II) B × m-150 ≦ Re ≦ B × m + 150
    Here, B is a wavelength (nm) that exhibits the second strongest intensity in the light beam emitted from the light source.
    Re is the in-plane phase difference (nm) when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using a parallel Nicol rotation method.
  3.  前記フィルムが下記式(III)、および(IV)を満足する請求項1または2に記載の認証デバイス。
    (III) PT(45) ≧ 0.65
    (IV)1 ≧ PT(45)/ PT(0)≧ 0.6
    ここで、PT(45)とPT(0)は下記のとおりで求められる。
    (1)偏光子を2枚にカットし、2枚の偏光子の面が50Wタングステンランプを光源とした分光光度計の光軸に垂直になるように、かつ2枚の偏光子の透過軸同士が平行になるように配置し、光源消灯状態と光源点灯状態でのバックグラウンド測定を行う。光源消灯状態で測定された透過光量をPT(D)、光源点灯状態で測定された透過光量をPT(L)とする。
    (2)2枚の偏光子の間に前記フィルムをフィルムの面が分光光度計の光軸に垂直になるように配置する。
    (3)前記フィルムのみを分光光度計の光軸に垂直な面内で回転させつつ、前記光源から出射する光線の最も強い強度を持つ波長における透過光量の測定を行う。2枚の偏光子の透過軸と前記フィルムの主配向軸のなす角が0°のときの透過光量をPT’(0)、45°のときの透過光量をPT’(45)とする。
    (4)下記式よりPT(0)、PT(45)を得る。
    PT(0)=(PT’(0)- PT(D))/(PT(L)- PT(D))
    PT(45)=(PT’(45)- PT(D))/(PT(L)- PT(D))。
    The authentication device according to claim 1 or 2, wherein the film satisfies the following formulas (III) and (IV).
    (III) PT (45) ≧ 0.65
    (IV) 1 ≧ PT (45) / PT (0) ≧ 0.6
    Here, PT (45) and PT (0) are obtained as follows.
    (1) The polarizer is cut into two pieces so that the surfaces of the two polarizers are perpendicular to the optical axis of the spectrophotometer using a 50 W tungsten lamp as a light source, and the transmission axes of the two polarizers are connected to each other. Are arranged so that they are parallel to each other, and background measurement is performed in the light source off state and the light source on state. Let PT (D) be the amount of transmitted light measured when the light source is off, and let PT (L) be the amount of transmitted light measured when the light source is on.
    (2) The film is placed between two polarizers so that the surface of the film is perpendicular to the optical axis of the spectrophotometer.
    (3) While rotating only the film in a plane perpendicular to the optical axis of the spectrophotometer, the amount of transmitted light at the wavelength having the strongest intensity of the light rays emitted from the light source is measured. Let PT'(0) be the amount of transmitted light when the angle formed by the transmission axes of the two polarizing elements and the main orientation axis of the film is 0 °, and PT'(45) be the amount of transmitted light when the angle is 45 °.
    (4) PT (0) and PT (45) are obtained from the following equations.
    PT (0) = (PT'(0) -PT (D)) / (PT (L) -PT (D))
    PT (45) = (PT'(45) -PT (D)) / (PT (L) -PT (D)).
  4.  前記光源から出射する光線において最も強い強度を示すピークの半値幅が5nm以上70nm以下である請求項1から3のいずれかに記載の認証デバイス。 The authentication device according to any one of claims 1 to 3, wherein the half width of the peak showing the strongest intensity in the light beam emitted from the light source is 5 nm or more and 70 nm or less.
  5.  下記(V)式を満たす整数nが存在する請求項1から4のいずれかに記載の認証デバイス。
    (V)A×n-120 ≦ Re ≦ A×n+120、 かつ、415 ≦ A ≦ 495。
    The authentication device according to any one of claims 1 to 4, wherein an integer n satisfying the following equation (V) exists.
    (V) A × n-120 ≦ Re ≦ A × n + 120, and 415 ≦ A ≦ 495.
  6.  下記(VI)式を満たす整数nが存在する請求項1から4のいずれかに記載の認証デバイス。
    (VI)A×n-100 ≦ Re ≦ A×n+100、かつ、495 ≦ A ≦ 570。
    The authentication device according to any one of claims 1 to 4, wherein an integer n satisfying the following equation (VI) exists.
    (VI) A × n-100 ≦ Re ≦ A × n + 100 and 495 ≦ A ≦ 570.
  7.  下記(VII)式を満たす整数nが存在する請求項1から4のいずれかに記載の認証デバイス。
    (VII)A×n-120 ≦ Re ≦ A×n+120、かつ、570 ≦ A ≦ 800。
    The authentication device according to any one of claims 1 to 4, wherein an integer n satisfying the following equation (VII) exists.
    (VII) A × n-120 ≦ Re ≦ A × n + 120 and 570 ≦ A ≦ 800.
  8.  下記(VIII)式を満たす整数nが存在する請求項1から4のいずれかに記載の認証デバイス。
    (VIII)A×n-150 ≦ Re ≦ A×n+150、かつ、800 ≦ A ≦ 1600。
    The authentication device according to any one of claims 1 to 4, wherein an integer n satisfying the following equation (VIII) exists.
    (VIII) A × n-150 ≦ Re ≦ A × n + 150 and 800 ≦ A ≦ 1600.
  9.  前記フィルムの面内位相差が400nm以上3000nm以下である請求項1から8のいずれかに記載の認証デバイス。 The authentication device according to any one of claims 1 to 8, wherein the in-plane phase difference of the film is 400 nm or more and 3000 nm or less.
  10.  前記フィルムが樹脂Aからなる層と樹脂Aとは異なる樹脂Bからなる層を交互に5層以上積層した積層フィルムである、請求項1から9のいずれかに記載の認証デバイス。 The authentication device according to any one of claims 1 to 9, wherein the film is a laminated film in which five or more layers of a layer made of resin A and a layer made of resin B different from resin A are alternately laminated.
  11.  前記フィルムを構成する樹脂Bが、シクロヘキサンジメタノール、スピログリコール、ネオペンチルグリコール、イソフタル酸、シクロヘキサンジカルボン酸、イソソルビドのうち、少なくとも一種類を含み、ポリエステルを主成分とすることを特徴とする、請求項10に記載の認証デバイス。 The resin B constituting the film contains at least one of cyclohexanedimethanol, spiroglycol, neopentyl glycol, isophthalic acid, cyclohexanedicarboxylic acid, and isosorbide, and is characterized by containing polyester as a main component. Item 10. The authentication device according to item 10.
  12.  前記フィルムの主配向軸方向および主配向軸と直交する方向の25℃における破断点伸度がいずれも30%以上300%以下である、請求項1から11のいずれかに記載の認証デバイス。 The authentication device according to any one of claims 1 to 11, wherein the elongation at the breaking point at 25 ° C. in both the main orientation axis direction and the direction orthogonal to the main orientation axis of the film is 30% or more and 300% or less.
  13.  前記フィルムの主配向軸方向および主配向軸と直交する方向の100℃で30分処理した際の熱収縮率の最大値と最小値の比(最大値/最小値)が1.7以上である請求項1から12のいずれかに記載の認証デバイス。 The ratio (maximum value / minimum value) of the maximum value and the minimum value of the heat shrinkage rate when the film is treated at 100 ° C. for 30 minutes in the main orientation axis direction and the direction orthogonal to the main orientation axis is 1.7 or more. The authentication device according to any one of claims 1 to 12.
  14.  前記フィルムの主配向軸と、前記偏光子の透過軸のなす角度が10°未満である、請求項1から13のいずれかに記載の認証デバイス。 The authentication device according to any one of claims 1 to 13, wherein the angle formed by the main orientation axis of the film and the transmission axis of the polarizer is less than 10 °.
  15.  前記フィルムが、フィルム面内において最大長を示す両端(A,B)、点A、Bを結ぶ直線ABと直交し、かつ、直線ABの中点を通る直線のフィルムの両端(C,D)の合計4点の面内位相差において、最大値と最小値の差が200nm以下である、請求項1から14のいずれかに記載の認証デバイス。 Both ends (C, D) of a straight line in which the film is orthogonal to both ends (A, B) showing the maximum length in the film plane and a straight line AB connecting points A and B, and passes through the midpoint of the straight line AB. The authentication device according to any one of claims 1 to 14, wherein the difference between the maximum value and the minimum value is 200 nm or less in the in-plane phase difference of a total of four points.
  16.  認証可能な領域の面積が10cm以上である、請求項1から15のいずれかに記載の認証デバイス。 The authentication device according to any one of claims 1 to 15, wherein the area of the area that can be authenticated is 10 cm 2 or more.
  17.  前記光源が、有機EL(有機エレクトロルミネッセンス素子)、発光ダイオード(LED)のいずれかを含み、前記フィルムの波長380nmの光線透過率が5%以下である、請求項1から16のいずれかに記載の認証デバイス。 The method according to any one of claims 1 to 16, wherein the light source includes either an organic EL (organic electroluminescent element) or a light emitting diode (LED), and the light transmittance of the film at a wavelength of 380 nm is 5% or less. Authentication device.
  18.  前記光感度センサーがCMOS(Complementary metal―oxide―semiconductor)センサーである請求項1から17のいずれかに記載の認証デバイス。 The authentication device according to any one of claims 1 to 17, wherein the optical sensitivity sensor is a CMOS (Complementary metal-axis-simiconductor) sensor.
  19.  光源、偏光子、フィルム、および光感度センサーを有する認証デバイスに用いられるフィルムであって、下記(1)および(2)を満足するフィルム。
    (1)前記フィルムが、前記光源から出射する光線の透過率が、当該光線の最も強い強度の波長において70%以上100%以下であること。
    (2)下記(I)式を満足する整数nが存在すること。
    (I)A×n-150 ≦ Re ≦ A×n+150
    ここで、Aは前記光源から出射する光線において最も強い強度を示す波長(nm)であり、
    Reは前記フィルムを平行ニコル回転法を用いて入射角0°での波長587.8nmで測定したときの面内位相差(nm)である。
    A film used for an authentication device having a light source, a polarizer, a film, and a light sensitivity sensor, which satisfies the following (1) and (2).
    (1) The transmittance of light rays emitted from the light source of the film is 70% or more and 100% or less at the wavelength of the strongest intensity of the light rays.
    (2) There is an integer n that satisfies the following equation (I).
    (I) A × n-150 ≦ Re ≦ A × n + 150
    Here, A is a wavelength (nm) showing the strongest intensity in the light beam emitted from the light source.
    Re is the in-plane phase difference (nm) when the film is measured at a wavelength of 587.8 nm at an incident angle of 0 ° using a parallel Nicol rotation method.
  20.  前記フィルムが下記式(III)、および(IV)を満足する請求項19に記載のフィルム。
    (III) PT(45) ≧ 0.65
    (IV)1 ≧ PT(45)/ PT(0)≧ 0.6
    ここで、PT(45)とPT(0)は下記のとおりで求められる。
    (1)偏光子を2枚にカットし、2枚の偏光子の面が50Wタングステンランプを光源とした分光光度計の光軸に垂直になるように、かつ2枚の偏光子の透過軸同士が平行になるように配置し、バックグラウンド測定を行う。光源消灯状態で測定された透過光量をPT(D)、光源点灯状態で測定された透過光量をPT(L)とする。
    (2)2枚の偏光子の間に前記フィルムをフィルムの面が分光光度計の光軸に垂直になるように配置する。
    (3)前記フィルムのみを分光光度計の光軸に垂直な面内で回転させつつ、前記光源から出射する光線において最も強い強度を示す波長における透過光量の測定を行う。2枚の偏光子の透過軸と前記フィルムの主配向軸のなす角が0°のときの透過光量をPT’(0)、45°のときの透過光量をPT’(45)とする。
    (4)下記式よりPT(0)、PT(45)を得る。
    PT(0)=(PT’(0)- PT(D))/(PT(L)- PT(D))
    PT(45)=(PT’(45)- PT(D))/(PT(L)- PT(D))。
    The film according to claim 19, wherein the film satisfies the following formulas (III) and (IV).
    (III) PT (45) ≧ 0.65
    (IV) 1 ≧ PT (45) / PT (0) ≧ 0.6
    Here, PT (45) and PT (0) are obtained as follows.
    (1) The polarizer is cut into two pieces so that the surfaces of the two polarizers are perpendicular to the optical axis of the spectrophotometer using a 50 W tungsten lamp as a light source, and the transmission axes of the two polarizers are connected to each other. Are arranged so that they are parallel to each other, and background measurement is performed. Let PT (D) be the amount of transmitted light measured when the light source is off, and let PT (L) be the amount of transmitted light measured when the light source is on.
    (2) The film is placed between two polarizers so that the surface of the film is perpendicular to the optical axis of the spectrophotometer.
    (3) While rotating only the film in a plane perpendicular to the optical axis of the spectrophotometer, the amount of transmitted light at a wavelength showing the strongest intensity in the light rays emitted from the light source is measured. Let PT'(0) be the amount of transmitted light when the angle formed by the transmission axes of the two polarizing elements and the main orientation axis of the film is 0 °, and PT'(45) be the amount of transmitted light when the angle is 45 °.
    (4) PT (0) and PT (45) are obtained from the following equations.
    PT (0) = (PT'(0) -PT (D)) / (PT (L) -PT (D))
    PT (45) = (PT'(45) -PT (D)) / (PT (L) -PT (D)).
PCT/JP2020/012450 2019-03-28 2020-03-19 Authentication device and film WO2020196317A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217029171A KR20210143754A (en) 2019-03-28 2020-03-19 Authentication device and film
JP2020534999A JPWO2020196317A1 (en) 2019-03-28 2020-03-19
CN202080021395.7A CN113574427B (en) 2019-03-28 2020-03-19 Authentication device and film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-063197 2019-03-28
JP2019063197 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196317A1 true WO2020196317A1 (en) 2020-10-01

Family

ID=72611968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012450 WO2020196317A1 (en) 2019-03-28 2020-03-19 Authentication device and film

Country Status (4)

Country Link
JP (1) JPWO2020196317A1 (en)
KR (1) KR20210143754A (en)
CN (1) CN113574427B (en)
WO (1) WO2020196317A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040249A (en) * 2000-07-25 2002-02-06 Toray Ind Inc Polyester film for lamination with polarizing film
JP2011118190A (en) * 2009-12-04 2011-06-16 Toray Ind Inc Polarizing reflector
US20140176937A1 (en) * 2011-08-18 2014-06-26 Tiegen Liu Distributed disturbance sensing device and the related demodulation method based on polarization sensitive optical frequency domain reflectometry
JP2018189725A (en) * 2017-04-28 2018-11-29 Jsr株式会社 Optical filter and image capturing device using the same
JP2018194620A (en) * 2017-05-15 2018-12-06 Jsr株式会社 Optical filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156199A1 (en) * 2014-04-09 2015-10-15 東レ株式会社 Polarizer-protecting polyester film, and polarization plate obtained using same
WO2017126153A1 (en) 2016-01-22 2017-07-27 コニカミノルタ株式会社 Optical fingerprint authentication device
EP3851884A4 (en) * 2018-09-12 2022-06-08 Toray Industries, Inc. Laminate film
CN112740304A (en) * 2018-09-28 2021-04-30 东洋纺株式会社 Image display device with fingerprint verification sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040249A (en) * 2000-07-25 2002-02-06 Toray Ind Inc Polyester film for lamination with polarizing film
JP2011118190A (en) * 2009-12-04 2011-06-16 Toray Ind Inc Polarizing reflector
US20140176937A1 (en) * 2011-08-18 2014-06-26 Tiegen Liu Distributed disturbance sensing device and the related demodulation method based on polarization sensitive optical frequency domain reflectometry
JP2018189725A (en) * 2017-04-28 2018-11-29 Jsr株式会社 Optical filter and image capturing device using the same
JP2018194620A (en) * 2017-05-15 2018-12-06 Jsr株式会社 Optical filter

Also Published As

Publication number Publication date
TW202104949A (en) 2021-02-01
CN113574427B (en) 2023-07-14
KR20210143754A (en) 2021-11-29
JPWO2020196317A1 (en) 2020-10-01
CN113574427A (en) 2021-10-29

Similar Documents

Publication Publication Date Title
CN107407755B (en) Laminated film, liquid crystal display, touch panel, and organic EL display using the same
JP7290111B2 (en) laminated film
CN109844584B (en) Broadband wavelength film, method for producing same, and method for producing circular polarizing film
US10281622B2 (en) Multilayer polymeric reflector
JPH10511322A (en) Multilayer optical film
CN109844583B (en) Broadband wavelength film, method for producing same, and method for producing circular polarizing film
JP6891493B2 (en) Multi-layer laminated film
JP2021510856A (en) Multilayer reflective polarizer with a crystalline low index of refraction layer
JP7386225B2 (en) Optical film containing an infrared reflector and a multilayer reflective polarizer with a crystalline low refractive index layer
WO2020196317A1 (en) Authentication device and film
TWI838492B (en) Certification devices and membranes
CN112771417B (en) Light source unit, display device, and film
WO2020196090A1 (en) Laminated body and manufacturing method thereof, light guide plate unit, light source unit, display device, projection image display member, projection image display device, and display screen filter
JP7326726B2 (en) laminated film
JP7494634B2 (en) Image detection device and information device using same
CN112654905B (en) Multilayer reflective polarizer with crystalline low refractive index layer
JP7259207B2 (en) the film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020534999

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777338

Country of ref document: EP

Kind code of ref document: A1