WO2020196153A1 - Polyvinyl chloride-based carbon fiber reinforced composite material - Google Patents

Polyvinyl chloride-based carbon fiber reinforced composite material Download PDF

Info

Publication number
WO2020196153A1
WO2020196153A1 PCT/JP2020/011966 JP2020011966W WO2020196153A1 WO 2020196153 A1 WO2020196153 A1 WO 2020196153A1 JP 2020011966 W JP2020011966 W JP 2020011966W WO 2020196153 A1 WO2020196153 A1 WO 2020196153A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
carbon fiber
chloride resin
resin composition
composite material
Prior art date
Application number
PCT/JP2020/011966
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 中尾
修平 冠
誉大 山本
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019057123A external-priority patent/JP7332313B2/en
Priority claimed from JP2019057105A external-priority patent/JP7332312B2/en
Priority claimed from JP2019155858A external-priority patent/JP7323384B2/en
Priority claimed from JP2019155872A external-priority patent/JP7323385B2/en
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2020196153A1 publication Critical patent/WO2020196153A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes

Definitions

  • the present invention relates to a carbon fiber reinforced composite material in which a carbon fiber base material is impregnated with a vinyl chloride resin composition.
  • CFRP carbon fiber reinforced composite material composed of carbon fiber and a matrix resin
  • CFRP has high specific strength and specific elastic modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. Has. Therefore, CFRP is attracting attention in aircraft structural members, wind turbine blades, automobile outer panels, and general industrial applications, and its demand is increasing year by year.
  • thermosetting resin typified by an epoxy resin which has a low viscosity when impregnated with carbon fibers and has excellent adhesion to carbon fibers has been conventionally known.
  • thermoplastic resins such as polyolefins and polyamide-based polymer alloys have been developed due to the demand for improved impact resistance, high productivity, and interest in recycling.
  • thermoplastic resins may undergo thermal decomposition under high temperature conditions, and many of them have high viscosities even in a molten state, which tends to cause problems such as insufficient resin impregnation.
  • the interfacial adhesiveness between carbon fiber and matrix resin is excellent.
  • the interfacial adhesiveness to carbon fibers is poor, and it is difficult to obtain the expected mechanical properties even if the propylene-based resin and carbon fibers are simply melt-kneaded.
  • a modified propylene resin in which maleic anhydride or the like is graft-bonded to a propylene resin has been developed, and by adding this, the interfacial adhesiveness between the propylene resin and the carbon fiber can be improved. It is planned.
  • CFRP using polyolefin or polyamide polymer alloy as a matrix resin has been put into practical use, but it still has chemical resistance and flame retardancy depending on the matrix resin. Inferior performance was sometimes a problem.
  • Vinyl chloride resin which is a general-purpose thermoplastic resin, is a material that has excellent flame retardancy, durability, oil resistance and chemical resistance, has extremely little creep deformation compared to ethylene-based resin and propylene-based resin, and has excellent mechanical strength. Is known to be.
  • vinyl chloride resin has a high melt viscosity among thermoplastic resins, and the molding processing temperature, that is, the processing temperature when impregnating carbon fibers with vinyl chloride resin is the thermal decomposition temperature of vinyl chloride resin in the production of CFRP. It is presumed that impregnation of carbon fiber is difficult because it is close to, and no practical example has been found.
  • the vinyl chloride resin is only treated as a mixture with a thermosetting resin that dissolves the vinyl chloride resin while remaining in the blending amount as an auxiliary component.
  • vinyl chloride resin is a polar polymer having a chlorine group, it is presumed that it has better interfacial adhesiveness with carbon fibers than propylene resin, which is a non-polar polymer.
  • vinyl chloride resin is prone to thermal decomposition and adhesion to the mold during molding, a heat stabilizer that suppresses the thermal decomposition reaction is blended, and screws and molds that need to be contacted during the molding process.
  • vinyl chloride resins In order to prevent adhesion to the metal surface such as, it is essential to add a lubricant or the like. Therefore, vinyl chloride resins generally have a higher content ratio of additives than other thermoplastic resins. As a result, it is not known at present how the high content of the additive affects the impregnation property and the interfacial adhesiveness of the vinyl chloride resin composition containing a large amount of the additive and the carbon fiber.
  • the vinyl chloride resin composition has a high melt viscosity, low thermal stability, and a high additive content ratio. Therefore, it is presumed that the vinyl chloride-based resin composition is difficult to impregnate the carbon fiber base material and is difficult to composite. At present, it has not been sufficiently investigated and elucidated what kind of vinyl chloride resin composition is suitable for CFRP preparation. Therefore, there is still a demand for a vinyl chloride resin composition having good impregnation property into the carbon fiber base material. Further, there is a demand for CFRP in which a carbon fiber base material is impregnated with such a vinyl chloride resin composition.
  • the vinyl chloride resin composition (A) contains a vinyl chloride resin and at least one additive.
  • the vinyl chloride resin composition (A) and the carbon fiber base material (B) have the following properties (1) and properties (2): -Characteristics (1):
  • the vinyl chloride resin composition (A) has a complex viscosity ⁇ at 200 ° C. and a frequency of 10 Hz of 1 ⁇ ⁇ 1500.
  • the dissolution index (Ra (pi)) calculated from the following formula (I), the Hansen solubility parameter ( ⁇ Di, ⁇ Pi, ⁇ Hi), and the carbon fiber base material (B)
  • the solubility index (Ra (ci)) calculated from the following formula (II) using the Hansen solubility parameter ( ⁇ Dc, ⁇ Pc, ⁇ Hc) of the above, and each additive contained in the vinyl chloride resin composition (A).
  • the value S calculated by the following formula (III) using the weight component C (i) of (i) is 150 or less.
  • ⁇ D, ⁇ P and ⁇ H indicate the dispersion term, the polarity term and the hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is (MPa) 1/2 .
  • the vinyl chloride resin composition (A) has the following characteristics (3): -Characteristics (3): Hansen solubility parameter ( ⁇ Di, ⁇ Pi, ⁇ Hi) of each additive (i) contained in the vinyl chloride resin composition (A), and Hansen solubility parameter of the vinyl chloride resin (p) used.
  • the weight is calculated from the following formulas (IV), (V), and (VI).
  • the Hansen solubility parameter ( ⁇ Dp, ⁇ Pp, ⁇ Hp) of the vinyl chloride resin composition (A) is calculated using the fraction, and the solubility index (Ra) calculated from the following formula (VII) is 7.5 or less. There is.
  • the additives are heat stabilizers, lubricants, processing aids, impact modifiers, heat improvers, antioxidants, ultraviolet absorbers, antistatic agents, light stabilizers, fillers, pigments, flame retardants.
  • the carbon fiber reinforced composite material according to any one of [1] to [3], which is at least one selected from the group consisting of, and a plasticizer.
  • [5] The carbon fiber according to any one of [1] to [4], wherein the vinyl chloride resin composition (A) contains a vinyl chloride resin (p) having an average degree of polymerization of 400 or more and 1500 or less. Reinforced composite material.
  • the total content of the additives is 70 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin, according to [1] to [5].
  • the content of the heat stabilizer is 0.1 to 30 parts by mass, the content of the internal lubricant is 20 parts by mass or less, the content of the external lubricant is 10 parts by mass or less, and the content of the plasticizer is 30.
  • the carbon fiber reinforced composite material according to the present invention is a carbon fiber reinforced composite material composed of a vinyl chloride resin composition (A) and a carbon fiber base material (B). Further, the carbon fiber reinforced composite material according to the present invention is a vinyl chloride resin composition that covers at least a part of the surface of the composite material composed of the vinyl chloride resin composition (A) and the carbon fiber base material (B). It is preferable to further include (C). Further, the carbon fiber reinforced composite material according to the present invention is characterized by satisfying the following properties (1) and (2). The carbon fiber reinforced composite material according to the present invention preferably further satisfies the following property (3).
  • the vinyl chloride resin composition (A) has a complex viscosity ⁇ at 200 ° C. and a frequency of 10 Hz in the range of 1 ⁇ ⁇ 1500.
  • the vinyl chloride resin composition (A) preferably has a complex viscosity ⁇ at 200 ° C. and a frequency of 10 Hz of 10 ⁇ ⁇ ⁇ 1000 Pa ⁇ s, and preferably 20 ⁇ ⁇ ⁇ 800 Pa ⁇ s.
  • the complex viscosity ⁇ is less than 1500 Pa ⁇ s, the resin can be impregnated into the inside of the carbon fiber filament bundle, and the excellent mechanical properties of the carbon fiber can be utilized.
  • the complex viscosity ⁇ is more than 1 Pa ⁇ s, it is possible to obtain the mechanical strength of the matrix resin itself to the extent that the mechanical strength as CFRP is not impaired.
  • n a vinyl chloride resin (p.) ) And the product of Ra (pi) and Ra (ci) calculated with respect to the carbon fiber base material (B) and the weight fraction C (i).
  • the value n multiplied by the product is each.
  • the number of components of the additive (i) is shown.)
  • Hansen solubility parameter ( ⁇ Di, ⁇ Pi, ⁇ Hi) of each additive (i) contained in the vinyl chloride resin composition (A) Hansen solubility parameter of the vinyl chloride resin (p) used.
  • the weight is calculated from the following formulas (IV), (V), and (VI).
  • the Hansen solubility parameter ( ⁇ Dp, ⁇ Pp, ⁇ Hp) of the vinyl chloride resin composition (A) is calculated using the fraction, and the solubility index (Ra) calculated from the following formula (VII) is 7.5 or less.
  • x indicates the number of copies of the vinyl chloride resin added
  • y indicates the total number of copies of the vinyl chloride resin composition
  • z indicates the addition of each compounding agent. Indicates the number of copies.
  • ⁇ D, ⁇ P and ⁇ H indicate the dispersion term, the polarity term and the hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is (MPa) 1/2 .
  • the vinyl chloride resin composition (A) should have excellent interfacial adhesiveness to the surface of the carbon fiber base material (B), that is, it should have high compatibility.
  • HSP Hansen solubility parameter
  • HSP Hansen solubility parameter
  • HSP represents the solubility in the three-dimensional space of the dispersion term ⁇ D, the polar term ⁇ P, and the hydrogen bond term ⁇ H.
  • the dispersion term ⁇ D indicates the effect due to the dispersion force
  • the polar term ⁇ P indicates the effect due to the dipole interdental force
  • the hydrogen bond term ⁇ H indicates the effect due to the hydrogen bond force.
  • the Hildebrand SP value ( ⁇ ) and the Hansen solubility parameter (HSP) are related by the following formula (VIII), and the SP value is the length of the vector of HSP with ⁇ D, ⁇ P, and ⁇ H as three components (totHSP). Corresponds to.
  • HSP is a better method in that it completely includes the information of Hildebrand SP value and can evaluate the solubility including the direction of the vector.
  • Hansen solubility parameter The definition and calculation of the Hansen solubility parameter can be found in Charles M. It is described in Hansen, Hansen Solubility Parameter: A Users Handbook (CRC Press, 2007).
  • HSP Hansen Solubility Parameters in Practice
  • the HSP of a certain solvent that was not used for measuring the HSP of the substance is ⁇ D, ⁇ P, ⁇ H
  • the points indicated by the coordinates are included inside the solubility sphere of the substance. If so, the solvent is considered to dissolve the above substances.
  • the coordinate point is outside the solubility sphere of the substance, it is considered that this solvent cannot dissolve the substance.
  • a carbon material that is insoluble in a general solvent is also a target substance, but in the latter case, the HSP is measured not by its solubility but by the dispersion of the carbon material and the degree of aggregation and sedimentation. Is calculated.
  • the following technical papers are referred to. C. M. Hansen, A. L. Smith, Using Hansen solubility parameters to correlate Solubility of C60 fullerene in organic solvents and carbon (42, pp1591-1597).
  • the distance (Ra) between HSPs in the HSP space is defined by the following mathematical formula (IX), which is a dissolution index of whether or not the two molecules are compatible.
  • ⁇ D1 and ⁇ D2 represent the dispersion terms of two specific molecules in the Hansen solubility parameter.
  • ⁇ P and ⁇ H each represent the polar term and the hydrogen bond term, respectively. The units are both. (MPa) 1/2 .)
  • the compatibility between the vinyl chloride resin composition (A) and the carbon fiber base material (B) is a target, but the present inventors consider vinyl chloride. Since the based resin composition (A) contains a large amount of various additives while containing the vinyl chloride resin (p) as the main component, compatibility between each additive (i) used and the vinyl chloride resin (p) used, It is important to pay attention to the compatibility between each additive (i) used and the carbon fiber base material (B), and the property (2) was invented.
  • the characteristic (2) the Hansen solubility parameter ( ⁇ Di, ⁇ Pi, ⁇ Hi) of each additive (i) contained in the vinyl chloride resin composition (A) and the vinyl chloride resin (p) used.
  • the Hansen solubility parameter ( ⁇ Dp, ⁇ Pp, ⁇ Hp) the dissolution index (Ra (pi)) calculated from the above formula (I), the Hansen solubility parameter ( ⁇ Di, ⁇ Pi, ⁇ Hi), and carbon.
  • Ra is preferably 7.5 or less. Further, Ra is more preferably 7.4 or less. When Ra is 7.5 or less, the influence of the additive (i) exuding near the surface of the vinyl chloride resin composition (A) can be reduced, and as a result, the vinyl chloride resin composition (A) and The interfacial adhesiveness of the carbon fiber base material (B) shall be sufficient.
  • the vinyl chloride resin used in the vinyl chloride resin composition (A) is not particularly limited, and in addition to the homopolymer of the vinyl chloride monomer, for example, (1) vinyl chloride monomer and vinyl chloride monomer. Copolymers with polymerizable monomers other than, (2) Graft copolymers obtained by grafting a vinyl chloride monomer or vinyl chloride resin on a polymer other than vinyl chloride resin, (3) Vinyl chloride type Examples thereof include a polymer alloy in which a vinyl chloride monomer or a vinyl chloride resin is mixed with a polymer other than the resin. Further, a chlorinated vinyl chloride resin obtained by chlorinating these vinyl chloride resins can also be mentioned. These vinyl chloride resins may be used alone or in combination of two or more.
  • the polymerizable monomer in the copolymer of the vinyl chloride monomer and the polymerizable monomer other than the vinyl chloride monomer is not particularly limited, but is an ⁇ -olefin having 2 or more and 16 or less carbon atoms (1).
  • ethylene, propylene, and butylene vinyl esters of aliphatic carboxylic acids having 2 or more and 16 or less carbon atoms (for example, vinyl acetate and vinyl propionate); alkyl vinyl ethers having 2 or more and 16 or less carbon atoms (for example, butyl vinyl ether and Cetyl vinyl ether); alkyl (meth) acrylates with 1 to 16 carbon atoms (eg, methyl (meth) acrylate, ethyl (meth) acrylate and butyl acrylate); aryl (meth) acrylate (eg, phenylmethacrylate); aromatic vinyl (For example, styrene and ⁇ -substituted styrene (eg, ⁇ -methylstyrene)); vinyl halides (eg, vinylidene chloride and vinylidene fluoride); and N-substituted maleimides (N-phenylmaleimide and N-cyclo
  • the polymer that gives the graft copolymer together with the vinyl chloride monomer or vinyl chloride resin is any polymer that can be graft-polymerized to the vinyl chloride monomer, regardless of whether it is a homopolymer or a copolymer. Things are also included.
  • a copolymer of ⁇ -olefin and vinyl ester eg, ethylene-vinyl acetate copolymer
  • a copolymer of ⁇ -olefin, vinyl ester and carbon monoxide eg, ethylene-vinyl acetate-monooxide
  • Carbon copolymer copolymer of ⁇ -olefin and alkyl (meth) acrylate (eg, ethylene-methylmethacrylate copolymer and ethylene-ethylacrylate copolymer); with ⁇ -olefin and alkyl (meth) acrylate Copolymer with carbon monoxide (eg, ethylene-butyl acrylate-carbon monoxide copolymer); Copolymer of two or more different ⁇ -olefins (eg, ethylene-propylene copolymer); Unsaturated nitrile Copolymers of and diene (eg, acrylonitrile-butadiene copolymers); polyurethanes; and chlorinated polyolefins (eg, chlorinated polyethylene and chlorinated polypropylene).
  • ⁇ -olefin and alkyl (meth) acrylate eg, ethylene-methylmethacrylate copolymer and ethylene-eth
  • thermosetting resin examples include epoxy resin, phenol resin, vinyl ester resin, benzoxazine resin, polyimide resin, oxetane resin, maleimide resin, unsaturated polyester resin, urea resin, and melamine resin.
  • thermoplastic resin examples include chlorinated resins such as chlorinated vinyl chloride and chlorinated polyethylene, polyolefin resins such as polyethylene resin and polypropylene resin, aliphatic polyamide resins such as polyamide 66, polyamide 6, and polyamide 12, and acid components.
  • aromatic polyester resin such as polyethylene terephthalate resin (PET) and polybutylene terephthalate resin (PBT), polycarbonate resin, polystyrene resin (polystyrene resin, AS resin, ABS) Resins, etc.), or aliphatic polyester-based resins such as polylactic acid-based resins.
  • PET polyethylene terephthalate resin
  • PBT polybutylene terephthalate resin
  • polycarbonate resin polystyrene resin (polystyrene resin, AS resin, ABS) Resins, etc.)
  • aliphatic polyester-based resins such as polylactic acid-based resins.
  • the compounding ratio of the vinyl chloride resin to the entire matrix resin may be 1 to 95% by mass, preferably 5 to 80% by mass, and further preferably 10 to 70% by mass. Within the range, effects such as improvement of heat resistance, strength, impact resistance, and flame retardancy can be obtained according to the performance of the matrix resin.
  • the average degree of polymerization of the vinyl chloride resin (p) is not particularly limited, but is preferably 400 or more and 1500 or less, and more preferably 600 or more and 1000 or less. When the average degree of polymerization is at least the above lower limit value, it is easy to obtain preferable mechanical properties (for example, toughness) of the vinyl chloride resin. When the average degree of polymerization is not more than the above upper limit value, it is easy to make the melt viscosity when impregnating the carbon fiber base material (B) suitable.
  • the vinyl chloride resin used in the vinyl chloride resin composition (C) is more average than the vinyl chloride resin used in the vinyl chloride resin composition (A) in order to improve the mechanical properties of the carbon fiber reinforced composite material.
  • the degree of polymerization can be increased.
  • the vinyl chloride resin used in the vinyl chloride resin composition (C) preferably has an average degree of polymerization of 600 or more, and more preferably 800 or more and 2000 or less.
  • the vinyl chloride resin used in the vinyl chloride resin composition (C) is mainly composed of a chlorinated vinyl chloride resin. It is good to select the one to be.
  • a chlorinated vinyl chloride resin composition has a higher melt viscosity than a vinyl chloride resin composition and is easily thermally decomposed, so that it is difficult to impregnate carbon fibers. Therefore, when a chlorinated vinyl chloride resin composition is used for the vinyl chloride resin composition (A), it is necessary to use a chlorinated vinyl chloride resin having a low degree of polymerization or increase the amount of additives added. , There is a risk of impairing mechanical properties.
  • At least a part of the surface of the composite material provided with the carbon fiber equipment (B) impregnated with the vinyl chloride resin composition (A) is a chlorinated vinyl chloride resin composition containing a chlorinated vinyl chloride resin ( By coating with C), CFRP that maintains the expected heat resistance and flame retardancy and mechanical properties can be obtained.
  • the degree of chlorination of the vinyl chloride resin used in the vinyl chloride resin compositions (A) and (C) is, for example, 56% by mass to 72% by mass.
  • the vinyl chloride-based resin composition is a vinyl chloride-based resin having a degree of chlorination of about 56.8% by mass, the viscosity of the carbon fiber base material (B) having a good impregnation property can be maintained. Further, when the degree of chlorination is about 60% by mass to 72% by mass, improvement in heat resistance and flame retardancy is expected.
  • the degree of chlorination of the vinyl chloride resin used in the vinyl chloride resin composition (C) for coating is determined by the vinyl chloride resin composition. It is preferably higher than the degree of chlorination of the vinyl chloride resin used in (A).
  • the chlorine content can be measured in accordance with JIS K7229.
  • the vinyl chloride resin composition (C) contains a vinyl chloride resin foam.
  • a foam can be obtained by chemical foaming by blending a foaming agent or physical foaming by injecting nitrogen.
  • these means are used for the resin to be impregnated in carbon fibers, bubbles are contained in the fibers. There is a risk of impairing the mechanical properties of the obtained CFRP.
  • a vinyl chloride resin composition (A) containing a vinyl chloride resin that is not a foam is used, and the outer layer thereof is a vinyl chloride resin composition containing a vinyl chloride resin foam.
  • CFRP having the expected light weight and soundproofing properties and mechanical properties can be obtained.
  • additives added to the vinyl chloride resin composition (A) include heat stabilizers, lubricants, processing aids, impact modifiers, heat resistance improvers, antioxidants, ultraviolet absorbers, antistatic agents, and light. Stabilizers, fillers, pigments, flame retardants, plasticizers and the like can be mentioned. Only one kind of the additive may be used, or two or more kinds may be used in combination.
  • the heat stabilizer is not particularly limited, and examples thereof include a heat stabilizer and a heat stabilization aid.
  • the heat stabilizer is not particularly limited, and examples thereof include an organotin-based stabilizer, a lead-based stabilizer, a calcium-zinc-based stabilizer, a barium-zinc-based stabilizer, and a barium-cadmium-based stabilizer.
  • organic tin stabilizer examples include dibutyl tin mercapto, dioctyl tin mercapto, dimethyl tin mercapto, dibutyl tin mercapto, dibutyl tin malate, dibutyl tin malate polymer, dioctyl tin malate, dioctyl tin malate polymer, dibutyl tin laurate, and the like. Examples thereof include dibutyltin laurate polymer. Only one type of the stabilizer may be used, or two or more types may be used in combination.
  • the heat stabilizing aid is not particularly limited, and examples thereof include epoxidized soybean oil, phosphoric acid ester, polyol, hydrotalcite, and zeolite.
  • the heat stabilization aid only one kind may be used, or two or more kinds may be used in combination.
  • the content of the heat stabilizer contained in the vinyl chloride resin composition (A) is preferably 0.1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin, and is preferably 10 parts by mass. It is more preferably 5 parts by mass or less, and further preferably 5 parts by mass or less.
  • the amount is small, the influence of exudation near the interface of the continuous carbon fiber base material (B) can be reduced, and deterioration of physical properties such as bending strength of the carbon fiber reinforced composite material can be suppressed.
  • the lubricant examples include an internal lubricant and an external lubricant.
  • the internal lubricant is used for the purpose of lowering the flow viscosity of the molten resin during molding and preventing frictional heat generation.
  • the internal lubricant is not particularly limited, and examples thereof include butyl stearate, lauryl alcohol, stearyl alcohol, epoxy soybean oil, glycerin monostearate, stearic acid, and bisamide. Only one kind of the above-mentioned lubricant may be used, or two or more kinds may be used in combination.
  • the content of the internal lubricant contained in the vinyl chloride resin composition (A) is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, based on 100 parts by mass of the vinyl chloride resin. It is more preferably 5 parts by mass or less.
  • the amount is small, the influence of exudation near the interface of the continuous carbon fiber base material (B) can be reduced, and deterioration of physical properties such as bending strength of the carbon fiber reinforced composite material can be suppressed.
  • the external lubricant is used for the purpose of enhancing the sliding effect between the molten resin and the metal surface during molding.
  • the external lubricant is not particularly limited, and examples thereof include paraffin wax, polyolefin wax, ester wax, and montanic acid wax. Only one kind of the above-mentioned lubricant may be used, or two or more kinds may be used in combination.
  • the processing aid is not particularly limited, and conventionally known processing aids can be used, and homopolymers or copolymers of alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, and butyl methacrylate, alkyl methacrylate, and methyl.
  • Copolymers with alkyl acrylates such as acrylates, ethyl acrylates and butyl acrylates, copolymers of alkyl methacrylates with aromatic vinyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene, alkyl methacrylates and acrylonitrile, methacrylonitrile.
  • Examples thereof include copolymers with vinyl cyanide compounds such as nitrile, and these can be used alone or in combination of two or more.
  • an alkyl acrylate-alkyl methacrylate copolymer having a weight average molecular weight of 100,000 to 2 million can be preferably used.
  • Specific examples thereof include an n-butyl acrylate-methyl methacrylate copolymer and a 2-ethylhexyl acrylate-methyl methacrylate-butyl methacrylate copolymer.
  • the processing aid only one kind may be used, or two or more kinds may be used in combination.
  • the impact modifier is not particularly limited, and a conventionally known impact modifier can be used without particular limitation.
  • the heat resistance improving agent is not particularly limited, and examples thereof include ⁇ -methylstyrene-based resins and N-phenylmaleimide-based resins. Only one kind of the heat resistance improving agent may be used, or two or more kinds thereof may be used in combination.
  • the antioxidant is not particularly limited, and a phenolic antioxidant such as 4,4'-butylidenebis- (6-t-butyl-3-methylphenol), tris (mixed mono and dinonylphenyl) phos.
  • a phenolic antioxidant such as 4,4'-butylidenebis- (6-t-butyl-3-methylphenol), tris (mixed mono and dinonylphenyl) phos.
  • examples thereof include phosphite-based antioxidants such as phyto, and thioether-based antioxidants such as distearylthiodipropionate.
  • phenolic antioxidants such as 4,4'-butylidenebis- (6-t-butyl-3-methylphenol), which has a low high-temperature decomposition inhibitory function, are particularly preferable. Only one type of the antioxidant may be used, or two or more types may be used in combination.
  • the ultraviolet absorber is not particularly limited, and examples thereof include a salicylic acid ester-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, and a cyanoacrylate-based ultraviolet absorber. Only one kind of the ultraviolet absorber may be used, or two or more kinds may be used in combination.
  • the antistatic agent is not particularly limited, and conventionally known antistatic agents can be used, and anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants and the like are used. I can do it.
  • Anionic surfactants include fatty acid salts, higher alcohol sulfates, liquid fatty oil sulfates, aliphatic amines, amide sulfates, dibasic fatty acid ester sulfates, fatty acid amide sulfonates, and alkylaryls. Examples thereof include sulfonates, formalin-condensed naphthalene sulfonates, and mixtures thereof.
  • Examples of the cationic surfactant include aliphatic amine salts, quaternary ammonium salts, alkylpyridium salts and mixtures thereof.
  • Examples of the nonionic surfactant include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenol esters, polyoxyethylene alkyl esters, sorbitan alkyl esters, polyoxyethylene sorbitan alkyl esters, and mixtures thereof. be able to. It may be a mixture of a nonionic surfactant and an anionic surfactant or a cationic surfactant.
  • amphoteric surfactant examples include an imidazoline type, a higher alkylamino type (betaine type), a sulfate ester, a phosphoric acid ester type, and a sulfonic acid type. Only one type of antistatic agent may be used, or two or more types may be used in combination.
  • the light stabilizer is not particularly limited, and examples thereof include hindered amine-based light stabilizers. Only one kind of the light stabilizer may be used, or two or more kinds thereof may be used in combination.
  • the filler is not particularly limited, and carbonates such as talc, heavy calcium carbonate, precipitated calcium carbonate, and collagen carbonate, aluminum hydroxide, magnesium hydroxide, titanium oxide, clay, mica, wollastonite, and zeolite. , Silica, zinc oxide, magnesium oxide, carbon black, graphite, glass beads, glass fibers, carbon fibers, metal fibers and other inorganic fibers, as well as organic fibers such as polyamide and the like. Only one kind of the filler may be used, or two or more kinds thereof may be used in combination.
  • the pigment is not particularly limited, and examples thereof include organic pigments and inorganic pigments.
  • the organic pigment include an azo-based organic pigment, a phthalocyanine-based organic pigment, a slene-based organic pigment, and a dye lake-based organic pigment.
  • the inorganic pigments include oxide-based inorganic pigments, molybdenum chromate-based inorganic pigments, sulfide / selenium-based inorganic pigments, and ferrosinized inorganic pigments. Only one kind of the above pigment may be used, or two or more kinds may be used in combination.
  • the flame retardant examples include metal hydroxides, brominated compounds, triazine ring-containing compounds, zinc compounds, phosphorus compounds, halogen flame retardants, silicone flame retardants, intomescent flame retardants, antimony oxide and the like. , These can be used alone or in combination of two or more.
  • the plasticizer may be added for the purpose of improving workability during molding.
  • the plasticizer is not particularly limited, and conventionally known plasticizers can be used.
  • phthalate ester plasticizers and non-phthalate plasticizers can be used.
  • the phthalate ester plasticizer include dioctyl phthalate (DOP).
  • DOP dioctyl phthalate
  • non-phthalic acid-based plasticizers include trimellitic acid-based compounds, phosphoric acid-based compounds, adipic acid-based compounds, citric acid-based compounds, ether-based compounds, polyester-based compounds, soybean oil-based compounds, and cyclohexanedicarboxylate. Examples include system compounds and terephthalic acid compounds. Only one type of the plasticizer may be used, or two or more types may be used in combination.
  • the total content of the additive (i) contained in the vinyl chloride resin composition (A) is not particularly specified, but the weight fraction C (i) of each additive is included as a component of the formula (III). As can be seen from the above, it is preferable that the amount is small as long as there is no problem in manufacturing.
  • the total content of the additive (i) is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and 50 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. It is more preferably parts or less, more preferably 20 parts by mass or less, particularly preferably 15 parts by mass or less, and most preferably 10 parts by mass or less.
  • a small amount can reduce the influence of exudation near the interface of the carbon fiber base material (B).
  • the content of the plasticizer contained in the vinyl chloride resin composition (A) is preferably small because if it is contained in a large amount in the vinyl chloride resin composition (A), the mechanical strength of CFRP may be impaired.
  • the content of the plasticizer is preferably 30 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 5 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin. Yes, more preferably 1 part by mass or less, particularly preferably 0.1 part by mass or less, and most preferably the plasticizer is not contained.
  • a vinyl chloride resin containing a chlorinated vinyl chloride resin as a main component.
  • a chlorinated vinyl chloride resin composition has a higher melt viscosity than a vinyl chloride resin composition and is easily thermally decomposed, so that it is difficult to impregnate carbon fibers. Therefore, when a chlorinated vinyl chloride resin is used for the vinyl chloride resin composition (A), it is possible to use a chlorinated vinyl chloride resin having a low degree of polymerization or increase the amount of the additive added.
  • CFRP that maintains the expected heat resistance and flame retardancy and mechanical properties can be obtained.
  • Carbon fiber is a fiber composed of a material containing carbon. It is a concept that includes the case of using it together with other fibers and the case of using it alone.
  • the carbon fiber base material is a carbon fiber woven fabric in which a carbon fiber bundle composed of a plurality of carbon fibers is used as a warp bundle and a weft bundle.
  • Carbon fiber is a concept including short carbon fiber, long carbon fiber, and continuous carbon fiber.
  • the short carbon fiber is a carbon fiber having a fiber length of 1 mm or less.
  • the long carbon fiber is a carbon fiber having a fiber length of 5 cm or less.
  • Continuous carbon fibers are carbon fibers other than short fibers and long fibers.
  • the material of the carbon fiber is not particularly limited as long as it is a carbon fiber such as PAN (polyacrylonitrile) carbon fiber and pitch carbon fiber, and other fibers; metal fiber such as steel fiber; glass fiber, ceramic fiber, etc.
  • Inorganic fibers such as boron fiber; and organic fibers such as aramid, polyester, polyethylene, nylon, vinylon, polyacetal, polyparaphenylene benzoxazole, and high-strength polypropylene; used in combination with natural fibers such as kenaf and hemp. May be done. From the viewpoint of specific strength, it is preferable that it is composed of only carbon fibers.
  • carbon fiber used in the present invention short carbon fiber, long carbon fiber, and continuous carbon fiber can be appropriately used, but continuous carbon fiber is preferable from the viewpoint of the mechanical properties of the obtained CFRP.
  • the form of the fiber is not particularly limited as long as it is a continuous fiber, for example, a form in which the toe and the toe directions are aligned in one direction and held by a weft auxiliary thread, a form in which the fiber is used as a warp and a woven fabric (cross); Examples thereof include a form of a multi-axial warp knit in which a plurality of fiber sheets in which the directions of the above are aligned in one direction are woven and fastened with auxiliary threads so that the directions of the fibers are different from each other.
  • the carbon fiber base material (B) can be obtained by producing the carbon fiber by each production method based on the above-mentioned form.
  • Each carbon fiber is generally a single fiber, and a plurality of carbon fibers gather to form a carbon fiber bundle.
  • the number of carbon fibers constituting each carbon fiber bundle is preferably 1,000 to 50,000, more preferably 2,000 to 40,000, and even more preferably 5,000 to 25,000.
  • the fiber diameter of the filament is preferably 3 ⁇ m or more, and preferably 12 ⁇ m or less. Sufficient strength can be obtained when the fiber diameter is 3 ⁇ m or more, and for example, when the filament causes lateral movement on the surface of a roll, spool, etc. in various processing processes, it suppresses cutting or fluffing. it can.
  • the upper limit is usually about 12 ⁇ m because carbon fibers can be easily produced.
  • the plurality of carbon fiber bundles are not particularly limited, but are preferably in the form of a sheet.
  • the basis weight of the sheet-shaped carbon fiber bundle is, for example, preferably 100 g / m 2 or more and 600 g / m 2 or less, and more preferably 150 g / m 2 or more and 500 g / m 2 or less. It is preferable that the basis weight is at least the above lower limit value because it is efficient when the obtained CFRP sheets are laminated and secondary processed, and at least the above upper limit value is easy to obtain impregnation property. It is preferable in that.
  • the carbon fiber base material (B) it is preferable to use a carbon fiber bundle that has been pre-spread (hereinafter, may be referred to as a spread carbon fiber bundle) for the purpose of facilitating impregnation with the resin.
  • the fiber opening step is not particularly limited, and examples thereof include a method of including spacer particles, a method of squeezing the fiber with a round bar, a method of using an air flow, a method of vibrating the fiber with ultrasonic waves, and the like.
  • a method of including spacer particles is preferable, and by widening the interfiber distance in this way, even if a high tension is applied to the carbon fiber at the manufacturing stage, the interfiber distance is preliminarily widened. , Resin impregnation becomes easy. Further, even if tension is applied to the fibers, the distance between the fibers is unlikely to be narrowed.
  • the spacer particles enter between the carbon fibers in each fiber bundle, thereby opening the carbon fiber bundle.
  • the spacer particles that have entered between the carbon fibers may be crosslinked between the carbon fibers.
  • cross-linking means having a structure in which spacer particles that have entered between carbon fibers are arranged so as to bridge at least two carbon fibers.
  • the spacer particles may be adhered to carbon fibers via carbon allotropes existing on the particle surface.
  • the spacer particles are not particularly limited, but may contain, for example, carbon allotropes.
  • carbon allotropes include, for example, amorphous carbon, graphite, diamond and the like.
  • Amorphous carbon is mentioned as an amorphous carbon. Among these, amorphous carbon is preferable, and amorphous carbon is more preferable.
  • the carbon allotrope is preferably derived from the carbon of the thermosetting resin, that is, the carbon allotrope is preferably obtained by carbonizing the thermosetting resin.
  • the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, oxazine resin, etc., and strong amorphous carbon by carbonization treatment at low temperature.
  • Oxazine-based resin is preferable from the viewpoint of forming a film of.
  • the oxazine-based resin include benzoxazine resin and naphthoxazine resin.
  • the naphthoxazine resin is preferable from the viewpoint that it is easily carbonized at a lower temperature, and it is difficult to be excessively softened even under the temperature and pressure conditions at the time of CFRP production of the present invention. Therefore, a sufficient distance between fibers is secured, and the impregnation property of the resin is further improved.
  • the spacer particles may be carbon allotrope particles composed of carbon allotropes, but may be film particles containing core particles and carbon allotropes that coat the core particles.
  • the spacer particles are preferably coated particles from the viewpoint of resin impregnation.
  • the entire surface of the coated particles may be coated with a carbon allotrope, or a part of the surface thereof may be coated with a carbon allotrope.
  • the core particles can be used without particular limitation as long as they are not deformed or destroyed by the pressure and temperature when the carbon fiber bundle is impregnated with the thermoplastic resin.
  • inorganic particles, organic particles and the like can be used. it can.
  • inorganic particles or organic particles may be used alone, or both may be used in combination.
  • the average particle size of the spacer particles is preferably 1 to 20 ⁇ m. By using the spacer particles having a size in this range, the spacer particles can be easily inserted between the carbon fibers, and the carbon fiber bundle can be opened more widely.
  • the more preferable average particle size of the spacer particles is 2 to 20 ⁇ m, and particularly preferably 4 to 15 ⁇ m.
  • the total amount of spacer particles adhered to the spread-treated carbon fiber bundle is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, based on the spread carbon fiber bundle.
  • the carbon fiber bundle can be appropriately opened. Further, by setting the adhesion amount to the upper limit value or less, it is possible to prevent the spread carbon fiber bundle from containing spacer particles more than necessary and deteriorating the mechanical properties.
  • the carbon fiber reinforced composite material according to the present invention can be produced by a method including (1) a base material preparation step and (2) a resin impregnation step.
  • a base material preparation step a base material preparation step
  • a resin impregnation step a resin impregnation step
  • the base material preparation step is a step of preparing the carbon fiber base material (B) described above.
  • the carbon fiber base material (B) is as described above, and for example, an appropriate carbon fiber material, form, and basis weight can be selected. Further, a woven fabric having a desired structure may be produced by using a commercially available carbon fiber bundle.
  • the carbon fiber base material preparation step preferably includes a step of opening the carbon fiber bundle.
  • the step of opening the carbon fiber bundle will be described.
  • the carbon fiber bundle may include spacer particles arranged between the carbon fibers. By arranging the spacer particles between the carbon fibers, the carbon fiber bundle is opened and the thermoplastic resin can be sufficiently impregnated into the carbon fiber woven fabric.
  • the fiber bundles are laterally opened, the pitch width of the woven fabric is increased, and the design of the fiber-reinforced composite material may be deteriorated.
  • the carbon fiber woven fabric composed of carbon fiber bundles having spacer particles on the surface of the carbon fiber as described above is not physically opened, it is possible to suppress deterioration of the design of the fiber reinforced composite material. It is considered that the impregnation property of the thermoplastic resin can be improved because the carbon fiber bundles are sufficiently opened by the spacer particles.
  • the spread carbon fiber bundle can be produced by bringing the carbon fiber bundle into contact with the spread fiber impregnating liquid and heating it. After opening the carbon fiber bundle, the carbon fiber woven fabric may be obtained by using the opened defibrated carbon fiber bundle, but after producing the carbon fiber woven fabric using the carbon fiber bundle, the carbon fiber bundle is opened by the above method. It is preferable to fiber.
  • the timing of contacting the carbon fiber bundle with the opening fiber impregnating liquid may be such that the carbon fiber bundle is brought into contact with the opening fiber impregnating liquid in advance before the carbon fiber woven fabric is produced, and the carbon fiber bundle is used as a warp yarn bundle and a weft yarn bundle.
  • the carbon fiber woven fabric may be woven and the obtained carbon fiber woven fabric may be brought into contact with the opening fiber impregnating liquid to open the carbon fiber bundle.
  • the contact of the opening fiber impregnating liquid may be performed by impregnating the carbon fiber bundle with the opening fiber impregnating liquid.
  • the spread fiber impregnating liquid may be sprayed or applied to the carbon fiber bundle, or the carbon fiber bundle may be immersed in the fiber spread impregnated liquid.
  • the resin particles enter the gaps between the carbon fibers of the carbon fiber bundles, whereby the carbon fiber bundles can be opened.
  • the fiber-spreading impregnated liquid used for opening the carbon fiber bundle contains a monomer (hereinafter, also simply referred to as "monomer") capable of forming a thermosetting resin.
  • the monomer reacts to become a thermosetting resin.
  • the thermosetting resin is preferably an oxazine-based resin as described above, but when the thermosetting resin is an oxazine-based resin, the monomers are, for example, phenols, formaldehyde, and amines.
  • a naphthoxazine resin is preferable.
  • Resin impregnation step (2) is a step of impregnating the carbon fiber base material (B) prepared above with the vinyl chloride resin composition (A).
  • the carbon fiber reinforced composite material according to the present invention can be produced by impregnating the carbon fiber woven fabric composed of the above-mentioned spread carbon fiber bundle with the vinyl chloride resin composition (A).
  • a film made of a vinyl chloride resin composition (A) is laminated on a carbon fiber base material (B) composed of open fiber carbon fiber bundles and heat-press molded, or on the carbon fiber base material (B).
  • the carbon fiber base material (B) can be impregnated with the vinyl chloride resin composition (A) by performing melt extrusion molding of the vinyl chloride resin composition (A).
  • a plurality of carbon fiber base materials (B) impregnated with the vinyl chloride resin composition (A) may be laminated, and at this time, the structure direction of each carbon fiber woven fabric is at a constant angle.
  • Extrusion molding or press molding can be used for the hot press, and a carbon fiber reinforced composite material having a desired shape can be obtained by using a molding die.
  • the temperature at which the hot press molding is performed can be set to a temperature higher than the temperature at which the vinyl chloride resin composition (A) to be used softens or melts.
  • the carbon fiber reinforced composite material according to the present invention has good bending strength.
  • the bending strength of the three-point bending test is preferably 300 MPa or more, more preferably 400 MPa or more, and 500 MPa or more. It is more preferable to have.
  • the bending strength is at least the above lower limit value, it can be suitably used in applications requiring high strength such as aircraft structural members, wind turbine blades, and automobile outer panels.
  • the three-point bending test conforms to JIS K 7074, and the distance between fulcrums (L) is (L) for a test piece having a length (l) of 40 ⁇ 1 mm, a width (b) of 15 ⁇ 0.2 mm, and a thickness of h. Is a measured value (MPa) with 40 ⁇ hmm.
  • the jig indenter radius of the bending test was 5 mm, and the indenter width was 2 mm.
  • Vf 100 x carbon fiber thickness (mm) ⁇ carbon fiber reinforced composite material thickness (mm)
  • ⁇ Test Example 1> ⁇ Making resin film> Vinyl chloride resin 1 (manufactured by Tokuyama Sekisui Kogyo, SL-P40, degree of polymerization of about 400) was dissolved in tetrahydrofuran so as to have a solution concentration of about 10%. Subsequently, 2 parts by mass of a heat stabilizer 1 (methyl tin mercapto, liquid stabilizer, AT5300 manufactured by Nitto Kasei Co., Ltd.) was added as an additive to 100 parts by mass of the vinyl chloride resin 1 to the solution. The mixture was stirred to obtain a vinyl chloride resin composition (A).
  • a heat stabilizer 1 methyl tin mercapto, liquid stabilizer, AT5300 manufactured by Nitto Kasei Co., Ltd.
  • the obtained vinyl chloride resin composition (A) was coated on a glass plate with a solution using a glass rod, and allowed to stand to volatilize the solvent to obtain a resin film. After the obtained resin film was peeled off from the glass plate, it was further dried in a traveling oven at 60 ° C. for about 3 hours to obtain a resin film for producing CFRP.
  • ⁇ Creation of carbon fiber base material (B)> A monomer consisting of 10 parts by mass of 1,5-dihydroxynaphthalene, 4 parts by mass of a 40% by mass methylamine aqueous solution, and 8 parts by mass of formalin (formaldehyde content: 37% by mass), and ethanol water (ethanol content: ethanol content:) as a solvent. 50 parts by mass) 800 parts by mass was uniformly mixed to prepare a monomer solution prepared by dissolving the monomer.
  • a carbon fiber woven fabric composed of PAN-based carbon fiber bundles (number of carbon fibers: 3000, average diameter of carbon fibers: 7 ⁇ m, grain: 200 g / m 2 , thickness: 0.19 mm, plain weave) was prepared.
  • the carbon fiber woven fabric was immersed in the above-mentioned opening fiber impregnating solution, pulled up, and then heated at 200 ° C. for 2 minutes. By this heating, the polymerization reaction of the naphthoxazine resin and carbonization occurred, and amorphous carbon derived from the naphthoxazine resin was produced, and a woven fabric of open fiber bundles was obtained.
  • the total amount of organic particles and carbon allotropes attached to the spread carbon fiber bundle was 1% by mass. This spread carbon fiber bundle was used as a carbon fiber base material (B).
  • Example 1 ⁇ Press molding of CFRP>
  • the carbon fiber base material (B) obtained above is sandwiched between the two resin films obtained above from above and below, pressed stepwise from 0 to 6 MPa at 200 ° C., and pressed for a total of 10 minutes. Obtained CFRP.
  • the obtained CFRP was used as a sample "Fruit-1" for physical property evaluation.
  • Example 2 CFRP was obtained by the same process as in Example 1 except that the amount of the heat stabilizer 1 was increased to 10 parts by mass in the preparation of the resin film. The obtained CFRP was used as a sample “Actual-2” for physical property evaluation.
  • Example 3 CFRP was obtained by the same process as in Example 1 except that the vinyl chloride resin 1 was changed to the vinyl chloride resin 2 (manufactured by Tokuyama Sekisui Kogyo Co., Ltd., TS-640M, degree of polymerization of about 640) in the preparation of the resin film.
  • the obtained CFRP was used as a carbon fiber base material sample "Actual-3" for physical property evaluation.
  • Example 4 CFRP was obtained by the same process as in Example 1 except that 5 parts by mass of external lubricant 1 (HIWAX220RKT polyethylene wax manufactured by Mitsui Chemicals, Inc.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-4" for physical property evaluation.
  • external lubricant 1 HIWAX220RKT polyethylene wax manufactured by Mitsui Chemicals, Inc.
  • Example 5 CFRP was obtained by the same process as in Example 1 except that 10 parts by mass of internal lubricant 1 (LOXIOL G60 glycerin monostearate manufactured by Emery Oleo Chemical Co., Ltd.) was added in the preparation of the resin film.
  • the obtained CFRP was used as a carbon fiber base material sample "Fruit-5" for physical property evaluation.
  • Example 6 CFRP was obtained by the same process as in Example 1 except that 0.1 part by mass of plasticizer 1 (dioctylphthalate manufactured by J-PLUS Co., Ltd.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-6" for physical property evaluation.
  • plasticizer 1 dioctylphthalate manufactured by J-PLUS Co., Ltd.
  • Example 7 CFRP was obtained by the same process as in Example 1 except that the heat stabilizer 1 was changed to 0.5 parts by mass in the preparation of the resin film. The obtained CFRP was used as a sample for physical property evaluation. The obtained CFRP was used as a sample "Fruit-7" for physical property evaluation.
  • Example 8 CFRP was obtained by the same process as in Example 1 except that the amount of the heat stabilizer 1 was increased to 20 parts by mass in the preparation of the resin film. The obtained CFRP was used as a sample "Fruit-8" for physical property evaluation.
  • Example 9 CFRP was obtained by the same process as in Example 1 except that 0.5 parts by mass of external lubricant 1 (HIWAX220RKT polyethylene wax manufactured by Mitsui Chemicals, Inc.) was added in the preparation of the resin film.
  • the obtained CFRP was used as a carbon fiber base material sample "Fruit-9" for physical property evaluation.
  • Example 10 CFRP was obtained by the same process as in Example 1 except that 2 parts by mass of the external lubricant 1 was added in the preparation of the resin film.
  • the obtained CFRP was used as a carbon fiber base material sample "Fruit-10" for physical property evaluation.
  • Example 11 CFRP was obtained by the same process as in Example 1 except that 5 parts by mass of external lubricant 2 (AC316 polyethylene oxide wax manufactured by Honeywell Co., Ltd.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-11" for physical property evaluation.
  • external lubricant 2 AC316 polyethylene oxide wax manufactured by Honeywell Co., Ltd.
  • Example 12 CFRP was obtained by the same process as in Example 1 except that 5 parts by mass of external lubricant 3 (SG22 ester wax manufactured by RIKEN Vitamin Co., Ltd.) was added in the preparation of the resin film.
  • the obtained CFRP was used as a carbon fiber base material sample "Fruit-12" for physical property evaluation.
  • Example 13 CFRP was obtained by the same process as in Example 1 except that 30 parts by mass of plasticizer 1 (dioctylphthalate manufactured by J-PLUS Co., Ltd.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-13" for physical property evaluation.
  • plasticizer 1 dioctylphthalate manufactured by J-PLUS Co., Ltd.
  • CFRP was obtained by the same process as in Example 1 except that the vinyl chloride resin 1 was changed to the vinyl chloride resin 3 (TS-1000R manufactured by Tokuyama Sekisui Kogyo Co., Ltd., degree of polymerization of about 1000) in the preparation of the resin film.
  • the obtained CFRP was used as a carbon fiber base material sample “ratio-2” for physical property evaluation.
  • the complex viscosity ⁇ of the vinyl chloride resin composition (A) used for producing the resin film was measured by the following method. The measurement results are shown in Tables 1 and 2.
  • the resin film is cut into a size of 30 (mm) ⁇ 90 (mm), weighed to about 5 g, heat-press molded at 170 ° C. for about 3 minutes, and cooled for about 1 minute.
  • a sample for measuring viscosity having a thickness of 1 mm was prepared.
  • a viscoelasticity measuring device manufactured by MCR102 Antonio Par was used for the measurement, and the diameter of the parallel plate was measured under the conditions of 25 mm, the parallel distance of 1 mm, the temperature of 200 ° C., and the angular frequency of 10 Hz, and the complex viscosity ⁇ was calculated.
  • a resin film (II) for preparing CFRP was prepared by the same process as the resin film prepared in Example 3 of Test Example 1 above.
  • ⁇ Making resin film (III)> The same applies to the preparation of the resin film (I), except that a chlorinated vinyl chloride resin (manufactured by Tokuyama Sekisui Kogyo, HA-05K, degree of polymerization of about 360, degree of chlorination of about 67%) is used instead of the vinyl chloride resin 1.
  • a resin film (III) for making CFRP was prepared by the process.
  • a resin film (V) for preparing CFRP was prepared by the same process as the resin film prepared in Comparative Example 2 of Test Example 1.
  • the carbon fiber base material (B) was prepared by the same process as the preparation of the carbon fiber base material (B) of Test Example 1 above.
  • Example 14 ⁇ Press molding of CFRP>
  • the carbon fiber base material (B) obtained above is sandwiched between two resin films (I) on the upper side and one resin film (I) and one resin film (II) on the lower side from above and below, and 200 CFRP was obtained by stepwise pressurizing from 0 to 6 MPa at ° C. and pressing for a total of 10 minutes.
  • the obtained CFRP was used as a sample "Fruit-14" for physical property evaluation.
  • Example 15 CFRP was obtained by the same process as in Example 14 except that the amount of the heat stabilizer was increased to 10 parts by mass in the preparation of the resin film (I) and the resin film (II). The obtained CFRP was used as a sample "Fruit-15" for physical property evaluation.
  • Example 16 In the preparation of the resin film (I), CFRP was obtained by the same process as in Example 14 except that 10 parts by mass of an internal lubricant (LOXIOL G60 glycerin monostearate manufactured by Emery Oleo Chemical Co., Ltd.) was added as an additive. The obtained CFRP was used as a carbon fiber base material sample "Fruit-16" for physical property evaluation.
  • an internal lubricant LOXIOL G60 glycerin monostearate manufactured by Emery Oleo Chemical Co., Ltd.
  • Example 17 CFRP was obtained by the same process as in Example 14 except that 0.1 part by mass of a plasticizer (dioctyl phthalate manufactured by J-PLUS Co., Ltd.) was added as an additive in the preparation of the resin film (I). The obtained CFRP was used as a carbon fiber base material sample "Fruit-17" for physical property evaluation.
  • a plasticizer dioctyl phthalate manufactured by J-PLUS Co., Ltd.
  • Example 18 In the press molding of CFRP of Example 1, the carbon fiber base material (B) obtained above was used, one resin film (I) and one resin film (III) on the upper side, and a resin film (III) on the lower side.
  • CFRP was obtained by the same process as in Example 14 except that I) and the resin film (III) were sandwiched between one each from above and below.
  • the obtained CFRP was used as a carbon fiber base material sample "Fruit-18" for physical property evaluation.
  • Example 19 In the press molding of CFRP of Example 1, the carbon fiber base material (B) obtained above was used, one resin film (I) and one resin film (IV) on the upper side, and a resin film (IV) on the lower side.
  • CFRP was obtained by the same process as in Example 1 except that I) was sandwiched between two sheets from above and below. The obtained CFRP was used as a carbon fiber base material sample "Fruit-19" for physical property evaluation.
  • Table 3 shows the index S calculated by the same method as in Test 1 above.

Abstract

The present invention addresses the problem of providing a CFRP using a vinyl chloride-based resin composition having excellent impregnation ability into a carbon fiber base material. This carbon fiber reinforced composite material comprises a vinyl chloride-based resin composition (A) and a carbon fiber base material (B). The vinyl chloride-based resin composition (A) contains a vinyl chloride-based resin and one or more additives. The vinyl chloride-based resin composition (A) and the carbon fiber base material (B) satisfy the following property (1) and property (2). Property (1): The complex viscosity η of the vinyl chloride-based resin composition (A) at 200°C at a frequency of 10 Hz satisfies 1 < η < 1500. Property (2): A value S calculated using a solubility index (Ra(pi)), a solubility index (Ra(ci)), and the weight fractions C(i) of the additives (i) present in the vinyl chloride-based resin composition (A) is 150 or less, where the solubility index (Ra(pi)) is calculated using the Hansen solubility parameters of the respective additives (i) present in the vinyl chloride-based resin composition (A) and the Hansen solubility parameters of the vinyl chloride-based resin (p) used, and the solubility index (Ra(ci)) is calculated using the Hansen solubility parameters of the respective additives (i) and the Hansen solubility parameters of the carbon fiber base material (B).

Description

ポリ塩化ビニル系炭素繊維強化複合材料Polychlorinated carbon fiber reinforced composite material 関連出願の相互参照Cross-reference of related applications
 本願は、2019年3月25日に出願された日本国特許出願2019-057105号、日本国特許出願2019-057123号、日本国特許出願2019-057142号、および日本国特許出願2019-057171号、ならびに2019年8月28日に出願された日本国特許出願2019-155858号および日本国特許出願2019-155872号に基づく優先権を主張するものであり、これら全体の開示内容は参照されることにより、本明細書の開示の一部とされる。 This application is based on Japanese Patent Application No. 2019-057105, Japanese Patent Application No. 2019-057123, Japanese Patent Application No. 2019-057142, and Japanese Patent Application No. 2019-057171, filed on March 25, 2019. In addition, the priority is claimed based on Japanese Patent Application No. 2019-155858 and Japanese Patent Application No. 2019-155872 filed on August 28, 2019, and the entire disclosure contents thereof are by reference. , Be part of the disclosure herein.
本発明は、炭素繊維基材に塩化ビニル系樹脂組成物を含浸させた炭素繊維強化複合材料に関する。 The present invention relates to a carbon fiber reinforced composite material in which a carbon fiber base material is impregnated with a vinyl chloride resin composition.
 炭素繊維とマトリックス樹脂とからなる炭素繊維強化複合材料(以下、CFRPと略すことがある)は、比強度、比弾性率が高く、力学特性に優れ、耐候性、耐薬品性などの高機能特性を有する。そのため、CFRPは、航空機構造部材、風車のブレード、自動車外板や、一般産業用途においても注目され、その需要は年々高まりつつある。  A carbon fiber reinforced composite material composed of carbon fiber and a matrix resin (hereinafter, may be abbreviated as CFRP) has high specific strength and specific elastic modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. Has. Therefore, CFRP is attracting attention in aircraft structural members, wind turbine blades, automobile outer panels, and general industrial applications, and its demand is increasing year by year.
 マトリックス樹脂には、炭素繊維含浸時には低粘度であり、炭素繊維と優れた密着性を有するエポキシ樹脂で代表される熱硬化性樹脂が従来から知られている。近年では、マトリックス樹脂として、耐衝撃性の改善や高生産性への要求、リサイクル化への関心から、ポリオレフィンや、ポリアミド系ポリマーアロイなどの熱可塑性樹脂の開発が進められている。  As the matrix resin, a thermosetting resin typified by an epoxy resin which has a low viscosity when impregnated with carbon fibers and has excellent adhesion to carbon fibers has been conventionally known. In recent years, as matrix resins, thermoplastic resins such as polyolefins and polyamide-based polymer alloys have been developed due to the demand for improved impact resistance, high productivity, and interest in recycling.
 炭素繊維の優れた特性である軽量化と機械的強度を活かすためには、炭素繊維がマトリックス樹脂中に均一分散していることが重要であり、含浸時の樹脂粘度が低いことが必要である。しかしながら、一般に熱可塑性樹脂は高温条件では熱分解が進むことがあり、さらに溶融状態でも高粘度のものが多く、樹脂の含浸が不足するなどの課題を生じ易い。  In order to take advantage of the excellent properties of carbon fibers such as weight reduction and mechanical strength, it is important that the carbon fibers are uniformly dispersed in the matrix resin, and it is necessary that the resin viscosity at the time of impregnation is low. .. However, in general, thermoplastic resins may undergo thermal decomposition under high temperature conditions, and many of them have high viscosities even in a molten state, which tends to cause problems such as insufficient resin impregnation.
 一方で、炭素繊維の優れた機械特性を活かすには、炭素繊維とマトリックス樹脂の界面接着性が優れることも重要である。例えばプロピレン系樹脂においては、炭素繊維に対する界面接着性が悪く、単にプロピレン系樹脂と炭素繊維を溶融混練しても期待する機械物性を得ることは困難である。この問題点を改善する方法として、無水マレイン酸などをプロピレン系樹脂にグラフト結合させた変性プロピレン系樹脂が開発され、これを添加することによりプロピレン系樹脂と炭素繊維との界面接着性の改善が図られている。 On the other hand, in order to take advantage of the excellent mechanical properties of carbon fiber, it is also important that the interfacial adhesiveness between carbon fiber and matrix resin is excellent. For example, in a propylene-based resin, the interfacial adhesiveness to carbon fibers is poor, and it is difficult to obtain the expected mechanical properties even if the propylene-based resin and carbon fibers are simply melt-kneaded. As a method for improving this problem, a modified propylene resin in which maleic anhydride or the like is graft-bonded to a propylene resin has been developed, and by adding this, the interfacial adhesiveness between the propylene resin and the carbon fiber can be improved. It is planned.
 上記課題を材料面、プロセス面で解決することにより、ポリオレフィンやポリアミド系ポリマーアロイなどをマトリックス樹脂とするCFRPが実用化されているものの、依然として、マトリックス樹脂に依存する耐薬品性や難燃性の性能で劣ることが課題となる場合があった。  By solving the above problems in terms of materials and processes, CFRP using polyolefin or polyamide polymer alloy as a matrix resin has been put into practical use, but it still has chemical resistance and flame retardancy depending on the matrix resin. Inferior performance was sometimes a problem.
 汎用の熱可塑性樹脂である塩化ビニル樹脂は、難燃性、耐久性、耐油・耐薬品性に優れ、且つエチレン系樹脂やプロピレン系樹脂に比べてクリープ変形が極めて少なく、機械的強度も優れる材料であることが知られている。  Vinyl chloride resin, which is a general-purpose thermoplastic resin, is a material that has excellent flame retardancy, durability, oil resistance and chemical resistance, has extremely little creep deformation compared to ethylene-based resin and propylene-based resin, and has excellent mechanical strength. Is known to be.
特開2017-95537号公報JP-A-2017-95537
 しかしながら、塩化ビニル樹脂は、熱可塑性樹脂の中でも溶融粘度が大きく、且つ成形加工温度、すなわちCFRPの製造に関しては、炭素繊維へ塩化ビニル樹脂を含浸させる際の加工温度が塩化ビニル樹脂の熱分解温度に近いため炭素繊維への含浸は困難を伴うことが推測され、その実用化例も見られない。実際、特許文献1では、塩化ビニル樹脂は副成分としての配合量に留まり、且つ塩化ビニル樹脂を溶解する熱硬化性樹脂との混合物として取り扱われるもののみであった。  However, vinyl chloride resin has a high melt viscosity among thermoplastic resins, and the molding processing temperature, that is, the processing temperature when impregnating carbon fibers with vinyl chloride resin is the thermal decomposition temperature of vinyl chloride resin in the production of CFRP. It is presumed that impregnation of carbon fiber is difficult because it is close to, and no practical example has been found. In fact, in Patent Document 1, the vinyl chloride resin is only treated as a mixture with a thermosetting resin that dissolves the vinyl chloride resin while remaining in the blending amount as an auxiliary component.
 塩化ビニル樹脂は、塩素基を有する極性ポリマーであるため、非極性ポリマーであるプロピレン樹脂よりも炭素繊維との界面接着性は優れると推測される。しかしながら、塩化ビニル樹脂は成形加工時において、熱分解や金型への付着が生じやすいため、熱分解反応を抑制する熱安定剤の配合や、成形加工過程において接触する必要のあるスクリューや金型などの金属表面への付着を防止するため、滑剤などの添加が必須となる。したがって、塩化ビニル樹脂ではその他の熱可塑性樹脂よりも、添加剤の含有比率が高い場合が一般的である。結果として、添加剤を多く含む塩化ビニル系樹脂組成物と炭素繊維の含浸性や界面接着性に関しては、高含有の添加剤がどのように影響するか把握されていないのが現状である。 Since vinyl chloride resin is a polar polymer having a chlorine group, it is presumed that it has better interfacial adhesiveness with carbon fibers than propylene resin, which is a non-polar polymer. However, since vinyl chloride resin is prone to thermal decomposition and adhesion to the mold during molding, a heat stabilizer that suppresses the thermal decomposition reaction is blended, and screws and molds that need to be contacted during the molding process. In order to prevent adhesion to the metal surface such as, it is essential to add a lubricant or the like. Therefore, vinyl chloride resins generally have a higher content ratio of additives than other thermoplastic resins. As a result, it is not known at present how the high content of the additive affects the impregnation property and the interfacial adhesiveness of the vinyl chloride resin composition containing a large amount of the additive and the carbon fiber.
 上記のように、塩化ビニル系樹脂組成物においては、溶融粘度が高く、熱安定性が低く、添加剤含有比率が高い。そのため、塩化ビニル系樹脂組成物は、炭素繊維基材に含浸し難く、複合化が困難と推測される。現状、どのような塩化ビニル系樹脂組成物がCFRP作成に適しているか、検討および解明が十分に成されていない。したがって、依然として、炭素繊維基材への含浸性が良好な塩化ビニル系樹脂組成物が求められている。また、そのような塩化ビニル系樹脂組成物を炭素繊維基材に含浸させたCFRPが求められている。 As described above, the vinyl chloride resin composition has a high melt viscosity, low thermal stability, and a high additive content ratio. Therefore, it is presumed that the vinyl chloride-based resin composition is difficult to impregnate the carbon fiber base material and is difficult to composite. At present, it has not been sufficiently investigated and elucidated what kind of vinyl chloride resin composition is suitable for CFRP preparation. Therefore, there is still a demand for a vinyl chloride resin composition having good impregnation property into the carbon fiber base material. Further, there is a demand for CFRP in which a carbon fiber base material is impregnated with such a vinyl chloride resin composition.
 本発明者等は、上記課題を解決するため、鋭意検討の結果、特定の条件を満たす塩化ビニル系樹脂組成物(A)を使用することにより、上記課題を解決しうることを見出し、本発明に至った。即ち、本発明によれば、以下の実施態様が提供される。 As a result of diligent studies, the present inventors have found that the above problems can be solved by using the vinyl chloride resin composition (A) satisfying a specific condition, and the present invention has been made. It came to. That is, according to the present invention, the following embodiments are provided.
[1] 塩化ビニル系樹脂組成物(A)と、炭素繊維基材(B)とからなり、
 前記塩化ビニル系樹脂組成物(A)が、塩化ビニル系樹脂および少なくとも1種の添加剤を含み、
 前記塩化ビニル系樹脂組成物(A)および前記炭素繊維基材(B)が、下記特性(1)および特性(2): 
・特性(1):塩化ビニル系樹脂組成物(A)は、200℃、周波数10Hzでの複素粘度ηが、1<η<1500であること。
・特性(2):塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解パラメータ(δDp、δPp、δHp)とを用いて、下記数式(I)より算出される溶解指標(Ra(pi))、及び前記ハンセン溶解度パラメータ(δDi、δPi、δHi)と、炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、下記数式(II)より算出される溶解指標(Ra(ci))、及び塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)の重量分率C(i)とを用いて、下記数式(III)により算出した値Sが150以下であること。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
(数式(I)及び(II)中、δD、δPおよびδHは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。)
(数式(III)中、Πは総乗を意味し、具体的には各添加剤(i)の各成分をi=1,2,3・・・nとする場合、塩化ビニル系樹脂(p)及び炭素繊維基材(B)に対して算出されるRa(pi)及びRa(ci)と前記重量分率C(i)の積を表す。また、その冪乗に掛かる値nは、各添加剤(i)の成分数を示す。)
を満たす、炭素繊維強化複合材料。
[2]  塩化ビニル系樹脂組成物(A)は、200℃、周波数10Hzでの複素粘度ηが、10≦η≦1000である、[1]に記載の炭素繊維強化複合材料。
[3]   前記塩化ビニル系樹脂組成物(A)が、下記特性(3):
・特性(3):前記塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解度パラメータ(δDv、δPv、δHv)と、用いる炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、下記数式(IV)、(V)、及び(VI)より、重量分率を用いて塩化ビニル系樹脂組成物(A)のハンセン溶解度パラメータ(δDp、δPp、δHp)を算出し、下記数式(VII)より算出される溶解性指標(Ra)が7.5以下であること。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
(数式(IV)、(V)、及び(VI)中、xは、塩化ビニル系樹脂の添加部数を示し、yは塩化ビニル系樹脂組成物の総部数を示し、zは各配合剤の添加部数を示す。)
Figure JPOXMLDOC01-appb-M000014
(数式(VII)中、δD、δPおよびδHは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。)
をさらに満たす、[1]または[2]に記載の炭素繊維強化複合材料。
[4] 前記添加剤が、熱安定剤、滑剤、加工助剤、衝撃改質剤、耐熱向上剤、酸化防止剤、紫外線吸収剤、帯電防止剤、光安定剤、充填剤、顔料、難燃剤、および可塑剤からなる群から選択される少なくとも1種である、[1]~[3]のいずれかに記載の炭素繊維強化複合材料。
[5] 前記塩化ビニル系樹脂組成物(A)が、400以上1500以下の平均重合度を有する塩化ビニル系樹脂(p)を含む、[1]~[4]のいずれかに記載の炭素繊維強化複合材料。
[6] 前記塩化ビニル系樹脂組成物(A)において、前記添加剤の合計含有量が、前記塩化ビニル系樹脂100質量部に対して70質量部以下である、[1]~[5]のいずれかに記載の炭素繊維強化複合材料。
[7] 熱安定剤の含有量が0.1~30質量部であり、内部滑剤の含有量が20質量部以下であり、外部滑剤が10質量部以下であり、可塑剤の含有量が30質量部以下である、[1]~[6]のいずれかに記載の炭素繊維強化複合材料。
[8] 前記炭素繊維強化複合材料の繊維体積率(Vf)が50±2%のとき、三点曲げ試験の平均曲げ強度が300MPa以上である、[1]~[7]のいずれかに記載の炭素繊維強化複合材料。
[9] 前記炭素繊維強化複合材料の表面の少なくとも一部を被覆する塩化ビニル系樹脂組成物(C)を備える、[1]~[8]のいずれかに記載の炭素繊維強化複合材料。
[10] 前記塩化ビニル系樹脂組成物(C)が、塩素化塩化ビニル系樹脂を含む、[9]に記載の炭素繊維強化複合材料。
[11] 前記塩化ビニル系樹脂組成物(C)が、塩化ビニル系樹脂発泡体を含む、[9]または[10]に記載の炭素繊維強化複合材料。
[12] [1]~[11]のいずれかに記載の炭素繊維強化複合材料からなる、成形体。
[1] It is composed of a vinyl chloride resin composition (A) and a carbon fiber base material (B).
The vinyl chloride resin composition (A) contains a vinyl chloride resin and at least one additive.
The vinyl chloride resin composition (A) and the carbon fiber base material (B) have the following properties (1) and properties (2):
-Characteristics (1): The vinyl chloride resin composition (A) has a complex viscosity η at 200 ° C. and a frequency of 10 Hz of 1 <η <1500.
-Characteristics (2): The Hansen solubility parameter (δDi, δPi, δHi) of each additive (i) contained in the vinyl chloride resin composition (A) and the Hansen solubility parameter (δDi, δPi, δHi) of the vinyl chloride resin (p) used. Using δDp, δPp, δHp), the dissolution index (Ra (pi)) calculated from the following formula (I), the Hansen solubility parameter (δDi, δPi, δHi), and the carbon fiber base material (B) The solubility index (Ra (ci)) calculated from the following formula (II) using the Hansen solubility parameter (δDc, δPc, δHc) of the above, and each additive contained in the vinyl chloride resin composition (A). The value S calculated by the following formula (III) using the weight component C (i) of (i) is 150 or less.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
(In formulas (I) and (II), δD, δP and δH indicate the dispersion term, the polarity term and the hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is (MPa) 1/2 .)
(In the formula (III), Π means an infinite product. Specifically, when each component of each additive (i) is i = 1, 2, 3 ... n, a vinyl chloride resin (p.) ) And the product of Ra (pi) and Ra (ci) calculated with respect to the carbon fiber base material (B) and the weight fraction C (i). In addition, the value n multiplied by the product is each. The number of components of the additive (i) is shown.)
Meet, carbon fiber reinforced composite material.
[2] The carbon fiber-reinforced composite material according to [1], wherein the vinyl chloride resin composition (A) has a complex viscosity η at 200 ° C. and a frequency of 10 Hz of 10 ≦ η ≦ 1000.
[3] The vinyl chloride resin composition (A) has the following characteristics (3):
-Characteristics (3): Hansen solubility parameter (δDi, δPi, δHi) of each additive (i) contained in the vinyl chloride resin composition (A), and Hansen solubility parameter of the vinyl chloride resin (p) used. Using (δDv, δPv, δHv) and the Hansen solubility parameter (δDc, δPc, δHc) of the carbon fiber base material (B) used, the weight is calculated from the following formulas (IV), (V), and (VI). The Hansen solubility parameter (δDp, δPp, δHp) of the vinyl chloride resin composition (A) is calculated using the fraction, and the solubility index (Ra) calculated from the following formula (VII) is 7.5 or less. There is.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
(In formulas (IV), (V), and (VI), x indicates the number of copies of the vinyl chloride resin added, y indicates the total number of copies of the vinyl chloride resin composition, and z indicates the addition of each compounding agent. Indicates the number of copies.)
Figure JPOXMLDOC01-appb-M000014
(In the formula (VII), δD, δP and δH indicate the dispersion term, the polarity term and the hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is (MPa) 1/2 .)
The carbon fiber reinforced composite material according to [1] or [2], which further satisfies the above.
[4] The additives are heat stabilizers, lubricants, processing aids, impact modifiers, heat improvers, antioxidants, ultraviolet absorbers, antistatic agents, light stabilizers, fillers, pigments, flame retardants. The carbon fiber reinforced composite material according to any one of [1] to [3], which is at least one selected from the group consisting of, and a plasticizer.
[5] The carbon fiber according to any one of [1] to [4], wherein the vinyl chloride resin composition (A) contains a vinyl chloride resin (p) having an average degree of polymerization of 400 or more and 1500 or less. Reinforced composite material.
[6] In the vinyl chloride resin composition (A), the total content of the additives is 70 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin, according to [1] to [5]. The carbon fiber reinforced composite material according to any one.
[7] The content of the heat stabilizer is 0.1 to 30 parts by mass, the content of the internal lubricant is 20 parts by mass or less, the content of the external lubricant is 10 parts by mass or less, and the content of the plasticizer is 30. The carbon fiber reinforced composite material according to any one of [1] to [6], which is not more than parts by mass.
[8] Described in any one of [1] to [7], wherein the average bending strength of the three-point bending test is 300 MPa or more when the fiber volume fraction (Vf) of the carbon fiber reinforced composite material is 50 ± 2%. Carbon fiber reinforced composite material.
[9] The carbon fiber-reinforced composite material according to any one of [1] to [8], comprising a vinyl chloride resin composition (C) that covers at least a part of the surface of the carbon fiber-reinforced composite material.
[10] The carbon fiber reinforced composite material according to [9], wherein the vinyl chloride resin composition (C) contains a chlorinated vinyl chloride resin.
[11] The carbon fiber reinforced composite material according to [9] or [10], wherein the vinyl chloride resin composition (C) contains a vinyl chloride resin foam.
[12] A molded product made of the carbon fiber reinforced composite material according to any one of [1] to [11].
 本発明においては、特定の条件を満たす塩化ビニル系樹脂組成物(A)を用いることで、炭素繊維基材(B)への含浸性に優れ、曲げ強度が良好なCFRPを得ることができる。 In the present invention, by using the vinyl chloride resin composition (A) satisfying a specific condition, CFRP having excellent impregnation property into the carbon fiber base material (B) and good bending strength can be obtained.
<炭素繊維強化複合材料>
 本発明による炭素繊維強化複合材料は、塩化ビニル系樹脂組成物(A)と、炭素繊維基材(B)からなる炭素繊維強化複合材料である。さらに、本発明による炭素繊維強化複合材料は、塩化ビニル系樹脂組成物(A)と、炭素繊維基材(B)とからなる複合材料の表面の少なくとも一部を被覆する塩化ビニル系樹脂組成物(C)をさらに備えることが好ましい。また、本発明による炭素繊維強化複合材料は、下記特性(1)および特性(2)を満たすことを特徴とする。本発明による炭素繊維強化複合材料は、下記特性(3)をさらに満たすことが好ましい。
<Carbon fiber reinforced composite material>
The carbon fiber reinforced composite material according to the present invention is a carbon fiber reinforced composite material composed of a vinyl chloride resin composition (A) and a carbon fiber base material (B). Further, the carbon fiber reinforced composite material according to the present invention is a vinyl chloride resin composition that covers at least a part of the surface of the composite material composed of the vinyl chloride resin composition (A) and the carbon fiber base material (B). It is preferable to further include (C). Further, the carbon fiber reinforced composite material according to the present invention is characterized by satisfying the following properties (1) and (2). The carbon fiber reinforced composite material according to the present invention preferably further satisfies the following property (3).
<特性(1)>
 特性(1):塩化ビニル系樹脂組成物(A)が、200℃、周波数10Hzでの複素粘度ηが、1<η<1500の範囲であること。 塩化ビニル系樹脂組成物(A)は、200℃、周波数10Hzでの複素粘度ηが、10≦η≦1000Pa・sであることが好ましく、20≦η≦800Pa・sであることが好ましい。上記複素粘度ηが1500Pa・s未満であることにより、炭素繊維フィラメント束の内部まで樹脂を含浸させることができ、炭素繊維の優れた機械特性を活かすことができる。一方、上記複素粘度ηが1Pa・s超であることにより、CFRPとしての機械強度を損なわない程度の、マトリックス樹脂自体の機械強度を得ることができる。 
<Characteristics (1)>
Characteristic (1): The vinyl chloride resin composition (A) has a complex viscosity η at 200 ° C. and a frequency of 10 Hz in the range of 1 <η <1500. The vinyl chloride resin composition (A) preferably has a complex viscosity η at 200 ° C. and a frequency of 10 Hz of 10 ≦ η ≦ 1000 Pa · s, and preferably 20 ≦ η ≦ 800 Pa · s. When the complex viscosity η is less than 1500 Pa · s, the resin can be impregnated into the inside of the carbon fiber filament bundle, and the excellent mechanical properties of the carbon fiber can be utilized. On the other hand, when the complex viscosity η is more than 1 Pa · s, it is possible to obtain the mechanical strength of the matrix resin itself to the extent that the mechanical strength as CFRP is not impaired.
<特性(2)>
 特性(2):塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解パラメータ(δDp、δPp、δHp)とを用いて、下記数式(I)より算出される溶解指標(Ra(pi))、
 及び前記ハンセン溶解度パラメータ(δDi、δPi、δHi)と、炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、下記数式(II)より算出される溶解指標(Ra(ci))、
 及び塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)の重量分率C(i)とを用いて、下記数式(III)により算出した値Sが150以下であること。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
(数式(I)及び(II)中、δD、δPおよびδHは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。)
(数式(III)中、Πは総乗を意味し、具体的には各添加剤(i)の各成分をi=1,2,3・・・nとする場合、塩化ビニル系樹脂(p)及び炭素繊維基材(B)に対して算出されるRa(pi)及びRa(ci)と前記重量分率C(i)の積を表す。また、その冪乗に掛かる値nは、各添加剤(i)の成分数を示す。) 
<Characteristics (2)>
Property (2): The Hansen solubility parameter (δDi, δPi, δHi) of each additive (i) contained in the vinyl chloride resin composition (A) and the Hansen solubility parameter (δDp) of the vinyl chloride resin (p) used. , ΔPp, δHp), and the solubility index (Ra (pi)) calculated from the following mathematical formula (I),
The dissolution index (Ra) calculated from the following mathematical formula (II) using the Hansen solubility parameter (δDi, δPi, δHi) and the Hansen solubility parameter (δDc, δPc, δHc) of the carbon fiber base material (B). (Ci)),
The value S calculated by the following mathematical formula (III) using the weight fraction C (i) of each additive (i) contained in the vinyl chloride resin composition (A) is 150 or less.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
(In formulas (I) and (II), δD, δP and δH indicate the dispersion term, the polarity term and the hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is (MPa) 1/2 .)
(In the formula (III), Π means an infinite product. Specifically, when each component of each additive (i) is i = 1, 2, 3 ... n, a vinyl chloride resin (p.) ) And the product of Ra (pi) and Ra (ci) calculated with respect to the carbon fiber base material (B) and the weight fraction C (i). In addition, the value n multiplied by the product is each. The number of components of the additive (i) is shown.)
<特性(3)>
・特性(3):前記塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解度パラメータ(δDv、δPv、δHv)と、用いる炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、下記数式(IV)、(V)、及び(VI)より、重量分率を用いて塩化ビニル系樹脂組成物(A)のハンセン溶解度パラメータ(δDp、δPp、δHp)を算出し、下記数式(VII)より算出される溶解性指標(Ra)が7.5以下であること。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
(数式(IV)、(V)、及び(VI)中、xは、塩化ビニル系樹脂の添加部数を示し、yは塩化ビニル系樹脂組成物の総部数を示し、zは各配合剤の添加部数を示す。)
Figure JPOXMLDOC01-appb-M000021
(数式(VII)中、δD、δPおよびδHは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。)
<Characteristics (3)>
-Characteristics (3): Hansen solubility parameter (δDi, δPi, δHi) of each additive (i) contained in the vinyl chloride resin composition (A), and Hansen solubility parameter of the vinyl chloride resin (p) used. Using (δDv, δPv, δHv) and the Hansen solubility parameter (δDc, δPc, δHc) of the carbon fiber base material (B) used, the weight is calculated from the following formulas (IV), (V), and (VI). The Hansen solubility parameter (δDp, δPp, δHp) of the vinyl chloride resin composition (A) is calculated using the fraction, and the solubility index (Ra) calculated from the following formula (VII) is 7.5 or less. There is.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
(In formulas (IV), (V), and (VI), x indicates the number of copies of the vinyl chloride resin added, y indicates the total number of copies of the vinyl chloride resin composition, and z indicates the addition of each compounding agent. Indicates the number of copies.)
Figure JPOXMLDOC01-appb-M000021
(In the formula (VII), δD, δP and δH indicate the dispersion term, the polarity term and the hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is (MPa) 1/2 .)
 塩化ビニル系樹脂組成物(A)は、炭素繊維基材(B)表面への界面接着性に優れる、すなわち相溶性が高い方が良い。 The vinyl chloride resin composition (A) should have excellent interfacial adhesiveness to the surface of the carbon fiber base material (B), that is, it should have high compatibility.
 下記の実施形態は本発明を説明するための例示であり、本発明は下記の実施形態に何ら限定されるものではない。本発明においては、相溶性の代用指標として、一般的に溶媒-溶質間の相溶性の指標として採用されるハンセン溶解度パラメータ(Hansen solubility parameters)(以下、HSPと略すことがある)を用いた。  The following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments. In the present invention, the Hansen solubility parameter (hereinafter, may be abbreviated as HSP), which is generally adopted as an index of solvent-solute compatibility, is used as a substitute index of compatibility.
(HSPの定義)
 ハンセン溶解度パラメータとは、一般にSP値(δ)として知られるヒルデブランド(Hildebrand)の溶解度パラメータが、溶媒-溶質間に作用する力は分子間力のみであると仮定されたものであるのに対し、HSPは溶解性を、分散項δD、極性項δP、水素結合項δHの3次元空間に表したものである。分散項δDは分散力による効果、極性項δPは双極子間力による効果、水素結合項δHは水素結合力による効果を示すものである。 
(Definition of HSP)
The Hansen solubility parameter is the solubility parameter of Hildebrand, commonly known as the SP value (δ), which assumes that the only force acting between the solvent and the solute is the intermolecular force. , HSP represents the solubility in the three-dimensional space of the dispersion term δD, the polar term δP, and the hydrogen bond term δH. The dispersion term δD indicates the effect due to the dispersion force, the polar term δP indicates the effect due to the dipole interdental force, and the hydrogen bond term δH indicates the effect due to the hydrogen bond force.
 ヒルデブランドSP値(δ)とハンセン溶解度パラメータ(HSP)には、下記数式(VIII)の関係があり、SP値はHSPの、δD、δP、δHを3成分とするベクトルの長さ(totHSP)に相当する。
Figure JPOXMLDOC01-appb-M000022
The Hildebrand SP value (δ) and the Hansen solubility parameter (HSP) are related by the following formula (VIII), and the SP value is the length of the vector of HSP with δD, δP, and δH as three components (totHSP). Corresponds to.
Figure JPOXMLDOC01-appb-M000022
 したがって、HSPはヒルデブランドSP値の情報を完全に包含し、且つベクトルの向きまで含めて溶解性を評価できる点で、より優れた方法であるといえる。  Therefore, it can be said that HSP is a better method in that it completely includes the information of Hildebrand SP value and can evaluate the solubility including the direction of the vector.
 なお、ハンセン溶解度パラメータの定義と計算は、Charles M.Hansen著、Hansen Solubility Parameters:A Users Handbook(CRCプレス,2007年)に記載されている。  The definition and calculation of the Hansen solubility parameter can be found in Charles M. It is described in Hansen, Hansen Solubility Parameter: A Users Handbook (CRC Press, 2007).
 また、コンピュータソフトウエア Hansen Solubility Parameters in Practice(HSPiP)を用いることにより、簡便にHSPを推算することができる。  In addition, HSP can be easily estimated by using the computer software Hansen Solubility Parameters in Practice (HSPiP).
(HSPの決定方法と考え方)
 一般に、特定の物質(溶質)のHSPは、その物質のサンプルをハンセン溶解度パラメータが確定している数多くの異なる溶媒に溶解させて溶解度を測る試験を行うことによって決定され得る。具体的には、上記溶解度試験に用いた溶媒のうちその物質を溶解した溶媒の3次元上の点をすべて球の内側に内包し、溶解しない溶媒の点は球の外側になるような球(溶解度球)を探し出し、その球の中心座標をその物質のHSPとする。 
(HSP determination method and way of thinking)
In general, the HSP of a particular substance (solute) can be determined by performing a test in which a sample of that substance is dissolved in a number of different solvents with fixed Hansen solubility parameters to measure the solubility. Specifically, among the solvents used in the solubility test, all the three-dimensional points of the solvent in which the substance is dissolved are contained inside the sphere, and the points of the insoluble solvent are outside the sphere ( (Solubility sphere) is searched for, and the center coordinates of the sphere are set as the HSP of the substance.
 ここで、例えば、上記物質のHSPの測定に用いられなかったある別の溶媒のHSPがδD,δP,δHであった場合、その座標で示される点が上記物質の溶解度球の内側に内包されれば、その溶媒は、上記物質を溶解すると考えられる。一方、その座標点が上記物質の溶解度球の外側にあれば、この溶媒は上記物質を溶解することができないと考えられる。 Here, for example, when the HSP of a certain solvent that was not used for measuring the HSP of the substance is δD, δP, δH, the points indicated by the coordinates are included inside the solubility sphere of the substance. If so, the solvent is considered to dissolve the above substances. On the other hand, if the coordinate point is outside the solubility sphere of the substance, it is considered that this solvent cannot dissolve the substance.
 本発明においては、一般溶媒に不溶とされる炭素材料も対象物質にしているが、後者の場合では、その溶解度では無く、炭素材料の分散度(dispersion)と、凝集、沈降程度を尺度としてHSPが算出される。例えば、次の技術論文が参考とされる。C. M.Hansen,A.L.Smith,Using Hansen solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers,Carbon,42,pp1591-1597,(2004)。 In the present invention, a carbon material that is insoluble in a general solvent is also a target substance, but in the latter case, the HSP is measured not by its solubility but by the dispersion of the carbon material and the degree of aggregation and sedimentation. Is calculated. For example, the following technical papers are referred to. C. M. Hansen, A. L. Smith, Using Hansen solubility parameters to correlate Solubility of C60 fullerene in organic solvents and carbon (42, pp1591-1597).
 特定の2分子(溶媒と溶質)に着目した場合、HSP空間上でのHSP間の距離(Ra)は下記数式(IX)で定義され、2分子が相溶するかどうかの溶解指標となる。  When focusing on two specific molecules (solvent and solute), the distance (Ra) between HSPs in the HSP space is defined by the following mathematical formula (IX), which is a dissolution index of whether or not the two molecules are compatible.
Figure JPOXMLDOC01-appb-M000023
(数式(IX)中、δD1およびδD2は、ハンセン溶解度パラメータにおける、特定の2分子の分散項を表す。同様に、δP、δHは、各々極性項および水素結合項をそれぞれ示す。単位はいずれも(MPa)1/2である。) 
Figure JPOXMLDOC01-appb-M000023
(In formula (IX), δD1 and δD2 represent the dispersion terms of two specific molecules in the Hansen solubility parameter. Similarly, δP and δH each represent the polar term and the hydrogen bond term, respectively. The units are both. (MPa) 1/2 .)
 以上のようなHSPを本発明に活用する際には、塩化ビニル系樹脂組成物(A)と、炭素繊維基材(B)の相溶性が対象となるが、本発明者らは、塩化ビニル系樹脂組成物(A)は塩化ビニル樹脂(p)を主成分としながらも各種添加剤を多く含むことから、用いられる各添加剤(i)と用いられる塩化ビニル樹脂(p)の相溶性、及び用いられる各添加剤(i)と炭素繊維基材(B)の相溶性に着目することが重要と考え、特性(2)の発明に至った。 When the above HSP is utilized in the present invention, the compatibility between the vinyl chloride resin composition (A) and the carbon fiber base material (B) is a target, but the present inventors consider vinyl chloride. Since the based resin composition (A) contains a large amount of various additives while containing the vinyl chloride resin (p) as the main component, compatibility between each additive (i) used and the vinyl chloride resin (p) used, It is important to pay attention to the compatibility between each additive (i) used and the carbon fiber base material (B), and the property (2) was invented.
 すなわち、本発明においては、特性(2):塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解パラメータ(δDp、δPp、δHp)とを用いて、上記数式(I)より算出される溶解指標(Ra(pi))、及び前記ハンセン溶解度パラメータ(δDi、δPi、δHi)と、炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、上記数式(II)より算出される溶解指標(Ra(ci))、
 及び塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)の重量分率C(i)とを用いて、上記数式(III)により算出した値Sが150以下であることが好ましく、さらに130以下であることがより好ましい。Sの最大値が150以下であれば、添加剤(i)と塩化ビニル系樹脂(p)の相溶性が高く、塩化ビニル系樹脂に取り込まれやすく、且つブリードアウトした場合にも基材(B)との相溶性が高く、結果として塩化ビニル系樹脂組成物(A)と炭素繊維基材(B)の界面接着を十分なものとする。
That is, in the present invention, the characteristic (2): the Hansen solubility parameter (δDi, δPi, δHi) of each additive (i) contained in the vinyl chloride resin composition (A) and the vinyl chloride resin (p) used. ) With the Hansen solubility parameter (δDp, δPp, δHp), the dissolution index (Ra (pi)) calculated from the above formula (I), the Hansen solubility parameter (δDi, δPi, δHi), and carbon. The dissolution index (Ra (ci)) calculated from the above formula (II) using the Hansen solubility parameter (δDc, δPc, δHc) of the fiber substrate (B),
And the value S calculated by the above formula (III) using the weight fraction C (i) of each additive (i) contained in the vinyl chloride resin composition (A) is preferably 150 or less. More preferably, it is 130 or less. When the maximum value of S is 150 or less, the compatibility between the additive (i) and the vinyl chloride resin (p) is high, it is easily incorporated into the vinyl chloride resin, and the base material (B) is bleeded out. ) Is high, and as a result, the interfacial adhesion between the vinyl chloride resin composition (A) and the carbon fiber base material (B) is sufficient.
 さらに、本発明においては、特性(3):前記塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解度パラメータ(δDv、δPv、δHv)と、用いる炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、上記数式(IV)、(V)、及び(VI)より、重量分率を用いて塩化ビニル系樹脂組成物(A)のハンセン溶解度パラメータ(δDp、δPp、δHp)を算出し、上記数式(VII)より算出される溶解性指標(Ra)が7.5以下であることが好ましい。また、Raは7.4以下であることがより好ましい。Raが7.5以下であれば、添加剤(i)が塩化ビニル系樹脂組成物(A)の表面近傍に滲出する影響を軽減することができ、結果として塩化ビニル樹脂組成物(A)と炭素繊維基材(B)の界面接着性を十分なものとする。 Further, in the present invention, the characteristic (3): the Hansen solubility parameter (δDi, δPi, δHi) of each additive (i) contained in the vinyl chloride resin composition (A), and the vinyl chloride resin used Using the Hansen solubility parameter (δDv, δPv, δHv) of p) and the Hansen solubility parameter (δDc, δPc, δHc) of the carbon fiber base material (B) used, the above formulas (IV), (V), and From (VI), the Hansen solubility parameter (δDp, δPp, δHp) of the vinyl chloride resin composition (A) is calculated using the weight fraction, and the solubility index (Ra) calculated from the above formula (VII). Is preferably 7.5 or less. Further, Ra is more preferably 7.4 or less. When Ra is 7.5 or less, the influence of the additive (i) exuding near the surface of the vinyl chloride resin composition (A) can be reduced, and as a result, the vinyl chloride resin composition (A) and The interfacial adhesiveness of the carbon fiber base material (B) shall be sufficient.
<塩化ビニル系樹脂組成物(A)>
 塩化ビニル系樹脂組成物(A)に用いる塩化ビニル系樹脂としては特に限定されず、塩化ビニル単量体の単独重合体の他、例えば、(1)塩化ビニル単量体と塩化ビニル単量体以外の重合性単量体との共重合体、(2)塩化ビニル系樹脂以外の重合体に塩化ビニル単量体または塩化ビニル系樹脂をグラフトさせたグラフト共重合体、(3)塩化ビニル系樹脂以外の重合体に塩化ビニル単量体または塩化ビニル系樹脂を混合したポリマーアロイ等が挙げられる。さらに、これらの塩化ビニル系樹脂を塩素化した塩素化塩化ビニル系樹脂も挙げられる。これら塩化ビニル系樹脂は単独で用いられてもよいし、2種以上が併用されてもよい。 
<Vinyl chloride resin composition (A)>
The vinyl chloride resin used in the vinyl chloride resin composition (A) is not particularly limited, and in addition to the homopolymer of the vinyl chloride monomer, for example, (1) vinyl chloride monomer and vinyl chloride monomer. Copolymers with polymerizable monomers other than, (2) Graft copolymers obtained by grafting a vinyl chloride monomer or vinyl chloride resin on a polymer other than vinyl chloride resin, (3) Vinyl chloride type Examples thereof include a polymer alloy in which a vinyl chloride monomer or a vinyl chloride resin is mixed with a polymer other than the resin. Further, a chlorinated vinyl chloride resin obtained by chlorinating these vinyl chloride resins can also be mentioned. These vinyl chloride resins may be used alone or in combination of two or more.
 (1)塩化ビニル単量体と塩化ビニル単量体以外の重合性単量体との共重合体における重合性単量体としては特に限定されないが、炭素数2以上16以下のα-オレフィン(例えば、エチレン、プロピレン、およびブチレン);炭素数2以上16以下の脂肪族カルボン酸のビニルエステル(例えば、酢酸ビニルおよびプロピオン酸ビニル);炭素数2以上16以下のアルキルビニルエーテル(例えば、ブチルビニルエーテルおよびセチルビニルエーテル);炭素数1以上16以下のアルキル(メタ)アクリレート(例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレートおよびブチルアクリレート);アリール(メタ)アクリレート(例えば、フェニルメタクリレート);芳香族ビニル(例えば、スチレンおよびα-置換スチレン(例えば、α-メチルスチレン));ハロゲン化ビニル(例えば、塩化ビニリデンおよびフッ化ビニリデン);およびN-置換マレイミド(N-フェニルマレイミドおよびN-シクロヘキシルマレイミド)が挙げられる。  (1) The polymerizable monomer in the copolymer of the vinyl chloride monomer and the polymerizable monomer other than the vinyl chloride monomer is not particularly limited, but is an α-olefin having 2 or more and 16 or less carbon atoms (1). For example, ethylene, propylene, and butylene); vinyl esters of aliphatic carboxylic acids having 2 or more and 16 or less carbon atoms (for example, vinyl acetate and vinyl propionate); alkyl vinyl ethers having 2 or more and 16 or less carbon atoms (for example, butyl vinyl ether and Cetyl vinyl ether); alkyl (meth) acrylates with 1 to 16 carbon atoms (eg, methyl (meth) acrylate, ethyl (meth) acrylate and butyl acrylate); aryl (meth) acrylate (eg, phenylmethacrylate); aromatic vinyl (For example, styrene and α-substituted styrene (eg, α-methylstyrene)); vinyl halides (eg, vinylidene chloride and vinylidene fluoride); and N-substituted maleimides (N-phenylmaleimide and N-cyclohexylmaleimide). Can be mentioned.
 (2)塩化ビニル単量体または塩化ビニル系樹脂とともにグラフト共重合体を与える重合体としては、塩化ビニルモノマーにグラフト重合可能な重合体であれば単独重合体および共重合体を問わず、いかなるものも含まれる。例えば、α-オレフィンとビニルエステルとの共重合体(例えば、エチレン-酢酸ビニル共重合体);α-オレフィンとビニルエステルと一酸化炭素との共重合体(例えば、エチレン-酢酸ビニル-一酸化炭素共重合体);α-オレフィンとアルキル(メタ)アクリレートとの共重合体(例えば、エチレン-メチルメタクリレート共重合体およびエチレン-エチルアクリレート共重合体);α-オレフィンとアルキル(メタ)アクリレートと一酸化炭素との共重合体(例えば、エチレン-ブチルアクリレート-一酸化炭素共重合体);異なる2種以上のα-オレフィンの共重合体(例えば、エチレン-プロピレン共重合体);不飽和ニトリルとジエンとの共重合体(例えば、アクリロニトリル-ブタジエン共重合体);ポリウレタン;および塩素化ポリオレフィン(例えば、塩素化ポリエチレンおよび塩素化ポリプロピレン)が挙げられる。  (2) The polymer that gives the graft copolymer together with the vinyl chloride monomer or vinyl chloride resin is any polymer that can be graft-polymerized to the vinyl chloride monomer, regardless of whether it is a homopolymer or a copolymer. Things are also included. For example, a copolymer of α-olefin and vinyl ester (eg, ethylene-vinyl acetate copolymer); a copolymer of α-olefin, vinyl ester and carbon monoxide (eg, ethylene-vinyl acetate-monooxide). (Carbon copolymer); copolymer of α-olefin and alkyl (meth) acrylate (eg, ethylene-methylmethacrylate copolymer and ethylene-ethylacrylate copolymer); with α-olefin and alkyl (meth) acrylate Copolymer with carbon monoxide (eg, ethylene-butyl acrylate-carbon monoxide copolymer); Copolymer of two or more different α-olefins (eg, ethylene-propylene copolymer); Unsaturated nitrile Copolymers of and diene (eg, acrylonitrile-butadiene copolymers); polyurethanes; and chlorinated polyolefins (eg, chlorinated polyethylene and chlorinated polypropylene).
 (3)塩化ビニル系樹脂とのポリマーアロイ(相互侵入高分子網目構造体を含む)として用いられる他の重合体としては、特に限定されない。
 例えば、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、ベンゾオキサジン樹脂、ポリイミド樹脂、オキセタン樹脂、マレイミド樹脂、不飽和ポリエステル樹脂、ユリア樹脂、メラミン樹脂などが挙げられる。
 熱可塑性樹脂としては、例えば、塩素化塩ビ、塩素化ポリエチレン等の塩素化樹脂、ポリエチレン樹脂やポリプロピレン樹脂等のポリオレフィン系樹脂、ポリアミド66、ポリアミド6、ポリアミド12等の脂肪族ポリアミド系樹脂、酸成分として芳香族成分を有する半芳香族ポリアミド系樹脂、ポリエチレンテレフタレート樹脂(PET)やポリブチレンテレフタレート樹脂(PBT)等の芳香族ポリエステル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂(ポリスチレン樹脂、AS樹脂、ABS樹脂等)、あるいは、ポリ乳酸系などの脂肪族ポリエステル系樹脂などが挙げられる。
(3) The other polymer used as a polymer alloy (including a mutually invading polymer network structure) with a vinyl chloride resin is not particularly limited.
For example, examples of the thermosetting resin include epoxy resin, phenol resin, vinyl ester resin, benzoxazine resin, polyimide resin, oxetane resin, maleimide resin, unsaturated polyester resin, urea resin, and melamine resin.
Examples of the thermoplastic resin include chlorinated resins such as chlorinated vinyl chloride and chlorinated polyethylene, polyolefin resins such as polyethylene resin and polypropylene resin, aliphatic polyamide resins such as polyamide 66, polyamide 6, and polyamide 12, and acid components. Semi-aromatic polyamide resin having an aromatic component, aromatic polyester resin such as polyethylene terephthalate resin (PET) and polybutylene terephthalate resin (PBT), polycarbonate resin, polystyrene resin (polystyrene resin, AS resin, ABS) Resins, etc.), or aliphatic polyester-based resins such as polylactic acid-based resins.
 ポリマーアロイにした場合、マトリックス樹脂全体に対する塩化ビニル系樹脂の配合比率は1~95質量%であればよく、5~80質量%が好ましく、10~70質量%が更に好ましい。当該範囲内であることで耐熱性、強度、耐衝撃性、難燃性の向上等、マトリックス樹脂の性能に応じた効果が得られる。 In the case of a polymer alloy, the compounding ratio of the vinyl chloride resin to the entire matrix resin may be 1 to 95% by mass, preferably 5 to 80% by mass, and further preferably 10 to 70% by mass. Within the range, effects such as improvement of heat resistance, strength, impact resistance, and flame retardancy can be obtained according to the performance of the matrix resin.
 塩化ビニル系樹脂(p)の平均重合度は、特に限定されるものではないが、例えば400以上1500以下であることが好ましく、600以上1000以下であることがより好ましい。平均重合度が上記下限値以上であることにより、塩化ビニル系樹脂による好ましい機械的物性(例えば強靭性)を得やすい。平均重合度が上記上限値以下であることにより、炭素繊維基材(B)に含浸させる際の溶融粘度を適性にし易い。  The average degree of polymerization of the vinyl chloride resin (p) is not particularly limited, but is preferably 400 or more and 1500 or less, and more preferably 600 or more and 1000 or less. When the average degree of polymerization is at least the above lower limit value, it is easy to obtain preferable mechanical properties (for example, toughness) of the vinyl chloride resin. When the average degree of polymerization is not more than the above upper limit value, it is easy to make the melt viscosity when impregnating the carbon fiber base material (B) suitable.
<塩化ビニル系樹脂組成物(C)>
 塩化ビニル系樹脂組成物(C)に用いる塩化ビニル系樹脂は、炭素繊維強化複合材料の機械物性等を向上させるために、塩化ビニル系樹脂組成物(A)に用いる塩化ビニル系樹脂よりも平均重合度を高くすることができる。例えば、塩化ビニル系樹脂組成物(C)に用いる塩化ビニル系樹脂は、平均重合度が600以上であることが好ましく、800以上2000以下であることがより好ましい。
<Vinyl chloride resin composition (C)>
The vinyl chloride resin used in the vinyl chloride resin composition (C) is more average than the vinyl chloride resin used in the vinyl chloride resin composition (A) in order to improve the mechanical properties of the carbon fiber reinforced composite material. The degree of polymerization can be increased. For example, the vinyl chloride resin used in the vinyl chloride resin composition (C) preferably has an average degree of polymerization of 600 or more, and more preferably 800 or more and 2000 or less.
 通常の塩化ビニル系樹脂よりもさらに耐熱性や難燃性の向上を期待する場合には、塩化ビニル系樹脂組成物(C)に用いる塩化ビニル系樹脂は、塩素化塩化ビニル系樹脂を主成分とするものを選択すると良い。 When it is expected that the heat resistance and flame retardancy are further improved as compared with the ordinary vinyl chloride resin, the vinyl chloride resin used in the vinyl chloride resin composition (C) is mainly composed of a chlorinated vinyl chloride resin. It is good to select the one to be.
 一般に塩素化塩化ビニル系樹脂組成物は、塩化ビニル系樹脂組成物よりも溶融粘度が高く熱分解し易いため、炭素繊維への含浸が難しい。したがって、塩化ビニル系樹脂組成物(A)に塩素化塩化ビニル系樹脂組成物を用いる場合には、低重合度の塩素化塩化ビニル樹脂を用いたり、添加剤の添加量増やしたりする必要があり、機械的物性を損なう恐れがある。 Generally, a chlorinated vinyl chloride resin composition has a higher melt viscosity than a vinyl chloride resin composition and is easily thermally decomposed, so that it is difficult to impregnate carbon fibers. Therefore, when a chlorinated vinyl chloride resin composition is used for the vinyl chloride resin composition (A), it is necessary to use a chlorinated vinyl chloride resin having a low degree of polymerization or increase the amount of additives added. , There is a risk of impairing mechanical properties.
 したがって、塩化ビニル系樹脂組成物(A)を含浸させた炭素繊維機材(B)を備える複合材料の表面の少なくとも一部を、塩素化塩化ビニル系樹脂を含む塩素化塩化ビニル系樹脂組成物(C)で被覆することにより、期待する耐熱性・難燃性と、機械物性を維持したCFRPが得られる。 Therefore, at least a part of the surface of the composite material provided with the carbon fiber equipment (B) impregnated with the vinyl chloride resin composition (A) is a chlorinated vinyl chloride resin composition containing a chlorinated vinyl chloride resin ( By coating with C), CFRP that maintains the expected heat resistance and flame retardancy and mechanical properties can be obtained.
 塩化ビニル系樹脂組成物(A)および(C)に用いる塩化ビニル系樹脂の塩素化度は、例えば、56質量%~72質量%である。塩化ビニル系樹脂組成物の塩素化度が56.8質量%程度の塩化ビニル系樹脂であることで、炭素繊維基材(B)への含浸性が良好な程度の粘度を維持できる。また、塩素化度が60質量%~72質量%程度であることにより、耐熱性・難燃性の向上が期待される。例えば、炭素繊維強化複合材料の耐熱性・難燃性を向上させるために、被覆用の塩化ビニル系樹脂組成物(C)に用いる塩化ビニル系樹脂の塩素化度は、塩化ビニル系樹脂組成物(A)に用いる塩化ビニル系樹脂の塩素化度よりも高いことが好ましい。なお、塩素含有率は、JIS K 7229に準拠して測定することができる。 The degree of chlorination of the vinyl chloride resin used in the vinyl chloride resin compositions (A) and (C) is, for example, 56% by mass to 72% by mass. When the vinyl chloride-based resin composition is a vinyl chloride-based resin having a degree of chlorination of about 56.8% by mass, the viscosity of the carbon fiber base material (B) having a good impregnation property can be maintained. Further, when the degree of chlorination is about 60% by mass to 72% by mass, improvement in heat resistance and flame retardancy is expected. For example, in order to improve the heat resistance and flame retardancy of the carbon fiber reinforced composite material, the degree of chlorination of the vinyl chloride resin used in the vinyl chloride resin composition (C) for coating is determined by the vinyl chloride resin composition. It is preferably higher than the degree of chlorination of the vinyl chloride resin used in (A). The chlorine content can be measured in accordance with JIS K7229.
 通常の塩化ビニル系樹脂(p)よりもさらに軽量化や防音特性の向上を期待する場合には、塩化ビニル系樹脂組成物(C)が塩化ビニル系樹脂発泡体を含むものであることが好ましい。一般に塩化ビニル系樹脂組成物では、発泡剤の配合による化学的発泡や、窒素注入による物理的発泡により発泡体が得られるが、炭素繊維に含浸させる樹脂にこれらの手段を活用すると繊維内に気泡を生じることとなり、得られたCFRPの機械物性を損なう恐れがある。したがって、炭素繊維機材(B)への含浸には、発泡体ではない塩化ビニル系樹脂を含む塩化ビニル系樹脂組成物(A)を用い、その外層を塩化ビニル系樹脂発泡体を含む塩化ビニル系樹脂組成物(C)を用いて被覆することにより、期待する軽量・防音特性と、機械物性を維持したCFRPが得られる。  When further weight reduction and improvement in soundproofing characteristics are expected as compared with the usual vinyl chloride resin (p), it is preferable that the vinyl chloride resin composition (C) contains a vinyl chloride resin foam. Generally, in a vinyl chloride resin composition, a foam can be obtained by chemical foaming by blending a foaming agent or physical foaming by injecting nitrogen. However, when these means are used for the resin to be impregnated in carbon fibers, bubbles are contained in the fibers. There is a risk of impairing the mechanical properties of the obtained CFRP. Therefore, for impregnation of the carbon fiber equipment (B), a vinyl chloride resin composition (A) containing a vinyl chloride resin that is not a foam is used, and the outer layer thereof is a vinyl chloride resin composition containing a vinyl chloride resin foam. By coating with the resin composition (C), CFRP having the expected light weight and soundproofing properties and mechanical properties can be obtained.
(添加剤)
 塩化ビニル系樹脂組成物(A)に加えられる各種添加剤としては、熱安定剤、滑剤、加工助剤、衝撃改質剤、耐熱向上剤、酸化防止剤、紫外線吸収剤、帯電防止剤、光安定剤、充填剤、顔料、難燃剤、および可塑剤等が挙げられる。前記添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。  
(Additive)
Various additives added to the vinyl chloride resin composition (A) include heat stabilizers, lubricants, processing aids, impact modifiers, heat resistance improvers, antioxidants, ultraviolet absorbers, antistatic agents, and light. Stabilizers, fillers, pigments, flame retardants, plasticizers and the like can be mentioned. Only one kind of the additive may be used, or two or more kinds may be used in combination.
 前記熱安定剤としては特に限定されず、熱安定剤および熱安定化助剤などが挙げられる。前記熱安定剤としては特に限定されず、有機錫系安定剤、鉛系安定剤、カルシウム-亜鉛系安定剤、バリウム-亜鉛系安定剤、およびバリウムーカドミウム系安定剤等が挙げられる。  The heat stabilizer is not particularly limited, and examples thereof include a heat stabilizer and a heat stabilization aid. The heat stabilizer is not particularly limited, and examples thereof include an organotin-based stabilizer, a lead-based stabilizer, a calcium-zinc-based stabilizer, a barium-zinc-based stabilizer, and a barium-cadmium-based stabilizer.
 前記有機錫系安定剤としては、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジメチル錫メルカプト、ジブチル錫メルカプト、ジブチル錫マレート、ジブチル錫マレートポリマー、ジオクチル錫マレート、ジオクチル錫マレートポリマー、ジブチル錫ラウレート、およびジブチル錫ラウレートポリマー等が挙げられる。上記安定剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   Examples of the organic tin stabilizer include dibutyl tin mercapto, dioctyl tin mercapto, dimethyl tin mercapto, dibutyl tin mercapto, dibutyl tin malate, dibutyl tin malate polymer, dioctyl tin malate, dioctyl tin malate polymer, dibutyl tin laurate, and the like. Examples thereof include dibutyltin laurate polymer. Only one type of the stabilizer may be used, or two or more types may be used in combination.
 前記熱安定化助剤としては特に限定されず、例えば、エポキシ化大豆油、りん酸エステル、ポリオール、ハイドロタルサイト、およびゼオライト等が挙げられる。上記熱安定化助剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The heat stabilizing aid is not particularly limited, and examples thereof include epoxidized soybean oil, phosphoric acid ester, polyol, hydrotalcite, and zeolite. As the heat stabilization aid, only one kind may be used, or two or more kinds may be used in combination.
 塩化ビニル系樹脂組成物(A)に含まれる熱安定剤の含有量は、塩化ビニル系樹脂100質量部に対して、0.1質量部以上30質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましい。少量である方が、連続炭素繊維基材(B)界面近傍に滲出する影響を軽減することができ、炭素繊維強化複合材料の曲げ強度などの物性低下を抑えることができる。   The content of the heat stabilizer contained in the vinyl chloride resin composition (A) is preferably 0.1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin, and is preferably 10 parts by mass. It is more preferably 5 parts by mass or less, and further preferably 5 parts by mass or less. When the amount is small, the influence of exudation near the interface of the continuous carbon fiber base material (B) can be reduced, and deterioration of physical properties such as bending strength of the carbon fiber reinforced composite material can be suppressed.
 前記滑剤としては、内部滑剤および外部滑剤が挙げられる。前記内部滑剤は、成形加工時の溶融樹脂の流動粘度を下げ、摩擦発熱を防止する目的で使用される。前記内部滑剤としては特に限定されず、ブチルステアレート、ラウリルアルコール、ステアリルアルコール、エポキシ大豆油、グリセリンモノステアレート、ステアリン酸、およびビスアミド等が挙げられる。上記滑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the lubricant include an internal lubricant and an external lubricant. The internal lubricant is used for the purpose of lowering the flow viscosity of the molten resin during molding and preventing frictional heat generation. The internal lubricant is not particularly limited, and examples thereof include butyl stearate, lauryl alcohol, stearyl alcohol, epoxy soybean oil, glycerin monostearate, stearic acid, and bisamide. Only one kind of the above-mentioned lubricant may be used, or two or more kinds may be used in combination.
 塩化ビニル系樹脂組成物(A)に含まれる内部滑剤の含有量は、塩化ビニル系樹脂100質量部に対して、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましい。少量である方が、連続炭素繊維基材(B)界面近傍に滲出する影響を軽減することができ、炭素繊維強化複合材料の曲げ強度などの物性低下を抑えることができる。 The content of the internal lubricant contained in the vinyl chloride resin composition (A) is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, based on 100 parts by mass of the vinyl chloride resin. It is more preferably 5 parts by mass or less. When the amount is small, the influence of exudation near the interface of the continuous carbon fiber base material (B) can be reduced, and deterioration of physical properties such as bending strength of the carbon fiber reinforced composite material can be suppressed.
 前記外部滑剤は、成形加工時の溶融樹脂と金属面との滑り効果を上げる目的で使用される。前記外部滑剤としては特に限定されず、パラフィンワックス、ポリオレフィンワックス、エステルワックス、およびモンタン酸ワックス等が挙げられる。上記滑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   The external lubricant is used for the purpose of enhancing the sliding effect between the molten resin and the metal surface during molding. The external lubricant is not particularly limited, and examples thereof include paraffin wax, polyolefin wax, ester wax, and montanic acid wax. Only one kind of the above-mentioned lubricant may be used, or two or more kinds may be used in combination.
 塩化ビニル系樹脂組成物(A)に含まれる外部滑剤の含有量は、塩化ビニル系樹脂100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、2質量部以下であることがさらに好ましい。少量である方が、連続炭素繊維基材(B)界面近傍に滲出する影響を軽減することができ、炭素繊維強化複合材料の曲げ強度などの物性低下を抑えることができる。 The content of the external lubricant contained in the vinyl chloride resin composition (A) is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, based on 100 parts by mass of the vinyl chloride resin. It is more preferably 2 parts by mass or less. When the amount is small, the influence of exudation near the interface of the continuous carbon fiber base material (B) can be reduced, and deterioration of physical properties such as bending strength of the carbon fiber reinforced composite material can be suppressed.
 前記加工助剤としては特に限定されず、従来公知の加工助剤を使用することができ、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート等のアルキルメタクリレートの単独重合体または共重合体、アルキルメタクリレートと、メチルアクリレート、エチルアクリレート、ブチルアクリレート等のアルキルアクリレートとの共重合体、アルキルメタクリレートと、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル化合物との共重合体、アルキルメタクリレートと、アクリロニトリル、メタクリロニトリル等のビニルシアン化合物等との共重合体等が挙げられ、これらは1種または2種以上を組み合わせて用いることができる。これらのなかでも、重量平均分子量が10万~200万であるアルキルアクリレート-アルキルメタクリレート共重合体等を好適に使用することができる。具体的には、n-ブチルアクリレート-メチルメタクリレート共重合体、および2-エチルヘキシルアクリレート-メチルメタクリレート-ブチルメタクリレート共重合体等が挙げられる。上記加工助剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   The processing aid is not particularly limited, and conventionally known processing aids can be used, and homopolymers or copolymers of alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, and butyl methacrylate, alkyl methacrylate, and methyl. Copolymers with alkyl acrylates such as acrylates, ethyl acrylates and butyl acrylates, copolymers of alkyl methacrylates with aromatic vinyl compounds such as styrene, α-methylstyrene and vinyltoluene, alkyl methacrylates and acrylonitrile, methacrylonitrile. Examples thereof include copolymers with vinyl cyanide compounds such as nitrile, and these can be used alone or in combination of two or more. Among these, an alkyl acrylate-alkyl methacrylate copolymer having a weight average molecular weight of 100,000 to 2 million can be preferably used. Specific examples thereof include an n-butyl acrylate-methyl methacrylate copolymer and a 2-ethylhexyl acrylate-methyl methacrylate-butyl methacrylate copolymer. As the processing aid, only one kind may be used, or two or more kinds may be used in combination.
 前記衝撃改質剤としては特に限定されず、特に限定されるものではなく従来公知の衝撃改質剤を使用することができ、ポリブタジエン、ポリイソプレン、ポリクロロプレン、塩素化ポリエチレン、フッ素ゴム、スチレン-ブタジエン系共重合体ゴム、メタクリル酸メチル-ブタジエン-スチレン系共重合体、メタクリル酸メチル-ブタジエン-スチレン系グラフト共重合体、アクリロニトリル-スチレン-ブタジエン系共重合体ゴム、アクリロニトリル-スチレン-ブタジエン系グラフト共重合体、スチレン-ブタジエン-スチレンブロック共重合体ゴム、スチレン-イソプレン-スチレン共重合体ゴム、スチレン-エチレン-ブチレン-スチレン共重合体ゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン共重合体ゴム(EPDM)、シリコーン含有アクリル系ゴム、シリコーン/アクリル複合ゴム系グラフト共重合体、シリコーン系ゴム等が挙げられる。前記衝撃改質剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   The impact modifier is not particularly limited, and a conventionally known impact modifier can be used without particular limitation. Polybutadiene, polyisoprene, polychloroprene, chlorinated polyethylene, fluororubber, styrene- Butadiene-based copolymer rubber, methyl methacrylate-butadiene-styrene-based copolymer, methyl methacrylate-butadiene-styrene-based graft copolymer, acrylonitrile-styrene-butadiene copolymer rubber, acrylonitrile-styrene-butadiene-based graft Copolymer, styrene-butadiene-styrene block copolymer rubber, styrene-isoprene-styrene copolymer rubber, styrene-ethylene-butylene-styrene copolymer rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene Examples thereof include copolymer rubber (EPDM), silicone-containing acrylic rubber, silicone / acrylic composite rubber-based graft copolymer, and silicone-based rubber. Only one type of the impact modifier may be used, or two or more types may be used in combination.
 前記耐熱向上剤としては特に限定されず、α-メチルスチレン系、およびN-フェニルマレイミド系樹脂等が挙げられる。前記耐熱向上剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   The heat resistance improving agent is not particularly limited, and examples thereof include α-methylstyrene-based resins and N-phenylmaleimide-based resins. Only one kind of the heat resistance improving agent may be used, or two or more kinds thereof may be used in combination.
 前記酸化防止剤としては特に限定されず、4,4’-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)等のフェノール系酸化防止剤、トリス(ミックスドモノ及びジ-ノニルフェニル)ホスファイト等のホスファイト系酸化防止剤、ジステアリルチオジプロピオネート等のチオエーテル系酸化防止剤等が挙げられる。中でも、高温分解阻害機能が低い4,4’-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)等のフェノール系酸化防止剤が特に好ましい。前記酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   The antioxidant is not particularly limited, and a phenolic antioxidant such as 4,4'-butylidenebis- (6-t-butyl-3-methylphenol), tris (mixed mono and dinonylphenyl) phos. Examples thereof include phosphite-based antioxidants such as phyto, and thioether-based antioxidants such as distearylthiodipropionate. Of these, phenolic antioxidants such as 4,4'-butylidenebis- (6-t-butyl-3-methylphenol), which has a low high-temperature decomposition inhibitory function, are particularly preferable. Only one type of the antioxidant may be used, or two or more types may be used in combination.
 前記紫外線吸収剤としては特に限定されず、サリチル酸エステル系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、およびシアノアクリレート系紫外線吸収剤等が挙げられる。前記紫外線吸収剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   The ultraviolet absorber is not particularly limited, and examples thereof include a salicylic acid ester-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, and a cyanoacrylate-based ultraviolet absorber. Only one kind of the ultraviolet absorber may be used, or two or more kinds may be used in combination.
 前記帯電防止剤としては特に限定されず、従来公知の帯電防止剤を使用することができ、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤等を使用することがきる。アニオン性界面活性剤としては、脂肪酸塩類、高級アルコール硫酸エステル塩類、液体脂肪油硫酸エステル塩類、脂肪族アミン、アミドの硫酸塩類、二塩基性脂肪酸エステルのスルホン塩類、脂肪酸アミドスルホン酸塩類、アルキルアリールスルホン酸塩類、ホルマリン縮合のナフタレンスルホン酸塩類及びこれらの混合物等を挙げることができる。カチオン性界面活性剤としては、脂肪族アミン塩類、第四級アンモニウム塩類、アルキルピリジウム塩及びこれらの混合物等を挙げることができる。非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェノールエステル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、ポリオキシエチレンソルビタンアルキルエステル類、およびこれらの混合物等を挙げることができる。非イオン性界面活性剤と、アニオン性界面活性剤あるいはカチオン性界面活性剤との混合物でもよい。両性界面活性剤としては、イミダゾリン型、高級アルキルアミノ型(ベタイン型)、硫酸エステル、リン酸エステル型、スルホン酸型等を挙げることができる。帯電防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。  The antistatic agent is not particularly limited, and conventionally known antistatic agents can be used, and anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants and the like are used. I can do it. Anionic surfactants include fatty acid salts, higher alcohol sulfates, liquid fatty oil sulfates, aliphatic amines, amide sulfates, dibasic fatty acid ester sulfates, fatty acid amide sulfonates, and alkylaryls. Examples thereof include sulfonates, formalin-condensed naphthalene sulfonates, and mixtures thereof. Examples of the cationic surfactant include aliphatic amine salts, quaternary ammonium salts, alkylpyridium salts and mixtures thereof. Examples of the nonionic surfactant include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenol esters, polyoxyethylene alkyl esters, sorbitan alkyl esters, polyoxyethylene sorbitan alkyl esters, and mixtures thereof. be able to. It may be a mixture of a nonionic surfactant and an anionic surfactant or a cationic surfactant. Examples of the amphoteric surfactant include an imidazoline type, a higher alkylamino type (betaine type), a sulfate ester, a phosphoric acid ester type, and a sulfonic acid type. Only one type of antistatic agent may be used, or two or more types may be used in combination.
 前記光安定剤としては特に限定されず、ヒンダードアミン系光安定剤等が挙げられる。前記光安定剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   The light stabilizer is not particularly limited, and examples thereof include hindered amine-based light stabilizers. Only one kind of the light stabilizer may be used, or two or more kinds thereof may be used in combination.
 前記充填剤としては特に限定されず、タルク、重質炭酸カルシウム、沈降性炭酸カルシウム、膠質炭酸カルシウム等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、クレー、マイカ、ウォラストナイト、ゼオライト、シリカ、酸化亜鉛、酸化マグネシウム、カーボンブラック、グラファイト、ガラスビーズ、ガラス繊維、炭素繊維、金属繊維等の無機質系のもののほか、ポリアミド等のような有機繊維が挙げられる。上記充填剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。   The filler is not particularly limited, and carbonates such as talc, heavy calcium carbonate, precipitated calcium carbonate, and collagen carbonate, aluminum hydroxide, magnesium hydroxide, titanium oxide, clay, mica, wollastonite, and zeolite. , Silica, zinc oxide, magnesium oxide, carbon black, graphite, glass beads, glass fibers, carbon fibers, metal fibers and other inorganic fibers, as well as organic fibers such as polyamide and the like. Only one kind of the filler may be used, or two or more kinds thereof may be used in combination.
 前記顔料としては特に限定されず、有機顔料および無機顔料が挙げられる。前記有機顔料としては、アゾ系有機顔料、フタロシアニン系有機顔料、スレン系有機顔料、および染料レーキ系有機顔料等が挙げられる。上記無機顔料としては、酸化物系無機顔料、クロム酸モリブデン系無機顔料、硫化物・セレン化物系無機顔料、およびフェロシアニン化物系無機顔料等が挙げられる。上記顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。  The pigment is not particularly limited, and examples thereof include organic pigments and inorganic pigments. Examples of the organic pigment include an azo-based organic pigment, a phthalocyanine-based organic pigment, a slene-based organic pigment, and a dye lake-based organic pigment. Examples of the inorganic pigments include oxide-based inorganic pigments, molybdenum chromate-based inorganic pigments, sulfide / selenium-based inorganic pigments, and ferrosinized inorganic pigments. Only one kind of the above pigment may be used, or two or more kinds may be used in combination.
 難燃剤としては、例えば金属水酸化物、臭素系化合物、トリアジン環含有化合物、亜鉛化合物、リン系化合物、ハロゲン系難燃剤、シリコーン系難燃剤、イントメッセント系難燃剤、酸化アンチモン等が挙げられ、これらは1種または2種以上を組み合わせて用いることができる。  Examples of the flame retardant include metal hydroxides, brominated compounds, triazine ring-containing compounds, zinc compounds, phosphorus compounds, halogen flame retardants, silicone flame retardants, intomescent flame retardants, antimony oxide and the like. , These can be used alone or in combination of two or more.
 前記可塑剤は、成形時の加工性を高める目的で添加されていてもよい。前記可塑剤としては特に限定されず、従来公知の可塑剤を用いることができ、例えばフタル酸エステル可塑剤、や非フタル酸系の可塑剤を用いることができる。フタル酸エステル可塑剤としては、フタル酸ジオクチル(DOP)等が挙げられる。また、非フタル酸系の可塑剤としては、トリメリット酸系化合物、リン酸系化合物、アジピン酸系化合物、クエン酸系化合物、エーテル系化合物、ポリエステル系化合物、大豆油系化合物、シクロヘキサンジカルボキシレート系化合物、テレフタル酸系化合物等が挙げられる。前記可塑剤は1種のみが用いられてもよく、2種以上が併用されてもよい。  The plasticizer may be added for the purpose of improving workability during molding. The plasticizer is not particularly limited, and conventionally known plasticizers can be used. For example, phthalate ester plasticizers and non-phthalate plasticizers can be used. Examples of the phthalate ester plasticizer include dioctyl phthalate (DOP). Examples of non-phthalic acid-based plasticizers include trimellitic acid-based compounds, phosphoric acid-based compounds, adipic acid-based compounds, citric acid-based compounds, ether-based compounds, polyester-based compounds, soybean oil-based compounds, and cyclohexanedicarboxylate. Examples include system compounds and terephthalic acid compounds. Only one type of the plasticizer may be used, or two or more types may be used in combination.
 塩化ビニル系樹脂組成物(A)に含まれる添加剤(i)の合計含有量は、特に規定されないが、式(III)の構成要素として各添加剤の重量分率C(i)を含むことから分かるように、製造上支障がない限り少ない方が好ましい。具体的には、添加剤(i)の合計含有量は、塩化ビニル系樹脂100質量部に対して、70質量部以下であることが好ましく、60質量部以下であることがより好ましく、50質量部以下であることがさらに好ましく、20質量部以下であることがさらにより好ましく、15質量部以下であることが特に好ましく、10質量部以下であることが最も好ましい。少量である方が、炭素繊維基材(B)界面近傍に滲出する影響を軽減することができる。  The total content of the additive (i) contained in the vinyl chloride resin composition (A) is not particularly specified, but the weight fraction C (i) of each additive is included as a component of the formula (III). As can be seen from the above, it is preferable that the amount is small as long as there is no problem in manufacturing. Specifically, the total content of the additive (i) is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and 50 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. It is more preferably parts or less, more preferably 20 parts by mass or less, particularly preferably 15 parts by mass or less, and most preferably 10 parts by mass or less. A small amount can reduce the influence of exudation near the interface of the carbon fiber base material (B).
 塩化ビニル系樹脂組成物(A)に含まれる可塑剤の含有量は、塩化ビニル系樹脂組成物(A)に多量に含まれるとCFRPの機械強度を損なう恐れがあるため、少ない方が好ましい。具体的には、可塑剤の含有量は、塩化ビニル系樹脂100質量部に対して、好ましくは30質量部以下であり、より好ましくは10質量部以下であり、さらに好ましくは5質量部以下であり、さらにより好ましくは1質量部以下であり、特に好ましくは0.1質量部以下であり、前記可塑剤は含まれないことが最も好ましい。  The content of the plasticizer contained in the vinyl chloride resin composition (A) is preferably small because if it is contained in a large amount in the vinyl chloride resin composition (A), the mechanical strength of CFRP may be impaired. Specifically, the content of the plasticizer is preferably 30 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 5 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin. Yes, more preferably 1 part by mass or less, particularly preferably 0.1 part by mass or less, and most preferably the plasticizer is not contained.
 例えば、耐熱性や難燃性の向上を期待する場合には、塩化ビニル系樹脂として塩素化塩化ビニル系樹脂を主成分とするものを選択すると良い。一般に塩素化塩化ビニル系樹脂組成物は、塩化ビニル系樹脂組成物よりも溶融粘度が高く熱分解し易いため、炭素繊維への含浸が難しい。したがって、塩化ビニル系樹脂組成物(A)に塩素化塩化ビニル系樹脂を用いる場合には、低重合度の塩素化塩化ビニル系樹脂を用いたり、添加剤の添加量を増やしたりすることにより、期待する耐熱性・難燃性と、機械物性を維持したCFRPが得られる。  For example, when improvement in heat resistance and flame retardancy is expected, it is preferable to select a vinyl chloride resin containing a chlorinated vinyl chloride resin as a main component. In general, a chlorinated vinyl chloride resin composition has a higher melt viscosity than a vinyl chloride resin composition and is easily thermally decomposed, so that it is difficult to impregnate carbon fibers. Therefore, when a chlorinated vinyl chloride resin is used for the vinyl chloride resin composition (A), it is possible to use a chlorinated vinyl chloride resin having a low degree of polymerization or increase the amount of the additive added. CFRP that maintains the expected heat resistance and flame retardancy and mechanical properties can be obtained.
<炭素繊維基材(B)>
 本発明における炭素繊維および炭素繊維基材についての定義を下記に示す。 炭素繊維とは、炭素を含む材料で構成された繊維のことである。その他の繊維と併用した場合、単独で用いた場合も含む概念である。 炭素繊維基材とは、複数の炭素繊維からなる炭素繊維束を経糸束および緯糸束とする炭素繊維織物のことである。 炭素繊維は、短炭素繊維、長炭素繊維、連続炭素繊維を含む概念である。 短炭素繊維とは、1mm以下の繊維長を有する炭素繊維のことである。 長炭素繊維とは、5cm以下の繊維長を有する炭素繊維のことである。 連続炭素繊維とは、短繊維と長繊維、以外の炭素繊維のことである。 
<Carbon fiber base material (B)>
The definitions of the carbon fiber and the carbon fiber base material in the present invention are shown below. Carbon fiber is a fiber composed of a material containing carbon. It is a concept that includes the case of using it together with other fibers and the case of using it alone. The carbon fiber base material is a carbon fiber woven fabric in which a carbon fiber bundle composed of a plurality of carbon fibers is used as a warp bundle and a weft bundle. Carbon fiber is a concept including short carbon fiber, long carbon fiber, and continuous carbon fiber. The short carbon fiber is a carbon fiber having a fiber length of 1 mm or less. The long carbon fiber is a carbon fiber having a fiber length of 5 cm or less. Continuous carbon fibers are carbon fibers other than short fibers and long fibers.
(炭素繊維の材料)
 炭素繊維の材料としては特に限定されず、PAN(ポリアクリロニトリル)系炭素繊維およびピッチ系炭素繊維などの炭素繊維であれば良く、その他の繊維;スチール繊維などの金属繊維;ガラス繊維、セラミックス繊維、ボロン繊維などの無機繊維;ならびに、アラミド、ポリエステル、ポリエチレン、ナイロン、ビニロン、ポリアセタール、ポリパラフェニレンベンズオキサゾール、高強度ポリプロピレンなどの有機繊維;ケナフ、麻などの天然繊維と複数種を組み合わされて使用されてよい。比強度の観点からは、炭素繊維のみから構成されることが好ましい。 
(Carbon fiber material)
The material of the carbon fiber is not particularly limited as long as it is a carbon fiber such as PAN (polyacrylonitrile) carbon fiber and pitch carbon fiber, and other fibers; metal fiber such as steel fiber; glass fiber, ceramic fiber, etc. Inorganic fibers such as boron fiber; and organic fibers such as aramid, polyester, polyethylene, nylon, vinylon, polyacetal, polyparaphenylene benzoxazole, and high-strength polypropylene; used in combination with natural fibers such as kenaf and hemp. May be done. From the viewpoint of specific strength, it is preferable that it is composed of only carbon fibers.
 本発明で用いられる炭素繊維は、短炭素繊維、長炭素繊維、連続炭素繊維を適宜用いることができるが、得られるCFRPの機械物性の観点から連続炭素繊維が好ましい。 As the carbon fiber used in the present invention, short carbon fiber, long carbon fiber, and continuous carbon fiber can be appropriately used, but continuous carbon fiber is preferable from the viewpoint of the mechanical properties of the obtained CFRP.
(炭素繊維基材(B)の形態・製造方法)
 繊維の形態としては連続繊維であれば特に限定されず、例えば、トウ、トウの方向を一方向に引き揃え横糸補助糸で保持した形態、繊維を経緯にして織物とした形態(クロス);繊維の方向を一方向に引き揃えた複数の繊維シートを、それぞれ繊維の方向が異なるように重ね補助糸でステッチして留めたマルチアキシャルワープニットの形態などが挙げられる。炭素繊維を上記形態に基づく各製造方法で製造することで、炭素繊維基材(B)を得ることができる。 
(Form and manufacturing method of carbon fiber base material (B))
The form of the fiber is not particularly limited as long as it is a continuous fiber, for example, a form in which the toe and the toe directions are aligned in one direction and held by a weft auxiliary thread, a form in which the fiber is used as a warp and a woven fabric (cross); Examples thereof include a form of a multi-axial warp knit in which a plurality of fiber sheets in which the directions of the above are aligned in one direction are woven and fastened with auxiliary threads so that the directions of the fibers are different from each other. The carbon fiber base material (B) can be obtained by producing the carbon fiber by each production method based on the above-mentioned form.
 各炭素繊維は、一般的に単繊維であり、また、炭素繊維は複数集まって炭素繊維束を構成する。各炭素繊維束を構成している炭素繊維の本数は、1000~50000本であることが好ましく、2000~40000本であることがより好ましく、5000~25000本であることがさらに好ましい。  Each carbon fiber is generally a single fiber, and a plurality of carbon fibers gather to form a carbon fiber bundle. The number of carbon fibers constituting each carbon fiber bundle is preferably 1,000 to 50,000, more preferably 2,000 to 40,000, and even more preferably 5,000 to 25,000.
 フィラメントの繊維径は3μm以上であることが好ましく、また、12μm以下であることが好ましい。繊維径が3μm以上であれば十分な強度が得られ、例えばフィラメントが、各種加工プロセスにおいて、ロールやスプール等の表面で横移動を起こす際に、切断したり毛羽だまりが生じたりすることを抑制できる。上限については、炭素繊維の製造が容易であるという理由から、通常12μm程度である。  The fiber diameter of the filament is preferably 3 μm or more, and preferably 12 μm or less. Sufficient strength can be obtained when the fiber diameter is 3 μm or more, and for example, when the filament causes lateral movement on the surface of a roll, spool, etc. in various processing processes, it suppresses cutting or fluffing. it can. The upper limit is usually about 12 μm because carbon fibers can be easily produced.
 複数の炭素繊維束は、特に限定されないが、シート状とされることが好ましい。シート状とされた炭素繊維束の目付は、例えば100g/m以上600g/m以下が好ましく、150g/m以上500g/m以下がより好ましい。目付が前記下限値以上であることは、得られたCFRPシートを積層などさせて二次加工する際に効率的である点で好ましく、前記上限値以下であることは、含浸性を得やすいなどの点で好ましい。  The plurality of carbon fiber bundles are not particularly limited, but are preferably in the form of a sheet. The basis weight of the sheet-shaped carbon fiber bundle is, for example, preferably 100 g / m 2 or more and 600 g / m 2 or less, and more preferably 150 g / m 2 or more and 500 g / m 2 or less. It is preferable that the basis weight is at least the above lower limit value because it is efficient when the obtained CFRP sheets are laminated and secondary processed, and at least the above upper limit value is easy to obtain impregnation property. It is preferable in that.
 前記炭素繊維基材(B)としては、樹脂の含浸を容易にする目的で、予め開繊処理されている炭素繊維束(以下、開繊炭素繊維束ということがある)を用いることが好ましい。開繊工程としては特に限定されるものではなく、例えばスペーサ粒子を含ませる方法、丸棒で繊維をしごく方法、気流を用いる方法、超音波等で繊維を振動させる方法等を挙げることができる。好ましくは、スペーサ粒子を含ませる方法であり、このように繊維間距離を広げておくことで、製造段階で炭素繊維に高い張力が付与されても、繊維間の距離が予め広くされているので、樹脂の含浸が容易になる。また、繊維に張力が付与されても、繊維間距離が狭くなりにくい。   As the carbon fiber base material (B), it is preferable to use a carbon fiber bundle that has been pre-spread (hereinafter, may be referred to as a spread carbon fiber bundle) for the purpose of facilitating impregnation with the resin. The fiber opening step is not particularly limited, and examples thereof include a method of including spacer particles, a method of squeezing the fiber with a round bar, a method of using an air flow, a method of vibrating the fiber with ultrasonic waves, and the like. A method of including spacer particles is preferable, and by widening the interfiber distance in this way, even if a high tension is applied to the carbon fiber at the manufacturing stage, the interfiber distance is preliminarily widened. , Resin impregnation becomes easy. Further, even if tension is applied to the fibers, the distance between the fibers is unlikely to be narrowed.
 スペーサ粒子は、各繊維束において炭素繊維間に入り込み、それにより、炭素繊維束を開繊させる。炭素繊維間に入り込んだスペーサ粒子は、炭素繊維間を架橋させるとよい。ここで、「架橋」するとは、炭素繊維間に入り込んだスペーサ粒子が少なくとも2つの炭素繊維を架け渡すように配置される構造を有することを意味する。またスペーサ粒子は、粒子表面に存在する炭素同素体を介して炭素繊維に接着されるとよい。炭素繊維が炭素繊維間を架橋し、また、スペーサ粒子が炭素繊維に接着することで、繊維束の開繊状態をより強固に保持しやすくなる。  The spacer particles enter between the carbon fibers in each fiber bundle, thereby opening the carbon fiber bundle. The spacer particles that have entered between the carbon fibers may be crosslinked between the carbon fibers. Here, "cross-linking" means having a structure in which spacer particles that have entered between carbon fibers are arranged so as to bridge at least two carbon fibers. Further, the spacer particles may be adhered to carbon fibers via carbon allotropes existing on the particle surface. By bridging the carbon fibers between the carbon fibers and adhering the spacer particles to the carbon fibers, it becomes easier to maintain the opened state of the fiber bundle more firmly.
 スペーサ粒子は特に限定されないが、例えば、炭素同素体を含んでもよい。スペーサ粒子において、炭素同素体は、例えば、無定形炭素、黒鉛、ダイヤモンドなどが挙げられる。無定形炭素としてはアモルファスカーボンが挙げられる。これらの中では、無定形炭素が好ましく、アモルファスカーボンがより好ましい。  The spacer particles are not particularly limited, but may contain, for example, carbon allotropes. In the spacer particles, carbon allotropes include, for example, amorphous carbon, graphite, diamond and the like. Amorphous carbon is mentioned as an amorphous carbon. Among these, amorphous carbon is preferable, and amorphous carbon is more preferable.
 ここで、炭素同素体は、熱硬化性樹脂の炭素由来であることが好ましく、すなわち、炭素同素体は、熱硬化性樹脂を炭化することで得られることが好ましい。熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、オキサジン系樹脂などが挙げられ、低温での炭化処理によって、強固なアモルファスカーボンの皮膜を形成できる観点から、オキサジン系樹脂が好ましい。また、オキサジン系樹脂としては、例えば、ベンゾオキサジン樹脂、ナフトキサジン樹脂などが挙げられる。これらの中では、より低温で炭化しやすい点からナフトキサジン樹脂が好ましく、本発明のCFRP製造時の温度および圧力の条件下であっても、過度に軟化しにくい。このため、繊維間距離が十分に確保され、樹脂の含浸性がより一層高くなる。  Here, the carbon allotrope is preferably derived from the carbon of the thermosetting resin, that is, the carbon allotrope is preferably obtained by carbonizing the thermosetting resin. Examples of the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, oxazine resin, etc., and strong amorphous carbon by carbonization treatment at low temperature. Oxazine-based resin is preferable from the viewpoint of forming a film of. Examples of the oxazine-based resin include benzoxazine resin and naphthoxazine resin. Among these, the naphthoxazine resin is preferable from the viewpoint that it is easily carbonized at a lower temperature, and it is difficult to be excessively softened even under the temperature and pressure conditions at the time of CFRP production of the present invention. Therefore, a sufficient distance between fibers is secured, and the impregnation property of the resin is further improved.
 また、スペーサ粒子は炭素同素体から構成された炭素同素体粒子であってもよいが、コア粒子と、コア粒子を被膜する炭素同素体とを含む被膜粒子であってもよい。スペーサ粒子は、樹脂含浸性の観点から、被膜粒子であることが好ましい。被膜粒子は、その表面全体が炭素同素体により被膜されてもよいし、表面の一部が炭素同素体により被膜されてもよい。コア粒子は、炭素繊維束に熱可塑性樹脂を含浸する際の圧力および温度で変形ないし破壊されないものであれば特に制限なく使用することができ、例えば、無機粒子、有機粒子等を使用することができる。コア粒子は、無機粒子または有機粒子を単独で使用してもよいし、両者を併用してもよい。  Further, the spacer particles may be carbon allotrope particles composed of carbon allotropes, but may be film particles containing core particles and carbon allotropes that coat the core particles. The spacer particles are preferably coated particles from the viewpoint of resin impregnation. The entire surface of the coated particles may be coated with a carbon allotrope, or a part of the surface thereof may be coated with a carbon allotrope. The core particles can be used without particular limitation as long as they are not deformed or destroyed by the pressure and temperature when the carbon fiber bundle is impregnated with the thermoplastic resin. For example, inorganic particles, organic particles and the like can be used. it can. As the core particles, inorganic particles or organic particles may be used alone, or both may be used in combination.
 スペーサ粒子の平均粒子径は、1~20μmであることが好ましい。この範囲の大きさのスペーサ粒子を使用することにより、スペーサ粒子を炭素繊維間に入り込ませやすくなるとともに、炭素繊維束をより広く開繊させることができる。スペーサ粒子のより好ましい平均粒子径は2~20μmであり、特に好ましくは4~15μmである。  The average particle size of the spacer particles is preferably 1 to 20 μm. By using the spacer particles having a size in this range, the spacer particles can be easily inserted between the carbon fibers, and the carbon fiber bundle can be opened more widely. The more preferable average particle size of the spacer particles is 2 to 20 μm, and particularly preferably 4 to 15 μm.
 開繊処理した炭素繊維束におけるスペーサ粒子の合計付着量は、開繊炭素繊維束基準で0.5~20質量%が好ましく、1~10質量%がより好ましい。付着量を下限値以上とすることで、炭素繊維束を適切に開繊できる。また、付着量を上限値以下とすることで、開繊炭素繊維束が必要以上にスペーサ粒子を含有し、機械物性が低下することが防止される。  The total amount of spacer particles adhered to the spread-treated carbon fiber bundle is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, based on the spread carbon fiber bundle. By setting the adhesion amount to the lower limit value or more, the carbon fiber bundle can be appropriately opened. Further, by setting the adhesion amount to the upper limit value or less, it is possible to prevent the spread carbon fiber bundle from containing spacer particles more than necessary and deteriorating the mechanical properties.
[炭素繊維強化複合材料の製造方法]
 本発明による炭素繊維強化複合材料は、一例として、(1)基材準備工程、(2)樹脂含浸工程を含む方法により製造することができる。以下、各工程について詳述する。 
[Manufacturing method of carbon fiber reinforced composite material]
As an example, the carbon fiber reinforced composite material according to the present invention can be produced by a method including (1) a base material preparation step and (2) a resin impregnation step. Hereinafter, each step will be described in detail.
(1)基材準備工程 (1)基材準備工程は、上記で説明した炭素繊維基材(B)を準備する工程である。炭素繊維基材(B)としては、上記で説明した通りであり、例えば、適切な炭素繊維の材料、形態、目付量を選択することができる。また、市販の炭素繊維束を用いて所望の組織となるような織布を作製してもよい。  (1) Base material preparation step (1) The base material preparation step is a step of preparing the carbon fiber base material (B) described above. The carbon fiber base material (B) is as described above, and for example, an appropriate carbon fiber material, form, and basis weight can be selected. Further, a woven fabric having a desired structure may be produced by using a commercially available carbon fiber bundle.
 炭素繊維基材の準備工程は、炭素繊維束を開繊する工程を含むことが好ましい。以下、炭素繊維束を開繊する工程について説明する。炭素繊維束の開繊は種々の方法が考えられるが、一例として、炭素繊維束が、炭素繊維間に配置されたスペーサ粒子を備えてもよい。炭素繊維間にスペーサ粒子が配置されることにより、炭素繊維束が開繊され、熱可塑性樹脂を炭素繊維織物に十分に含浸することができる。その他、物理的な開繊などの処理を行うと、繊維束が横に開繊され、織物のピッチ幅が増加し、繊維強化複合材の意匠性が悪化する場合がある。上記のような炭素繊維表面にスペーサ粒子を備える炭素繊維束から構成された炭素繊維織物は、物理的に開繊されたものではないことから、繊維強化複合材の意匠性の悪化を抑制することができ、かつスペーサ粒子によって炭素繊維束が十分に開繊されていることから、熱可塑性樹脂の含浸性を向上させることができると考えられる。 The carbon fiber base material preparation step preferably includes a step of opening the carbon fiber bundle. Hereinafter, the step of opening the carbon fiber bundle will be described. Various methods can be considered for opening the carbon fiber bundle, and as an example, the carbon fiber bundle may include spacer particles arranged between the carbon fibers. By arranging the spacer particles between the carbon fibers, the carbon fiber bundle is opened and the thermoplastic resin can be sufficiently impregnated into the carbon fiber woven fabric. In addition, when a treatment such as physical opening of fibers is performed, the fiber bundles are laterally opened, the pitch width of the woven fabric is increased, and the design of the fiber-reinforced composite material may be deteriorated. Since the carbon fiber woven fabric composed of carbon fiber bundles having spacer particles on the surface of the carbon fiber as described above is not physically opened, it is possible to suppress deterioration of the design of the fiber reinforced composite material. It is considered that the impregnation property of the thermoplastic resin can be improved because the carbon fiber bundles are sufficiently opened by the spacer particles.
 開繊炭素繊維束は、炭素繊維束を開繊含浸液に接触させ、加熱することで製造することができる。炭素繊維束を開繊した後に、当該開繊炭素繊維束を用いて炭素繊維織物を得てもよいが、炭素繊維束を用いて炭素繊維織物を製造した後、上記方法により炭素繊維束を開繊するのが好ましい。  The spread carbon fiber bundle can be produced by bringing the carbon fiber bundle into contact with the spread fiber impregnating liquid and heating it. After opening the carbon fiber bundle, the carbon fiber woven fabric may be obtained by using the opened defibrated carbon fiber bundle, but after producing the carbon fiber woven fabric using the carbon fiber bundle, the carbon fiber bundle is opened by the above method. It is preferable to fiber.
 炭素繊維束を開繊含浸液に接触させるタイミングは、炭素繊維織物を作製する前に予め炭素繊維束を開繊含浸液に接触させてもよく、また、炭素繊維束を経糸束および緯糸束として炭素繊維織物を織布し、得られた炭素繊維織物を開繊含浸液に接触させて炭素繊維束開繊してもよい。  The timing of contacting the carbon fiber bundle with the opening fiber impregnating liquid may be such that the carbon fiber bundle is brought into contact with the opening fiber impregnating liquid in advance before the carbon fiber woven fabric is produced, and the carbon fiber bundle is used as a warp yarn bundle and a weft yarn bundle. The carbon fiber woven fabric may be woven and the obtained carbon fiber woven fabric may be brought into contact with the opening fiber impregnating liquid to open the carbon fiber bundle.
 開繊含浸液の接触は、開繊含浸液を炭素繊維束に含浸させることで行ってもよい。具体的には、開繊含浸液を炭素繊維束にスプレー、塗布などしてもよいし、開繊含浸液に炭素繊維束を浸漬させてよい。開繊含浸液に炭素繊維束を接触させることで、樹脂粒子が、炭素繊維束の炭素繊維間の隙間に入り込み、それにより、炭素繊維束を開繊させることができる。  The contact of the opening fiber impregnating liquid may be performed by impregnating the carbon fiber bundle with the opening fiber impregnating liquid. Specifically, the spread fiber impregnating liquid may be sprayed or applied to the carbon fiber bundle, or the carbon fiber bundle may be immersed in the fiber spread impregnated liquid. By bringing the carbon fiber bundles into contact with the opening fiber impregnating liquid, the resin particles enter the gaps between the carbon fibers of the carbon fiber bundles, whereby the carbon fiber bundles can be opened.
 炭素繊維束の開繊に使用する開繊含浸液は、熱硬化性樹脂を形成し得るモノマー(以下、単に「モノマー」ともいう)を含む。モノマーは、反応することで熱硬化性樹脂となるものである。熱硬化性樹脂は上記のようにオキサジン系樹脂が好ましいが、熱硬化性樹脂がオキサジン系樹脂である場合、モノマーは、例えば、フェノール類、ホルムアルデヒド、およびアミン類である。オキサジン系樹脂は、上記のとおり、ナフトキサジン樹脂が好ましい。  The fiber-spreading impregnated liquid used for opening the carbon fiber bundle contains a monomer (hereinafter, also simply referred to as "monomer") capable of forming a thermosetting resin. The monomer reacts to become a thermosetting resin. The thermosetting resin is preferably an oxazine-based resin as described above, but when the thermosetting resin is an oxazine-based resin, the monomers are, for example, phenols, formaldehyde, and amines. As the oxazine-based resin, as described above, a naphthoxazine resin is preferable.
(2)樹脂含浸工程 (2)樹脂含浸工程は、上記で準備した炭素繊維基材(B)に塩化ビニル系樹脂組成物(A)を含浸する工程である。本発明による炭素繊維強化複合材料は、上記した開繊炭素繊維束から構成される炭素繊維織物に塩化ビニル系樹脂組成物(A)を含浸することにより製造することができる。  (2) Resin impregnation step (2) The resin impregnation step is a step of impregnating the carbon fiber base material (B) prepared above with the vinyl chloride resin composition (A). The carbon fiber reinforced composite material according to the present invention can be produced by impregnating the carbon fiber woven fabric composed of the above-mentioned spread carbon fiber bundle with the vinyl chloride resin composition (A).
 例えば、開繊炭素繊維束から構成される炭素繊維基材(B)に、塩化ビニル系樹脂組成物(A)からなるフィルムを重ね合わせ熱プレス成形したり、炭素繊維基材(B)上に塩化ビニル系樹脂組成物(A)の溶融押出成形を行ったりすることにより、塩化ビニル系樹脂組成物(A)を炭素繊維基材(B)に含浸することができる。炭素繊維強化複合材料は、塩化ビニル系樹脂組成物(A)を含浸した炭素繊維基材(B)を複数枚重ね合わせてもよく、この際、各炭素繊維織物の組織方向が一定の角度でずれるように該炭素繊維基材(B)を重ね合わせることにより、より一層機械強度に優れる炭素繊維強化複合材料を得ることができる。  For example, a film made of a vinyl chloride resin composition (A) is laminated on a carbon fiber base material (B) composed of open fiber carbon fiber bundles and heat-press molded, or on the carbon fiber base material (B). The carbon fiber base material (B) can be impregnated with the vinyl chloride resin composition (A) by performing melt extrusion molding of the vinyl chloride resin composition (A). As the carbon fiber reinforced composite material, a plurality of carbon fiber base materials (B) impregnated with the vinyl chloride resin composition (A) may be laminated, and at this time, the structure direction of each carbon fiber woven fabric is at a constant angle. By superimposing the carbon fiber base materials (B) so as to be displaced, a carbon fiber reinforced composite material having further excellent mechanical strength can be obtained.
 熱プレスには、押出成形やプレス成型を用いることができ、成形型を使用することにより、所望形状の炭素繊維強化複合材料を得ることができる。熱プレス成型を行う際の温度は、使用する塩化ビニル系樹脂組成物(A)が軟化ないし溶融する温度以上で行うことができる。 Extrusion molding or press molding can be used for the hot press, and a carbon fiber reinforced composite material having a desired shape can be obtained by using a molding die. The temperature at which the hot press molding is performed can be set to a temperature higher than the temperature at which the vinyl chloride resin composition (A) to be used softens or melts.
(曲げ強度)
 本発明による炭素繊維強化複合材料は、良好な曲げ強度を有するものである。例えば、炭素繊維強化複合材料の繊維体積率(Vf)が50±2%のとき、三点曲げ試験の曲げ強度は300MPa以上であることが好ましく、400MPa以上であることがより好ましく、500MPa以上であることがさらに好ましい。曲げ強度が上記下限値以上であれば、航空機構造部材、風車のブレード、自動車外板等の高強度が要求される用途において好適に使用することができる。なお、三点曲げ試験は、JIS K 7074に準拠し、長さ
(l)40±1mm、幅(b)15±0.2mm、厚さhのサイズの試験片について、支点間距離(L)は40×hmmとして、測定した値(MPa)である。曲げ試験の治具圧子の半径は5mmで、圧子の幅は2mmのものを使用した。
(Bending strength)
The carbon fiber reinforced composite material according to the present invention has good bending strength. For example, when the fiber volume fraction (Vf) of the carbon fiber reinforced composite material is 50 ± 2%, the bending strength of the three-point bending test is preferably 300 MPa or more, more preferably 400 MPa or more, and 500 MPa or more. It is more preferable to have. When the bending strength is at least the above lower limit value, it can be suitably used in applications requiring high strength such as aircraft structural members, wind turbine blades, and automobile outer panels. The three-point bending test conforms to JIS K 7074, and the distance between fulcrums (L) is (L) for a test piece having a length (l) of 40 ± 1 mm, a width (b) of 15 ± 0.2 mm, and a thickness of h. Is a measured value (MPa) with 40 × hmm. The jig indenter radius of the bending test was 5 mm, and the indenter width was 2 mm.
(繊維体積率Vfの算出)
 本発明による炭素繊維強化複合材料の繊維体積率(Vf)の計算は下記の通り算出した。
 Vf(%)=100×炭素繊維の厚み(mm)÷炭素繊維強化複合材料の厚み(mm)
(Calculation of fiber volume fraction Vf)
The calculation of the fiber volume fraction (Vf) of the carbon fiber reinforced composite material according to the present invention was calculated as follows.
Vf (%) = 100 x carbon fiber thickness (mm) ÷ carbon fiber reinforced composite material thickness (mm)
 以下、実施例により本発明をさらに詳細に説明するが、本発明の要旨を超えない限り以下の実施例に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded.
<試験例1>
<樹脂フィルム作成>
 塩化ビニル樹脂1(徳山積水工業製、SL-P40、重合度約400)を溶液濃度約10%になるようにテトラヒドロフランへ溶解した。続いて、当該溶液に、前記塩化ビニル樹脂1の100質量部に対して、添加剤として、熱安定剤1(メチル錫メルカプト、液体安定剤、日東化成社製 AT5300)2質量部を加え、十分撹拌させて、塩化ビニル系樹脂組成物(A)を得た。得られた塩化ビニル系樹脂組成物(A)をガラス板上にガラス棒を用いて溶液を塗布し、静置し溶媒を揮発させて、樹脂フィルムを得た。得られた樹脂フィルムをガラス板から剥離させた後、さらに60℃の巡風式オーブンにて約3時間乾燥させて、CFRP作成用の樹脂フィルムを得た。
<Test Example 1>
<Making resin film>
Vinyl chloride resin 1 (manufactured by Tokuyama Sekisui Kogyo, SL-P40, degree of polymerization of about 400) was dissolved in tetrahydrofuran so as to have a solution concentration of about 10%. Subsequently, 2 parts by mass of a heat stabilizer 1 (methyl tin mercapto, liquid stabilizer, AT5300 manufactured by Nitto Kasei Co., Ltd.) was added as an additive to 100 parts by mass of the vinyl chloride resin 1 to the solution. The mixture was stirred to obtain a vinyl chloride resin composition (A). The obtained vinyl chloride resin composition (A) was coated on a glass plate with a solution using a glass rod, and allowed to stand to volatilize the solvent to obtain a resin film. After the obtained resin film was peeled off from the glass plate, it was further dried in a traveling oven at 60 ° C. for about 3 hours to obtain a resin film for producing CFRP.
<炭素繊維基材(B)作成>
 1,5-ジヒドロキシナフタレン10質量部、40質量%メチルアミン水溶液4質量部、およびホルマリン(ホルムアルデヒドの含有量:37質量%)8質量部からなるモノマーと、溶媒としてエタノール水(エタノールの含有量:50質量%)800質量部とを均一に混合して、モノマーを溶解してなるモノマー溶液を作製した。次に上記モノマー溶液にジビニルベンゼン架橋重合体からなる粒子(積水化学工業株式会社社製、商品名「ミクロパールSP」、平均粒径10μm)を10質量部添加し、開繊含浸液を作製した。 
<Creation of carbon fiber base material (B)>
A monomer consisting of 10 parts by mass of 1,5-dihydroxynaphthalene, 4 parts by mass of a 40% by mass methylamine aqueous solution, and 8 parts by mass of formalin (formaldehyde content: 37% by mass), and ethanol water (ethanol content: ethanol content:) as a solvent. 50 parts by mass) 800 parts by mass was uniformly mixed to prepare a monomer solution prepared by dissolving the monomer. Next, 10 parts by mass of particles made of divinylbenzene crosslinked polymer (manufactured by Sekisui Chemical Industry Co., Ltd., trade name "Micropearl SP", average particle size 10 μm) were added to the above monomer solution to prepare an open fiber impregnated solution. ..
 続いて、PAN系炭素繊維束から構成される炭素繊維織物(炭素繊維数:3000本、炭素繊維の平均径:7μm、目付:200g/m2、厚み:0.19mm、平織)を用意した。当該炭素繊維織物を上記の開繊含浸液に浸漬した後に引き上げ、その後、200℃で2分間加熱した。この加熱によって、ナフトキサジン樹脂の重合反応と、炭化が生じ、ナフトキサジン樹脂由来のアモルファスカーボンが生成し、開繊炭素繊維束の織物が得られた。開繊炭素繊維束における有機粒子および炭素同素体の合計付着量は、1質量%であった。この開繊炭素繊維束を炭素繊維基材(B)とした。  Subsequently, a carbon fiber woven fabric composed of PAN-based carbon fiber bundles (number of carbon fibers: 3000, average diameter of carbon fibers: 7 μm, grain: 200 g / m 2 , thickness: 0.19 mm, plain weave) was prepared. The carbon fiber woven fabric was immersed in the above-mentioned opening fiber impregnating solution, pulled up, and then heated at 200 ° C. for 2 minutes. By this heating, the polymerization reaction of the naphthoxazine resin and carbonization occurred, and amorphous carbon derived from the naphthoxazine resin was produced, and a woven fabric of open fiber bundles was obtained. The total amount of organic particles and carbon allotropes attached to the spread carbon fiber bundle was 1% by mass. This spread carbon fiber bundle was used as a carbon fiber base material (B).
(実施例1)
<CFRPのプレス成形>
 上記にて得られた炭素繊維基材(B)を、上記にて得られた樹脂フィルム2枚で上下より挟み込み、200℃にて0~6MPaへ段階的に加圧し、合計10分間プレスすることによりCFRPを得た。得られたCFRPを物性評価用のサンプル「実-1」とした。
(Example 1)
<Press molding of CFRP>
The carbon fiber base material (B) obtained above is sandwiched between the two resin films obtained above from above and below, pressed stepwise from 0 to 6 MPa at 200 ° C., and pressed for a total of 10 minutes. Obtained CFRP. The obtained CFRP was used as a sample "Fruit-1" for physical property evaluation.
(実施例2)
 上記樹脂フィルム作成において、熱安定剤1を10質量部へ増量した他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用のサンプル「実-2」とした。 
(Example 2)
CFRP was obtained by the same process as in Example 1 except that the amount of the heat stabilizer 1 was increased to 10 parts by mass in the preparation of the resin film. The obtained CFRP was used as a sample “Actual-2” for physical property evaluation.
(実施例3)
 上記樹脂フィルム作成において、塩化ビニル樹脂1を塩化ビニル樹脂2(徳山積水工業製、TS-640M、重合度約640)に変更した他は、実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-3」とした。 
(Example 3)
CFRP was obtained by the same process as in Example 1 except that the vinyl chloride resin 1 was changed to the vinyl chloride resin 2 (manufactured by Tokuyama Sekisui Kogyo Co., Ltd., TS-640M, degree of polymerization of about 640) in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Actual-3" for physical property evaluation.
(実施例4)
 上記樹脂フィルム作成において、外部滑剤1(三井化学社製 HIWAX220RKT ポリエチレンワックス)を5質量部加えた他は、実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-4」とした。 
(Example 4)
CFRP was obtained by the same process as in Example 1 except that 5 parts by mass of external lubricant 1 (HIWAX220RKT polyethylene wax manufactured by Mitsui Chemicals, Inc.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-4" for physical property evaluation.
(実施例5)
 上記樹脂フィルム作成において、内部滑剤1(エメリーオレオケミカル社製 LOXIOL G60 グリセリンモノステアレート)を10質量部加えた他は、実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-5」とした。
(Example 5)
CFRP was obtained by the same process as in Example 1 except that 10 parts by mass of internal lubricant 1 (LOXIOL G60 glycerin monostearate manufactured by Emery Oleo Chemical Co., Ltd.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-5" for physical property evaluation.
(実施例6)
 上記樹脂フィルム作成において、可塑剤1(ジェイプラス社製 ジオクチルフタレート)を0.1質量部加えた他は、実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-6」とした。 
(Example 6)
CFRP was obtained by the same process as in Example 1 except that 0.1 part by mass of plasticizer 1 (dioctylphthalate manufactured by J-PLUS Co., Ltd.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-6" for physical property evaluation.
(実施例7)
 上記樹脂フィルム作成において、熱安定剤1を0.5質量部へ変えた他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用のサンプルを得た。得られたCFRPを物性評価用のサンプル「実-7」とした。
(Example 7)
CFRP was obtained by the same process as in Example 1 except that the heat stabilizer 1 was changed to 0.5 parts by mass in the preparation of the resin film. The obtained CFRP was used as a sample for physical property evaluation. The obtained CFRP was used as a sample "Fruit-7" for physical property evaluation.
(実施例8)
 上記樹脂フィルム作成において、熱安定剤1を20質量部へ増量した他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用のサンプル「実-8」とした。
(Example 8)
CFRP was obtained by the same process as in Example 1 except that the amount of the heat stabilizer 1 was increased to 20 parts by mass in the preparation of the resin film. The obtained CFRP was used as a sample "Fruit-8" for physical property evaluation.
(実施例9)
 上記樹脂フィルム作成において、外部滑剤1(三井化学社製 HIWAX220RKT ポリエチレンワックス)を0.5質量部加えた他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-9」とした。
(Example 9)
CFRP was obtained by the same process as in Example 1 except that 0.5 parts by mass of external lubricant 1 (HIWAX220RKT polyethylene wax manufactured by Mitsui Chemicals, Inc.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-9" for physical property evaluation.
(実施例10)
 上記樹脂フィルム作成において、外部滑剤1を2質量部加えた他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-10」とした。
(Example 10)
CFRP was obtained by the same process as in Example 1 except that 2 parts by mass of the external lubricant 1 was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-10" for physical property evaluation.
(実施例11)
 上記樹脂フィルム作成において、外部滑剤2(ハネウェル社製 AC316 酸化ポリエチレンワックス)を5質量部加えた他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-11」とした。
(Example 11)
CFRP was obtained by the same process as in Example 1 except that 5 parts by mass of external lubricant 2 (AC316 polyethylene oxide wax manufactured by Honeywell Co., Ltd.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-11" for physical property evaluation.
(実施例12)
 上記樹脂フィルム作成において、外部滑剤3(理研ビタミン社製 SG22 エステル系ワックス)を5質量部加えた他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-12」とした。
(Example 12)
CFRP was obtained by the same process as in Example 1 except that 5 parts by mass of external lubricant 3 (SG22 ester wax manufactured by RIKEN Vitamin Co., Ltd.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-12" for physical property evaluation.
(実施例13)
 上記樹脂フィルム作成において、可塑剤1(ジェイプラス社製 ジオクチルフタレート)を30質量部加えた他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-13」とした。
(Example 13)
CFRP was obtained by the same process as in Example 1 except that 30 parts by mass of plasticizer 1 (dioctylphthalate manufactured by J-PLUS Co., Ltd.) was added in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample "Fruit-13" for physical property evaluation.
(比較例1)
 上記樹脂フィルム作成において、内部滑剤1を25質量部添加した他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用のサンプル「比-1」とした。 
(Comparative Example 1)
CFRP was obtained by the same process as in Example 1 except that 25 parts by mass of the internal lubricant 1 was added in the preparation of the resin film. The obtained CFRP was used as a sample "ratio-1" for physical property evaluation.
(比較例2)
 上記樹脂フィルム作成において、塩化ビニル樹脂1を塩化ビニル樹脂3(徳山積水工業製 TS-1000R、重合度約1000)に変更した他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「比-2」とした。 
(Comparative Example 2)
CFRP was obtained by the same process as in Example 1 except that the vinyl chloride resin 1 was changed to the vinyl chloride resin 3 (TS-1000R manufactured by Tokuyama Sekisui Kogyo Co., Ltd., degree of polymerization of about 1000) in the preparation of the resin film. The obtained CFRP was used as a carbon fiber base material sample “ratio-2” for physical property evaluation.
<溶解指標(Ra)の算出>
 まず、各添加剤のサンプルをハンセン溶解度パラメータ(HSP)が確定している数種の溶媒に溶解させて溶解性を評価し、コンピュータソフトウエア Hansen Solubility Parameters in Practice(HSPiP)を用いて、各添加剤(i)のHSP(δDi、δPi、δHi)、塩化ビニル系樹脂(p)のハンセン溶解度パラメータ(δDv、δPv、δHv)と、炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)、塩化ビニル系樹脂組成物(A)の溶解度パラメータ(δDp、δPp、δHp)を、添加剤(i)の重量分率に基づいて(数式(I)、(II)、及び(III))算出した。
 次に、上記数式(VII)より、溶解指標(Ra)を算出した。算出した溶解指標(Ra)を表1および表2に示した。
<Calculation of dissolution index (Ra)>
First, a sample of each additive is dissolved in several solvents having a fixed Hansen solubility parameter (HSP) to evaluate the solubility, and each addition is performed using the computer software Hansen Solubility Parameters in Practice (HSPiP). The HSP (δDi, δPi, δHi) of the agent (i), the Hansen solubility parameter (δDv, δPv, δHv) of the vinyl chloride resin (p), and the Hansen solubility parameter (δDc, δPc, of the carbon fiber substrate (B)) δHc), the solubility parameter (δDp, δPp, δHp) of the vinyl chloride resin composition (A) is set based on the weight fraction of the additive (i) (formulas (I), (II), and (III). ) Calculated.
Next, the dissolution index (Ra) was calculated from the above formula (VII). The calculated dissolution index (Ra) is shown in Tables 1 and 2.
<複素粘度ηの測定>
 上記樹脂フィルム作成に用いた塩化ビニル系樹脂組成物(A)について、以下の方法により、複素粘度ηを測定した。測定結果を表1および表2に示した。
 上記樹脂フィルムを、30(mm)×90(mm)のサイズに切り出し、約5gとなるように重さを量り、170℃、約3分間、熱プレス成形し、約1分間冷却することにより、厚み1mmの粘度測定用サンプルを作成した。 測定には粘弾性測定装置(MCR102 Anton Paar社製)を使用し、平行平板の半径を25mm、平行間距離1mm、温度200℃、角周波数10Hzの条件で測定し、複素粘度ηを算出した。 
<Measurement of complex viscosity η>
The complex viscosity η of the vinyl chloride resin composition (A) used for producing the resin film was measured by the following method. The measurement results are shown in Tables 1 and 2.
The resin film is cut into a size of 30 (mm) × 90 (mm), weighed to about 5 g, heat-press molded at 170 ° C. for about 3 minutes, and cooled for about 1 minute. A sample for measuring viscosity having a thickness of 1 mm was prepared. A viscoelasticity measuring device (manufactured by MCR102 Antonio Par) was used for the measurement, and the diameter of the parallel plate was measured under the conditions of 25 mm, the parallel distance of 1 mm, the temperature of 200 ° C., and the angular frequency of 10 Hz, and the complex viscosity η was calculated.
<値Sの算出>
 まず、各添加剤のサンプルをハンセン溶解度パラメータ(HSP)が確認されているMasterデータベースより選定した約30種類の溶媒に溶解させて溶解性を評価し、コンピュータソフトウエア Hansen Solubility Parameters in Practice(HSPiP)Ver.4.0.05を用いて、各添加剤(i)、塩化ビニル樹脂(p)、炭素繊維基材(B)のHSPを推算した。続いて、推算した各HSPを用いて、上記数式(I)~(III)により、指標となる値Sを算出した。各配合条件で算出した指標Sを表1および表2に示した。 
<Calculation of value S>
First, a sample of each additive is dissolved in about 30 kinds of solvents selected from the Hansen solubility parameter (HSP), and the solubility is evaluated, and the computer software Hansen Solubility Parameters in Practice (HSPiP) is used. Ver. Using 4.0.05, the HSP of each additive (i), vinyl chloride resin (p), and carbon fiber base material (B) was estimated. Subsequently, using each of the estimated HSPs, the index value S was calculated by the above mathematical formulas (I) to (III). The index S calculated under each compounding condition is shown in Tables 1 and 2.
<曲げ強度測定>
 上記で作成したサンプル「実-1」~「実-13」および「比-1」~「比-2」から、測定用試料として長さ(l)40±1mm、幅(b)15±0.2mm、厚さhmmサイズの試験片について、支点間距離(L)は40×h(mm)として、作成した試験片について、試験機(SHIMADZU社製、AUTOGRAPH AGS-H)を用い、JIS K 7074に準拠して、3点曲げ方式にて曲げ強度(MPa)を測定した。測定結果を表1および表2に示した。 
<Measurement of bending strength>
From the samples "Fruit-1" to "Fruit-13" and "Ratio-1" to "Ratio-2" prepared above, the length (l) 40 ± 1 mm and the width (b) 15 ± 0 as measurement samples. For a test piece with a size of .2 mm and a thickness of h mm, the distance between fulcrums (L) is 40 x h (mm), and the prepared test piece is JIS K using a testing machine (AUTOGRAPH AGS-H manufactured by SHIMADZU). The bending strength (MPa) was measured by a three-point bending method according to 7074. The measurement results are shown in Tables 1 and 2.
(繊維体積率:Vfの算出)
 本発明による炭素繊維強化複合材料の繊維体積率(Vf)の計算は下記の通り算出した。
Vf(%)=100×炭素繊維の厚み(mm)÷炭素繊維強化複合材料の厚み(mm)(Vf50%の曲げ強度の算出)
 Vfが50±2%の範囲にあるサンプルの曲げ強度をN=3以上測定し、測定値から、直線近似を行い、Vf50%の時の曲げ強度を算出し、以下の評価基準により評価を行った。評価結果を表1および表2に示した。評価が「○」または「△」であれば、実用上問題が無い。
(評価基準)
400MPa以上:○
250MPa以上400MPa未満:△
250MPa未満:× 
(Fiber volume fraction: calculation of Vf)
The calculation of the fiber volume fraction (Vf) of the carbon fiber reinforced composite material according to the present invention was calculated as follows.
Vf (%) = 100 x carbon fiber thickness (mm) ÷ carbon fiber reinforced composite material thickness (mm) (calculation of bending strength of Vf 50%)
Measure the bending strength of a sample with Vf in the range of 50 ± 2% at N = 3 or more, perform linear approximation from the measured value, calculate the bending strength at Vf 50%, and evaluate according to the following evaluation criteria. It was. The evaluation results are shown in Tables 1 and 2. If the evaluation is "○" or "△", there is no problem in practical use.
(Evaluation criteria)
400 MPa or more: ○
250 MPa or more and less than 400 MPa: Δ
Less than 250 MPa: ×
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
<試験例2>
<樹脂フィルム(I)作成>
 上記試験例1の実施例1で作成した樹脂フィルムと同様のプロセスにより、CFRP作成用の樹脂フィルム(I)を作成した。
<Test Example 2>
<Making resin film (I)>
A resin film (I) for preparing CFRP was prepared by the same process as the resin film prepared in Example 1 of Test Example 1 above.
<樹脂フィルム(II)作成>
 上記試験例1の実施例3で作成した樹脂フィルムと同様のプロセスにより、CFRP作成用の樹脂フィルム(II)を作成した。
<Making resin film (II)>
A resin film (II) for preparing CFRP was prepared by the same process as the resin film prepared in Example 3 of Test Example 1 above.
<樹脂フィルム(III)作成>
 上記樹脂フィルム(I)作成において、塩化ビニル樹脂1の代わりに、塩素化塩化ビニル樹脂(徳山積水工業製、HA-05K、重合度約360、塩素化度約67%)を用いる他は同様のプロセスにより、CFRP作成用の樹脂フィルム(III)を作成した。
<Making resin film (III)>
The same applies to the preparation of the resin film (I), except that a chlorinated vinyl chloride resin (manufactured by Tokuyama Sekisui Kogyo, HA-05K, degree of polymerization of about 360, degree of chlorination of about 67%) is used instead of the vinyl chloride resin 1. A resin film (III) for making CFRP was prepared by the process.
<樹脂フィルム(IV)作成>
 上記樹脂フィルム(I)作成において、添加剤として化学発泡剤(三菱レイヨン社製、商品名「P-530A」))20質量部をさらに加えた他は同様のプロセスにより、CFRP作成用の樹脂フィルム(IV)を得た。
<Making resin film (IV)>
In the production of the resin film (I), a resin film for producing CFRP was produced by the same process except that 20 parts by mass of a chemical foaming agent (manufactured by Mitsubishi Rayon, trade name "P-530A") was further added as an additive. (IV) was obtained.
<樹脂フィルム(V)作成>
 上記試験例1の比較例2で作成した樹脂フィルムと同様のプロセスにより、CFRP作成用の樹脂フィルム(V)を作成した。
<Making resin film (V)>
A resin film (V) for preparing CFRP was prepared by the same process as the resin film prepared in Comparative Example 2 of Test Example 1.
<炭素繊維基材(B)作成>
 上記試験例1の炭素繊維基材(B)作成と同様のプロセスにより、炭素繊維基材(B)を作成した。
<Creation of carbon fiber base material (B)>
The carbon fiber base material (B) was prepared by the same process as the preparation of the carbon fiber base material (B) of Test Example 1 above.
(実施例14)
<CFRPのプレス成形>
 上記にて得られた炭素繊維基材(B)を、上側に樹脂フィルム(I)を2枚、下側に樹脂フィルム(I)および樹脂フィルム(II)を各1枚で上下より挟み込み、200℃にて0~6MPaへ段階的に加圧し、合計10分間プレスすることによりCFRPを得た。得られたCFRPを物性評価用のサンプル「実-14」とした。
(Example 14)
<Press molding of CFRP>
The carbon fiber base material (B) obtained above is sandwiched between two resin films (I) on the upper side and one resin film (I) and one resin film (II) on the lower side from above and below, and 200 CFRP was obtained by stepwise pressurizing from 0 to 6 MPa at ° C. and pressing for a total of 10 minutes. The obtained CFRP was used as a sample "Fruit-14" for physical property evaluation.
(実施例15)
 上記樹脂フィルム(I)および樹脂フィルム(II)作成において、熱安定剤を10質量部へ増量した他は、前記実施例14と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用のサンプル「実-15」とした。
(Example 15)
CFRP was obtained by the same process as in Example 14 except that the amount of the heat stabilizer was increased to 10 parts by mass in the preparation of the resin film (I) and the resin film (II). The obtained CFRP was used as a sample "Fruit-15" for physical property evaluation.
(実施例16)
 上記樹脂フィルム(I)作成において、添加剤として内部滑剤(エメリーオレオケミカル社製 LOXIOL G60 グリセリンモノステアレート)を10質量部加えた他は、前記実施例14と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-16」とした。
(Example 16)
In the preparation of the resin film (I), CFRP was obtained by the same process as in Example 14 except that 10 parts by mass of an internal lubricant (LOXIOL G60 glycerin monostearate manufactured by Emery Oleo Chemical Co., Ltd.) was added as an additive. The obtained CFRP was used as a carbon fiber base material sample "Fruit-16" for physical property evaluation.
(実施例17)
 上記樹脂フィルム(I)作成において、添加剤として可塑剤(ジェイプラス社製 ジオクチルフタレート)を0.1質量部加えた他は、前記実施例14と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-17」とした。
(Example 17)
CFRP was obtained by the same process as in Example 14 except that 0.1 part by mass of a plasticizer (dioctyl phthalate manufactured by J-PLUS Co., Ltd.) was added as an additive in the preparation of the resin film (I). The obtained CFRP was used as a carbon fiber base material sample "Fruit-17" for physical property evaluation.
(実施例18)
 前記実施例1のCFRPのプレス成形において、上記にて得られた炭素繊維基材(B)を、上側に樹脂フィルム(I)および樹脂フィルム(III)を各1枚、下側に樹脂フィルム(I)および樹脂フィルム(III)を各1枚で上下より挟み込んだ他は、前記実施例14と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-18」とした。
(Example 18)
In the press molding of CFRP of Example 1, the carbon fiber base material (B) obtained above was used, one resin film (I) and one resin film (III) on the upper side, and a resin film (III) on the lower side. CFRP was obtained by the same process as in Example 14 except that I) and the resin film (III) were sandwiched between one each from above and below. The obtained CFRP was used as a carbon fiber base material sample "Fruit-18" for physical property evaluation.
(実施例19)
 前記実施例1のCFRPのプレス成形において、上記にて得られた炭素繊維基材(B)を、上側に樹脂フィルム(I)および樹脂フィルム(IV)を各1枚、下側に樹脂フィルム(I)を2枚で上下より挟み込んだ他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「実-19」とした。
(Example 19)
In the press molding of CFRP of Example 1, the carbon fiber base material (B) obtained above was used, one resin film (I) and one resin film (IV) on the upper side, and a resin film (IV) on the lower side. CFRP was obtained by the same process as in Example 1 except that I) was sandwiched between two sheets from above and below. The obtained CFRP was used as a carbon fiber base material sample "Fruit-19" for physical property evaluation.
(比較例3)
 前記実施例1のCFRPのプレス成形において、上記にて得られた炭素繊維基材(B)を、上側に樹脂フィルム(V)を2枚、下側に樹脂フィルム(V)を2枚で上下より挟み込んだ他は、前記実施例1と同様のプロセスによりCFRPを得た。得られたCFRPを物性評価用の炭素繊維基材サンプル「比-3」とした。
(Comparative Example 3)
In the press molding of CFRP of Example 1, the carbon fiber base material (B) obtained above is placed up and down with two resin films (V) on the upper side and two resin films (V) on the lower side. CFRP was obtained by the same process as in Example 1 except for sandwiching. The obtained CFRP was used as a carbon fiber base material sample "ratio-3" for physical property evaluation.
<複素粘度ηの測定>
 上記樹脂フィルム作成に用いた塩化ビニル系樹脂組成物(A)について、上記試験1と同様の方法により、複素粘度ηを測定した。測定結果を表3に示した。
<Measurement of complex viscosity η>
The complex viscosity η of the vinyl chloride resin composition (A) used for producing the resin film was measured by the same method as in Test 1. The measurement results are shown in Table 3.
<値Sの算出>
 上記試験1と同様の方法により算出した指標Sを表3に示した。
<Calculation of value S>
Table 3 shows the index S calculated by the same method as in Test 1 above.
<曲げ強度測定>
 上記で作成したサンプル「実-14」~「実-19」および「比-3」を用いて、上記試験1と同様の方法により、3点曲げ方式にて曲げ強度(MPa)を測定した。測定結果を表3に示した。
<Measurement of bending strength>
Using the samples "Fruit-14" to "Fruit-19" and "Ratio-3" prepared above, the bending strength (MPa) was measured by a three-point bending method in the same manner as in Test 1 above. The measurement results are shown in Table 3.
<難燃性評価>
 上記で作成したサンプル「実-14」および「実-18」を試料とし、20mm垂直燃焼試験 (UL94規格)と類似の評価法により、その難燃性を下記の基準で相対評価した。評価結果を表3に示した。
[評価基準]
・○:ベンチマークより優れる難燃性を有する。
・BM:ベンチマーク
<Flame retardancy evaluation>
Using the samples "Fruit-14" and "Fruit-18" prepared above as samples, their flame retardancy was evaluated relative to each other by the same evaluation method as the 20 mm vertical combustion test (UL94 standard). The evaluation results are shown in Table 3.
[Evaluation criteria]
・ ○: Has flame retardancy superior to the benchmark.
・ BM: Benchmark
<軽量性評価>
 上記で作成したサンプル「実-14」および「実-19」を試料とし、水中置換法(JISK7112)と類似の方法にて、密度を測定し、軽量性を下記の基準で相対評価した。評価結果を表3に示した。
[評価基準]
・○:ベンチマークより低密度である。
・BM:ベンチマーク
<Lightness evaluation>
Using the samples "Fruit-14" and "Fruit-19" prepared above as samples, the density was measured by a method similar to the underwater substitution method (JISK7112), and the lightness was relatively evaluated according to the following criteria. The evaluation results are shown in Table 3.
[Evaluation criteria]
・ ○: The density is lower than the benchmark.
・ BM: Benchmark
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026

Claims (12)

  1.  塩化ビニル系樹脂組成物(A)と、炭素繊維基材(B)とからなり、
     前記塩化ビニル系樹脂組成物(A)が、塩化ビニル系樹脂および少なくとも1種の添加剤を含み、
     前記塩化ビニル系樹脂組成物(A)および前記炭素繊維基材(B)が、下記特性(1)および特性(2): 
    ・特性(1):塩化ビニル系樹脂組成物(A)は、200℃、周波数10Hzでの複素粘度ηが、1<η<1500であること。
    ・特性(2):塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解パラメータ(δDp、δPp、δHp)とを用いて、下記数式(I)より算出される溶解指標(Ra(pi))、及び前記ハンセン溶解度パラメータ(δDi、δPi、δHi)と、炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、下記数式(II)より算出される溶解指標(Ra(ci))、及び塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)の重量分率C(i)とを用いて、下記数式(III)により算出した値Sが150以下であること。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    (数式(I)及び(II)中、δD、δPおよびδHは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。)
    (数式(III)中、Πは総乗を意味し、具体的には各添加剤(i)の各成分をi=1,2,3・・・nとする場合、塩化ビニル系樹脂(p)及び炭素繊維基材(B)に対して算出されるRa(pi)及びRa(ci)と前記重量分率C(i)の積を表す。また、その冪乗に掛かる値nは、各添加剤(i)の成分数を示す。)
    を満たす、炭素繊維強化複合材料。
    It is composed of a vinyl chloride resin composition (A) and a carbon fiber base material (B).
    The vinyl chloride resin composition (A) contains a vinyl chloride resin and at least one additive.
    The vinyl chloride resin composition (A) and the carbon fiber base material (B) have the following properties (1) and properties (2):
    -Characteristics (1): The vinyl chloride resin composition (A) has a complex viscosity η at 200 ° C. and a frequency of 10 Hz of 1 <η <1500.
    -Characteristics (2): The Hansen solubility parameter (δDi, δPi, δHi) of each additive (i) contained in the vinyl chloride resin composition (A) and the Hansen solubility parameter (δDi, δPi, δHi) of the vinyl chloride resin (p) used. Using δDp, δPp, δHp), the dissolution index (Ra (pi)) calculated from the following formula (I), the Hansen solubility parameter (δDi, δPi, δHi), and the carbon fiber base material (B) The solubility index (Ra (ci)) calculated from the following formula (II) using the Hansen solubility parameter (δDc, δPc, δHc) of the above, and each additive contained in the vinyl chloride resin composition (A). The value S calculated by the following formula (III) using the weight component C (i) of (i) is 150 or less.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    (In formulas (I) and (II), δD, δP and δH indicate the dispersion term, the polarity term and the hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is (MPa) 1/2 .)
    (In the formula (III), Π means an infinite product. Specifically, when each component of each additive (i) is i = 1, 2, 3 ... n, a vinyl chloride resin (p.) ) And the product of Ra (pi) and Ra (ci) calculated with respect to the carbon fiber base material (B) and the weight fraction C (i). In addition, the value n multiplied by the product is each. The number of components of the additive (i) is shown.)
    Meet, carbon fiber reinforced composite material.
  2.  塩化ビニル系樹脂組成物(A)は、200℃、周波数10Hzでの複素粘度ηが、10≦η≦1000である、請求項1に記載の炭素繊維強化複合材料。 The carbon fiber reinforced composite material according to claim 1, wherein the vinyl chloride resin composition (A) has a complex viscosity η at 200 ° C. and a frequency of 10 Hz of 10 ≦ η ≦ 1000.
  3.  前記塩化ビニル系樹脂組成物(A)が、下記特性(3):
    ・特性(3):前記塩化ビニル系樹脂組成物(A)に含まれる各添加剤(i)のハンセン溶解度パラメータ(δDi、δPi、δHi)と、用いる塩化ビニル系樹脂(p)のハンセン溶解度パラメータ(δDv、δPv、δHv)と、用いる炭素繊維基材(B)のハンセン溶解度パラメータ(δDc、δPc、δHc)とを用いて、下記数式(IV)、(V)、及び(VI)より、重量分率を用いて塩化ビニル系樹脂組成物(A)のハンセン溶解度パラメータ(δDp、δPp、δHp)を算出し、下記数式(VII)より算出される溶解性指標(Ra)が7.5以下であること。
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    (数式(IV)、(V)、及び(VI)中、xは、塩化ビニル系樹脂の添加部数を示し、yは塩化ビニル系樹脂組成物の総部数を示し、zは各配合剤の添加部数を示す。)
    Figure JPOXMLDOC01-appb-M000007
    (数式(VII)中、δD、δPおよびδHは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。)
    をさらに満たす、請求項1または2に記載の炭素繊維強化複合材料。
    The vinyl chloride resin composition (A) has the following characteristics (3):
    -Characteristics (3): Hansen solubility parameter (δDi, δPi, δHi) of each additive (i) contained in the vinyl chloride resin composition (A), and Hansen solubility parameter of the vinyl chloride resin (p) used. Using (δDv, δPv, δHv) and the Hansen solubility parameter (δDc, δPc, δHc) of the carbon fiber base material (B) used, the weight is calculated from the following formulas (IV), (V), and (VI). The Hansen solubility parameter (δDp, δPp, δHp) of the vinyl chloride resin composition (A) is calculated using the fraction, and the solubility index (Ra) calculated from the following formula (VII) is 7.5 or less. There is.
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    (In formulas (IV), (V), and (VI), x indicates the number of copies of the vinyl chloride resin added, y indicates the total number of copies of the vinyl chloride resin composition, and z indicates the addition of each compounding agent. Indicates the number of copies.)
    Figure JPOXMLDOC01-appb-M000007
    (In the formula (VII), δD, δP and δH indicate the dispersion term, the polarity term and the hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is (MPa) 1/2 .)
    The carbon fiber reinforced composite material according to claim 1 or 2, further satisfying.
  4.  前記添加剤が、熱安定剤、滑剤、加工助剤、衝撃改質剤、耐熱向上剤、酸化防止剤、紫外線吸収剤、帯電防止剤、光安定剤、充填剤、顔料、難燃剤、および可塑剤からなる群から選択される少なくとも1種である、請求項1~3のいずれか一項に記載の炭素繊維強化複合材料。 The additives are heat stabilizers, lubricants, processing aids, impact modifiers, heat improvers, antioxidants, UV absorbers, antistatic agents, light stabilizers, fillers, pigments, flame retardants, and plasticizers. The carbon fiber reinforced composite material according to any one of claims 1 to 3, which is at least one selected from the group consisting of agents.
  5.  前記塩化ビニル系樹脂組成物(A)が、400以上1500以下の平均重合度を有する塩化ビニル系樹脂(p)を含む、請求項1~4のいずれか一項に記載の炭素繊維強化複合材料。 The carbon fiber reinforced composite material according to any one of claims 1 to 4, wherein the vinyl chloride resin composition (A) contains a vinyl chloride resin (p) having an average degree of polymerization of 400 or more and 1500 or less. ..
  6.  前記塩化ビニル系樹脂組成物(A)において、前記添加剤の合計含有量が、前記塩化ビニル系樹脂100質量部に対して70質量部以下である請求項1~5のいずれか一項に記載の炭素繊維強化複合材料。 The invention according to any one of claims 1 to 5, wherein in the vinyl chloride resin composition (A), the total content of the additives is 70 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin. Carbon fiber reinforced composite material.
  7.  熱安定剤の含有量が0.1~30質量部であり、内部滑剤の含有量が20質量部以下であり、外部滑剤が10質量部以下であり、可塑剤の含有量が30質量部以下である請求項1~6のいずれか一項に記載の炭素繊維強化複合材料。 The content of the heat stabilizer is 0.1 to 30 parts by mass, the content of the internal lubricant is 20 parts by mass or less, the content of the external lubricant is 10 parts by mass or less, and the content of the plasticizer is 30 parts by mass or less. The carbon fiber reinforced composite material according to any one of claims 1 to 6.
  8.  前記炭素繊維強化複合材料の繊維体積率(Vf)が50±2%のとき、三点曲げ試験の平均曲げ強度が300MPa以上である、請求項1~7のいずれか一項に記載の炭素繊維強化複合材料。 The carbon fiber according to any one of claims 1 to 7, wherein the average bending strength of the three-point bending test is 300 MPa or more when the fiber volume fraction (Vf) of the carbon fiber reinforced composite material is 50 ± 2%. Reinforced composite material.
  9.  前記炭素繊維強化複合材料の表面の少なくとも一部を被覆する塩化ビニル系樹脂組成物(C)を備える、請求項1~8のいずれか一項に記載の炭素繊維強化複合材料。 The carbon fiber reinforced composite material according to any one of claims 1 to 8, further comprising a vinyl chloride resin composition (C) that covers at least a part of the surface of the carbon fiber reinforced composite material.
  10.  前記塩化ビニル系樹脂組成物(C)が、塩素化塩化ビニル系樹脂を含む、請求項9に記載の炭素繊維強化複合材料。 The carbon fiber reinforced composite material according to claim 9, wherein the vinyl chloride resin composition (C) contains a chlorinated vinyl chloride resin.
  11.  前記塩化ビニル系樹脂組成物(C)が、塩化ビニル系樹脂発泡体を含む、請求項9または10に記載の炭素繊維強化複合材料。 The carbon fiber reinforced composite material according to claim 9 or 10, wherein the vinyl chloride resin composition (C) contains a vinyl chloride resin foam.
  12.  請求項1~11のいずれか一項に記載の炭素繊維強化複合材料からなる、成形体。  A molded product made of the carbon fiber reinforced composite material according to any one of claims 1 to 11.
PCT/JP2020/011966 2019-03-25 2020-03-18 Polyvinyl chloride-based carbon fiber reinforced composite material WO2020196153A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2019057123A JP7332313B2 (en) 2019-03-25 2019-03-25 Polyvinyl chloride-based carbon fiber reinforced composite material
JP2019-057171 2019-03-25
JP2019057105A JP7332312B2 (en) 2019-03-25 2019-03-25 Polyvinyl chloride-based carbon fiber reinforced composite material
JP2019-057142 2019-03-25
JP2019-057105 2019-03-25
JP2019057142 2019-03-25
JP2019-057123 2019-03-25
JP2019057171 2019-03-25
JP2019155858A JP7323384B2 (en) 2019-03-25 2019-08-28 Polyvinyl chloride-based carbon fiber reinforced composite material
JP2019155872A JP7323385B2 (en) 2019-03-25 2019-08-28 Polyvinyl chloride-based carbon fiber reinforced composite material
JP2019-155872 2019-08-28
JP2019-155858 2019-08-28

Publications (1)

Publication Number Publication Date
WO2020196153A1 true WO2020196153A1 (en) 2020-10-01

Family

ID=72611857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011966 WO2020196153A1 (en) 2019-03-25 2020-03-18 Polyvinyl chloride-based carbon fiber reinforced composite material

Country Status (1)

Country Link
WO (1) WO2020196153A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880170A (en) * 1972-01-31 1973-10-26
JPH03158211A (en) * 1989-11-16 1991-07-08 Sekisui Chem Co Ltd Production of fiber-reinforced polyvinyle chloride series resin composite material
JPH0428534A (en) * 1990-05-25 1992-01-31 Teijin Ltd Manufacture of fiber reinforced composite molded form and intermediate blank used in the manufacture
JPH08267565A (en) * 1995-03-31 1996-10-15 Sekisui Chem Co Ltd Production of fiber reinforced thermoplastic resin composite pipe
JPH11291416A (en) * 1998-04-13 1999-10-26 Asahi Glass Engineering Co Ltd Fiber-reinforced vinylchloride resin molded body and manufacture thereof
JP2002001811A (en) * 2000-06-23 2002-01-08 Sekisui Chem Co Ltd Method for manufacturing vinyl chloride resin tube
JP2011213061A (en) * 2010-04-01 2011-10-27 Mitsubishi Plastics Inc Laminate
JP2016092381A (en) * 2014-11-11 2016-05-23 株式会社フジクラ Resin composition for shielding electromagnetic waves and cable
JP2017066568A (en) * 2015-10-02 2017-04-06 平岡織染株式会社 Deodorant fabric

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880170A (en) * 1972-01-31 1973-10-26
JPH03158211A (en) * 1989-11-16 1991-07-08 Sekisui Chem Co Ltd Production of fiber-reinforced polyvinyle chloride series resin composite material
JPH0428534A (en) * 1990-05-25 1992-01-31 Teijin Ltd Manufacture of fiber reinforced composite molded form and intermediate blank used in the manufacture
JPH08267565A (en) * 1995-03-31 1996-10-15 Sekisui Chem Co Ltd Production of fiber reinforced thermoplastic resin composite pipe
JPH11291416A (en) * 1998-04-13 1999-10-26 Asahi Glass Engineering Co Ltd Fiber-reinforced vinylchloride resin molded body and manufacture thereof
JP2002001811A (en) * 2000-06-23 2002-01-08 Sekisui Chem Co Ltd Method for manufacturing vinyl chloride resin tube
JP2011213061A (en) * 2010-04-01 2011-10-27 Mitsubishi Plastics Inc Laminate
JP2016092381A (en) * 2014-11-11 2016-05-23 株式会社フジクラ Resin composition for shielding electromagnetic waves and cable
JP2017066568A (en) * 2015-10-02 2017-04-06 平岡織染株式会社 Deodorant fabric

Similar Documents

Publication Publication Date Title
KR101981837B1 (en) Fiber-reinforced thermoplastic-resin molded article, fiber-reinforced thermoplastic-resin molding material, and method for manufacturing fiber-reinforced thermoplastic-resin molding material
KR101843220B1 (en) Carbon-fiber reinforced polypropylene resin composition, molding material, and molded articles
JP6003224B2 (en) Composite reinforcing fiber bundle, method for producing the same, and molding material
US10570259B2 (en) Composition and formed article
JP5468964B2 (en) Laminated body
JP2009197359A (en) Reinforcing fiber, and fiber-reinforced composite material
JP6497050B2 (en) Fiber-reinforced thermoplastic resin molding material and fiber-reinforced thermoplastic resin molded product
US20200339768A1 (en) Composition for fiber-reinforced resin, production method therefor, fiber-reinforced resin, and formed article
US11643771B2 (en) Reinforcing fiber bundle, reinforcing fiber-opening woven fabric, fiber reinforced composite, and methods for producing thereof
JP2020158571A (en) Poly vinyl chloride-based carbon fiber-reinforced composite material
JP5525781B2 (en) Laminated body
US20210024713A1 (en) Prepreg and carbon fiber-reinforced composite material
WO2020196153A1 (en) Polyvinyl chloride-based carbon fiber reinforced composite material
JP2020158572A (en) Poly vinyl chloride-based carbon fiber-reinforced composite material
JP2020158750A (en) Poly vinyl chloride-based carbon fiber-reinforced composite material
JP2020158749A (en) Poly vinyl chloride-based carbon fiber-reinforced composite material
JP2013052598A (en) Wall face panel, horizontal sheathing, and soldier beam horizontal sheathing type water protection wall
JP2015178611A (en) composite reinforcing fiber bundle and molding material
US20220145528A1 (en) Method for producing opened carbon fibre bundle and fibre reinforced composite material
TWI762891B (en) Matrix resin for fiber-reinforced resin, matrix resin film for fiber-reinforced resin, composite body, prepreg, carbon fiber-reinforced resin molded body, and manufacturing method of carbon fiber-reinforced resin molded body
JP2021138906A (en) Polyvinyl chloride carbon fiber-reinforced composite material
JP6520256B2 (en) Carbon fiber reinforced thermoplastic, housing for electric and electronic devices
JP2022044368A (en) Carbon fiber-reinforced composite material
JP2022043969A (en) Carbon fiber-reinforced composite material
JP2015048450A (en) Polycarbonate resin molding material and molded article thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777023

Country of ref document: EP

Kind code of ref document: A1