JPH03158211A - Production of fiber-reinforced polyvinyle chloride series resin composite material - Google Patents

Production of fiber-reinforced polyvinyle chloride series resin composite material

Info

Publication number
JPH03158211A
JPH03158211A JP29851089A JP29851089A JPH03158211A JP H03158211 A JPH03158211 A JP H03158211A JP 29851089 A JP29851089 A JP 29851089A JP 29851089 A JP29851089 A JP 29851089A JP H03158211 A JPH03158211 A JP H03158211A
Authority
JP
Japan
Prior art keywords
polyvinyl chloride
chloride resin
resin
plasticizer
endless belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29851089A
Other languages
Japanese (ja)
Inventor
Masahiro Ishii
正裕 石居
Kiyoyasu Fujii
藤井 清康
Hiroshi Sugawara
宏 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP29851089A priority Critical patent/JPH03158211A/en
Publication of JPH03158211A publication Critical patent/JPH03158211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To uniformly impregnate a highly viscous polyvinyl chloride series resin into reinforced fiber filaments and improve the wet properties of the resin on the surface of the reinforced fiber filaments by applying a plasticizer for the polyvinyl chloride series resin to the surface of the reinforced fiber filaments and heating and pressurizing the reinforced fiber filaments for unification after immersing the same in a fluidized bed containing a polyvinyl chloride series resin composition in the form of powder. CONSTITUTION:Roving glass fiber 1 is allowed to pass continuously through a coating tank 4 containing a plasticizer, and the amount of the plasticizer is regulated so as to be 5wt.% or more to the amount of the glass fiber. Subsequently, the roving glass fiber is allowed to pass continuously through a fluidized bed 7 containing a polyvinyl chloride resin and, after the polyvinyl chloride resin in the form of powder is attached to the portion between monofilaments, the excessive polyvinyl chloride resin is removed and adjusted by slitters 12, and the glass fiber is then fed onto a lower side endless belt 23 while being cut by a cutter 21. The minimum gap between an upper side endless belt 22 and the lower side endless belt 23 is adjusted by guide rolls 27, and the polyvinyl chloride resin in the form of powder is melted while accumulated members are being pressurized in the direction of their thickness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強化繊維のフィラメント間にポリ塩化ビニル
系樹脂が含浸した繊維強化ポリ塩化ビニル系樹脂複合材
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a fiber-reinforced polyvinyl chloride resin composite material in which the filaments of reinforcing fibers are impregnated with a polyvinyl chloride resin.

(従来の技術) 従来からロービング状の連続強化繊維を粉体状熱可塑性
樹脂の流動床中を通過させて強化繊維に粉体状樹脂を付
着せしめた後、連続的に加熱ゾーンを通過させて、粉体
状熱可塑性樹脂を溶融させ、強化繊維と熱可塑性樹脂を
一体化させる繊維強化樹脂複合材の製造方法が知られて
いる(例えば、特公昭52−3985号、特開昭48−
85653号、特開昭131027号、公表特許昭58
−501943号、特開昭63−27208号等の公報
参照)。
(Prior art) Conventionally, roving-shaped continuous reinforcing fibers are passed through a fluidized bed of powdered thermoplastic resin to adhere the powdered resin to the reinforcing fibers, and then continuously passed through a heating zone. There are known methods for producing fiber-reinforced resin composites in which thermoplastic resin powder is melted and reinforcing fibers and thermoplastic resin are integrated (for example, Japanese Patent Publication No. 52-3985, Japanese Unexamined Patent Application Publication No. 1983-1989).
No. 85653, Japanese Unexamined Patent Publication No. 131027, Publication Patent No. 1983
-501943, Japanese Unexamined Patent Publication No. 63-27208, etc.).

(発明が解決しようとする課題) しかし、上記従来の製造方法は、強化繊維中に熱可塑性
樹脂を均一に分散させようとするものであるが、繊維中
に熱可塑性樹脂を含浸後に樹脂の溶融温度にまで加熱後
一体化する際、ポリ塩化ビニル樹脂のような高粘度樹脂
は、見かけ上は一体化していても繊維表面上の濡れ特性
が悪く、物性が低下する。又、これらの複合材を樹脂の
溶融温度にまで再加熱して賦形すると、強化繊維のケバ
立ちがみられる等の問題点があった。
(Problem to be Solved by the Invention) However, the conventional manufacturing method described above attempts to uniformly disperse the thermoplastic resin in the reinforcing fibers, but after impregnating the fibers with the thermoplastic resin, the resin is melted. When integrated after heating to a high temperature, high viscosity resins such as polyvinyl chloride resin have poor wetting properties on the fiber surface and deteriorate physical properties even if they appear integrated. Furthermore, when these composite materials are reheated to the melting temperature of the resin and shaped, there are problems such as the reinforcing fibers becoming fluffy.

本発明は、上記問題点を解決しようとするものであり、
その目的とするところは、強化繊維フィラメントに高粘
度のポリ塩化ビニル系樹脂が均一に含浸し、かつ強化繊
維表面の樹脂の濡れ特性を良好にした繊維強化ポリ塩化
ビニル系樹脂複合材の製造方法を提供しようとするもの
である。
The present invention aims to solve the above problems,
The objective is to produce a fiber-reinforced polyvinyl chloride resin composite material in which reinforcing fiber filaments are uniformly impregnated with high-viscosity polyvinyl chloride resin, and the wetting properties of the resin on the surface of the reinforcing fibers are improved. This is what we are trying to provide.

(課題を解決するための手段) 本発明は、強化繊維フィラメント表面に室温において液
体状のポリ塩化ビニル系樹脂用可塑剤を5重量%以下に
塗布後、該強化繊維フィラメントを粉体状ポリ塩化ビニ
ル系樹脂組成物の流動床中に浸漬して、前記強化繊維フ
ィラメントに前記粉体状ポリ塩化ビニル系樹脂組成物を
付着させた後、加熱・加圧して一体化することを特徴と
している。
(Means for Solving the Problems) The present invention provides a method for applying a liquid polyvinyl chloride resin plasticizer at room temperature to the surface of a reinforcing fiber filament in an amount of 5% by weight or less, and then converting the reinforcing fiber filament into a powdery polychloride. The reinforcing fiber filament is immersed in a fluidized bed of a vinyl resin composition to adhere the powdered polyvinyl chloride resin composition to the reinforcing fiber filament, and then heated and pressurized to integrate the reinforcing fiber filament.

本発明に用いられる強化繊維は、使用する粉体状ポリ塩
化ビニル系樹脂の溶融温度において熱的に安定な繊維が
使用できる0、例えば、ガラス繊維、炭素繊維、ボロン
繊維、金属繊維等の無機繊維、又はアラミド繊維、エコ
ノール繊維、ポリエステル繊維、ポリアミド繊維等の有
機繊維等が挙げられ、これらの繊維は、直径1〜50μ
mのモノフィラメント数百〜数千本より構成されるロー
ビング状又はストランド状の連続強化繊維束にして用い
られる。モノフィラメントが収束剤により収束された状
態の連続強化繊維束を使用する場合には、収束剤の付着
量が1重量%以下、さらには0.51i量%以下である
ことが好ましい。1重量%をこえると連続強化繊維束を
モノフィラメント単位に開繊し分離するのが困難となる
The reinforcing fibers used in the present invention include fibers that are thermally stable at the melting temperature of the powdered polyvinyl chloride resin used, and inorganic fibers such as glass fibers, carbon fibers, boron fibers, and metal fibers. fibers, or organic fibers such as aramid fibers, econol fibers, polyester fibers, and polyamide fibers, etc., and these fibers have a diameter of 1 to 50 μm.
It is used in the form of a continuous reinforcing fiber bundle in the form of a roving or strand consisting of several hundred to several thousand monofilaments. When using a continuous reinforcing fiber bundle in which monofilaments are bound together by a binding agent, the amount of the binding agent attached is preferably 1% by weight or less, more preferably 0.51% by weight or less. If it exceeds 1% by weight, it becomes difficult to open and separate the continuous reinforcing fiber bundle into monofilament units.

本発明における高粘度の樹脂であるポリ塩化ビニル系樹
脂としては、重合度は一般に溶融成形加工しうるちの(
例えば、平均重合度200〜1200)で塊状、懸濁、
もしくはエマルジョン状のものが使用でき、例えば、ポ
リ塩化ビニル樹脂さらにポリ塩化ビニリデン樹脂、高塩
素化されたポリ塩化ビニル樹脂、塩素化された単量体及
びこの単量体と共重合可能な単量体とから得られる共重
合体(例えば、塩化ビニル酢酸ビニル共重合体、塩化ビ
ニル塩化ビニリデン共重合体、エチレン塩化ビニル共重
合体、プロピレン塩化ビニル共重合体、塩化ビニルアク
リル酸エステル共重合体、塩化ビニルメタクリル酸エス
テル共重合体等)が挙げられる。
As for polyvinyl chloride resin, which is a high viscosity resin in the present invention, the polymerization degree is generally (
For example, with an average degree of polymerization of 200 to 1200), lumps, suspensions,
Alternatively, an emulsion can be used, such as polyvinyl chloride resin, polyvinylidene chloride resin, highly chlorinated polyvinyl chloride resin, chlorinated monomer, and monomer copolymerizable with this monomer. (e.g., vinyl chloride vinyl acetate copolymer, vinyl chloride vinylidene chloride copolymer, ethylene vinyl chloride copolymer, propylene vinyl chloride copolymer, vinyl chloride acrylic ester copolymer, vinyl chloride methacrylate copolymer, etc.).

本発明で、ポリ塩化ビニル系樹脂を成形加工する際に使
用する添加剤として、例えば熱安定剤(アルキル錫メル
カプト化合物、アルキル錫カルボキシレート、金属石鹸
、エポキシ化された油又はエステル、アリール系もしく
はアルキル系もしくはアリール/アルキル系混合ホスフ
ァイト等を個々に又は混合したもの)、内滑剤(グリセ
リンのモノ−、ジー、トリー等のエステル、高級アルコ
ール、中性もしくは塩基性金属石鹸等)、外滑剤(高級
脂肪酸、脂肪酸エステル、ポリエチレンワックス、脂肪
酸アミド、シリコーン油等)、酸化防止剤(立体障害を
受けたフェノール又はビスフェノール等)、紫外線吸収
剤(サリチル酸エステル、ベンゾフェノン、ベンゾトリ
アゾール、シアノアクリレート等)、顔料(金属酸化物
、カーボンブラック等)、可塑剤(ジオクチルフタレー
ト、ジシクロへキシルフタレート等)等が添加されても
よい。
In the present invention, additives used when molding polyvinyl chloride resins include, for example, heat stabilizers (alkyltin mercapto compounds, alkyltin carboxylates, metal soaps, epoxidized oils or esters, aryl or Alkyl or aryl/alkyl mixed phosphites (individually or in combination), internal lubricants (mono-, di-, tri-esters of glycerin, higher alcohols, neutral or basic metal soaps, etc.), external lubricants (higher fatty acids, fatty acid esters, polyethylene wax, fatty acid amides, silicone oils, etc.), antioxidants (sterically hindered phenols or bisphenols, etc.), ultraviolet absorbers (salicylic acid esters, benzophenones, benzotriazoles, cyanoacrylates, etc.), Pigments (metal oxides, carbon black, etc.), plasticizers (dioctyl phthalate, dicyclohexyl phthalate, etc.), etc. may be added.

また、エチレン−ビニルアセテート共重合体、アクリレ
ート樹脂、塩素化ポリエチレン樹脂、アクリル−ブタジ
ェン−スチレン共重合体、メタクリル−ブタジェン−ス
チレン共重合体等の衝撃性改質剤を添加してもよい。
In addition, impact modifiers such as ethylene-vinyl acetate copolymer, acrylate resin, chlorinated polyethylene resin, acrylic-butadiene-styrene copolymer, and methacrylic-butadiene-styrene copolymer may be added.

また、炭酸カルシウム、タルク、マイカ等の無機充填剤
が添加されてもよい。
Inorganic fillers such as calcium carbonate, talc, and mica may also be added.

本発明に用いるポリ塩化ビニル系樹脂用可塑剤は、常温
で液体であるすべての可塑剤が使用できる。可塑剤の種
類としては、例えば、フタル酸エステル(DOP(ジー
2−エチルへキシルフタレート)、DBP (ジブチル
フタレート)等)、アジピン酸エステル(DOA (ジ
ー2−エチルヘキシル)、アジペート等)、セバシン酸
エステル(DBS (ジブチルセバケート))、アゼラ
イン酸エステル<DOZ(ジー2−エチルへキシルアゼ
レート))、リン酸エステル(TOP(トリー2−エチ
ルへキシルホスフェート))、TCP(トリクレジルホ
スフェート))、エポキシ化植物油(エポキシ化大豆油
等)が使用される。
As the plasticizer for polyvinyl chloride resin used in the present invention, any plasticizer that is liquid at room temperature can be used. Examples of plasticizers include phthalate esters (DOP (di-2-ethylhexyl phthalate), DBP (dibutyl phthalate), etc.), adipate esters (DOA (di-2-ethylhexyl), adipate, etc.), and sebacic acid. Esters (DBS (dibutyl sebacate)), azelaic acid ester <DOZ (di-2-ethylhexyl azelate)), phosphoric acid ester (TOP (tri-2-ethylhexyl phosphate)), TCP (tricresyl phosphate) ), epoxidized vegetable oils (such as epoxidized soybean oil) are used.

強化繊維に可塑剤を塗布する際に使用する溶媒は、常温
で可塑剤を均一に溶解することができるもので、且つ沸
点が使用する可塑剤以下のものであればいずれのものを
使用してもよい。
When applying the plasticizer to the reinforcing fibers, any solvent can be used as long as it can uniformly dissolve the plasticizer at room temperature and has a boiling point lower than the plasticizer used. Good too.

本発明においてポリ塩化ビニル系樹脂と強化繊維の割合
は、複合材の必要とする物性により適宜決定されるが、
強化シート中の強化繊維が70重景%以下であることが
好ましい。70重量%を上回ると均一なシートが得にく
くなる。
In the present invention, the ratio of polyvinyl chloride resin and reinforcing fibers is appropriately determined depending on the physical properties required of the composite material.
It is preferable that the amount of reinforcing fibers in the reinforcing sheet is 70% or less. If it exceeds 70% by weight, it becomes difficult to obtain a uniform sheet.

強化繊維フィラメントに対するポリ塩化ビニル系樹脂用
の可塑剤の塗布量は強化繊維に対して5重里%以下で、
好ましくは0.05〜2重量%以下である。5重量%以
上では可塑剤により繊維が収束されてかえって強化繊維
フィラメントへの粉体状ポリ塩化ビニル系樹脂の付着が
不均一になる。
The amount of plasticizer for polyvinyl chloride resin applied to the reinforcing fiber filament is 5% or less based on the reinforcing fiber,
Preferably it is 0.05 to 2% by weight or less. If the amount is more than 5% by weight, the plasticizer will cause the fibers to converge and the powdered polyvinyl chloride resin will not adhere uniformly to the reinforcing fiber filaments.

次に、本発明の繊維強化ポリ塩化ビニル系樹脂複合材の
製造方法を図面に従って説明する。
Next, a method for manufacturing a fiber-reinforced polyvinyl chloride resin composite material of the present invention will be explained with reference to the drawings.

第1図は本発明の製造方法の一実施態様を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing one embodiment of the manufacturing method of the present invention.

ロービング状強化繊維1は、通常は巻物で供給され、巻
戻ロール2にセットされ、撚りがかからないように外側
より巻戻される。ピンチロール15に引取られて、続い
て、ガイドロール3aにより塗布槽4に導入され、可塑
剤溶液5中をガイドロール4a、4aに案内されて塗布
槽4を通過し、可塑剤溶液5を強化繊維lに含浸し、ガ
イドロール3bに導かれ熱風ブロワ−6に至り、余分な
可塑剤溶液5は吹飛ばされる。可塑剤溶液5を含浸した
ロービング状強化繊維1は、ガイドロール8aにより導
かれて流動床7に導入され、ガイドロール7a、7aに
案内されて流動床7中を通過する。この際、気体10に
より流動化しているポリ塩化ビニル系樹脂粉体9に接触
し、開繊されると共に、ロービング状強化繊維lのフィ
ラメント間にポリ塩化ビニル系樹脂粉体9が含浸付着す
る。
The roving-shaped reinforcing fibers 1 are usually supplied in the form of a roll, set on an unwinding roll 2, and unwound from the outside so as not to be twisted. The plasticizer solution 5 is taken up by the pinch rolls 15 and then introduced into the coating tank 4 by the guide rolls 3a. The plasticizer solution 5 is impregnated into the fibers 1, and guided by guide rolls 3b to a hot air blower 6, where excess plasticizer solution 5 is blown away. The roving-shaped reinforcing fibers 1 impregnated with the plasticizer solution 5 are guided by guide rolls 8a and introduced into the fluidized bed 7, and are guided by the guide rolls 7a, 7a to pass through the fluidized bed 7. At this time, it comes into contact with the polyvinyl chloride resin powder 9 fluidized by the gas 10 and is opened, and the polyvinyl chloride resin powder 9 is impregnated and adhered between the filaments of the roving reinforcing fibers 1.

流動床7中を通過しポリ塩化ビニル系樹脂が付着したロ
ービング状強化繊維1は、ガイドロール8bに導かれて
ロール11がロービング状強化繊維1に押付けられて一
定1鴫の1帯状にされ、引続いて、スリッター12に至
る。そして、スリッター12の隙間をロービング状強化
繊維lが通過する際に、そのスリッター12の上下面に
より過剰のポリ塩化ビニル系樹脂は除去され、付着量が
一定にされる。
The roving-shaped reinforcing fibers 1 that have passed through the fluidized bed 7 and have the polyvinyl chloride resin attached thereto are guided by guide rolls 8b, and the rolls 11 are pressed against the roving-shaped reinforcing fibers 1 to form one band of a certain length. Subsequently, the slitter 12 is reached. When the roving reinforcing fibers l pass through the gap between the slitter 12, excess polyvinyl chloride resin is removed by the upper and lower surfaces of the slitter 12, and the amount of adhesion is kept constant.

続いて、ロービング状強化繊維1は遠赤外線加熱炉13
にて加熱され、粉体状のポリ塩化ビニル系樹脂は溶融さ
れる。そして、ロービング状強化繊維1は加熱ロール1
4を通過して、溶融したポリ塩化ビニル系樹脂と一体化
した後、ピンチロール15を通過させ冷却することによ
り、薄帯状プリプレグの形態をしたポリ塩化ビニル系樹
脂複合材が得られる。
Subsequently, the roving-shaped reinforcing fiber 1 is heated in a far-infrared heating furnace 13.
The powdered polyvinyl chloride resin is melted. Then, the roving reinforcing fiber 1 is heated on a heating roll 1.
4 to be integrated with the molten polyvinyl chloride resin, and then passed through pinch rolls 15 and cooled, thereby obtaining a polyvinyl chloride resin composite material in the form of a ribbon-like prepreg.

さらに、本発明の他の実施B様を示す第2図に従って製
造方法を説明する。
Further, a manufacturing method will be described with reference to FIG. 2 showing another embodiment B of the present invention.

上記第1図に示す実施態様に相当する部分については同
一符号を付して説明を省略する。
Portions corresponding to the embodiment shown in FIG. 1 above are designated by the same reference numerals, and description thereof will be omitted.

この実施態様は、ポリ塩化ビニル系樹脂が付着したロー
ビング状強化繊維lから過剰のポリ塩化ビニル系樹脂を
スリッター12により除去した後の工程が、上記の一実
施B様とは異なり、長い連続したロービング状強化繊維
1を切断し、やや短い強化繊維を積層してシート状にし
て塩化ビニル系樹脂複合材を得る。
This embodiment differs from the above embodiment B in that the process after removing the excess polyvinyl chloride resin from the roving reinforcing fibers l to which the polyvinyl chloride resin has adhered is a long continuous process, unlike the embodiment B described above. The roving-shaped reinforcing fibers 1 are cut, and slightly shorter reinforcing fibers are laminated to form a sheet to obtain a vinyl chloride resin composite material.

ロービング状強化繊維1から過剰のポリ塩化ビニル系樹
脂をスリンター12により除去した後、カッター21に
より所望長さに切断し、カンタ−21の下側で前方に突
き出された下側無端ベルト23上にランダムに供給集積
する。
After removing excess polyvinyl chloride resin from the roving reinforcing fibers 1 using a slinter 12, the cutter 21 cuts the fibers into desired lengths and places them on the lower endless belt 23 protruding forward from the lower side of the canter 21. Random supply and accumulation.

上側無端ベルト22.及び下側無端ベルト23は、図示
していない駆動源(モーター)により駆動ロール29.
30を駆動することにより、図中の矢印方向に同速度で
連続的に移動している。
Upper endless belt 22. And the lower endless belt 23 is driven by a drive roll 29 . by a drive source (motor) not shown.
30, it moves continuously at the same speed in the direction of the arrow in the figure.

下側無端ベルト23上に供給された集積体24を上側無
端ベルト22と下側無端ベルト23で挟持し進行方向に
連続的に移動させながら加熱炉25により粉体状塩化ビ
ニル系樹脂の溶融温度以上に加熱し、粉体状塩化ビニル
系樹脂を溶融させる。
The melting temperature of the powdered vinyl chloride resin is adjusted in the heating furnace 25 while the aggregate 24 fed onto the lower endless belt 23 is held between the upper endless belt 22 and the lower endless belt 23 and continuously moved in the traveling direction. Heating is performed above to melt the powdered vinyl chloride resin.

またこの時、ガイドロール対26により上側無端ベルト
22と下側無端ベルト23の間隙を調節し集積体24を
厚み方向に加圧し、溶融した粉体状塩化ビニル系樹脂を
流動させ、モノフィラメント間の空隙を塩化ビニル系樹
脂で埋め樹脂と強化繊維を一体化する。加熱手段25と
しては、電熱式あるいは熱風循環式の加熱炉中を上側無
端ベルト22、及び下側無端ベルト23を通過させる方
法、上側無端ベルト22と下側無端ベルト23を挟むよ
うにして加熱ロールを設ける方法等が用いられる。続い
て、ガイドロール27により上側無端ベルト22と下側
無端ベルト23の間隙を!P1節し加圧しつつ、冷却手
段28により冷却して、繊維強化樹脂シートを得ること
もできる。
At this time, the guide roll pair 26 adjusts the gap between the upper endless belt 22 and the lower endless belt 23, pressurizes the stack 24 in the thickness direction, and flows the molten vinyl chloride resin powder between the monofilaments. The voids are filled with vinyl chloride resin to integrate the resin and reinforcing fibers. As the heating means 25, a method is adopted in which the upper endless belt 22 and the lower endless belt 23 are passed through an electric heating type or hot air circulation type heating furnace, and heating rolls are provided so as to sandwich the upper endless belt 22 and the lower endless belt 23. methods etc. are used. Next, the gap between the upper endless belt 22 and the lower endless belt 23 is removed using the guide roll 27! A fiber-reinforced resin sheet can also be obtained by cooling with the cooling means 28 while applying pressure to the P1 joint.

(作 用) 本発明の繊維強化ポリ塩化ビニル系樹脂複合材の製造方
法は、強化繊維の表面に室温において液体状のポリ塩化
ビニル系樹脂用の可塑剤を予め強化繊維に塗布するので
、強化繊維のモノフィラメントの1本1本に可塑剤が存
在し、強化繊維表面とポリ塩化ビニル系樹脂粒子との親
和性がよくなり、ぬれ特性が良くなり、溶融時に低粘性
化され、流動床でポリ塩化ビニル系樹脂粉体を含浸させ
ると、強化繊維表面のポリ塩化ビニル系樹脂が強化繊維
のモノフィラメントの間に均一に分散する。
(Function) In the method for producing a fiber-reinforced polyvinyl chloride resin composite material of the present invention, a plasticizer for polyvinyl chloride resin that is liquid at room temperature is applied to the reinforcing fibers in advance on the surface of the reinforcing fibers. A plasticizer exists in each monofilament of the fiber, which improves the affinity between the reinforcing fiber surface and the polyvinyl chloride resin particles, improves wetting properties, lowers the viscosity when melted, and improves the compatibility of the reinforcing fiber surface with the polyvinyl chloride resin particles. When the polyvinyl chloride resin powder is impregnated, the polyvinyl chloride resin on the surface of the reinforcing fibers is uniformly dispersed between the monofilaments of the reinforcing fibers.

また樹脂マトリックスにポリ塩化ビニル系樹脂を用いて
も、ポリ塩化ビニル系樹脂が溶融時に低粘性化されてい
るので、モノフィラメントの1本1本に充分均一に付着
する。
Furthermore, even if a polyvinyl chloride resin is used for the resin matrix, since the polyvinyl chloride resin has a low viscosity when melted, it adheres sufficiently uniformly to each monofilament.

(実施例) 本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described based on the drawings.

スj1例」−(第1図及び第2図参照)ポリ塩化ビニル
系樹脂用可塑剤溶液として、Dopio%アセトン溶液
を用い、 粉体状ポリ塩化ビニル系樹脂として、 ポリ塩化ビニル樹脂 (平均重合度−400)  100重量部ブチル錫マレ
フェート系安定剤  3重足部ポリエチレンワックス 
   0.5重量部ステアリルアルコール      
1重1iOBをスーパーミキサーで予め混合して作成し
た粉体状混合物を用いた。
Example 1 - (See Figures 1 and 2) Dopio% acetone solution was used as the plasticizer solution for polyvinyl chloride resin, and polyvinyl chloride resin (average polymerization -400) 100 parts by weight Butyltin malephate stabilizer Triple foot polyethylene wax
0.5 parts by weight stearyl alcohol
A powder mixture prepared by pre-mixing 1 iOB with a super mixer was used.

強化繊維束1として直径13μmのモノフィラメントが
多数収束されてなるロービング状ガラス繊維(2200
g/km)を上記可塑剤を容れた塗布槽4中を連続的に
通過させた後、熱風ブロワ−6により余分な溶剤を除去
し、可塑剤量がガラス繊維に対し0.5重量%となるよ
うに調節した。
As the reinforcing fiber bundle 1, a roving-shaped glass fiber (2200
After continuously passing the plasticizer (g/km) through the coating tank 4 containing the plasticizer, excess solvent was removed by a hot air blower 6, and the amount of plasticizer was 0.5% by weight based on the glass fiber. I adjusted it so that

ついでこの可塑剤が塗布されたガラスtam束を上記ポ
リ塩化ビニル樹脂の流動床7を連続的に通過させ、モノ
フィラメント間に粉体状ポリ塩化ビニル樹脂を付着させ
た後、スリッター12により過剰のポリ塩化ビニル樹脂
を除去し、粉体状ポリ塩化ビニル樹脂と強化繊維の重量
割合が7:3となるように調節した後、カッター21に
より長さ2り11mに切断しつつ下側無端ベルト23上
に供給した。供給量は、幅−600mmの無端ベルトの
中央部の約45(1+mの範囲に、3320g/ m 
!となるようにランダムに供給集積した。このときポリ
塩化ビニル樹脂、ガラス繊維混合物の見かけ厚みは約2
3mmであった。
Next, the glass tam bundle coated with the plasticizer is continuously passed through the fluidized bed 7 of polyvinyl chloride resin, and after adhering the powdered polyvinyl chloride resin between the monofilaments, the slitter 12 removes the excess polyvinyl chloride resin. After removing the vinyl chloride resin and adjusting the weight ratio of the powdered polyvinyl chloride resin and the reinforcing fibers to 7:3, the cutter 21 cuts it into 2 lengths of 11 m while cutting it onto the lower endless belt 23. supplied. The supply amount is approximately 45 (1+ m) at the center of an endless belt with a width of -600 mm, and 3320 g/m
! It was randomly supplied and accumulated so that At this time, the apparent thickness of the polyvinyl chloride resin and glass fiber mixture is approximately 2
It was 3 mm.

上側無端ベルト22及び下側無端ベルト23としてガラ
ス繊維強化テフロンベルト(幅−600−5厚み一約1
m鴨)を用いた。
The upper endless belt 22 and the lower endless belt 23 are glass fiber reinforced Teflon belts (width -600-5 thickness -1
m duck) was used.

上記のようにして下側無端ベルト23上に供給された強
化繊維ポリ塩化ビニル樹脂混合物を、580mm/分の
速度で移動する上側無端ベルト22及び下側無端ベルト
230間に挟持してトリ送しつつ、長さが約1500m
mで、約200 ’Cの熱風が循環している加熱炉25
中を通過させ、粉体状ポリ塩化ビニル樹脂を溶融させた
。このとき上側無端ベルト22及び下側無端ベルト23
の最小間隙をガイドロール27により約2,11I+m
になるように!l1節し、集積体を厚み方向に加圧しつ
つ粉体状ポリ塩化ビニル樹脂を溶融させた。
The reinforcing fiber polyvinyl chloride resin mixture supplied onto the lower endless belt 23 as described above is sandwiched between the upper endless belt 22 and the lower endless belt 230 moving at a speed of 580 mm/min and fed. The length is approximately 1500m.
Heating furnace 25 in which hot air of about 200'C is circulated at m.
The powdered polyvinyl chloride resin was melted. At this time, the upper endless belt 22 and the lower endless belt 23
The minimum gap is approximately 2,11I+m by the guide roll 27.
So that it becomes! The powdered polyvinyl chloride resin was melted while pressing the aggregate in the thickness direction.

続いてポリ塩化ビニル樹脂が溶融状態にある強化繊維の
集積体を、ガイドロール27により、上側無端ベルト2
2及び下側無端ベルト23の間隙の距離を21111に
保ち加圧しつつ冷却ブロワ−28により冷却して繊維強
化ポリ塩化ビニル系樹脂複合材を得た。
Next, the reinforcing fiber aggregate in which the polyvinyl chloride resin is in a molten state is transferred to the upper endless belt 2 by a guide roll 27.
2 and the lower endless belt 23 was kept at 21111, and while applying pressure, the mixture was cooled by a cooling blower 28 to obtain a fiber-reinforced polyvinyl chloride resin composite material.

得られた複合材は、幅約5001、厚み2111であり
フィラメント間に樹脂がよく含浸したシートであった。
The obtained composite material was a sheet having a width of approximately 500 mm and a thickness of 211 mm, and the resin was well impregnated between the filaments.

得られた複合材の500mmX2000+mの範囲のラ
ンダムな3箇所より、 (1)幅−20mm、長さ一150mmの曲げ試験片を
切り出し、支点間距離−120nu+で3点曲げ試験を
行い曲げ強度を測定した。
(1) Cut out bending test pieces with a width of -20 mm and a length of -150 mm from three random locations in the area of 500 mm x 2000 + m of the obtained composite material, and conduct a 3-point bending test with a distance between fulcrums of -120 nu + to measure the bending strength. did.

(2) JIS−に7110.1号A試験片を切り出し
、アイゾツト衝撃試験を行った。
(2) A No. 7110.1 A test piece was cut out from JIS-1 and subjected to an Izot impact test.

(1)、(2)の試験結果を表−1に示す。The test results of (1) and (2) are shown in Table-1.

表−1 また、この複合材から300+mmX 30 (1++
mのシートを切り出し、表面温度320°Cの遠赤外線
加熱炉で10分間加熱したところポリ塩化ビニル樹脂が
完全に溶融してもガラス繊維のケバ立ちが起こらなかっ
た。
Table-1 Also, from this composite material 300+mmX 30 (1++
When a sheet of 1.5 m was cut out and heated for 10 minutes in a far-infrared heating furnace with a surface temperature of 320°C, the glass fibers did not fluff even though the polyvinyl chloride resin was completely melted.

裏施撚l 第1図に示した工程により、薄帯状のプリプレグを製造
した。
Back Twisting A ribbon-shaped prepreg was manufactured by the process shown in FIG.

ストランド状強化繊維束1としてPAN系炭素炭素繊維
ストランドィラメント径8μm1フイラメント数600
0本)を用いた。
As a strand-like reinforcing fiber bundle 1, PAN-based carbon fiber strand filament diameter 8 μm 1 filament number 600
0 pieces) were used.

ポリ塩化ビニル系樹脂用可塑剤溶液としてDBPl0%
アセトン溶液を用い、 粉体状ポリ塩化ビニル系樹脂として、 ポリ塩化ビニル樹脂     100重量部(平均重合
度600) ブチル錫マレフェート系安定剤  3重量部ステアリン
酸カルシウム     1重量部をスーパーミキサーで
予め混合して作成した粉体状混合物を用いた。
DBP10% as plasticizer solution for polyvinyl chloride resin
Using an acetone solution, as powdered polyvinyl chloride resin, 100 parts by weight of polyvinyl chloride resin (average degree of polymerization 600), 3 parts by weight of butyltin malephate stabilizer, and 1 part by weight of calcium stearate were mixed in advance in a super mixer. The prepared powder mixture was used.

炭素繊維束1を、上記可塑剤溶液を容れた塗布槽4中を
連続的に通過させ、熱風ブロワ−6により余分な溶剤を
除去し、可塑剤量が炭素繊維に対し0.5重量%となる
ように!II節する。
The carbon fiber bundle 1 was continuously passed through the coating tank 4 containing the plasticizer solution, and the excess solvent was removed by a hot air blower 6, so that the amount of plasticizer was 0.5% by weight based on the carbon fibers. May it be! Section II.

次いでこの可塑剤の塗布された炭素繊維束を、上記ポリ
塩化ビニル樹脂の流動床7中を連続的に通過させ、モノ
フィラメント間に粉体状ポリ塩化ビニル樹脂を付着させ
た後、スリッター12により過剰のポリ塩化ビニル樹脂
を除去し、粉体状ポリ塩化ビニル樹脂と炭素繊維の重量
割合が7=3となるように調節する。
Next, the carbon fiber bundle coated with the plasticizer is continuously passed through the fluidized bed 7 of the polyvinyl chloride resin, and after adhering the powdered polyvinyl chloride resin between the monofilaments, the excess is removed by the slitter 12. The polyvinyl chloride resin is removed, and the weight ratio of the powdered polyvinyl chloride resin and carbon fiber is adjusted to 7=3.

引き続いて表面温度約38゛Cに設定された遠赤外線ヒ
ーターを有する加熱炉13中を通過させ、粉体状ポリ塩
化ビニル樹脂を溶融させた後、220°Cに設定された
加熱ロール14を通過させ、強化繊維束1のフィラメン
トと粉体状ポリ塩化ビニル樹脂を一体化させつつ引き取
り、幅約20fil11、厚み約0.3IllIlの薄
帯状プリプレグを得た。
Subsequently, the powdered polyvinyl chloride resin is passed through a heating furnace 13 having a far-infrared heater set at a surface temperature of about 38°C to melt the powdered polyvinyl chloride resin, and then passed through a heating roll 14 set at 220°C. Then, the filaments of the reinforcing fiber bundle 1 and the powdered polyvinyl chloride resin were taken off while being integrated to obtain a ribbon-like prepreg having a width of about 20fil11 and a thickness of about 0.3IllIl.

得られたプリプレグは炭素繊維含を量が20重量%でフ
ィラメント間によく樹脂が含浸したものであった。
The obtained prepreg had a carbon fiber content of 20% by weight, and the resin was well impregnated between the filaments.

また得られたプリプレグを数枚積層して、プレス成形に
より厚み2.0mmの一方向強化材を成形し、曲げ試験
を行った。得られた曲げ強度は71kg/−2であった
In addition, several sheets of the obtained prepreg were laminated to form a unidirectional reinforcement material with a thickness of 2.0 mm by press molding, and a bending test was conducted. The bending strength obtained was 71 kg/-2.

1m=土−」一 実施例2のB様において、ポリ塩化ビニル系樹脂用可塑
剤溶液を以下の表−2のようにした以外は実施例2と同
様にして、プリブI/グを作成した。
1 m = Soil -'' For Mr. B of Example 2, Priv I/G was created in the same manner as in Example 2, except that the plasticizer solution for polyvinyl chloride resin was changed as shown in Table 2 below. .

得られたプリプレグを実施例2と同様に数枚積層して、
プレス成形により厚み2.0mmの一方向強化材を成形
し、曲げ試験を行った。
Several sheets of the obtained prepreg were laminated in the same manner as in Example 2,
A unidirectional reinforced material having a thickness of 2.0 mm was formed by press molding, and a bending test was conducted.

その結果を表−3に示す。The results are shown in Table-3.

表−2 表−3 実施例1において、ガラスロービングに可塑剤を塗布し
なかった以外は実施例1と同様にして複合材を作製した
Table 2 Table 3 A composite material was produced in the same manner as in Example 1 except that no plasticizer was applied to the glass roving.

得られた複合材のランダムな3箇所から実施例1と同様
に試験片を切り出し、曲げ強度の測定及びアイゾツト衝
撃試験を行った。
Test pieces were cut out from three random locations of the resulting composite material in the same manner as in Example 1, and the bending strength was measured and the Izot impact test was conducted.

その結果を表−4に示す。The results are shown in Table 4.

また、このシートを実施例1と同様に遠赤外線加熱炉中
で加熱したところ、無数のケバ立ちがみられた。
Further, when this sheet was heated in a far-infrared heating furnace in the same manner as in Example 1, numerous fluffs were observed.

ガラス繊維に可塑剤を塗布しなかった以外は実施例2と
同様にしてプリプレグを作製した。
A prepreg was produced in the same manner as in Example 2 except that no plasticizer was applied to the glass fibers.

得られたプリプレグには数カ所樹脂が含浸していない所
がみられた。
In the obtained prepreg, there were several places where the resin was not impregnated.

また得られたプリプレグを数枚積層して、プレス成形に
より厚み2.0mmの一方向強化板を成形し、曲げ試験
を行った。得られた曲げ強度は、52kg/ff1m”
であった。
Further, several sheets of the obtained prepreg were laminated to form a unidirectional reinforced plate having a thickness of 2.0 mm by press molding, and a bending test was conducted. The bending strength obtained was 52kg/ff1m"
Met.

(発明の効果) 本発明の繊維強化ポリ塩化ビニル系樹脂複合材の製造方
法によれば、ポリ塩化ビニル系樹脂が強化繊維のモノフ
ィラメントの1本1本に均一に存在し、且つぬれ特性も
良いため強化繊維の補強効果に優れ機械的強度が高く、
マトリックスポリ塩化ビニル系樹脂を加熱溶融しても強
化繊維のケバ立ちのみられない、繊維補強ポリ塩化ビニ
ル系樹脂複合材が得られる。
(Effects of the Invention) According to the method for producing a fiber-reinforced polyvinyl chloride resin composite material of the present invention, the polyvinyl chloride resin is uniformly present in each monofilament of the reinforcing fibers, and has good wetting properties. Therefore, the reinforcing fiber has excellent reinforcing effect and high mechanical strength.
A fiber-reinforced polyvinyl chloride resin composite material in which the reinforcing fibers do not fluff even when the matrix polyvinyl chloride resin is heated and melted is obtained.

したがって、本発明による複合材のシートは、強度およ
び耐衝撃性に優れたプレート材料として有益であるばか
りでなく、プレス成形用の素材であるスタンパブルシー
トとしても利用できる。
Therefore, the composite sheet according to the present invention is not only useful as a plate material with excellent strength and impact resistance, but also can be used as a stampable sheet that is a material for press molding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の繊維強化ポリ塩化ビニル系樹脂複合材
の製造方法の一実施S様を示す説明図、第2図は繊維強
化ポリ塩化ビニル系樹脂複合材の製造方法の他の実施態
様の一部を省略した説明図である。 l:強化繊維 7:′dL動床 4:f!!布槽 14:加熱ロール
FIG. 1 is an explanatory diagram showing one implementation S of the method for manufacturing a fiber-reinforced polyvinyl chloride resin composite material of the present invention, and FIG. 2 is another embodiment of the method for manufacturing a fiber-reinforced polyvinyl chloride resin composite material. It is an explanatory view with a part omitted. l: Reinforced fiber 7:'dL moving bed 4: f! ! Cloth tank 14: heating roll

Claims (1)

【特許請求の範囲】[Claims] (1)強化繊維フィラメント表面に室温において液体状
のポリ塩化ビニル系樹脂用可塑剤を5重量%以下に塗布
後、上記強化繊維フィラメントを粉体状ポリ塩化ビニル
系樹脂組成物の流動床中に浸漬して、上記強化繊維フィ
ラメントに上記粉体状ポリ塩化ビニル系樹脂組成物を付
着させた後、加熱・加圧して一体化することを特徴とす
る繊維強化ポリ塩化ビニル系樹脂複合材の製造方法。
(1) After coating the surface of the reinforcing fiber filament with a liquid plasticizer for polyvinyl chloride resin at room temperature of 5% by weight or less, the reinforcing fiber filament is placed in a fluidized bed of a powdered polyvinyl chloride resin composition. Production of a fiber-reinforced polyvinyl chloride resin composite material, characterized in that the powdered polyvinyl chloride resin composition is adhered to the reinforcing fiber filament by dipping, and then integrated by heating and pressurizing. Method.
JP29851089A 1989-11-16 1989-11-16 Production of fiber-reinforced polyvinyle chloride series resin composite material Pending JPH03158211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29851089A JPH03158211A (en) 1989-11-16 1989-11-16 Production of fiber-reinforced polyvinyle chloride series resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29851089A JPH03158211A (en) 1989-11-16 1989-11-16 Production of fiber-reinforced polyvinyle chloride series resin composite material

Publications (1)

Publication Number Publication Date
JPH03158211A true JPH03158211A (en) 1991-07-08

Family

ID=17860653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29851089A Pending JPH03158211A (en) 1989-11-16 1989-11-16 Production of fiber-reinforced polyvinyle chloride series resin composite material

Country Status (1)

Country Link
JP (1) JPH03158211A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007213A1 (en) * 2012-07-05 2014-01-09 帝人株式会社 Material for molding, molded article produced from said material, and method for producing said molded article
JP2020158749A (en) * 2019-03-25 2020-10-01 積水化学工業株式会社 Poly vinyl chloride-based carbon fiber-reinforced composite material
JP2020158750A (en) * 2019-03-25 2020-10-01 積水化学工業株式会社 Poly vinyl chloride-based carbon fiber-reinforced composite material
WO2020196153A1 (en) * 2019-03-25 2020-10-01 積水化学工業株式会社 Polyvinyl chloride-based carbon fiber reinforced composite material
JP2020158572A (en) * 2019-03-25 2020-10-01 積水化学工業株式会社 Poly vinyl chloride-based carbon fiber-reinforced composite material
JP2020158571A (en) * 2019-03-25 2020-10-01 積水化学工業株式会社 Poly vinyl chloride-based carbon fiber-reinforced composite material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007213A1 (en) * 2012-07-05 2014-01-09 帝人株式会社 Material for molding, molded article produced from said material, and method for producing said molded article
CN104428351A (en) * 2012-07-05 2015-03-18 帝人株式会社 Material for molding, molded article produced from said material, and method for producing said molded article
JP5694610B2 (en) * 2012-07-05 2015-04-01 帝人株式会社 Molding material, molded body thereof, and method for producing the molded body
US9284436B2 (en) 2012-07-05 2016-03-15 Teijin Limited Material for molding, shaped product therefrom, and method for manufacturing shaped product
CN104428351B (en) * 2012-07-05 2016-03-16 帝人株式会社 Molding material, the molded article obtained by this molding material and the manufacture method of this molded article
JP2020158749A (en) * 2019-03-25 2020-10-01 積水化学工業株式会社 Poly vinyl chloride-based carbon fiber-reinforced composite material
JP2020158750A (en) * 2019-03-25 2020-10-01 積水化学工業株式会社 Poly vinyl chloride-based carbon fiber-reinforced composite material
WO2020196153A1 (en) * 2019-03-25 2020-10-01 積水化学工業株式会社 Polyvinyl chloride-based carbon fiber reinforced composite material
JP2020158572A (en) * 2019-03-25 2020-10-01 積水化学工業株式会社 Poly vinyl chloride-based carbon fiber-reinforced composite material
JP2020158571A (en) * 2019-03-25 2020-10-01 積水化学工業株式会社 Poly vinyl chloride-based carbon fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
JP2569380B2 (en) Fiber reinforced molded product
US8329280B2 (en) Chopped fiber bundle, molding material, and fiber reinforced plastic, and process for producing them
JP6450773B2 (en) Method for producing thermoplastic polymer pre-impregnated fiber material in a fluidized bed
KR101909363B1 (en) Method of manufacturing a fibrous material preimpregnated with thermoplastic polymer using an aqueous dispersion of polymer
EP2716433A1 (en) Method for manufacturing compact with sustained isotropy
CN105992682B (en) Fibre reinforced plastics and its manufacture method
JP2006523543A (en) Method of prepreg with resin and novel prepreg produced by the method
KR101994614B1 (en) Manufacture and use of a composite material comprising fibres and at least one vinyl chloride polymer
JP2019511593A (en) Fluidized bed method for producing fibrous materials preimpregnated with a thermoplastic polymer
JP2009114611A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
JPS6337694B2 (en)
JP2009114612A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
US9783646B2 (en) Molding material for injection molding, extrusion molding or pultrusion molding, carbon-fiber-reinforced thermoplastic resin pellet, molding product, method for producing injection molded product, and injection molded product
EP2752285A1 (en) Production method for composite molded body having undercut section
WO2015194533A1 (en) Method for manufacturing molded article having opening, and molded article
DE202017003886U1 (en) door module
JP3830307B2 (en) Method for producing molding material impregnated with thermoplastic resin
JPH03158211A (en) Production of fiber-reinforced polyvinyle chloride series resin composite material
JP2000141502A (en) Manufacturing method of long fiber reinforced thermoplastic resin sheet and long fiber reinforced thermoplastic resin sheet
EP3101058A2 (en) Flexible thermoplastic prepregs
JP6458589B2 (en) Sheet material, integrated molded product, and integrated molded product manufacturing method
JPH04202533A (en) Glass-fiber reinforced resin molded article and its production
JP6394732B2 (en) Thermoplastic prepreg and method for producing thermoplastic prepreg
JPH03269021A (en) Sheet for heat forming
JPH0841220A (en) Method for manufacturing thermoplastic unidirectional prepreg sheet