WO2020066869A1 - Clutch control device - Google Patents

Clutch control device Download PDF

Info

Publication number
WO2020066869A1
WO2020066869A1 PCT/JP2019/036889 JP2019036889W WO2020066869A1 WO 2020066869 A1 WO2020066869 A1 WO 2020066869A1 JP 2019036889 W JP2019036889 W JP 2019036889W WO 2020066869 A1 WO2020066869 A1 WO 2020066869A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
engine
control
limit value
capacity
Prior art date
Application number
PCT/JP2019/036889
Other languages
French (fr)
Japanese (ja)
Inventor
惇也 小野
達也 竜▲崎▼
森田 豪
康平 松浦
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112019004807.4T priority Critical patent/DE112019004807B4/en
Priority to JP2020549102A priority patent/JP7003288B2/en
Publication of WO2020066869A1 publication Critical patent/WO2020066869A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1023Electric motor
    • F16D2500/1024Electric motor combined with hydraulic actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/11Application
    • F16D2500/1107Vehicles
    • F16D2500/1117Motorcycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3024Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3027Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3065Torque of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine

Definitions

  • the present invention relates to a clutch control device.
  • Priority is claimed on Japanese Patent Application No. 2018-180744, filed Sep. 26, 2018, the content of which is incorporated herein by reference.
  • a saddle-ride type vehicle including an automatic clutch system in which a clutch provided between an engine and a transmission is driven by an actuator is disclosed.
  • This technology prevents a stall (meaning engine stop or engine stall) and a reduced ride feeling by devising half-clutch control when the clutch is engaged (for example, see Patent Document 1). .
  • the above-mentioned conventional technology is not based on the clutch-by-wire system, and there is no concept of respecting the rider's operation intention. That is, there is a problem that even if the half-clutch control is performed to avoid the engine stall, if the control frequently intervenes against the intention of the rider, the rider may feel uncomfortable.
  • An object of the present invention is to provide a clutch control device that also functions as a clutch-by-wire system capable of connecting and disconnecting a clutch via a clutch actuator, while suppressing engine stall avoidance control and suppressing a rider's discomfort.
  • a clutch control device includes an engine, a transmission, a clutch device for connecting and disconnecting power transmission between the engine and the transmission, and a clutch capacity that is driven by driving the clutch device.
  • a clutch actuator to be changed a clutch operator for manually operating the clutch device, and a control unit for calculating a control target value of the clutch capacity according to an operation amount of the clutch operator.
  • the unit is configured to perform the first control for connecting the clutch device by operating the clutch operator, and perform the clutch operation regardless of the operation of the clutch operator in accordance with an engine speed and an estimated engine torque. Intervening a second control to limit the capacity.
  • the control unit obtains a limited clutch oil pressure at which the engine speed becomes an engine stall determination threshold after a predetermined time has elapsed, and compares the limited clutch oil pressure with a current target oil pressure. Then, the second control may be intervened.
  • the specified time may be a time required for disengaging the clutch.
  • control unit may intervene in the second control when the limited clutch oil pressure is equal to or less than a target oil pressure.
  • the limit value of the clutch capacity set in the second control is the specified time, the clutch connection rotation speed, and the engine stall determination threshold. And the engine estimated torque.
  • the limit value of the clutch capacity set in the second control is based on a limit value map that changes according to the engine speed. It may be calculated.
  • the limited value of the clutch capacity set in the second control is the specified time, a difference between a clutch connection rotation speed and the engine stall determination threshold value.
  • the first limit value calculated based on the engine estimated torque may be compared with a second limit value calculated based on the limit value map.
  • the clutch control device described in the above (1) of the present invention in the clutch-by-wire system, the engine speed and the throttle opening are always set during the first control for connecting the clutch device by operating the clutch operator. From this, after the specified time has elapsed, a limit clutch oil pressure (limit clutch capacity) serving as an engine stall determination threshold is obtained, and when it is determined that the target oil pressure exceeds the limit clutch oil pressure (there is a possibility of engine stall), the clutch operator Intervenes a second control that does not depend on the operation of. Accordingly, even when the engine is likely to stall when the rider's operation is prioritized, it is possible to intervene the second control before the engine stalls to limit the clutch capacity (set a half-clutch state). .
  • the engine stall determination threshold value after the lapse of a specified time is always determined from the engine speed and the throttle opening. Is determined, and if it is determined that the target hydraulic pressure exceeds the limited clutch hydraulic pressure (there is a possibility of engine stall), the second control that does not depend on the operation of the clutch operator is performed. Intervene. Accordingly, even if the engine stalls when the rider's operation is prioritized, the clutch capacity can be limited by intervening the second control before the engine stalls. For this reason, an unintended engine stall at the time of the clutch connection operation can be avoided.
  • the time required for disengaging the clutch is counted from the time when the engine speed decreases when the clutch is engaged, and the specified engine speed is determined in the future (after the specified time).
  • a limit clutch oil pressure that is a number (lower limit value) is obtained, and it is determined whether or not this limit clutch oil pressure becomes equal to or lower than the target oil pressure. If it is determined that the limited clutch hydraulic pressure becomes equal to or lower than the target hydraulic pressure, the clutch capacity is limited before the engine stalls by switching to the second control independent of the operation of the clutch lever.
  • Time required for clutch disconnection means a time lag from when the control unit issues a clutch disconnection instruction to when clutch disconnection is actually started. In other words, when connecting the clutch, when the clutch connection speed is too high and engine stall is likely to occur, an instruction to disconnect the clutch is issued immediately so that the time required for clutch disengagement can be set in time to avoid engine stall. Is considered.
  • the clutch control device described in the above (4) of the present invention when the limited clutch oil pressure becomes equal to or less than the target oil pressure, by switching to the second control independent of the operation of the clutch lever, the engine is controlled before the engine stalls.
  • Limit clutch capacity By setting the lower limit of the future engine speed and limiting the clutch capacity in this way, unintended engine stall can be avoided.
  • the control unit sets the limit value of the clutch capacity separated from the clutch operation based on the difference between the specified time and the engine speed and the estimated engine torque. .
  • the clutch capacity can be limited in accordance with the prediction of the future engine speed, and engine stall can be avoided.
  • the control unit sets the limit value of the clutch capacity separated from the clutch operation based on the limit value map that changes according to the engine speed.
  • the clutch capacity can be limited in accordance with the prediction of the future engine speed, and engine stall can be avoided.
  • the control unit includes: a first limit value calculated from a change rate based on a difference between the specified time and the engine speed and the engine estimated torque; Is compared with the second limit value calculated from the limit value map that changes in accordance with, for example, a relatively low value is set as the clutch capacity limit value.
  • FIG. 2 is a left side view of the motorcycle according to the embodiment of the present invention.
  • FIG. 2 is a sectional view of a transmission and a change mechanism of the motorcycle. It is a schematic explanatory view of a clutch operation system including a clutch actuator. It is a block diagram of a transmission system. 4 is a graph showing a change in supply hydraulic pressure of a clutch actuator. 6 is a graph showing a correlation between a clutch lever operation amount, a sensor output voltage, and a clutch capacity according to the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram illustrating a transition of a clutch control mode according to the embodiment of the present invention.
  • 5 is a graph showing a time change of an engine speed at the time of clutch engagement by lever operation in the clutch control device according to the embodiment of the present invention. It is explanatory drawing which shows the outline of a clutch upstream part and a clutch downstream part. 4 is a map showing a change in clutch limit hydraulic pressure with respect to an engine speed. 5 is a time chart showing changes in control parameters in the clutch control device according to the embodiment of the present invention. It is a principal part enlarged view of FIG.
  • the present embodiment is applied to a motorcycle 1 as an example of a saddle type vehicle.
  • a front wheel 2 of the motorcycle 1 is supported by lower ends of a pair of left and right front forks 3.
  • the upper portions of the left and right front forks 3 are supported by a head pipe 6 at the front end of a vehicle body frame 5 via a steering stem 4.
  • a bar-type steering handle 4 a is mounted on the top bridge of the steering stem 4.
  • the vehicle body frame 5 includes a head pipe 6, a main tube 7 extending downward and rearward from a center of the head pipe 6 in a vehicle width direction (lateral direction), a left and right pivot frame 8 extending below a rear end of the main tube 7, And a seat frame 9 connected to the rear of the tube 7 and the left and right pivot frames 8.
  • the front ends of the swing arms 11 are pivotally supported by the left and right pivot frames 8 in a swingable manner. At the rear end of the swing arm 11, a rear wheel 12 of the motorcycle 1 is supported.
  • a fuel tank 18 is supported above the left and right main tubes 7.
  • a front seat 19 and a rear seat cover 19a are supported side by side.
  • the periphery of the seat frame 9 is covered with a rear cowl 9a.
  • a power unit PU which is a prime mover of the motorcycle 1, is suspended.
  • the power unit PU is linked to the rear wheel 12 via, for example, a chain type transmission mechanism.
  • the power unit PU integrally has an engine (internal combustion engine, prime mover) 13 located on the front side thereof and a transmission 21 located on the rear side.
  • the engine 13 is, for example, a multi-cylinder engine in which the rotation axis of a crankshaft 14 extends along the left-right direction (vehicle width direction).
  • the engine 13 has a cylinder 16 erected above a front part of the crankcase 15.
  • the rear part of the crankcase 15 is a transmission case 17 that houses the transmission 21.
  • the transmission 21 is a stepped transmission having a main shaft 22, a counter shaft 23, and a transmission gear group 24 extending over both shafts 22, 23.
  • the counter shaft 23 constitutes the transmission 21 and thus the output shaft of the power unit PU.
  • the end of the counter shaft 23 projects to the rear left side of the crankcase 15 and is connected to the rear wheel 12 via the above-mentioned chain type transmission mechanism.
  • the transmission gear group 24 has gears for the number of gears supported by the shafts 22 and 23, respectively.
  • the transmission 21 is of a constant mesh type in which the corresponding gear pairs of the transmission gear group 24 are always meshed between the two shafts 22 and 23.
  • the plurality of gears supported by both shafts 22 and 23 are classified into a free gear rotatable with respect to the corresponding shaft, and a slide gear (shifter) spline-fitted to the corresponding shaft.
  • One of the free gear and the slide gear is provided with an axially convex dog, and the other is provided with an axially concave slot for engaging the dog. That is, the transmission 21 is a so-called dog mission.
  • the main shaft 22 and the counter shaft 23 of the transmission 21 are arranged in front of and behind the crankshaft 14.
  • a clutch device 26 operated by a clutch actuator 50 (see FIG. 3) is coaxially arranged.
  • the clutch device 26 is, for example, a wet multi-plate clutch, and is a so-called normally open clutch. That is, the clutch device 26 is brought into a connected state in which power can be transmitted by supplying hydraulic pressure from the clutch actuator 50, and returns to a disconnected state in which power cannot be transmitted when the hydraulic pressure is not supplied from the clutch actuator 50.
  • crankshaft 14 The rotational power of the crankshaft 14 is transmitted to the main shaft 22 via the clutch device 26, and transmitted from the main shaft 22 to the counter shaft 23 via an arbitrary gear pair of the transmission gear group 24.
  • a drive sprocket 27 of the above-described chain type transmission mechanism is attached to a left end portion of the countershaft 23 protruding to the rear left side of the crankcase 15.
  • a change mechanism 25 that switches a gear pair of the transmission gear group 24 is accommodated.
  • the change mechanism 25 operates a plurality of shift forks 36 a according to a pattern of a lead groove formed on the outer periphery of the shift gear group 24 by rotating a hollow cylindrical shift drum 36 parallel to the shafts 22 and 23.
  • the gear pair used for power transmission between the two shafts 22 and 23 is switched.
  • the change mechanism 25 has a shift spindle 31 parallel to the shift drum 36.
  • the shift arm 31a fixed to the shift spindle 31 rotates the shift drum 36, and moves the shift fork 36a in the axial direction according to the pattern of the lead groove, so that the power in the transmission gear group 24 is changed.
  • the transmissible gear pair is switched (that is, the gear position is switched).
  • the shift spindle 31 has a shaft outer portion 31 b protruding outward (leftward) in the vehicle width direction of the crankcase 15 so that the change mechanism 25 can be operated.
  • a shift load sensor 42 (shift operation detecting means) is coaxially mounted on the shaft outer portion 31b of the shift spindle 31.
  • a swing lever 33 is attached to the shaft outer portion 31b of the shift spindle 31 (or the rotation shaft of the shift load sensor 42).
  • the swing lever 33 extends rearward from a base end portion 33a clamped and fixed to the shift spindle 31 (or a rotating shaft), and the upper end portion of the link rod 34 swings at the tip end portion 33b via an upper ball joint 34a. It is movably connected.
  • the lower end of the link rod 34 is swingably connected to a shift pedal 32 operated by the driver with a foot via a lower ball joint (not shown).
  • the front end of the shift pedal 32 is supported at the lower part of the crankcase 15 via a shaft extending in the left-right direction so as to be vertically swingable.
  • the rear end of the shift pedal 32 is provided with a pedal portion for hanging the driver's toe placed on the step 32a, and the lower end of a link rod 34 is connected to the front and rear middle portion of the shift pedal 32.
  • a shift change device 35 that includes the shift pedal 32, the link rod 34, and the change mechanism 25 and that switches the gears of the transmission 21 is configured.
  • an assembly shift drum 36, shift fork 36a, etc.
  • An assembly that rotates around the axis of the spindle 31 and transmits this rotation to the speed change operation portion 35a is referred to as a speed change operation receiving portion 35b.
  • the driver performs only the shifting operation of the transmission 21 (the foot operation of the shift pedal 32), and the connecting / disconnecting operation of the clutch device 26 is automatically performed by electric control according to the operation of the shift pedal 32.
  • a so-called semi-automatic transmission system (automatic clutch-type transmission system) is employed.
  • the transmission system includes a clutch actuator 50, an ECU 60 (Electronic Control Unit, control unit), and various sensors 41 to 45.
  • the ECU 60 detects information from a gear position sensor 41 that detects a gear position based on the rotation angle of the shift drum 36, a shift load sensor 42 (for example, a torque sensor) that detects an operation torque input to the shift spindle 31, and throttle opening. Based on various vehicle state detection information from the degree sensor 43, the vehicle speed sensor 44, the engine speed sensor 45, and the like, the operation of the clutch actuator 50 is controlled, and the operation of the ignition device 46 and the fuel injection device 47 are controlled.
  • the ECU 60 also receives detection information from hydraulic sensors 57 and 58, which will be described later, and a shift operation detection switch (shift neutral switch) 48.
  • the ECU 60 includes a hydraulic control unit (clutch control unit) 61, and its function will be described later.
  • Reference numeral 60A in the figure indicates a clutch control device of the present embodiment.
  • the clutch actuator 50 is controlled to be operated by the ECU 60, so that the hydraulic pressure for connecting and disconnecting the clutch device 26 can be controlled.
  • the clutch actuator 50 includes an electric motor 52 (hereinafter simply referred to as a motor 52) as a driving source, and a master cylinder 51 driven by the motor 52.
  • the clutch actuator 50 and the hydraulic circuit device 53 provided between the master cylinder 51 and the hydraulic supply / discharge port 50p constitute an integral clutch control unit 50A.
  • the ECU 60 calculates a target value (a target hydraulic pressure) of the hydraulic pressure supplied to the slave cylinder 28 for connecting and disconnecting the clutch device 26 based on a preset calculation program.
  • the clutch control unit 50A is controlled so that the hydraulic pressure on the 28 side (slave hydraulic pressure) approaches the target hydraulic pressure.
  • the master cylinder 51 allows the piston 51b in the cylinder body 51a to stroke by driving the motor 52 so that the hydraulic oil in the cylinder body 51a can be supplied to and discharged from the slave cylinder 28.
  • reference numeral 55 denotes a conversion mechanism as a ball screw mechanism
  • reference numeral 54 denotes a transmission mechanism extending over the motor 52 and the conversion mechanism 55
  • reference numeral 51e denotes a reservoir connected to the master cylinder 51.
  • the hydraulic circuit device 53 has a valve mechanism (solenoid valve 56) for opening or closing an intermediate portion of a main oil passage (hydraulic oil supply / discharge oil passage) 53m extending from the master cylinder 51 to the clutch device 26 side (slave cylinder 28 side). doing.
  • the main oil passage 53m of the hydraulic circuit device 53 is divided into an upstream oil passage 53a closer to the master cylinder 51 than the solenoid valve 56, and a downstream oil passage 53b closer to the slave cylinder 28 than the solenoid valve 56.
  • the hydraulic circuit device 53 further includes a bypass oil passage 53c that bypasses the solenoid valve 56 and connects the upstream oil passage 53a and the downstream oil passage 53b.
  • the solenoid valve 56 is a so-called normally open valve.
  • the bypass oil passage 53c is provided with a one-way valve 53c1 that allows hydraulic oil to flow only in the direction from the upstream side to the downstream side.
  • An upstream oil pressure sensor 57 that detects the oil pressure of the upstream oil passage 53a is provided upstream of the solenoid valve 56.
  • a downstream oil pressure sensor 58 for detecting the oil pressure of the downstream oil passage 53b is provided.
  • the clutch control unit 50A is housed, for example, in the rear cowl 9a.
  • the slave cylinder 28 is attached to the rear left side of the crankcase 15.
  • the clutch control unit 50A and the slave cylinder 28 are connected via a hydraulic pipe 53e (see FIG. 3).
  • the slave cylinder 28 is coaxially arranged to the left of the main shaft 22.
  • the slave cylinder 28 presses the push rod 28a penetrating through the main shaft 22 to the right.
  • the slave cylinder 28 presses the push rod 28a rightward, thereby operating the clutch device 26 to the connected state via the push rod 28a.
  • the slave cylinder 28 releases the pressing of the push rod 28a, and returns the clutch device 26 to the disconnected state.
  • a solenoid valve 56 is provided in the hydraulic circuit device 53 of the clutch control unit 50A, and the solenoid valve 56 is closed after hydraulic pressure is supplied to the clutch device 26 side. Thereby, the oil pressure supplied to the clutch device 26 side is maintained, and the oil pressure is compensated for by the pressure decrease (recharge is performed by the leak amount), thereby reducing energy consumption.
  • the solenoid valve 56 When supplying hydraulic pressure from the master cylinder 51 to the slave cylinder 28, the solenoid valve 56 is opened, the motor 52 is energized and driven forward to pressurize the master cylinder 51. As a result, the hydraulic pressure of the slave cylinder 28 is adjusted to the clutch engagement hydraulic pressure. At this time, the drive of the clutch actuator 50 is feedback-controlled based on the hydraulic pressure detected by the downstream hydraulic pressure sensor 58.
  • the speed change may be performed immediately after the hydraulic pressure is filled in the clutch device 26.
  • the motor 52 is driven to rotate in the reverse direction with the solenoid valve 56 kept open to reduce the pressure of the master cylinder 51 and to connect the reservoir 51e.
  • the hydraulic pressure on the clutch device 26 side is relieved to the master cylinder 51 side.
  • the drive of the clutch actuator 50 is feedback-controlled based on the detected oil pressure of the upstream oil pressure sensor 57.
  • the hydraulic pressure on the downstream side may increase due to an increase in temperature or the like.
  • a small hydraulic fluctuation on the downstream side can be absorbed by an accumulator (not shown), and the power consumption is not increased by operating the motor 52 and the solenoid valve 56 every time the hydraulic pressure fluctuates.
  • the solenoid valve 56 is gradually opened by, for example, decreasing the power supply to the solenoid valve 56, and the downstream oil pressure is increased. Relief pressure to the upstream side.
  • a standby state is established in which the standby hydraulic pressure WP is applied to the slave cylinder 28 side.
  • the standby hydraulic pressure WP is slightly lower than the touch point hydraulic pressure TP at which the connection of the clutch device 26 is started, and is a hydraulic pressure at which the clutch device 26 is not connected (the hydraulic pressure applied in the regions A and H in FIG. 5).
  • the provision of the standby hydraulic pressure WP enables the clutch device 26 to be invalidly packed (cancellation of backlash and operation reaction force of each part, application of a preload to the hydraulic path, and the like), and operation responsiveness when the clutch device 26 is connected is improved.
  • the slave cylinder 28 Is supplied with a preset standby hydraulic pressure WP.
  • the standby hydraulic pressure WP is set to the first set value P1 (see FIG. 5) which is the standard standby hydraulic pressure during normal times (in a non-detection state in which the shift operation of the shift pedal 32 is not detected).
  • P1 the standard standby hydraulic pressure during normal times (in a non-detection state in which the shift operation of the shift pedal 32 is not detected).
  • the clutch device 26 enters a standby state in which the clutch device 26 has been invalidated, and the responsiveness at the time of clutch engagement is enhanced. That is, when the driver increases the rotational speed of the engine 13 by increasing the throttle opening, the engagement of the clutch device 26 is immediately started by the supply of the hydraulic pressure to the slave cylinder 28, so that the motorcycle 1 can be quickly started and accelerated. It becomes possible.
  • the motorcycle 1 includes a shift operation detection switch 48 separately from the shift load sensor 42 to detect a driver's shift operation on the shift pedal 32.
  • the shift operation detection switch 48 is disposed, for example, opposite to the distal end of the shift arm 31a, and detects a slight rotation of the shift spindle 31 due to a shift operation of the shift pedal 32 with high sensitivity.
  • the hydraulic control unit 61 sets the standby hydraulic pressure WP to a value higher than the first set value P1 before performing the shift operation. Control is also performed to set a second set value P2 (low-pressure standby oil pressure, see FIG. 5) which is also low.
  • the clutch control device 60A of the present embodiment has three types of clutch control modes.
  • the clutch control mode includes a clutch control mode changeover switch 59 (FIG. 4) among three modes: an automatic mode M1 for performing automatic control, a manual mode M2 for performing manual operation, and a manual intervention mode M3 for performing temporary manual operation.
  • the transition is made appropriately in accordance with the operation of the clutch lever (see FIG. 1) and the clutch lever (clutch operator) 4b (see FIG. 1).
  • An object including the manual mode M2 and the manual intervention mode M3 is referred to as a manual system M2A.
  • the automatic mode M1 is a mode in which the clutch device 26 is controlled by calculating a clutch capacity suitable for a running state by automatic start / shift control.
  • the manual mode M2 is a mode in which the clutch capacity is calculated in accordance with a clutch operation instruction from the occupant to control the clutch device 26.
  • the manual intervention mode M3 is a temporary manual operation mode in which a clutch operation instruction from an occupant is received during the automatic mode M1, and a clutch capacity is calculated from the clutch operation instruction to control the clutch device 26. It should be noted that the setting is made such that when the occupant stops operating the clutch lever 4b (completely releases) during the manual intervention mode M3, the mode returns to the automatic mode M1.
  • the clutch control device 60 ⁇ / b> A of the present embodiment generates an oil pressure for clutch control by driving an oil pump (not shown) with the rotational driving force of the engine 13. For this reason, when starting the system, the clutch control device 60A starts the control from the clutch off state (disengaged state) in the auto mode M1. Further, the clutch control device 60A is set to return to the clutch off in the automatic mode M1 because the clutch operation is not required when the engine 13 is stopped.
  • the clutch control is performed automatically, and the motorcycle 1 can run without operating the lever.
  • the clutch capacity is controlled based on the throttle opening, engine speed, vehicle speed, and shift sensor output.
  • the motorcycle 1 can be started without stalling (engine stop or engine stall) only by throttle operation, and can be shifted only by shift operation.
  • the clutch device 26 may be automatically disconnected.
  • the manual intervention mode M3 is established by gripping the clutch lever 4b, and the clutch device 26 can be arbitrarily disengaged.
  • the clutch capacity is controlled by the lever operation by the occupant.
  • the automatic mode M1 and the manual mode M2 can be switched by operating the clutch control mode changeover switch 59 (see FIG. 4) while the vehicle is stopped.
  • the clutch control device 60A may include an indicator indicating that the lever operation is valid at the time of transition to the manual system M2A (manual mode M2 or manual intervention mode M3).
  • the clutch control is basically performed manually, and the clutch oil pressure can be controlled according to the operating angle of the clutch lever 4b.
  • the connection and disconnection of the clutch device 26 can be controlled with the intention of the occupant, and the clutch device 26 can be connected and run even at an extremely low speed equivalent to idling.
  • the engine may stall depending on the operation of the lever, and it is impossible to automatically start only by operating the throttle.
  • the clutch control automatically intervenes during the shift operation.
  • the clutch device 50 In the auto mode M1, the clutch device 50 is automatically connected and disconnected by the clutch actuator 50. However, the manual operation is temporarily performed in the automatic control of the clutch device 26 by performing the manual clutch operation on the clutch lever 4b. Is possible (manual intervention mode M3).
  • the operation amount (rotation angle) of the clutch lever 4b and the output value of the clutch lever operation amount sensor (clutch operation amount sensor) 4c are in a proportional relationship (correlation).
  • the ECU 60 calculates the target oil pressure of the clutch device 26 based on the output value of the clutch lever operation amount sensor 4c.
  • the actual hydraulic pressure (slave hydraulic pressure) generated in the slave cylinder 28 follows the target hydraulic pressure with a delay corresponding to the pressure loss.
  • a clutch lever 4b as a manual clutch operator is attached to the base end side (inside in the vehicle width direction) of the left grip of the steering handle 4a.
  • the clutch lever 4b does not have a mechanical connection with the clutch device 26 using a cable, hydraulic pressure, or the like, and functions as an operator that transmits a clutch operation request signal to the ECU 60. That is, the motorcycle 1 employs a clutch-by-wire system in which the clutch lever 4b and the clutch device 26 are electrically connected.
  • the clutch lever 4b is integrally provided with a clutch lever operation amount sensor 4c for detecting an operation amount (rotation angle) of the clutch lever 4b.
  • the clutch lever operation amount sensor 4c converts the operation amount of the clutch lever 4b into an electric signal and outputs the electric signal.
  • the ECU 60 drives the clutch actuator 50 based on the output of the clutch lever operation amount sensor 4c.
  • the clutch lever 4b and the clutch lever operation amount sensor 4c may be integrated with each other or separate from each other.
  • the motorcycle 1 includes a clutch control mode changeover switch 59 for switching the control mode of the clutch operation.
  • the clutch control mode changeover switch 59 arbitrarily switches between an auto mode M1 for automatically performing clutch control and a manual mode M2 for manually performing clutch control in accordance with an operation of the clutch lever 4b under predetermined conditions.
  • the clutch control mode changeover switch 59 is provided on a handle switch attached to the steering handle 4a. This allows the occupant to easily operate during normal driving.
  • the clutch lever 4b is released without being squeezed by the occupant and rotated to the clutch connection side, and the clutch lever 4b is moved to the grip side (clutch disengagement side) by the occupant's grasp. It is rotatable between an abutting state in which it rotates and hits the grip.
  • the clutch lever 4b is released from the gripping operation by the occupant, the clutch lever 4b is urged to return to the released state, which is the initial position.
  • the clutch lever operation amount sensor 4c sets the output voltage to zero in a state where the clutch lever 4b is completely squeezed (abutting state), and from this state, the release operation of the clutch lever 4b (operation to the clutch connection side) is started. It is configured to increase the output voltage in response to what is done.
  • a gap is secured between the lever play existing at the start of gripping of the clutch lever 4b and the finger between the gripped lever and the grip.
  • the range excluding the abutment margin is set as the range of the effective voltage (the range of effective operation of the clutch lever 4b).
  • an effective voltage is applied between the operation amount S1 in which the clutch lever 4b is released from the abutting state of the clutch lever 4b by the abutment margin and the operation amount S2 in which the clutch lever 4b is released until the lever play starts.
  • the range from the lower limit value E1 to the upper limit value E2 is proportional to the range of the calculated value of the manually operated clutch capacity from zero to MAX.
  • the upper limit value E2 of the effective voltage may be set when the operation amount S1 of the clutch lever 4b is set, and the lower limit value E1 may be set when the operation amount S2 is set.
  • the clutch control device 60A (clutch-by-wire system) controls the clutch capacity by the operation amount (operation angle) of the clutch lever 4b when disconnecting and connecting the clutch device 26 in the manual system M2A (hereinafter referred to as a manual system mode).
  • the basis of the clutch-by-wire system is that the clutch device 26 is interlocked in accordance with the operation amount of the clutch lever 4b (hereinafter, sometimes abbreviated as lever operation amount).
  • the ECU 60 calculates the target value of the clutch capacity (the target value of the clutch control oil pressure (the target oil pressure)) according to the lever operation amount.
  • the target oil pressure according to the lever operation amount is retrieved from a map (not shown) showing a correlation (substantially proportional relationship) between the operation angle of the clutch lever 4b and the target oil pressure.
  • the target oil pressure according to the lever operation amount is referred to as an operation oil pressure.
  • the clutch control device 60A When connecting the clutch device 26 in the manual system mode, the clutch control device 60A performs the first control for connecting the clutch device 26 by operating the clutch lever 4b, but also performs the first control in accordance with the engine speed and the engine estimated torque.
  • the following second control is interposed.
  • the clutch capacity is limited according to a preset procedure (lower the hydraulic pressure target value) regardless of the operation angle of the clutch lever 4b.
  • the limit value of the clutch capacity is determined based on the surplus rotational energy for the engine stall obtained from the engine speed and the estimated engine torque. That is, if the engine speed and the engine estimated torque that do not cause the engine to stall can be ensured even if the engine speed drops when the clutch is engaged, the clutch capacity limit value is not set (the clutch capacity is not limited). On the other hand, if it is not possible to secure the engine speed and the engine estimated torque that do not cause the engine to stall when the clutch is engaged (when there is a possibility of engine stall), a clutch capacity limit value is set (the clutch capacity is limited) and the lever operation is performed. The target oil pressure is set lower than the corresponding operation oil pressure.
  • half clutch control is interposed regardless of the operation angle of the clutch lever 4b.
  • the half clutch control reduces the clutch capacity of the clutch device 26.
  • the slip (clutch slip) occurs in the clutch device 26 due to the decrease in the clutch capacity. Due to the clutch slip, the clutch device 26 generates a clutch differential rotation.
  • the clutch differential rotation refers to the rotation speed on the downstream side (drive wheel side) of the clutch device 26 with respect to the rotation speed on the upstream side (engine side) of the clutch device 26 (the rotation speed of the crankshaft). (The rotation speed of the main shaft). Due to the occurrence of the clutch differential rotation, the engine speed is secured to such an extent that the engine does not stall.
  • the ECU 60 always provides a limited clutch oil pressure (limited clutch) at which the engine speed reaches a predetermined engine stall determination threshold value Neidle + ⁇ before the predetermined specified time Time dec elapses from the start of clutch connection. Capacity).
  • the limited clutch oil pressure is an oil pressure at which the clutch capacity reaches a limit value Tclutch described later. This limit clutch oil pressure is compared with the current target oil pressure, and when it is determined that the limit clutch oil pressure is equal to or less than the current target oil pressure (in other words, when it is determined that there is a possibility of engine stall in the clutch connection at the current target oil pressure). ), Intervening the second control (stall avoidance control) to avoid the engine stall. It can be said that the second control is against the rider's intention to operate the clutch because the control is to operate the clutch device 26 separately from the operation angle of the clutch lever 4b.
  • the engine stall determination threshold In order to ensure the engine stall avoidance, it is conceivable to set the engine stall determination threshold to a higher value. That is, it is conceivable that the engine stall avoidance control is intervened early with a margin. However, in this case, the frequency of intervention of the engine stall avoidance control contrary to the intention of the rider increases, and the rider may feel uncomfortable.
  • the ECU 60 predicts the limited clutch oil pressure at which the engine speed becomes equal to the engine stall determination threshold value Neidle + ⁇ after the lapse of the specified time Time dec from the start of the clutch connection (every calculation cycle of the ECU 60 (for example, every 5 msec)).
  • the oil pressure is compared with the current target oil pressure to determine the intervention of engine stall avoidance control.
  • the specified time (Time dec ) is a time required for clutch disengagement (a predetermined value of about 100 msec), and corresponds to a time lag from when the ECU 60 issues a clutch disengagement instruction to when clutch disengagement is actually started.
  • a limited clutch oil pressure at which the engine speed will become the engine stall determination threshold value Neidle + ⁇ in the future (after the next specified time Time dec ) is predicted, and this limited clutch oil pressure becomes the current target oil pressure.
  • the clutch capacity (target oil pressure) is limited as follows. The engine speed at the time when the engine speed starts to decrease at the start of the clutch engagement is defined as the clutch engagement speed Neidle + ⁇ + ⁇ .
  • Table 1 is a list of parameters used in this description.
  • the clutch capacity limit value Tclutch is set such that a decrease in the engine speed due to the clutch connection becomes the following condition with respect to the current engine speed.
  • the time required for the engine speed Ne to decrease from “Ne idle + ⁇ + ⁇ ” (the speed at the time of clutch engagement ) to “Ne idle + ⁇ ” (the engine stall determination threshold) in the diagram is In the figure, it is assumed that “Time dec ” (specified time, substantially 100 msec) or more is secured.
  • the range of the clutch capacity limit value T clutch is calculated from Equations 1 to 3 above (Equation 4 below).
  • corresponds to a difference between the clutch engagement rotational speed Ne idle + ⁇ + ⁇ and the engine stall determination threshold Ne idle + ⁇ .
  • the difference ⁇ is a negative value because only the side on which the engine speed decreases is considered.
  • a clutch capacity limit value T clutch obtained in the range of Expression 5 is set as a first limit value A. It can be said that the first limit value A is calculated based on the specified time Time dec and the difference ⁇ between the clutch engagement rotational speed Ne idle + ⁇ + ⁇ and the engine stall determination threshold value Ne idle + ⁇ .
  • the clutch capacity limit value T clutch is set to such an extent that the drag torque of the clutch device 26 is allowed.
  • the clutch capacity limit value T clutch a lower value is selected from the first limit value A and the second limit value B.
  • the graphs of FIGS. 11 and 12 show the time of each parameter from the state where the clutch lever 4b is squeezed and the clutch device 26 is disconnected to the time when the clutch lever 4b is released and the clutch device 26 is connected. The change is shown.
  • the timing t2 at which the engine speed decreases until the engine speed reaches the clutch-engaged speed Neidle + ⁇ + ⁇ after the clutch connection is started corresponds to the timing of the engine stall avoidance control intervention.
  • An area L after the timing t2 is an area where the first control according to the lever operation amount shifts to the second control (engine stall avoidance control) not depending on the lever operation amount.
  • the engine pressure is limited (reduced) with respect to the operation oil pressure by intervening the engine stall avoidance control that does not depend on the lever operation amount even in the manual system mode, and the half-clutch state is changed against the lever operation amount. maintain.
  • the rider grips the clutch lever 4b to release the clutch lever 4b (until the engine speed reaches the clutch engagement speed Ne idle + ⁇ + ⁇ to the engine stall threshold Neidle + ⁇ ).
  • the engine rotation speed reduction securing time Time dec is determined from the decrease determination state in which the slope (absolute value) of the engine rotation speed Ne is equal to or more than the decrease determination value, and the slope (absolute value) of the engine rotation speed Ne being reduced in reduction determination value. It corresponds to the time until the reduced elimination state becomes as follows.
  • the engine rotation speed reduction ensuring time Time dec corresponds to the above specified time Time dec .
  • the ECU 60 always calculates the limited clutch oil pressure during the lever operation when the clutch is engaged.
  • the limited clutch oil pressure is a clutch oil pressure that is predicted to become the engine stall determination threshold after a lapse of a specified time from the engine speed and the throttle opening.
  • the difference ⁇ between the clutch engagement speed Ne idle + ⁇ + ⁇ and the engine stall determination threshold value Ne idle + ⁇ is a predetermined value, and is a marginal engine speed until the engine stalls.
  • T eng is an estimated engine torque, which is calculated from a map based on the throttle opening.
  • Ne idle + ⁇ also means the engine speed at which there is a possibility of engine stall
  • Ne idle + ⁇ + ⁇ also means the engine speed at which the clutch limit hydraulic pressure is calculated.
  • the ECU 60 determines that there is a possibility of engine stall when the engine speed after the engine speed reduction securing time Time dec has elapsed becomes equal to or less than the engine stall determination threshold value Ne idle + ⁇ . In this case, the ECU 60 restricts the target hydraulic pressure for clutch control to a hydraulic pressure (a limited hydraulic pressure) lower than the corresponding hydraulic pressure corresponding to the lever operation amount.
  • the clutch control device 60 ⁇ / b> A of the above embodiment drives the engine 13, the transmission 21, the clutch device 26 for connecting and disconnecting power transmission between the engine 13 and the transmission 21, and the clutch device 26.
  • a clutch actuator 50 for changing the clutch capacity a clutch lever 4b for manually operating the clutch device 26, and an ECU 60 for calculating a control target value (target oil pressure) of the clutch capacity according to the operation amount of the clutch lever 4b.
  • the ECU 60 does not depend on the operation of the clutch lever 4b according to the engine speed and the estimated engine torque.
  • a second control for limiting the clutch capacity (reducing the hydraulic pressure target value) is intervened.
  • the ECU 60 obtains the limited clutch oil pressure at which the engine speed becomes equal to the engine stall determination threshold value Neidle + ⁇ after the lapse of a predetermined time period Time dec , compares it with the current target oil pressure, and intervenes the second control. I do.
  • the engine stop speed and the throttle opening are always determined based on the engine stall determination threshold after the lapse of a predetermined time. Is determined, and if it is determined that the target hydraulic pressure exceeds the limited clutch hydraulic pressure (there is a possibility of engine stall), the second control that does not depend on the operation of the clutch lever 4b is intervened. I do. Accordingly, even when the engine is likely to stall when the rider's operation is prioritized, it is possible to intervene the second control before the engine stalls to limit the clutch capacity (set a half-clutch state). .
  • the specified time Time dec is a time required for disengaging the clutch. That is, the time required for disengaging the clutch is counted from the time when the engine speed drops when the clutch is engaged, and the limited clutch oil pressure that will become the specified engine speed (lower limit) in the future (after the specified time Dec ) is calculated. Then, it is determined whether or not the limited clutch hydraulic pressure becomes equal to or lower than the target hydraulic pressure. When it is determined that the limited clutch oil pressure becomes equal to or lower than the target oil pressure, the clutch capacity is limited before the engine stalls by switching to the second control independent of the operation of the clutch lever 4b. By setting the lower limit of the future engine speed and limiting the clutch capacity in this way, unintended engine stall can be avoided. Since the time required for disengaging the clutch (time lag) is taken into account, when connecting the clutch, if the clutch connection speed is too high and an engine stall is likely to occur, an instruction to immediately disengage the clutch will be given, Can be avoided.
  • the ECU 60 intervenes the second control when the limited clutch oil pressure becomes equal to or less than the target oil pressure. That is, when the limited clutch hydraulic pressure becomes equal to or less than the target hydraulic pressure, the clutch capacity is limited before the engine stalls by switching to the second control independent of the operation of the clutch lever 4b. By setting the lower limit of the future engine speed and limiting the clutch capacity in this way, unintended engine stall can be avoided.
  • the clutch capacity limit value T clutch set in the second control is determined by the difference ⁇ between the specified time Time dec , the clutch connection rotation speed Ne idle + ⁇ + ⁇ , and the engine stall determination threshold Ne idle + ⁇ . And the estimated engine torque.
  • the ECU 60 sets the limit value T clutch of the clutch capacity separated from the clutch operation based on the change rate based on the specified time Time dec and the difference ⁇ between the engine speed and the engine estimated torque. As a result, the clutch capacity can be limited in accordance with the prediction of the future engine speed, and engine stall can be avoided.
  • the clutch capacity limit value T clutch set in the second control may be calculated based on a limit value map (see FIG. 10) that changes according to the engine speed.
  • the ECU 60 sets a limit value T clutch of the clutch capacity separated from the clutch operation based on a limit value map that changes according to the engine speed.
  • the clutch capacity limit value T clutch set in the second control is determined by comparing the first limit value A with the second limit value B.
  • the ECU 60 calculates the first limit value A calculated from the rate of change based on the difference ⁇ between the prescribed time Dec and the engine speed and the estimated engine torque, and the limit value map that changes according to the engine speed.
  • the second limit value B is compared with, for example, a relatively low value is set as the clutch capacity limit value T clutch . This makes it possible to set a suitable limit value according to the engine speed and the like. Then, the clutch capacity can be limited according to the prediction of the future engine speed, and engine stall can be avoided.
  • the present invention is not limited to the above-described embodiment.
  • the present invention is not limited to application to a configuration in which the clutch is connected by increasing the hydraulic pressure and the clutch is disconnected by reducing the hydraulic pressure.
  • the present invention may be applied to a configuration in which a clutch is connected to reduce the number of clutches.
  • the clutch operator is not limited to the clutch lever 4b, but may be a clutch pedal or other various operators.
  • the present invention is not limited to the application to a saddle-ride type vehicle in which the clutch operation is automated as in the above-described embodiment, and the gear shift is performed by adjusting the driving force without performing the manual clutch operation under predetermined conditions, based on the manual clutch operation.
  • the present invention is also applicable to a saddle-ride type vehicle having a so-called clutchless transmission.
  • the saddle-ride type vehicle includes all vehicles in which a driver rides across a vehicle body, and includes not only motorcycles (including motor-driven bicycles and scooter-type vehicles) but also three wheels (one front wheel and two rear wheels).
  • vehicles including front two-wheel and rear one-wheel vehicles) or four-wheel vehicles are also included, and vehicles including an electric motor as a prime mover are also included.
  • the configuration in the above embodiment is an example of the present invention, and various changes can be made without departing from the spirit of the present invention.

Abstract

This clutch control device is provided with: an engine (13); a transmission (21); a clutch device (26) for connecting/disconnecting power transmission between the engine (13) and the transmission (21); a clutch actuator (50) for changing clutch capacity by driving the clutch device (26); a clutch operator (4b) enabling manual operation of the clutch device (26); and a control unit (60) for calculating a target control value of the clutch capacity in accordance with the operation amount of the clutch operator (4b). The control unit (60), while performing first control for connecting the clutch device (26) by operation of the clutch operator (4b), interveningly performs second control for limiting the clutch capacity in accordance with the engine rotation speed and estimated engine torque, without using the operation of the clutch operator (4b).

Description

クラッチ制御装置Clutch control device
 本発明は、クラッチ制御装置に関する。
 本願は、2018年09月26日に、日本に出願された特願2018-180744号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a clutch control device.
Priority is claimed on Japanese Patent Application No. 2018-180744, filed Sep. 26, 2018, the content of which is incorporated herein by reference.
 エンジンと変速機との間に設けられたクラッチをアクチュエータで駆動するオートクラッチシステムを備えた鞍乗り型車両が開示されている。この技術は、クラッチ接続時の半クラッチ制御の工夫により、エンスト(エンジンストップまたはエンジンストール(engine stall)の意)と乗車フィーリングの低下とを防止するものである(例えば、特許文献1参照)。 鞍 A saddle-ride type vehicle including an automatic clutch system in which a clutch provided between an engine and a transmission is driven by an actuator is disclosed. This technology prevents a stall (meaning engine stop or engine stall) and a reduced ride feeling by devising half-clutch control when the clutch is engaged (for example, see Patent Document 1). .
日本国特開2014-035065号公報Japanese Patent Application Laid-Open No. 2014-035065
 ところで、上記従来の技術は、クラッチバイワイヤシステムを前提にしたものではなく、ライダーの操作意思を尊重するという概念はない。すなわち、エンスト回避のための半クラッチ制御であっても、ライダーの意思に反して頻繁に制御が介入すると、ライダーに違和感を与えてしまうという課題がある。 By the way, the above-mentioned conventional technology is not based on the clutch-by-wire system, and there is no concept of respecting the rider's operation intention. That is, there is a problem that even if the half-clutch control is performed to avoid the engine stall, if the control frequently intervenes against the intention of the rider, the rider may feel uncomfortable.
 本発明は、クラッチアクチュエータを介してクラッチを断接操作可能なクラッチバイワイヤシステムとしても機能するクラッチ制御装置において、エンスト回避制御を介入可能としつつライダーの違和感を抑えることを目的とする。 An object of the present invention is to provide a clutch control device that also functions as a clutch-by-wire system capable of connecting and disconnecting a clutch via a clutch actuator, while suppressing engine stall avoidance control and suppressing a rider's discomfort.
 上記課題の解決手段として、本発明の態様は以下の構成を有する。
 (1)本発明の態様に係るクラッチ制御装置は、エンジンと、変速機と、前記エンジンと前記変速機との間の動力伝達を断接するクラッチ装置と、前記クラッチ装置を駆動してクラッチ容量を変更するクラッチアクチュエータと、前記クラッチ装置を手動で操作可能とするクラッチ操作子と、前記クラッチ操作子の操作量に応じて前記クラッチ容量の制御目標値を演算する制御部と、を備え、前記制御部は、前記クラッチ操作子の操作により前記クラッチ装置を接続する第一の制御を行っている際、エンジン回転数とエンジン推定トルクとに応じて、前記クラッチ操作子の前記操作によらず前記クラッチ容量を制限する第二の制御を介入する。
As means for solving the above-mentioned problems, aspects of the present invention have the following configurations.
(1) A clutch control device according to an aspect of the present invention includes an engine, a transmission, a clutch device for connecting and disconnecting power transmission between the engine and the transmission, and a clutch capacity that is driven by driving the clutch device. A clutch actuator to be changed, a clutch operator for manually operating the clutch device, and a control unit for calculating a control target value of the clutch capacity according to an operation amount of the clutch operator. The unit is configured to perform the first control for connecting the clutch device by operating the clutch operator, and perform the clutch operation regardless of the operation of the clutch operator in accordance with an engine speed and an estimated engine torque. Intervening a second control to limit the capacity.
 (2)上記(1)に記載のクラッチ制御装置では、前記制御部は、予め定めた規定時間の経過後に前記エンジン回転数がエンスト判断閾値となる制限クラッチ油圧を求め、現在の目標油圧と比較し、前記第二の制御を介入してもよい。 (2) In the clutch control device according to (1), the control unit obtains a limited clutch oil pressure at which the engine speed becomes an engine stall determination threshold after a predetermined time has elapsed, and compares the limited clutch oil pressure with a current target oil pressure. Then, the second control may be intervened.
 (3)上記(2)に記載のクラッチ制御装置では、前記規定時間は、クラッチ切断に必要な時間であってもよい。 (3) In the clutch control device according to the above (2), the specified time may be a time required for disengaging the clutch.
 (4)上記(3)に記載のクラッチ制御装置では、前記制御部は、前記制限クラッチ油圧が目標油圧以下になる場合に、前記第二の制御を介入してもよい。 (4) In the clutch control device according to (3), the control unit may intervene in the second control when the limited clutch oil pressure is equal to or less than a target oil pressure.
 (5)上記(3)又は(4)に記載のクラッチ制御装置では、前記第二の制御で設定する前記クラッチ容量の制限値は、前記規定時間と、クラッチ接続時回転数と前記エンスト判断閾値との差分と、前記エンジン推定トルクと、に基づいて算出されてもよい。 (5) In the clutch control device according to the above (3) or (4), the limit value of the clutch capacity set in the second control is the specified time, the clutch connection rotation speed, and the engine stall determination threshold. And the engine estimated torque.
 (6)上記(3)又は(4)に記載のクラッチ制御装置では、前記第二の制御で設定する前記クラッチ容量の制限値は、前記エンジン回転数に応じて変化する制限値マップに基づいて算出されてもよい。 (6) In the clutch control device described in (3) or (4), the limit value of the clutch capacity set in the second control is based on a limit value map that changes according to the engine speed. It may be calculated.
 (7)上記(6)に記載のクラッチ制御装置では、前記第二の制御で設定する前記クラッチ容量の制限値は、前記規定時間と、クラッチ接続時回転数と前記エンスト判断閾値との差分と、前記エンジン推定トルクと、に基づいて算出される第一制限値と、前記制限値マップに基づいて算出される第二制限値と、を比較して決定されてもよい。 (7) In the clutch control device according to the above (6), the limited value of the clutch capacity set in the second control is the specified time, a difference between a clutch connection rotation speed and the engine stall determination threshold value. The first limit value calculated based on the engine estimated torque may be compared with a second limit value calculated based on the limit value map.
 本発明の上記(1)に記載のクラッチ制御装置によれば、クラッチバイワイヤシステムにおいて、クラッチ操作子の操作によりクラッチ装置を接続する第一の制御の際には常に、エンジン回転数とスロットル開度とから、規定時間経過後にエンスト判断閾値となる制限クラッチ油圧(制限クラッチ容量)を求め、この制限クラッチ油圧を目標油圧が上回る(エンストの可能性がある)と判断する場合には、クラッチ操作子の操作によらない第二の制御を介入する。これにより、ライダーの操作を優先するとエンストしてしまう可能性がある場合にも、エンストする前に第二の制御を介入させてクラッチ容量を制限する(半クラッチ状態とする)ことが可能となる。このため、クラッチ接続操作時の意図せぬエンストを回避することができる。
 また、常に上記判断を行い、エンストの可能性を判断するので、実際のエンジン回転数とスロットル開度とに基づく精度のよいエンスト予測が可能となり、第二の制御(エンスト回避制御)の介入判断の精度が高まる。このため、余裕をもって早めにエンスト回避制御を介入する場合に比べて、エンスト回避制御の介入頻度を少なくし、ライダーに違和感を与えることを抑えることができる。
According to the clutch control device described in the above (1) of the present invention, in the clutch-by-wire system, the engine speed and the throttle opening are always set during the first control for connecting the clutch device by operating the clutch operator. From this, after the specified time has elapsed, a limit clutch oil pressure (limit clutch capacity) serving as an engine stall determination threshold is obtained, and when it is determined that the target oil pressure exceeds the limit clutch oil pressure (there is a possibility of engine stall), the clutch operator Intervenes a second control that does not depend on the operation of. Accordingly, even when the engine is likely to stall when the rider's operation is prioritized, it is possible to intervene the second control before the engine stalls to limit the clutch capacity (set a half-clutch state). . For this reason, an unintended engine stall at the time of the clutch connection operation can be avoided.
Further, since the above determination is always made and the possibility of engine stall is determined, accurate engine stall prediction based on the actual engine speed and the throttle opening can be made, and the intervention determination of the second control (engine stall avoidance control) is made. The accuracy of is increased. Therefore, as compared with a case where the engine stall avoidance control is intervened early with a margin, it is possible to reduce the intervention frequency of the engine stall avoidance control and suppress the rider from feeling uncomfortable.
 本発明の上記(2)に記載のクラッチ制御装置によれば、クラッチ操作子の操作による第一の制御の際には常に、エンジン回転数とスロットル開度とから、規定時間経過後にエンスト判断閾値となる制限クラッチ油圧(制限クラッチ容量)を求め、この制限クラッチ油圧を目標油圧が上回る(エンストの可能性がある)と判断する場合には、クラッチ操作子の操作によらない第二の制御を介入する。これにより、ライダーの操作を優先するとエンストしてしまう可能性がある場合にも、エンストする前に第二の制御を介入させてクラッチ容量を制限することが可能となる。このため、クラッチ接続操作時の意図せぬエンストを回避することができる。 According to the clutch control device described in the above (2) of the present invention, at the time of the first control by the operation of the clutch operation member, the engine stall determination threshold value after the lapse of a specified time is always determined from the engine speed and the throttle opening. Is determined, and if it is determined that the target hydraulic pressure exceeds the limited clutch hydraulic pressure (there is a possibility of engine stall), the second control that does not depend on the operation of the clutch operator is performed. Intervene. Accordingly, even if the engine stalls when the rider's operation is prioritized, the clutch capacity can be limited by intervening the second control before the engine stalls. For this reason, an unintended engine stall at the time of the clutch connection operation can be avoided.
 本発明の上記(3)に記載のクラッチ制御装置によれば、クラッチ接続時にエンジン回転数が低下するときから、クラッチ切断に必要な時間をカウントし、将来(規定時間後)に規定のエンジン回転数(下限値)となる制限クラッチ油圧を求めて、この制限クラッチ油圧が目標油圧以下になるか否かを判断する。制限クラッチ油圧が目標油圧以下になると判断される場合には、クラッチレバーの操作から独立した第二の制御に切り替えることで、エンストする前にクラッチ容量を制限する。このように、将来のエンジン回転数の下限値を設定してクラッチ容量を制限することで、意図せぬエンストを回避することができる。「クラッチ切断に必要な時間」とは、制御部がクラッチ切断指示を発信してから実際にクラッチの切断が開始されるまでのタイムラグを意味している。すなわち、クラッチを接続する際、クラッチ接続速度が速すぎてエンストが発生しそうになったときに、すかさずクラッチを切断する指示を出すことでエンスト回避に間に合うように、上記「クラッチ切断に必要な時間」を考慮している。 According to the clutch control device described in the above (3) of the present invention, the time required for disengaging the clutch is counted from the time when the engine speed decreases when the clutch is engaged, and the specified engine speed is determined in the future (after the specified time). A limit clutch oil pressure that is a number (lower limit value) is obtained, and it is determined whether or not this limit clutch oil pressure becomes equal to or lower than the target oil pressure. If it is determined that the limited clutch hydraulic pressure becomes equal to or lower than the target hydraulic pressure, the clutch capacity is limited before the engine stalls by switching to the second control independent of the operation of the clutch lever. By setting the lower limit of the future engine speed and limiting the clutch capacity in this way, unintended engine stall can be avoided. “Time required for clutch disconnection” means a time lag from when the control unit issues a clutch disconnection instruction to when clutch disconnection is actually started. In other words, when connecting the clutch, when the clutch connection speed is too high and engine stall is likely to occur, an instruction to disconnect the clutch is issued immediately so that the time required for clutch disengagement can be set in time to avoid engine stall. Is considered.
 本発明の上記(4)に記載のクラッチ制御装置によれば、制限クラッチ油圧が目標油圧以下になる場合には、クラッチレバーの操作から独立した第二の制御に切り替えることで、エンストする前にクラッチ容量を制限する。このように、将来のエンジン回転数の下限値を設定してクラッチ容量を制限することで、意図せぬエンストを回避することができる。 According to the clutch control device described in the above (4) of the present invention, when the limited clutch oil pressure becomes equal to or less than the target oil pressure, by switching to the second control independent of the operation of the clutch lever, the engine is controlled before the engine stalls. Limit clutch capacity. By setting the lower limit of the future engine speed and limiting the clutch capacity in this way, unintended engine stall can be avoided.
 本発明の上記(5)に記載のクラッチ制御装置によれば、制御部は、規定時間とエンジン回転数の差分とエンジン推定トルクとに基づき、クラッチ操作から切り離したクラッチ容量の制限値を設定する。これにより、将来のエンジン回転数の予測に応じてクラッチ容量を制限し、エンストを回避することができる。 According to the clutch control device described in (5) of the present invention, the control unit sets the limit value of the clutch capacity separated from the clutch operation based on the difference between the specified time and the engine speed and the estimated engine torque. . As a result, the clutch capacity can be limited in accordance with the prediction of the future engine speed, and engine stall can be avoided.
 本発明の上記(6)に記載のクラッチ制御装置によれば、制御部は、エンジン回転数に応じて変化する制限値マップに基づき、クラッチ操作から切り離したクラッチ容量の制限値を設定する。これにより、将来のエンジン回転数の予測に応じてクラッチ容量を制限し、エンストを回避することができる。 According to the clutch control device described in (6) of the present invention, the control unit sets the limit value of the clutch capacity separated from the clutch operation based on the limit value map that changes according to the engine speed. As a result, the clutch capacity can be limited in accordance with the prediction of the future engine speed, and engine stall can be avoided.
 本発明の上記(7)に記載のクラッチ制御装置によれば、制御部は、規定時間とエンジン回転数の差分とエンジン推定トルクとに基づく変化率から算出した第一制限値と、エンジン回転数に応じて変化する制限値マップから算出した第二制限値と、を比較し、例えば相対的に低い値をクラッチ容量の制限値として設定する。これにより、エンジン回転数等に応じた好適な制限値を設定可能となる。そして、将来のエンジン回転数の予測に応じてクラッチ容量を制限し、エンストを回避することができる。 According to the clutch control device described in (7) of the present invention, the control unit includes: a first limit value calculated from a change rate based on a difference between the specified time and the engine speed and the engine estimated torque; Is compared with the second limit value calculated from the limit value map that changes in accordance with, for example, a relatively low value is set as the clutch capacity limit value. This makes it possible to set a suitable limit value according to the engine speed and the like. Then, the clutch capacity can be limited according to the prediction of the future engine speed, and engine stall can be avoided.
本発明の実施形態における自動二輪車の左側面図である。FIG. 2 is a left side view of the motorcycle according to the embodiment of the present invention. 上記自動二輪車の変速機およびチェンジ機構の断面図である。FIG. 2 is a sectional view of a transmission and a change mechanism of the motorcycle. クラッチアクチュエータを含むクラッチ作動システムの概略説明図である。It is a schematic explanatory view of a clutch operation system including a clutch actuator. 変速システムのブロック図である。It is a block diagram of a transmission system. クラッチアクチュエータの供給油圧の変化を示すグラフである。4 is a graph showing a change in supply hydraulic pressure of a clutch actuator. 本発明の実施形態のクラッチレバー操作量とセンサ出力電圧およびクラッチ容量との相関を示すグラフである。6 is a graph showing a correlation between a clutch lever operation amount, a sensor output voltage, and a clutch capacity according to the embodiment of the present invention. 本発明の実施形態のクラッチ制御モードの遷移を示す説明図である。FIG. 4 is an explanatory diagram illustrating a transition of a clutch control mode according to the embodiment of the present invention. 本発明の実施形態のクラッチ制御装置におけるレバー操作によるクラッチ接続時のエンジン回転数の時間変化を示すグラフである。5 is a graph showing a time change of an engine speed at the time of clutch engagement by lever operation in the clutch control device according to the embodiment of the present invention. クラッチ上流側部品およびクラッチ下流側部品の概略を示す説明図である。It is explanatory drawing which shows the outline of a clutch upstream part and a clutch downstream part. クラッチ制限油圧のエンジン回転数に対する変化を示すマップである。4 is a map showing a change in clutch limit hydraulic pressure with respect to an engine speed. 本発明の実施形態のクラッチ制御装置における制御パラメータの変化を示すタイムチャートである。5 is a time chart showing changes in control parameters in the clutch control device according to the embodiment of the present invention. 図11の要部拡大図である。It is a principal part enlarged view of FIG.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。また以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UPが示されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, directions such as front, rear, left and right in the following description are the same as those in a vehicle described below unless otherwise specified. Further, an arrow FR indicating the front of the vehicle, an arrow LH indicating the left side of the vehicle, and an arrow UP indicating the upper side of the vehicle are shown at appropriate places in the drawings used in the following description.
<車両全体>
 図1に示すように、本実施形態は、鞍乗り型車両の一例としての自動二輪車1に適用されている。自動二輪車1の前輪2は、左右一対のフロントフォーク3の下端部に支持されている。左右フロントフォーク3の上部は、ステアリングステム4を介して、車体フレーム5の前端部のヘッドパイプ6に支持されている。ステアリングステム4のトップブリッジ上には、バータイプの操向ハンドル4aが取り付けられている。
<Whole vehicle>
As shown in FIG. 1, the present embodiment is applied to a motorcycle 1 as an example of a saddle type vehicle. A front wheel 2 of the motorcycle 1 is supported by lower ends of a pair of left and right front forks 3. The upper portions of the left and right front forks 3 are supported by a head pipe 6 at the front end of a vehicle body frame 5 via a steering stem 4. A bar-type steering handle 4 a is mounted on the top bridge of the steering stem 4.
 車体フレーム5は、ヘッドパイプ6と、ヘッドパイプ6から車幅方向(左右方向)中央を下後方へ延びるメインチューブ7と、メインチューブ7の後端部の下方に連なる左右ピボットフレーム8と、メインチューブ7および左右ピボットフレーム8の後方に連なるシートフレーム9と、を備えている。左右ピボットフレーム8には、スイングアーム11の前端部が揺動可能に枢支されている。スイングアーム11の後端部には、自動二輪車1の後輪12が支持されている。 The vehicle body frame 5 includes a head pipe 6, a main tube 7 extending downward and rearward from a center of the head pipe 6 in a vehicle width direction (lateral direction), a left and right pivot frame 8 extending below a rear end of the main tube 7, And a seat frame 9 connected to the rear of the tube 7 and the left and right pivot frames 8. The front ends of the swing arms 11 are pivotally supported by the left and right pivot frames 8 in a swingable manner. At the rear end of the swing arm 11, a rear wheel 12 of the motorcycle 1 is supported.
 左右メインチューブ7の上方には、燃料タンク18が支持されている。燃料タンク18の後方でシートフレーム9の上方には、前シート19および後シートカバー19aが前後に並んで支持されている。シートフレーム9の周囲は、リヤカウル9aに覆われている。左右メインチューブ7の下方には、自動二輪車1の原動機であるパワーユニットPUが懸架されている。パワーユニットPUは、後輪12と例えばチェーン式伝動機構を介して連係されている。 燃料 A fuel tank 18 is supported above the left and right main tubes 7. Above the seat frame 9 behind the fuel tank 18, a front seat 19 and a rear seat cover 19a are supported side by side. The periphery of the seat frame 9 is covered with a rear cowl 9a. Below the left and right main tubes 7, a power unit PU, which is a prime mover of the motorcycle 1, is suspended. The power unit PU is linked to the rear wheel 12 via, for example, a chain type transmission mechanism.
 パワーユニットPUは、その前側に位置するエンジン(内燃機関、原動機)13と後側に位置する変速機21とを一体に有している。エンジン13は、例えばクランクシャフト14の回転軸を左右方向(車幅方向)に沿わせた複数気筒エンジンである。エンジン13は、クランクケース15の前部上方にシリンダ16を起立させている。クランクケース15の後部は、変速機21を収容する変速機ケース17とされている。 The power unit PU integrally has an engine (internal combustion engine, prime mover) 13 located on the front side thereof and a transmission 21 located on the rear side. The engine 13 is, for example, a multi-cylinder engine in which the rotation axis of a crankshaft 14 extends along the left-right direction (vehicle width direction). The engine 13 has a cylinder 16 erected above a front part of the crankcase 15. The rear part of the crankcase 15 is a transmission case 17 that houses the transmission 21.
<変速機>
 図2に示すように、変速機21は、メインシャフト22およびカウンタシャフト23ならびに両シャフト22,23に跨る変速ギア群24を有する有段式のトランスミッションである。カウンタシャフト23は変速機21ひいてはパワーユニットPUの出力軸を構成している。カウンタシャフト23の端部はクランクケース15の後部左側に突出し、上記チェーン式伝動機構を介して後輪12に連結されている。
<Transmission>
As shown in FIG. 2, the transmission 21 is a stepped transmission having a main shaft 22, a counter shaft 23, and a transmission gear group 24 extending over both shafts 22, 23. The counter shaft 23 constitutes the transmission 21 and thus the output shaft of the power unit PU. The end of the counter shaft 23 projects to the rear left side of the crankcase 15 and is connected to the rear wheel 12 via the above-mentioned chain type transmission mechanism.
 変速ギア群24は、両シャフト22,23にそれぞれ支持された変速段数分のギアを有する。変速機21は、両シャフト22,23間で変速ギア群24の対応するギア対同士が常に噛み合った常時噛み合い式とされる。両シャフト22,23に支持された複数のギアは、対応するシャフトに対して回転可能なフリーギアと、対応するシャフトにスプライン嵌合するスライドギア(シフター)とに分類される。これらフリーギア及びスライドギアの一方には軸方向で凸のドグが、他方にはドグを係合させるべく軸方向で凹のスロットがそれぞれ設けられている。すなわち、変速機21は、いわゆるドグミッションである。 The transmission gear group 24 has gears for the number of gears supported by the shafts 22 and 23, respectively. The transmission 21 is of a constant mesh type in which the corresponding gear pairs of the transmission gear group 24 are always meshed between the two shafts 22 and 23. The plurality of gears supported by both shafts 22 and 23 are classified into a free gear rotatable with respect to the corresponding shaft, and a slide gear (shifter) spline-fitted to the corresponding shaft. One of the free gear and the slide gear is provided with an axially convex dog, and the other is provided with an axially concave slot for engaging the dog. That is, the transmission 21 is a so-called dog mission.
 変速機21のメインシャフト22及びカウンタシャフト23は、クランクシャフト14の後方で前後に並んで配置されている。メインシャフト22の右端部には、クラッチアクチュエータ50(図3参照)により作動するクラッチ装置26が同軸配置されている。クラッチ装置26は、例えば湿式多板クラッチであり、いわゆるノーマルオープンクラッチである。すなわち、クラッチ装置26は、クラッチアクチュエータ50からの油圧供給によって動力伝達可能な接続状態となり、クラッチアクチュエータ50からの油圧供給がなくなると動力伝達不能な切断状態に戻る。 メ イ ン The main shaft 22 and the counter shaft 23 of the transmission 21 are arranged in front of and behind the crankshaft 14. At the right end of the main shaft 22, a clutch device 26 operated by a clutch actuator 50 (see FIG. 3) is coaxially arranged. The clutch device 26 is, for example, a wet multi-plate clutch, and is a so-called normally open clutch. That is, the clutch device 26 is brought into a connected state in which power can be transmitted by supplying hydraulic pressure from the clutch actuator 50, and returns to a disconnected state in which power cannot be transmitted when the hydraulic pressure is not supplied from the clutch actuator 50.
 クランクシャフト14の回転動力は、クラッチ装置26を介してメインシャフト22に伝達され、メインシャフト22から変速ギア群24の任意のギア対を介してカウンタシャフト23に伝達される。カウンタシャフト23におけるクランクケース15の後部左側に突出した左端部には、上記チェーン式伝動機構のドライブスプロケット27が取り付けられている。 The rotational power of the crankshaft 14 is transmitted to the main shaft 22 via the clutch device 26, and transmitted from the main shaft 22 to the counter shaft 23 via an arbitrary gear pair of the transmission gear group 24. A drive sprocket 27 of the above-described chain type transmission mechanism is attached to a left end portion of the countershaft 23 protruding to the rear left side of the crankcase 15.
 変速機21の後上方には、変速ギア群24のギア対を切り替えるチェンジ機構25が収容されている。チェンジ機構25は、両シャフト22,23と平行な中空円筒状のシフトドラム36の回転により、その外周に形成されたリード溝のパターンに応じて複数のシフトフォーク36aを作動させ、変速ギア群24における両シャフト22,23間の動力伝達に用いるギア対を切り替える。 チ ェ ン ジ Above the rear of the transmission 21, a change mechanism 25 that switches a gear pair of the transmission gear group 24 is accommodated. The change mechanism 25 operates a plurality of shift forks 36 a according to a pattern of a lead groove formed on the outer periphery of the shift gear group 24 by rotating a hollow cylindrical shift drum 36 parallel to the shafts 22 and 23. The gear pair used for power transmission between the two shafts 22 and 23 is switched.
 チェンジ機構25は、シフトドラム36と平行なシフトスピンドル31を有している。シフトスピンドル31の回転時には、シフトスピンドル31に固定されたシフトアーム31aがシフトドラム36を回転させ、リード溝のパターンに応じてシフトフォーク36aを軸方向移動させて、変速ギア群24の内の動力伝達可能なギア対を切り替える(すなわち、変速段を切り替える。)。 The change mechanism 25 has a shift spindle 31 parallel to the shift drum 36. When the shift spindle 31 rotates, the shift arm 31a fixed to the shift spindle 31 rotates the shift drum 36, and moves the shift fork 36a in the axial direction according to the pattern of the lead groove, so that the power in the transmission gear group 24 is changed. The transmissible gear pair is switched (that is, the gear position is switched).
 図1を併せて参照し、シフトスピンドル31は、チェンジ機構25を操作可能とするべくクランクケース15の車幅方向外側(左方)に軸外側部31bを突出させている。シフトスピンドル31の軸外側部31bには、シフト荷重センサ42(シフト操作検知手段)が同軸に取り付けられている。シフトスピンドル31の軸外側部31b(またはシフト荷重センサ42の回転軸)には、揺動レバー33が取り付けられている。揺動レバー33は、シフトスピンドル31(または回転軸)にクランプ固定される基端部33aから後方へ延び、その先端部33bには、リンクロッド34の上端部が上ボールジョイント34aを介して揺動自在に連結されている。リンクロッド34の下端部は、運転者が足操作するシフトペダル32に、下ボールジョイント(不図示)を介して揺動自在に連結されている。 併 せ Referring also to FIG. 1, the shift spindle 31 has a shaft outer portion 31 b protruding outward (leftward) in the vehicle width direction of the crankcase 15 so that the change mechanism 25 can be operated. A shift load sensor 42 (shift operation detecting means) is coaxially mounted on the shaft outer portion 31b of the shift spindle 31. A swing lever 33 is attached to the shaft outer portion 31b of the shift spindle 31 (or the rotation shaft of the shift load sensor 42). The swing lever 33 extends rearward from a base end portion 33a clamped and fixed to the shift spindle 31 (or a rotating shaft), and the upper end portion of the link rod 34 swings at the tip end portion 33b via an upper ball joint 34a. It is movably connected. The lower end of the link rod 34 is swingably connected to a shift pedal 32 operated by the driver with a foot via a lower ball joint (not shown).
 図1に示すように、シフトペダル32は、その前端部がクランクケース15の下部に左右方向に沿う軸を介して上下揺動可能に支持されている。シフトペダル32の後端部には、ステップ32aに載せた運転者の足先を掛けるペダル部が設けられ、シフトペダル32の前後中間部には、リンクロッド34の下端部が連結されている。 As shown in FIG. 1, the front end of the shift pedal 32 is supported at the lower part of the crankcase 15 via a shaft extending in the left-right direction so as to be vertically swingable. The rear end of the shift pedal 32 is provided with a pedal portion for hanging the driver's toe placed on the step 32a, and the lower end of a link rod 34 is connected to the front and rear middle portion of the shift pedal 32.
 図2に示すように、シフトペダル32、リンクロッド34およびチェンジ機構25を含んで、変速機21の変速段ギアの切り替えを行うシフトチェンジ装置35が構成されている。シフトチェンジ装置35において、変速機ケース17内で変速機21の変速段を切り替える集合体(シフトドラム36、シフトフォーク36a等)を変速作動部35a、シフトペダル32への変速動作が入力されてシフトスピンドル31の軸回りに回転し、この回転を変速作動部35aに伝達する集合体(シフトスピンドル31、シフトアーム31a等)を変速操作受け部35b、という。 (2) As shown in FIG. 2, a shift change device 35 that includes the shift pedal 32, the link rod 34, and the change mechanism 25 and that switches the gears of the transmission 21 is configured. In the shift change device 35, an assembly (shift drum 36, shift fork 36a, etc.) that switches the gear position of the transmission 21 in the transmission case 17 is shifted by a shift operation to the shift operating portion 35a and the shift pedal 32. An assembly (the shift spindle 31, the shift arm 31a, and the like) that rotates around the axis of the spindle 31 and transmits this rotation to the speed change operation portion 35a is referred to as a speed change operation receiving portion 35b.
 ここで、自動二輪車1は、変速機21の変速操作(シフトペダル32の足操作)のみを運転者が行い、クラッチ装置26の断接操作はシフトペダル32の操作に応じて電気制御により自動で行うようにした、いわゆるセミオートマチックの変速システム(自動クラッチ式変速システム)を採用している。 Here, in the motorcycle 1, the driver performs only the shifting operation of the transmission 21 (the foot operation of the shift pedal 32), and the connecting / disconnecting operation of the clutch device 26 is automatically performed by electric control according to the operation of the shift pedal 32. A so-called semi-automatic transmission system (automatic clutch-type transmission system) is employed.
<変速システム>
 図4に示すように、上記変速システムは、クラッチアクチュエータ50、ECU60(Electronic Control Unit、制御部)および各種センサ41~45を備えている。
 ECU60は、シフトドラム36の回転角から変速段を検知するギアポジションセンサ41、およびシフトスピンドル31に入力された操作トルクを検知するシフト荷重センサ42(例えばトルクセンサ)からの検知情報、ならびにスロットル開度センサ43、車速センサ44およびエンジン回転数センサ45等からの各種の車両状態検知情報等に基づいて、クラッチアクチュエータ50を作動制御するとともに、点火装置46および燃料噴射装置47を作動制御する。
 ECU60には、後述する油圧センサ57,58、並びにシフト操作検知スイッチ(シフトニュートラルスイッチ)48からの検知情報も入力される。
 また、ECU60は、油圧制御部(クラッチ制御部)61を備えており、その機能については後述する。図中符号60Aは本実施形態のクラッチ制御装置を示している。
<Transmission system>
As shown in FIG. 4, the transmission system includes a clutch actuator 50, an ECU 60 (Electronic Control Unit, control unit), and various sensors 41 to 45.
The ECU 60 detects information from a gear position sensor 41 that detects a gear position based on the rotation angle of the shift drum 36, a shift load sensor 42 (for example, a torque sensor) that detects an operation torque input to the shift spindle 31, and throttle opening. Based on various vehicle state detection information from the degree sensor 43, the vehicle speed sensor 44, the engine speed sensor 45, and the like, the operation of the clutch actuator 50 is controlled, and the operation of the ignition device 46 and the fuel injection device 47 are controlled.
The ECU 60 also receives detection information from hydraulic sensors 57 and 58, which will be described later, and a shift operation detection switch (shift neutral switch) 48.
The ECU 60 includes a hydraulic control unit (clutch control unit) 61, and its function will be described later. Reference numeral 60A in the figure indicates a clutch control device of the present embodiment.
 図3を併せて参照し、クラッチアクチュエータ50は、ECU60により作動制御されることで、クラッチ装置26を断接する液圧を制御可能とする。クラッチアクチュエータ50は、駆動源としての電気モータ52(以下、単にモータ52という。)と、モータ52により駆動されるマスターシリンダ51と、を備えている。クラッチアクチュエータ50は、マスターシリンダ51および油圧給排ポート50pの間に設けられる油圧回路装置53とともに、一体のクラッチ制御ユニット50Aを構成している。
 ECU60は、予め設定された演算プログラムに基づいて、クラッチ装置26を断接するためにスレーブシリンダ28に供給する油圧の目標値(目標油圧)を演算し、下流側油圧センサ58で検出されるスレーブシリンダ28側の油圧(スレーブ油圧)が目標油圧に近づくように、クラッチ制御ユニット50Aを制御する。
Referring also to FIG. 3, the clutch actuator 50 is controlled to be operated by the ECU 60, so that the hydraulic pressure for connecting and disconnecting the clutch device 26 can be controlled. The clutch actuator 50 includes an electric motor 52 (hereinafter simply referred to as a motor 52) as a driving source, and a master cylinder 51 driven by the motor 52. The clutch actuator 50 and the hydraulic circuit device 53 provided between the master cylinder 51 and the hydraulic supply / discharge port 50p constitute an integral clutch control unit 50A.
The ECU 60 calculates a target value (a target hydraulic pressure) of the hydraulic pressure supplied to the slave cylinder 28 for connecting and disconnecting the clutch device 26 based on a preset calculation program. The clutch control unit 50A is controlled so that the hydraulic pressure on the 28 side (slave hydraulic pressure) approaches the target hydraulic pressure.
 マスターシリンダ51は、シリンダ本体51a内のピストン51bをモータ52の駆動によりストロークさせて、シリンダ本体51a内の作動油をスレーブシリンダ28に対して給排可能とする。図中符号55はボールネジ機構としての変換機構、符号54はモータ52および変換機構55に跨る伝達機構、符号51eはマスターシリンダ51に接続されるリザーバをそれぞれ示す。 The master cylinder 51 allows the piston 51b in the cylinder body 51a to stroke by driving the motor 52 so that the hydraulic oil in the cylinder body 51a can be supplied to and discharged from the slave cylinder 28. In the figure, reference numeral 55 denotes a conversion mechanism as a ball screw mechanism, reference numeral 54 denotes a transmission mechanism extending over the motor 52 and the conversion mechanism 55, and reference numeral 51e denotes a reservoir connected to the master cylinder 51.
 油圧回路装置53は、マスターシリンダ51からクラッチ装置26側(スレーブシリンダ28側)へ延びる主油路(油圧給排油路)53mの中間部位を開通又は遮断するバルブ機構(ソレノイドバルブ56)を有している。油圧回路装置53の主油路53mは、ソレノイドバルブ56よりもマスターシリンダ51側となる上流側油路53aと、ソレノイドバルブ56よりもスレーブシリンダ28側となる下流側油路53bと、に分けられる。油圧回路装置53はさらに、ソレノイドバルブ56を迂回して上流側油路53aと下流側油路53bとを連通するバイパス油路53cを備えている。 The hydraulic circuit device 53 has a valve mechanism (solenoid valve 56) for opening or closing an intermediate portion of a main oil passage (hydraulic oil supply / discharge oil passage) 53m extending from the master cylinder 51 to the clutch device 26 side (slave cylinder 28 side). doing. The main oil passage 53m of the hydraulic circuit device 53 is divided into an upstream oil passage 53a closer to the master cylinder 51 than the solenoid valve 56, and a downstream oil passage 53b closer to the slave cylinder 28 than the solenoid valve 56. . The hydraulic circuit device 53 further includes a bypass oil passage 53c that bypasses the solenoid valve 56 and connects the upstream oil passage 53a and the downstream oil passage 53b.
 ソレノイドバルブ56は、いわゆるノーマルオープンバルブである。バイパス油路53cには、上流側から下流側への方向のみ作動油を流通させるワンウェイバルブ53c1が設けられている。ソレノイドバルブ56の上流側には、上流側油路53aの油圧を検出する上流側油圧センサ57が設けられている。ソレノイドバルブ56の下流側には、下流側油路53bの油圧を検出する下流側油圧センサ58が設けられている。 The solenoid valve 56 is a so-called normally open valve. The bypass oil passage 53c is provided with a one-way valve 53c1 that allows hydraulic oil to flow only in the direction from the upstream side to the downstream side. An upstream oil pressure sensor 57 that detects the oil pressure of the upstream oil passage 53a is provided upstream of the solenoid valve 56. Downstream of the solenoid valve 56, a downstream oil pressure sensor 58 for detecting the oil pressure of the downstream oil passage 53b is provided.
 図1に示すように、クラッチ制御ユニット50Aは、例えばリヤカウル9a内に収容されている。スレーブシリンダ28は、クランクケース15の後部左側に取り付けられている。クラッチ制御ユニット50Aとスレーブシリンダ28とは、油圧配管53e(図3参照)を介して接続されている。 ク ラ ッ チ As shown in FIG. 1, the clutch control unit 50A is housed, for example, in the rear cowl 9a. The slave cylinder 28 is attached to the rear left side of the crankcase 15. The clutch control unit 50A and the slave cylinder 28 are connected via a hydraulic pipe 53e (see FIG. 3).
 図2に示すように、スレーブシリンダ28は、メインシャフト22の左方に同軸配置されている。スレーブシリンダ28は、クラッチアクチュエータ50からの油圧供給時には、メインシャフト22内を貫通するプッシュロッド28aを右方へ押圧する。スレーブシリンダ28は、プッシュロッド28aを右方へ押圧することで、該プッシュロッド28aを介してクラッチ装置26を接続状態へ作動させる。スレーブシリンダ28は、油圧供給が無くなると、プッシュロッド28aの押圧を解除し、クラッチ装置26を切断状態に戻す。 ス レ ー ブ As shown in FIG. 2, the slave cylinder 28 is coaxially arranged to the left of the main shaft 22. When hydraulic pressure is supplied from the clutch actuator 50, the slave cylinder 28 presses the push rod 28a penetrating through the main shaft 22 to the right. The slave cylinder 28 presses the push rod 28a rightward, thereby operating the clutch device 26 to the connected state via the push rod 28a. When the supply of the hydraulic pressure is stopped, the slave cylinder 28 releases the pressing of the push rod 28a, and returns the clutch device 26 to the disconnected state.
 クラッチ装置26を接続状態に維持するには油圧供給を継続する必要があるが、その分だけ電力を消費することとなる。そこで、図3に示すように、クラッチ制御ユニット50Aの油圧回路装置53にソレノイドバルブ56を設け、クラッチ装置26側への油圧供給後にソレノイドバルブ56を閉じている。これにより、クラッチ装置26側への供給油圧を維持し、圧力低下分だけ油圧を補う(リーク分だけリチャージする)構成として、エネルギー消費を抑えている。 す る に は In order to maintain the clutch device 26 in the connected state, it is necessary to continue the hydraulic pressure supply, but the power is consumed accordingly. Therefore, as shown in FIG. 3, a solenoid valve 56 is provided in the hydraulic circuit device 53 of the clutch control unit 50A, and the solenoid valve 56 is closed after hydraulic pressure is supplied to the clutch device 26 side. Thereby, the oil pressure supplied to the clutch device 26 side is maintained, and the oil pressure is compensated for by the pressure decrease (recharge is performed by the leak amount), thereby reducing energy consumption.
<クラッチ制御>
 次に、クラッチ制御系の作用について図5のグラフを参照して説明する。図5のグラフにおいて、縦軸は下流側油圧センサ58が検出する供給油圧、横軸は経過時間をそれぞれ示している。
 自動二輪車1の停車時(アイドリング時)、ECU(制御部)60で制御されるモータ52およびソレノイドバルブ56は、ともに電力供給が遮断された状態にある。すなわち、モータ52は停止状態にあり、ソレノイドバルブ56は開弁状態にある。このとき、スレーブシリンダ28側(下流側)はタッチポイント油圧TPより低い低圧状態となり、クラッチ装置26は非締結状態(切断状態、解放状態)となる。この状態は、図5の領域Aに相当する。
<Clutch control>
Next, the operation of the clutch control system will be described with reference to the graph of FIG. In the graph of FIG. 5, the vertical axis indicates the supply oil pressure detected by the downstream oil pressure sensor 58, and the horizontal axis indicates the elapsed time.
When the motorcycle 1 stops (idle), the power supply to both the motor 52 and the solenoid valve 56 controlled by the ECU (control unit) 60 is cut off. That is, the motor 52 is in a stopped state, and the solenoid valve 56 is in an open state. At this time, the slave cylinder 28 side (downstream side) is in a low pressure state lower than the touch point oil pressure TP, and the clutch device 26 is in a non-engaged state (disconnected state, released state). This state corresponds to the area A in FIG.
 自動二輪車1の発進時、エンジン13の回転数を上昇させると、モータ52にのみ電力供給がなされ、マスターシリンダ51から開弁状態のソレノイドバルブ56を経てスレーブシリンダ28へ油圧が供給される。スレーブシリンダ28側(下流側)の油圧がタッチポイント油圧TP以上に上昇すると、クラッチ装置26の締結が開始され、クラッチ装置26が一部の動力を伝達可能な半クラッチ状態となる。これにより、自動二輪車1の滑らかな発進が可能となる。この状態は、図5の領域Bに相当する。
 やがて、クラッチ装置26の入力回転と出力回転との差が縮まり、スレーブシリンダ28側(下流側)の油圧が下限保持油圧LPに達すると、クラッチ装置26の締結がロック状態に移行し、エンジン13の駆動力が全て変速機21に伝達される。この状態は、図5の領域Cに相当する。領域A~Cを、発進領域とする。
When the number of revolutions of the engine 13 is increased when the motorcycle 1 starts moving, power is supplied only to the motor 52, and hydraulic pressure is supplied from the master cylinder 51 to the slave cylinder 28 via the solenoid valve 56 in a valve open state. When the hydraulic pressure on the slave cylinder 28 side (downstream side) rises above the touch point hydraulic pressure TP, the engagement of the clutch device 26 is started, and the clutch device 26 enters a half-clutch state where some power can be transmitted. Thus, the motorcycle 1 can start smoothly. This state corresponds to region B in FIG.
Eventually, when the difference between the input rotation and the output rotation of the clutch device 26 is reduced and the hydraulic pressure on the slave cylinder 28 side (downstream side) reaches the lower limit holding hydraulic pressure LP, the engagement of the clutch device 26 shifts to the locked state, and the engine 13 Are transmitted to the transmission 21. This state corresponds to a region C in FIG. The areas A to C are set as the start areas.
 マスターシリンダ51側からスレーブシリンダ28側に油圧を供給する際には、ソレノイドバルブ56を開弁状態とし、モータ52に通電して正転駆動させて、マスターシリンダ51を加圧する。これにより、スレーブシリンダ28側の油圧がクラッチ締結油圧に調圧される。このとき、クラッチアクチュエータ50の駆動は、下流側油圧センサ58の検出油圧に基づきフィードバック制御される。 When supplying hydraulic pressure from the master cylinder 51 to the slave cylinder 28, the solenoid valve 56 is opened, the motor 52 is energized and driven forward to pressurize the master cylinder 51. As a result, the hydraulic pressure of the slave cylinder 28 is adjusted to the clutch engagement hydraulic pressure. At this time, the drive of the clutch actuator 50 is feedback-controlled based on the hydraulic pressure detected by the downstream hydraulic pressure sensor 58.
 そして、スレーブシリンダ28側(下流側)の油圧が上限保持油圧HPに達すると、ソレノイドバルブ56に電力供給がなされて該ソレノイドバルブ56が閉弁作動するとともに、モータ52への電力供給が停止されて油圧の発生が停止される。すなわち、上流側は油圧が解放して低圧状態となる一方、下流側が高圧状態(上限保持油圧HP)に維持される。これにより、マスターシリンダ51が油圧を発生することなくクラッチ装置26が締結状態に維持され、自動二輪車1の走行を可能とした上で電力消費を抑えることができる。 When the hydraulic pressure on the slave cylinder 28 side (downstream side) reaches the upper limit holding hydraulic pressure HP, power is supplied to the solenoid valve 56, the solenoid valve 56 is closed, and the power supply to the motor 52 is stopped. And the generation of hydraulic pressure is stopped. That is, the hydraulic pressure is released to the low pressure state on the upstream side, and the high pressure state (upper limit holding hydraulic pressure HP) is maintained on the downstream side. As a result, the clutch device 26 is maintained in the engaged state without generating hydraulic pressure in the master cylinder 51, so that the motorcycle 1 can travel and power consumption can be suppressed.
 ここで、変速操作によっては、クラッチ装置26に油圧を充填した直後に変速を行うような場合も有り得る。この場合、ソレノイドバルブ56が閉弁作動して上流側を低圧状態とする前に、ソレノイドバルブ56が開弁状態のままでモータ52を逆転駆動し、マスターシリンダ51を減圧するとともにリザーバ51eを連通させ、クラッチ装置26側の油圧をマスターシリンダ51側へリリーフする。このとき、クラッチアクチュエータ50の駆動は、上流側油圧センサ57の検出油圧に基づきフィードバック制御される。 Here, depending on the speed change operation, the speed change may be performed immediately after the hydraulic pressure is filled in the clutch device 26. In this case, before the solenoid valve 56 is closed and the upstream side is set to the low pressure state, the motor 52 is driven to rotate in the reverse direction with the solenoid valve 56 kept open to reduce the pressure of the master cylinder 51 and to connect the reservoir 51e. Then, the hydraulic pressure on the clutch device 26 side is relieved to the master cylinder 51 side. At this time, the drive of the clutch actuator 50 is feedback-controlled based on the detected oil pressure of the upstream oil pressure sensor 57.
 ソレノイドバルブ56を閉弁し、クラッチ装置26を締結状態に維持した状態でも、図5の領域Dのように、下流側の油圧は徐々に低下(リーク)する。すなわち、ソレノイドバルブ56およびワンウェイバルブ53c1のシールの変形等による油圧漏れや温度低下といった要因により、下流側の油圧は徐々に低下する。 (5) Even when the solenoid valve 56 is closed and the clutch device 26 is maintained in the engaged state, the hydraulic pressure on the downstream side gradually decreases (leaks) as shown in a region D of FIG. That is, the hydraulic pressure on the downstream side gradually decreases due to factors such as hydraulic pressure leakage and temperature decrease due to deformation of the seals of the solenoid valve 56 and the one-way valve 53c1.
 一方、図5の領域Eのように、温度上昇等により下流側の油圧が上昇する場合もある。下流側の細かな油圧変動であれば、不図示のアキュムレータにより吸収可能であり、油圧変動の度にモータ52およびソレノイドバルブ56を作動させて電力消費を増やすことはない。
 図5の領域Eのように、下流側の油圧が上限保持油圧HPまで上昇した場合、ソレノイドバルブ56への電力供給を低下させる等により、ソレノイドバルブ56を段階的に開弁状態として、下流側の油圧を上流側へリリーフする。
On the other hand, as shown in a region E of FIG. 5, the hydraulic pressure on the downstream side may increase due to an increase in temperature or the like. A small hydraulic fluctuation on the downstream side can be absorbed by an accumulator (not shown), and the power consumption is not increased by operating the motor 52 and the solenoid valve 56 every time the hydraulic pressure fluctuates.
When the downstream oil pressure rises to the upper limit holding oil pressure HP as shown in a region E of FIG. 5, the solenoid valve 56 is gradually opened by, for example, decreasing the power supply to the solenoid valve 56, and the downstream oil pressure is increased. Relief pressure to the upstream side.
 図5の領域Fのように、下流側の油圧が下限保持油圧LPまで低下した場合、ソレノイドバルブ56は閉弁したままでモータ52への電力供給を開始し、上流側の油圧を上昇させる。上流側の油圧が下流側の油圧を上回ると、この油圧がバイパス油路53cおよびワンウェイバルブ53c1を介して下流側に補給(リチャージ)される。下流側の油圧が上限保持油圧HPになると、モータ52への電力供給を停止して油圧の発生を停止する。これにより、下流側の油圧は上限保持油圧HPと下限保持油圧LPとの間に維持され、クラッチ装置26が締結状態に維持される。領域D~Fを、クルーズ領域とする。 (5) When the hydraulic pressure on the downstream side drops to the lower limit holding oil pressure LP as in the region F in FIG. 5, the power supply to the motor 52 is started while the solenoid valve 56 remains closed, and the hydraulic pressure on the upstream side is increased. When the oil pressure on the upstream side exceeds the oil pressure on the downstream side, the oil pressure is supplied (recharged) to the downstream side via the bypass oil passage 53c and the one-way valve 53c1. When the oil pressure on the downstream side reaches the upper limit holding oil pressure HP, the power supply to the motor 52 is stopped to stop the generation of the oil pressure. Accordingly, the hydraulic pressure on the downstream side is maintained between the upper limit holding oil pressure HP and the lower limit holding oil pressure LP, and the clutch device 26 is maintained in the engaged state. Regions D to F are cruise regions.
 自動二輪車1の停止時に変速機21がニュートラルになると、モータ52およびソレノイドバルブ56への電力供給をともに停止する。これにより、マスターシリンダ51は油圧発生を停止し、スレーブシリンダ28への油圧供給を停止する。ソレノイドバルブ56は開弁状態となり、下流側油路53b内の油圧がリザーバ51eに戻される。以上により、スレーブシリンダ28側(下流側)はタッチポイント油圧TPより低い低圧状態となり、クラッチ装置26が非締結状態となる。この状態は、図5の領域G,Hに相当する。領域G、Hを、停止領域とする。 If the transmission 21 becomes neutral when the motorcycle 1 is stopped, the power supply to both the motor 52 and the solenoid valve 56 is stopped. As a result, the master cylinder 51 stops generating hydraulic pressure and stops supplying hydraulic pressure to the slave cylinder 28. The solenoid valve 56 is opened, and the hydraulic pressure in the downstream oil passage 53b is returned to the reservoir 51e. Thus, the slave cylinder 28 side (downstream side) is in a low pressure state lower than the touch point oil pressure TP, and the clutch device 26 is in the non-engaged state. This state corresponds to regions G and H in FIG. Regions G and H are set as stop regions.
 一方、自動二輪車1の停止時に変速機21がインギアのままだと、スレーブシリンダ28側に待機油圧WPが付与された待機状態となる。
 待機油圧WPは、クラッチ装置26の接続を開始するタッチポイント油圧TPよりも若干低い油圧であり、クラッチ装置26を接続しない油圧(図5の領域A,Hで付与する油圧)である。待機油圧WPの付与により、クラッチ装置26の無効詰め(各部のガタや作動反力のキャンセル並びに油圧経路への予圧の付与等)が可能となり、クラッチ装置26の接続時の作動応答性が高まる。
On the other hand, if the transmission 21 is kept in the in-gear state when the motorcycle 1 is stopped, a standby state is established in which the standby hydraulic pressure WP is applied to the slave cylinder 28 side.
The standby hydraulic pressure WP is slightly lower than the touch point hydraulic pressure TP at which the connection of the clutch device 26 is started, and is a hydraulic pressure at which the clutch device 26 is not connected (the hydraulic pressure applied in the regions A and H in FIG. 5). The provision of the standby hydraulic pressure WP enables the clutch device 26 to be invalidly packed (cancellation of backlash and operation reaction force of each part, application of a preload to the hydraulic path, and the like), and operation responsiveness when the clutch device 26 is connected is improved.
<変速制御>
 次に、自動二輪車1の変速制御について説明する。
 本実施形態の自動二輪車1は、変速機21のギアポジションが1速のインギア状態にあり、かつ車速が停車に相当する設定値未満にあるインギア停車状態において、シフトペダル32に対する1速からニュートラルへのシフト操作を行う際に、スレーブシリンダ28に供給する待機油圧WPを低下させる制御を行う。
<Shift control>
Next, the shift control of the motorcycle 1 will be described.
In the motorcycle 1 of the present embodiment, when the gear position of the transmission 21 is in the in-gear state of the first speed and the vehicle speed is less than the set value corresponding to the stop, the motorcycle 1 shifts from the first speed to the shift pedal 32 to the neutral position. When the shift operation is performed, control is performed to decrease the standby hydraulic pressure WP supplied to the slave cylinder 28.
 ここで、自動二輪車1が停車状態であり、変速機21のギアポジションがニュートラル以外の何れかの変速段位置にある場合、すなわち、変速機21がインギア停車状態にある場合には、スレーブシリンダ28に予め設定した待機油圧WPが供給される。 Here, when the motorcycle 1 is stopped and the gear position of the transmission 21 is at any gear position other than the neutral position, that is, when the transmission 21 is in the in-gear stopped state, the slave cylinder 28 Is supplied with a preset standby hydraulic pressure WP.
 待機油圧WPは、通常時(シフトペダル32の変速操作が検知されていない非検知状態の場合)は、標準待機油圧である第一設定値P1(図5参照)に設定される。これにより、クラッチ装置26が無効詰めがなされた待機状態となり、クラッチ締結時の応答性が高まる。つまり、運転者がスロットル開度を大きくしてエンジン13の回転数を上昇させると、スレーブシリンダ28への油圧供給により直ちにクラッチ装置26の締結が開始されて、自動二輪車1の速やかな発進加速が可能となる。 The standby hydraulic pressure WP is set to the first set value P1 (see FIG. 5) which is the standard standby hydraulic pressure during normal times (in a non-detection state in which the shift operation of the shift pedal 32 is not detected). As a result, the clutch device 26 enters a standby state in which the clutch device 26 has been invalidated, and the responsiveness at the time of clutch engagement is enhanced. That is, when the driver increases the rotational speed of the engine 13 by increasing the throttle opening, the engagement of the clutch device 26 is immediately started by the supply of the hydraulic pressure to the slave cylinder 28, so that the motorcycle 1 can be quickly started and accelerated. It becomes possible.
 自動二輪車1は、シフトペダル32に対する運転者のシフト操作を検知するために、シフト荷重センサ42とは別にシフト操作検知スイッチ48を備えている。シフト操作検知スイッチ48は、例えばシフトアーム31aの先端部に対向配置され、シフトペダル32の変速操作によるシフトスピンドル31の僅かな回転を高感度に検知する。
 そして、インギア停車状態において、シフト操作検知スイッチ48が1速からニュートラルへのシフト操作を検知した際には、油圧制御部61が待機油圧WPを、変速操作を行う前の第一設定値P1よりも低い第二設定値P2(低圧待機油圧、図5参照)に設定する制御を行う。
The motorcycle 1 includes a shift operation detection switch 48 separately from the shift load sensor 42 to detect a driver's shift operation on the shift pedal 32. The shift operation detection switch 48 is disposed, for example, opposite to the distal end of the shift arm 31a, and detects a slight rotation of the shift spindle 31 due to a shift operation of the shift pedal 32 with high sensitivity.
When the shift operation detection switch 48 detects a shift operation from first gear to neutral in the in-gear stopped state, the hydraulic control unit 61 sets the standby hydraulic pressure WP to a value higher than the first set value P1 before performing the shift operation. Control is also performed to set a second set value P2 (low-pressure standby oil pressure, see FIG. 5) which is also low.
 変速機21がインギア状態にある場合、通常時は第一設定値P1相当の標準待機油圧がスレーブシリンダ28に供給されるため、クラッチ装置26には僅かながらいわゆる引きずりが生じる。このとき、変速機21のドグクラッチにおける互いに噛み合うドグおよびスロット(ドグ孔)が回転方向で押圧し合い、係合解除の抵抗を生じさせてシフト操作を重くすることがある。このような場合に、スレーブシリンダ28に供給する待機油圧WPを第二設定値P2相当の低圧待機油圧に低下させると、ドグおよびスロットの係合が解除しやすくなり、シフト操作を軽くすることとなる。 When the transmission 21 is in the in-gear state, a normal standby hydraulic pressure equivalent to the first set value P1 is normally supplied to the slave cylinder 28, so that the clutch device 26 slightly drags. At this time, the dog and the slot (dog hole) of the dog clutch of the transmission 21 that mesh with each other press in the rotating direction, and may cause the resistance of the disengagement to make the shift operation heavy. In such a case, if the standby hydraulic pressure WP supplied to the slave cylinder 28 is reduced to a low-pressure standby hydraulic pressure corresponding to the second set value P2, the engagement between the dog and the slot is easily released, and the shift operation is reduced. Become.
<クラッチ制御モード>
 図7に示すように、本実施形態のクラッチ制御装置60Aは、三種のクラッチ制御モードを有している。クラッチ制御モードは、自動制御を行うオートモードM1、手動操作を行うマニュアルモードM2、および一時的な手動操作を行うマニュアル介入モードM3、の三種のモード間で、クラッチ制御モード切替スイッチ59(図4参照)およびクラッチレバー(クラッチ操作子)4b(図1参照)の操作に応じて適宜遷移する。なお、マニュアルモードM2およびマニュアル介入モードM3を含む対象をマニュアル系M2Aという。
<Clutch control mode>
As shown in FIG. 7, the clutch control device 60A of the present embodiment has three types of clutch control modes. The clutch control mode includes a clutch control mode changeover switch 59 (FIG. 4) among three modes: an automatic mode M1 for performing automatic control, a manual mode M2 for performing manual operation, and a manual intervention mode M3 for performing temporary manual operation. The transition is made appropriately in accordance with the operation of the clutch lever (see FIG. 1) and the clutch lever (clutch operator) 4b (see FIG. 1). An object including the manual mode M2 and the manual intervention mode M3 is referred to as a manual system M2A.
 オートモードM1は、自動発進・変速制御により走行状態に適したクラッチ容量を演算してクラッチ装置26を制御するモードである。マニュアルモードM2は、乗員によるクラッチ操作指示に応じてクラッチ容量を演算してクラッチ装置26を制御するモードである。マニュアル介入モードM3は、オートモードM1中に乗員からのクラッチ操作指示を受け付け、クラッチ操作指示からクラッチ容量を演算してクラッチ装置26を制御する一時的なマニュアル操作モードである。なお、マニュアル介入モードM3中に乗員がクラッチレバー4bの操作をやめる(完全にリリースする)と、オートモードM1に戻るよう設定されている。 The automatic mode M1 is a mode in which the clutch device 26 is controlled by calculating a clutch capacity suitable for a running state by automatic start / shift control. The manual mode M2 is a mode in which the clutch capacity is calculated in accordance with a clutch operation instruction from the occupant to control the clutch device 26. The manual intervention mode M3 is a temporary manual operation mode in which a clutch operation instruction from an occupant is received during the automatic mode M1, and a clutch capacity is calculated from the clutch operation instruction to control the clutch device 26. It should be noted that the setting is made such that when the occupant stops operating the clutch lever 4b (completely releases) during the manual intervention mode M3, the mode returns to the automatic mode M1.
 本実施形態のクラッチ制御装置60Aは、エンジン13の回転駆動力で不図示のオイルポンプを駆動してクラッチ制御油圧を発生する。このため、クラッチ制御装置60Aは、システム起動時には、オートモードM1でクラッチオフの状態(切断状態)から制御を始める。また、クラッチ制御装置60Aは、エンジン13停止時にはクラッチ操作が不要なので、オートモードM1でクラッチオフに戻るよう設定されている。 The clutch control device 60 </ b> A of the present embodiment generates an oil pressure for clutch control by driving an oil pump (not shown) with the rotational driving force of the engine 13. For this reason, when starting the system, the clutch control device 60A starts the control from the clutch off state (disengaged state) in the auto mode M1. Further, the clutch control device 60A is set to return to the clutch off in the automatic mode M1 because the clutch operation is not required when the engine 13 is stopped.
 オートモードM1は、クラッチ制御を自動で行うことが基本であり、レバー操作レスで自動二輪車1を走行可能とする。オートモードM1では、スロットル開度、エンジン回転数、車速およびシフトセンサ出力により、クラッチ容量をコントロールしている。これにより、自動二輪車1をスロットル操作のみでエンスト(エンジンストップまたはエンジンストール(engine stall))することなく発進可能であり、かつシフト操作のみで変速可能である。ただし、アイドリング相当の極低速時には自動でクラッチ装置26が切断することがある。また、オートモードM1では、クラッチレバー4bを握ることでマニュアル介入モードM3となり、クラッチ装置26を任意に切ることも可能である。 In the auto mode M1, the clutch control is performed automatically, and the motorcycle 1 can run without operating the lever. In the auto mode M1, the clutch capacity is controlled based on the throttle opening, engine speed, vehicle speed, and shift sensor output. Thus, the motorcycle 1 can be started without stalling (engine stop or engine stall) only by throttle operation, and can be shifted only by shift operation. However, at an extremely low speed equivalent to idling, the clutch device 26 may be automatically disconnected. In the automatic mode M1, the manual intervention mode M3 is established by gripping the clutch lever 4b, and the clutch device 26 can be arbitrarily disengaged.
 一方、マニュアルモードM2では、乗員によるレバー操作により、クラッチ容量をコントロールする。オートモードM1とマニュアルモードM2とは、停車中にクラッチ制御モード切替スイッチ59(図4参照)を操作することで切り替え可能である。なお、クラッチ制御装置60Aは、マニュアル系M2A(マニュアルモードM2又はマニュアル介入モードM3)への遷移時にレバー操作が有効であることを示すインジケータを備えてもよい。 On the other hand, in the manual mode M2, the clutch capacity is controlled by the lever operation by the occupant. The automatic mode M1 and the manual mode M2 can be switched by operating the clutch control mode changeover switch 59 (see FIG. 4) while the vehicle is stopped. Note that the clutch control device 60A may include an indicator indicating that the lever operation is valid at the time of transition to the manual system M2A (manual mode M2 or manual intervention mode M3).
 マニュアルモードM2は、クラッチ制御を手動で行うことが基本であり、クラッチレバー4bの作動角度に応じてクラッチ油圧を制御可能である。これにより、乗員の意思のままにクラッチ装置26の断接をコントロール可能であり、かつアイドリング相当の極低速時にもクラッチ装置26を接続して走行可能である。ただし、レバー操作によってはエンストすることがあり、かつスロットル操作のみでの自動発進も不可である。なお、マニュアルモードM2であっても、シフト操作時にはクラッチ制御が自動で介入する。 In the manual mode M2, the clutch control is basically performed manually, and the clutch oil pressure can be controlled according to the operating angle of the clutch lever 4b. Thus, the connection and disconnection of the clutch device 26 can be controlled with the intention of the occupant, and the clutch device 26 can be connected and run even at an extremely low speed equivalent to idling. However, the engine may stall depending on the operation of the lever, and it is impossible to automatically start only by operating the throttle. Even in the manual mode M2, the clutch control automatically intervenes during the shift operation.
 オートモードM1では、クラッチアクチュエータ50により自動でクラッチ装置26の断接が行われるが、クラッチレバー4bに対するマニュアルクラッチ操作が行われることで、クラッチ装置26の自動制御に一時的に手動操作を介入させることが可能である(マニュアル介入モードM3)。 In the auto mode M1, the clutch device 50 is automatically connected and disconnected by the clutch actuator 50. However, the manual operation is temporarily performed in the automatic control of the clutch device 26 by performing the manual clutch operation on the clutch lever 4b. Is possible (manual intervention mode M3).
 図6に示すように、クラッチレバー4bの操作量(回動角度)とクラッチレバー操作量センサ(クラッチ操作量センサ)4cの出力値とは、互いに比例関係(相関関係)にある。ECU60は、クラッチレバー操作量センサ4cの出力値に基づいて、クラッチ装置26の目標油圧を演算する。スレーブシリンダ28に生じる実際の油圧(スレーブ油圧)は、目標油圧に対して圧損分だけ遅れて追従する。 As shown in FIG. 6, the operation amount (rotation angle) of the clutch lever 4b and the output value of the clutch lever operation amount sensor (clutch operation amount sensor) 4c are in a proportional relationship (correlation). The ECU 60 calculates the target oil pressure of the clutch device 26 based on the output value of the clutch lever operation amount sensor 4c. The actual hydraulic pressure (slave hydraulic pressure) generated in the slave cylinder 28 follows the target hydraulic pressure with a delay corresponding to the pressure loss.
<マニュアルクラッチ操作>
 図1に示すように、操向ハンドル4aの左グリップの基端側(車幅方向内側)には、クラッチ手動操作子としてのクラッチレバー4bが取り付けられている。クラッチレバー4bは、クラッチ装置26とケーブルや油圧等を用いた機械的な接続がなく、ECU60にクラッチ作動要求信号を発信する操作子として機能する。すなわち、自動二輪車1は、クラッチレバー4bとクラッチ装置26とを電気的に接続したクラッチバイワイヤシステムを採用している。
<Manual clutch operation>
As shown in FIG. 1, a clutch lever 4b as a manual clutch operator is attached to the base end side (inside in the vehicle width direction) of the left grip of the steering handle 4a. The clutch lever 4b does not have a mechanical connection with the clutch device 26 using a cable, hydraulic pressure, or the like, and functions as an operator that transmits a clutch operation request signal to the ECU 60. That is, the motorcycle 1 employs a clutch-by-wire system in which the clutch lever 4b and the clutch device 26 are electrically connected.
 図4を併せて参照し、クラッチレバー4bには、クラッチレバー4bの操作量(回動角度)を検出するクラッチレバー操作量センサ4cが一体的に設けられている。クラッチレバー操作量センサ4cは、クラッチレバー4bの操作量を電気信号に変換して出力する。クラッチレバー4bの操作が有効な状態(マニュアル系M2A)において、ECU60は、クラッチレバー操作量センサ4cの出力に基づき、クラッチアクチュエータ50を駆動する。なお、クラッチレバー4bとクラッチレバー操作量センサ4cとは、相互に一体でも別体でもよい。 併 せ Referring also to FIG. 4, the clutch lever 4b is integrally provided with a clutch lever operation amount sensor 4c for detecting an operation amount (rotation angle) of the clutch lever 4b. The clutch lever operation amount sensor 4c converts the operation amount of the clutch lever 4b into an electric signal and outputs the electric signal. When the operation of the clutch lever 4b is valid (manual system M2A), the ECU 60 drives the clutch actuator 50 based on the output of the clutch lever operation amount sensor 4c. Note that the clutch lever 4b and the clutch lever operation amount sensor 4c may be integrated with each other or separate from each other.
 自動二輪車1は、クラッチ操作の制御モードを切り替えるクラッチ制御モード切替スイッチ59を備えている。クラッチ制御モード切替スイッチ59は、所定の条件下において、クラッチ制御を自動で行うオートモードM1と、クラッチレバー4bの操作に応じてクラッチ制御を手動で行うマニュアルモードM2と、の切り替えを任意に行うことを可能とする。例えば、クラッチ制御モード切替スイッチ59は、操向ハンドル4aに取り付けられたハンドルスイッチに設けられている。これにより、通常の運転時に乗員が容易に操作することができる。 The motorcycle 1 includes a clutch control mode changeover switch 59 for switching the control mode of the clutch operation. The clutch control mode changeover switch 59 arbitrarily switches between an auto mode M1 for automatically performing clutch control and a manual mode M2 for manually performing clutch control in accordance with an operation of the clutch lever 4b under predetermined conditions. To make things possible. For example, the clutch control mode changeover switch 59 is provided on a handle switch attached to the steering handle 4a. This allows the occupant to easily operate during normal driving.
 図6を併せて参照し、クラッチレバー4bは、乗員による握り込み操作がされることなく解放されてクラッチ接続側に回動した解放状態と、乗員の握り込みによってグリップ側(クラッチ切断側)に回動してグリップに突き当たった突き当て状態と、の間で回動可能である。クラッチレバー4bは、乗員による握り込み操作から解放されると、初期位置である解放状態に戻るよう付勢されている。 Referring also to FIG. 6, the clutch lever 4b is released without being squeezed by the occupant and rotated to the clutch connection side, and the clutch lever 4b is moved to the grip side (clutch disengagement side) by the occupant's grasp. It is rotatable between an abutting state in which it rotates and hits the grip. When the clutch lever 4b is released from the gripping operation by the occupant, the clutch lever 4b is urged to return to the released state, which is the initial position.
 例えば、クラッチレバー操作量センサ4cは、クラッチレバー4bを完全に握り込んだ状態(突き当て状態)で出力電圧をゼロとし、この状態からクラッチレバー4bのリリース動作(クラッチ接続側への操作)がなされることに応じて、出力電圧を増加させるよう構成されている。本実施形態では、クラッチレバー操作量センサ4cの出力電圧のうち、クラッチレバー4bの握り始めに存在するレバー遊び分と、握り込んだレバーとグリップとの間に指が入る程度の隙間を確保した突き当て余裕分と、を除いた範囲を、有効電圧の範囲(クラッチレバー4bの有効操作範囲)に設定している。 For example, the clutch lever operation amount sensor 4c sets the output voltage to zero in a state where the clutch lever 4b is completely squeezed (abutting state), and from this state, the release operation of the clutch lever 4b (operation to the clutch connection side) is started. It is configured to increase the output voltage in response to what is done. In the present embodiment, of the output voltage of the clutch lever operation amount sensor 4c, a gap is secured between the lever play existing at the start of gripping of the clutch lever 4b and the finger between the gripped lever and the grip. The range excluding the abutment margin is set as the range of the effective voltage (the range of effective operation of the clutch lever 4b).
 具体的に、クラッチレバー4bの突き当て状態から突き当て余裕分だけクラッチレバー4bをリリースした操作量S1から、レバー遊び分が始まるまでクラッチレバー4bをリリースした操作量S2までの間を、有効電圧の下限値E1~上限値E2の範囲に対応するように設定している。この下限値E1~上限値E2の範囲は、マニュアル操作クラッチ容量の演算値のゼロ~MAXの範囲に比例関係で対応している。これにより、機械的ガタやセンサばらつき等の影響を低減し、手動操作によって要求されるクラッチ駆動量の信頼性を高めることができる。なお、クラッチレバー4bの操作量S1のときを有効電圧の上限値E2とし、操作量S2のときを下限値E1とする設定でもよい。 Specifically, an effective voltage is applied between the operation amount S1 in which the clutch lever 4b is released from the abutting state of the clutch lever 4b by the abutment margin and the operation amount S2 in which the clutch lever 4b is released until the lever play starts. Are set to correspond to the range of the lower limit value E1 to the upper limit value E2. The range from the lower limit value E1 to the upper limit value E2 is proportional to the range of the calculated value of the manually operated clutch capacity from zero to MAX. As a result, the effects of mechanical backlash and sensor variations can be reduced, and the reliability of the clutch drive amount required by manual operation can be increased. The upper limit value E2 of the effective voltage may be set when the operation amount S1 of the clutch lever 4b is set, and the lower limit value E1 may be set when the operation amount S2 is set.
<エンスト回避制御>
 次に、自動二輪車1のエンスト回避制御について説明する。
 クラッチ制御装置60A(クラッチバイワイヤシステム)は、マニュアル系M2A(以下、マニュアル系モードという。)でクラッチ装置26を切断および接続する際、クラッチレバー4bの操作量(操作角度)によりクラッチ容量を制御する。クラッチバイワイヤシステムの基本は、クラッチレバー4bの操作量(以下、レバー操作量と略すことがある。)に応じてクラッチ装置26が連動することである。通常は、ECU60においてレバー操作量に応じたクラッチ容量の目標値(クラッチ制御油圧の目標値(目標油圧))が算出される。具体的に、レバー操作量に応じた目標油圧は、クラッチレバー4bの操作角度と目標油圧との相関(実質的に比例関係)を示すマップ(不図示)から検索される。以下、レバー操作量に応じた目標油圧を対操作油圧という。
<Stall avoidance control>
Next, engine stall avoidance control of the motorcycle 1 will be described.
The clutch control device 60A (clutch-by-wire system) controls the clutch capacity by the operation amount (operation angle) of the clutch lever 4b when disconnecting and connecting the clutch device 26 in the manual system M2A (hereinafter referred to as a manual system mode). . The basis of the clutch-by-wire system is that the clutch device 26 is interlocked in accordance with the operation amount of the clutch lever 4b (hereinafter, sometimes abbreviated as lever operation amount). Normally, the ECU 60 calculates the target value of the clutch capacity (the target value of the clutch control oil pressure (the target oil pressure)) according to the lever operation amount. Specifically, the target oil pressure according to the lever operation amount is retrieved from a map (not shown) showing a correlation (substantially proportional relationship) between the operation angle of the clutch lever 4b and the target oil pressure. Hereinafter, the target oil pressure according to the lever operation amount is referred to as an operation oil pressure.
 クラッチ制御装置60Aは、マニュアル系モードでクラッチ装置26を接続する際、クラッチレバー4bの操作によりクラッチ装置26を接続する第一の制御を行いながらも、エンジン回転数とエンジン推定トルクとに応じて、以下の第二の制御を介入させる。第二の制御は、クラッチレバー4bの操作角度によらず、予め設定した手順でクラッチ容量を制限する(油圧目標値を低くする)。 When connecting the clutch device 26 in the manual system mode, the clutch control device 60A performs the first control for connecting the clutch device 26 by operating the clutch lever 4b, but also performs the first control in accordance with the engine speed and the engine estimated torque. The following second control is interposed. In the second control, the clutch capacity is limited according to a preset procedure (lower the hydraulic pressure target value) regardless of the operation angle of the clutch lever 4b.
 クラッチ容量の制限値は、エンジン回転数とエンジン推定トルクとから求める、エンストに対する余裕回転エネルギーから決定される。すなわち、クラッチ接続時にエンジン回転数が低下しても、エンストしない程度のエンジン回転数とエンジン推定トルクとを確保できる場合には、クラッチ容量の制限値を設定しない(クラッチ容量を制限しない)。一方、クラッチ接続時にエンストしない程度のエンジン回転数とエンジン推定トルクとを確保できない場合(エンスト可能性がある場合)には、クラッチ容量の制限値を設定し(クラッチ容量を制限し)、レバー操作量に応じた対操作油圧よりも目標油圧を低くする。 制 限 The limit value of the clutch capacity is determined based on the surplus rotational energy for the engine stall obtained from the engine speed and the estimated engine torque. That is, if the engine speed and the engine estimated torque that do not cause the engine to stall can be ensured even if the engine speed drops when the clutch is engaged, the clutch capacity limit value is not set (the clutch capacity is not limited). On the other hand, if it is not possible to secure the engine speed and the engine estimated torque that do not cause the engine to stall when the clutch is engaged (when there is a possibility of engine stall), a clutch capacity limit value is set (the clutch capacity is limited) and the lever operation is performed. The target oil pressure is set lower than the corresponding operation oil pressure.
 これにより、マニュアル系モードでクラッチ装置26を接続する際に、クラッチレバー4bの操作角度によらず半クラッチ制御が介入する。半クラッチ制御は、クラッチ装置26のクラッチ容量を低下させる。クラッチ容量の低下により、クラッチ装置26に滑り(クラッチスリップ)を発生させる。クラッチスリップにより、クラッチ装置26にクラッチ差回転を発生させる。 Accordingly, when the clutch device 26 is connected in the manual mode, half clutch control is interposed regardless of the operation angle of the clutch lever 4b. The half clutch control reduces the clutch capacity of the clutch device 26. The slip (clutch slip) occurs in the clutch device 26 due to the decrease in the clutch capacity. Due to the clutch slip, the clutch device 26 generates a clutch differential rotation.
 図9を参照し、クラッチ差回転とは、クラッチ装置26の上流側(エンジン側)の回転数(クランク軸の回転数とする)に対する、クラッチ装置26の下流側(駆動輪側)の回転数(メイン軸の回転数とする)の差分である。クラッチ差回転の発生により、エンストしない程度にエンジン回転数が確保される。 Referring to FIG. 9, the clutch differential rotation refers to the rotation speed on the downstream side (drive wheel side) of the clutch device 26 with respect to the rotation speed on the upstream side (engine side) of the clutch device 26 (the rotation speed of the crankshaft). (The rotation speed of the main shaft). Due to the occurrence of the clutch differential rotation, the engine speed is secured to such an extent that the engine does not stall.
 図8を参照し、ECU60は、クラッチ接続開始時から常に、予め定めた規定時間Timedecが経過する前に、エンジン回転数が予め定めたエンスト判断閾値Neidle+αとなる制限クラッチ油圧(制限クラッチ容量)を求める。制限クラッチ油圧とは、クラッチ容量が後述する制限値Tclutchとなる油圧である。この制限クラッチ油圧と現在の目標油圧とを比較し、制限クラッチ油圧が現在の目標油圧以下になると判断したとき(換言すれば、現在の目標油圧でのクラッチ接続ではエンスト可能性有りと判断したとき)、第二の制御(エンスト回避制御)を介入してエンストを回避する。第二の制御は、クラッチレバー4bの操作角度とは切り離してクラッチ装置26を作動させる制御のため、ライダーのクラッチ操作意思に反するといえる。 Referring to FIG. 8, the ECU 60 always provides a limited clutch oil pressure (limited clutch) at which the engine speed reaches a predetermined engine stall determination threshold value Neidle + α before the predetermined specified time Time dec elapses from the start of clutch connection. Capacity). The limited clutch oil pressure is an oil pressure at which the clutch capacity reaches a limit value Tclutch described later. This limit clutch oil pressure is compared with the current target oil pressure, and when it is determined that the limit clutch oil pressure is equal to or less than the current target oil pressure (in other words, when it is determined that there is a possibility of engine stall in the clutch connection at the current target oil pressure). ), Intervening the second control (stall avoidance control) to avoid the engine stall. It can be said that the second control is against the rider's intention to operate the clutch because the control is to operate the clutch device 26 separately from the operation angle of the clutch lever 4b.
 エンスト回避を確実にするためには、エンスト判断閾値を高めに設定することが考えられる。すなわち、エンスト回避制御を余裕をもって早めに介入させることが考えられる。しかし、この場合、ライダーの意思に反するエンスト回避制御の介入頻度が高まり、ライダーに違和感を与える可能性がある。 In order to ensure the engine stall avoidance, it is conceivable to set the engine stall determination threshold to a higher value. That is, it is conceivable that the engine stall avoidance control is intervened early with a margin. However, in this case, the frequency of intervention of the engine stall avoidance control contrary to the intention of the rider increases, and the rider may feel uncomfortable.
 本実施形態では、可能な限りライダーの意思を尊重した上で、エンストを確実に回避するために、以下の制御を行う。
 ECU60は、クラッチ接続開始時から常に(ECU60の計算周期(例えば5msec)毎に)、規定時間Timedec経過後にエンジン回転数がエンスト判断閾値Neidle+αとなる制限クラッチ油圧を予測し、この制限クラッチ油圧と現在の目標油圧とを比較して、エンスト回避制御の介入判断を行う。規定時間(Timedec)は、クラッチ切断に必要な時間(100msec程度の所定値)であり、ECU60がクラッチ切断指示を発信してから実際にクラッチの切断が開始されるまでのタイムラグに相当する。
In the present embodiment, the following control is performed in order to avoid the engine stall while respecting the intention of the rider as much as possible.
The ECU 60 predicts the limited clutch oil pressure at which the engine speed becomes equal to the engine stall determination threshold value Neidle + α after the lapse of the specified time Time dec from the start of the clutch connection (every calculation cycle of the ECU 60 (for example, every 5 msec)). The oil pressure is compared with the current target oil pressure to determine the intervention of engine stall avoidance control. The specified time (Time dec ) is a time required for clutch disengagement (a predetermined value of about 100 msec), and corresponds to a time lag from when the ECU 60 issues a clutch disengagement instruction to when clutch disengagement is actually started.
 クラッチ接続時にエンジン回転数が低下するとき、将来(次の規定時間Timedec後)にエンジン回転数がエンスト判断閾値Neidle+αとなる制限クラッチ油圧を予測し、この制限クラッチ油圧が現在の目標油圧以下となるように、クラッチ容量(目標油圧)を制限する。クラッチ接続開始時にエンジン回転数が低下し始めたときのエンジン回転数を、クラッチ接続時回転数Neidle+α+βとする。 When the engine speed drops when the clutch is engaged, a limited clutch oil pressure at which the engine speed will become the engine stall determination threshold value Neidle + α in the future (after the next specified time Time dec ) is predicted, and this limited clutch oil pressure becomes the current target oil pressure. The clutch capacity (target oil pressure) is limited as follows. The engine speed at the time when the engine speed starts to decrease at the start of the clutch engagement is defined as the clutch engagement speed Neidle + α + β.
 次に、クラッチ容量(目標油圧)の制限値Tclutchの算出方法について説明する。
 まず、表1は、この説明で用いるパラメータの一覧表である。
Next, a method of calculating the limit value Tclutch of the clutch capacity (target oil pressure) will be described.
First, Table 1 is a list of parameters used in this description.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施形態では、現在のエンジン回転数に対して、クラッチ接続によるエンジン回転数の低下が下記条件となるように、クラッチ容量の制限値Tclutchを設定する。
 まず、図8のグラフを参照し、エンジン回転数Neが、図中「Neidle+α+β」(クラッチ接続時回転数)から「Neidle+α」(エンスト判断閾値)まで低下するために要する時間を、図中「Timedec」(規定時間、実質100msec)以上確保することを考える。
In the present embodiment, the clutch capacity limit value Tclutch is set such that a decrease in the engine speed due to the clutch connection becomes the following condition with respect to the current engine speed.
First, referring to the graph of FIG. 8, the time required for the engine speed Ne to decrease from “Ne idle + α + β” (the speed at the time of clutch engagement ) to “Ne idle + α” (the engine stall determination threshold) in the diagram is In the figure, it is assumed that “Time dec ” (specified time, substantially 100 msec) or more is secured.
 クラッチ装置26に滑りが生じている状態におけるクラッチ上流側の運動方程式は、下記数式1~数式3に示される。 The equations of motion on the upstream side of the clutch when the slippage occurs in the clutch device 26 are shown in the following equations (1) to (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記数式1~数式3より、クラッチ容量の制限値Tclutchの範囲を算出する(下記数式4)。式中「β」は、クラッチ接続時回転数Neidle+α+βとエンスト判断閾値Neidle+αとの差分に相当する。数式4では、エンジン回転数の低下側のみ対象とするため、差分βは負の値となる。 The range of the clutch capacity limit value T clutch is calculated from Equations 1 to 3 above (Equation 4 below). In the equation, “β” corresponds to a difference between the clutch engagement rotational speed Ne idle + α + β and the engine stall determination threshold Ne idle + α. In Expression 4, the difference β is a negative value because only the side on which the engine speed decreases is considered.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記数式4より、クラッチ容量の制限値Tclutchの範囲は、下記数式5に示される。 From the above equation (4), the range of the clutch capacity limit value T clutch is represented by the following equation (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 数式5の範囲で得られるクラッチ容量の制限値Tclutchを第一制限値Aとする。第一制限値Aは、規定時間Timedecと、クラッチ接続時回転数Neidle+α+βとエンスト判断閾値Neidle+αとの差分βと、に基づいて算出されるといえる。 A clutch capacity limit value T clutch obtained in the range of Expression 5 is set as a first limit value A. It can be said that the first limit value A is calculated based on the specified time Time dec and the difference β between the clutch engagement rotational speed Ne idle + α + β and the engine stall determination threshold value Ne idle + α.
 一方、エンストタフネス(エンストのし難さ)の向上のために、エンジントルクによらず、エンジン回転数に応じたクラッチ容量の制限値の設定も可能とする。この制限値は、縦軸を制限油圧、横軸をエンジン回転数とした図10のマップより得られる。このマップで得られるクラッチ容量の制限値Tclutchを第二制限値Bとする。 On the other hand, in order to improve the engine toughness (difficulty of engine stall), it is also possible to set a limit value of the clutch capacity according to the engine speed without depending on the engine torque. This limit value is obtained from the map in FIG. 10 in which the vertical axis represents the limited hydraulic pressure and the horizontal axis represents the engine speed. The clutch capacity limit value T clutch obtained from this map is defined as a second limit value B.
 最終的に、クラッチ容量(目標油圧)の制限値Tclutchは、下記表2のように設定される。 Finally, the limit value T clutch of the clutch capacity (target oil pressure) is set as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2に示すように、エンジン回転数がNeidle以下およびNeidle+α以下の範囲にあるとき、クラッチ容量の制限値Tclutchは、クラッチ装置26の引きずりトルクまでを許容する程度に設定される。
 また、エンジン回転数がNeidle+α+β以上の範囲にあるとき、クラッチ容量の制限値Tclutchは、第一制限値Aおよび第二制限値Bの内、何れか低い値が選択される。
As shown in Table 2, when the engine speed is in the range of Neidle or less and Neidle + α or less, the clutch capacity limit value T clutch is set to such an extent that the drag torque of the clutch device 26 is allowed.
When the engine speed is in the range of Neidle + α + β or more, as the clutch capacity limit value T clutch , a lower value is selected from the first limit value A and the second limit value B.
 図11、図12のグラフを参照し、クラッチ制御パラメータの時間変化について説明する。
 図11、図12のグラフは、クラッチレバー4bが握り込まれてクラッチ装置26が切断された状態から、クラッチレバー4bが解放されてクラッチ装置26が接続されるまでの間の、各パラメータの時間変化を示している。
With reference to the graphs of FIGS. 11 and 12, a description will be given of the time change of the clutch control parameter.
The graphs of FIGS. 11 and 12 show the time of each parameter from the state where the clutch lever 4b is squeezed and the clutch device 26 is disconnected to the time when the clutch lever 4b is released and the clutch device 26 is connected. The change is shown.
 図11中領域Jの左側に示すように、マニュアル系モードでクラッチ装置26を接続する前において、スロットル開度はth1だけ開き、エンジン推定トルクはtq1に維持されている。またこのとき、クラッチ接続時にエンストしない程度にエンジン回転数が高められている。またこのとき、クラッチは切断されており、車速も0相当に維持されている。すなわち、図11の例は、自動二輪車1の発進時を示している。 ス ロ ッ ト ル As shown on the left side of the region J in FIG. 11, before the clutch device 26 is connected in the manual system mode, the throttle opening is opened by th1, and the estimated engine torque is maintained at tq1. At this time, the engine speed is increased to such an extent that the engine does not stall when the clutch is engaged. At this time, the clutch is disengaged, and the vehicle speed is maintained at 0. That is, the example of FIG. 11 shows a state in which the motorcycle 1 starts moving.
 クラッチ接続操作として、クラッチレバー4bを解放側に回動させて操作角度(レバー角度)を減少させると、やがて目標油圧が立ち上がり、追ってスレーブ油圧が立ち上がる(図12中領域K)。スレーブ油圧が立ち上がってタッチポイント油圧TPを越えると、エンジン回転数が減少するとともにカウンタ軸トルクが増加し、車速を上昇させる(自動二輪車1を発進させる)。スレーブ油圧がタッチポイント油圧TPに至ったタイミングt1が、クラッチ接続開始(図8参照)のタイミングに相当する。タイミングt1後、クラッチ装置26が半クラッチ状態となる。 (4) As the clutch connection operation, when the clutch lever 4b is rotated to the release side to reduce the operation angle (lever angle), the target hydraulic pressure rises soon, and the slave hydraulic pressure rises soon (region K in FIG. 12). When the slave oil pressure rises and exceeds the touch point oil pressure TP, the engine speed decreases and the counter shaft torque increases, thereby increasing the vehicle speed (starting the motorcycle 1). The timing t1 at which the slave hydraulic pressure reaches the touch point hydraulic pressure TP corresponds to the timing of starting the clutch connection (see FIG. 8). After the timing t1, the clutch device 26 enters the half-clutch state.
 クラッチ接続開始後、エンジン回転数がクラッチ接続時回転数Neidle+α+βに至るまで減少したタイミングt2が、エンスト回避制御介入のタイミングに相当する。タイミングt2以降の領域Lは、レバー操作量に応じた第一の制御から、レバー操作量によらない第二の制御(エンスト回避制御)に移行する領域である。タイミングt2以降、マニュアル系モードでありながらレバー操作量によらないエンスト回避制御を介入させることで、目標油圧を対操作油圧に対して制限(低減)し、レバー操作量に反して半クラッチ状態を維持する。 The timing t2 at which the engine speed decreases until the engine speed reaches the clutch-engaged speed Neidle + α + β after the clutch connection is started corresponds to the timing of the engine stall avoidance control intervention. An area L after the timing t2 is an area where the first control according to the lever operation amount shifts to the second control (engine stall avoidance control) not depending on the lever operation amount. After the timing t2, the engine pressure is limited (reduced) with respect to the operation oil pressure by intervening the engine stall avoidance control that does not depend on the lever operation amount even in the manual system mode, and the half-clutch state is changed against the lever operation amount. maintain.
 半クラッチ状態を発生させることで、クラッチ差回転が発生し、カウンタ軸トルクは減少する。自動二輪車は、緩やかに車速を増加させながら走行を継続する。やがて、図11に示すように、例えば車速が規定の接続判断閾値V1まで上昇すると、ECU60は、クラッチ装置26を接続しきってもエンストは発生しないと判断し、第一の制御に復帰してレバー操作量に応じたクラッチ制御に戻る。これにより、レバー操作量に応じてリニアにクラッチ装置26を接続することが可能となる。 By generating the half clutch state, clutch differential rotation occurs, and the countershaft torque decreases. The motorcycle continues running while gradually increasing the vehicle speed. Soon, as shown in FIG. 11, when the vehicle speed rises to the prescribed connection determination threshold value V1, the ECU 60 determines that engine stall does not occur even when the clutch device 26 is fully connected, and returns to the first control to return to the first control. The process returns to the clutch control according to the operation amount. This makes it possible to linearly connect the clutch device 26 in accordance with the lever operation amount.
 図8、表1を参照し、ライダーがクラッチレバー4bを握った状態からクラッチレバー4bを解放するまで(エンジン回転数がクラッチ接続時回転数Neidle+α+βからエンスト判断閾値Neidle+αに至るまで)に要する時間を、エンジン回転数低下確保時間Timedecとする。例えば、エンジン回転数低下確保時間Timedecは、エンジン回転数Neの傾き(絶対値)が低下判断値以上になった低下判断状態から、エンジン回転数Neの傾き(絶対値)が低下解消判断値以下となった低下解消状態となるまでの間の時間に相当する。エンジン回転数低下確保時間Timedecは、上記規定時間Timedecに相当する。 Referring to FIG. 8 and Table 1, the rider grips the clutch lever 4b to release the clutch lever 4b (until the engine speed reaches the clutch engagement speed Ne idle + α + β to the engine stall threshold Neidle + α). Is the engine rotation speed reduction securing time Time dec . For example, the engine rotation speed decrease securing time Time dec is determined from the decrease determination state in which the slope (absolute value) of the engine rotation speed Ne is equal to or more than the decrease determination value, and the slope (absolute value) of the engine rotation speed Ne being reduced in reduction determination value. It corresponds to the time until the reduced elimination state becomes as follows. The engine rotation speed reduction ensuring time Time dec corresponds to the above specified time Time dec .
 ECU60は、クラッチ接続時のレバー操作中は常に、制限クラッチ油圧を算出する。制限クラッチ油圧は、エンジン回転数とスロットル開度とから、規定時間経過後にエンスト判断閾値になると予測されるクラッチ油圧である。クラッチ接続時回転数Neidle+α+βとエンスト判断閾値Neidle+αとの差分βは、予め定めた所定値であり、エンストに至るまでの余裕エンジン回転数である。Tengはエンジン推定トルクであり、スロットル開度に基づくマップから算出する。Neidle+αはエンストの可能性があるエンジン回転数、Neidle+α+βはクラッチ制限油圧を計算するエンジン回転数、の意味でもある。 The ECU 60 always calculates the limited clutch oil pressure during the lever operation when the clutch is engaged. The limited clutch oil pressure is a clutch oil pressure that is predicted to become the engine stall determination threshold after a lapse of a specified time from the engine speed and the throttle opening. The difference β between the clutch engagement speed Ne idle + α + β and the engine stall determination threshold value Ne idle + α is a predetermined value, and is a marginal engine speed until the engine stalls. T eng is an estimated engine torque, which is calculated from a map based on the throttle opening. Ne idle + α also means the engine speed at which there is a possibility of engine stall, and Ne idle + α + β also means the engine speed at which the clutch limit hydraulic pressure is calculated.
 ECU60は、エンジン回転数低下確保時間Timedecが経過した後のエンジン回転数が、エンスト判断閾値Neidle+α以下になると、エンストの可能性があると判断する。この場合、ECU60は、クラッチ制御の目標油圧を、レバー操作量に応じた対操作油圧よりも低い油圧(制限油圧)に制限する。 The ECU 60 determines that there is a possibility of engine stall when the engine speed after the engine speed reduction securing time Time dec has elapsed becomes equal to or less than the engine stall determination threshold value Ne idle + α. In this case, the ECU 60 restricts the target hydraulic pressure for clutch control to a hydraulic pressure (a limited hydraulic pressure) lower than the corresponding hydraulic pressure corresponding to the lever operation amount.
 以上説明したように、上記実施形態のクラッチ制御装置60Aは、エンジン13と、変速機21と、エンジン13と変速機21との間の動力伝達を断接するクラッチ装置26と、クラッチ装置26を駆動してクラッチ容量を変更するクラッチアクチュエータ50と、クラッチ装置26を手動で操作可能とするクラッチレバー4bと、クラッチレバー4bの操作量に応じてクラッチ容量の制御目標値(目標油圧)を演算するECU60と、を備え、ECU60は、クラッチレバー4bの操作によりクラッチ装置26を接続する第一の制御を行っている際、エンジン回転数とエンジン推定トルクとに応じて、クラッチレバー4bの操作によらずクラッチ容量を制限する(油圧目標値を低減する)第二の制御を介入する。
 具体的に、ECU60は、予め定めた規定時間Timedecの経過後にエンジン回転数がエンスト判断閾値Neidle+αとなる制限クラッチ油圧を求め、現在の目標油圧と比較し、上記第二の制御を介入する。
As described above, the clutch control device 60 </ b> A of the above embodiment drives the engine 13, the transmission 21, the clutch device 26 for connecting and disconnecting power transmission between the engine 13 and the transmission 21, and the clutch device 26. And a clutch actuator 50 for changing the clutch capacity, a clutch lever 4b for manually operating the clutch device 26, and an ECU 60 for calculating a control target value (target oil pressure) of the clutch capacity according to the operation amount of the clutch lever 4b. When performing the first control for connecting the clutch device 26 by operating the clutch lever 4b, the ECU 60 does not depend on the operation of the clutch lever 4b according to the engine speed and the estimated engine torque. A second control for limiting the clutch capacity (reducing the hydraulic pressure target value) is intervened.
Specifically, the ECU 60 obtains the limited clutch oil pressure at which the engine speed becomes equal to the engine stall determination threshold value Neidle + α after the lapse of a predetermined time period Time dec , compares it with the current target oil pressure, and intervenes the second control. I do.
 この構成によれば、クラッチバイワイヤシステムにおいて、クラッチレバー4bの操作によりクラッチ装置26を接続する第一の制御の際には常に、エンジン回転数とスロットル開度とから、規定時間経過後にエンスト判断閾値となる制限クラッチ油圧(制限クラッチ容量)を求め、この制限クラッチ油圧を目標油圧が上回る(エンスト可能性がある)と判断する場合には、クラッチレバー4bの操作によらない第二の制御を介入する。これにより、ライダーの操作を優先するとエンストしてしまう可能性がある場合にも、エンストする前に第二の制御を介入させてクラッチ容量を制限する(半クラッチ状態とする)ことが可能となる。このため、クラッチ接続操作時の意図せぬエンストを回避することができる。
 また、常に上記判断を行い、エンスト可能性を判断するので、実際のエンジン回転数とスロットル開度とに基づく精度のよいエンスト予測が可能となり、第二の制御(エンスト回避制御)の介入判断の精度が高まる。このため、余裕をもって早めにエンスト回避制御を介入する場合に比べて、エンスト回避制御の介入頻度を少なくし、ライダーに違和感を与えることを抑えることができる。
According to this configuration, in the clutch-by-wire system, at the time of the first control for connecting the clutch device 26 by operating the clutch lever 4b, the engine stop speed and the throttle opening are always determined based on the engine stall determination threshold after the lapse of a predetermined time. Is determined, and if it is determined that the target hydraulic pressure exceeds the limited clutch hydraulic pressure (there is a possibility of engine stall), the second control that does not depend on the operation of the clutch lever 4b is intervened. I do. Accordingly, even when the engine is likely to stall when the rider's operation is prioritized, it is possible to intervene the second control before the engine stalls to limit the clutch capacity (set a half-clutch state). . For this reason, an unintended engine stall at the time of the clutch connection operation can be avoided.
In addition, since the above determination is always made and the possibility of engine stall is determined, accurate engine stall prediction based on the actual engine speed and the throttle opening can be performed, and the intervention determination of the second control (engine stall avoidance control) can be performed. Accuracy increases. Therefore, as compared with a case where the engine stall avoidance control is intervened early with a margin, it is possible to reduce the intervention frequency of the engine stall avoidance control and suppress the rider from feeling uncomfortable.
 上記クラッチ制御装置60Aにおいて、上記規定時間Timedecは、クラッチ切断に必要な時間である。
 すなわち、クラッチ接続時にエンジン回転数が低下するときから、クラッチ切断に必要な時間をカウントし、将来(規定時間Timedec後)に規定のエンジン回転数(下限値)となる制限クラッチ油圧を求めて、この制限クラッチ油圧が目標油圧以下になるか否かを判断する。制限クラッチ油圧が目標油圧以下になると判断される場合には、クラッチレバー4bの操作から独立した第二の制御に切り替えることで、エンストする前にクラッチ容量を制限する。このように、将来のエンジン回転数の下限値を設定してクラッチ容量を制限することで、意図せぬエンストを回避することができる。クラッチ切断に必要な時間(タイムラグ)を考慮するので、クラッチを接続する際、クラッチ接続速度が速すぎてエンストが発生しそうになったときに、すかさずクラッチを切断する指示を出すことで、エンストを回避することができる。
In the clutch control device 60A, the specified time Time dec is a time required for disengaging the clutch.
That is, the time required for disengaging the clutch is counted from the time when the engine speed drops when the clutch is engaged, and the limited clutch oil pressure that will become the specified engine speed (lower limit) in the future (after the specified time Dec ) is calculated. Then, it is determined whether or not the limited clutch hydraulic pressure becomes equal to or lower than the target hydraulic pressure. When it is determined that the limited clutch oil pressure becomes equal to or lower than the target oil pressure, the clutch capacity is limited before the engine stalls by switching to the second control independent of the operation of the clutch lever 4b. By setting the lower limit of the future engine speed and limiting the clutch capacity in this way, unintended engine stall can be avoided. Since the time required for disengaging the clutch (time lag) is taken into account, when connecting the clutch, if the clutch connection speed is too high and an engine stall is likely to occur, an instruction to immediately disengage the clutch will be given, Can be avoided.
 上記クラッチ制御装置60Aにおいて、ECU60は、上記制限クラッチ油圧が目標油圧以下になる場合に、上記第二の制御を介入する。
 すなわち、制限クラッチ油圧が目標油圧以下になる場合には、クラッチレバー4bの操作から独立した第二の制御に切り替えることで、エンストする前にクラッチ容量を制限する。このように、将来のエンジン回転数の下限値を設定してクラッチ容量を制限することで、意図せぬエンストを回避することができる。
In the clutch control device 60A, the ECU 60 intervenes the second control when the limited clutch oil pressure becomes equal to or less than the target oil pressure.
That is, when the limited clutch hydraulic pressure becomes equal to or less than the target hydraulic pressure, the clutch capacity is limited before the engine stalls by switching to the second control independent of the operation of the clutch lever 4b. By setting the lower limit of the future engine speed and limiting the clutch capacity in this way, unintended engine stall can be avoided.
 上記クラッチ制御装置60Aにおいて、上記第二の制御で設定するクラッチ容量の制限値Tclutchは、上記規定時間Timedecと、クラッチ接続時回転数Neidle+α+βとエンスト判断閾値Neidle+αとの差分βと、エンジン推定トルクと、に基づいて算出されてもよい。
 この場合、ECU60は、規定時間Timedecとエンジン回転数の差分βとに基づく変化率とエンジン推定トルクとに基づき、クラッチ操作から切り離したクラッチ容量の制限値Tclutchを設定する。これにより、将来のエンジン回転数の予測に応じてクラッチ容量を制限し、エンストを回避することができる。
In the clutch control device 60A, the clutch capacity limit value T clutch set in the second control is determined by the difference β between the specified time Time dec , the clutch connection rotation speed Ne idle + α + β, and the engine stall determination threshold Ne idle + α. And the estimated engine torque.
In this case, the ECU 60 sets the limit value T clutch of the clutch capacity separated from the clutch operation based on the change rate based on the specified time Time dec and the difference β between the engine speed and the engine estimated torque. As a result, the clutch capacity can be limited in accordance with the prediction of the future engine speed, and engine stall can be avoided.
 上記クラッチ制御装置60Aにおいて、上記第二の制御で設定するクラッチ容量の制限値Tclutchは、エンジン回転数に応じて変化する制限値マップ(図10参照)に基づいて算出されてもよい。
 この場合、ECU60は、エンジン回転数に応じて変化する制限値マップに基づき、クラッチ操作から切り離したクラッチ容量の制限値Tclutchを設定する。これにより、将来のエンジン回転数の予測に応じてクラッチ容量を制限し、エンストを回避することができる。
In the clutch control device 60A, the clutch capacity limit value T clutch set in the second control may be calculated based on a limit value map (see FIG. 10) that changes according to the engine speed.
In this case, the ECU 60 sets a limit value T clutch of the clutch capacity separated from the clutch operation based on a limit value map that changes according to the engine speed. As a result, the clutch capacity can be limited in accordance with the prediction of the future engine speed, and engine stall can be avoided.
 上記クラッチ制御装置60Aにおいて、上記第二の制御で設定するクラッチ容量の制限値Tclutchは、上記第一制限値Aと上記第二制限値Bとを比較して決定される。
 この場合、ECU60は、規定時間Timedecとエンジン回転数の差分βとエンジン推定トルクとに基づく変化率から算出した第一制限値Aと、エンジン回転数に応じて変化する制限値マップから算出した第二制限値Bと、を比較し、例えば相対的に低い値をクラッチ容量の制限値Tclutchとして設定する。これにより、エンジン回転数等に応じた好適な制限値を設定可能となる。そして、将来のエンジン回転数の予測に応じてクラッチ容量を制限し、エンストを回避することができる。
In the clutch control device 60A, the clutch capacity limit value T clutch set in the second control is determined by comparing the first limit value A with the second limit value B.
In this case, the ECU 60 calculates the first limit value A calculated from the rate of change based on the difference β between the prescribed time Dec and the engine speed and the estimated engine torque, and the limit value map that changes according to the engine speed. The second limit value B is compared with, for example, a relatively low value is set as the clutch capacity limit value T clutch . This makes it possible to set a suitable limit value according to the engine speed and the like. Then, the clutch capacity can be limited according to the prediction of the future engine speed, and engine stall can be avoided.
 本発明は上記実施形態に限られるものではなく、例えば、油圧の増加でクラッチを接続し、油圧の低減でクラッチを切断する構成への適用に限らず、油圧の増加でクラッチを切断し、油圧の低減でクラッチを接続する構成に適用してもよい。
 クラッチ操作子は、クラッチレバー4bに限らず、クラッチペダルやその他の種々操作子であってもよい。
 上記実施形態のようにクラッチ操作を自動化した鞍乗り型車両への適用に限らず、マニュアルクラッチ操作を基本としながら、所定の条件下でマニュアルクラッチ操作を行わずに駆動力を調整して変速を可能とする、いわゆるクラッチ操作レスの変速装置を備える鞍乗り型車両にも適用可能である。
 また、上記鞍乗り型車両には、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)又は四輪の車両も含まれ、かつ電気モータを原動機に含む車両も含まれる。
 そして、上記実施形態における構成は本発明の一例であり、当該発明の要旨を逸脱しない範囲で種々の変更が可能である。
The present invention is not limited to the above-described embodiment.For example, the present invention is not limited to application to a configuration in which the clutch is connected by increasing the hydraulic pressure and the clutch is disconnected by reducing the hydraulic pressure. The present invention may be applied to a configuration in which a clutch is connected to reduce the number of clutches.
The clutch operator is not limited to the clutch lever 4b, but may be a clutch pedal or other various operators.
The present invention is not limited to the application to a saddle-ride type vehicle in which the clutch operation is automated as in the above-described embodiment, and the gear shift is performed by adjusting the driving force without performing the manual clutch operation under predetermined conditions, based on the manual clutch operation. The present invention is also applicable to a saddle-ride type vehicle having a so-called clutchless transmission.
The saddle-ride type vehicle includes all vehicles in which a driver rides across a vehicle body, and includes not only motorcycles (including motor-driven bicycles and scooter-type vehicles) but also three wheels (one front wheel and two rear wheels). In addition, vehicles including front two-wheel and rear one-wheel vehicles) or four-wheel vehicles are also included, and vehicles including an electric motor as a prime mover are also included.
The configuration in the above embodiment is an example of the present invention, and various changes can be made without departing from the spirit of the present invention.
 1 自動二輪車(鞍乗り型車両)
 4b クラッチレバー(クラッチ操作子)
 4c クラッチレバー操作量センサ(クラッチ操作量センサ)
 13 エンジン
 21 変速機
 26 クラッチ装置
 50 クラッチアクチュエータ
 60 ECU(制御部)
 60A クラッチ制御装置
 A 第一制限値
 B 第二制限値
 Ne エンジン回転数
 Neidle+α エンスト判断閾値
 Neidle+α+β クラッチ接続時回転数
 Tclutch 制限値
 Teng エンジン推定トルク
 Timedec 規定時間、エンジン回転数低下確保時間
 β 差分
1. Motorcycles (saddle-riding type vehicles)
4b Clutch lever (clutch operator)
4c Clutch lever operation amount sensor (clutch operation amount sensor)
13 engine 21 transmission 26 clutch device 50 clutch actuator 60 ECU (control unit)
60A Clutch control device A First limit value B Second limit value Ne Engine speed Neidle + α Engine stall threshold Neidle + α + β Clutch engagement speed T clutch limit value Teng engine estimated torque Time dec Specified time, engine speed reduction Secure time β difference

Claims (7)

  1.  エンジンと、
     変速機と、
     前記エンジンと前記変速機との間の動力伝達を断接するクラッチ装置と、
     前記クラッチ装置を駆動してクラッチ容量を変更するクラッチアクチュエータと、
     前記クラッチ装置を手動で操作可能とするクラッチ操作子と、
     前記クラッチ操作子の操作量に応じて前記クラッチ容量の制御目標値を演算する制御部と、
    を備え、
     前記制御部は、前記クラッチ操作子の操作により前記クラッチ装置を接続する第一の制御を行っている際、エンジン回転数とエンジン推定トルクとに応じて、前記クラッチ操作子の前記操作によらず前記クラッチ容量を制限する第二の制御を介入することを特徴とするクラッチ制御装置。
    Engine and
    A transmission,
    A clutch device for connecting and disconnecting power transmission between the engine and the transmission;
    A clutch actuator that drives the clutch device to change a clutch capacity;
    A clutch operator for manually operating the clutch device,
    A control unit that calculates a control target value of the clutch capacity according to an operation amount of the clutch operator;
    With
    The control unit is configured to perform the first control for connecting the clutch device by operating the clutch operator, according to an engine speed and an estimated engine torque, regardless of the operation of the clutch operator. A clutch control device intervening a second control for limiting the clutch capacity.
  2.  前記制御部は、予め定めた規定時間の経過後に前記エンジン回転数がエンスト判断閾値となる制限クラッチ油圧を求め、現在の目標油圧と比較し、前記第二の制御を介入することを特徴とする請求項1に記載のクラッチ制御装置。 The control unit obtains a limited clutch oil pressure at which the engine speed becomes an engine stall determination threshold after a predetermined time elapses, compares it with a current target oil pressure, and intervenes in the second control. The clutch control device according to claim 1.
  3.  前記規定時間は、クラッチ切断に必要な時間であることを特徴とする請求項2に記載のクラッチ制御装置。 The clutch control device according to claim 2, wherein the specified time is a time required for disengaging the clutch.
  4.  前記制御部は、前記制限クラッチ油圧が目標油圧以下になる場合に、前記第二の制御を介入することを特徴とする請求項3に記載のクラッチ制御装置。 4. The clutch control device according to claim 3, wherein the control unit intervenes the second control when the limited clutch hydraulic pressure becomes equal to or less than a target hydraulic pressure. 5.
  5.  前記第二の制御で設定する前記クラッチ容量の制限値は、前記規定時間と、クラッチ接続時回転数と前記エンスト判断閾値との差分と、前記エンジン推定トルクと、に基づいて算出されることを特徴とする請求項3又は4に記載のクラッチ制御装置。 The clutch capacity limit value set in the second control is calculated based on the specified time, a difference between a clutch engagement rotation speed and the engine stall determination threshold, and the engine estimated torque. The clutch control device according to claim 3 or 4, wherein
  6.  前記第二の制御で設定する前記クラッチ容量の制限値は、前記エンジン回転数に応じて変化する制限値マップに基づいて算出されることを特徴とする請求項3又は4に記載のクラッチ制御装置。 The clutch control device according to claim 3, wherein the clutch capacity limit value set in the second control is calculated based on a limit value map that changes according to the engine speed. .
  7.  前記第二の制御で設定する前記クラッチ容量の制限値は、前記規定時間と、クラッチ接続時回転数と前記エンスト判断閾値との差分と、前記エンジン推定トルクと、に基づいて算出される第一制限値と、前記制限値マップに基づいて算出される第二制限値と、を比較して決定されることを特徴とする請求項6に記載のクラッチ制御装置。 The limit value of the clutch capacity set in the second control is a first value calculated based on the specified time, a difference between a clutch engagement rotation speed and the engine stall determination threshold, and the engine estimated torque. The clutch control device according to claim 6, wherein the clutch control device is determined by comparing a limit value with a second limit value calculated based on the limit value map.
PCT/JP2019/036889 2018-09-26 2019-09-20 Clutch control device WO2020066869A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019004807.4T DE112019004807B4 (en) 2018-09-26 2019-09-20 Clutch control device
JP2020549102A JP7003288B2 (en) 2018-09-26 2019-09-20 Clutch control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180744 2018-09-26
JP2018180744 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066869A1 true WO2020066869A1 (en) 2020-04-02

Family

ID=69949690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036889 WO2020066869A1 (en) 2018-09-26 2019-09-20 Clutch control device

Country Status (3)

Country Link
JP (1) JP7003288B2 (en)
DE (1) DE112019004807B4 (en)
WO (1) WO2020066869A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112094A (en) * 2009-11-24 2011-06-09 Yamaha Motor Co Ltd Transmission
JP2014070681A (en) * 2012-09-28 2014-04-21 Honda Motor Co Ltd Twin clutch control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900700B2 (en) 2007-01-30 2012-03-21 本田技研工業株式会社 Clutch control device
JP2014035065A (en) 2012-08-10 2014-02-24 Yamaha Motor Co Ltd Saddle type vehicle
JP5918676B2 (en) 2012-09-28 2016-05-18 本田技研工業株式会社 Twin clutch control device
JP2018180744A (en) 2017-04-07 2018-11-15 キヤノン株式会社 Application execution environment operating on controller of image forming apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112094A (en) * 2009-11-24 2011-06-09 Yamaha Motor Co Ltd Transmission
JP2014070681A (en) * 2012-09-28 2014-04-21 Honda Motor Co Ltd Twin clutch control device

Also Published As

Publication number Publication date
DE112019004807T5 (en) 2021-08-19
JPWO2020066869A1 (en) 2021-08-30
JP7003288B2 (en) 2022-01-20
DE112019004807B4 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP2018162796A (en) Shift control apparatus
JP7064874B2 (en) Clutch control device and clutch control system
JP6845948B2 (en) Transmission
WO2019003500A1 (en) Vehicular transmission system
US10760629B2 (en) Clutch control apparatus
JPWO2020213333A1 (en) Clutch control device
JP6726810B2 (en) Clutch control device
JP6722831B2 (en) Clutch control device
JP7068465B2 (en) Clutch control device
JP6826522B2 (en) Clutch control device
WO2020066869A1 (en) Clutch control device
WO2020189426A1 (en) Clutch control device
JP6953633B2 (en) Clutch control device
WO2020184552A1 (en) Transmission device and transmission device control method
CN109838475B (en) Clutch control device
WO2020195895A1 (en) Clutch control device
WO2020039757A1 (en) Clutch control apparatus and hydraulic equipment control device
WO2020196045A1 (en) Clutch control device for saddle-type vehicle
WO2019003978A1 (en) Vehicular transmission system
JPWO2020195779A1 (en) Clutch control device for saddle-mounted vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549102

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19864699

Country of ref document: EP

Kind code of ref document: A1