WO2020195785A1 - Clutch control device and clutch control method for saddle-type vehicle - Google Patents

Clutch control device and clutch control method for saddle-type vehicle Download PDF

Info

Publication number
WO2020195785A1
WO2020195785A1 PCT/JP2020/010260 JP2020010260W WO2020195785A1 WO 2020195785 A1 WO2020195785 A1 WO 2020195785A1 JP 2020010260 W JP2020010260 W JP 2020010260W WO 2020195785 A1 WO2020195785 A1 WO 2020195785A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
control
inhibitor
threshold value
engine speed
Prior art date
Application number
PCT/JP2020/010260
Other languages
French (fr)
Japanese (ja)
Inventor
惇也 小野
森田 豪
圭淳 根建
達也 竜▲崎▼
準一郎 加納
浩孝 小島
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2021508984A priority Critical patent/JP7059442B2/en
Publication of WO2020195785A1 publication Critical patent/WO2020195785A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/682Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings with interruption of drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/46Signals to a clutch outside the gearbox

Definitions

  • the present invention relates to a clutch control device and a clutch control method for a saddle-mounted vehicle.
  • the present invention claims priority based on Japanese Patent Application No. 2019-059878 filed in Japan on March 27, 2019, the contents of which are incorporated herein by reference.
  • a clutch control device that automatically connects a clutch.
  • the clutch connection amount is controlled based on the engine speed and the engine rotation acceleration.
  • an object of the present invention is to suppress a sudden start and an impact due to gear connection in a clutch control device and a clutch control method for a saddle-riding vehicle, in a state where the engine speed is higher than expected by the driver. And.
  • the clutch control device for a saddle-mounted vehicle includes a clutch device (26) for connecting and disconnecting power transmission between the engine (13) and the drive wheels (12), and an engine rotation speed (G2).
  • the parameter includes the throttle opening (G3), and the control unit (60) controls the start by in-gear from the neutral gear.
  • the control unit (60) controls the start by in-gear from the neutral gear.
  • the parameter includes the throttle opening (G3), and the control unit (60) is in the in-gear state.
  • the throttle opening degree (G3) exceeds the Th threshold value (T2), the indicator control may be performed.
  • the control unit (60) notifies the driver that the inhibitor control is being executed.
  • a notification unit (71) may be further provided.
  • the parameter includes a throttle opening (G3), and the control unit (60)
  • the control unit 60
  • the engine speed (G2) is equal to or less than the Ne threshold value (T1) and the throttle opening degree (G3) is equal to or less than the Th threshold value (T2)
  • the inhibitor control may be canceled.
  • a release method notification unit (80) for notifying the driver of the release method of the inhibitor control is further added. You may have it.
  • a clutch device (26) for connecting and disconnecting power transmission between an engine (13) and a drive wheel (12) is connected to an engine speed (G2). ) Is included, and in the control step, when the engine speed (G2) exceeds the Ne threshold (T1) when the start control is performed, the clutch device (26) is engaged. It is characterized by performing inhibitor control in a disconnected state.
  • the control unit disengages the clutch device when the engine speed exceeds the Ne threshold value when the start control is performed.
  • the following effects are achieved by controlling the inhibitor. Since the clutch is not engaged when the engine speed is high, it is possible to suppress a sudden start and an impact due to gear connection when the engine speed is high, which is more than expected by the driver.
  • the clutch control device for the saddle-riding vehicle when the control unit performs start control by in-gear from the neutral gear, the engine speed exceeds the Ne threshold value and the throttle opening degree. When the value exceeds the Th threshold value, the following effects are obtained by performing the inhibitor control.
  • the control unit performs start control by in-gear from the neutral gear, the engine speed exceeds the Ne threshold value and the throttle opening degree.
  • the value exceeds the Th threshold value the following effects are obtained by performing the inhibitor control.
  • the clutch is not engaged, so it is possible to suppress a sudden start than the driver expected.
  • the control unit controls the inhibitor when the throttle opening exceeds the Th threshold when the engine is started in the in-gear state.
  • the following effects can be obtained by further providing a notification unit for notifying the driver that the control unit is executing the inhibitor control. Play.
  • the notification unit can notify the driver that the inhibitor control is being executed, and make the driver recognize that the vehicle cannot start.
  • the control unit releases the inhibitor control when the engine speed is equal to or less than the Ne threshold value and the throttle opening is equal to or less than the Th threshold value.
  • the following effects can be obtained by further providing a release method notification unit for notifying the driver of the release method of the inhibitor control.
  • the release method notification unit notifies the driver of the release method of the inhibitor control, and makes the driver recognize that the inhibitor control can be arbitrarily released.
  • the clutch control device for the saddle-riding vehicle according to the above (7) of the present invention, the following effects can be obtained by further providing an operator capable of releasing the inhibitor control by operating the clutch control device during the operation of the inhibitor control. Play. Since the inhibitor control can be canceled by operating the operator without satisfying a predetermined condition such as the engine speed being equal to or less than the Ne threshold value, the driver can start arbitrarily.
  • the clutch device in the control step, when the engine speed exceeds the Ne threshold value when the start control is performed, the clutch device is disengaged.
  • the following effects are obtained by performing the inhibitor control. Since the clutch is not engaged when the engine speed is high, it is possible to suppress a sudden start and an impact due to gear connection when the engine speed is high, which is more than expected by the driver.
  • this embodiment is applied to a motorcycle 1 as an example of a saddle-riding vehicle.
  • the front wheels 2 of the motorcycle 1 are supported by the lower ends of a pair of left and right front forks 3.
  • the upper parts of the left and right front forks 3 are supported by the head pipe 6 at the front end of the vehicle body frame 5 via the steering stem 4.
  • a bar-type steering handle 4a is mounted on the top bridge of the steering stem 4.
  • the vehicle body frame 5 includes a head pipe 6, a main tube 7 extending downward and rearward from the head pipe 6 in the vehicle width direction (left-right direction) center, and left and right pivot frames 8 connected below the rear end portion of the main tube 7. It includes a tube 7 and a seat frame 9 connected to the rear of the left and right pivot frames 8.
  • the front end portion of the swing arm 11 is pivotally supported on the left and right pivot frames 8 so as to be swingable.
  • the rear wheel 12 of the motorcycle 1 is supported at the rear end of the swing arm 11.
  • a fuel tank 18 is supported above the left and right main tubes 7.
  • a front seat 19 and a rear seat cover 19a are supported side by side in front of and behind the seat frame 9 behind the fuel tank 18.
  • the periphery of the seat frame 9 is covered with a rear cowl 9a.
  • a power unit PU including the prime mover of the motorcycle 1 is suspended below the left and right main tubes 7, a power unit PU including the prime mover of the motorcycle 1 is suspended.
  • the power unit PU is linked to the rear wheel 12 via, for example, a chain type transmission mechanism.
  • the power unit PU integrally has an engine (internal combustion engine, prime mover) 13 located on the front side thereof and a transmission 21 located on the rear side thereof.
  • the engine 13 is, for example, a multi-cylinder engine in which the rotation axis of the crankshaft 14 is aligned in the vehicle width direction.
  • the engine 13 includes a cylinder 16 that stands upward from the front portion of the crankcase 15.
  • the rear portion of the crankcase 15 is a transmission case 17 that houses the transmission 21.
  • the transmission 21 is a stepped transmission having a main shaft 22, a counter shaft 23, and a transmission gear group 24 straddling both shafts 22, 23.
  • the counter shaft 23 constitutes an output shaft of the transmission 21 (power unit PU).
  • the end of the counter shaft 23 projects to the rear left side of the crankcase 15.
  • the protruding end of the counter shaft 23 is connected to the rear wheel 12 via a chain-type transmission mechanism including a drive sprocket 27 (see FIG. 1).
  • the transmission gear group 24 has gears corresponding to the number of gears supported by both shafts 22 and 23, respectively.
  • the transmission 21 is of a constant meshing type in which the corresponding gear pairs of the shifting gear group 24 are always meshed between the shafts 22 and 23.
  • the plurality of gears supported by the shafts 22 and 23 are classified into a free gear that can rotate with respect to the corresponding shaft and a slide gear (shifter) that is spline-fitted to the corresponding shaft.
  • One of the free gear and the slide gear is provided with a dog that is convex in the axial direction, and the other is provided with a slot that is concave in the axial direction to engage the dog. That is, the transmission 21 is a so-called dog mission.
  • the main shaft 22 and the counter shaft 23 of the transmission 21 are arranged side by side behind the crankshaft 14 (see FIG. 1).
  • a clutch device 26 operated by a clutch actuator 50 (see FIG. 3) is coaxially arranged at the right end of the main shaft 22.
  • the clutch device 26 is, for example, a wet multi-plate clutch. That is, the clutch device 26 is a so-called normally open clutch in which the clutch device 26 is in a connected state in which power can be transmitted by supplying hydraulic pressure from the clutch actuator 50, and returns to a disengaged state in which power cannot be transmitted when the hydraulic pressure is not supplied from the clutch actuator 50.
  • the rotational power of the crankshaft 14 is transmitted to the main shaft 22 via the clutch device 26, and is transmitted from the main shaft 22 to the counter shaft 23 via an arbitrary gear pair of the transmission gear group 24.
  • the clutch device 26 may include a back torque limiter. The back torque limiter mechanically reduces the clutch capacity when a back torque equal to or higher than a specified value acts on the cam mechanism provided in the clutch device 26.
  • a change mechanism 25 for switching gear pairs of the transmission gear group 24 is housed above the rear of the transmission 21.
  • the change mechanism 25 includes a hollow cylindrical shift drum 36 substantially parallel to both shafts 22 and 23.
  • a lead groove pattern is formed on the outer circumference of the shift drum 36.
  • the change mechanism 25 operates a plurality of shift forks 36a according to the pattern of the lead groove by the rotation of the shift drum 36. As a result, the gear pair used for power transmission between the shafts 22 and 23 in the transmission gear group 24 is switched.
  • the change mechanism 25 has a shift spindle 31 substantially parallel to the shift drum 36.
  • the shift arm 31a fixed to the shift spindle 31 rotates the shift drum 36, and the shift fork 36a is moved in the axial direction according to the pattern of the lead groove.
  • the gear pair capable of transmitting power in the transmission gear group 24 is switched (that is, the shift stage is switched).
  • the shift spindle 31 projects the shaft outer portion 31b to the outside (left side) of the crankcase 15 in the vehicle width direction so that the change mechanism 25 can be operated (see FIG. 1).
  • a shift load sensor 42 (shift operation detecting means, see FIG. 1) is coaxially attached to the shaft outer portion 31b of the shift spindle 31.
  • a swing lever 33 is attached to the shaft outer portion 31b (or the rotation shaft of the shift load sensor 42) of the shift spindle 31.
  • the swing lever 33 has a base end portion 33a clamped and fixed to the shift spindle 31 (or a rotating shaft), and a tip end portion 33b of a portion extending rearward from the base end portion 33a.
  • the upper end of the link rod 34 is swingably connected to the tip 33b of the swing lever 33 via an upper ball joint 34a.
  • the lower end of the link rod 34 is swingably connected to a shift pedal 32 (see FIG. 1) operated by the driver via a lower ball joint (not shown).
  • the front end portion of the shift pedal 32 is supported on the lower portion of the crankcase 15 so as to be vertically swingable via an axis along the left-right direction.
  • a pedal portion for hanging the toes of the driver placed on the step 32a is provided at the rear end of the shift pedal 32.
  • the lower end of the link rod 34 is connected to the front-rear intermediate portion of the shift pedal 32.
  • the driver only performs the shifting operation of the transmission 21 (foot operation of the shift pedal 32), and the clutch device 26 is automatically engaged and disconnected by electric control according to the operation of the shift pedal 32.
  • the so-called semi-automatic transmission system (automatic clutch type transmission system) is adopted.
  • the speed change system includes a clutch actuator 50, an ECU 60 (Electronic Control Unit), and various sensors 41 to 45.
  • the ECU 60 includes detection information from a gear position sensor 41 that detects a shift stage from the rotation angle of the shift drum 36, a shift load sensor 42 (for example, a torque sensor) that detects an operation torque input to the shift spindle 31, and throttle opening.
  • the clutch actuator 50 is operated and controlled, and the ignition device 46 and the fuel injection device 47 are operated and controlled based on various vehicle state detection information from the degree sensor 43, the vehicle speed sensor 44, the engine rotation speed sensor 45, and the like.
  • the engine speed is controlled by a throttle by wire (TBW) including a throttle valve and an accelerator grip.
  • TW throttle by wire
  • Detection information from the hydraulic sensors 57 and 58 (see FIG. 3), the shift operation detection switch (shift neutral switch) 48, and the gyro sensor 49 that detects the vehicle body condition (movement) is also input to the ECU 60.
  • the gyro sensor 49 is an IMU (inertial measurement unit).
  • the gyro sensor 49 outputs a signal corresponding to the acceleration component in the detection direction to the ECU 60.
  • the gyro sensor 49 may be built in the ECU 60.
  • Reference numeral 60A in the figure indicates the clutch control device of this embodiment.
  • the clutch actuator 50 can control the hydraulic pressure for connecting and disconnecting the clutch device 26 by controlling the operation by the ECU 60.
  • the clutch actuator 50 includes a motor 52 (for example, an electric motor) as a drive source and a master cylinder 51 driven by the motor 52.
  • the clutch actuator 50 constitutes an integrated clutch control unit 50A together with a hydraulic circuit device 53 provided between the master cylinder 51 and the hydraulic supply / discharge port 50p.
  • the ECU 60 calculates a target value of the hydraulic pressure supplied to the slave cylinder 28 (hereinafter, also referred to as “target hydraulic pressure”) for engaging and disengaging the clutch device 26 based on a preset calculation program.
  • the ECU 60 controls the clutch control unit 50A so that the oil pressure on the slave cylinder 28 side (slave oil pressure) detected by the downstream oil pressure sensor 58 approaches the target oil pressure.
  • the master cylinder 51 strokes the piston 51b in the cylinder body 51a by driving the motor 52 so that the hydraulic oil in the cylinder body 51a can be supplied and discharged to the slave cylinder 28.
  • reference numeral 55 indicates a conversion mechanism as a ball screw mechanism
  • reference numeral 54 indicates a transmission mechanism straddling the motor 52 and the conversion mechanism 55
  • reference numeral 51e indicates a reservoir connected to the master cylinder 51.
  • the hydraulic circuit device 53 has a valve mechanism (solenoid valve 56) that opens or shuts off an intermediate portion of a main oil passage (hydraulic oil supply / exhaust passage) 53 m extending from the master cylinder 51 to the clutch device 26 side (slave cylinder 28 side). are doing.
  • the main oil passage 53m of the hydraulic circuit device 53 is divided into an upstream oil passage 53a on the master cylinder 51 side of the solenoid valve 56 and a downstream oil passage 53b on the slave cylinder 28 side of the solenoid valve 56. ..
  • the hydraulic circuit device 53 further includes a bypass oil passage 53c that bypasses the solenoid valve 56 and connects the upstream oil passage 53a and the downstream oil passage 53b.
  • the solenoid valve 56 is a so-called normally open valve.
  • the bypass oil passage 53c is provided with a one-way valve 53c1 that allows hydraulic oil to flow only in the direction from the upstream side to the downstream side.
  • an upstream oil pressure sensor 57 for detecting the oil pressure of the upstream oil passage 53a is provided.
  • a downstream oil pressure sensor 58 for detecting the oil pressure of the downstream oil passage 53b is provided.
  • the clutch control unit 50A is housed in, for example, the rear cowl 9a.
  • the slave cylinder 28 is attached to the rear left side of the crankcase 15.
  • the clutch control unit 50A and the slave cylinder 28 are connected via a hydraulic pipe 53e (see FIG. 3).
  • the slave cylinder 28 is coaxially arranged on the left side of the main shaft 22.
  • the slave cylinder 28 presses the push rod 28a penetrating the inside of the main shaft 22 to the right when the hydraulic pressure is supplied from the clutch actuator 50.
  • the slave cylinder 28 operates the clutch device 26 in the connected state via the push rod 28a.
  • the slave cylinder 28 releases the pressure on the push rod 28a and returns the clutch device 26 to the disengaged state.
  • a solenoid valve 56 is provided in the hydraulic circuit device 53 of the clutch control unit 50A, and the solenoid valve 56 is closed after supplying hydraulic pressure to the clutch device 26 side.
  • the supply hydraulic pressure to the clutch device 26 side is maintained, and the hydraulic pressure is supplemented by the pressure drop (recharges by the leak amount) to suppress energy consumption.
  • the clutch control device 60A of the present embodiment has three types of clutch control modes.
  • the clutch control mode is a clutch control mode changeover switch 59 (FIG. 4) between three modes: an auto mode M1 for automatic control, a manual mode M2 for manual operation, and a manual intervention mode M3 for temporary manual operation. (See) and the clutch lever 4b (see FIG. 1) are operated to make appropriate transitions.
  • the target including the manual mode M2 and the manual intervention mode M3 is referred to as a manual system M2A.
  • the clutch control device 60A also functions as a clutch-by-wire system in which the clutch lever 4b and the clutch device 26 are electrically connected.
  • the auto mode M1 is a mode in which the clutch device 26 is controlled by calculating the clutch capacity suitable for the running state by automatic start / shift control.
  • the manual mode M2 is a mode in which the clutch capacity is calculated in response to a clutch operation instruction by the occupant to control the clutch device 26.
  • the manual intervention mode M3 is a temporary manual operation mode in which the clutch operation instruction from the occupant is received during the auto mode M1, the clutch capacity is calculated from the clutch operation instruction, and the clutch device 26 is controlled. It is set to return to the auto mode M1 when the occupant stops (completely releases) the operation of the clutch lever 4b during the manual intervention mode M3.
  • the clutch control device 60A of the present embodiment drives an oil pump (not shown) with the rotational driving force of the engine 13 (see FIG. 1) to generate clutch control hydraulic pressure. Therefore, when the system is started, the clutch control device 60A starts control from the clutch-off state (disengaged state) in the auto mode M1. Further, the clutch control device 60A is set to return to the clutch off in the auto mode M1 because the clutch operation is not required when the engine 13 is stopped.
  • the auto mode M1 basically performs clutch control automatically, and enables the motorcycle 1 to run without lever operation.
  • the clutch capacity is controlled by the throttle opening, the engine speed, the vehicle speed, and the shift sensor output.
  • the motorcycle 1 can be started without being stalled only by the throttle operation, and the speed can be changed only by the shift operation.
  • the clutch device 26 may be automatically disengaged at an extremely low speed equivalent to idling.
  • the manual intervention mode M3 is set by grasping the clutch lever 4b, and the clutch device 26 can be arbitrarily disengaged.
  • the clutch capacity is controlled by the lever operation by the occupant.
  • the auto mode M1 and the manual mode M2 can be switched by operating the clutch control mode changeover switch 59 (see FIG. 4) while the vehicle is stopped.
  • the clutch control device 60A may include an indicator indicating that the lever operation is effective at the time of transition to the manual system M2A (manual mode M2 or manual intervention mode M3).
  • the clutch is basically controlled manually, and the clutch hydraulic pressure can be controlled according to the operating angle of the clutch lever 4b.
  • the engagement and disengagement of the clutch device 26 can be controlled at the will of the occupant, and the clutch device 26 can be connected and traveled even at an extremely low speed equivalent to idling.
  • the clutch control automatically intervenes during the shift operation.
  • the clutch actuator 50 automatically engages and disconnects the clutch device 26.
  • the manual clutch operation is performed on the clutch lever 4b, so that the manual operation can be temporarily intervened in the automatic control of the clutch device 26 (manual intervention mode M3).
  • FIG. 6 is an explanatory diagram of the inhibitor control when starting from neutral in gear.
  • reference numeral G1 indicates a gear position
  • reference numeral G2 indicates an engine speed
  • reference numeral G3 indicates a throttle opening degree.
  • the gear position G1 is transitioning from the neutral gear to the first gear.
  • the Ne threshold T1 is set to 1500 rpm.
  • the Th threshold T2 is set to 0.8 deg.
  • the reference numeral W1 indicates the effective range of the inhibitor.
  • the inhibitor effective range W1 means the range in which the inhibitor control is executed.
  • the inhibitor effective range W1 includes both a range in which the engine speed G2 exceeds the Ne threshold value T1 and a range in which the throttle opening G3 exceeds the Th threshold value T2.
  • the start time of the inhibitor control coincides with the time when the engine speed G2 exceeds the Ne threshold value T1.
  • the end time of the inhibitor control coincides with the time when the engine speed G2 becomes Ne threshold T1 or less.
  • the inhibitor control is released (that is, the inhibitor effective range). It will be outside W1).
  • FIG. 7 is an explanatory diagram of the inhibitor control when the engine is started in the in-gear state.
  • the gear position G1 maintains the first gear.
  • the inhibitor control when the engine is started in the state where the gear position G1 is the first gear, if the throttle opening G3 exceeds the Th threshold value T2 (G3> T2), the inhibitor control is performed. In addition, when the engine is started in the in-gear state, if the engine speed G2 exceeds the Ne threshold value T1 (G2> T1), the inhibitor control is performed.
  • the inhibitor effective range W1 includes both a range in which the throttle opening G3 exceeds the Th threshold value T2 and a range in which the engine speed G2 exceeds the Ne threshold value T1.
  • the start time of the inhibitor control coincides with the time when the throttle opening G3 exceeds the Th threshold value T2.
  • the end time of the inhibitor control coincides with the time after the throttle opening G3 becomes Th threshold T2 or less and the engine speed G2 becomes Ne threshold T1 or less.
  • the inhibitor control is canceled (that is, the inhibitor effective range). It will be outside W1).
  • FIG. 8 is an explanatory diagram of a notification method during execution of inhibitor control.
  • reference numeral 70 indicates a meter panel provided at the front of the vehicle.
  • the instrument panel 70 includes an indicator 71, an engine speed meter 72, and a speedometer 73.
  • the indicator 71 is arranged above the engine speed meter 72.
  • the indicator 71 functions as a notification unit for notifying the driver that the inhibitor control is being executed.
  • the indicator 71 blinks when the inhibitor control is being executed. As a result, the driver is notified that the inhibitor control is being executed.
  • the release method notification unit 80 for notifying the driver of the release method of the inhibitor control is further provided.
  • the arrow 81 and the sentence 82 displayed on the instrument panel 70 function as the release method notification unit 80.
  • the arrow 81 is displayed on the engine speed meter 72.
  • Sentence 82 is displayed below the speedometer 73.
  • the arrow 81 points in the direction in which the engine speed decreases, and moves from the current engine speed to the engine speed for releasing the inhibitor control.
  • sentence 82 is "Please close the throttle and wait for the engine speed to drop.”
  • step S1 the ECU 60 determines whether or not the engine speed exceeds the Ne threshold value.
  • the Ne threshold is set to 1500 rpm. If YES in step S1 (the engine speed exceeds the Ne threshold value), the process proceeds to step S2. If NO (engine speed is equal to or less than the Ne threshold value) in step S1, the process ends.
  • step S2 the ECU 60 executes the inhibitor control (the clutch device is in the disengaged state). After step S2, the process proceeds to step S3.
  • step S3 the ECU 60 notifies the driver that the inhibitor control is being executed by the notification unit 71.
  • the notification unit 71 is an indicator provided on the instrument panel 70 (see FIG. 8).
  • the blinking indicator notifies the driver that the inhibitor control is being executed.
  • the ECU 60 notifies the driver of the release method of the inhibitor control by the release method notification unit 80.
  • the release method notification unit 80 is an arrow 81 and a sentence 82 displayed on the instrument panel 70 (see FIG. 8).
  • the arrow 81 points in the direction in which the engine speed decreases, and moves from the current engine speed to the engine speed for releasing the inhibitor control (see FIG. 8).
  • sentence 82 is "close the throttle and wait for the engine speed to drop" (see FIG. 8).
  • FIG. 10 is a flowchart of an inhibitor control when starting from neutral in gear.
  • step S11 the ECU 60 determines whether or not it is in a state of in-gearing from neutral and starting. For example, if the gear position is neutral when the vehicle is upright and stopped, the ECU 60 determines that the vehicle is in a state of in-gearing from neutral and starting. If YES in step S11 (a state in which the vehicle starts in gear from neutral), the process proceeds to step S12. If NO in step S11 (not in the state of starting from neutral), the process ends (inhibitor control is not executed).
  • step S12 the ECU 60 determines whether or not the engine speed exceeds the Ne threshold value and the throttle opening exceeds the Th threshold value.
  • the Ne threshold is set to 1500 rpm.
  • the Th threshold is set to 0.8 deg. If YES in step S12 (the engine speed exceeds the Ne threshold value and the throttle opening exceeds the Th threshold value), the process proceeds to step S13. If NO (engine speed is equal to or less than Ne threshold value or throttle opening is equal to or less than Th threshold value) in step S12, the process ends (inhibitor control is not executed).
  • step S13 the ECU 60 executes the inhibitor control (the clutch device is in the disengaged state). After step S13, the process proceeds to step S14.
  • step S14 the ECU 60 determines whether or not the engine speed is equal to or less than the Ne threshold value and the throttle opening degree is equal to or less than the Th threshold value. If YES in step S14 (the engine speed is equal to or less than the Ne threshold value and the throttle opening degree is equal to or less than the Th threshold value), the process proceeds to step S15. If NO in step S14 (the engine speed exceeds the Ne threshold value or the throttle opening exceeds the Th threshold value), the process returns to step S13 (continue the inhibitor control).
  • step S15 the ECU 60 releases the inhibitor control (makes the clutch device connectable). This allows the driver to start at will.
  • FIG. 11 is a flowchart of the inhibitor control when the engine is started in the in-gear state.
  • step S21 the ECU 60 determines whether or not the engine is started in the in-gear state. For example, when the vehicle is upright and stopped, the ECU 60 determines that the engine is started in the in-gear state when the gear position is in a gear position other than neutral (for example, in the case of the first gear). If YES in step S21 (the engine is started in the in-gear state), the process proceeds to step S22. If NO in step S21 (the engine is not started in the in-gear state), the process ends (the inhibitor control is not executed).
  • step S22 the ECU 60 determines whether or not the throttle opening degree exceeds the Th threshold value. If YES in step S22 (throttle opening exceeds Th threshold value), the process proceeds to step S23. If NO (throttle opening is equal to or less than the Th threshold value) in step S22, the process ends (inhibita control is not executed).
  • step S23 the ECU 60 executes the inhibitor control (the clutch device is in the disengaged state). After step S23, the process proceeds to step S24.
  • step S24 the ECU 60 determines whether or not the engine speed is equal to or less than the Ne threshold value and the throttle opening degree is equal to or less than the Th threshold value. If YES in step S24 (the engine speed is equal to or less than the Ne threshold value and the throttle opening is equal to or less than the Th threshold value), the process proceeds to step S25. If NO in step S24 (the engine speed exceeds the Ne threshold value or the throttle opening exceeds the Th threshold value), the process returns to step S23 (continue the inhibitor control).
  • step S25 the ECU 60 releases the inhibitor control (makes the clutch device connectable). This allows the driver to start at will.
  • the clutch control device 60A of the motorcycle 1 of the above embodiment is based on the clutch device 26 for connecting and disconnecting the power transmission between the engine 13 and the drive wheels 12 and the parameters including the engine rotation speed G2.
  • the ECU 60 includes an ECU 60 that controls the clutch device 26, and the ECU 60 performs an inhibitor control that puts the clutch device 26 in the disengaged state when the engine speed G2 exceeds the Ne threshold T1 when the start control is performed. According to this configuration, when the engine speed G2 is high, the clutch is not engaged. Therefore, when the engine speed G2 is high, a sudden start and an impact due to gear connection are generated than the driver expected. It can be suppressed.
  • the ECU 60 performs the inhibitor control when the engine speed G2 exceeds the Ne threshold value T1 and the throttle opening G3 exceeds the Th threshold value T2 when the start control is performed by the in-gear from the neutral gear.
  • the following effects are achieved.
  • the clutch is not engaged, so that it is possible to suppress a sudden start than the driver expected.
  • the ECU 60 when the engine is started in the in-gear state, the ECU 60 achieves the following effects by performing the inhibitor control when the throttle opening G3 exceeds the Th threshold value T2.
  • the throttle opening G3 is large, the clutch is not engaged, so that it is possible to suppress a sudden start than the driver expected.
  • the notification unit 71 for notifying the driver that the ECU 60 is executing the inhibitor control.
  • the notification unit 71 can notify the driver that the inhibitor control is being executed, and make the driver recognize that the vehicle cannot start.
  • the ECU 60 when the engine speed G2 is Ne threshold T1 or less and the throttle opening G3 is Th threshold T2 or less, the ECU 60 exerts the following effects by canceling the inhibitor control.
  • Appropriate engine speed can be used in the clutch connection.
  • the release method notification unit 80 for notifying the driver of the release method of the inhibitor control.
  • the release method notification unit 80 can notify the driver of the release method of the inhibitor control, and make the driver recognize that the inhibitor control can be arbitrarily released.
  • the clutch control method for the motorcycle 1 of the above embodiment includes a control step of controlling the clutch device 26 for connecting and disconnecting the power transmission between the engine 13 and the drive wheel 12 based on a parameter including the engine speed G2.
  • the control step if the engine speed G2 exceeds the Ne threshold T1 when the start control is performed, the inhibitor control that disengages the clutch device 26 is performed.
  • the engine speed G2 is high, the clutch is not engaged. Therefore, when the engine speed G2 is high, a sudden start and an impact due to gear connection are generated than expected by the driver. It can be suppressed.
  • the ECU 60 will be described with reference to an example of performing inhibitor control when the engine speed exceeds the Ne threshold value and the throttle opening exceeds the Th threshold value when the start control is performed by the in-gear from the neutral gear.
  • the ECU 60 may perform the inhibitor control when the engine speed exceeds the Ne threshold value or the throttle opening exceeds the Th threshold value when the start control is performed by the in-gear from the neutral gear.
  • the driver is notified by blinking the indicator 71 that the inhibitor control is being executed, but the present invention is not limited to this.
  • the driver may be notified that the inhibitor control is being executed by lighting the indicator 71 in a color different from the color during which the inhibitor control is being released.
  • the notification unit 71 has been described with reference to an example of an indicator provided on the meter panel 70, but the present invention is not limited to this.
  • the notification unit may be a component other than an indicator such as a speaker (horn).
  • the driver may be notified that the inhibitor control is being executed by the speaker producing a sound.
  • the clutch control device may not include the notification unit 71.
  • the release method notification unit 80 has been described with reference to both the arrow 81 and the sentence 82 displayed on the instrument panel 70, but the present invention is not limited to this.
  • the release method notification unit 80 may be either an arrow 81 or a sentence 82 displayed on the instrument panel 70.
  • the display positions of the arrows 81 and the sentence 82 may be any positions as long as they can be recognized by the driver on the instrument panel 70.
  • the release method notification unit 80 has been described by giving an example provided on the meter panel 70, but the present invention is not limited to this.
  • the release method notification unit may be a component other than the instrument panel 70 such as a speaker.
  • the driver may be notified of the method of canceling the inhibitor control by sounding from the speaker.
  • the clutch control device may not include the release method notification unit 80.
  • the clutch control device 60A may include a clutch lever 4b that can release the inhibitor control by operating the clutch control device 60A during operation (see FIG. 3).
  • the inhibitor control can be released by operating the clutch lever 4b without satisfying a predetermined condition such as the engine speed being equal to or less than the Ne threshold value, so that the driver can start arbitrarily.
  • the inhibitor control may be released by the operation of grasping the clutch lever.
  • the operator is not limited to the clutch lever 4b, and various operators can be adopted as long as the lever can be operated by the driver.
  • the saddle-riding vehicle includes a general vehicle in which a driver straddles a vehicle body, and is a motorcycle (motorized bicycle and scooter-type vehicle). (Including), but also three-wheeled vehicles (including front two-wheeled and rear one-wheeled vehicles in addition to front one-wheeled and rear two-wheeled vehicles).
  • the present invention can be applied not only to motorcycles but also to four-wheeled vehicles such as automobiles.
  • the configuration in the above embodiment is an example of the present invention, and various modifications can be made without departing from the gist of the present invention, such as replacing the components of the embodiment with well-known components.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

This clutch control device for a saddle-type vehicle is provided with a clutch device (26) for connecting and disconnecting the transmission of power between an engine (13) and a drive wheel (12), and a control unit (60) for controlling the clutch device (26) on the basis of parameters that include the engine rotation speed (G2). When start control is being carried out and the engine rotation speed (G2) exceeds a Ne threshold value (T1), the control unit (60) carries out an inhibitor control for placing the clutch device (26) in the disconnected state.

Description

鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法Clutch control device and clutch control method for saddle-mounted vehicles
 本発明は、鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法に関する。
 本発明は、2019年3月27日に、日本に出願された特願2019-059878号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a clutch control device and a clutch control method for a saddle-mounted vehicle.
The present invention claims priority based on Japanese Patent Application No. 2019-059878 filed in Japan on March 27, 2019, the contents of which are incorporated herein by reference.
 従来、クラッチの接続を自動で行うクラッチ制御装置が知られている。例えば、特許文献1では、エンジン回転数およびエンジン回転加速度に基づいてクラッチの接続量を制御している。 Conventionally, a clutch control device that automatically connects a clutch is known. For example, in Patent Document 1, the clutch connection amount is controlled based on the engine speed and the engine rotation acceleration.
日本国特開2002-286060号公報Japanese Patent Application Laid-Open No. 2002-286060
 しかしながら、エンジン回転数が高回転の状態でインギアした場合、運転者が想定よりも急な発進をしたりギア接続に伴う衝撃を受けたりする可能性がある。 However, if the engine is in-geared at a high engine speed, the driver may start suddenly or receive an impact due to gear connection.
 そこで本発明は、鞍乗り型車両のクラッチ制御装置およびクラッチ制御方法において、エンジン回転数が高回転の状態での運転者の想定よりも急な発進およびギア接続に伴う衝撃を抑制することを目的とする。 Therefore, an object of the present invention is to suppress a sudden start and an impact due to gear connection in a clutch control device and a clutch control method for a saddle-riding vehicle, in a state where the engine speed is higher than expected by the driver. And.
 上記課題の解決手段として、本発明の態様は以下の構成を有する。
(1)本発明の態様に係る鞍乗り型車両のクラッチ制御装置は、エンジン(13)と駆動輪(12)との間の動力伝達を断接するクラッチ装置(26)と、エンジン回転数(G2)を含むパラメーターに基づいて前記クラッチ装置(26)を制御する制御部(60)と、を備え、前記制御部(60)は、発進制御を行う時、前記エンジン回転数(G2)がNe閾値(T1)を超えている場合、前記クラッチ装置(26)を切断状態とするインヒビタ制御を行う。
As a means for solving the above problems, the aspect of the present invention has the following configuration.
(1) The clutch control device for a saddle-mounted vehicle according to an aspect of the present invention includes a clutch device (26) for connecting and disconnecting power transmission between the engine (13) and the drive wheels (12), and an engine rotation speed (G2). A control unit (60) that controls the clutch device (26) based on a parameter including), and the control unit (60) has a Ne threshold value for the engine speed (G2) when the start control is performed. If it exceeds (T1), the engine control is performed so that the clutch device (26) is in the disengaged state.
(2)上記(1)に記載の鞍乗り型車両のクラッチ制御装置では、前記パラメーターにはスロットル開度(G3)が含まれ、前記制御部(60)は、ニュートラルギアからのインギアによる発進制御を行う時、前記エンジン回転数(G2)が前記Ne閾値(T1)を超え且つ前記スロットル開度(G3)がTh閾値(T2)を超えている場合、前記インヒビタ制御を行ってもよい。 (2) In the clutch control device for the saddle-riding vehicle according to (1) above, the parameter includes the throttle opening (G3), and the control unit (60) controls the start by in-gear from the neutral gear. When the engine speed (G2) exceeds the Ne threshold value (T1) and the throttle opening degree (G3) exceeds the Th threshold value (T2), the inhibitor control may be performed.
(3)上記(1)または(2)に記載の鞍乗り型車両のクラッチ制御装置では、前記パラメーターにはスロットル開度(G3)が含まれ、前記制御部(60)は、インギアした状態で前記エンジン(13)を始動させる時、前記スロットル開度(G3)がTh閾値(T2)を超えている場合、前記インヒビタ制御を行ってもよい。 (3) In the clutch control device for the saddle-riding vehicle according to (1) or (2) above, the parameter includes the throttle opening (G3), and the control unit (60) is in the in-gear state. When the engine (13) is started, if the throttle opening degree (G3) exceeds the Th threshold value (T2), the indicator control may be performed.
(4)上記(1)から(3)のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置では、前記制御部(60)が前記インヒビタ制御を実行していることを運転者へ通知する通知部(71)を更に備えていてもよい。 (4) In the clutch control device for the saddle-riding vehicle according to any one of (1) to (3) above, the control unit (60) notifies the driver that the inhibitor control is being executed. A notification unit (71) may be further provided.
(5)上記(1)から(4)のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置では、前記パラメーターにはスロットル開度(G3)が含まれ、前記制御部(60)は、前記エンジン回転数(G2)が前記Ne閾値(T1)以下かつ前記スロットル開度(G3)がTh閾値(T2)以下になった場合、前記インヒビタ制御を解除してもよい。 (5) In the clutch control device for a saddle-riding vehicle according to any one of (1) to (4) above, the parameter includes a throttle opening (G3), and the control unit (60) When the engine speed (G2) is equal to or less than the Ne threshold value (T1) and the throttle opening degree (G3) is equal to or less than the Th threshold value (T2), the inhibitor control may be canceled.
(6)上記(1)から(5)のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置では、前記インヒビタ制御の解除方法を運転者へ通知する解除方法通知部(80)を更に備えていてもよい。 (6) In the clutch control device for the saddle-riding vehicle according to any one of (1) to (5) above, a release method notification unit (80) for notifying the driver of the release method of the inhibitor control is further added. You may have it.
(7)上記(1)から(6)のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置では、前記インヒビタ制御の作動中に操作することで前記インヒビタ制御を解除可能な操作子(4b)を更に備えていてもよい。 (7) In the clutch control device for a saddle-riding vehicle according to any one of (1) to (6) above, an operator that can release the inhibitor control by operating the clutch control device during the operation of the inhibitor control (7). 4b) may be further provided.
(8)本発明の態様に係る鞍乗り型車両のクラッチ制御方法は、エンジン(13)と駆動輪(12)との間の動力伝達を断接するクラッチ装置(26)を、エンジン回転数(G2)を含むパラメーターに基づいて制御する制御ステップを含み、前記制御ステップでは、発進制御を行う時に前記エンジン回転数(G2)がNe閾値(T1)を超えている場合、前記クラッチ装置(26)を切断状態とするインヒビタ制御を行うことを特徴とする。 (8) In the clutch control method for a saddle-mounted vehicle according to an aspect of the present invention, a clutch device (26) for connecting and disconnecting power transmission between an engine (13) and a drive wheel (12) is connected to an engine speed (G2). ) Is included, and in the control step, when the engine speed (G2) exceeds the Ne threshold (T1) when the start control is performed, the clutch device (26) is engaged. It is characterized by performing inhibitor control in a disconnected state.
 本発明の上記(1)に記載の鞍乗り型車両のクラッチ制御装置によれば、制御部は、発進制御を行う時にエンジン回転数がNe閾値を超えている場合、クラッチ装置を切断状態とするインヒビタ制御を行うことで、以下の効果を奏する。
 エンジン回転数が高回転の場合はクラッチ接続を行わないため、エンジン回転数が高回転の状態での運転者の想定よりも急な発進およびギア接続に伴う衝撃を抑制することができる。
According to the clutch control device for the saddle-riding vehicle according to the above (1) of the present invention, the control unit disengages the clutch device when the engine speed exceeds the Ne threshold value when the start control is performed. The following effects are achieved by controlling the inhibitor.
Since the clutch is not engaged when the engine speed is high, it is possible to suppress a sudden start and an impact due to gear connection when the engine speed is high, which is more than expected by the driver.
 本発明の上記(2)に記載の鞍乗り型車両のクラッチ制御装置によれば、制御部は、ニュートラルギアからのインギアによる発進制御を行う時、エンジン回転数がNe閾値を超え且つスロットル開度がTh閾値を超えている場合、インヒビタ制御を行うことで、以下の効果を奏する。
 ニュートラルギアからインギアして発進する時、エンジン回転数が高回転で且つスロットル開度が大きい場合はクラッチ接続を行わないため、運転者の想定よりも急な発進を抑制することができる。
According to the clutch control device for the saddle-riding vehicle according to the above (2) of the present invention, when the control unit performs start control by in-gear from the neutral gear, the engine speed exceeds the Ne threshold value and the throttle opening degree. When the value exceeds the Th threshold value, the following effects are obtained by performing the inhibitor control.
When starting from the neutral gear in gear, if the engine speed is high and the throttle opening is large, the clutch is not engaged, so it is possible to suppress a sudden start than the driver expected.
 本発明の上記(3)に記載の鞍乗り型車両のクラッチ制御装置によれば、制御部は、インギアした状態でエンジンを始動させる時、スロットル開度がTh閾値を超えている場合、インヒビタ制御を行うことで、以下の効果を奏する。
 インギア状態でエンジン始動時、スロットル開度が大きい場合はクラッチ接続を行わないため、運転者の想定よりも急な発進を抑制することができる。
According to the clutch control device for the saddle-riding vehicle according to the above (3) of the present invention, the control unit controls the inhibitor when the throttle opening exceeds the Th threshold when the engine is started in the in-gear state. The following effects are achieved by performing.
When the engine is started in the in-gear state, if the throttle opening is large, the clutch is not engaged, so it is possible to suppress a sudden start than the driver expected.
 本発明の上記(4)に記載の鞍乗り型車両のクラッチ制御装置によれば、制御部がインヒビタ制御を実行していることを運転者へ通知する通知部を更に備えることで、以下の効果を奏する。
 通知部によってインヒビタ制御を実行中であることを運転者に通知し、車両が発進できない状態にあることを運転者に認識させることができる。
According to the clutch control device for the saddle-riding vehicle according to the above (4) of the present invention, the following effects can be obtained by further providing a notification unit for notifying the driver that the control unit is executing the inhibitor control. Play.
The notification unit can notify the driver that the inhibitor control is being executed, and make the driver recognize that the vehicle cannot start.
 本発明の上記(5)に記載の鞍乗り型車両のクラッチ制御装置によれば、制御部は、エンジン回転数がNe閾値以下かつスロットル開度がTh閾値以下になった場合、インヒビタ制御を解除することで、以下の効果を奏する。
 クラッチ接続における適切なエンジン回転数を使用することができる。
According to the clutch control device for the saddle-riding vehicle according to the above (5) of the present invention, the control unit releases the inhibitor control when the engine speed is equal to or less than the Ne threshold value and the throttle opening is equal to or less than the Th threshold value. By doing so, the following effects are achieved.
Appropriate engine speed can be used in the clutch connection.
 本発明の上記(6)に記載の鞍乗り型車両のクラッチ制御装置によれば、インヒビタ制御の解除方法を運転者へ通知する解除方法通知部を更に備えることで、以下の効果を奏する。
 解除方法通知部によってインヒビタ制御の解除方法を運転者に通知し、インヒビタ制御を任意に解除できることを運転者に認識させることができる。
According to the clutch control device for the saddle-riding vehicle according to the above (6) of the present invention, the following effects can be obtained by further providing a release method notification unit for notifying the driver of the release method of the inhibitor control.
The release method notification unit notifies the driver of the release method of the inhibitor control, and makes the driver recognize that the inhibitor control can be arbitrarily released.
 本発明の上記(7)に記載の鞍乗り型車両のクラッチ制御装置によれば、インヒビタ制御の作動中に操作することでインヒビタ制御を解除可能な操作子を更に備えることで、以下の効果を奏する。
 エンジン回転数がNe閾値以下等の所定条件を満たすことなく、操作子の操作によってインヒビタ制御を解除することができるため、運転者の任意の発進が可能となる。
According to the clutch control device for the saddle-riding vehicle according to the above (7) of the present invention, the following effects can be obtained by further providing an operator capable of releasing the inhibitor control by operating the clutch control device during the operation of the inhibitor control. Play.
Since the inhibitor control can be canceled by operating the operator without satisfying a predetermined condition such as the engine speed being equal to or less than the Ne threshold value, the driver can start arbitrarily.
 本発明の上記(8)に記載の鞍乗り型車両のクラッチ制御方法によれば、制御ステップでは、発進制御を行う時にエンジン回転数がNe閾値を超えている場合、クラッチ装置を切断状態とするインヒビタ制御を行うことで、以下の効果を奏する。
 エンジン回転数が高回転の場合はクラッチ接続を行わないため、エンジン回転数が高回転の状態での運転者の想定よりも急な発進およびギア接続に伴う衝撃を抑制することができる。
According to the clutch control method for the saddle-riding vehicle according to the above (8) of the present invention, in the control step, when the engine speed exceeds the Ne threshold value when the start control is performed, the clutch device is disengaged. The following effects are obtained by performing the inhibitor control.
Since the clutch is not engaged when the engine speed is high, it is possible to suppress a sudden start and an impact due to gear connection when the engine speed is high, which is more than expected by the driver.
実施形態の自動二輪車の左側面図である。It is a left side view of the motorcycle of an embodiment. 実施形態の変速機およびチェンジ機構の断面図である。It is sectional drawing of the transmission and the change mechanism of embodiment. 実施形態のクラッチアクチュエータを含むクラッチ作動システムの概略説明図である。It is the schematic explanatory drawing of the clutch operation system including the clutch actuator of embodiment. 実施形態の変速システムのブロック図である。It is a block diagram of the transmission system of an embodiment. 実施形態のクラッチ制御モードの遷移を示す説明図である。It is explanatory drawing which shows the transition of the clutch control mode of an embodiment. ニュートラルからインギアして発進するときのインヒビタ制御の説明図である。It is explanatory drawing of the inhibitor control at the time of starting from a neutral in gear. インギアした状態でエンジンを始動させるときのインヒビタ制御の説明図である。It is explanatory drawing of the inhibitor control when the engine is started in the in-gear state. インヒビタ制御実行中の通知方法の説明図である。It is explanatory drawing of the notification method during execution of an inhibitor control. インヒビタ制御のフローチャートである。It is a flowchart of an inhibitor control. ニュートラルからインギアして発進するときのインヒビタ制御のフローチャートである。It is a flowchart of an inhibitor control when starting from neutral in gear. インギアした状態でエンジンを始動させるときのインヒビタ制御のフローチャートである。It is a flowchart of the inhibitor control when the engine is started in the in-gear state.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。また以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UPが示されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The orientations of the front, rear, left, right, etc. in the following description shall be the same as the orientations in the vehicle described below unless otherwise specified. Further, in the appropriate place in the figure used in the following description, an arrow FR indicating the front of the vehicle, an arrow LH indicating the left side of the vehicle, and an arrow UP indicating the upper part of the vehicle are shown.
<車両全体>
 図1に示すように、本実施形態は、鞍乗り型車両の一例としての自動二輪車1に適用されている。自動二輪車1の前輪2は、左右一対のフロントフォーク3の下端部に支持されている。左右フロントフォーク3の上部は、ステアリングステム4を介して、車体フレーム5の前端部のヘッドパイプ6に支持されている。ステアリングステム4のトップブリッジ上には、バータイプの操向ハンドル4aが取り付けられている。
<Whole vehicle>
As shown in FIG. 1, this embodiment is applied to a motorcycle 1 as an example of a saddle-riding vehicle. The front wheels 2 of the motorcycle 1 are supported by the lower ends of a pair of left and right front forks 3. The upper parts of the left and right front forks 3 are supported by the head pipe 6 at the front end of the vehicle body frame 5 via the steering stem 4. A bar-type steering handle 4a is mounted on the top bridge of the steering stem 4.
 車体フレーム5は、ヘッドパイプ6と、ヘッドパイプ6から車幅方向(左右方向)中央を下後方へ延びるメインチューブ7と、メインチューブ7の後端部の下方に連なる左右ピボットフレーム8と、メインチューブ7および左右ピボットフレーム8の後方に連なるシートフレーム9と、を備えている。左右ピボットフレーム8には、スイングアーム11の前端部が揺動可能に枢支されている。スイングアーム11の後端部には、自動二輪車1の後輪12が支持されている。 The vehicle body frame 5 includes a head pipe 6, a main tube 7 extending downward and rearward from the head pipe 6 in the vehicle width direction (left-right direction) center, and left and right pivot frames 8 connected below the rear end portion of the main tube 7. It includes a tube 7 and a seat frame 9 connected to the rear of the left and right pivot frames 8. The front end portion of the swing arm 11 is pivotally supported on the left and right pivot frames 8 so as to be swingable. The rear wheel 12 of the motorcycle 1 is supported at the rear end of the swing arm 11.
 左右メインチューブ7の上方には、燃料タンク18が支持されている。燃料タンク18の後方でシートフレーム9の上方には、前シート19および後シートカバー19aが前後に並んで支持されている。シートフレーム9の周囲は、リヤカウル9aに覆われている。
左右メインチューブ7の下方には、自動二輪車1の原動機を含むパワーユニットPUが懸架されている。パワーユニットPUは、後輪12と例えばチェーン式伝動機構を介して連係されている。
A fuel tank 18 is supported above the left and right main tubes 7. A front seat 19 and a rear seat cover 19a are supported side by side in front of and behind the seat frame 9 behind the fuel tank 18. The periphery of the seat frame 9 is covered with a rear cowl 9a.
Below the left and right main tubes 7, a power unit PU including the prime mover of the motorcycle 1 is suspended. The power unit PU is linked to the rear wheel 12 via, for example, a chain type transmission mechanism.
 パワーユニットPUは、その前側に位置するエンジン(内燃機関、原動機)13と後側に位置する変速機21とを一体に有している。エンジン13は、例えばクランクシャフト14の回転軸を車幅方向に沿わせた複数気筒エンジンである。エンジン13は、クランクケース15の前部から上方に起立するシリンダ16を備える。クランクケース15の後部は、変速機21を収容する変速機ケース17とされている。 The power unit PU integrally has an engine (internal combustion engine, prime mover) 13 located on the front side thereof and a transmission 21 located on the rear side thereof. The engine 13 is, for example, a multi-cylinder engine in which the rotation axis of the crankshaft 14 is aligned in the vehicle width direction. The engine 13 includes a cylinder 16 that stands upward from the front portion of the crankcase 15. The rear portion of the crankcase 15 is a transmission case 17 that houses the transmission 21.
<変速機>
 図2に示すように、変速機21は、メインシャフト22およびカウンタシャフト23ならびに両シャフト22,23に跨る変速ギア群24を有する有段式のトランスミッションである。カウンタシャフト23は、変速機21(パワーユニットPU)の出力軸を構成している。カウンタシャフト23の端部は、クランクケース15の後部左側に突出している。カウンタシャフト23の突出端部は、ドライブスプロケット27を含むチェーン式伝動機構を介して後輪12に連結されている(図1参照)。
<Transmission>
As shown in FIG. 2, the transmission 21 is a stepped transmission having a main shaft 22, a counter shaft 23, and a transmission gear group 24 straddling both shafts 22, 23. The counter shaft 23 constitutes an output shaft of the transmission 21 (power unit PU). The end of the counter shaft 23 projects to the rear left side of the crankcase 15. The protruding end of the counter shaft 23 is connected to the rear wheel 12 via a chain-type transmission mechanism including a drive sprocket 27 (see FIG. 1).
 変速ギア群24は、両シャフト22,23にそれぞれ支持された変速段数分のギアを有する。変速機21は、両シャフト22,23間で変速ギア群24の対応するギア対同士が常に噛み合った常時噛み合い式とされる。両シャフト22,23に支持された複数のギアは、対応するシャフトに対して回転可能なフリーギアと、対応するシャフトにスプライン嵌合するスライドギア(シフター)とに分類される。これらフリーギア及びスライドギアの一方には軸方向で凸のドグが、他方にはドグを係合させるべく軸方向で凹のスロットがそれぞれ設けられている。すなわち、変速機21は、いわゆるドグミッションである。 The transmission gear group 24 has gears corresponding to the number of gears supported by both shafts 22 and 23, respectively. The transmission 21 is of a constant meshing type in which the corresponding gear pairs of the shifting gear group 24 are always meshed between the shafts 22 and 23. The plurality of gears supported by the shafts 22 and 23 are classified into a free gear that can rotate with respect to the corresponding shaft and a slide gear (shifter) that is spline-fitted to the corresponding shaft. One of the free gear and the slide gear is provided with a dog that is convex in the axial direction, and the other is provided with a slot that is concave in the axial direction to engage the dog. That is, the transmission 21 is a so-called dog mission.
 変速機21のメインシャフト22及びカウンタシャフト23は、クランクシャフト14(図1参照)の後方で前後に並んで配置されている。メインシャフト22の右端部には、クラッチアクチュエータ50(図3参照)により作動するクラッチ装置26が同軸配置されている。クラッチ装置26は、例えば湿式多板クラッチである。すなわち、クラッチ装置26は、クラッチアクチュエータ50からの油圧供給によって動力伝達可能な接続状態となり、クラッチアクチュエータ50からの油圧供給がなくなると動力伝達不能な切断状態に戻る、いわゆるノーマルオープンクラッチである。 The main shaft 22 and the counter shaft 23 of the transmission 21 are arranged side by side behind the crankshaft 14 (see FIG. 1). A clutch device 26 operated by a clutch actuator 50 (see FIG. 3) is coaxially arranged at the right end of the main shaft 22. The clutch device 26 is, for example, a wet multi-plate clutch. That is, the clutch device 26 is a so-called normally open clutch in which the clutch device 26 is in a connected state in which power can be transmitted by supplying hydraulic pressure from the clutch actuator 50, and returns to a disengaged state in which power cannot be transmitted when the hydraulic pressure is not supplied from the clutch actuator 50.
 クランクシャフト14の回転動力は、クラッチ装置26を介してメインシャフト22に伝達され、メインシャフト22から変速ギア群24の任意のギア対を介してカウンタシャフト23に伝達される。
 クラッチ装置26は、バックトルクリミッターを備えていてもよい。バックトルクリミッターは、クラッチ装置26に設けたカム機構に規定以上のバックトルクが作用すると、クラッチ容量を機械的に低下させる。
The rotational power of the crankshaft 14 is transmitted to the main shaft 22 via the clutch device 26, and is transmitted from the main shaft 22 to the counter shaft 23 via an arbitrary gear pair of the transmission gear group 24.
The clutch device 26 may include a back torque limiter. The back torque limiter mechanically reduces the clutch capacity when a back torque equal to or higher than a specified value acts on the cam mechanism provided in the clutch device 26.
 変速機21の後上方には、変速ギア群24のギア対を切り替えるチェンジ機構25が収容されている。チェンジ機構25は、両シャフト22,23と実質的に平行な中空円筒状のシフトドラム36を備える。シフトドラム36の外周には、リード溝のパターンが形成されている。チェンジ機構25は、シフトドラム36の回転により、リード溝のパターンに応じて複数のシフトフォーク36aを作動させる。これにより、変速ギア群24における両シャフト22,23間の動力伝達に用いるギア対を切り替える。 A change mechanism 25 for switching gear pairs of the transmission gear group 24 is housed above the rear of the transmission 21. The change mechanism 25 includes a hollow cylindrical shift drum 36 substantially parallel to both shafts 22 and 23. A lead groove pattern is formed on the outer circumference of the shift drum 36. The change mechanism 25 operates a plurality of shift forks 36a according to the pattern of the lead groove by the rotation of the shift drum 36. As a result, the gear pair used for power transmission between the shafts 22 and 23 in the transmission gear group 24 is switched.
 チェンジ機構25は、シフトドラム36と実質的に平行なシフトスピンドル31を有している。シフトスピンドル31の回転時には、シフトスピンドル31に固定されたシフトアーム31aがシフトドラム36を回転させ、リード溝のパターンに応じてシフトフォーク36aを軸方向移動させる。これにより、変速ギア群24の内の動力伝達可能なギア対を切り替える(すなわち、変速段を切り替える。)。 The change mechanism 25 has a shift spindle 31 substantially parallel to the shift drum 36. When the shift spindle 31 is rotated, the shift arm 31a fixed to the shift spindle 31 rotates the shift drum 36, and the shift fork 36a is moved in the axial direction according to the pattern of the lead groove. As a result, the gear pair capable of transmitting power in the transmission gear group 24 is switched (that is, the shift stage is switched).
 シフトスピンドル31は、チェンジ機構25を操作可能とするためにクランクケース15の車幅方向外側(左方)に軸外側部31bを突出させている(図1参照)。シフトスピンドル31の軸外側部31bには、シフト荷重センサ42(シフト操作検知手段、図1参照)が同軸に取り付けられている。シフトスピンドル31の軸外側部31b(またはシフト荷重センサ42の回転軸)には、揺動レバー33が取り付けられている。揺動レバー33は、シフトスピンドル31(または回転軸)にクランプ固定される基端部33aと、基端部33aから後方へ延びる部分の先端部33bと、を有する。揺動レバー33の先端部33bには、リンクロッド34の上端部が上ボールジョイント34aを介して揺動自在に連結されている。リンクロッド34の下端部は、運転者が足操作するシフトペダル32(図1参照)に、下ボールジョイント(不図示)を介して揺動自在に連結されている。 The shift spindle 31 projects the shaft outer portion 31b to the outside (left side) of the crankcase 15 in the vehicle width direction so that the change mechanism 25 can be operated (see FIG. 1). A shift load sensor 42 (shift operation detecting means, see FIG. 1) is coaxially attached to the shaft outer portion 31b of the shift spindle 31. A swing lever 33 is attached to the shaft outer portion 31b (or the rotation shaft of the shift load sensor 42) of the shift spindle 31. The swing lever 33 has a base end portion 33a clamped and fixed to the shift spindle 31 (or a rotating shaft), and a tip end portion 33b of a portion extending rearward from the base end portion 33a. The upper end of the link rod 34 is swingably connected to the tip 33b of the swing lever 33 via an upper ball joint 34a. The lower end of the link rod 34 is swingably connected to a shift pedal 32 (see FIG. 1) operated by the driver via a lower ball joint (not shown).
 図1に示すように、シフトペダル32の前端部は、クランクケース15の下部に左右方向に沿う軸を介して上下揺動可能に支持されている。シフトペダル32の後端部には、ステップ32aに載せた運転者の足先を掛けるペダル部が設けられている。シフトペダル32の前後中間部には、リンクロッド34の下端部が連結されている。 As shown in FIG. 1, the front end portion of the shift pedal 32 is supported on the lower portion of the crankcase 15 so as to be vertically swingable via an axis along the left-right direction. At the rear end of the shift pedal 32, a pedal portion for hanging the toes of the driver placed on the step 32a is provided. The lower end of the link rod 34 is connected to the front-rear intermediate portion of the shift pedal 32.
 ここで、自動二輪車1は、変速機21の変速操作(シフトペダル32の足操作)のみを運転者が行い、クラッチ装置26の断接操作はシフトペダル32の操作に応じて電気制御により自動で行うようにした、いわゆるセミオートマチックの変速システム(自動クラッチ式変速システム)を採用している。 Here, in the motorcycle 1, the driver only performs the shifting operation of the transmission 21 (foot operation of the shift pedal 32), and the clutch device 26 is automatically engaged and disconnected by electric control according to the operation of the shift pedal 32. The so-called semi-automatic transmission system (automatic clutch type transmission system) is adopted.
<変速システム>
 図4に示すように、上記変速システムは、クラッチアクチュエータ50、ECU60(Electronic Control Unit、制御部)および各種センサ41~45を備えている。
 ECU60は、シフトドラム36の回転角から変速段を検知するギアポジションセンサ41、およびシフトスピンドル31に入力された操作トルクを検知するシフト荷重センサ42(例えばトルクセンサ)からの検知情報、ならびにスロットル開度センサ43、車速センサ44およびエンジン回転数センサ45等からの各種の車両状態検知情報等に基づいて、クラッチアクチュエータ50を作動制御するとともに、点火装置46および燃料噴射装置47を作動制御する。エンジン回転数は、スロットルバルブ及びアクセルグリップを含むスロットルバイワイヤ(throttle by wire:TBW)により制御される。
<Transmission system>
As shown in FIG. 4, the speed change system includes a clutch actuator 50, an ECU 60 (Electronic Control Unit), and various sensors 41 to 45.
The ECU 60 includes detection information from a gear position sensor 41 that detects a shift stage from the rotation angle of the shift drum 36, a shift load sensor 42 (for example, a torque sensor) that detects an operation torque input to the shift spindle 31, and throttle opening. The clutch actuator 50 is operated and controlled, and the ignition device 46 and the fuel injection device 47 are operated and controlled based on various vehicle state detection information from the degree sensor 43, the vehicle speed sensor 44, the engine rotation speed sensor 45, and the like. The engine speed is controlled by a throttle by wire (TBW) including a throttle valve and an accelerator grip.
 ECU60には、油圧センサ57,58(図3参照)、シフト操作検知スイッチ(シフトニュートラルスイッチ)48、および車体の状況(動き)を検出するジャイロセンサ49からの検知情報も入力される。ジャイロセンサ49は、IMU(inertial measurement unit:慣性計測装置)である。ジャイロセンサ49は、検知方向の加速度成分に応じた信号をECU60に出力する。ジャイロセンサ49は、ECU60に内蔵されてもよい。図中符号60Aは本実施形態のクラッチ制御装置を示している。 Detection information from the hydraulic sensors 57 and 58 (see FIG. 3), the shift operation detection switch (shift neutral switch) 48, and the gyro sensor 49 that detects the vehicle body condition (movement) is also input to the ECU 60. The gyro sensor 49 is an IMU (inertial measurement unit). The gyro sensor 49 outputs a signal corresponding to the acceleration component in the detection direction to the ECU 60. The gyro sensor 49 may be built in the ECU 60. Reference numeral 60A in the figure indicates the clutch control device of this embodiment.
 図3を併せて参照し、クラッチアクチュエータ50は、ECU60により作動制御されることで、クラッチ装置26を断接する液圧を制御可能とする。クラッチアクチュエータ50は、駆動源としてのモータ52(例えば電気モータ)と、モータ52により駆動されるマスターシリンダ51と、を備えている。クラッチアクチュエータ50は、マスターシリンダ51および油圧給排ポート50pの間に設けられる油圧回路装置53とともに、一体のクラッチ制御ユニット50Aを構成している。
 ECU60は、予め設定された演算プログラムに基づいて、クラッチ装置26を断接するためにスレーブシリンダ28に供給する油圧の目標値(以下「目標油圧」ともいう。)を演算する。ECU60は、下流側油圧センサ58で検出されるスレーブシリンダ28側の油圧(スレーブ油圧)が目標油圧に近づくように、クラッチ制御ユニット50Aを制御する。
With reference to FIG. 3, the clutch actuator 50 can control the hydraulic pressure for connecting and disconnecting the clutch device 26 by controlling the operation by the ECU 60. The clutch actuator 50 includes a motor 52 (for example, an electric motor) as a drive source and a master cylinder 51 driven by the motor 52. The clutch actuator 50 constitutes an integrated clutch control unit 50A together with a hydraulic circuit device 53 provided between the master cylinder 51 and the hydraulic supply / discharge port 50p.
The ECU 60 calculates a target value of the hydraulic pressure supplied to the slave cylinder 28 (hereinafter, also referred to as “target hydraulic pressure”) for engaging and disengaging the clutch device 26 based on a preset calculation program. The ECU 60 controls the clutch control unit 50A so that the oil pressure on the slave cylinder 28 side (slave oil pressure) detected by the downstream oil pressure sensor 58 approaches the target oil pressure.
 マスターシリンダ51は、シリンダ本体51a内のピストン51bをモータ52の駆動によりストロークさせて、シリンダ本体51a内の作動油をスレーブシリンダ28に対して給排可能とする。図中符号55はボールネジ機構としての変換機構、符号54はモータ52および変換機構55に跨る伝達機構、符号51eはマスターシリンダ51に接続されるリザーバをそれぞれ示す。 The master cylinder 51 strokes the piston 51b in the cylinder body 51a by driving the motor 52 so that the hydraulic oil in the cylinder body 51a can be supplied and discharged to the slave cylinder 28. In the figure, reference numeral 55 indicates a conversion mechanism as a ball screw mechanism, reference numeral 54 indicates a transmission mechanism straddling the motor 52 and the conversion mechanism 55, and reference numeral 51e indicates a reservoir connected to the master cylinder 51.
 油圧回路装置53は、マスターシリンダ51からクラッチ装置26側(スレーブシリンダ28側)へ延びる主油路(油圧給排油路)53mの中間部位を開通又は遮断するバルブ機構(ソレノイドバルブ56)を有している。油圧回路装置53の主油路53mは、ソレノイドバルブ56よりもマスターシリンダ51側となる上流側油路53aと、ソレノイドバルブ56よりもスレーブシリンダ28側となる下流側油路53bと、に分けられる。油圧回路装置53はさらに、ソレノイドバルブ56を迂回して上流側油路53aと下流側油路53bとを連通するバイパス油路53cを備えている。 The hydraulic circuit device 53 has a valve mechanism (solenoid valve 56) that opens or shuts off an intermediate portion of a main oil passage (hydraulic oil supply / exhaust passage) 53 m extending from the master cylinder 51 to the clutch device 26 side (slave cylinder 28 side). are doing. The main oil passage 53m of the hydraulic circuit device 53 is divided into an upstream oil passage 53a on the master cylinder 51 side of the solenoid valve 56 and a downstream oil passage 53b on the slave cylinder 28 side of the solenoid valve 56. .. The hydraulic circuit device 53 further includes a bypass oil passage 53c that bypasses the solenoid valve 56 and connects the upstream oil passage 53a and the downstream oil passage 53b.
 ソレノイドバルブ56は、いわゆるノーマルオープンバルブである。バイパス油路53cには、上流側から下流側への方向のみ作動油を流通させるワンウェイバルブ53c1が設けられている。ソレノイドバルブ56の上流側には、上流側油路53aの油圧を検出する上流側油圧センサ57が設けられている。ソレノイドバルブ56の下流側には、下流側油路53bの油圧を検出する下流側油圧センサ58が設けられている。 The solenoid valve 56 is a so-called normally open valve. The bypass oil passage 53c is provided with a one-way valve 53c1 that allows hydraulic oil to flow only in the direction from the upstream side to the downstream side. On the upstream side of the solenoid valve 56, an upstream oil pressure sensor 57 for detecting the oil pressure of the upstream oil passage 53a is provided. On the downstream side of the solenoid valve 56, a downstream oil pressure sensor 58 for detecting the oil pressure of the downstream oil passage 53b is provided.
 図1に示すように、クラッチ制御ユニット50Aは、例えばリヤカウル9a内に収容されている。スレーブシリンダ28は、クランクケース15の後部左側に取り付けられている。クラッチ制御ユニット50Aとスレーブシリンダ28とは、油圧配管53e(図3参照)を介して接続されている。 As shown in FIG. 1, the clutch control unit 50A is housed in, for example, the rear cowl 9a. The slave cylinder 28 is attached to the rear left side of the crankcase 15. The clutch control unit 50A and the slave cylinder 28 are connected via a hydraulic pipe 53e (see FIG. 3).
 図2に示すように、スレーブシリンダ28は、メインシャフト22の左方に同軸配置されている。スレーブシリンダ28は、クラッチアクチュエータ50からの油圧供給時には、メインシャフト22内を貫通するプッシュロッド28aを右方へ押圧する。スレーブシリンダ28は、プッシュロッド28aを右方へ押圧することで、該プッシュロッド28aを介してクラッチ装置26を接続状態へ作動させる。スレーブシリンダ28は、前記油圧供給が無くなると、プッシュロッド28aの押圧を解除し、クラッチ装置26を切断状態に戻す。 As shown in FIG. 2, the slave cylinder 28 is coaxially arranged on the left side of the main shaft 22. The slave cylinder 28 presses the push rod 28a penetrating the inside of the main shaft 22 to the right when the hydraulic pressure is supplied from the clutch actuator 50. By pressing the push rod 28a to the right, the slave cylinder 28 operates the clutch device 26 in the connected state via the push rod 28a. When the hydraulic pressure supply is cut off, the slave cylinder 28 releases the pressure on the push rod 28a and returns the clutch device 26 to the disengaged state.
 クラッチ装置26を接続状態に維持するには油圧供給を継続する必要があるが、その分だけ電力を消費することとなる。そこで、図3に示すように、クラッチ制御ユニット50Aの油圧回路装置53にソレノイドバルブ56を設け、クラッチ装置26側への油圧供給後にソレノイドバルブ56を閉じている。これにより、クラッチ装置26側への供給油圧を維持し、圧力低下分だけ油圧を補う(リーク分だけリチャージする)構成として、エネルギー消費を抑えている。 In order to maintain the clutch device 26 in the connected state, it is necessary to continue the hydraulic pressure supply, but power is consumed by that amount. Therefore, as shown in FIG. 3, a solenoid valve 56 is provided in the hydraulic circuit device 53 of the clutch control unit 50A, and the solenoid valve 56 is closed after supplying hydraulic pressure to the clutch device 26 side. As a result, the supply hydraulic pressure to the clutch device 26 side is maintained, and the hydraulic pressure is supplemented by the pressure drop (recharges by the leak amount) to suppress energy consumption.
<クラッチ制御モード>
 図5に示すように、本実施形態のクラッチ制御装置60Aは、三種のクラッチ制御モードを有している。クラッチ制御モードは、自動制御を行うオートモードM1、手動操作を行うマニュアルモードM2、および一時的な手動操作を行うマニュアル介入モードM3、の三種のモード間で、クラッチ制御モード切替スイッチ59(図4参照)およびクラッチレバー4b(図1参照)の操作に応じて適宜遷移する。なお、マニュアルモードM2およびマニュアル介入モードM3を含む対象をマニュアル系M2Aという。クラッチ制御装置60Aは、クラッチレバー4bとクラッチ装置26とを電気的に接続したクラッチバイワイヤシステムとしても機能する。
<Clutch control mode>
As shown in FIG. 5, the clutch control device 60A of the present embodiment has three types of clutch control modes. The clutch control mode is a clutch control mode changeover switch 59 (FIG. 4) between three modes: an auto mode M1 for automatic control, a manual mode M2 for manual operation, and a manual intervention mode M3 for temporary manual operation. (See) and the clutch lever 4b (see FIG. 1) are operated to make appropriate transitions. The target including the manual mode M2 and the manual intervention mode M3 is referred to as a manual system M2A. The clutch control device 60A also functions as a clutch-by-wire system in which the clutch lever 4b and the clutch device 26 are electrically connected.
 オートモードM1は、自動発進・変速制御により走行状態に適したクラッチ容量を演算してクラッチ装置26を制御するモードである。マニュアルモードM2は、乗員によるクラッチ操作指示に応じてクラッチ容量を演算してクラッチ装置26を制御するモードである。マニュアル介入モードM3は、オートモードM1中に乗員からのクラッチ操作指示を受け付け、クラッチ操作指示からクラッチ容量を演算してクラッチ装置26を制御する一時的なマニュアル操作モードである。なお、マニュアル介入モードM3中に乗員がクラッチレバー4bの操作をやめる(完全にリリースする)と、オートモードM1に戻るよう設定されている。 The auto mode M1 is a mode in which the clutch device 26 is controlled by calculating the clutch capacity suitable for the running state by automatic start / shift control. The manual mode M2 is a mode in which the clutch capacity is calculated in response to a clutch operation instruction by the occupant to control the clutch device 26. The manual intervention mode M3 is a temporary manual operation mode in which the clutch operation instruction from the occupant is received during the auto mode M1, the clutch capacity is calculated from the clutch operation instruction, and the clutch device 26 is controlled. It is set to return to the auto mode M1 when the occupant stops (completely releases) the operation of the clutch lever 4b during the manual intervention mode M3.
 本実施形態のクラッチ制御装置60Aは、エンジン13(図1参照)の回転駆動力で不図示のオイルポンプを駆動してクラッチ制御油圧を発生する。このため、クラッチ制御装置60Aは、システム起動時には、オートモードM1でクラッチオフの状態(切断状態)から制御を始める。また、クラッチ制御装置60Aは、エンジン13停止時にはクラッチ操作が不要なので、オートモードM1でクラッチオフに戻るよう設定されている。 The clutch control device 60A of the present embodiment drives an oil pump (not shown) with the rotational driving force of the engine 13 (see FIG. 1) to generate clutch control hydraulic pressure. Therefore, when the system is started, the clutch control device 60A starts control from the clutch-off state (disengaged state) in the auto mode M1. Further, the clutch control device 60A is set to return to the clutch off in the auto mode M1 because the clutch operation is not required when the engine 13 is stopped.
 オートモードM1は、クラッチ制御を自動で行うことが基本であり、レバー操作レスで自動二輪車1を走行可能とする。オートモードM1では、スロットル開度、エンジン回転数、車速およびシフトセンサ出力により、クラッチ容量をコントロールしている。これにより、自動二輪車1をスロットル操作のみでエンストすることなく発進可能であり、かつシフト操作のみで変速可能である。ただし、アイドリング相当の極低速時には自動でクラッチ装置26が切断することがある。また、オートモードM1では、クラッチレバー4bを握ることでマニュアル介入モードM3となり、クラッチ装置26を任意に切ることも可能である。 The auto mode M1 basically performs clutch control automatically, and enables the motorcycle 1 to run without lever operation. In the auto mode M1, the clutch capacity is controlled by the throttle opening, the engine speed, the vehicle speed, and the shift sensor output. As a result, the motorcycle 1 can be started without being stalled only by the throttle operation, and the speed can be changed only by the shift operation. However, the clutch device 26 may be automatically disengaged at an extremely low speed equivalent to idling. Further, in the auto mode M1, the manual intervention mode M3 is set by grasping the clutch lever 4b, and the clutch device 26 can be arbitrarily disengaged.
 一方、マニュアルモードM2では、乗員によるレバー操作により、クラッチ容量をコントロールする。オートモードM1とマニュアルモードM2とは、停車中にクラッチ制御モード切替スイッチ59(図4参照)を操作することで切り替え可能である。なお、クラッチ制御装置60Aは、マニュアル系M2A(マニュアルモードM2又はマニュアル介入モードM3)への遷移時にレバー操作が有効であることを示すインジケータを備えてもよい。 On the other hand, in the manual mode M2, the clutch capacity is controlled by the lever operation by the occupant. The auto mode M1 and the manual mode M2 can be switched by operating the clutch control mode changeover switch 59 (see FIG. 4) while the vehicle is stopped. The clutch control device 60A may include an indicator indicating that the lever operation is effective at the time of transition to the manual system M2A (manual mode M2 or manual intervention mode M3).
 マニュアルモードM2は、クラッチ制御を手動で行うことが基本であり、クラッチレバー4bの作動角度に応じてクラッチ油圧を制御可能である。これにより、乗員の意思のままにクラッチ装置26の断接をコントロール可能であり、かつアイドリング相当の極低速時にもクラッチ装置26を接続して走行可能である。ただし、レバー操作によってはエンストすることがあり、かつスロットル操作のみでの自動発進も不可である。なお、マニュアルモードM2であっても、シフト操作時にはクラッチ制御が自動で介入する。 In the manual mode M2, the clutch is basically controlled manually, and the clutch hydraulic pressure can be controlled according to the operating angle of the clutch lever 4b. As a result, the engagement and disengagement of the clutch device 26 can be controlled at the will of the occupant, and the clutch device 26 can be connected and traveled even at an extremely low speed equivalent to idling. However, depending on the lever operation, the engine may stall, and automatic starting is not possible only by operating the throttle. Even in the manual mode M2, the clutch control automatically intervenes during the shift operation.
 オートモードM1では、クラッチアクチュエータ50により自動でクラッチ装置26の断接が行われる。オートモードM1では、クラッチレバー4bに対するマニュアルクラッチ操作が行われることで、クラッチ装置26の自動制御に一時的に手動操作を介入させることが可能である(マニュアル介入モードM3)。 In the auto mode M1, the clutch actuator 50 automatically engages and disconnects the clutch device 26. In the auto mode M1, the manual clutch operation is performed on the clutch lever 4b, so that the manual operation can be temporarily intervened in the automatic control of the clutch device 26 (manual intervention mode M3).
<インヒビタ制御>
 次に、本実施形態の自動二輪車のインヒビタ制御について説明する。
 本実施形態では、エンジン回転数がNe閾値を超えている場合、クラッチ装置26(図2参照)を切断状態とするインヒビタ制御を行う。
<Inhibita control>
Next, the inhibitor control of the motorcycle of the present embodiment will be described.
In the present embodiment, when the engine speed exceeds the Ne threshold value, the inhibitor control is performed so that the clutch device 26 (see FIG. 2) is in the disengaged state.
 図6は、ニュートラルからインギアして発進するときのインヒビタ制御の説明図である。図中において、符号G1はギアポジション、符号G2はエンジン回転数、符号G3はスロットル開度をそれぞれ示す。図6においては、ギアポジションG1はニュートラルからファーストギアに遷移している。 FIG. 6 is an explanatory diagram of the inhibitor control when starting from neutral in gear. In the figure, reference numeral G1 indicates a gear position, reference numeral G2 indicates an engine speed, and reference numeral G3 indicates a throttle opening degree. In FIG. 6, the gear position G1 is transitioning from the neutral gear to the first gear.
 図6の例では、ギアポジションG1をニュートラルからファーストギアにして発進するとき、エンジン回転数G2がNe閾値T1を超え且つスロットル開度G3がTh閾値T2を超えている場合(G2>T1かつG3>T2)、インヒビタ制御を行う。例えば、Ne閾値T1は1500rpmに設定される。例えば、Th閾値T2は0.8degに設定される。 In the example of FIG. 6, when the engine speed G2 exceeds the Ne threshold value T1 and the throttle opening G3 exceeds the Th threshold value T2 when the gear position G1 is changed from the neutral gear to the first gear (G2> T1 and G3). > T2), perform inhibitor control. For example, the Ne threshold T1 is set to 1500 rpm. For example, the Th threshold T2 is set to 0.8 deg.
 図中符号W1はインヒビタ有効範囲を示す。インヒビタ有効範囲W1は、インヒビタ制御が実行される範囲を意味する。図6の例では、インヒビタ有効範囲W1は、エンジン回転数G2がNe閾値T1を超えている範囲およびスロットル開度G3がTh閾値T2を超えている範囲の両方を含んでいる。 In the figure, the reference numeral W1 indicates the effective range of the inhibitor. The inhibitor effective range W1 means the range in which the inhibitor control is executed. In the example of FIG. 6, the inhibitor effective range W1 includes both a range in which the engine speed G2 exceeds the Ne threshold value T1 and a range in which the throttle opening G3 exceeds the Th threshold value T2.
 図6の例では、インヒビタ制御の開始時間は、エンジン回転数G2がNe閾値T1を超えた時間と一致している。インヒビタ制御の終了時間は、エンジン回転数G2がNe閾値T1以下になった時間と一致している。図6の例では、エンジン回転数G2がNe閾値T1以下かつスロットル開度G3がTh閾値T2以下になった場合(G2≦T1かつG3≦T2)、インヒビタ制御を解除する(すなわち、インヒビタ有効範囲W1外となる)。 In the example of FIG. 6, the start time of the inhibitor control coincides with the time when the engine speed G2 exceeds the Ne threshold value T1. The end time of the inhibitor control coincides with the time when the engine speed G2 becomes Ne threshold T1 or less. In the example of FIG. 6, when the engine speed G2 is Ne threshold T1 or less and the throttle opening G3 is Th threshold T2 or less (G2 ≦ T1 and G3 ≦ T2), the inhibitor control is released (that is, the inhibitor effective range). It will be outside W1).
 図7は、インギアした状態でエンジンを始動させるときのインヒビタ制御の説明図である。図7においては、ギアポジションG1はファーストギアを維持している。 FIG. 7 is an explanatory diagram of the inhibitor control when the engine is started in the in-gear state. In FIG. 7, the gear position G1 maintains the first gear.
 図7の例では、ギアポジションG1がファーストギアの状態でエンジンを始動させるとき、スロットル開度G3がTh閾値T2を超えている場合(G3>T2)、インヒビタ制御を行う。加えて、インギア状態でエンジン始動時、エンジン回転数G2がNe閾値T1を超えている場合(G2>T1)、インヒビタ制御を行う。図7の例では、インヒビタ有効範囲W1は、スロットル開度G3がTh閾値T2を超えている範囲およびエンジン回転数G2がNe閾値T1を超えている範囲の両方を含んでいる。 In the example of FIG. 7, when the engine is started in the state where the gear position G1 is the first gear, if the throttle opening G3 exceeds the Th threshold value T2 (G3> T2), the inhibitor control is performed. In addition, when the engine is started in the in-gear state, if the engine speed G2 exceeds the Ne threshold value T1 (G2> T1), the inhibitor control is performed. In the example of FIG. 7, the inhibitor effective range W1 includes both a range in which the throttle opening G3 exceeds the Th threshold value T2 and a range in which the engine speed G2 exceeds the Ne threshold value T1.
 図7の例では、インヒビタ制御の開始時間は、スロットル開度G3がTh閾値T2を超えた時間と一致している。インヒビタ制御の終了時間は、スロットル開度G3がTh閾値T2以下になった後であってエンジン回転数G2がNe閾値T1以下になった時間と一致している。図7の例では、スロットル開度G3がTh閾値T2以下かつエンジン回転数G2がNe閾値T1以下になった場合(G3≦T2かつG2≦T1)、インヒビタ制御を解除する(すなわち、インヒビタ有効範囲W1外となる)。 In the example of FIG. 7, the start time of the inhibitor control coincides with the time when the throttle opening G3 exceeds the Th threshold value T2. The end time of the inhibitor control coincides with the time after the throttle opening G3 becomes Th threshold T2 or less and the engine speed G2 becomes Ne threshold T1 or less. In the example of FIG. 7, when the throttle opening G3 is Th threshold T2 or less and the engine speed G2 is Ne threshold T1 or less (G3 ≦ T2 and G2 ≦ T1), the inhibitor control is canceled (that is, the inhibitor effective range). It will be outside W1).
 本実施形態では、インヒビタ制御を実行している場合、インヒビタ制御実行中であることを運転者へ通知する通知部71を更に備える(図8参照)。
 図8は、インヒビタ制御実行中の通知方法の説明図である。図中において、符号70は車両前部に設けられたメーターパネルを示す。メーターパネル70は、インジケータ71、エンジン回転数メーター72およびスピードメーター73を備える。
In the present embodiment, when the inhibitor control is being executed, the notification unit 71 for notifying the driver that the inhibitor control is being executed is further provided (see FIG. 8).
FIG. 8 is an explanatory diagram of a notification method during execution of inhibitor control. In the figure, reference numeral 70 indicates a meter panel provided at the front of the vehicle. The instrument panel 70 includes an indicator 71, an engine speed meter 72, and a speedometer 73.
 図8の例では、インジケータ71は、エンジン回転数メーター72の上方に配置されている。インジケータ71は、インヒビタ制御を実行している場合、インヒビタ制御実行中であることを運転者へ通知する通知部として機能する。例えば、インジケータ71は、インヒビタ制御を実行している場合に点滅する。これにより、インヒビタ制御実行中であることを運転者へ通知する。 In the example of FIG. 8, the indicator 71 is arranged above the engine speed meter 72. When the indicator 71 is executing the inhibitor control, the indicator 71 functions as a notification unit for notifying the driver that the inhibitor control is being executed. For example, the indicator 71 blinks when the inhibitor control is being executed. As a result, the driver is notified that the inhibitor control is being executed.
 本実施形態では、インヒビタ制御の解除方法を運転者へ通知する解除方法通知部80を更に備える。メーターパネル70に表示される矢印81および文82は、解除方法通知部80として機能する。図8の例では、矢印81はエンジン回転数メーター72に表示されている。文82はスピードメーター73の下方に表示されている。例えば、矢印81は、エンジン回転数が低下する方向へ指向するとともに、現在のエンジン回転数からインヒビタ制御解除のためのエンジン回転数に向けて移動する。例えば、文82は、「スロットルを閉じてエンジン回転が落ちるのを待ってください」である。 In the present embodiment, the release method notification unit 80 for notifying the driver of the release method of the inhibitor control is further provided. The arrow 81 and the sentence 82 displayed on the instrument panel 70 function as the release method notification unit 80. In the example of FIG. 8, the arrow 81 is displayed on the engine speed meter 72. Sentence 82 is displayed below the speedometer 73. For example, the arrow 81 points in the direction in which the engine speed decreases, and moves from the current engine speed to the engine speed for releasing the inhibitor control. For example, sentence 82 is "Please close the throttle and wait for the engine speed to drop."
 図9を参照し、インヒビタ制御の一例について説明する。
 まず、ステップS1において、ECU60は、エンジン回転数がNe閾値を超えているか否かを判定する。例えば、Ne閾値は1500rpmに設定する。ステップS1でYES(エンジン回転数がNe閾値超過)の場合、ステップS2に移行する。ステップS1でNO(エンジン回転数がNe閾値以下)の場合、処理を終了する。
An example of inhibitor control will be described with reference to FIG.
First, in step S1, the ECU 60 determines whether or not the engine speed exceeds the Ne threshold value. For example, the Ne threshold is set to 1500 rpm. If YES in step S1 (the engine speed exceeds the Ne threshold value), the process proceeds to step S2. If NO (engine speed is equal to or less than the Ne threshold value) in step S1, the process ends.
 ステップS2において、ECU60は、インヒビタ制御を実行する(クラッチ装置を切断状態とする)。ステップS2の後、ステップS3に移行する。 In step S2, the ECU 60 executes the inhibitor control (the clutch device is in the disengaged state). After step S2, the process proceeds to step S3.
 ステップS3において、ECU60は、インヒビタ制御を実行していることを通知部71によって運転者へ通知する。例えば、通知部71は、メーターパネル70に設けられたインジケータである(図8参照)。例えば、インジケータが点滅することにより、インヒビタ制御実行中であることを運転者へ通知する。 In step S3, the ECU 60 notifies the driver that the inhibitor control is being executed by the notification unit 71. For example, the notification unit 71 is an indicator provided on the instrument panel 70 (see FIG. 8). For example, the blinking indicator notifies the driver that the inhibitor control is being executed.
 更にステップS3において、ECU60は、解除方法通知部80によってインヒビタ制御の解除方法を運転者へ通知する。例えば、解除方法通知部80は、メーターパネル70に表示される矢印81および文82である(図8参照)。例えば、矢印81は、エンジン回転数が低下する方向へ指向するとともに、現在のエンジン回転数からインヒビタ制御解除のためのエンジン回転数に向けて移動する(図8参照)。例えば、文82は、「スロットルを閉じてエンジン回転が落ちるのを待ってください」である(図8参照)。 Further, in step S3, the ECU 60 notifies the driver of the release method of the inhibitor control by the release method notification unit 80. For example, the release method notification unit 80 is an arrow 81 and a sentence 82 displayed on the instrument panel 70 (see FIG. 8). For example, the arrow 81 points in the direction in which the engine speed decreases, and moves from the current engine speed to the engine speed for releasing the inhibitor control (see FIG. 8). For example, sentence 82 is "close the throttle and wait for the engine speed to drop" (see FIG. 8).
 図10、図11を参照し、ギアポジションに関連したインヒビタ制御の一例について説明する。
 図10は、ニュートラルからインギアして発進するときのインヒビタ制御のフローチャートである。
 まず、ステップS11において、ECU60は、ニュートラルからインギアして発進する状態であるか否かを判定する。例えば、ECU60は、車両が直立で停止しているときにギアポジションがニュートラルの場合、ニュートラルからインギアして発進する状態であると判定する。ステップS11でYES(ニュートラルからインギアして発進する状態である)の場合、ステップS12に移行する。ステップS11でNO(ニュートラルからインギアして発進する状態ではない)の場合、処理を終了する(インヒビタ制御を実行しない)。
An example of the inhibitor control related to the gear position will be described with reference to FIGS. 10 and 11.
FIG. 10 is a flowchart of an inhibitor control when starting from neutral in gear.
First, in step S11, the ECU 60 determines whether or not it is in a state of in-gearing from neutral and starting. For example, if the gear position is neutral when the vehicle is upright and stopped, the ECU 60 determines that the vehicle is in a state of in-gearing from neutral and starting. If YES in step S11 (a state in which the vehicle starts in gear from neutral), the process proceeds to step S12. If NO in step S11 (not in the state of starting from neutral), the process ends (inhibitor control is not executed).
 ステップS12において、ECU60は、エンジン回転数がNe閾値超過かつスロットル開度がTh閾値超過であるか否かを判定する。例えば、Ne閾値は1500rpmに設定する。例えば、Th閾値は0.8degに設定する。ステップS12でYES(エンジン回転数がNe閾値超過かつスロットル開度がTh閾値超過)の場合、ステップS13に移行する。ステップS12でNO(エンジン回転数がNe閾値以下またはスロットル開度がTh閾値以下)の場合、処理を終了する(インヒビタ制御を実行しない)。 In step S12, the ECU 60 determines whether or not the engine speed exceeds the Ne threshold value and the throttle opening exceeds the Th threshold value. For example, the Ne threshold is set to 1500 rpm. For example, the Th threshold is set to 0.8 deg. If YES in step S12 (the engine speed exceeds the Ne threshold value and the throttle opening exceeds the Th threshold value), the process proceeds to step S13. If NO (engine speed is equal to or less than Ne threshold value or throttle opening is equal to or less than Th threshold value) in step S12, the process ends (inhibitor control is not executed).
 ステップS13において、ECU60は、インヒビタ制御を実行する(クラッチ装置を切断状態とする)。ステップS13の後、ステップS14に移行する。 In step S13, the ECU 60 executes the inhibitor control (the clutch device is in the disengaged state). After step S13, the process proceeds to step S14.
 ステップS14において、ECU60は、エンジン回転数がNe閾値以下かつスロットル開度がTh閾値以下であるか否かを判定する。ステップS14でYES(エンジン回転数がNe閾値以下かつスロットル開度がTh閾値以下)の場合、ステップS15に移行する。ステップS14でNO(エンジン回転数がNe閾値超過またはスロットル開度がTh閾値超過)の場合、ステップS13に戻る(インヒビタ制御を継続する)。 In step S14, the ECU 60 determines whether or not the engine speed is equal to or less than the Ne threshold value and the throttle opening degree is equal to or less than the Th threshold value. If YES in step S14 (the engine speed is equal to or less than the Ne threshold value and the throttle opening degree is equal to or less than the Th threshold value), the process proceeds to step S15. If NO in step S14 (the engine speed exceeds the Ne threshold value or the throttle opening exceeds the Th threshold value), the process returns to step S13 (continue the inhibitor control).
 ステップS15において、ECU60は、インヒビタ制御を解除する(クラッチ装置を接続可能な状態とする)。これにより、運転者の任意の発進が可能となる。 In step S15, the ECU 60 releases the inhibitor control (makes the clutch device connectable). This allows the driver to start at will.
 図11は、インギアした状態でエンジンを始動させるときのインヒビタ制御のフローチャートである。
 まず、ステップS21において、ECU60は、インギアした状態でエンジンを始動させる状態であるか否かを判定する。例えば、ECU60は、車両が直立で停止しているときにギアポジションがニュートラル以外の変速段位置にある場合(例えばファーストギアの場合)、インギアした状態でエンジンを始動させる状態であると判定する。ステップS21でYES(インギアした状態でエンジンを始動させる状態である)の場合、ステップS22に移行する。ステップS21でNO(インギアした状態でエンジンを始動させる状態ではない)の場合、処理を終了する(インヒビタ制御を実行しない)。
FIG. 11 is a flowchart of the inhibitor control when the engine is started in the in-gear state.
First, in step S21, the ECU 60 determines whether or not the engine is started in the in-gear state. For example, when the vehicle is upright and stopped, the ECU 60 determines that the engine is started in the in-gear state when the gear position is in a gear position other than neutral (for example, in the case of the first gear). If YES in step S21 (the engine is started in the in-gear state), the process proceeds to step S22. If NO in step S21 (the engine is not started in the in-gear state), the process ends (the inhibitor control is not executed).
 ステップS22において、ECU60は、スロットル開度がTh閾値を超えているか否かを判定する。ステップS22でYES(スロットル開度がTh閾値超過)の場合、ステップS23に移行する。ステップS22でNO(スロットル開度がTh閾値以下)の場合、処理を終了する(インヒビタ制御を実行しない)。 In step S22, the ECU 60 determines whether or not the throttle opening degree exceeds the Th threshold value. If YES in step S22 (throttle opening exceeds Th threshold value), the process proceeds to step S23. If NO (throttle opening is equal to or less than the Th threshold value) in step S22, the process ends (inhibita control is not executed).
 ステップS23において、ECU60は、インヒビタ制御を実行する(クラッチ装置を切断状態とする)。ステップS23の後、ステップS24に移行する。 In step S23, the ECU 60 executes the inhibitor control (the clutch device is in the disengaged state). After step S23, the process proceeds to step S24.
 ステップS24において、ECU60は、エンジン回転数がNe閾値以下かつスロットル開度がTh閾値以下であるか否かを判定する。ステップS24でYES(エンジン回転数がNe閾値以下かつスロットル開度がTh閾値以下)の場合、ステップS25に移行する。ステップS24でNO(エンジン回転数がNe閾値超過またはスロットル開度がTh閾値超過)の場合、ステップS23に戻る(インヒビタ制御を継続する)。 In step S24, the ECU 60 determines whether or not the engine speed is equal to or less than the Ne threshold value and the throttle opening degree is equal to or less than the Th threshold value. If YES in step S24 (the engine speed is equal to or less than the Ne threshold value and the throttle opening is equal to or less than the Th threshold value), the process proceeds to step S25. If NO in step S24 (the engine speed exceeds the Ne threshold value or the throttle opening exceeds the Th threshold value), the process returns to step S23 (continue the inhibitor control).
 ステップS25において、ECU60は、インヒビタ制御を解除する(クラッチ装置を接続可能な状態とする)。これにより、運転者の任意の発進が可能となる。 In step S25, the ECU 60 releases the inhibitor control (makes the clutch device connectable). This allows the driver to start at will.
 以上説明したように、上記実施形態の自動二輪車1のクラッチ制御装置60Aは、エンジン13と駆動輪12との間の動力伝達を断接するクラッチ装置26と、エンジン回転数G2を含むパラメーターに基づいてクラッチ装置26を制御するECU60と、を備え、ECU60は、発進制御を行う時にエンジン回転数G2がNe閾値T1を超えている場合、クラッチ装置26を切断状態とするインヒビタ制御を行う。
 この構成によれば、エンジン回転数G2が高回転の場合はクラッチ接続を行わないため、エンジン回転数G2が高回転の状態での運転者の想定よりも急な発進およびギア接続に伴う衝撃を抑制することができる。
As described above, the clutch control device 60A of the motorcycle 1 of the above embodiment is based on the clutch device 26 for connecting and disconnecting the power transmission between the engine 13 and the drive wheels 12 and the parameters including the engine rotation speed G2. The ECU 60 includes an ECU 60 that controls the clutch device 26, and the ECU 60 performs an inhibitor control that puts the clutch device 26 in the disengaged state when the engine speed G2 exceeds the Ne threshold T1 when the start control is performed.
According to this configuration, when the engine speed G2 is high, the clutch is not engaged. Therefore, when the engine speed G2 is high, a sudden start and an impact due to gear connection are generated than the driver expected. It can be suppressed.
 上記実施形態では、ECU60は、ニュートラルギアからのインギアによる発進制御を行う時、エンジン回転数G2がNe閾値T1を超え且つスロットル開度G3がTh閾値T2を超えている場合、インヒビタ制御を行うことで、以下の効果を奏する。
 ニュートラルギアからインギアして発進する時、エンジン回転数G2が高回転で且つスロットル開度G3が大きい場合はクラッチ接続を行わないため、運転者の想定よりも急な発進を抑制することができる。
In the above embodiment, the ECU 60 performs the inhibitor control when the engine speed G2 exceeds the Ne threshold value T1 and the throttle opening G3 exceeds the Th threshold value T2 when the start control is performed by the in-gear from the neutral gear. The following effects are achieved.
When starting from the neutral gear in gear, if the engine speed G2 is high and the throttle opening G3 is large, the clutch is not engaged, so that it is possible to suppress a sudden start than the driver expected.
 上記実施形態では、ECU60は、インギアした状態でエンジンを始動させる時、スロットル開度G3がTh閾値T2を超えている場合、インヒビタ制御を行うことで、以下の効果を奏する。
 インギア状態でエンジン始動時、スロットル開度G3が大きい場合はクラッチ接続を行わないため、運転者の想定よりも急な発進を抑制することができる。
In the above embodiment, when the engine is started in the in-gear state, the ECU 60 achieves the following effects by performing the inhibitor control when the throttle opening G3 exceeds the Th threshold value T2.
When the engine is started in the in-gear state, if the throttle opening G3 is large, the clutch is not engaged, so that it is possible to suppress a sudden start than the driver expected.
 上記実施形態では、ECU60がインヒビタ制御を実行していることを運転者へ通知する通知部71を備えることで、以下の効果を奏する。
 通知部71によってインヒビタ制御を実行中であることを運転者に通知し、車両が発進できない状態にあることを運転者に認識させることができる。
In the above embodiment, the following effects are obtained by providing the notification unit 71 for notifying the driver that the ECU 60 is executing the inhibitor control.
The notification unit 71 can notify the driver that the inhibitor control is being executed, and make the driver recognize that the vehicle cannot start.
 上記実施形態では、ECU60は、エンジン回転数G2がNe閾値T1以下かつスロットル開度G3がTh閾値T2以下になった場合、インヒビタ制御を解除することで、以下の効果を奏する。
 クラッチ接続における適切なエンジン回転数を使用することができる。
In the above embodiment, when the engine speed G2 is Ne threshold T1 or less and the throttle opening G3 is Th threshold T2 or less, the ECU 60 exerts the following effects by canceling the inhibitor control.
Appropriate engine speed can be used in the clutch connection.
 上記実施形態では、インヒビタ制御の解除方法を運転者へ通知する解除方法通知部80を備えることで、以下の効果を奏する。
 解除方法通知部80によってインヒビタ制御の解除方法を運転者に通知し、インヒビタ制御を任意に解除できることを運転者に認識させることができる。
In the above embodiment, the following effects are obtained by providing the release method notification unit 80 for notifying the driver of the release method of the inhibitor control.
The release method notification unit 80 can notify the driver of the release method of the inhibitor control, and make the driver recognize that the inhibitor control can be arbitrarily released.
 上記実施形態の自動二輪車1のクラッチ制御方法は、エンジン13と駆動輪12との間の動力伝達を断接するクラッチ装置26を、エンジン回転数G2を含むパラメーターに基づいて制御する制御ステップを含み、制御ステップでは、発進制御を行う時にエンジン回転数G2がNe閾値T1を超えている場合、クラッチ装置26を切断状態とするインヒビタ制御を行う。
 この方法によれば、エンジン回転数G2が高回転の場合はクラッチ接続を行わないため、エンジン回転数G2が高回転の状態での運転者の想定よりも急な発進およびギア接続に伴う衝撃を抑制することができる。
The clutch control method for the motorcycle 1 of the above embodiment includes a control step of controlling the clutch device 26 for connecting and disconnecting the power transmission between the engine 13 and the drive wheel 12 based on a parameter including the engine speed G2. In the control step, if the engine speed G2 exceeds the Ne threshold T1 when the start control is performed, the inhibitor control that disengages the clutch device 26 is performed.
According to this method, when the engine speed G2 is high, the clutch is not engaged. Therefore, when the engine speed G2 is high, a sudden start and an impact due to gear connection are generated than expected by the driver. It can be suppressed.
<変形例>
 上記実施形態では、ECU60は、ニュートラルギアからのインギアによる発進制御を行う時、エンジン回転数がNe閾値を超え且つスロットル開度がTh閾値を超えている場合、インヒビタ制御を行う例を挙げて説明したが、これに限らない。例えば、ECU60は、ニュートラルギアからのインギアによる発進制御を行う時、エンジン回転数がNe閾値を超えている場合またはスロットル開度がTh閾値を超えている場合にインヒビタ制御を行ってもよい。
<Modification example>
In the above embodiment, the ECU 60 will be described with reference to an example of performing inhibitor control when the engine speed exceeds the Ne threshold value and the throttle opening exceeds the Th threshold value when the start control is performed by the in-gear from the neutral gear. However, it is not limited to this. For example, the ECU 60 may perform the inhibitor control when the engine speed exceeds the Ne threshold value or the throttle opening exceeds the Th threshold value when the start control is performed by the in-gear from the neutral gear.
 上記実施形態では、インジケータ71が点滅することによりインヒビタ制御実行中であることを運転者へ通知する例を挙げて説明したが、これに限らない。例えば、インジケータ71がインヒビタ制御解除中の色とは異なる色に点灯することにより、インヒビタ制御実行中であることを運転者へ通知してもよい。 In the above embodiment, the driver is notified by blinking the indicator 71 that the inhibitor control is being executed, but the present invention is not limited to this. For example, the driver may be notified that the inhibitor control is being executed by lighting the indicator 71 in a color different from the color during which the inhibitor control is being released.
 上記実施形態では、通知部71は、メーターパネル70に設けられたインジケータである例を挙げて説明したが、これに限らない。例えば、通知部は、スピーカー等(ホーン)のインジケータ以外の部品であってもよい。例えば、スピーカーが発音することによりインヒビタ制御実行中であることを運転者へ通知してもよい。 In the above embodiment, the notification unit 71 has been described with reference to an example of an indicator provided on the meter panel 70, but the present invention is not limited to this. For example, the notification unit may be a component other than an indicator such as a speaker (horn). For example, the driver may be notified that the inhibitor control is being executed by the speaker producing a sound.
 上記実施形態では、ECU60がインヒビタ制御を実行していることを運転者へ通知する通知部71を備える例を挙げて説明したが、これに限らない。例えば、クラッチ制御装置は通知部71を備えていなくてもよい。 In the above embodiment, an example including a notification unit 71 for notifying the driver that the ECU 60 is executing the inhibitor control has been described, but the present invention is not limited to this. For example, the clutch control device may not include the notification unit 71.
 上記実施形態では、解除方法通知部80は、メーターパネル70に表示される矢印81および文82の両方である例を挙げて説明したが、これに限らない。例えば、解除方法通知部80は、メーターパネル70に表示される矢印81および文82のいずれか一方であってもよい。また、矢印81および文82の表示位置は、メーターパネル70において運転者が認識可能な領域であればどの場所でもよい。 In the above embodiment, the release method notification unit 80 has been described with reference to both the arrow 81 and the sentence 82 displayed on the instrument panel 70, but the present invention is not limited to this. For example, the release method notification unit 80 may be either an arrow 81 or a sentence 82 displayed on the instrument panel 70. Further, the display positions of the arrows 81 and the sentence 82 may be any positions as long as they can be recognized by the driver on the instrument panel 70.
 上記実施形態では、解除方法通知部80がメーターパネル70に設けられた例を挙げて説明したが、これに限らない。例えば、解除方法通知部は、スピーカー等のメーターパネル70以外の部品であってもよい。例えば、スピーカーが発音することによりインヒビタ制御の解除方法を運転者へ通知してもよい。 In the above embodiment, the release method notification unit 80 has been described by giving an example provided on the meter panel 70, but the present invention is not limited to this. For example, the release method notification unit may be a component other than the instrument panel 70 such as a speaker. For example, the driver may be notified of the method of canceling the inhibitor control by sounding from the speaker.
 上記実施形態では、インヒビタ制御の解除方法を運転者へ通知する解除方法通知部80を備える例を挙げて説明したが、これに限らない。例えば、クラッチ制御装置は解除方法通知部80を備えていなくてもよい。 In the above embodiment, an example including a cancellation method notification unit 80 for notifying the driver of the cancellation method of the inhibitor control has been described, but the present invention is not limited to this. For example, the clutch control device may not include the release method notification unit 80.
 上記実施形態では、エンジン回転数がNe閾値以下等の所定条件を満たすことによりインヒビタ制御を解除する例を挙げて説明したが、これに限らない。例えば、クラッチ制御装置60Aは、インヒビタ制御の作動中に操作することでインヒビタ制御を解除可能なクラッチレバー4bを備えていてもよい(図3参照)。これにより、エンジン回転数がNe閾値以下等の所定条件を満たすことなく、クラッチレバー4bの操作によってインヒビタ制御を解除することができるため、運転者の任意の発進が可能となる。 In the above embodiment, an example of canceling the inhibitor control by satisfying a predetermined condition such as an engine speed of Ne threshold value or less has been described, but the present invention is not limited to this. For example, the clutch control device 60A may include a clutch lever 4b that can release the inhibitor control by operating the clutch control device 60A during operation (see FIG. 3). As a result, the inhibitor control can be released by operating the clutch lever 4b without satisfying a predetermined condition such as the engine speed being equal to or less than the Ne threshold value, so that the driver can start arbitrarily.
 例えば、クラッチレバーを握る操作によってインヒビタ制御を解除してもよい。
 また、操作子はクラッチレバー4bに限らず、運転者が操作可能なレバーであれば種々の操作子を採用することができる。
For example, the inhibitor control may be released by the operation of grasping the clutch lever.
Further, the operator is not limited to the clutch lever 4b, and various operators can be adopted as long as the lever can be operated by the driver.
 なお、本発明は上記実施形態に限られるものではなく、例えば、前記鞍乗り型車両には、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)の車両も含まれる。また、本発明は、自動二輪車のみならず、自動車等の四輪の車両にも適用可能である。
 そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
The present invention is not limited to the above embodiment. For example, the saddle-riding vehicle includes a general vehicle in which a driver straddles a vehicle body, and is a motorcycle (motorized bicycle and scooter-type vehicle). (Including), but also three-wheeled vehicles (including front two-wheeled and rear one-wheeled vehicles in addition to front one-wheeled and rear two-wheeled vehicles). Further, the present invention can be applied not only to motorcycles but also to four-wheeled vehicles such as automobiles.
The configuration in the above embodiment is an example of the present invention, and various modifications can be made without departing from the gist of the present invention, such as replacing the components of the embodiment with well-known components.
 1 自動二輪車(鞍乗り型車両)
 4b クラッチレバー(操作子)
 12 後輪(駆動輪)
 13 エンジン
 26 クラッチ装置
 60 ECU(制御部)
 60A クラッチ制御装置
 71 インジケータ(通知部)
 80 解除方法通知部
 G2 エンジン回転数
 G3 スロットル開度
 T1 Ne閾値
 T2 Th閾値
1 Motorcycle (saddle-riding vehicle)
4b Clutch lever (operator)
12 Rear wheels (driving wheels)
13 Engine 26 Clutch device 60 ECU (control unit)
60A Clutch control device 71 Indicator (notification unit)
80 Release method Notification unit G2 Engine speed G3 Throttle opening T1 Ne threshold T2 Th threshold

Claims (8)

  1.  エンジン(13)と駆動輪(12)との間の動力伝達を断接するクラッチ装置(26)と、
     エンジン回転数(G2)を含むパラメーターに基づいて前記クラッチ装置(26)を制御する制御部(60)と、を備え、
     前記制御部(60)は、発進制御を行う時、前記エンジン回転数(G2)がNe閾値(T1)を超えている場合、前記クラッチ装置(26)を切断状態とするインヒビタ制御を行うことを特徴とする鞍乗り型車両のクラッチ制御装置。
    A clutch device (26) that connects and disconnects the power transmission between the engine (13) and the drive wheels (12),
    A control unit (60) that controls the clutch device (26) based on a parameter including an engine speed (G2) is provided.
    When the start control is performed, the control unit (60) performs the inhibitor control to disengage the clutch device (26) when the engine speed (G2) exceeds the Ne threshold value (T1). A characteristic clutch control device for saddle-riding vehicles.
  2.  前記パラメーターにはスロットル開度(G3)が含まれ、
     前記制御部(60)は、ニュートラルギアからのインギアによる発進制御を行う時、前記エンジン回転数(G2)が前記Ne閾値(T1)を超え且つ前記スロットル開度(G3)がTh閾値(T2)を超えている場合、前記インヒビタ制御を行うことを特徴とする請求項1に記載の鞍乗り型車両のクラッチ制御装置。
    The parameters include throttle opening (G3).
    When the control unit (60) performs start control by in-gear from the neutral gear, the engine speed (G2) exceeds the Ne threshold value (T1) and the throttle opening degree (G3) is the Th threshold value (T2). The clutch control device for a saddle-riding vehicle according to claim 1, wherein if the above value is exceeded, the inhibitor control is performed.
  3.  前記パラメーターにはスロットル開度(G3)が含まれ、
     前記制御部(60)は、インギアした状態で前記エンジン(13)を始動させる時、前記スロットル開度(G3)がTh閾値(T2)を超えている場合、前記インヒビタ制御を行うことを特徴とする請求項1または2に記載の鞍乗り型車両のクラッチ制御装置。
    The parameters include throttle opening (G3).
    The control unit (60) is characterized in that when the engine (13) is started in the in-gear state, if the throttle opening degree (G3) exceeds the Th threshold value (T2), the inhibitor control is performed. The clutch control device for a saddle-riding vehicle according to claim 1 or 2.
  4.  前記制御部(60)が前記インヒビタ制御を実行していることを運転者へ通知する通知部(71)を更に備えることを特徴とする請求項1から3のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置。 The saddle riding according to any one of claims 1 to 3, further comprising a notification unit (71) for notifying the driver that the control unit (60) is executing the inhibitor control. Clutch control device for type vehicles.
  5.  前記パラメーターにはスロットル開度(G3)が含まれ、
     前記制御部(60)は、前記エンジン回転数(G2)が前記Ne閾値(T1)以下かつ前記スロットル開度(G3)がTh閾値(T2)以下になった場合、前記インヒビタ制御を解除することを特徴とする請求項1から4のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置。
    The parameters include throttle opening (G3).
    When the engine speed (G2) is equal to or less than the Ne threshold value (T1) and the throttle opening degree (G3) is equal to or less than the Th threshold value (T2), the control unit (60) releases the inhibitor control. The clutch control device for a saddle-riding vehicle according to any one of claims 1 to 4, wherein the clutch control device is characterized.
  6.  前記インヒビタ制御の解除方法を運転者へ通知する解除方法通知部(80)を更に備えることを特徴とする請求項1から5のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置。 The clutch control device for a saddle-riding vehicle according to any one of claims 1 to 5, further comprising a release method notification unit (80) for notifying the driver of the release method of the inhibitor control.
  7.  前記インヒビタ制御の作動中に操作することで前記インヒビタ制御を解除可能な操作子(4b)を更に備えることを特徴とする請求項1から6のいずれか一項に記載の鞍乗り型車両のクラッチ制御装置。 The clutch of a saddle-riding vehicle according to any one of claims 1 to 6, further comprising an operator (4b) capable of releasing the inhibitor control by operating the clutch while the inhibitor control is in operation. Control device.
  8.  エンジン(13)と駆動輪(12)との間の動力伝達を断接するクラッチ装置(26)を、エンジン回転数(G2)を含むパラメーターに基づいて制御する制御ステップを含み、
     前記制御ステップでは、発進制御を行う時に前記エンジン回転数(G2)がNe閾値(T1)を超えている場合、前記クラッチ装置(26)を切断状態とするインヒビタ制御を行うことを特徴とする鞍乗り型車両のクラッチ制御方法。
    It includes a control step that controls a clutch device (26) that engages and disengages power transmission between the engine (13) and the drive wheels (12) based on parameters including engine speed (G2).
    In the control step, when the engine speed (G2) exceeds the Ne threshold value (T1) when the start control is performed, the saddle is controlled to disengage the clutch device (26). Clutch control method for riding vehicles.
PCT/JP2020/010260 2019-03-27 2020-03-10 Clutch control device and clutch control method for saddle-type vehicle WO2020195785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021508984A JP7059442B2 (en) 2019-03-27 2020-03-10 Clutch control device and clutch control method for saddle-mounted vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019059878 2019-03-27
JP2019-059878 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020195785A1 true WO2020195785A1 (en) 2020-10-01

Family

ID=72608660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010260 WO2020195785A1 (en) 2019-03-27 2020-03-10 Clutch control device and clutch control method for saddle-type vehicle

Country Status (2)

Country Link
JP (1) JP7059442B2 (en)
WO (1) WO2020195785A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811028A (en) * 2022-03-17 2022-07-29 潍柴动力股份有限公司 Vehicle gear shifting control method and device, electronic equipment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200454748Y1 (en) * 2010-05-24 2011-07-25 주식회사 태성기연 Diverter CONV Using Multi-Roller

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548460A (en) * 1978-10-04 1980-04-07 Takaoka Kogyo Kk Cooling method for product of continuous casting
JP2001032864A (en) * 1999-07-23 2001-02-06 Nabco Ltd Automatic clutch control system of vehicle
JP2002227993A (en) * 2001-02-05 2002-08-14 Nippon Soken Inc Shift range change control device of automatic transmission
US6557687B1 (en) * 1999-07-20 2003-05-06 Power Transmission Technology, Inc. Clutch assembly and diagnostic system
JP2004125028A (en) * 2002-10-01 2004-04-22 Hitachi Ltd Cooling method and system for electronic control device for automatic transmission
JP2005351310A (en) * 2004-06-08 2005-12-22 Mitsubishi Motors Corp Controller of automatic transmission
JP2014070683A (en) * 2012-09-28 2014-04-21 Honda Motor Co Ltd Twin clutch control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332017Y2 (en) * 1980-04-09 1988-08-26

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548460A (en) * 1978-10-04 1980-04-07 Takaoka Kogyo Kk Cooling method for product of continuous casting
US6557687B1 (en) * 1999-07-20 2003-05-06 Power Transmission Technology, Inc. Clutch assembly and diagnostic system
JP2001032864A (en) * 1999-07-23 2001-02-06 Nabco Ltd Automatic clutch control system of vehicle
JP2002227993A (en) * 2001-02-05 2002-08-14 Nippon Soken Inc Shift range change control device of automatic transmission
JP2004125028A (en) * 2002-10-01 2004-04-22 Hitachi Ltd Cooling method and system for electronic control device for automatic transmission
JP2005351310A (en) * 2004-06-08 2005-12-22 Mitsubishi Motors Corp Controller of automatic transmission
JP2014070683A (en) * 2012-09-28 2014-04-21 Honda Motor Co Ltd Twin clutch control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811028A (en) * 2022-03-17 2022-07-29 潍柴动力股份有限公司 Vehicle gear shifting control method and device, electronic equipment and storage medium
CN114811028B (en) * 2022-03-17 2024-05-17 潍柴动力股份有限公司 Vehicle gear shift control method, device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPWO2020195785A1 (en) 2021-12-02
JP7059442B2 (en) 2022-04-25

Similar Documents

Publication Publication Date Title
JP6232915B2 (en) Hybrid motorcycle
WO2020195785A1 (en) Clutch control device and clutch control method for saddle-type vehicle
JP6756043B2 (en) Vehicle shifting system
JP7064874B2 (en) Clutch control device and clutch control system
JP6845948B2 (en) Transmission
WO2020213333A1 (en) Clutch control device
WO2020195831A1 (en) Clutch control device and clutch control method for saddle-type vehicle
JP6726810B2 (en) Clutch control device
JP6722831B2 (en) Clutch control device
WO2020196045A1 (en) Clutch control device for saddle-type vehicle
WO2020195779A1 (en) Clutch control device for saddle-type vehicle
JP6826522B2 (en) Clutch control device
WO2020184552A1 (en) Transmission device and transmission device control method
JPWO2020026591A1 (en) Clutch control device
WO2020189426A1 (en) Clutch control device
JP7432061B2 (en) clutch control device
JP6982699B2 (en) Transmission of saddle-riding vehicle
US8886419B2 (en) Automatic transmission apparatus and straddle-type vehicle equipped with the apparatus
JP7410913B2 (en) vehicle
WO2020195895A1 (en) Clutch control device
WO2020066869A1 (en) Clutch control device
WO2020017178A1 (en) Clutch control device
WO2020170509A1 (en) Hydraulic actuator structure and saddle type vehicle
WO2020039757A1 (en) Clutch control apparatus and hydraulic equipment control device
JP2023050298A (en) Clutch control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776415

Country of ref document: EP

Kind code of ref document: A1