WO2020196286A1 - 差動装置及びその組立方法 - Google Patents

差動装置及びその組立方法 Download PDF

Info

Publication number
WO2020196286A1
WO2020196286A1 PCT/JP2020/012348 JP2020012348W WO2020196286A1 WO 2020196286 A1 WO2020196286 A1 WO 2020196286A1 JP 2020012348 W JP2020012348 W JP 2020012348W WO 2020196286 A1 WO2020196286 A1 WO 2020196286A1
Authority
WO
WIPO (PCT)
Prior art keywords
side gear
differential case
annular recess
gear
pinion
Prior art date
Application number
PCT/JP2020/012348
Other languages
English (en)
French (fr)
Inventor
亜久人 関口
Original Assignee
武蔵精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵精密工業株式会社 filed Critical 武蔵精密工業株式会社
Publication of WO2020196286A1 publication Critical patent/WO2020196286A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/40Constructional details characterised by features of the rotating cases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/037Gearboxes for accommodating differential gearings

Definitions

  • the present invention includes a differential device, particularly an integrated differential case that can rotate around a predetermined axis, a pair of side gears whose back surface is rotatably supported around a predetermined axis on the inner surface of the differential case, and a pair that is housed in the differential case.
  • the present invention relates to a differential device provided with a work window provided in the differential case.
  • the pinion shaft and the side gears are assembled in the differential case to the interlocking connection (for example, spline fitting) of the drive shafts to both side gears. If it revolves around the pinion shaft and shifts from the proper mounting position, the drive shaft cannot be interlocked and connected to both side gears. In this case, it is necessary to specially correct the position of the side gear, which makes the work troublesome.
  • annular recess is provided on the inner surface of the differential case, and a cylindrical boss portion (that is, a convex portion) is provided on the back surface of the side gear corresponding to the annular recess.
  • a patent is provided in which an annular recess and a cylindrical boss are fitted (that is, engaged) so as to allow rotation of the side gear when the side gear is in the proper mounting position but prevent revolution around the pinion shaft. As shown in Document 1, it is conventionally known.
  • the present invention has been proposed in view of the above, and an object of the present invention is to provide a differential device capable of solving the above problems of a conventional device with a simple structure.
  • the present invention comprises an integrated differential case that can rotate around a predetermined axis, a pair of side gears whose back surface is rotatably supported on the inner surface of the differential case around the predetermined axis, and the differential case.
  • a pair of pinion gears housed inside and meshing with the pair of side gears, a pinion shaft mounted on the differential case and rotatably fitting and supporting the pinion gears, and a pinion shaft extending in a direction orthogonal to the predetermined axis, and the pinion gears.
  • a work window provided in the differential case is provided so as to allow the side gear to be inserted into the differential case, and the inner surface of the differential case and at least one of the facing surfaces of the back surface of the side gear are opposed to each other.
  • An annular concave portion surrounding the predetermined axis is provided, and a convex portion is provided on one of the other portions corresponding to the annular concave portion.
  • one side gear is inside the differential case.
  • One of the facing surfaces having the above has a passage groove having a shape that communicates with the annular recess and allows the convex portion to pass through, and the groove width of at least the opening of the passage groove facing the annular recess is the annular shape.
  • the first feature is that it is smaller than the outer diameter of the recess.
  • the annular recess and the passage groove are provided on the inner surface of the differential case, and the annular recess and the work window communicate with each other via the passage groove.
  • the second feature is that the passage groove communicating with the one annular recess communicates with only one of the pair of work windows.
  • the one side gear in which the passage groove is inserted into the differential case through the work window is oriented around the pinion shaft toward the regular mounting position.
  • a third feature is that at least a part of the passage groove has a specific groove portion extending in a direction intersecting the direction of revolution when revolving.
  • the present invention includes an integrated differential case that can rotate around a predetermined axis, a pair of side gears whose back surface is rotatably supported around the predetermined axis on the inner surface of the differential case, and the pair that is housed in the differential case.
  • a work window provided in the differential case is provided so as to allow insertion into the differential case, and an annular shape surrounding the predetermined axis is provided on either one of the inner surface of the differential case and the opposite surface of at least one of the back surfaces of the side gears.
  • a concave portion is provided, and a convex portion is provided on one of the other portions corresponding to the annular concave portion, and the annular concave portion and the convex portion have one side gear at a regular mounting position in the differential case.
  • one of the side gears can be engaged so as to allow rotation but prevent revolution around the pinion shaft, and one of the facing surfaces having the annular recess is the annular recess.
  • a differential device having a passage groove having a shape that allows the convex portion to pass through, and the groove width of at least the opening of the passage groove facing the annular recess is smaller than the outer diameter of the annular recess.
  • Assembling method a pre-assembly step of incorporating the pair of pinion gears and the pinion shaft into the differential case, and a side gear inserting step of inserting the pair of side gears into the differential case through the work window and engaging the pinion gears.
  • a side gear revolving step of engaging the at least one side gear with the pinion gear and revolving the at least one side gear around the pinion shaft until the convex portion reaches the annular recess through the passage groove.
  • a side gear rotation step in which at least one of the side gears of the opening and the convex portion of the passage groove is rotated so as to be out of phase with respect to the predetermined axis, and the convex portion and the annular concave portion are engaged with each other. Is sequentially executed in this order as a fourth feature.
  • the rotation of the side gear is allowed but around the pinion shaft by the engagement between the annular concave portion and the convex portion provided on the facing surface between the inner surface of the differential case and the back surface of at least one side gear.
  • one facing surface having an annular recess has a passage groove having a shape that communicates with the annular recess and allows the convex portion to pass through, and the annular recess of the passage groove has a passage groove.
  • the groove width of the facing opening is set smaller than the outer diameter of the annular recess.
  • the convex portion can reach the annular recess without difficulty by passing through the through groove. After reaching that point, the annular concave portion and the convex portion can be engaged with each other simply by rotating the side gear, and the side gear can be prevented from shifting. Therefore, even if there is an annular concave portion and a convex portion to prevent the deviation, it is not necessary to secure a wide assembly space for the side gear between the differential case and the pinion gear when assembling the side gear into the differential case. The degree of freedom can be increased.
  • the annular recess and the passage groove are provided on the inner surface of the differential case, and the annular recess and the work window communicate with each other via the passage groove, and the passage groove communicates with one annular recess. Communicates with only one of the pair of work windows.
  • the side gear inserted into the differential case through the work window revolves around the pinion shaft toward the regular mounting position, a specific groove portion extending in a direction intersecting the direction of the revolution is formed. Since the passage groove has, the side gear inevitably rotates when the convex portion passes through the specific groove portion of the passage groove as the side gear revolves. Therefore, in order for the convex portion that has reached the inside of the annular recess to reverse the passage groove, it is necessary to rotate in addition to the revolution of the side gear, so that the possibility that the convex portion reverses the passage groove and falls off can be reduced. , The effect of preventing the side gear from slipping can be maintained more reliably.
  • the side gear can be inserted into the differential case after that through the work window. Further, after inserting the side gear, the side gear is revolved around the pinion shaft until the convex portion passes through the passage groove and reaches the annular concave portion, and after the revolution, the phase between the opening of the passage groove and the convex portion is shifted. By rotating the side gear in this way, the convex portion and the annular concave portion can be engaged with each other.
  • the convex portion and the annular concave portion can be easily engaged to achieve the side gear displacement prevention function, and additional parts and jigs can be used to prevent the displacement. It does not require a jig and can contribute to the structural simplification of the differential device.
  • FIG. 1 is an overall vertical sectional view showing a differential device according to a first embodiment of the present invention.
  • 2A and 2B show a single differential case
  • FIG. 2A is a vertical sectional view (corresponding to FIG. 1)
  • FIG. 2B is a sectional view taken along line bb of FIG. 2A
  • FIG. c) is a sectional view taken along line cc of FIG. 2 (a).
  • 3A and 3B show a single side gear
  • FIG. 3A is a vertical sectional view
  • FIG. 3B is a view taken along the line b of FIG. 3A
  • FIG. 3C is FIG. 3B. It is a cross-sectional view taken along the line cc.
  • FIG. 4 is an assembly process diagram (corresponding diagram of FIG.
  • FIG. 5 is a schematic assembly drawing (corresponding to FIG. 2C) that simply shows a mode in which the convex portion reaches the annular concave portion through the passage groove in the process of assembling the side gear.
  • FIG. 6 is a diagram corresponding to FIG. 5 showing the second embodiment.
  • FIG. 7 is a diagram corresponding to FIG. 5 showing a third embodiment.
  • FIG. 8 is a diagram corresponding to FIG. 5 showing the fourth embodiment.
  • FIG. 9 is a diagram corresponding to FIG. 5 showing the fifth embodiment.
  • 10A and 10B show a first modification of the fifth embodiment
  • FIG. 10A is a corresponding diagram of FIG. 3A
  • FIG. 10B is a view taken along the arrow b of FIG. 10A.
  • FIG. 10 (c) is a diagram corresponding to FIG. 2 (c).
  • 11A and 11B show a second modification of the fifth embodiment, FIG. 11A is a diagram corresponding to FIG. 10A, FIG. 11B is a diagram corresponding to FIG. 10B, and FIG. c) is a diagram corresponding to FIG. 10 (c).
  • FIG. 12 is a diagram corresponding to FIG. 5 showing the sixth embodiment. 13 shows a seventh embodiment, FIG. 13 (a) is a diagram corresponding to FIG. 2 (c), FIG. 13 (b) is a diagram corresponding to FIG. 2 (b), and FIG. 13 (c) is FIG. (A) Correspondence diagram, FIG. 13 (d) is a correspondence diagram of FIG. 3 (b), and FIG. 13 (e) is a correspondence diagram of FIG. 3 (c).
  • FIG. 14 is a diagram corresponding to FIG. 5 showing the seventh embodiment.
  • FIGS. 1 to 5 The first embodiment is shown in FIGS. 1 to 5.
  • a differential device 10 for distributing and transmitting power from a power source (for example, an in-vehicle engine) (not shown) to left and right drive shafts 11 and 12 is housed in a vehicle, for example, a transmission case MC of an automobile.
  • the differential device 10 includes an integrated differential case 8 and a differential gear mechanism 20 built in the differential case 8.
  • the drive shafts 11 and 12 may be axles, or shaft members different from the axles that rotate in conjunction with the axles.
  • the differential case 8 has a hollow case body 8c that is formed in a substantially spherical shape and houses the differential gear mechanism 20 inside, and is integrally connected to the right side portion and the left side portion of the case body 8c and is arranged on the first axis X1.
  • the first and second bearing bosses 8b1 and 8b2 are provided with an annular flange portion 8f integrally formed on the outer peripheral portion of the case body 8c outward in the radial direction.
  • the first axis X1 corresponds to the predetermined axis of the present invention and passes through the center O of the case body 8c.
  • the inner surface 8i of the case body 8c is formed in a spherical shape whose center coincides with the center O of the case body 8c.
  • the first and second bearing bosses 8b1 and 8b2 are rotatably supported by the mission case MC around the first axis X1 via the bearings 13 and 14 on the outer peripheral side of the bosses 8b1 and 8b2.
  • the left and right drive shafts 11 and 12 are rotatably fitted to the inner peripheral surfaces of the central holes 8bh of the first and second bearing bosses 8b1 and 8b2, and the spiral grooves 15 and 16 for drawing in lubricating oil. (See FIGS. 1 and 2) is provided.
  • the spiral grooves 15 and 16 can exert a screw pumping action of feeding the lubricating oil in the transmission case MC into the differential case 8 as the bearing bosses 8b1 and 8b2 rotate relative to the drive shafts 11 and 12.
  • the flange portion 8f is offset from the center O of the case body 8c on one side (in the embodiment, the side of the first bearing boss 8b1) in the direction along the first axis X1.
  • a ring gear 9 serving as a torque input portion of the differential case 8 is concentrically fixed to the flange portion 8f.
  • the ring gear 9 includes a cylindrical rim 9a having a helical gear-shaped tooth portion 9ag on the outer circumference, and ring plate-shaped spokes 9b that integrally project inward in the radial direction from the inner peripheral surface of the rim 9a.
  • the inner peripheral end of the spoke 9b is concentrically fitted to the outer peripheral end of the flange portion 8f, and the fitting portion is fixed by welding (for example, laser welding, electron beam welding, etc.).
  • welding for example, laser welding, electron beam welding, etc.
  • various fixing means other than welding for example, bolt coupling, caulking, etc.
  • the tooth portion 9ag of the ring gear 9 meshes with the drive gear 31 which is the output portion of the transmission connected to the engine, whereby the rotational driving force is input to the differential case 8 from the drive gear 31 via the ring gear 9.
  • the tooth portion 9ag is displayed in cross section along the tooth muscle in order to simplify the display.
  • the differential gear mechanism 20 is arranged on a second axis X2 orthogonal to the first axis X1 at the center O of the case body 8c and is supported by the case body 8c and a straight rod-shaped pinion shaft 21 and is rotatable on the pinion shaft 21. It is provided with a pair of pinion gears 22 and 22 supported by the pinion gears 22 and left and right side gears 23 and 23 that mesh with each pinion gear 22 and can rotate around the first axis X1.
  • the both side gears 23 and 23 function as output gears of the differential gear mechanism 20, and the left and right side gears 23 and 23 are fitted into the first and second bearing bosses 8b1 and 8b2 in the center holes 23h of the side gears 23 and 23.
  • the inner ends of the drive shafts 11 and 12 are interlocked and connected (spline fitting in the illustrated example).
  • the pinion gear 22 and the side gear 23 are composed of bevel gears in this embodiment.
  • the back surfaces 22f and 23f of the pinion gear 22 and the side gear 23 are formed in a spherical shape, and are rotatably and slidably supported on the inner surface 8i of the case body 8c, respectively.
  • a washer (not shown) may be interposed between the back surfaces 22f and 23f and the inner surface 8i of the case body 8c, if necessary.
  • the pinion shaft 21 for fitting and supporting the pinion gear 22 is inserted and held in a pair of support holes 8h1 provided on the outer peripheral wall portion of the case body 8c and extending on the second axis X2.
  • a retaining pin 17 penetrating across one end of the pinion shaft 21 in the support hole 8h1 is inserted (for example, press-fitted) into the pin hole 8h2 provided on the outer peripheral wall of the case body 8c, and the retaining pin 17 is inserted.
  • the fixing means of the pinion shaft 21 to the case body 8c is not limited to the retaining pin 17, and other suitable fixing means (for example, bolts, caulking, welding, etc.) may be used.
  • the rotational driving force transmitted from the drive gear 31 to the differential case 8 via the ring gear 9 is distributed and transmitted to the left and right drive shafts 11 and 12 via the differential gear mechanism 20 while allowing differential rotation. Since the power distribution function of the differential gear mechanism 20 is well known in the past, further description thereof will be omitted.
  • the case body 8c of the differential case 8 is in a direction along the third axis X3 orthogonal to the first and second axis X1 and X2 (direction orthogonal to the paper surface in FIG. 1) with the peripheral wall portion on one side of the pinion shaft 21.
  • the peripheral wall portion on the other side has a pair of work windows 8w that allow the pinion gear 22 and the side gear 23 to be inserted into the differential case 8.
  • Each work window 8w is from a front insertion posture (see FIG. 4A) in which the side gear 23 places its rotation axis (that is, a rotation axis) in a direction along the third axis X3, or from its front insertion posture.
  • the work window 8w is inserted in a slightly inclined insertion posture, and is formed into a shape that allows passage.
  • the work window 8w of the present embodiment is formed into a circular hole having an outer diameter slightly larger than the maximum diameter of the side gear 23 so that it can be inserted in the front insertion posture.
  • the work window 8w does not necessarily have to be formed in a circular shape, and may be formed in, for example, an oval hole close to a perfect circle.
  • a pair of left and right annular recesses 50 surrounding the first axis X1 are formed on the inner surface 8i of the differential case 8 facing the back surface 23f of each side gear 23, and the first and second bearing bosses. It is provided at the inner peripheral edge of the central hole 8bh of 8b1 and 8b2, respectively.
  • a pair of convex portions 61 arranged in the direction of one diameter line (and therefore at equal intervals in the circumferential direction) with the rotation axis of the side gears 23 in between. Be thrust.
  • these convex portions 61 are each formed in an arc shape extending along the circumferential direction of the side gear 23, and the form thereof corresponds to the form after the cylindrical boss is cut out at two points in the circumferential direction.
  • the annular concave portion 50 and the convex portion 61 are shown in the set position 23S (for example, FIGS. 1, 4 (c), 5 (c), (d)) in which the side gear 23 is a regular mounting position in the differential case 8.
  • the side gears 23 can be engaged with each other so as to allow rotation but prevent revolution around the pinion shaft 21.
  • the side gear 23 set at the regular mounting position in the differential case 8, that is, the set position 23S is surely prevented from shifting around the pinion shaft 21 even when the drive shafts 11 and 12 are not inserted. it can.
  • a passage groove 51 having one end opened in the annular recess 50 and the other end opening in the work window 8w is formed.
  • the passage groove 51 follows a shape through which the convex portion 61 can pass in the process of assembling the side gear 23 into the differential case 8 described later (that is, along the movement path of the convex portion 61 that follows the revolution around the pinion shaft 21 of the side gear 23). Shape) is formed.
  • the passage groove 51 communicating with one annular recess 50 is formed so as to communicate with only one (that is, one) work window 8w of the pair of work windows 8w.
  • a plurality of passing grooves 51 communicating with each other from any one work window 8w to the plurality of annular recesses 50 are provided, but in the modified example, any of the passing grooves 51 is provided. Is formed so as to communicate only with one work window 8w and not to communicate with the other work window 8w.
  • the convex portion 61 is provided only on one of the side gears 23, that is, when the side gear 23 provided with the convex portion 61 is incorporated in the differential case 8, it passes through.
  • the side gear 23 can be inserted only from one work window 8w leading to the groove 51, and the side gear 23 can be revolved around the pinion shaft 21 in either forward or reverse direction in the side gear revolving process described later.
  • the direction of the revolution of the side gear 23 corresponds to the direction along the virtual plane Z including the first axis X1 and the third axis X3. Therefore, as clearly shown in FIGS. 2 (c) and 5 (a), the passage groove 51 has a groove shape extending in the direction of the revolution of the side gear 23, in other words, a groove shape extending in the direction along the virtual plane Z. Is.
  • the groove width of the opening e of the passage groove 51 facing at least the annular recess 50 is formed to be smaller than the outer diameter of the annular recess 50.
  • the passage groove 51 is set to have the same groove width as the opening e not only in the opening e but also in the other groove portions, but the groove width of the other groove portions is set to be larger than that of the opening e. It may be set wide.
  • only one passage groove 51 of the present embodiment is provided for each pair of convex portions 61, and both convex portions 61 of the passage groove 51 as shown in FIGS. 5A to 5C.
  • the groove width is formed so that the passage grooves 51 can be sequentially passed in a state of being lined up in the extending direction (that is, the direction along the virtual plane Z).
  • the side gear 23 revolves so as to pass between the pinion gear 22 and the inner surface 8i of the differential case 8 with the pinion shaft 21 and the pinion gear 22 pre-assembled in the differential case 8
  • the pair of convex portions 61 are formed.
  • the entire differential case 8 is integrally molded (for example, by casting) with a metal material (for example, aluminum, aluminum alloy, iron-based alloy, etc.), and after the integral molding, each part of the differential case 8 is appropriately machined.
  • a metal material for example, aluminum, aluminum alloy, iron-based alloy, etc.
  • the hub 9b of the ring gear 9 is fixed to the flange portion 8f of the differential case 8.
  • the differential case before assembling the differential gear mechanism 20 in the differential case 8 The hub 9b of the ring gear 9 may be fixed to the flange portion 8f of 8.
  • the differential gear mechanism 20 is assembled by sequentially executing the following steps. Simply put, the pinion gear 22 and the pinion shaft 21 are assembled in advance in the differential case 8, and then the side gears are assembled. 23 is to be assembled. [First assembly process]
  • a pair of pinion gears 22 are inserted into the differential case 8 through the work window 8w and arranged along the second axis X2, and then the pinion shaft 21 is inserted into the support hole 8h1 of the differential case 8 and fitted into the center hole of each pinion gear 22. Let me. Then, the pinion shaft 21 is fixed to the differential case 8 by the retaining pin 17. In this way, the pinion gear 22 and the pinion shaft 21 are pre-assembled in the differential case 8. [Side gear insertion process]
  • the side gear 23 inserted into the differential case 8 from the work window 8w is changed in posture so as to gradually revolve around the pinion shaft 21 while being meshed with the pinion gear 22 as shown in FIG. 4 (b). Then, due to this revolution, the side gear 23 passes through the gap between the pinion gear 22 and the inner surface 8i of the differential case 8 and is aligned with the first and second bearing bosses 8b1 and 8b2 on the same axis as the set position 23S (that is, regular mounting). The position) is reached, and the back surface 23f of the side gear 23 is in sliding contact with the inner surface 8i of the differential case 8 in the process of passing through the position).
  • the side gear 23 has a phase (revolution posture) such that the pair of convex portions 61 are aligned on the extension line of the passage groove 51, so that the side gear 23 has both convex portions with respect to the passage groove 51.
  • 61 can reach the inside of the annular recess 51 by sequentially entering and passing through (see, for example, FIGS. 5B and 5C), and the reached position is the set position 23S.
  • FIG. 5 is a schematic process diagram simply showing how the convex portion 61 moves through the passage groove 51 and the annular concave portion 50 in the revolution process of the side gear 23, and the side gear 23 is not shown.
  • the side gears 23 are drawn in the same posture, ignoring the actual tilted posture.
  • (b) shows a state immediately after the revolution of the side gear 23 starts and the first convex portion 61 enters the passage groove 51
  • (c) shows the convex portion 61 together with the revolution. Both of them pass through the passage groove 51 and reach the annular recess 50, indicating that the side gear 23 is in the set position 23S.
  • the side gear 23 at the set position 23S is rotated by a predetermined amount around the first axis X1 to shift the phase between the opening e of the passage groove 51 and the convex portion 61 as shown in FIG. 5 (d). ..
  • the amount of rotation at that time can be arbitrarily set so that the convex portion 61 does not return to the side of the passage groove 51.
  • the side gear 23 is prevented from shifting from the set position 23S (that is, rotating around the pinion shaft 21), so that the side gear 23 is moved to the set position 23S. Be retained.
  • the frictional resistance acting between each part of the differential gear mechanism 20 and the differential case 8 suppresses the rotation of the side gear 23 (thus, the natural release of the engaged state due to the rotation).
  • the assembly process of the differential device 10 is completed.
  • the differential device 10 is transported to an automobile assembly factory, and the first and second bearing bosses 8b1 and 8b2 of the differential case 8 are rotatably attached to the mission case MC via the bearings 13 and 14 on the assembly line there. ..
  • the inner ends of the left and right drive shafts 11 and 12 are inserted into the center holes 23h of the left and right side gears 23 and 23 through the first and second bearing bosses 8b1 and 8b2, that is, they are spline-fitted to fit the differential device 10. Assembling to the car is completed.
  • the side gear 23 is correct as described above due to the engagement between the convex portion 61 and the annular concave portion 50 even until the differential device 10 is assembled to the automobile (for example, during the transportation). Since it is held at the set position 23S, the left and right drive shafts 11 and 12 can be accurately fitted and connected to the side gear 23.
  • the side gear 23 continues to be held at the set position 23S by the fitting, so that the side gear 23 rotates and the convex portion 61
  • the side gear 23 rotates and the convex portion 61
  • the convex portion 61 moves backward toward the passage groove 51 and the engagement is released.
  • the side gear 23 rotates due to the engagement between the annular recess 50 and the convex portion 61 provided on the opposite surfaces of the inner surface 8i of the differential case 8 and the back surface 23f of the side gear 23.
  • the structure is such that the rotation around the pinion shaft 21 can be prevented, but in particular, the inner surface 8i of the differential case 8 having the annular recess 50 has a passage groove 51 that communicates with the annular recess 50 and allows the protrusion 61 to pass through.
  • the groove width of the opening e of the passage groove 51 facing the annular recess 50 is set to be smaller than the outer diameter of the annular recess 50.
  • the side gear 23 can be subsequently inserted into the differential case 8 through the work window 8w, and after the insertion, the side gear 23 can be inserted into the pinion shaft 21.
  • the convex portion 61 can reasonably reach the inside of the annular recess 50 by passing through the passing groove 51, and with the arrival thereof.
  • the side gear 23 is at the correct set position 23S on the first axis X1.
  • the annular recess 50 and the convex portion 61 can be easily engaged by simply rotating the side gear 23 slightly, and the engagement causes the side gear 23 to move away from the set position 23S (that is, around the pinion shaft 21). Revolution) is blocked.
  • the differential device 10 is provided with an annular recess 50 and a convex portion 61 on the opposite surfaces of the inner surface 8i of the differential case 8 and the back surface 23f of the side gear 23 in order to prevent the side gear 23 from shifting from the set position 23S. Even if it has a structure, it is for a wide side gear for engaging the annular recess 50 and the convex portion 61 between the inner surface 8i of the differential case 8 and the pinion gear 22 when the side gear 23 is assembled in the differential case 8 as in the conventional device. There is no need to secure assembly space, and the degree of freedom in design is increased accordingly.
  • the above-mentioned passage groove 51 is specially provided on the inner surface 8i of the differential case 8, and the convex portion 61 is made into the annular concave portion 50 by a simple structure and assembly procedure in which the convex portion 61 is passed through the convex portion 61 and the side gear 23 is slightly rotated after the passage. Since the engaged state can be quickly and accurately placed, the structure of the differential device 10 can be simplified without the need for additional parts or jigs to prevent the side gear 23 from shifting.
  • the passage groove 51 communicating with one annular recess 50 is formed so as to communicate with only one of the pair of work windows 8w.
  • the side gear 23 can be easily and accurately positioned at the set position 23S (that is, the regular mounting position).
  • a plurality of convex portions 61 are provided at intervals in the circumferential direction (as if the cylindrical boss portions were notched at several points in the circumferential direction).
  • the notch-shaped space formed between the convex portions 61 adjacent to each other in the circumferential direction can function as a lubricating oil supply oil passage to the sliding gap between the back surface 23f of the side gear 23 and the inner surface 8i of the differential case 8. ..
  • the convex portion 61 on the back surface 23f of the side gear 23 is a cylindrical boss portion (that is, an annular convex portion) as in the conventional device, the notch-shaped space is not formed, and the sliding gap is increased accordingly. The amount of oil supplied to is reduced.
  • the shape and position of the convex portion 61 and the passing groove 51 are set so that the pair of convex portions 61 can sequentially pass through one common passing groove 51, so that the number of passing grooves 51 is reduced accordingly. Therefore, the processing cost can be reduced.
  • the pair of convex portions 61 are formed in an arc shape in a cross section, but the shape of the convex portions 61 is not limited to the illustrated example, and may be at least a form capable of passing through the passage groove 51. For example, it may be formed in a hemispherical shape as in the second, third, and fifth embodiments (see FIGS. 6, 7, and 9) described later, or may be formed in a rectangular or columnar cross section. Good.
  • FIGS. 6 and 7 show the second and third embodiments, respectively.
  • the convex portion 62 provided on the back surface 23f of the side gear 23 is formed in a hemispherical shape having a relatively small diameter.
  • the passage groove 51 of the first embodiment has a straight groove shape extending in the direction in which the side gear 23 revolves around the pinion shaft 21, that is, in the direction along the virtual plane Z (thus, when the convex portion 61 passes through the passage groove 51).
  • the side gear 23 is formed in a shape that does not rotate).
  • the passage groove 52 of the second and third embodiments has a convex portion 62 as the side gear 23 inserted into the differential case 8 through the work window 8w revolves around the pinion shaft 21 toward the set position 23S.
  • the specific groove portions 52a and 52b are directed in the direction of the revolution of the side gear 23 (that is, the direction along the virtual plane Z, in other words, the direction in which the back surface 23f of the side gear 23 moves relative to the inner surface 8i of the differential case 8 during the revolution. ) Extends in the direction of intersection. Therefore, the side gear 23 rotates in conjunction with the convex portion 62 sliding and passing through the specific groove portions 52a and 52b while the convex portion 62 slides and passes through the passage groove 52 with the above-mentioned revolution of the side gear 23. To do.
  • the passage groove 52 of the second embodiment is bent in a crank shape in the middle portion. That is, the passage groove 52 includes an intermediate groove portion 52a extending in a direction orthogonal to the direction of revolution of the side gear 23, and a first connection groove portion extending in the direction of revolution from one end of the intermediate groove portion 52a toward the work window 8w. It has 52s1 and a second connecting groove portion 52s2 extending from the other end of the intermediate groove portion 52a toward the annular recess 50 in the direction of revolution. Then, the intermediate groove portion 52a constitutes the specific groove portion.
  • the convex portion 62 passes through the intermediate groove portion 52a of the passing groove 52 with the revolution of the side gear 23.
  • the side gear 23 inevitably rotates on its axis. Therefore, as shown in FIGS. 6 (e) and 6 (f), in order for the convex portion 62 that has reached the inside of the annular concave portion 50 to reverse the passage groove 52, it is necessary to rotate the side gear 23 in addition to the revolution of the side gear 23. It is possible to reduce the possibility that the 62 moves backward in the passage groove 52 and falls off, and the effect of preventing the side gear 23 from slipping can be maintained more reliably.
  • substantially all of the passage groove 52 of the third embodiment shown in FIG. 7 is curved and extends in a direction diagonally intersecting the direction of revolution of the side gear 23, and the curved groove portion is a specific groove. It constitutes a portion 52b.
  • substantially all of the passage grooves 52 may be extended straight in a direction diagonally intersecting the direction of revolution of the side gear 23 to form the specific groove portion 52b.
  • the shape of the convex portion 62 is not limited to a hemisphere, and may be at least a shape capable of passing through the passage groove 52.
  • it may be formed in a rectangular or columnar cross section.
  • the convex portion 63 provided on the back surface 23f of the side gear 23 is formed in an annular shape having substantially the same diameter as the annular concave portion 50, and the outer peripheral surface of the convex portion 63 has a pair of parallel planar shapes.
  • the cut surface 63c is chamfered.
  • the passage groove 53 formed on the inner surface 8i of the differential case 8 is formed to have a groove width smaller than the outer diameter of the annular recess 50 so that the convex portion 63 can pass through the cut surface 63c. It is also possible to carry out a modification in which the cut surface 63c is only one, and in that case, the groove width of the passage groove 53 is set wider by the amount that the cut surface 63c is reduced.
  • each component is only given the same reference code as the corresponding component of the first embodiment, and the structure is more than that. The description is omitted. Thus, even in the fourth embodiment, basically the same action and effect as in the first embodiment can be achieved.
  • three hemispherical convex portions 64 are projected from the back surface 23f of the side gear 23 at equal intervals in the circumferential direction, while the inner surface 8i of the differential case 8 has two rows connected to the annular recess 50.
  • the passage grooves 54 are formed so as to extend parallel to each other and in the revolution direction of the side gear 23 (that is, in the direction along the virtual plane Z).
  • each component is only given the same reference code as the corresponding component of the first embodiment, and the structure is more than that. The description is omitted. Thus, even in the fifth embodiment, basically the same action and effect as in the first embodiment can be achieved.
  • the side gear 23 is arranged in a phase (revolution posture) in which two convex portions 64 are arranged in the direction in which one passage groove 54 extends and the remaining one convex portion 64 is located in the direction in which the other passage groove 54 extends. Revolves around the pinion shaft 21. Due to this revolution, two convex portions 64 sequentially pass through one passing groove 54, and the remaining one convex portion 64 passes through the other passing groove 54.
  • the passing grooves 54 are set in the shape and position of the grooves so that all the convex portions 64 can pass through even if the number of the passing grooves 54 is smaller than the number of the convex portions 64, and the processing cost is reduced by the reduction in the number of the passing grooves 54. Can be reduced.
  • a snap ring (for example, not shown) temporarily locked to the drive shafts 11 and 12 (for example).
  • the convex portions 64 are arranged and passed.
  • the convex portions 64 are arranged and passed.
  • the phase pattern around the rotation axis of the side gear 23 that allows the convex portions 64 to match the passing grooves 54 and pass through the grooves. Occurs.
  • the number of passing grooves 54 is the same as the number of the convex portions 64 and the convex portions 64 are arranged at equal intervals as in the first modification of the fifth embodiment shown in FIG.
  • the phase of the side gear 23 that can pass through the groove is as many as 6 patterns.
  • the same number of convex portions 64 are not arranged at equal intervals (not shown), the phase pattern of the side gear 23 that allows the groove to pass through can be reduced.
  • the two convex portions 64 that pass through one of the three convex portions 64 are selected from the three convex portions 64. There are 3 patterns equal to the number of combinations when selecting.
  • the number and positions of the convex portions 64, the number of passing grooves 54, and the like are selected so that the phase pattern that allows the passage is minimized. That is, the arrangement of the convex portions 64 is arranged at unequal intervals (not shown), or even if the convex portions 64 are arranged at equal intervals, the number of passing grooves 54 is convex as in the fifth embodiment. If the number is reduced from the number of the portions 64, the phase pattern of the side gear 23 that can pass through the groove can be reduced and the frequency can be reduced, which is advantageous in preventing the side gear 23 at the set position 23S from shifting. ..
  • FIG. 11 shows a second modification of the fifth embodiment.
  • the three convex portions 64 are formed at the same height (that is, the amount of protrusion from the back surface 23f of the side gear 23), but in the second modification, one The convex portion 64 of the above is formed higher than the other two convex portions 64.
  • one passage groove 54 is formed in a groove deeper than the other passage grooves 54 in response to such a difference in height of the convex portion 64.
  • the cross-sectional shape of the pair of convex portions 61 arranged on one diameter line of the back surface 23f of the side gear 23 is a short arc shape, but in the sixth embodiment, the cross-sectional shape of the pair of convex portions 65 is A pair of passing grooves 55, which are formed in a long (close to a semi-circular) arc shape and through which the pair of convex portions 65 can individually pass, are provided parallel to the inner surface 8i of the differential case 8.
  • each component is only given the same reference code as the corresponding component of the first embodiment, and the structure is more than that. The description is omitted. Thus, even in the sixth embodiment, basically the same action and effect as in the first embodiment can be achieved.
  • the convex portions 61 to 65 are provided on the side gear 23 side (that is, the back surface 23f), and the annular recess 50 and the passage grooves 51 to 55 are provided on the differential case 8 side (that is, the inner surface 8i).
  • each component is only given the same reference code as the corresponding component of the first embodiment, and the structure is more than that. The description is omitted. Thus, even in the seventh embodiment, basically the same action and effect as in the first embodiment can be achieved.
  • the differential device 10 is mounted on a differential device for a vehicle, for example, an automobile, but in the present invention, the differential device 10 is mounted on various mechanical devices other than the vehicle. You may.
  • the tooth portion 9ag of the ring gear 9 is shown as having a helical gear shape, but the ring gear is not limited to the embodiment, and may be, for example, a bevel gear, a hypoid gear, a spur gear, or the like.
  • the torque input portion coupled to the differential case 8 is not limited to the ring gear 9, and may be another suitable transmission wheel (for example, V pulley, sprocket, etc.).
  • convex portions 61 to 65, or annular recesses 50'and passage grooves 51' are provided on the back surfaces 23f of both the left and right side gears 23, but in the present invention, either the left or right side gear 23 is provided.
  • Convex portions 61 to 65, or annular recesses 50'and passage grooves 51' may be provided only on the back surface 23f of the side gear 23. In this case, even if the back surface 23f of the other side gear 23 does not have the protrusions 61 to 65, or the annular recess 50'and the passage groove 51', both the left and right side gears 23 are in mesh with the pinion gear 22.
  • the side gear 23 is passed through the work window 8w in a front insertion posture so that the rotation axis of the side gear 23 is along the third axis X3, and the pinion gear 22 in the differential case 8 is passed.
  • the side gear 23 can mesh with the pinion gear 22 even in the tilted insertion posture slightly tilted from the front insertion posture when passing through the work window 8w, the side gear 23 is engaged with the work window 8w in the tilted insertion posture. It may be inserted into the differential case 8 through.
  • the inner surface 8i of the differential case 8 is formed in a spherical shape, but the shape of the inner surface 8i of the differential case 8 is not limited to the embodiment, and for example, a part of the inner surface 8i (for example, the pinion gear 22) is shown.
  • the support surface, etc.) may be formed on a curved surface, a tapered surface, or a flat surface other than a spherical surface.
  • the shapes and numbers of the protrusions 61 to 65, the annular recesses 50'and the passage grooves 51'provided on the pair of side gears 23 are the same in both side gears 23.
  • the shape and / or number of the convex portions 61 to 65 provided on one side gear 23, or the annular concave portions 50'and the passing grooves 51' are combined, and the convex portions 61 to 61 provided on the other side gear 23. 65, or the shape and / or number of the annular recesses 50'and the passage grooves 51' may be different from each other.
  • the pair of convex portions 61 are sequentially passed through a single passage groove 51, but as a modification of the first embodiment, the pair of convex portions 61 are parallel to each other.
  • a structure (not shown) that allows the pair of passage grooves 51 to pass individually and simultaneously can be implemented, and the arrangement of the pair of passage grooves 51 in that case is, for example, the sixth embodiment (FIG. 12). It is the same as the arrangement of the passage grooves 55 of the above, and only the groove width is narrower than that of the sixth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • General Details Of Gearings (AREA)

Abstract

デフケース内面とサイドギヤ背面との相対向面の一方に環状凹部が設けられると共に、その他方に凸部が設けられ、環状凹部と凸部とは、サイドギヤがデフケース内で正規の取付位置にあるときに、サイドギヤの自転は許容するがピニオンシャフト回りの公転は阻止するように係合可能である差動装置において、デフケース(8)の内面(8i)とサイドギヤ背面(23f)との相対向面のうち環状凹部(50)を有する一方の対向面は、環状凹部(50)に連通し且つ凸部(61)が通過可能な形状の通過溝(51)を有し、通過溝(51)の環状凹部(50)に臨む開口部(e)の溝幅が環状凹部(50)の外径よりも小さい。これにより、サイドギヤのずれ防止のために環状凹部及び凸部を前記相対向面に特設しても、デフケース内面とピニオンギヤとの間に広いサイドギヤ用組立スペースを確保する必要がないようにする。

Description

差動装置及びその組立方法
 本発明は、差動装置、特に所定軸線回りに回転可能な一体型のデフケースと、デフケースの内面に背面が所定軸線回りに回転可能に支持される一対のサイドギヤと、デフケース内に収容されて一対のサイドギヤに噛合する一対のピニオンギヤと、デフケースに装着されてピニオンギヤを回転自在に嵌合、支持する、所定軸線と直交する方向に延びるピニオンシャフトと、ピニオンギヤ及びサイドギヤのデフケース内への挿入を許容するようにデフケースに設けた作業窓とを備えた差動装置に関する。
 上記差動装置は、デフケース内にピニオンギヤ、ピニオンシャフト及びサイドギヤを各々正規の取付位置に組み付けた後、両サイドギヤにドライブ軸を連動連結(例えばスプライン嵌合)する迄の期間中に、もしサイドギヤがピニオンシャフト回りに公転して正規の取付位置からずれ動いてしまうと、両サイドギヤにドライブ軸を連動連結できなくなってしまう。そして、この場合にはサイドギヤの位置修正を特別に行う必要があり、作業が面倒になる。
 そこでサイドギヤの、正規の取付位置からのずれ防止のために、デフケースの内面に環状凹部を設けると共に、その環状凹部に対応してサイドギヤの背面に円筒状ボス部(即ち凸部)を設け、それら環状凹部と円筒状ボス部とを、サイドギヤが正規の取付位置にあるときにサイドギヤの自転は許容するがピニオンシャフト回りの公転は阻止するように嵌合(即ち係合)させるものが、例えば特許文献1に示されるように従来公知である。
日本特開2018-54043号公報
 上記差動装置では、その組立過程でサイドギヤよりも先にデフケース内に組み入れられたピニオンギヤや、サイドギヤ背面に張出す円筒状ボス部が邪魔となってサイドギヤの組み入れが困難になるのを回避するために、デフケース内面とピニオンギヤとの間に、サイドギヤがスムーズに通り抜け可能なサイドギヤ用組立スペースを十分広く確保する必要があり、それだけ設計上の制約が増える等の問題がある。
 本発明は、上記に鑑み提案されたものであり、簡単な構造で従来装置の上記問題を解決可能とした差動装置を提供することを目的とする。
 上記目的を達成するために、本発明は、所定軸線回りに回転可能な一体型のデフケースと、前記デフケースの内面に背面が前記所定軸線回りに回転可能に支持される一対のサイドギヤと、前記デフケース内に収容されて前記一対のサイドギヤに噛合する一対のピニオンギヤと、前記デフケースに装着されて前記ピニオンギヤを回転自在に嵌合、支持する、前記所定軸線と直交する方向に延びるピニオンシャフトと、前記ピニオンギヤ及び前記サイドギヤの前記デフケース内への挿入を許容するように前記デフケースに設けた作業窓とを備えており、前記デフケースの内面と少なくとも一方のサイドギヤの背面との相対向面の何れか一方に、前記所定軸線を囲繞する環状凹部が設けられると共に、その何れか他方には前記環状凹部に対応して凸部が設けられ、前記環状凹部と前記凸部とは、前記一方のサイドギヤが前記デフケース内で正規の取付位置にあるときに、該一方のサイドギヤの自転は許容するが前記ピニオンシャフト回りの公転は阻止するように係合可能である差動装置において、前記相対向面のうち前記環状凹部を有する一方の対向面は、前記環状凹部に連通し且つ前記凸部が通過可能な形状の通過溝を有し、前記通過溝の、少なくとも前記環状凹部に臨む開口部の溝幅が、前記環状凹部の外径よりも小さいことを第1の特徴としている。
 また本発明は、第1の特徴に加えて、前記環状凹部及び前記通過溝は前記デフケースの内面に設けられると共に、該環状凹部と前記作業窓とが該通過溝を介して互いに連通しており、1つの前記環状凹部に連通する前記通過溝は、前記一対の作業窓の何れか1つのみに連通することを特徴とすることを第2の特徴とする。
 また本発明は、第1又は第2の特徴に加えて、前記通過溝が、前記作業窓を通して前記デフケース内へ挿入された前記一方のサイドギヤが前記正規の取付位置に向かって前記ピニオンシャフト回りに公転する際に該公転の方向に対し交差する方向に延びる特定溝部分を、該通過溝の少なくとも一部に有していることを第3の特徴とする。
 また本発明は、所定軸線回りに回転可能な一体型のデフケースと、前記デフケースの内面に背面が前記所定軸線回りに回転可能に支持される一対のサイドギヤと、前記デフケース内に収容されて前記一対のサイドギヤに噛合する一対のピニオンギヤと、前記デフケースに装着されて前記ピニオンギヤを回転自在に嵌合、支持する、前記所定軸線と直交する方向に延びるピニオンシャフトと、前記ピニオンギヤ及び前記サイドギヤの前記デフケース内への挿入を許容するように前記デフケースに設けた作業窓とを備えており、前記デフケースの内面と少なくとも一方のサイドギヤの背面との相対向面の何れか一方に、前記所定軸線を囲繞する環状凹部が設けられると共に、その何れか他方には前記環状凹部に対応して凸部が設けられ、前記環状凹部と前記凸部とは、前記一方のサイドギヤが前記デフケース内で正規の取付位置にあるときに、該一方のサイドギヤの自転は許容するが前記ピニオンシャフト回りの公転は阻止するように係合可能であり、前記相対向面のうち前記環状凹部を有する一方の対向面が、前記環状凹部に連通し且つ前記凸部が通過可能な形状の通過溝を有し、前記通過溝の、少なくとも前記環状凹部に臨む開口部の溝幅が、前記環状凹部の外径よりも小さい差動装置の組立方法であって、前記デフケース内に前記一対のピニオンギヤ及び前記ピニオンシャフトを組み込む先組工程と、前記一対のサイドギヤを前記作業窓を通して前記デフケース内に挿入して、前記ピニオンギヤに噛合させるサイドギヤ挿入工程と、前記少なくとも一方のサイドギヤを前記ピニオンギヤと噛合させながら、前記凸部が前記通過溝を通って前記環状凹部に到達するまで該少なくとも一方のサイドギヤを前記ピニオンシャフト回りに公転させるサイドギヤ公転工程と、前記通過溝の前記開口部と前記凸部との、前記所定軸線回りの位相がずれるように前記少なくとも一方のサイドギヤを自転させて、該凸部と前記環状凹部とを係合させるサイドギヤ自転工程とを、この順序で順次実行することを第4の特徴とする。
 本発明の第1の特徴によれば、デフケースの内面と少なくとも一方のサイドギヤの背面との相対向面に設けた環状凹部と凸部との係合により、サイドギヤの自転は許容するがピニオンシャフト回りの公転は阻止可能とした差動装置において、環状凹部を有する一方の対向面は、環状凹部に連通し且つ凸部が通過可能な形状の通過溝を有し、その通過溝の、環状凹部に臨む開口部の溝幅が、環状凹部の外径よりも小さく設定される。これにより、デフケース内にピニオンギヤ及びピニオンシャフトの後からサイドギヤを組み込んだ場合でも、ピニオンギヤとデフケース内面との間隙をサイドギヤが通り抜ける際に凸部は通過溝を通ることで環状凹部に無理なく到達可能であり、その到達後はサイドギヤを自転させるだけで環状凹部と凸部とが係合可能となって、サイドギヤのずれを防止可能となる。従って、そのずれ防止のために環状凹部及び凸部が有っても、サイドギヤのデフケース内への組み付け時にデフケースとピニオンギヤとの間に広いサイドギヤ用組立スペースを確保する必要はなくなり、それだけ設計上の自由度を高めることができる。
 また第2の特徴によれば、環状凹部及び通過溝はデフケースの内面に設けられると共に、環状凹部と作業窓とが通過溝を介して互いに連通しており、1つの環状凹部に連通する通過溝は、一対の作業窓の何れか1つのみに連通する。これにより、サイドギヤは、これの凸部が一方の作業窓から連通溝を経て環状凹部側に向かうようにデフケース内に組み込まれたときに、環状凹部を素通りして他方の作業窓の方向へ行き過ぎる(即ち他方の作業窓から抜け出す)虞れはなくなり、サイドギヤを正規の取付位置に容易且つ的確に位置決めすることができる。
 また第3の特徴によれば、作業窓を通してデフケース内へ挿入されたサイドギヤが正規の取付位置に向かってピニオンシャフト回りに公転する際に該公転の方向に対し交差する方向に延びる特定溝部分を、通過溝が有するので、サイドギヤの公転に伴い凸部が通過溝の特定溝部分を通過する際にサイドギヤが必然的に自転する。従って、環状凹部内に達した凸部が通過溝を逆進するには、サイドギヤの公転に加えて自転も要するため、その凸部が通過溝を逆進、脱落する可能性をより低くできて、サイドギヤのずれ防止効果を一層確実に維持することができる。
 また第4の特徴によれば、デフケース内にピニオンギヤ及びピニオンシャフトを先に組み込んだ状態でも、その後から、サイドギヤを作業窓を通してデフケース内に挿入可能である。またそのサイドギヤの挿入後、凸部が通過溝を通って環状凹部に到達するまではサイドギヤをピニオンシャフト回りに公転させ、さらにその公転後は、通過溝の開口部と凸部との位相がずれるようにサイドギヤを自転させることで、凸部と環状凹部とを係合させることができる。これにより、デフケース内にピニオンギヤの後からサイドギヤを組み込んでも、凸部と環状凹部とを難なく係合させてサイドギヤのずれ防止機能を達成可能であり、且つそのずれ防止のために追加の部品や治具を必要とせず、差動装置の構造簡素化に寄与することができる。
図1は本発明の第1実施形態に係る差動装置を示す全体縦断面図である。 図2はデフケース単体を示すものであって、図2(a)は縦断面図(図1対応図)、図2(b)は図2(a)のb-b線断面図、図2(c)は図2(a)のc-c線断面図である。 図3はサイドギヤ単体を示すものであって、図3(a)は縦断面図、図3(b)は図3(a)のb矢視図、図3(c)は図3(b)のc-c線断面図である。 図4はピニオンギヤを先組みしたデフケース内にサイドギヤを組付ける手順の一例を説明する組立工程図(図2(b)対応図)である。 図5は上記サイドギヤの組付け過程で凸部が通過溝を経て環状凹部に至る移動態様を簡略的に示す模式組立図(図2(c)対応図)である。 図6は第2実施形態を示す図5対応図である。 図7は第3実施形態を示す図5対応図である。 図8は第4実施形態を示す図5対応図である。 図9は第5実施形態を示す図5対応図である。 図10は第5実施形態の第1変形例を示すものであって、図10(a)は図3(a)対応図、図10(b)は図10(a)のb矢視図、図10(c)は図2(c)対応図である。 図11は第5実施形態の第2変形例を示すものであって、図11(a)は図10(a)対応図、図11(b)は図10(b)対応図、図11(c)は図10(c)対応図である。 図12は第6実施形態を示す図5対応図である。 図13は第7実施形態を示すものであって、図13(a)は図2(c)対応図、図13(b)は図2(b)対応図、図13(c)は図3(a)対応図、図13(d)は図3(b)対応図、図13(e)は図3(c)対応図である。 図14は第7実施形態を示す図5対応図である。
X1・・・・・・所定軸線としての第1軸線
e,e′・・・・通過溝の開口部
8・・・・・・・デフケース
8i・・・・・・デフケースの内面
8w・・・・・・作業窓
10・・・・・・差動装置
21・・・・・・ピニオンシャフト
22・・・・・・ピニオンギヤ
23・・・・・・サイドギヤ
23S・・・・・サイドギヤの正規の取付位置としてのセット位置
50,50′・・環状凹部
51~55,51′・・通過溝
52a,52b・・・・特定溝部分としての屈曲溝部分,湾曲溝部分
61~65,61′・・凸部
 本発明の実施形態を添付図面に基づいて以下に説明する。
 図1~図5には第1実施形態が示される。図1において、車両、例えば自動車のミッションケースMC内には、図示しない動力源(例えば車載のエンジン)からの動力を左右のドライブ軸11,12に分配して伝達する差動装置10が収容される。差動装置10は、一体型のデフケース8と、デフケース8に内蔵されるデフギヤ機構20とを備える。尚、ドライブ軸11,12は車軸であってもよいし、或いは車軸に連動回転する、車軸とは別の軸部材であってもよい。
 デフケース8は、概略球体状に形成されて内部にデフギヤ機構20を収納した中空のケース本体8cと、ケース本体8cの右側部及び左側部に一体に連設されて第1軸線X1上に並ぶ第1,第2軸受ボス8b1,8b2と、ケース本体8cの外周部に径方向外向きに一体に形成される環状のフランジ部8fとを備える。
 第1軸線X1は、本発明の所定軸線に相当するものであって、ケース本体8cの中心Oを通る。ケース本体8cの内面8iは、ケース本体8cの中心Oと中心が一致する球面状に形成される。また第1,第2軸受ボス8b1,8b2は、それらボス8b1,8b2の外周側において軸受13,14を介してミッションケースMCに第1軸線X1回りに回転自在に支持される。
 また第1,第2軸受ボス8b1,8b2の中心孔8bhの内周面には、左右のドライブ軸11,12がそれぞれ回転自在に嵌合されると共に、潤滑油引込み用の螺旋溝15,16(図1,2参照)が設けられる。螺旋溝15,16は、各軸受ボス8b1,8b2と各ドライブ軸11,12との相対回転に伴いミッションケースMC内の潤滑油をデフケース8内に送り込むねじポンプ作用を発揮可能である。
 また、フランジ部8fは、ケース本体8cの中心Oに対し、第1軸線X1に沿う方向で一方側(実施形態では第1軸受ボス8b1の側)にオフセット配置される。そして、このフランジ部8fには、デフケース8のトルク入力部となるリングギヤ9が同心状に固定される。
 リングギヤ9は、ヘリカルギヤ状の歯部9agを外周に有する円筒状のリム9aと、このリム9aの内周面から径方向内方に一体に突出するリング板状のスポーク9bとを備えている。スポーク9bは、それの内周端部がフランジ部8fの外周端部に同心嵌合されており、その嵌合部が溶接(例えばレーザ溶接、電子ビーム溶接等)により固定される。尚、フランジ部8fとリングギヤ9との結合手段は、溶接以外の種々の固着手段(例えばボルト結合、カシメ等)を実施可能である。
 リングギヤ9の歯部9agは、エンジンに連なる変速装置の出力部となる駆動ギヤ31と噛合しており、これにより、デフケース8には駆動ギヤ31からリングギヤ9を経て回転駆動力が入力される。尚、図1において、歯部9agは、表示を簡略化するために、歯筋に沿う断面表示とした。
 デフギヤ機構20は、ケース本体8cの中心Oで第1軸線X1と直交する第2軸線X2上に配置されてケース本体8cに支持される直線棒状のピニオンシャフト21と、このピニオンシャフト21に回転自在に支持される一対のピニオンギヤ22,22と、各ピニオンギヤ22と噛合し且つ第1軸線X1回りに回転可能な左右のサイドギヤ23,23とを備える。その両サイドギヤ23,23は、デフギヤ機構20の出力ギヤとして機能するものであり、両サイドギヤ23,23の中心孔23hには、第1,第2軸受ボス8b1,8b2に嵌挿させた左右のドライブ軸11,12の内端部がそれぞれ連動連結(図示例ではスプライン嵌合)される。ピニオンギヤ22及びサイドギヤ23は、本実施形態ではベベルギヤで構成される。
 ピニオンギヤ22及びサイドギヤ23の各背面22f,23fは、球面状に形成されていて、ケース本体8cの内面8iにそれぞれ回転摺動可能に支承される。尚、その各背面22f,23fとケース本体8cの内面8iとの間には、必要に応じてワッシャ(図示せず)を介装してもよい。
 またピニオンギヤ22を嵌合、支持するピニオンシャフト21は、ケース本体8cの外周壁部に設けられて第2軸線X2上に延びる一対の支孔8h1に挿通、保持される。そのケース本体8c外周壁部に設けたピン孔8h2には、支孔8h1内でピニオンシャフト21の一端部を横切るよう貫通する抜け止めピン17が挿着(例えば圧入)され、この抜け止めピン17により、ピニオンシャフト21の支孔8h1からの離脱が阻止される。尚、ピニオンシャフト21のケース本体8cへの固定手段は、抜け止めピン17に限定されず、他の適当な固定手段(例えばボルト、カシメ、溶接等)を用いてもよい。
 而して、駆動ギヤ31からリングギヤ9を経てデフケース8に伝達された回転駆動力は、デフギヤ機構20を介して左右のドライブ軸11,12に対し差動回転を許容されつつ分配伝達されるが、このデフギヤ機構20の動力分配機能は従来周知であるので、これ以上の説明を省略する。
 またデフケース8のケース本体8cは、第1,第2軸線X1,X2と直交する第3軸線X3に沿う方向(図1で紙面と直交する方向)で、ピニオンシャフト21の一方側の周壁部と他方側の周壁部に、ピニオンギヤ22及びサイドギヤ23のデフケース8内への挿入を許容する一対の作業窓8wを有する。その各作業窓8wは、サイドギヤ23が、これの自転軸(即ち回転軸線)を第3軸線X3に沿わせた方向におく正面挿入姿勢(図4(a)参照)、或いはその正面挿入姿勢よりやや傾いた傾斜挿入姿勢で作業窓8wを挿入、通過可能な形状に形成される。
 例えば、本実施形態の作業窓8wは、図2(a)に明示したように、上記正面挿入姿勢での挿入にも対応できるようサイドギヤ23の最大径よりやや大きい外径の円形孔に形成される。尚、作業窓8wは、必ずしも円形に形成する必要はなく、例えば、真円に近い長円形の孔に形成されてもよい。
 ところで、デフケース8の、各サイドギヤ23の背面23fと対向する内面8iには、図2で明らかなように、第1軸線X1を囲繞する左右一対の環状凹部50が、第1,第2軸受ボス8b1,8b2の中心孔8bhの内方側の開口周縁部においてそれぞれ設けられる。
 一方、左右のサイドギヤ23の背面23fには、図3でも明らかなように、サイドギヤ23の回転軸線を挟んで一直径線の方向に(従って周方向等間隔おきに)並ぶ一対の凸部61が突設される。これらの凸部61は、図示例ではサイドギヤ23の周方向に沿って延びる円弧状に各々形成され、その形態は、恰も円筒状ボスが周方向2カ所で切欠かれた後の形態に相当する。
 そして、それら環状凹部50と凸部61とは、サイドギヤ23がデフケース8内で正規の取付位置としてのセット位置23S(例えば図1、図4(c)、図5(c)(d)の図示位置)にある状態で、サイドギヤ23の自転は許容するがピニオンシャフト21回りの公転は阻止するように互いに係合可能である。その係合によれば、デフケース8内の正規の取付位置即ちセット位置23Sにセットされたサイドギヤ23が、ドライブ軸11,12の未嵌挿状態でもピニオンシャフト21回りにずれ動くのを確実に防止できる。
 更にデフケース8の、各サイドギヤ23の背面23fと対向する内面8iには、一端が環状凹部50に開口し且つ他端が作業窓8wに開口する通過溝51が形成される。この通過溝51は、後述するサイドギヤ23のデフケース8内への組付け過程で凸部61が通過可能な形状(即ちサイドギヤ23のピニオンシャフト21回りの公転に追従する凸部61の移動経路に沿う形状)に形成される。
 また、1つの環状凹部50に連通する通過溝51は、一対の作業窓8wのうち何れか1つ(即ち一方)の作業窓8wのみに連通するように形成される。この場合、何れか1つの作業窓8wから複数の環状凹部50に各々連通する複数の通過溝51を設けるようにした変形例も実施可能であるが、その変形例では、通過溝51の何れもが一方の作業窓8wにのみ連通し、他方の作業窓8wには連通しないように形成される。更にこの変形例では、一対のサイドギヤ23のうち、凸部61が設けられるのは何れか一方のサイドギヤ23のみとなり、即ち、凸部61を設けたサイドギヤ23をデフケース8内に組み入れるときは、通過溝51に通じる一方の作業窓8wからのみサイドギヤ23を挿入し、後述のサイドギヤ公転工程ではサイドギヤ23をピニオンシャフト21回りに正逆何れの方向にも公転させることができる。
 この場合、サイドギヤ23の上記公転の方向は、第1軸線X1及び第3軸線X3を含む仮想平面Zに沿う方向に相当する。従って、通過溝51は、図2(c)や図5(a)に明示されるように、サイドギヤ23の上記公転の方向に延びる溝形態、換言すれば仮想平面Zに沿う方向に延びる溝形態である。
 しかも通過溝51の、少なくとも環状凹部50に臨む開口部eの溝幅は、環状凹部50の外径よりも小さく形成される。尚、図示例では通過溝51が、開口部eのみならずその他の溝部分においても開口部eと同じ溝幅に設定されているが、該その他の溝部分の溝幅を開口部eよりも幅広に設定してもよい。
 また本実施形態の通過溝51は、一対の凸部61に対し只1つだけ設けられており、その両凸部61が、図5(a)~(c)に示すように通過溝51の延びる方向(即ち上記仮想平面Zに沿う方向)に並んだ状態で通過溝51を順次通過できるような溝幅に形成される。これにより、デフケース8内にピニオンシャフト21及びピニオンギヤ22を先組みした状態で、サイドギヤ23がピニオンギヤ22とデフケース8の内面8iとの間を通り抜けるように公転する際に、一対の凸部61は、後述するように通過溝51を順次通過することで環状凹部50内に到達可能となる。
 次に第1実施形態の作用を説明する。デフケース8は、その全体が金属材料(例えばアルミ、アルミ合金、鉄系合金等)で一体成形(例えば鋳造成形)され、その一体成形後に適宜、デフケース8の各部に対し機械加工が施される。
 次いで、デフケース8内にデフギヤ機構20を組付けた後、デフケース8のフランジ部8fにリングギヤ9のハブ9bを固定する。尚、リングギヤ9とピニオンシャフト21との相対位置関係によっては(即ちピニオンシャフト21のデフケース8への挿入にリングギヤ9が障害とならなければ)、デフケース8内にデフギヤ機構20を組付ける前にデフケース8のフランジ部8fにリングギヤ9のハブ9bを固定してもよい。
 次にデフケース8内にデフギヤ機構20を組付ける手順の一例を、主として図4,図5を参照して説明する。即ち、本実施形態ではデフギヤ機構20の組付けを、以下の各工程を順次実行することで行うもので、簡単に言えば、デフケース8内にピニオンギヤ22及びピニオンシャフト21を先組みし、次いでサイドギヤ23を組み付けるものである。
[先組工程]
 先ず、デフケース8内に一対のピニオンギヤ22を、作業窓8wを通して挿入して第2軸線X2に並べ、次いでピニオンシャフト21をデフケース8の支孔8h1に挿入すると共に各ピニオンギヤ22の中心孔に嵌挿させる。そして、そのピニオンシャフト21を抜け止めピン17によりデフケース8に固定する。こうしてデフケース8内にピニオンギヤ22及びピニオンシャフト21が先組みされる。
[サイドギヤ挿入工程]
 次に図4(a)に示すように、一対のサイドギヤ23を、これの自転軸が第3軸線X3に沿うような正面挿入姿勢で作業窓8wを通してデフケース8内に挿入すると共に、先組みした両ピニオンギヤ22に噛合させる。
[サイドギヤ公転工程]
 こうしてデフケース8内に作業窓8wから挿入されたサイドギヤ23を、図4(b)に示すようにピニオンギヤ22と噛合させたままピニオンシャフト21回りに徐々に公転するように姿勢変化させる。そして、この公転によりサイドギヤ23は、ピニオンギヤ22とデフケース8の内面8iとの間の間隙を通り抜けて、第1,第2軸受ボス8b1,8b2と同一軸線上に並ぶセット位置23S(即ち正規の取付位置)に到達し、その通り抜けの過程でサイドギヤ23の背面23fはデフケース8の内面8iに摺接する。
 この場合、サイドギヤ23は、図5(a)に示すように一対の凸部61が通過溝51の延長線上に並ぶような位相(公転姿勢)とすることで、通過溝51に対し両凸部61が順次、進入・通過(例えば図5(b)(c)を参照)して環状凹部51内に到達可能であり、その到達した位置が上記セット位置23Sとなる。
 尚、図5は、サイドギヤ23の上記公転過程で凸部61が通過溝51及び環状凹部50をどのような経路で移動するかを簡略的に示す模式工程図であって、サイドギヤ23は、図示を簡略化する都合上、サイドギヤ23の実際の傾斜姿勢を無視して、同一姿勢で描かれている。例えば、図5において、(b)はサイドギヤ23の公転が開始して1個目の凸部61が通過溝51に進入した直後の状態を示し、また(c)は、上記公転と共に凸部61が2個とも通過溝51を通過して環状凹部50に到達し、サイドギヤ23が上記セット位置23Sにある状態を示す。
[サイドギヤ自転工程]
 次に、セット位置23Sにあるサイドギヤ23を第1軸線X1回りに所定量、自転させて、図5(d)に示すように通過溝51の開口部eと凸部61との位相をずれ動かす。尚、そのときの自転量は、凸部61が通過溝51側に妄りに戻ることのない程度の量とし、任意に設定可能である。そして、凸部61と環状凹部50とが係合状態となると、サイドギヤ23のセット位置23Sからのずれ動き(即ちピニオンシャフト21回りの回動)が阻止されるため、サイドギヤ23はセット位置23Sに保持される。その後は、デフギヤ機構20の各部とデフケース8との間に働く摩擦抵抗で、サイドギヤ23の自転(従って自転に伴う上記係合状態の自然解除)が抑制される。
 かくして、差動装置10の組立工程が終了する。その後、差動装置10を自動車の組立工場まで輸送し、そこの組立ラインにおいて、デフケース8の第1,第2軸受ボス8b1,8b2を軸受13,14を介してミッションケースMCに回転自在に取付ける。更に左右のドライブ軸11,12の内端部を第1,第2軸受ボス8b1,8b2を通して左右のサイドギヤ23,23の中心孔23hに嵌挿、即ちスプライン嵌合させることで、差動装置10の自動車への組付けが終了する。
 ところで上記組立工程が終了した差動装置10は、これが自動車に組付けられるまでの間(例えば上記輸送中)においても、凸部61と環状凹部50との係合により、サイドギヤ23が上記した正しいセット位置23Sに保持されるため、左右のドライブ軸11,12をサイドギヤ23に的確に嵌挿、連結可能である。またその差動装置10のサイドギヤ23にドライブ軸11,12が一旦、嵌挿された後は、その嵌挿によりサイドギヤ23がセット位置23Sに保持され続けるため、サイドギヤ23が自転して凸部61がたとえ通過溝51の開口部eに対向する位置となっても、凸部61が通過溝51側に逆進して上記係合が解除されてしまう虞れはない。
 以上説明した第1実施形態の差動装置10は、デフケース8の内面8iとサイドギヤ23の背面23fとの相対向面に設けた環状凹部50と凸部61との係合により、サイドギヤ23の自転は許容するがピニオンシャフト21回りの公転は阻止できる構造であるが、特に環状凹部50を有するデフケース8の内面8iが、環状凹部50に連通し且つ凸部61が通過可能な通過溝51を有しており、その通過溝51の、環状凹部50に臨む開口部eの溝幅が、環状凹部50の外径よりも小さく設定されている。
 従って、デフケース8内にピニオンギヤ22及びピニオンシャフト21を先組みした状態でも、その後から、サイドギヤ23を作業窓8wを通してデフケース8内に挿入可能であり、且つその挿入後は、サイドギヤ23をピニオンシャフト21回りに公転させるようにしてピニオンギヤ22とデフケース8の内面8iとの間隙を通過させる際に、凸部61は通過溝51を通ることで環状凹部50内に無理なく到達可能であり、その到達と共にサイドギヤ23は第1軸線X1上の正しいセット位置23Sとなる。しかも到達後は、サイドギヤ23を少し自転させるだけで環状凹部50と凸部61とが容易に係合可能となり、その係合により、サイドギヤ23のセット位置23Sからのずれ動き(即ちピニオンシャフト21回りの公転)が阻止される。
 よって、差動装置10が、サイドギヤ23のセット位置23Sからのずれ動きを防止すべく、デフケース8の内面8iとサイドギヤ23の背面23fとの相対向面に環状凹部50及び凸部61を具備する構造であっても、従来装置のようにサイドギヤ23をデフケース8内に組み付ける際にデフケース8の内面8iとピニオンギヤ22との間に、環状凹部50と凸部61を係合させるために広いサイドギヤ用組立スペースを確保する必要はなくなり、それだけ設計上の自由度が高められる。
 しかもデフケース8の内面8iに上記通過溝51を特設し、これに凸部61を通過させ且つ通過後にサイドギヤ23を少し自転させるだけの簡単な構造と組立手順で、凸部61を環状凹部50に迅速且つ的確に係合状態におくことができるため、サイドギヤ23のずれ動き防止のために追加の部品や治具を必要とせず、差動装置10の構造簡素化が図られる。
 更に本実施形態では、1つの環状凹部50に連通する通過溝51は、一対の作業窓8wのうち何れか一方のみに連通するように形成される。これにより、サイドギヤ23は、これの凸部61が一方の作業窓8wから連通溝51を経て環状凹部50側に向かうようにデフケース8内に組み込まれたとき(換言すれば、一方の作業窓8wからデフケース8内に挿入されたサイドギヤ23を、凸部61が通過溝51を通過して環状凹部50まで移動するように、特定方向に公転させたとき)に、環状凹部50に達したサイドギヤ23が、環状凹部50を素通りして他方の作業窓8wの方向へ行き過ぎる(即ち他方の作業窓8wから抜け出す)虞れはなくなる。これにより、サイドギヤ23をセット位置23S(即ち正規の取付位置)に容易且つ的確に位置決め可能となる。
 更に本実施形態では、特にサイドギヤ23の背面23fにおいて、複数の凸部61が周方向に間隔をおいて設けられる(恰も円筒状ボス部が周方向数カ所で切欠かれたような形態である)ため、周方向に隣り合う凸部61間に形成される切欠状空間を、サイドギヤ23の背面23fとデフケース8の内面8iとの間の摺動間隙への潤滑油供給油路として機能させることができる。即ち、第1,第2軸受ボス8b1,8b2の中心孔8bhの螺旋溝15,16からサイドギヤ23の背面23f側に潤滑油が達したときに、これが遠心力の作用で上記切欠状空間から上記摺動間隙に効率よく流動可能となるため、該摺動間隙への供給油量を効果的に増やすことができて、サイドギヤ23の背面23fの焼きつき防止に有効である。
 これに対し、サイドギヤ23の背面23fの凸部61が仮に従来装置のように円筒状ボス部(即ち環状の凸部)である場合には上記切欠状空間は形成されず、それだけ上記摺動間隙への供給油量が絞られてしまう。
 更に前記実施形態では、一対の凸部61が共通1個の通過溝51を順次通過できるように凸部61及び通過溝51の形状や位置が設定されるため、それだけ通過溝51の数を少なくして加工コストの低減を図ることができる。
 尚、第1実施形態では、一対の凸部61を横断面円弧状に形成したが、凸部61の形状は図示例に限定されず、少なくとも通過溝51を通過し得る形態であればよく、例えば、後述する第2,第3,第5実施形態(図6,7,9を参照)のような半球状に形成されてもよいし、或いは横断面矩形状又は円柱状に形成されてもよい。
 また図6及び図7には、第2,第3実施形態がそれぞれ示される。この第2,第3実施形態では、サイドギヤ23の背面23fに設けられる凸部62が、比較的小径の半球状に形成される。
 また第1実施形態の通過溝51は、サイドギヤ23がピニオンシャフト21回りに公転する方向、即ち前記仮想平面Zに沿う方向に延びるストレート溝状(従って凸部61が通過溝51を通過する際にサイドギヤ23が自転しない形状)に形成される。これに対し、第2,第3実施形態の通過溝52は、作業窓8wを通してデフケース8内へ挿入されたサイドギヤ23がセット位置23Sに向かってピニオンシャフト21回りに公転するのに伴い凸部62が通過溝52を摺動、通過する途中でサイドギヤ23が必然的に自転する形状の特定溝部分52a,52bを、通過溝52の少なくとも一部に有する。
 そして、特定溝部分52a,52bは、サイドギヤ23の上記公転の方向(即ち仮想平面Zに沿う方向、換言すれば公転の際にサイドギヤ23の背面23fがデフケース8の内面8iに対し相対移動する方向)に対し交差する方向に延びている。従って、サイドギヤ23の上記公転に伴い凸部62が通過溝52を摺動、通過する途中で、凸部62が特定溝部分52a,52bを摺動、通過するのに連動してサイドギヤ23が自転する。
 特に第2実施形態の通過溝52は、途中部分がクランク状に屈曲される。即ち、通過溝52は、サイドギヤ23の上記公転の方向と直交する方向に延びる中間溝部分52aと、中間溝部分52aの一端から作業窓8wに向かって上記公転の方向に延びる第1接続溝部分52s1と、中間溝部分52aの他端から環状凹部50に向かって上記公転の方向に延びる第2接続溝部分52s2とを有する。そして、中間溝部分52aが特定溝部分を構成する。
 第2実施形態の他の構造は、第1実施形態と同様であるので、各構成要素には、第1実施形態の対応する構成要素と同じ参照符号を付すにとどめ、それ以上の構造説明は省略する。而して、第2実施形態でも、第1実施形態と基本的に同様の作用効果を達成可能である。
 更に第2実施形態によれば、通過溝52が、特定溝部分としての上記中間溝部分52aを有する関係で、サイドギヤ23の上記公転に伴い凸部62が通過溝52の中間溝部分52aを通過(例えば図6(b)の部分拡大図を参照)する際にサイドギヤ23が必然的に自転する。従って、図6(e)(f)に示すように環状凹部50内に到達した凸部62が通過溝52を逆進するには、サイドギヤ23の公転に加えて自転も要するため、その凸部62が通過溝52を逆進、脱落する可能性をより低くでき、サイドギヤ23のずれ防止効果を一層確実に維持可能となる。
 一方、図7に示す第3実施形態の通過溝52は、その略全部がサイドギヤ23の上記公転の方向に対し斜めに交差する方向に湾曲して延びており、その湾曲した溝部分が特定溝部分52bを構成する。尚、第3実施形態の変形例として、通過溝52の略全部をサイドギヤ23の上記公転の方向に対し斜めに交差する方向にストレートに延ばして特定溝部分52bとしてもよい。
 第3実施形態の他の構造は、第2実施形態と同様であるので、各構成要素には、第2実施形態の対応する構成要素と同じ参照符号を付すにとどめ、それ以上の構造説明は省略する。そして、第3実施形態でも、第2実施形態と基本的に同様の作用効果を達成可能である。例えば、サイドギヤ23の公転に伴い凸部62が通過溝52の略全域に亘る特定溝部分52bを通過(例えば図7(b)の部分拡大図を参照)する際に、サイドギヤ23が必然的に自転する。従って、図7(e)(f)に示すように環状凹部50内に到達した凸部62が通過溝52(即ち特定溝部分52b)を逆進するには、サイドギヤ23の公転に加えて自転も要するため、第2実施形態と同様の作用効果が期待できる。
 尚、上記した第2,第3実施形態において、凸部62の形態は、半球状に限定されず、少なくとも通過溝52を通過し得る形態であればよい。例えば、横断面矩形状又は円柱状に形成されてもよい。
 次に図8を参照して、第4実施形態について説明する。第4実施形態では、サイドギヤ23の背面23fに設けられる凸部63が、環状凹部50と略同径の円環状に形成され、しかもその凸部63の外周面には、一対の平行な平面状カット面63cが面取り形成される。一方、デフケース8の内面8iに形成される通過溝53は、これに上記凸部63がカット面63cの部分で通過可能であり且つ環状凹部50の外径よりも小さい溝幅に形成される。尚、上記カット面63cは1つだけとした変形例も実施可能であり、その場合は、カット面63cを減らした分だけ通過溝53の溝幅が広く設定される。
 そして、第4実施形態の他の構造は、第1実施形態と同様であるので、各構成要素には、第1実施形態の対応する構成要素と同じ参照符号を付すにとどめ、それ以上の構造説明は省略する。而して、第4実施形態でも、第1実施形態と基本的に同様の作用効果を達成可能である。
 次に図9を参照して、第5実施形態について説明する。第5実施形態では、サイドギヤ23の背面23fに周方向に等間隔おきに3つの半球状の凸部64が突設される一方、デフケース8の内面8iには、環状凹部50に連なる2条の通過溝54が互いに平行に、しかもサイドギヤ23の公転方向(即ち仮想平面Zに沿う方向)に延びるように形成されている。
 そして、第5実施形態の他の構造は、第1実施形態と同様であるので、各構成要素には、第1実施形態の対応する構成要素と同じ参照符号を付すにとどめ、それ以上の構造説明は省略する。而して、第5実施形態でも、第1実施形態と基本的に同様の作用効果を達成可能である。
 また第5実施形態では、3個の凸部64に対し通過溝54が2条だけ設けられる関係から、凸部64が通過溝54を通過する際には、例えば、図9(a)に示す如く一方の通過溝54が延びる方向に2個の凸部64を配列させ、且つ他方の通過溝54が延びる方向に残り1個の凸部64が位置するような位相(公転姿勢)でサイドギヤ23をピニオンシャフト21回りに公転させる。この公転により、一方の通過溝54を2個の凸部64が順次、通過すると共に、他方の通過溝54を残り1個の凸部64が通過する。即ち、通過溝54は、凸部64の数より少なくても、全部の凸部64が通過できるように溝の形状や位置に設定され、しかも通過溝54の数を少なくした分だけ、加工コストの低減を図ることができる。
 また第5実施形態のようにサイドギヤ23の背面23fに複数の凸部64を周方向等間隔置きに配設したものでは、仮にドライブ軸11,12に係止させた不図示のスナップリング(例えばサークリップ)でドライブ軸11,12のサイドギヤ23からの抜止めを行う場合には、次のような利点がある。即ち、ドライブ軸11,12を、それの内端外周にスナップリングを仮止めした状態で軸受ボス8b1,8b2を通してサイドギヤ23に嵌挿させる際には、周方向等間隔置きに存する複数の凸部64をスナップリングがバランスよく均等に当接するため、スナップリングのスムーズな乗り越えを可能とする。
 ところで第5実施形態のようにサイドギヤ23の背面23fに複数の凸部64を配設し、それら凸部64が複数の通過溝54を通過するようにしたものでは、凸部64の配置や通過溝54の数によっては、サイドギヤ23における凸部64の配置が同じ場合でも、凸部64が通過溝54と一致して溝通過が可能となるサイドギヤ23の自転軸回りの位相のパターンに違いが生じる。
 例えば、図10に示す第5実施形態の第1変形例のように通過溝54の数を凸部64の数と同数の3つとし且つ凸部64を等間隔に配置した場合には、上記溝通過が可能となるサイドギヤ23の位相は都合6パターンと多くなる。これに対し、仮に、同数の凸部64を等間隔に配置しない場合(図示せず)には、上記溝通過が可能となるサイドギヤ23の位相のパターンを少なくできる。また第5実施形態のように通過溝54が、凸部64より少ない2つしかない構造では、3個の凸部64の中から、一方の通過溝54を通過する2個の凸部64を選択する場合の組み合わせの数に等しい3パターンとなる。
 而して、上記溝通過が可能となるサイドギヤ23の位相のパターンが少ない程、セット位置23Sにあるサイドギヤ23の凸部64が通過溝54を逆進、脱落する頻度を小さくできるため、その溝通過が可能となる位相のパターンが最小限となるように凸部64の数や位置、通過溝54の数等が選定されることが望ましい。即ち、凸部64の配置を不等間隔の配置(図示せず)にするとか、或いは、凸部64がたとえ等間隔の配置であっても第5実施形態の如く通過溝54の数を凸部64の数より減数すれば、上記溝通過が可能となるサイドギヤ23の位相のパターンを少なくできて上記頻度を小さくできるため、セット位置23Sにあるサイドギヤ23のずれ防止を図る上で有利となる。
 また図11には、第5実施形態の第2変形例が示される。第5実施形態及びそれの第1変形例では、3個の凸部64が同じ高さ(即ちサイドギヤ23の背面23fからの張出量)に形成されるが、第2変形例では、1個の凸部64を他の2個の凸部64よりも高く形成している。そして、このような凸部64の高さの違いに対応して、1つの通過溝54が他の通過溝54よりも深い溝に形成される。
 従って、第2変形例によれば、高さが高い只1個の凸部64は、只1つの深い通過溝54のみで通過可能となるため、凸部64及び通過溝54の数・配置が第5実施形態と同様であるにも拘わらず、凸部64が通過溝54を通過可能なサイドギヤ23の位相のパターンは、只1つだけとなる。これにより、セット位置23Sにあるサイドギヤ23の凸部64が通過溝54を逆進、脱落する頻度を小さくできるため、セット位置23Sにあるサイドギヤ23のずれ防止を図る上で有利となる。
 而して、上記した第1,第2変形例も基本的には第5実施形態と同様の作用効果を達成可能である。
 次に図12を参照して、第6実施形態について説明する。第1実施形態では、サイドギヤ23の背面23fの1直径線上に並ぶ一対の凸部61の横断面形状が短い円弧状であるが、第6実施形態では、一対の凸部65の横断面形状が、長い(半円弧に近い)円弧状に形成され、またその一対の凸部65が個別に通過可能な一対の通過溝55が、デフケース8の内面8iに互いに平行に設けられる。
 そして、第6実施形態の他の構造は、第1実施形態と同様であるので、各構成要素には、第1実施形態の対応する構成要素と同じ参照符号を付すにとどめ、それ以上の構造説明は省略する。而して、第6実施形態でも、第1実施形態と基本的に同様の作用効果を達成可能である。
 次に図13,図14を参照して、第7実施形態について説明する。第1~第6実施形態では、凸部61~65がサイドギヤ23側(即ち背面23f)に設けられ、環状凹部50及び通過溝51~55がデフケース8側(即ち内面8i)に設けられるものを示したが、その配置とは逆に、第7実施形態では、一対の凸部61′がデフケース8の内面8iに設けられ、また環状凹部50′及び一対の通過溝51′が、少なくとも一方のサイドギヤ23の背面23fに設けられる。
 そして、第7実施形態の他の構造は、第1実施形態と同様であるので、各構成要素には、第1実施形態の対応する構成要素と同じ参照符号を付すにとどめ、それ以上の構造説明は省略する。而して、第7実施形態でも、第1実施形態と基本的に同様の作用効果を達成可能である。
 以上、本発明の実施形態について説明したが、本発明は、実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。
 例えば、前記各実施形態では、差動装置10を車両用、例えば自動車用の差動装置に実施したものを示したが、本発明では、差動装置10を車両以外の種々の機械装置に実施してもよい。
 また前記各実施形態では、リングギヤ9の歯部9agをヘリカルギヤ状としたものを示したが、リングギヤは、実施形態に限定されず、例えばベベルギヤ、ハイポイドギヤ、スパーギヤ等でもよい。またデフケース8に結合されるトルク入力部は、リングギヤ9に限定されず、他の適当な伝動輪(例えばVプーリ、スプロケット等)でもよい。
 また前記各実施形態では、左右両方のサイドギヤ23の背面23fに凸部61~65、又は環状凹部50′及び通過溝51′を設けたものを示したが、本発明では、左右何れか一方のサイドギヤ23の背面23fにだけ凸部61~65、又は環状凹部50′及び通過溝51′を設けてもよい。この場合、他方のサイドギヤ23の背面23fに凸部61~65、又は環状凹部50′及び通過溝51′が無くても、左右何れのサイドギヤ23もピニオンギヤ22と噛合状態にあることから、一方のサイドギヤ23とデフケース8とが凸部61~65,61′と環状凹部50,50′とを介して相互に係合しておれば、一方のサイドギヤ23のみならず他方のサイドギヤ23のずれ防止効果も期待できる。
 また前記各実施形態の差動装置10の組立手順では、サイドギヤ23を、これの自転軸が第3軸線X3に沿うような正面挿入姿勢で作業窓8wを通過させて、デフケース8内のピニオンギヤ22に噛合させるようにしたが、サイドギヤ23が、作業窓8w通過の際に正面挿入姿勢から少し傾けた傾斜挿入姿勢でもピニオンギヤ22に噛合可能であれば、その傾斜挿入姿勢でサイドギヤ23を作業窓8wを通してデフケース8内に挿入するようにしてもよい。
 また前記各実施形態では、デフケース8の内面8iを球面状に形成したものを示したが、デフケース8の内面8iの形状は実施形態に限定されず、例えば、内面8iの一部(たとえばピニオンギヤ22に対する支持面等)を球面ではない曲面、テーパ面又は平面に形成してもよい。
 また前記各実施形態では、一対のサイドギヤ23に設けられる凸部61~65、又は環状凹部50′及び通過溝51′の形状・個数を、両サイドギヤ23で同じ組み合わせ態様としたものを示したが、本発明では、一方のサイドギヤ23に設けられる凸部61~65、又は環状凹部50′及び通過溝51′の形状及び/又は個数の組み合わせ態様を、他方のサイドギヤ23に設けられる凸部61~65、又は環状凹部50′及び通過溝51′の形状及び/又は個数の組み合わせ態様と異ならせてもよい。
 また第1実施形態では、一対の凸部61が単一の通過溝51を順次通過するようにしたものを示したが、第1実施形態の変形例として、一対の凸部61が、互いに平行に延びる一対の通過溝51を個別、同時に通過するような構造(図示せず)も実施可能であり、その場合の一対の通過溝51の配列態様は、例えば、第6実施形態(図12)の通過溝55の配列態様と同様であり、溝幅だけが第6実施形態よりも狭くなる。

Claims (4)

  1.  所定軸線(X1)回りに回転可能な一体型のデフケース(8)と、前記デフケース(8)の内面(8i)に背面(23f)が前記所定軸線(X1)回りに回転可能に支持される一対のサイドギヤ(23)と、前記デフケース(8)内に収容されて前記一対のサイドギヤ(23)に噛合する一対のピニオンギヤ(22)と、前記デフケース(8)に装着されて前記ピニオンギヤ(22)を回転自在に嵌合、支持する、前記所定軸線(X1)と直交する方向に延びるピニオンシャフト(21)と、前記ピニオンギヤ(22)及び前記サイドギヤ(23)の前記デフケース(8)内への挿入を許容するように前記デフケース(8)に設けた一対の作業窓(8w)とを備えており、
     前記デフケース(8)の内面(8i)と少なくとも一方のサイドギヤ(23)の背面(23f)との相対向面の何れか一方に、前記所定軸線(X1)を囲繞する環状凹部(50,50′)が設けられると共に、その何れか他方には前記環状凹部(50,50′)に対応して凸部(61~65,61′)が設けられ、前記環状凹部(50,50′)と前記凸部(61~65,61′)とは、前記一方のサイドギヤ(23)が前記デフケース(8)内で正規の取付位置(23S)にあるときに、該一方のサイドギヤ(23)の自転は許容するが前記ピニオンシャフト(21)回りの公転は阻止するように係合可能である差動装置において、
     前記相対向面のうち前記環状凹部(50,50′)を有する一方の対向面は、前記環状凹部(50,50′)に連通し且つ前記凸部(61~65,61′)が通過可能な形状の通過溝(51~55,51′)を有し、
     前記通過溝(51~55,51′)の、少なくとも前記環状凹部(50,50′)に臨む開口部(e,e′)の溝幅が、前記環状凹部(50,50′)の外径よりも小さいことを特徴とする差動装置。
  2.  前記環状凹部(50)及び前記通過溝(51~55)は前記デフケース(8)の内面(8i)に設けられると共に、該環状凹部(50)と前記作業窓(8w)とが該通過溝(51~55)を介して互いに連通しており、
     1つの前記環状凹部(50)に連通する前記通過溝(51~55)は、前記一対の作業窓(8w)の何れか1つのみに連通することを特徴とする請求項1に記載の差動装置。
  3.  前記通過溝(52)は、前記作業窓(8w)を通して前記デフケース(8)内へ挿入された前記一方のサイドギヤ(23)が前記正規の取付位置(23S)に向かって前記ピニオンシャフト回りに公転する際に該公転の方向に対し交差する方向に延びる特定溝部分(52a,52b)を、該通過溝(52)の少なくとも一部に有していることを特徴とする、請求項1~2の何れか1項に記載の差動装置。
  4.  所定軸線(X1)回りに回転可能な一体型のデフケース(8)と、前記デフケース(8)の内面(8i)に背面(23f)が前記所定軸線(X1)回りに回転可能に支持される一対のサイドギヤ(23)と、前記デフケース(8)内に収容されて前記一対のサイドギヤ(23)に噛合する一対のピニオンギヤ(22)と、前記デフケース(8)に装着されて前記ピニオンギヤ(22)を回転自在に嵌合、支持する、前記所定軸線(X1)と直交する方向に延びるピニオンシャフト(21)と、前記ピニオンギヤ(22)及び前記サイドギヤ(23)の前記デフケース(8)内への挿入を許容するように前記デフケース(8)に設けた作業窓(8w)とを備えており、
     前記デフケース(8)の内面(8i)と少なくとも一方のサイドギヤ(23)の背面(23f)との相対向面の何れか一方に、前記所定軸線(X1)を囲繞する環状凹部(50,50′)が設けられると共に、その何れか他方には前記環状凹部(50,50′)に対応して凸部(61~65,61′)が設けられ、前記環状凹部(50,50′)と前記凸部(61~65,61′)とは、前記一方のサイドギヤ(23)が前記デフケース(8)内で正規の取付位置(23S)にあるときに、該一方のサイドギヤ(23)の自転は許容するが前記ピニオンシャフト(21)回りの公転は阻止するように係合可能であり、前記相対向面のうち前記環状凹部(50,50′)を有する一方の対向面が、前記環状凹部(50,50′)に連通し且つ前記凸部(61~65,61′)が通過可能な形状の通過溝(51~55,51′)を有し、前記通過溝(51~55,51′)の、少なくとも前記環状凹部(50,50′)に臨む開口部(e,e′)の溝幅が、前記環状凹部(50,50′)の外径よりも小さい差動装置の組立方法であって、
     前記デフケース(8)内に前記一対のピニオンギヤ(22)及び前記ピニオンシャフト(21)を組み込む先組工程と、
     前記一対のサイドギヤ(23)を前記作業窓(8w)を通して前記デフケース(8)内に挿入して、前記ピニオンギヤ(22)に噛合させるサイドギヤ挿入工程と、
     前記少なくとも一方のサイドギヤ(23)を前記ピニオンギヤ(22)と噛合させながら、前記凸部(61~65,61′)が前記通過溝(51~55,51′)を通って前記環状凹部(50,50′)に到達するまで該少なくとも一方のサイドギヤ(23)を前記ピニオンシャフト(21)回りに公転させるサイドギヤ公転工程と、
     前記通過溝(51~55,51′)の前記開口部(e,e′)と前記凸部(61~65,61′)との、前記所定軸線(X1)回りの位相がずれるように前記少なくとも一方のサイドギヤ(23)を自転させて、該凸部(61~65,61′)と前記環状凹部(50,50′)とを係合させるサイドギヤ自転工程とを、
     この順序で順次実行することを特徴とする、差動装置の組立方法。
PCT/JP2020/012348 2019-03-22 2020-03-19 差動装置及びその組立方法 WO2020196286A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019054802A JP2020153493A (ja) 2019-03-22 2019-03-22 差動装置及びその組立方法
JP2019-054802 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020196286A1 true WO2020196286A1 (ja) 2020-10-01

Family

ID=72558497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012348 WO2020196286A1 (ja) 2019-03-22 2020-03-19 差動装置及びその組立方法

Country Status (2)

Country Link
JP (1) JP2020153493A (ja)
WO (1) WO2020196286A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130315A (ja) * 1997-05-06 1999-02-02 American Axle & Mfg Inc 最適化された組立体窓幾何学的形状を備える差動ユニット
JP2018054043A (ja) * 2016-09-29 2018-04-05 本田技研工業株式会社 ディファレンシャル装置の組立方法及びディファレンシャル装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130315A (ja) * 1997-05-06 1999-02-02 American Axle & Mfg Inc 最適化された組立体窓幾何学的形状を備える差動ユニット
JP2018054043A (ja) * 2016-09-29 2018-04-05 本田技研工業株式会社 ディファレンシャル装置の組立方法及びディファレンシャル装置

Also Published As

Publication number Publication date
JP2020153493A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
US7749124B2 (en) Vehicle differential gear device, vehicle combined differential gear device and vehicle differential case
JP4888151B2 (ja) 車両用差動装置及びその組立方法
US7867126B2 (en) Differential case for vehicle and differential device for vehicle
JP6767804B2 (ja) 歯車変速機
US6659651B1 (en) Driving and locking mechanism for a threaded bearing cup
JP2018128078A (ja) 伝動装置
US10359099B1 (en) Cycloidal differential
US20180306285A1 (en) Transmission device and differential device
JP2008051305A (ja) 車両用デフケース及びこれを備えた車両用差動装置
WO2020196286A1 (ja) 差動装置及びその組立方法
JP2008082544A (ja) 車両用差動装置
WO2020184707A1 (ja) 差動装置
US9533563B2 (en) Reduction gear
EP1522768A2 (en) Differential gearing for vehicle
WO2017170588A1 (ja) 伝動装置
JP4784443B2 (ja) 車両用差動装置
WO2020153332A1 (ja) 差動装置
JP5194829B2 (ja) 車両用差動装置及びその組立方法
WO2018180805A1 (ja) 差動装置
WO2017170587A1 (ja) 伝動装置
JP4650376B2 (ja) 車両用差動装置
JP2007292123A (ja) デファレンシャルとドライブシャフトとの連結構造
WO2020184428A1 (ja) 差動装置
WO2020153333A1 (ja) 差動装置
US10563729B2 (en) Hyper-cycloidal differential

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777457

Country of ref document: EP

Kind code of ref document: A1