WO2020195474A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2020195474A1
WO2020195474A1 PCT/JP2020/007669 JP2020007669W WO2020195474A1 WO 2020195474 A1 WO2020195474 A1 WO 2020195474A1 JP 2020007669 W JP2020007669 W JP 2020007669W WO 2020195474 A1 WO2020195474 A1 WO 2020195474A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
film
processing unit
liquid film
Prior art date
Application number
PCT/JP2020/007669
Other languages
French (fr)
Japanese (ja)
Inventor
弘明 ▲高▼橋
元 白川
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN202080021459.3A priority Critical patent/CN113574340B/en
Priority to KR1020217029411A priority patent/KR102626637B1/en
Publication of WO2020195474A1 publication Critical patent/WO2020195474A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/005Drying solid materials or objects by processes not involving the application of heat by dipping them into or mixing them with a chemical liquid, e.g. organic; chemical, e.g. organic, dewatering aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices

Definitions

  • the present invention relates to a substrate processing method including a process of wet-treating a substrate having an uneven pattern on the surface and then drying the substrate, and a substrate processing apparatus for executing the process.
  • the processing unit for forming a liquid film on the substrate surface and the processing unit for drying the substrate are separate bodies. Therefore, a transport mechanism is provided for transporting the substrate between these units.
  • Patent Document 1 it is necessary to transport the substrate while maintaining the liquid film formed on the surface. Therefore, the substrate must be kept in a horizontal position at all times, and the transport speed must be relatively low. However, the surface of the substrate may be exposed due to the outflow or evaporation of the liquid due to vibration during transportation, which may cause the pattern to collapse.
  • the physical property value generally known as the freezing point of a liquid is a value when the liquid is in a free space or a relatively large space.
  • the freezing point is significantly lower than the above-mentioned general numerical value. Therefore, unless the cooling temperature is sufficiently lowered and a long cooling time is given, the liquid that has permeated into the fine pattern does not solidify sufficiently and remains in a liquid state. As a result, the sublimation-drying process after transportation is substantially not "sublimation" but through the liquid phase, which may cause a gas-liquid interface to collapse the pattern.
  • the present invention has been made in view of the above problems, and in a substrate processing technique in which a substrate having a concavo-convex pattern formed on its surface is subjected to a wet treatment and then dried, while ensuring ease of transportation between processing units. Moreover, it is an object of the present invention to provide a technique capable of surely preventing pattern collapse.
  • a substrate having an uneven pattern formed on the surface is wet-treated, and then the surface of the substrate is subjected to an organic solvent.
  • the processing unit includes a step of supplying a solution to the coagulation film to dissolve the coagulation film, and a step of removing the solution from the surface of the substrate to dry the substrate.
  • a wet treatment is performed on a substrate having an uneven pattern formed on the surface, a treatment of covering the surface of the substrate with a liquid film, and a treatment of covering the surface of the substrate with a liquid film.
  • the first processing unit that cools the liquid film to a temperature lower than the freezing point of the liquid constituting the liquid film to coagulate the liquid film and convert it into a coagulating film, and the substrate on which the coagulating film is formed are received and described.
  • a second processing unit that supplies a solution to the coagulation film to dissolve the coagulation film, and a process of removing the solution from the surface of the substrate to dry the substrate, and the first processing unit.
  • a transport mechanism for transporting the substrate on which the solidifying film is formed is provided from the processing unit to the second processing unit.
  • the transfer of the substrate from the first processing unit to the second processing unit is performed with the surface of the substrate covered with a solidifying film. Therefore, the risk of exposure of the substrate surface due to the liquid flowing off or evaporating from the substrate surface during transportation is sufficiently low. Therefore, the transfer of the substrate is relatively easy.
  • the solidified film is dissolved with a dissolving solution and then the dissolving solution is removed to dry the substrate. Therefore, unlike the sublimation drying technique in which the coagulation film is directly sublimated, the fact that the liquid that has entered the inside of the pattern is not solidified does not cause the pattern to collapse. That is, according to the present invention, it is possible to prevent the collapse of even a fine pattern.
  • the liquid inside the pattern is not solidified.
  • the liquid inside the pattern is not solidified.
  • a substrate having an uneven pattern formed on its surface is wet-treated and then dried to ensure the ease of transporting the substrate, and the pattern is fine. Can surely prevent its collapse.
  • FIG. 1 It is a figure which shows the schematic structure of one Embodiment of the substrate processing apparatus which concerns on this invention. It is a figure which shows the schematic structure of one Embodiment of the substrate processing apparatus which concerns on this invention. It is a figure which shows the structure and installation environment of a center robot. It is a figure which shows the substrate processing unit which performs a wet process. It is a figure which shows the substrate processing unit which performs a wet process. It is a figure which shows the substrate processing unit which performs a wet process. It is a figure which shows the substrate processing unit which performs supercritical drying processing. It is a flowchart which shows the operation of this substrate processing apparatus. It is a flowchart which shows the solidification process.
  • FIG. 1A and 1B are diagrams showing a schematic configuration of an embodiment of a substrate processing apparatus according to the present invention. More specifically, FIG. 1A is a plan view showing a substrate processing apparatus 1 according to an embodiment of the present invention, and FIG. 1B is a side view showing a substrate processing apparatus 1. It should be noted that these figures do not show the appearance of the device, but are schematic views showing the internal structure of the device in an easy-to-understand manner by excluding the outer wall panel and other partial configurations of the device.
  • the substrate processing device 1 is, for example, a device installed in a clean room for performing a predetermined process on a substrate.
  • the "board" in the present embodiment includes a semiconductor substrate, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for plasma display, a substrate for FED (Field Emission Display), a substrate for an optical disk, and a magnetic disk.
  • Various substrates such as substrates and substrates for photomagnetic disks can be applied.
  • a substrate processing apparatus mainly used for processing a semiconductor substrate will be described as an example with reference to the drawings. However, it is also applicable to the processing of various substrates exemplified above.
  • the substrate processing apparatus 1 includes a substrate processing unit 10 that processes the substrate S, and an indexer unit 20 that is coupled to the substrate processing unit 10.
  • the indexer unit 20 includes a container holding unit 21 and an indexer robot 22.
  • the container holding unit 21 can hold a plurality of containers C for accommodating the substrate S.
  • the indexer robot 22 can access the container C held by the container holding portion 21 to take out the unprocessed substrate S from the container C or store the processed substrate in the container C.
  • a FOUP Front Opening Unified Pod
  • SMIF Standard Mechanical Interface
  • OC Open Cassette
  • a plurality of substrates S are housed in each container C in a substantially horizontal posture.
  • the indexer robot 22 has a base portion 221 fixed to the device housing, an articulated arm 222 rotatably provided around a vertical axis with respect to the base portion 221 and a hand attached to the tip of the articulated arm 222. It is equipped with 223.
  • the hand 223 has a structure in which the substrate S can be placed and held on the upper surface thereof. Since an indexer robot having such an articulated arm and a hand for holding a substrate is known, detailed description thereof will be omitted.
  • the substrate processing unit 10 includes a center robot 15 arranged substantially in the center in a plan view, and a plurality of substrate processing units arranged so as to surround the center robot 15. Specifically, a plurality of (four in this example) substrate processing units 11A, 12A, 13A, and 14A are arranged facing the space in which the center robot 15 is arranged. Each of these substrate processing units 11A to 14A executes a predetermined process on the substrate S. When these processing units have the same function, parallel processing of a plurality of boards becomes possible. It is also possible to combine processing units having different functions so that different processes are sequentially executed on one substrate.
  • the substrate processing apparatus 1 of this embodiment is used for a series of treatments in which the substrate S is wet-treated with a predetermined treatment liquid and then the substrate S is dried.
  • two of the four substrate processing units, 11A and 12A are responsible for wet processing on the substrate S, and internally have a configuration for enabling this.
  • the other two substrate processing units 13A and 14A carry out a process (drying process) of removing the residual liquid from the substrate S after the wet process and drying the substrate S, and internally have a configuration for enabling this. I have.
  • a substrate processing main body that executes processing on the substrate S is housed in a processing chamber provided with a shutter that can be opened and closed on the side surface facing the center robot 15. That is, the substrate processing unit 11A has a processing chamber 110 and a shutter 111 provided on the side surface of the processing chamber 110 facing the center robot 15.
  • the shutter 111 is provided so as to cover an opening (not shown) provided on the side surface of the processing chamber 110 facing the center robot 15. When the shutter 111 is opened, the opening is exposed, and the substrate S can be carried in and out through the opening. Further, when the processing for the substrate S is executed in the processing chamber 110, the shutter 111 is closed to block the atmosphere in the processing chamber 110 from the outside.
  • the substrate processing unit 12A has a processing chamber 120 and a shutter 121 provided on the side surface of the processing chamber 120 facing the center robot 15.
  • the substrate processing unit 13A has a processing chamber 130 and a shutter 131 provided on the side surface of the processing chamber 130 facing the center robot 15.
  • the substrate processing unit 14A has a processing chamber 140 and a shutter 141 provided on the side surface of the processing chamber 140 facing the center robot 15.
  • a set of substrate processing units arranged in the horizontal direction in this way is arranged in a plurality of stages (two stages in this example) in the vertical direction. That is, as shown in FIG. 1B, the substrate processing unit 11B is provided below the substrate processing unit 11A.
  • the configuration and function of the substrate processing unit 11B are the same as those of the substrate processing unit 11A.
  • a substrate processing unit 12B having the same configuration and the same function as the substrate processing unit 12A is provided below the substrate processing unit 12A.
  • a substrate processing unit 13B (FIG. 2) is provided below the substrate processing unit 13A, and a substrate processing unit (not shown) is also provided below the substrate processing unit 14A.
  • the number of stages of the substrate processing unit is not limited to 2 illustrated here and is arbitrary. Further, the number of substrate processing units arranged per stage is not limited to the above.
  • FIG. 2 is a diagram showing the configuration and installation environment of the center robot.
  • the center robot 15 can receive the unprocessed substrate S from the indexer robot 22, and can deliver the processed substrate S to the indexer robot 22. More specifically, the center robot 15 includes a base portion 151, an elevating base 152, a rotation base 153, a telescopic arm 154, and a hand 155.
  • the base portion 151 is fixed to the bottom frame of the substrate processing portion 10 and supports each configuration of the center robot 15.
  • the elevating base 152 is attached to the base portion 151, and the rotating base 153 is attached to the upper part of the elevating base 152.
  • the elevating base 152 can be expanded and contracted in the vertical direction, and the rotation base 153 is moved up and down by this expansion and contraction movement.
  • the rotation base 153 is rotatable around a vertical axis with respect to the elevating base 152.
  • the base of the telescopic arm 154 is attached to the rotation base 153, and the hand 155 is attached to the tip of the telescopic arm 154.
  • the telescopic arm 154 expands and contracts in a predetermined range in the horizontal direction.
  • the hand 155 has a structure in which the substrate S can be placed and held on the upper surface thereof, and the substrate S can be delivered to and from the hand 223 of the indexer robot 22. Since a hand mechanism having such a structure is known, detailed description thereof will be omitted.
  • the substrate S held by the hand 155 can be moved in the horizontal direction. Further, by rotating the rotation base 153 with respect to the elevating base 152, the direction of horizontal movement of the substrate S can be defined. Further, the height of the substrate S, that is, the vertical position can be adjusted by raising and lowering the rotation base 153 by the elevating base 152.
  • the processing for the substrate S is executed as follows.
  • the untreated substrate S is housed in the container C placed on the container holding portion 21.
  • the indexer robot 22 takes out one unprocessed substrate S from the container C and hands it over to the center robot 15.
  • the center robot 15 carries the received substrate S into a substrate processing unit that executes processing on the substrate S.
  • the center robot 15 adjusts the height of the rotation base 153 by the elevating base 152, and holds the substrate S held by the hand 155 on the substrate. It is positioned at the height of the shutter 111 on the side surface of the processing chamber 110 of the processing unit 11A.
  • the shutter 111 is opened and the telescopic arm 154 extends toward the opening on the side surface of the processing chamber 110, the substrate S is carried into the processing chamber 110.
  • the shutter 111 is closed and the processing on the substrate S is executed in the processing chamber 110.
  • the substrate S can be carried into another substrate processing unit in the same manner.
  • the telescopic arm 154 enters the processing chamber 110 in which the shutter 111 is opened and the processed substrate S is taken out.
  • the taken-out substrate S may be carried into another substrate processing unit to execute a new process, or may be returned to the container C via the indexer robot 22. The specific processing sequence in this embodiment will be described in detail later.
  • the center robot 15 is installed in the transport space TS whose sides and upper side are separated from the external space by the partition wall 101.
  • the substrate processing unit 11A is attached to the side portion of the partition wall 101 so that the side surface of the processing chamber 110 provided with the shutter 111 faces the transport space TS. The same applies to other substrate processing units.
  • the substrate processing device 1 is provided with a control unit 90 for controlling the operation of each part of the device.
  • the control unit 90 includes at least a CPU (Central Processing Unit) 91 and a memory 92.
  • the CPU 91 causes each part of the device to execute a predetermined operation by executing a control program prepared in advance.
  • the memory 92 stores a control program to be executed by the CPU 91, data generated by the execution, and the like.
  • the operations of the indexer robot 22 and the center robot 15 described above, the operations related to the opening and closing of the shutter in each processing chamber, various processing on the substrate S, and the like are controlled by the CPU 91 that executes the control program.
  • FIGS. 3B and 3C are diagrams showing a substrate processing unit that executes wet processing. More specifically, FIG. 3A is a diagram showing the configuration of the substrate processing unit 11A, and FIGS. 3B and 3C are diagrams for explaining the operation of the substrate processing unit 11A. Although the configuration of the substrate processing unit 11A will be described here, the configurations of the other substrate processing units 11B, 12A and the like that execute the wet processing are basically the same.
  • the substrate processing unit 11A includes a wet processing unit 30 as a substrate processing main body in the processing chamber 110.
  • the wet treatment unit 30 supplies a treatment liquid to the upper surface of the substrate S to perform surface treatment, cleaning, and the like of the substrate S. Further, in order to facilitate the transfer of the substrate S after the wet treatment, the wet treatment unit 30 also executes the solidification treatment.
  • the solidification process is a process of covering the upper surface of the substrate S with a liquid film and solidifying the upper surface of the substrate S with a solidifying film.
  • the wet processing unit 30 includes a substrate holding unit 31, a splash guard 32, a processing liquid supply unit 33, a coagulation liquid supply unit 35, and a cooling gas supply unit 34. These operations are controlled by the control unit 90.
  • the substrate holding portion 31 has a disk-shaped spin chuck 311 having a diameter substantially equal to that of the substrate S, and a plurality of chuck pins 312 are provided on the peripheral edge of the spin chuck 311. When the chuck pin 312 abuts on the peripheral edge of the substrate S to support the substrate S, the spin chuck 311 can hold the substrate S in a horizontal posture while being separated from the upper surface thereof.
  • the spin chuck 311 is supported so that the upper surface is horizontal by a rotary support shaft 313 extending downward from the central portion of the lower surface thereof.
  • the rotary support shaft 313 is rotatably supported by a rotary mechanism 314 attached to the bottom of the processing chamber 110.
  • the rotation mechanism 314 has a built-in rotation motor (not shown). When the rotary motor rotates in response to a control command from the control unit 90, the spin chuck 311 directly connected to the rotary support shaft 313 rotates around the vertical shaft indicated by the one-point chain line. In FIG. 3A, the vertical direction is the vertical direction. As a result, the substrate S is rotated around the vertical axis while maintaining the horizontal posture.
  • a splash guard 32 is provided so as to surround the substrate holding portion 31 from the side.
  • the splash guard 32 has a substantially tubular cup 321 provided so as to cover the peripheral edge portion of the spin chuck 311 and a liquid receiving portion 322 provided below the outer peripheral portion of the cup 321.
  • the cup 321 moves up and down in response to a control command from the control unit 90.
  • the cup 321 has a lower position in which the upper end of the cup 321 is lowered below the peripheral edge of the substrate S held by the spin chuck 311 as shown in FIG. 3A and an upper end of the cup 321 as shown in FIG. 3B. It moves up and down with and from an upper position located above the peripheral edge of the substrate S.
  • the cup 321 When the cup 321 is in the lower position, as shown in FIG. 3A, the substrate S held by the spin chuck 311 is exposed to the outside of the cup 321. Therefore, for example, it is possible to prevent the cup 321 from becoming an obstacle when the substrate S is carried in and out of the spin chuck 311.
  • the cup 321 when the cup 321 is in the upper position, as shown in FIG. 3B, it surrounds the peripheral edge portion of the substrate S held by the spin chuck 311.
  • the processing liquid that is shaken off from the peripheral edge of the substrate S when the liquid is supplied which will be described later, is prevented from being scattered in the chamber 110, and the treatment liquid can be reliably recovered. That is, the droplets of the processing liquid that are shaken off from the peripheral edge of the substrate S by the rotation of the substrate S adhere to the inner wall of the cup 321 and flow downward, and are collected by the liquid receiving portion 322 arranged below the cup 321. It is collected.
  • a plurality of stages of cups may be provided concentrically.
  • the processing liquid supply unit 33 has a structure in which a nozzle 334 is attached to the tip of an arm 333 extending horizontally from a rotation support shaft 332 rotatably provided with respect to a base 331 fixed to the processing chamber 110. ing.
  • the arm 333 swings as the rotation support shaft 332 rotates in response to a control command from the control unit 90, and the nozzle 334 at the tip of the arm 333 retracts from above the substrate S shown in FIG. 3A to the side. It moves between the retracted position and the processing position above the substrate S shown in FIG. 3B.
  • the nozzle 334 is connected to a processing liquid supply source (not shown) provided in the control unit 90.
  • a processing liquid supply source (not shown) provided in the control unit 90.
  • the treatment liquid is discharged from the nozzle 334 toward the substrate S.
  • the spin chuck 311 rotates at a relatively low speed to rotate the substrate S, and the processing liquid Lq is supplied from the nozzle 33 positioned above the rotation center of the substrate S to supply the substrate.
  • the upper surface Sa of S is treated with the treatment liquid Lq.
  • a liquid having various functions such as a developing solution, an etching solution, a cleaning solution, and a rinsing solution can be used, and the composition thereof is arbitrary. Further, the treatment may be executed by combining a plurality of types of treatment liquids.
  • the coagulation liquid supply unit 35 also has a configuration corresponding to the treatment liquid supply unit 33. That is, the coagulation liquid supply unit 35 has a base 351, a rotation support shaft 352, an arm 353, a nozzle 354, and the like. These configurations are the same as those corresponding in the processing liquid supply unit 33.
  • the arm 353 swings as the rotation support shaft 352 rotates in response to a control command from the control unit 90.
  • the nozzle 354 at the tip of the arm 353 supplies a coagulating liquid for forming a coagulating film to the upper surface Sa of the substrate S after the wet treatment.
  • the coagulant liquid supply unit 35 By replacing “treatment liquid Lq”, “arm 333", and “nozzle 334" in the above description of FIG. 3B with “coagulant liquid Lq”, “arm 353”, and “nozzle 354", respectively, the coagulant liquid supply unit 35 The operation is explained. However, unlike the above-mentioned treatment liquid, the coagulation liquid is supplied to the upper surface Sa of the substrate S in a liquid state and then solidifies to become a solid.
  • the upper surface Sa of the substrate to be processed has a fine uneven pattern (hereinafter, simply referred to as "pattern") formed.
  • the pattern may collapse due to the surface tension of the liquid that has entered the pattern.
  • a method for preventing this a method of replacing the liquid in the pattern with a liquid having a lower surface tension and then drying, and a sublimation drying method in which the upper surface Sa of the substrate is covered with a solid sublimation substance to sublimate the sublimation substance.
  • a supercritical drying method adopted in this embodiment.
  • the substrate is transported with the upper surface Sa covered with a solidifying film.
  • the coagulation film is formed as follows. As shown in FIG. 3B, when the substrate S is rotated at a predetermined rotation speed and the coagulating liquid Lq is supplied from the nozzle 354, the upper surface Sa of the substrate is covered with the liquid film LF of the coagulating liquid. Become. It is desirable that the coagulation liquid has good miscibility with the treatment liquid used for the wet treatment, has a lower surface tension than the treatment liquid, and has a freezing point close to room temperature. For example, when the treatment liquid contains water as a main component, isopropyl alcohol (IPA) can be preferably used.
  • IPA isopropyl alcohol
  • the cooling gas supply unit 34 has a structure in which a nozzle 344 is attached to the tip of an arm 343 extending horizontally from a rotation support shaft 342 rotatably provided with respect to a base 341 fixed to the processing chamber 110. There is. Similar to the processing liquid supply unit 33, the rotation support shaft 342 rotates in response to a control command from the control unit 90, so that the arm 343 swings. In this way, the nozzle 344 at the tip of the arm 343 moves between the retracted position retracted laterally from above the substrate S and the processing position above the substrate S.
  • the nozzle 344 is connected to a cooling gas supply unit (not shown) provided in the control unit 90.
  • the cooling gas G which is supplied from the cooling gas supply unit and has a temperature lower than the freezing point of the coagulating liquid constituting the liquid film LF, is discharged from the nozzle 344 toward the substrate S.
  • the liquid film LF on the substrate S is cooled from the surface side thereof.
  • the nozzle 344 that discharges the low-temperature cooling gas G onto the upper surface Sa of the substrate on which the liquid film LF is formed scans and moves toward the outer peripheral portion of the substrate S. By doing so, the liquid film LF on the upper surface Sa of the substrate is sequentially solidified from the central portion, and finally the entire liquid film LF on the upper surface Sa of the substrate is converted into a solidified film FF formed by solidifying the coagulating liquid.
  • the entire liquid film LF it is not necessary to solidify the entire liquid film LF, and it is sufficient that at least the vicinity of the surface of the liquid film LF is solidified. That is, the entire surface of the liquid film LF may be solidified to the extent that it does not interfere with transportation, that is, to the extent that it is not deformed by vibration or the like during transportation.
  • the liquid film LF may be maintained in a liquid state between the solidifying film FF and the substrate S.
  • the process of covering the substrate S with the solidifying film is not limited to the method of cooling the liquid film LF as described above.
  • a method may be used in which a liquid having a freezing point higher than room temperature and heated above the freezing point is supplied to the substrate S and solidified by natural cooling.
  • a method may be used in which a substance having a freezing point higher than room temperature is supplied to the substrate S as a solution dissolved in an appropriate solvent and solidified by volatilizing the solvent.
  • a solution in which tert-butyl alcohol (TBA) as a solidifying substance is dissolved in IPA as a solvent can be used as a coagulating liquid.
  • TSA tert-butyl alcohol
  • the melting point (freezing point) of TBA is approximately room temperature (25.5 ° C.).
  • a liquid film is formed on the substrate S with a solution in which TBA is dissolved in an IPA solvent, a solidifying film is formed from the vicinity of the surface of the liquid film as the IPA solvent on the surface evaporates. As a result, it is possible to realize a state in which a layer of a liquid solution is maintained between the substrate S and the coagulation film FF.
  • the substrate S carried out with the upper surface Sa covered with the solidifying film FF is conveyed to the substrate processing unit 13A and subjected to drying treatment. That is, the substrate processing unit 13A has a function of performing a drying process of removing the solidified film FF formed on the upper surface Sa of the substrate S carried in the horizontal posture and drying the substrate S as the substrate processing. As the drying treatment, supercritical drying is applied in which the substrate S is covered with a supercritical fluid and then the supercritical fluid is vaporized and removed (without going through a liquid phase).
  • the configuration of the substrate processing unit 13A will be described here, the configurations of the other substrate processing units 13B, 14A, etc. that execute the drying process are basically the same.
  • FIG. 4 is a diagram showing a substrate processing unit that executes supercritical drying processing. More specifically, FIG. 4 is a side sectional view showing the internal structure of the substrate processing unit 13A. Since the principle of supercritical drying treatment and the basic configuration required for it are known, detailed description thereof will be omitted here.
  • the substrate processing unit 13A includes a high-pressure chamber 130, and a drying processing unit 40 as an execution body of the drying processing is provided inside the high-pressure chamber 130.
  • a stage 41 for mounting the substrate S is installed in the high pressure chamber 130.
  • the stage 41 holds the substrate S whose upper surface Sa is covered with a solidifying film by suction holding or mechanical holding. Since the high pressure chamber 130 has a high pressure, the internal structure is relatively simple to withstand the high pressure, and a member capable of withstanding the high pressure is used.
  • a rotary support shaft 42 extends downward in the center of the lower surface of the stage 41.
  • the rotary support shaft 42 is inserted through the bottom surface of the high pressure chamber 130 via a high pressure seal rotation introduction mechanism 43.
  • the rotation shaft 431 of the high-pressure seal rotation introduction mechanism 43 is connected to the rotation mechanism 432. Therefore, when the rotation mechanism 432 operates in response to the control command from the control unit 90, the substrate S rotates together with the stage 41 around the rotation axis in the vertical direction indicated by the alternate long and short dash line.
  • a fluid dispersion member 44 is provided above the stage 41 inside the high pressure chamber 130.
  • the fluid dispersion member 44 is provided with a plurality of through holes 442 that penetrate vertically through the flat plate-shaped closing plate 441.
  • Carbon dioxide gas is supplied to the upper part of the high-pressure chamber 130 from the carbon dioxide supply unit 45 as needed.
  • the carbon dioxide gas is rectified by the fluid dispersion member 44 and is uniformly supplied toward the substrate S from above the substrate S.
  • nitrogen is introduced into the high pressure chamber 130 from the nitrogen supply unit 46 as needed.
  • Nitrogen is supplied in various forms as needed. That is, depending on the purpose of purging the gas in the high-pressure chamber 130 or cooling the inside of the chamber, it is supplied into the high-pressure chamber 130 as a gas at room temperature or a temperature rise, or as a cooled and liquefied liquid nitrogen. ..
  • the dissolution liquid is a liquid for dissolving the coagulation film FF, and is supplied to the upper surface Sa of the substrate S which is carried in with the coagulation film FF formed.
  • a liquid having miscibility with the coagulation liquid which is a liquid constituting the coagulation membrane FF and having a surface tension equal to or lower than that of the coagulation liquid can be used more preferably.
  • the coagulation liquid contains IPA
  • an organic solvent such as IPA or acetone, or a supercritical fluid in which IPA is soluble, for example, supercritical carbon dioxide can be used as the dissolution liquid.
  • the carbon dioxide gas introduced into the high-pressure chamber 130 is pressurized and liquefied to become a supercritical fluid. Therefore, when this is used as a dissolution liquid, the dissolution liquid supply unit It is not necessary to provide 47 separately.
  • a discharge mechanism 48 is connected to the high pressure chamber 130.
  • the discharge mechanism 48 has a function of discharging various fluids such as gas and liquid introduced into the high pressure chamber 130 as needed.
  • the discharge mechanism 48 includes piping, a valve, a pump, and the like for this purpose. This allows the fluid in the high pressure chamber 130 to be expelled quickly if necessary.
  • control unit 90 has a configuration for detecting the pressure and temperature in the high pressure chamber 130 and a configuration for controlling these to a predetermined value. That is, the control unit 90 has a function of controlling the pressure and temperature in the high pressure chamber 130 to predetermined target values.
  • the substrate processing apparatus 1 is an apparatus that sequentially executes a wet treatment and a drying treatment on the substrate S.
  • the main flow of this process is as follows. That is, the substrate S is conveyed to the substrate processing unit that executes the wet treatment to perform the treatment with the processing liquid, then a coagulating film is formed by the coagulating liquid, and the substrate S is conveyed to the substrate processing unit that executes the drying treatment. The solidifying film is removed and the substrate S is dried.
  • the substrate processing unit 11A executes the wet treatment and the substrate processing unit 13A executes the drying treatment on one substrate S.
  • the combination of the substrate processing unit that executes the wet treatment and the substrate processing unit that executes the drying treatment is not limited to this, and is arbitrary.
  • the substrate processing unit 11A or the like that executes the wet processing may be referred to as a “wet processing unit”.
  • the substrate processing unit 13A or the like that executes the drying process may be referred to as a “drying process unit”.
  • FIG. 5 is a flowchart showing the operation of this substrate processing device. This operation is realized by the CPU 91 executing a control program prepared in advance to cause each part of the device to perform a predetermined operation.
  • the indexer robot 22 takes out one unprocessed substrate S from one of the containers C containing the unprocessed substrate (step S101). Then, the substrate S is handed over from the indexer robot 22 to the center robot 15 (step S102). The center robot 15 carries the substrate S into the substrate processing unit (wet processing unit) 11A that executes the wet processing (step S103).
  • the substrate processing unit 11A into which the substrate S has been carried performs wet processing on the substrate S (step S104).
  • the content of the wet treatment is to supply a treatment liquid to the substrate S to process or clean the upper surface Sa of the substrate.
  • a solidification process for forming the solidifying film FF is executed on the substrate S after the wet treatment (step S105).
  • FIG. 6 is a flowchart showing the solidification process.
  • an organic solvent such as IPA is supplied as a coagulation liquid to the upper surface Sa of the substrate after the wet treatment from the nozzle 354 of the coagulation liquid supply unit 35 arranged above the rotation center of the substrate S.
  • the treatment liquid remaining on the upper surface Sa of the substrate is replaced by the coagulating liquid, and a liquid film LF formed by the coagulating liquid is formed on the upper surface Sa of the substrate (step S201).
  • the nozzle 344 that discharges the cooling gas scans and moves along the upper surface Sa of the substrate, so that the liquid film LF is cooled and solidified to form a solidified film FF (step S202).
  • the substrate S on which the solidifying film FF is formed on the upper surface Sa by the solidification process is taken out from the substrate processing unit 11A by the center robot 15 (step S106). Then, the substrate S is carried into the substrate processing unit (drying processing unit) 13A that executes the drying process (step S107).
  • the substrate processing unit 13A into which the substrate S has been carried performs a drying process on the substrate S. That is, the liquid adhering to the substrate S is removed to dry the substrate S (step S108). The contents of the drying process will be described later.
  • the processed substrate S is taken out from the substrate processing unit 13A by the center robot 15 (step S109).
  • the removed substrate S after processing is delivered from the center robot 15 to the indexer robot 22 (step S110).
  • the indexer robot 22 accommodates the substrate S in one of the containers C (step S111).
  • the container C in which the processed substrate S is housed may be the container in which the untreated board S is housed, or may be another container.
  • step S112 If there is a substrate to be further processed (YES in step S112), the process returns to step S101, and the above processing is executed for the next substrate S. If there is no substrate to be processed (NO in step S112), the processing ends.
  • processing for a plurality of substrates is executed in parallel. That is, at least one of the transfer of another substrate by the indexer robot 22 and the center robot 15 and the substrate processing by the other substrate processing unit while the one substrate S is being processed in one substrate processing unit at the same time. It is possible to execute one in parallel.
  • the indexer robot 22 can newly access the container C and take out another substrate. .. Further, for example, after one substrate S is carried into the substrate processing unit 11A in step S103, the center robot 15 carries another substrate into another substrate processing unit, or is processed by another substrate processing unit. It is possible to carry out the board.
  • the processing on a plurality of boards can be performed in parallel by appropriately adjusting the operation sequence of each part of the device for processing each board S. And proceed. By doing so, it is possible to improve the processing throughput of the substrate processing apparatus 1 as a whole.
  • the specific operation sequence needs to be appropriately determined according to the processing specifications, the time required for each of the above steps, the possibility of simultaneous processing, and the like.
  • FIG. 7 is a flowchart showing the drying process.
  • the substrate processing unit (drying treatment unit) 13A receives the substrate S in which the upper surface Sa is covered with the solidifying film FF and executes the drying treatment. As described above, supercritical drying treatment using a supercritical fluid is performed here. Specifically, first, the dissolution liquid supply unit 47 supplies the dissolution liquid to the upper surface Sa of the substrate, thereby dissolving the coagulation film FF (step S301).
  • the upper surface Sa of the substrate returns to the state immediately before being carried out from the wet treatment unit 11A, that is, the upper surface Sa is covered with the liquid film LF of the coagulation film. ..
  • this corresponds to the case where the coagulation film FF is formed by IPA and the solution is also IPA.
  • the solution has the property of dissolving the solution unlike the material of the coagulation film
  • the upper surface Sa of the substrate will be covered with the film of the mixture of the coagulant and the solution. Further, by supplying the dissolution liquid, the coagulation liquid remaining on the upper surface Sa of the substrate can be replaced with the dissolution liquid.
  • step S302 when the liquid film is shaken off by the rotation of the substrate S (step S302), most of the dissolved liquid on the upper surface Sa of the substrate is removed, but the dissolved liquid remains in the pattern.
  • the shaken-out liquid is discharged by the discharge mechanism 48. In this state, carbon dioxide is introduced into the high pressure chamber 130 from the carbon dioxide supply unit 45.
  • Carbon dioxide gas may be liquefied by supplying carbon dioxide gas to the high pressure chamber 130 to sufficiently increase the pressure inside the chamber.
  • liquid carbon dioxide may be introduced into the high pressure chamber 130.
  • the liquid carbon dioxide covers the upper surface Sa of the substrate. Liquefied carbon dioxide dissolves organic solvents well. Therefore, the solution such as IPA remaining in the pattern is replaced with liquid carbon dioxide (step S303).
  • the supply of carbon dioxide in step S303 has a meaning not for substitution but as preparation for creating the next supercritical state.
  • step S304 carbon dioxide in the high-pressure chamber 130 becomes a supercritical fluid.
  • a fluid in a supercritical state has extremely high fluidity and low surface tension.
  • the supercritical fluid generated from carbon dioxide dissolves organic solvents such as IPA and acetone well. Therefore, the supercritical fluid of carbon dioxide penetrates deep into the fine pattern and carries away the remaining organic solvent component from the pattern.
  • One of the reasons why carbon dioxide is suitable for supercritical drying treatment is that it becomes supercritical at relatively low pressure and low temperature.
  • step S305 the pressure inside the high pressure chamber 130 is rapidly reduced.
  • the supercritical fluid is directly vaporized and removed from the substrate S without passing through the liquid phase.
  • the substrate S is in a dry state with the liquid component completely removed.
  • the liquid component remaining in the pattern is replaced by the supercritical fluid, and the supercritical fluid is directly vaporized to avoid the problem of pattern collapse due to the surface tension of the liquid in the pattern.
  • the coagulation film FF formed during transportation does not necessarily have to be composed of a low surface tension substance.
  • the above-mentioned advantages during transportation can be obtained.
  • water has low solubility in carbon dioxide in a liquid or supercritical state, it is not preferable from the viewpoint of effectively performing substitution.
  • Organic solvents such as IPA and acetone show high solubility in carbon dioxide, and these generally have lower surface tension than water.
  • a lower surface tension is advantageous for the coagulant and the solution.
  • the upper surface Sa of the substrate S is covered with a liquid film to be solidified, and the substrate S is conveyed in the solidified state.
  • the convenience is improved as compared with the liquid transport, such as avoiding the exposure of the substrate upper surface Sa due to the liquid drop during the transport.
  • the drying treatment unit 13A that accepts the substrate S, the solidified film is once dissolved and then finally replaced with a supercritical fluid, so that no liquid component remains and the substrate does not collapse. Dry S.
  • the substrate is conveyed with the solidified film formed on the substrate, and the substrate is dried by removing the solidified film.
  • a treatment content is similar to the sublimation drying treatment, which is a conventional technique for removing a coagulation film formed of a sublimable substance by sublimation.
  • the coagulation film is dissolved and returned to a liquid state, a process of replacement with a supercritical fluid and drying is adopted. This is not only for convenience in transportation, but also for the following circumstances.
  • FIG. 8A to 8C are diagrams schematically showing problems that may occur in the coagulation film.
  • a large number of fine pattern PTs are formed close to each other on the upper surface Sa of the substrate S, and these are covered with the liquid film LF of the coagulating liquid after the wet treatment.
  • the interval between adjacent pattern PTs is referred to as a gap size GS.
  • the liquid film LF solidifies by supplying a cooling gas having a temperature lower than the freezing point to the liquid film LF.
  • the gap size GS becomes small, the following problems occur.
  • the freezing point of water is 0 ° C. in a sufficiently wide space (with a large gap size GS).
  • the freezing point gradually decreases in a narrow gap of 100 nm or less, and for example, when the gap size GS is about 1 nm, the freezing point decreases to about (-50) ° C.
  • IPA which is generally used as a liquid film material, has a similar tendency.
  • a cooling gas having a temperature sufficiently lower than the freezing point (0 ° C.) in the free space is used.
  • Tg for example, about (-5) ° C. to (-20) ° C. is considered to be realistic.
  • FIG. 8B shows that when the gap size is on the order of nanometers, the liquid in the gap cannot be solidified at this temperature Tg.
  • the coagulation film is dissolved and then replaced with a supercritical fluid for removal, such a problem does not occur. That is, in the present embodiment, the solidified film is transported in a state of being formed, and after the solidified film is dissolved, the supercritical drying treatment is performed. Such a process is not only for the convenience of transportation, but also for the purpose of surely preventing the collapse of even a fine pattern.
  • the coagulating film needs to be solidified at least to the extent that the surface does not flow for convenience during transportation, and it is not necessary to completely solidify to the inner part of the pattern.
  • the deep part may be liquid as long as the surface layer of the liquid film is solidified, the following modified examples can be established.
  • FIG. 9 is a flowchart showing another example of the solidification process.
  • FIG. 10 is a diagram schematically showing the state of the liquid film in this modified example.
  • the process shown in FIG. 9 can be executed instead of the solidification process of FIG. 6 as the process applied to step S105 of FIG.
  • a filling liquid film F1 for filling the inside of the pattern with a liquid is first formed (step S401).
  • the filling liquid film F1 is intended to be filled in the pattern, and for the above reason, it is not required to solidify. Therefore, a substance having a sufficiently small surface tension may be selected without being restricted by the freezing point. A material that does not solidify at the cooling temperature may be intentionally selected. Further, the thickness of the liquid film F1 may be about the same as the height of the pattern PT.
  • the coagulation liquid film F2 is formed by the coagulation liquid so as to cover the filling liquid film F1 (step S402).
  • a material that easily coagulates can be selected and used without being restricted by surface tension.
  • the filling liquid film F1 and the coagulating liquid film F2 do not have to be mixed. Cooling gas is supplied to the liquid films F1 and F2 formed in this way, and the solidifying liquid film F2 solidifies (step S403).
  • the solidifying liquid film without special cooling is performed. It is also possible to solidify F2.
  • the liquid constituting the solidification liquid film F2 needs to be a liquid at the time of being supplied to the substrate S, and may be supplied in a state of being heated to a temperature slightly higher than the freezing point, for example.
  • the coagulation liquid film F2 is coagulated, which has the advantage of improving convenience during transportation.
  • energy consumption can be reduced by setting the cooling temperature higher than before.
  • the filling liquid film F1 is not completely solidified and is liquid, it can be easily removed after transportation.
  • the pattern protection action during transportation by covering with a liquid film also functions sufficiently.
  • the degree of freedom in selecting the liquid film forming material is increased.
  • the coagulating film covering the substrate is formed of a sublimable substance. Since the sublimable substance is highly volatile, it may volatilize during transportation and the surface of the substrate may be exposed. In addition, the volatilized sublimable substance may scatter and reprecipitate in the apparatus, which may become a source of contamination of the apparatus and the substrate being processed. Alternatively, there may be situations in which measures must be taken to prevent the scattered material from leaking out of the device. On the other hand, in the present embodiment, the coagulation film is not required to have sublimation properties, so that the possibility of such a problem occurring is greatly reduced.
  • the substrate processing unit 11A or the like which is a wet processing unit functions as the "first processing unit” of the present invention
  • the substrate processing unit 13A or the like which is a drying processing unit of the present invention. It functions as a "second processing unit”.
  • the center robot 15 functions as the "transport mechanism" of the present invention.
  • the high pressure chamber 130 functions as the "chamber” of the present invention
  • the carbon dioxide supply unit 45 functions as the "fluid supply unit" of the present invention.
  • the substrate processing unit 11A, the substrate processing unit 13A, and the center robot 15 corresponding to the "first processing unit", the "second processing unit", and the "conveying mechanism" of the present invention are contained in one housing. It is housed in the box and constitutes an integrated processing system.
  • the present invention is also applicable to a processing system having a first processing unit and a second processing unit provided independently of each other and a transport mechanism for transporting a substrate between them.
  • the possibility that the liquid that has entered the inner part of the uneven pattern is not solidified is mentioned.
  • the process itself described above is established regardless of whether or not the liquid is completely solidified in the pattern.
  • the temperature of the cooling gas is lower than the freezing point of the liquid constituting the liquid film in the free space, and the pattern of the substrate to be processed has. It may be set to be higher than the freezing point corresponding to the gap size.
  • the substrate processing method of the present invention can also be implemented as a control program executed by a computer that controls a substrate processing apparatus having a predetermined configuration. It is also possible to distribute embodiments of the present invention on a recording medium in which this control program is recorded in a computer-readable format non-temporarily.
  • a coagulation film may be formed by cooling at least the surface of the liquid film.
  • the liquid film is not required to solidify as a whole, as long as its surface is solidified to at least a degree suitable for transport. Therefore, a method of cooling the surface of the liquid film and its vicinity to form a solidified film is effective in terms of thermal efficiency.
  • the substrate in the step of drying the substrate, may be dried using a supercritical fluid.
  • the residual liquid inside the pattern can be replaced and removed with a supercritical fluid having an extremely low surface tension. Therefore, even a substrate having a fine uneven pattern can be satisfactorily dried.
  • the second processing unit has a chamber that receives the substrate, and after replacing the solution with a liquid low surface tension liquid in the chamber, the low surface tension liquid is vaporized from the state of the supercritical fluid to dry the substrate.
  • the low surface tension liquid referred to here is a liquid having a lower surface tension than the dissolution liquid.
  • carbon dioxide can be used as the supercritical fluid.
  • the supercritical conditions in carbon dioxide are relatively low temperature and low pressure among the substances in the supercritical state. Therefore, the configuration of the device for realizing the supercritical state is relatively small, and the processing cost can be suppressed. Further, since carbon dioxide in the supercritical state dissolves the organic solvent well, it is suitable for removing the organic solvent component remaining on the substrate.
  • the liquid film while at least the surface of the liquid film is converted into a coagulating film by cooling, a part of the liquid film may be maintained in a liquid state between the coagulating film and the substrate.
  • the coagulation film is formed to protect the pattern and increase the portability of the substrate, and the coagulation film is dissolved after transportation. Therefore, the liquid film that protects the pattern may be liquid. By not coagulating the entire liquid film, it is possible to reduce the energy and processing time required for coagulation.
  • the liquid film may contain an additive having a melting point equal to or higher than normal temperature in addition to the organic solvent.
  • the additive is solidified by evaporation of the organic solvent from the liquid film surface to form a solidified film, so that it is possible to omit the configuration and treatment for cooling in a normal use environment. ..
  • a suitable substance as such an additive for example, tert-butyl alcohol can be used.
  • "normal temperature” refers to 5 ° C to 35 ° C, which is defined as "JIS Z8703" in the Japanese Industrial Standards in a broad sense, and 15 ° C to 25 ° C in a narrower sense.
  • the ambient temperature in the environment in which the substrate processing apparatus of the present invention is installed can be regarded as "normal temperature".
  • At least one of the organic solvent and the solution contained in the liquid film may be isopropyl alcohol or acetone.
  • These liquids have a lower surface tension than, for example, water-based liquids, and are suitable for the object of the present invention.
  • a filling liquid film that fills the inside of the uneven pattern and a coagulating liquid film that covers the filling liquid film with a material different from the filling liquid film are formed to form a coagulation liquid film.
  • the coagulation liquid film may be coagulated by cooling at a temperature lower than the freezing point of the liquid to be coagulated.
  • a solidifying film is formed so as to cover the inside of the uneven pattern with the filling liquid film.
  • different materials can be used for the filling liquid film and the coagulation liquid film, which increases the degree of freedom in material selection and setting of processing conditions.
  • a liquid having a freezing point of room temperature or lower can be used as the liquid constituting the filling liquid membrane, and a liquid having a freezing point of room temperature or higher can be used as the liquid constituting the solidifying liquid membrane. According to such a configuration, no special equipment or treatment is required to realize the coexistence of the coagulation film and the liquid film in a usage environment of about room temperature.
  • the second processing unit may have a solution supply unit that supplies an organic solvent as a solution to the coagulation film. According to such a configuration, the solidified film can be dissolved with an organic solvent to easily restore the state in which the substrate is covered with the liquid film.
  • the present invention can be applied to all substrate processing technologies including a process of transporting a substrate covered with a solidifying film, removing the solidifying film at the transporting destination, and drying the substrate.
  • it is suitable for processing a substrate having a fine uneven pattern.
  • Substrate processing device 11A Wet processing unit, substrate processing unit (first processing unit) 13A Drying processing unit, substrate processing unit (second processing unit) 15 Center robot (conveyance mechanism) 130 High pressure chamber (chamber) FF coagulation film LF liquid film PT pattern (concavo-convex pattern) S board

Abstract

This substrate processing method comprises: a step (step S105) in which, at a first processing part, after a wet process (step S104) has been performed on a substrate that has a pattern of recesses and protrusions formed on the surface thereof, the surface of the substrate is coated with a liquid film that includes an organic solvent, and at least the surface of the liquid film is solidified to form a solidified film; steps (steps S106, S107) in which the substrate that is coated with the solidified film is transported to a second processing part; and a step (step S108) in which, at the second processing part, a dissolution liquid is supplied to the solidified film to dissolve the solidified film, and the dissolution liquid is removed from the surface of the substrate to dry the substrate. The present invention makes it possible to ensure easy transport between processing units while reliably preventing collapse of the pattern of recesses and protrusions formed on the surface of the substrate.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing equipment
 この発明は、表面に凹凸パターンが形成された基板に湿式処理を施した後で乾燥させるプロセスを含む基板処理方法、および、これを実行する基板処理装置に関するものである。 The present invention relates to a substrate processing method including a process of wet-treating a substrate having an uneven pattern on the surface and then drying the substrate, and a substrate processing apparatus for executing the process.
 表面に微細な凹凸パターンが形成された基板を液体により湿式処理(例えば洗浄処理)した後、基板を乾燥させる基板処理技術においては、乾燥処理中に、パターン内に残留する液体の表面張力の作用に起因するパターン倒壊が起こるという問題が知られている。この問題を解消するために、液体をより低い表面張力を有する流体に置換してから乾燥させるという従来技術がある。表面張力が極めて低い流体として、例えば液体二酸化炭素を用いたものがある(例えば、特許文献1参照)。 In the substrate processing technology in which a substrate having a fine uneven pattern formed on the surface is wet-treated with a liquid (for example, a cleaning treatment) and then the substrate is dried, the action of the surface tension of the liquid remaining in the pattern during the drying treatment. It is known that the pattern collapse caused by the above occurs. To solve this problem, there is a prior art in which a liquid is replaced with a fluid having a lower surface tension and then dried. As a fluid having an extremely low surface tension, for example, liquid carbon dioxide is used (see, for example, Patent Document 1).
 また他の従来技術として昇華乾燥技術がある。この技術では、湿式処理後の基板表面に液状の昇華性物質による液膜を形成した後これを冷却して凝固させる。そして、凝固した昇華性物質を昇華させることで、パターン倒壊の原因となる気液界面が生じないようにする(例えば、特許文献2参照)。 There is also sublimation drying technology as another conventional technology. In this technique, a liquid film made of a liquid sublimable substance is formed on the surface of the substrate after the wet treatment, and then this is cooled and solidified. Then, by sublimating the solidified sublimable substance, a gas-liquid interface that causes pattern collapse is prevented from occurring (see, for example, Patent Document 2).
 これらの従来技術においては、基板表面に液膜を形成するための処理ユニットと、基板を乾燥させるための処理ユニットとが別体となっている。したがって、これらのユニット間で基板を搬送するための、搬送機構が設けられている。 In these conventional techniques, the processing unit for forming a liquid film on the substrate surface and the processing unit for drying the substrate are separate bodies. Therefore, a transport mechanism is provided for transporting the substrate between these units.
特開2013-201302号公報Japanese Unexamined Patent Publication No. 2013-201302 特開2012-243869号公報Japanese Unexamined Patent Publication No. 2012-243869
 特許文献1に記載の従来技術では、表面に形成された液膜を維持しつつ基板を搬送する必要がある。このため、基板を常に水平姿勢に保たなければならず、また搬送速度についても比較的低速とならざるを得ない。しかしながら、搬送時の振動による液体の流出や蒸発によって基板表面が露出してしまうおそれがあり、このことはパターン倒壊の原因となり得る。 In the prior art described in Patent Document 1, it is necessary to transport the substrate while maintaining the liquid film formed on the surface. Therefore, the substrate must be kept in a horizontal position at all times, and the transport speed must be relatively low. However, the surface of the substrate may be exposed due to the outflow or evaporation of the liquid due to vibration during transportation, which may cause the pattern to collapse.
 これに対し特許文献2に記載の従来技術では、基板表面が凝固した昇華性物質により覆われた状態で搬送されるため、搬送時の制約はより少ないと言える。しかしながら、パターンのさらなる微細化により、この技術でも対応できない問題が生じるおそれがある。その理由は以下の通りである。 On the other hand, in the conventional technique described in Patent Document 2, since the substrate surface is transported in a state of being covered with a solidified sublimation substance, it can be said that there are less restrictions during transportation. However, further miniaturization of patterns may cause problems that cannot be dealt with by this technique. The reason is as follows.
 一般に液体の凝固点として知られている物性値は、液体が自由空間あるいは比較的大きな空間にあるときの値である。一方、例えばナノメートルオーダーのような微細な空間に入り込んだ液体では、その凝固点が上記した一般的な数値よりも大幅に低下するという現象がある。このため、冷却温度を十分に低くし長い冷却時間を与えない限り、微細なパターン内部に浸透した液体が十分に固化せず液状のまま残留することとなる。これにより、搬送後の昇華乾燥処理プロセスが、実質的には「昇華」ではなく液相を介したものとなり、気液界面が生じてパターンを倒壊させるおそれがある。 The physical property value generally known as the freezing point of a liquid is a value when the liquid is in a free space or a relatively large space. On the other hand, in the case of a liquid that has entered a fine space such as on the order of nanometers, there is a phenomenon that the freezing point is significantly lower than the above-mentioned general numerical value. Therefore, unless the cooling temperature is sufficiently lowered and a long cooling time is given, the liquid that has permeated into the fine pattern does not solidify sufficiently and remains in a liquid state. As a result, the sublimation-drying process after transportation is substantially not "sublimation" but through the liquid phase, which may cause a gas-liquid interface to collapse the pattern.
 この発明は上記課題に鑑みなされたものであり、表面に凹凸パターンが形成された基板に湿式処理を施した後で乾燥させる基板処理技術において、処理ユニット間での搬送の容易さを確保しながら、しかもパターン倒壊を確実に防止することのできる技術を提供することを目的とする。 The present invention has been made in view of the above problems, and in a substrate processing technique in which a substrate having a concavo-convex pattern formed on its surface is subjected to a wet treatment and then dried, while ensuring ease of transportation between processing units. Moreover, it is an object of the present invention to provide a technique capable of surely preventing pattern collapse.
 この発明に係る基板処理方法の一の態様は、上記目的を達成するため、第1処理部で、表面に凹凸パターンが形成された基板に湿式処理を施した後、前記基板の表面を有機溶剤を含む液膜で覆う工程と、前記液膜の少なくとも表面を凝固させて凝固膜を形成する工程と、前記凝固膜で覆われた前記基板を第2処理部へ搬送する工程と、前記第2処理部で、前記凝固膜に対し溶解液を供給して、前記凝固膜を溶解する工程と、前記基板の表面から前記溶解液を除去して前記基板を乾燥させる工程とを備えている。 In one aspect of the substrate processing method according to the present invention, in order to achieve the above object, in the first processing section, a substrate having an uneven pattern formed on the surface is wet-treated, and then the surface of the substrate is subjected to an organic solvent. A step of covering with a liquid film containing the above, a step of coagulating at least the surface of the liquid film to form a coagulating film, a step of transporting the substrate covered with the coagulating film to a second processing unit, and the second step. The processing unit includes a step of supplying a solution to the coagulation film to dissolve the coagulation film, and a step of removing the solution from the surface of the substrate to dry the substrate.
 また、この発明に係る基板処理装置の一の態様は、上記目的を達成するため、表面に凹凸パターンが形成された基板に対し、湿式処理、前記基板の表面を液膜で覆う処理、および、前記液膜を構成する液体の凝固点よりも低温に冷却して前記液膜を凝固させ凝固膜に転換させる処理を実行する第1処理部と、前記凝固膜が形成された前記基板を受け入れ、前記凝固膜に対し溶解液を供給して前記凝固膜を溶解させる処理、および、前記基板の表面から前記溶解液を除去して前記基板を乾燥させる処理を実行する第2処理部と、前記第1処理部から前記第2処理部へ、前記凝固膜が形成された前記基板を搬送する搬送機構とを備えている。 Further, in one aspect of the substrate processing apparatus according to the present invention, in order to achieve the above object, a wet treatment is performed on a substrate having an uneven pattern formed on the surface, a treatment of covering the surface of the substrate with a liquid film, and a treatment of covering the surface of the substrate with a liquid film. The first processing unit that cools the liquid film to a temperature lower than the freezing point of the liquid constituting the liquid film to coagulate the liquid film and convert it into a coagulating film, and the substrate on which the coagulating film is formed are received and described. A second processing unit that supplies a solution to the coagulation film to dissolve the coagulation film, and a process of removing the solution from the surface of the substrate to dry the substrate, and the first processing unit. A transport mechanism for transporting the substrate on which the solidifying film is formed is provided from the processing unit to the second processing unit.
 このように構成された発明では、第1処理部から第2処理部への基板の搬送は、基板表面が凝固膜に覆われた状態で実行される。このため、搬送中に液体が基板表面から流失したり蒸発したりすることによる基板表面の露出のおそれは十分に低い。したがって基板の搬送は比較的容易である。 In the invention configured as described above, the transfer of the substrate from the first processing unit to the second processing unit is performed with the surface of the substrate covered with a solidifying film. Therefore, the risk of exposure of the substrate surface due to the liquid flowing off or evaporating from the substrate surface during transportation is sufficiently low. Therefore, the transfer of the substrate is relatively easy.
 そして、基板が搬送された第2処理部では、凝固膜を溶解液で溶解させてから溶解液を除去することで基板を乾燥させる。このため、凝固膜を直接昇華させる昇華乾燥技術と異なり、パターン内部に入り込んだ液体が固化していないことはパターン倒壊の原因とならない。すなわち、本発明によれば、微細なパターンであってもその倒壊を防止することが可能である。 Then, in the second processing section to which the substrate is conveyed, the solidified film is dissolved with a dissolving solution and then the dissolving solution is removed to dry the substrate. Therefore, unlike the sublimation drying technique in which the coagulation film is directly sublimated, the fact that the liquid that has entered the inside of the pattern is not solidified does not cause the pattern to collapse. That is, according to the present invention, it is possible to prevent the collapse of even a fine pattern.
 むしろ後工程での他の流体による置換の容易さを考えれば、パターン内部の液体は固化していない方が好ましい。搬送の便宜のためには、少なくとも液膜の表面部分のみが凝固していれば足りる。したがって、液膜の冷却に要するエネルギーおよび時間も少なくて済む。すなわち、本発明は、エネルギー効率およびスループットの観点からも優れた作用効果を有するものであると言える。 Rather, considering the ease of replacement with another fluid in the subsequent process, it is preferable that the liquid inside the pattern is not solidified. For convenience of transportation, it is sufficient that at least only the surface portion of the liquid film is solidified. Therefore, less energy and time is required to cool the liquid film. That is, it can be said that the present invention has an excellent action and effect from the viewpoint of energy efficiency and throughput.
 上記のように、本発明では、表面に凹凸パターンが形成された基板に湿式処理を施した後乾燥させ基板処理技術において、基板の搬送の容易さを確保しながら、しかも微細なパターンであってもその倒壊を確実に防止することができる。 As described above, in the present invention, in the substrate processing technique, a substrate having an uneven pattern formed on its surface is wet-treated and then dried to ensure the ease of transporting the substrate, and the pattern is fine. Can surely prevent its collapse.
 この発明の前記ならびにその他の目的と新規な特徴は、添付図面を参照しながら次の詳細な説明を読めば、より完全に明らかとなるであろう。ただし、図面は専ら解説のためのものであって、この発明の範囲を限定するものではない。 The above and other objectives and novel features of the present invention will become more completely apparent by reading the following detailed description with reference to the accompanying drawings. However, the drawings are for illustration purposes only and do not limit the scope of the invention.
本発明に係る基板処理装置の一実施形態の概略構成を示す図である。It is a figure which shows the schematic structure of one Embodiment of the substrate processing apparatus which concerns on this invention. 本発明に係る基板処理装置の一実施形態の概略構成を示す図である。It is a figure which shows the schematic structure of one Embodiment of the substrate processing apparatus which concerns on this invention. センターロボットの構成および設置環境を示す図である。It is a figure which shows the structure and installation environment of a center robot. 湿式処理を実行する基板処理ユニットを示す図である。It is a figure which shows the substrate processing unit which performs a wet process. 湿式処理を実行する基板処理ユニットを示す図である。It is a figure which shows the substrate processing unit which performs a wet process. 湿式処理を実行する基板処理ユニットを示す図である。It is a figure which shows the substrate processing unit which performs a wet process. 超臨界乾燥処理を実行する基板処理ユニットを示す図である。It is a figure which shows the substrate processing unit which performs supercritical drying processing. この基板処理装置の動作を示すフローチャートである。It is a flowchart which shows the operation of this substrate processing apparatus. 凝固処理を示すフローチャートである。It is a flowchart which shows the solidification process. 乾燥処理を示すフローチャートである。It is a flowchart which shows the drying process. 凝固膜に生じ得る問題を模式的に示す図である。It is a figure which shows typically the problem which may occur in a coagulation film. 凝固膜に生じ得る問題を模式的に示す図である。It is a figure which shows typically the problem which may occur in a coagulation film. 凝固膜に生じ得る問題を模式的に示す図である。It is a figure which shows typically the problem which may occur in a coagulation film. 凝固処理の他の例を示すフローチャートである。It is a flowchart which shows another example of a solidification process. この変形例における液膜の状態を模式的に示す図である。It is a figure which shows typically the state of the liquid film in this modification.
 図1Aおよび図1Bは本発明に係る基板処理装置の一実施形態の概略構成を示す図である。より具体的には、図1Aは本発明の一実施形態である基板処理装置1を示す平面図であり、図1Bは基板処理装置1を示す側面図である。なお、これらの図は装置の外観を示すものではなく、装置の外壁パネルやその他の一部構成を除外することでその内部構造をわかりやすく示した模式図である。この基板処理装置1は、例えばクリーンルーム内に設置されて基板に対し所定の処理を施すための装置である。 1A and 1B are diagrams showing a schematic configuration of an embodiment of a substrate processing apparatus according to the present invention. More specifically, FIG. 1A is a plan view showing a substrate processing apparatus 1 according to an embodiment of the present invention, and FIG. 1B is a side view showing a substrate processing apparatus 1. It should be noted that these figures do not show the appearance of the device, but are schematic views showing the internal structure of the device in an easy-to-understand manner by excluding the outer wall panel and other partial configurations of the device. The substrate processing device 1 is, for example, a device installed in a clean room for performing a predetermined process on a substrate.
 ここで、本実施形態における「基板」としては、半導体基板、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などの各種基板を適用可能である。以下では、主として半導体基板の処理に用いられる基板処理装置を例に採って図面を参照して説明する。しかしながら、上に例示した各種の基板の処理にも同様に適用可能である。 Here, the "board" in the present embodiment includes a semiconductor substrate, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for plasma display, a substrate for FED (Field Emission Display), a substrate for an optical disk, and a magnetic disk. Various substrates such as substrates and substrates for photomagnetic disks can be applied. In the following, a substrate processing apparatus mainly used for processing a semiconductor substrate will be described as an example with reference to the drawings. However, it is also applicable to the processing of various substrates exemplified above.
 図1Aに示すように、基板処理装置1は、基板Sに対して処理を施す基板処理部10と、この基板処理部10に結合されたインデクサ部20とを備えている。インデクサ部20は、容器保持部21とインデクサロボット22とを備えている。容器保持部21は、基板Sを収容するための容器Cを複数個保持することができる。インデクサロボット22は、この容器保持部21に保持された容器Cにアクセスして、未処理の基板Sを容器Cから取り出したり、処理済みの基板を容器Cに収納したりすることができる。容器Cとしては、複数の基板Sを密閉した状態で収容するFOUP(Front Opening Unified Pod)、SMIF(Standard Mechanical Interface)ポッド、OC(Open Cassette)などを適用可能である。各容器Cには、複数枚の基板Sがほぼ水平な姿勢で収容されている。 As shown in FIG. 1A, the substrate processing apparatus 1 includes a substrate processing unit 10 that processes the substrate S, and an indexer unit 20 that is coupled to the substrate processing unit 10. The indexer unit 20 includes a container holding unit 21 and an indexer robot 22. The container holding unit 21 can hold a plurality of containers C for accommodating the substrate S. The indexer robot 22 can access the container C held by the container holding portion 21 to take out the unprocessed substrate S from the container C or store the processed substrate in the container C. As the container C, a FOUP (Front Opening Unified Pod), a SMIF (Standard Mechanical Interface) pod, an OC (Open Cassette), or the like that accommodates a plurality of substrates S in a sealed state can be applied. A plurality of substrates S are housed in each container C in a substantially horizontal posture.
 インデクサロボット22は、装置筐体に固定されたベース部221と、ベース部221に対し鉛直軸周りに回動可能に設けられた多関節アーム222と、多関節アーム222の先端に取り付けられたハンド223とを備える。ハンド223はその上面に基板Sを載置して保持することができる構造となっている。このような多関節アームおよび基板保持用のハンドを有するインデクサロボットは公知であるので、詳しい説明を省略する。 The indexer robot 22 has a base portion 221 fixed to the device housing, an articulated arm 222 rotatably provided around a vertical axis with respect to the base portion 221 and a hand attached to the tip of the articulated arm 222. It is equipped with 223. The hand 223 has a structure in which the substrate S can be placed and held on the upper surface thereof. Since an indexer robot having such an articulated arm and a hand for holding a substrate is known, detailed description thereof will be omitted.
 基板処理部10は、平面視においてほぼ中央に配置されたセンターロボット15と、このセンターロボット15を取り囲むように配置された複数の基板処理ユニットとを備えている。具体的には、センターロボット15が配置された空間に面して複数の(この例では4つの)基板処理ユニット11A,12A,13A,14Aが配置されている。これらの基板処理ユニット11A~14Aは、それぞれ基板Sに対して所定の処理を実行するものである。これらの処理ユニットを同一の機能のものとした場合には、複数基板の並列処理が可能となる。また、機能の異なる処理ユニットを組み合わせて、1つの基板に対し異なる処理を順番に実行するように構成することもできる。 The substrate processing unit 10 includes a center robot 15 arranged substantially in the center in a plan view, and a plurality of substrate processing units arranged so as to surround the center robot 15. Specifically, a plurality of (four in this example) substrate processing units 11A, 12A, 13A, and 14A are arranged facing the space in which the center robot 15 is arranged. Each of these substrate processing units 11A to 14A executes a predetermined process on the substrate S. When these processing units have the same function, parallel processing of a plurality of boards becomes possible. It is also possible to combine processing units having different functions so that different processes are sequentially executed on one substrate.
 後述するように、この実施形態の基板処理装置1は、基板Sを所定の処理液により湿式処理した後、基板Sを乾燥させるという一連の処理に使用される。この目的のために、4つの基板処理ユニットのうち2つの基板処理ユニット11A,12Aは、基板Sに対する湿式処理を担い、これを可能とするための構成を内部に備えている。また、他の2つの基板処理ユニット13A,14Aは、湿式処理後の基板Sから残存液を除去し基板Sを乾燥させる処理(乾燥処理)を担い、これを可能とするための構成を内部に備えている。 As will be described later, the substrate processing apparatus 1 of this embodiment is used for a series of treatments in which the substrate S is wet-treated with a predetermined treatment liquid and then the substrate S is dried. For this purpose, two of the four substrate processing units, 11A and 12A, are responsible for wet processing on the substrate S, and internally have a configuration for enabling this. Further, the other two substrate processing units 13A and 14A carry out a process (drying process) of removing the residual liquid from the substrate S after the wet process and drying the substrate S, and internally have a configuration for enabling this. I have.
 各基板処理ユニット11A~14Aでは、センターロボット15に面する側面に開閉自在のシャッターが設けられた処理チャンバ内に、基板Sに対する処理を実行する基板処理主体が収容されている。すなわち、基板処理ユニット11Aは、処理チャンバ110と、処理チャンバ110のセンターロボット15に面する側面に設けられたシャッター111とを有する。シャッター111は処理チャンバ110のセンターロボット15に面する側面に設けられた開口部(不図示)を覆うように設けられている。シャッター111が開かれると開口部が露出し、該開口部を介して基板Sの搬入および搬出が可能となる。また、処理チャンバ110内で基板Sに対する処理が実行される際には、シャッター111が閉じられることで、処理チャンバ110内の雰囲気が外部から遮断される。 In each of the substrate processing units 11A to 14A, a substrate processing main body that executes processing on the substrate S is housed in a processing chamber provided with a shutter that can be opened and closed on the side surface facing the center robot 15. That is, the substrate processing unit 11A has a processing chamber 110 and a shutter 111 provided on the side surface of the processing chamber 110 facing the center robot 15. The shutter 111 is provided so as to cover an opening (not shown) provided on the side surface of the processing chamber 110 facing the center robot 15. When the shutter 111 is opened, the opening is exposed, and the substrate S can be carried in and out through the opening. Further, when the processing for the substrate S is executed in the processing chamber 110, the shutter 111 is closed to block the atmosphere in the processing chamber 110 from the outside.
 同様に、基板処理ユニット12Aは、処理チャンバ120と、処理チャンバ120のセンターロボット15に面する側面に設けられたシャッター121とを有する。また、基板処理ユニット13Aは、処理チャンバ130と、処理チャンバ130のセンターロボット15に面する側面に設けられたシャッター131とを有する。また、基板処理ユニット14Aは、処理チャンバ140と、処理チャンバ140のセンターロボット15に面する側面に設けられたシャッター141とを有する。 Similarly, the substrate processing unit 12A has a processing chamber 120 and a shutter 121 provided on the side surface of the processing chamber 120 facing the center robot 15. Further, the substrate processing unit 13A has a processing chamber 130 and a shutter 131 provided on the side surface of the processing chamber 130 facing the center robot 15. Further, the substrate processing unit 14A has a processing chamber 140 and a shutter 141 provided on the side surface of the processing chamber 140 facing the center robot 15.
 そして、このように水平方向に配置された基板処理ユニットのセットが上下方向に複数段(この例では2段)配置されている。すなわち、図1Bに示すように、基板処理ユニット11Aの下方には基板処理ユニット11Bが設けられている。基板処理ユニット11Bの構成および機能は、基板処理ユニット11Aと同じである。また、基板処理ユニット12Aの下方には、基板処理ユニット12Aと同一構成、同一機能の基板処理ユニット12Bが設けられている。同様に、基板処理ユニット13Aの下部にも基板処理ユニット13B(図2)が、また基板処理ユニット14Aの下部にも不図示の基板処理ユニットが設けられる。なお、基板処理ユニットの段数は、ここに例示する2に限定されず任意である。また1段当たりの基板処理ユニットの配設数も上記に限定されない。 Then, a set of substrate processing units arranged in the horizontal direction in this way is arranged in a plurality of stages (two stages in this example) in the vertical direction. That is, as shown in FIG. 1B, the substrate processing unit 11B is provided below the substrate processing unit 11A. The configuration and function of the substrate processing unit 11B are the same as those of the substrate processing unit 11A. Further, below the substrate processing unit 12A, a substrate processing unit 12B having the same configuration and the same function as the substrate processing unit 12A is provided. Similarly, a substrate processing unit 13B (FIG. 2) is provided below the substrate processing unit 13A, and a substrate processing unit (not shown) is also provided below the substrate processing unit 14A. The number of stages of the substrate processing unit is not limited to 2 illustrated here and is arbitrary. Further, the number of substrate processing units arranged per stage is not limited to the above.
 図2はセンターロボットの構成および設置環境を示す図である。センターロボット15は、インデクサロボット22から未処理の基板Sを受け取ることができ、かつ処理済みの基板Sをインデクサロボット22に受け渡すことができる。より具体的には、センターロボット15は、基台部151と、昇降ベース152と、回転ベース153と、伸縮アーム154と、ハンド155とを備えている。基台部151は、基板処理部10の底部フレームに固定されており、センターロボット15の各構成を支持している。昇降ベース152は基台部151に取り付けられ、昇降ベース152の上部に回転ベース153が取り付けられている。昇降ベース152は鉛直方向に伸縮自在となっており、この伸縮運動により回転ベース153を昇降させる。 FIG. 2 is a diagram showing the configuration and installation environment of the center robot. The center robot 15 can receive the unprocessed substrate S from the indexer robot 22, and can deliver the processed substrate S to the indexer robot 22. More specifically, the center robot 15 includes a base portion 151, an elevating base 152, a rotation base 153, a telescopic arm 154, and a hand 155. The base portion 151 is fixed to the bottom frame of the substrate processing portion 10 and supports each configuration of the center robot 15. The elevating base 152 is attached to the base portion 151, and the rotating base 153 is attached to the upper part of the elevating base 152. The elevating base 152 can be expanded and contracted in the vertical direction, and the rotation base 153 is moved up and down by this expansion and contraction movement.
 回転ベース153は、昇降ベース152に対して鉛直軸周りに回動可能となっている。回転ベース153には伸縮アーム154の基部が取り付けられ、伸縮アーム154の先端部にハンド155が取り付けられている。伸縮アーム154は水平方向に所定の範囲で伸縮する。ハンド155は、その上面に基板Sを載置して保持することができ、しかも、インデクサロボット22のハンド223との間で基板Sの受け渡しが可能な構造となっている。このような構造のハンド機構は公知であるので、詳しい説明を省略する。 The rotation base 153 is rotatable around a vertical axis with respect to the elevating base 152. The base of the telescopic arm 154 is attached to the rotation base 153, and the hand 155 is attached to the tip of the telescopic arm 154. The telescopic arm 154 expands and contracts in a predetermined range in the horizontal direction. The hand 155 has a structure in which the substrate S can be placed and held on the upper surface thereof, and the substrate S can be delivered to and from the hand 223 of the indexer robot 22. Since a hand mechanism having such a structure is known, detailed description thereof will be omitted.
 伸縮アーム154が水平方向に伸縮することで、ハンド155に保持した基板Sを水平方向に移動させることができる。また、回転ベース153が昇降ベース152に対し回動することで、基板Sの水平移動の方向を規定することができる。また、昇降ベース152が回転ベース153を昇降させることで、基板Sの高さ、すなわち鉛直方向位置を調整することができる。 By expanding and contracting the telescopic arm 154 in the horizontal direction, the substrate S held by the hand 155 can be moved in the horizontal direction. Further, by rotating the rotation base 153 with respect to the elevating base 152, the direction of horizontal movement of the substrate S can be defined. Further, the height of the substrate S, that is, the vertical position can be adjusted by raising and lowering the rotation base 153 by the elevating base 152.
 上記のように構成された基板処理装置1では、次のようにして基板Sに対する処理が実行される。初期状態では、容器保持部21に載置された容器Cに未処理の基板Sが収容されている。インデクサロボット22は、容器Cから1枚の未処理基板Sを取り出してセンターロボット15に受け渡す。センターロボット15は、受け取った基板Sを、当該基板Sに対する処理を実行する基板処理ユニットに搬入する。 In the substrate processing apparatus 1 configured as described above, the processing for the substrate S is executed as follows. In the initial state, the untreated substrate S is housed in the container C placed on the container holding portion 21. The indexer robot 22 takes out one unprocessed substrate S from the container C and hands it over to the center robot 15. The center robot 15 carries the received substrate S into a substrate processing unit that executes processing on the substrate S.
 例えば基板処理ユニット11Aに基板Sを搬入する場合、図2に示すように、センターロボット15は、昇降ベース152により回転ベース153の高さを調整して、ハンド155に保持した基板Sを、基板処理ユニット11Aの処理チャンバ110側面のシャッター111の高さに位置決めする。シャッター111が開かれ、伸縮アーム154が処理チャンバ110側面の開口部に向かって伸長することで、基板Sが処理チャンバ110へ搬入される。伸縮アーム154が退避した後、シャッター111が閉じられて、処理チャンバ110内で基板Sに対する処理が実行される。他の基板処理ユニットへの基板Sの搬入も同様にして行うことができる。 For example, when the substrate S is carried into the substrate processing unit 11A, as shown in FIG. 2, the center robot 15 adjusts the height of the rotation base 153 by the elevating base 152, and holds the substrate S held by the hand 155 on the substrate. It is positioned at the height of the shutter 111 on the side surface of the processing chamber 110 of the processing unit 11A. When the shutter 111 is opened and the telescopic arm 154 extends toward the opening on the side surface of the processing chamber 110, the substrate S is carried into the processing chamber 110. After the telescopic arm 154 is retracted, the shutter 111 is closed and the processing on the substrate S is executed in the processing chamber 110. The substrate S can be carried into another substrate processing unit in the same manner.
 一方、基板処理ユニット11Aから処理済みの基板Sを取り出す際には、シャッター111が開かれた処理チャンバ110に伸縮アーム154が進入して処理済みの基板Sを取り出す。取り出された基板Sについては、他の基板処理ユニットに搬入されて新たな処理が実行されてもよく、またインデクサロボット22を介して容器Cに戻されてもよい。この実施形態における具体的な処理シーケンスについては後に詳しく説明する。 On the other hand, when the processed substrate S is taken out from the substrate processing unit 11A, the telescopic arm 154 enters the processing chamber 110 in which the shutter 111 is opened and the processed substrate S is taken out. The taken-out substrate S may be carried into another substrate processing unit to execute a new process, or may be returned to the container C via the indexer robot 22. The specific processing sequence in this embodiment will be described in detail later.
 図2に示すように、センターロボット15は、側方および上方が隔壁101により外部空間から隔てられた搬送空間TSに設置されている。基板処理ユニット11Aは、処理チャンバ110のシャッター111が設けられた側面を搬送空間TSに臨ませて、隔壁101の側部に取り付けられている。他の基板処理ユニットも同様である。 As shown in FIG. 2, the center robot 15 is installed in the transport space TS whose sides and upper side are separated from the external space by the partition wall 101. The substrate processing unit 11A is attached to the side portion of the partition wall 101 so that the side surface of the processing chamber 110 provided with the shutter 111 faces the transport space TS. The same applies to other substrate processing units.
 上記の他、基板処理装置1には、装置各部の動作を制御するための制御ユニット90が設けられている。制御ユニット90は、少なくともCPU(Central Processing Unit)91と、メモリ92とを含む。CPU91は、予め用意された制御プログラムを実行することで、装置各部に所定の動作を実行させる。また、メモリ92は、CPU91が実行すべき制御プログラムや、その実行により生じるデータ等を記憶する。上記したインデクサロボット22およびセンターロボット15の動作、各処理チャンバにおけるシャッターの開閉や基板Sに対する各種処理等に関わる動作は、制御プログラムを実行するCPU91によって制御される。 In addition to the above, the substrate processing device 1 is provided with a control unit 90 for controlling the operation of each part of the device. The control unit 90 includes at least a CPU (Central Processing Unit) 91 and a memory 92. The CPU 91 causes each part of the device to execute a predetermined operation by executing a control program prepared in advance. Further, the memory 92 stores a control program to be executed by the CPU 91, data generated by the execution, and the like. The operations of the indexer robot 22 and the center robot 15 described above, the operations related to the opening and closing of the shutter in each processing chamber, various processing on the substrate S, and the like are controlled by the CPU 91 that executes the control program.
 図3Aないし図3Cは湿式処理を実行する基板処理ユニットを示す図である。より具体的には、図3Aは基板処理ユニット11Aの構成を示す図であり、図3Bおよび図3Cは基板処理ユニット11Aの動作を説明するための図である。ここでは基板処理ユニット11Aの構成について説明するが、湿式処理を実行する他の基板処理ユニット11B,12A等の構成も基本的に同じである。 3A to 3C are diagrams showing a substrate processing unit that executes wet processing. More specifically, FIG. 3A is a diagram showing the configuration of the substrate processing unit 11A, and FIGS. 3B and 3C are diagrams for explaining the operation of the substrate processing unit 11A. Although the configuration of the substrate processing unit 11A will be described here, the configurations of the other substrate processing units 11B, 12A and the like that execute the wet processing are basically the same.
 基板処理ユニット11Aは、基板処理主体としての湿式処理部30を処理チャンバ110内に備えている。湿式処理部30は、基板Sの上面に処理液を供給して基板Sの表面処理や洗浄等を行う。また、湿式処理後の基板Sの搬送を容易にするために、湿式処理部30は凝固処理を併せて実行する。凝固処理は、基板Sの上面を液膜で覆ってこれを凝固させることにより、基板Sの上面を凝固膜で覆う処理である。 The substrate processing unit 11A includes a wet processing unit 30 as a substrate processing main body in the processing chamber 110. The wet treatment unit 30 supplies a treatment liquid to the upper surface of the substrate S to perform surface treatment, cleaning, and the like of the substrate S. Further, in order to facilitate the transfer of the substrate S after the wet treatment, the wet treatment unit 30 also executes the solidification treatment. The solidification process is a process of covering the upper surface of the substrate S with a liquid film and solidifying the upper surface of the substrate S with a solidifying film.
 この目的のために、湿式処理部30は、基板保持部31、スプラッシュガード32、処理液供給部33、凝固液供給部35および冷却ガス供給部34を備えている。これらの動作は制御ユニット90により制御される。基板保持部31は、基板Sとほぼ同等の直径を有する円板状のスピンチャック311を有し、スピンチャック311の周縁部には複数のチャックピン312が設けられている。チャックピン312が基板Sの周縁部に当接して基板Sを支持することにより、スピンチャック311はその上面から離間させた状態で基板Sを水平姿勢に保持することができる。 For this purpose, the wet processing unit 30 includes a substrate holding unit 31, a splash guard 32, a processing liquid supply unit 33, a coagulation liquid supply unit 35, and a cooling gas supply unit 34. These operations are controlled by the control unit 90. The substrate holding portion 31 has a disk-shaped spin chuck 311 having a diameter substantially equal to that of the substrate S, and a plurality of chuck pins 312 are provided on the peripheral edge of the spin chuck 311. When the chuck pin 312 abuts on the peripheral edge of the substrate S to support the substrate S, the spin chuck 311 can hold the substrate S in a horizontal posture while being separated from the upper surface thereof.
 スピンチャック311は、その下面中央部から下向きに延びる回転支軸313により上面が水平となるように支持されている。回転支軸313は処理チャンバ110の底部に取り付けられた回転機構314により回転自在に支持されている。回転機構314は図示しない回転モータを内蔵している。制御ユニット90からの制御指令に応じて回転モータが回転することで、回転支軸313に直結されたスピンチャック311が1点鎖線で示す鉛直軸周りに回転する。図3Aにおいては上下方向が鉛直方向である。これにより、基板Sが水平姿勢のまま鉛直軸周りに回転される。 The spin chuck 311 is supported so that the upper surface is horizontal by a rotary support shaft 313 extending downward from the central portion of the lower surface thereof. The rotary support shaft 313 is rotatably supported by a rotary mechanism 314 attached to the bottom of the processing chamber 110. The rotation mechanism 314 has a built-in rotation motor (not shown). When the rotary motor rotates in response to a control command from the control unit 90, the spin chuck 311 directly connected to the rotary support shaft 313 rotates around the vertical shaft indicated by the one-point chain line. In FIG. 3A, the vertical direction is the vertical direction. As a result, the substrate S is rotated around the vertical axis while maintaining the horizontal posture.
 基板保持部31を側方から取り囲むように、スプラッシュガード32が設けられる。スプラッシュガード32は、スピンチャック311の周縁部を覆うように設けられた概略筒状のカップ321と、カップ321の外周部の下方に設けられた液受け部322とを有している。カップ321は制御ユニット90からの制御指令に応じて昇降する。カップ321は、図3Aに示すようにカップ321の上端部がスピンチャック311に保持された基板Sの周縁部よりも下方まで下降した下方位置と、図3Bに示すようにカップ321の上端部が基板Sの周縁部よりも上方に位置する上方位置との間で昇降移動する。 A splash guard 32 is provided so as to surround the substrate holding portion 31 from the side. The splash guard 32 has a substantially tubular cup 321 provided so as to cover the peripheral edge portion of the spin chuck 311 and a liquid receiving portion 322 provided below the outer peripheral portion of the cup 321. The cup 321 moves up and down in response to a control command from the control unit 90. The cup 321 has a lower position in which the upper end of the cup 321 is lowered below the peripheral edge of the substrate S held by the spin chuck 311 as shown in FIG. 3A and an upper end of the cup 321 as shown in FIG. 3B. It moves up and down with and from an upper position located above the peripheral edge of the substrate S.
 カップ321が下方位置にあるときには、図3Aに示すように、スピンチャック311に保持される基板Sがカップ321外に露出した状態になっている。このため、例えばスピンチャック311への基板Sの搬入および搬出時にカップ321が障害となることが防止される。 When the cup 321 is in the lower position, as shown in FIG. 3A, the substrate S held by the spin chuck 311 is exposed to the outside of the cup 321. Therefore, for example, it is possible to prevent the cup 321 from becoming an obstacle when the substrate S is carried in and out of the spin chuck 311.
 また、カップ321が上方位置にあるときには、図3Bに示すように、スピンチャック311に保持される基板Sの周縁部を取り囲むことになる。これにより、後述する液供給時に基板Sの周縁部から振り切られる処理液がチャンバ110内に飛散することが防止され、処理液を確実に回収することが可能となる。すなわち、基板Sが回転することで基板Sの周縁部から振り切られる処理液の液滴はカップ321の内壁に付着して下方へ流下し、カップ321の下方に配置された液受け部322により集められて回収される。複数の処理液を個別に回収するために、複数段のカップが同心に設けられてもよい。 Further, when the cup 321 is in the upper position, as shown in FIG. 3B, it surrounds the peripheral edge portion of the substrate S held by the spin chuck 311. As a result, the processing liquid that is shaken off from the peripheral edge of the substrate S when the liquid is supplied, which will be described later, is prevented from being scattered in the chamber 110, and the treatment liquid can be reliably recovered. That is, the droplets of the processing liquid that are shaken off from the peripheral edge of the substrate S by the rotation of the substrate S adhere to the inner wall of the cup 321 and flow downward, and are collected by the liquid receiving portion 322 arranged below the cup 321. It is collected. In order to collect the plurality of treatment liquids individually, a plurality of stages of cups may be provided concentrically.
 処理液供給部33は、処理チャンバ110に固定されたベース331に対し回動自在に設けられた回動支軸332から水平に伸びるアーム333の先端に、ノズル334が取り付けられた構造を有している。回動支軸332が制御ユニット90からの制御指令に応じて回動することによりアーム333が揺動し、アーム333先端のノズル334が、図3Aに示す基板Sの上方から側方へ退避した退避位置と、図3Bに示す基板S上方の処理位置との間を移動する。 The processing liquid supply unit 33 has a structure in which a nozzle 334 is attached to the tip of an arm 333 extending horizontally from a rotation support shaft 332 rotatably provided with respect to a base 331 fixed to the processing chamber 110. ing. The arm 333 swings as the rotation support shaft 332 rotates in response to a control command from the control unit 90, and the nozzle 334 at the tip of the arm 333 retracts from above the substrate S shown in FIG. 3A to the side. It moves between the retracted position and the processing position above the substrate S shown in FIG. 3B.
 ノズル334は制御ユニット90に設けられた処理液供給源(図示省略)に接続されている。処理液供給源から適宜の処理液が送出されると、ノズル334から基板Sに向けて処理液が吐出される。図3Bに示すように、スピンチャック311が比較的低速で回転することで基板Sを回転させながら、基板Sの回転中心の上方に位置決めされたノズル33から処理液Lqを供給することで、基板Sの上面Saが処理液Lqにより処理される。処理液Lqとしては、現像液、エッチング液、洗浄液、リンス液等の各種の機能を有する液体を用いることができ、その組成は任意である。また複数種の処理液が組み合わされて処理が実行されてもよい。 The nozzle 334 is connected to a processing liquid supply source (not shown) provided in the control unit 90. When an appropriate treatment liquid is delivered from the treatment liquid supply source, the treatment liquid is discharged from the nozzle 334 toward the substrate S. As shown in FIG. 3B, the spin chuck 311 rotates at a relatively low speed to rotate the substrate S, and the processing liquid Lq is supplied from the nozzle 33 positioned above the rotation center of the substrate S to supply the substrate. The upper surface Sa of S is treated with the treatment liquid Lq. As the treatment liquid Lq, a liquid having various functions such as a developing solution, an etching solution, a cleaning solution, and a rinsing solution can be used, and the composition thereof is arbitrary. Further, the treatment may be executed by combining a plurality of types of treatment liquids.
 凝固液供給部35も、処理液供給部33と対応する構成を有している。すなわち、凝固液供給部35は、ベース351、回動支軸352、アーム353、ノズル354等を有している。これらの構成は、処理液供給部33において対応するものと同等である。回動支軸352が制御ユニット90からの制御指令に応じて回動することにより、アーム353が揺動する。アーム353先端のノズル354は、湿式処理後の基板Sの上面Saに対して凝固膜を形成するための凝固液を供給する。 The coagulation liquid supply unit 35 also has a configuration corresponding to the treatment liquid supply unit 33. That is, the coagulation liquid supply unit 35 has a base 351, a rotation support shaft 352, an arm 353, a nozzle 354, and the like. These configurations are the same as those corresponding in the processing liquid supply unit 33. The arm 353 swings as the rotation support shaft 352 rotates in response to a control command from the control unit 90. The nozzle 354 at the tip of the arm 353 supplies a coagulating liquid for forming a coagulating film to the upper surface Sa of the substrate S after the wet treatment.
 上記した図3Bの説明における「処理液Lq」、「アーム333」、「ノズル334」をそれぞれ「凝固液Lq」、「アーム353」、「ノズル354」と読み替えることにより、凝固液供給部35の動作が説明される。ただし凝固液は、上記した処理液とは異なり、液体の状態で基板Sの上面Saに供給された後、凝固して固体となるものである。 By replacing "treatment liquid Lq", "arm 333", and "nozzle 334" in the above description of FIG. 3B with "coagulant liquid Lq", "arm 353", and "nozzle 354", respectively, the coagulant liquid supply unit 35 The operation is explained. However, unlike the above-mentioned treatment liquid, the coagulation liquid is supplied to the upper surface Sa of the substrate S in a liquid state and then solidifies to become a solid.
 処理対象となる基板上面Saが微細な凹凸パターン(以下、単に「パターン」という)を形成されたものであるとする。このとき、湿式処理後の濡れた基板Sが乾燥する過程において、パターン内に入り込んだ液体の表面張力により、パターン倒壊が生じるおそれがある。これを防止するための方法としては、パターン内の液体をより表面張力の低い液体に置換してから乾燥させる方法、基板上面Saを昇華性物質の固体で覆い昇華性物質を昇華させる昇華乾燥法、本実施形態で採用する超臨界乾燥法などがある。 It is assumed that the upper surface Sa of the substrate to be processed has a fine uneven pattern (hereinafter, simply referred to as "pattern") formed. At this time, in the process of drying the wet substrate S after the wet treatment, the pattern may collapse due to the surface tension of the liquid that has entered the pattern. As a method for preventing this, a method of replacing the liquid in the pattern with a liquid having a lower surface tension and then drying, and a sublimation drying method in which the upper surface Sa of the substrate is covered with a solid sublimation substance to sublimate the sublimation substance. , There is a supercritical drying method adopted in this embodiment.
 高温、高圧状態を必要とする超臨界乾燥処理を行うためには、湿式処理を行うチャンバとは別の高圧チャンバを必要とする。このため、湿式処理後の基板Sを高圧チャンバへ搬送する必要が生じる。搬送中のパターンの露出に起因する倒壊を避けるため、基板上面Saを液体または固体で覆っておくことが望ましい。ここで、基板Sを液膜で覆った状態での搬送は、液膜を担持する基板Sのハンドリングに特別の配慮が必要である。また搬送中の落液によって、パターンが露出したり装置内に液体が飛散したりするおそれがある。これらの点を鑑みると、基板上面Saを固体で覆った状態で搬送するのが好ましい。 In order to perform supercritical drying treatment that requires high temperature and high pressure conditions, a high pressure chamber different from the chamber that performs wet treatment is required. Therefore, it becomes necessary to transport the substrate S after the wet treatment to the high-pressure chamber. It is desirable to cover the upper surface Sa of the substrate with a liquid or solid in order to avoid collapse due to exposure of the pattern during transportation. Here, in the transport in a state where the substrate S is covered with the liquid film, special consideration is required for the handling of the substrate S that supports the liquid film. In addition, the pattern may be exposed or the liquid may be scattered in the device due to the liquid falling during transportation. In view of these points, it is preferable to carry the substrate with the upper surface Sa covered with a solid.
 そこで、この実施形態では基板上面Saを凝固膜で覆った状態で搬送を行う。凝固膜は以下のようにして形成される。図3Bに示すように、基板Sが所定の回転速度で回転された状態で、ノズル354から凝固液Lqが供給されることで、基板上面Saは凝固液の液膜LFで覆われた状態となる。凝固液としては、湿式処理に用いられる処理液との混和性が良く、処理液よりも表面張力が小さく、かつ凝固点が室温に近いものが望ましい。例えば処理液が水を主成分とするものであるとき、イソプロピルアルコール(IPA)を好適に利用可能である。 Therefore, in this embodiment, the substrate is transported with the upper surface Sa covered with a solidifying film. The coagulation film is formed as follows. As shown in FIG. 3B, when the substrate S is rotated at a predetermined rotation speed and the coagulating liquid Lq is supplied from the nozzle 354, the upper surface Sa of the substrate is covered with the liquid film LF of the coagulating liquid. Become. It is desirable that the coagulation liquid has good miscibility with the treatment liquid used for the wet treatment, has a lower surface tension than the treatment liquid, and has a freezing point close to room temperature. For example, when the treatment liquid contains water as a main component, isopropyl alcohol (IPA) can be preferably used.
 こうして基板上面Saに液膜LFが形成されると、図3Cに示すように、ノズル354に代わって、冷却ガス供給部34のノズル344が基板Sの回転中心上方に位置決めされる。冷却ガス供給部34は、処理チャンバ110に固定されたベース341に対し回動自在に設けられた回動支軸342から水平に伸びるアーム343の先端にノズル344が取り付けられた構造を有している。処理液供給部33と同様に、回動支軸342が制御ユニット90からの制御指令に応じて回動することによりアーム343が揺動する。こうしてアーム343先端のノズル344が、基板Sの上方から側方へ退避した退避位置と基板S上方の処理位置との間を移動する。 When the liquid film LF is formed on the upper surface Sa of the substrate in this way, as shown in FIG. 3C, the nozzle 344 of the cooling gas supply unit 34 is positioned above the rotation center of the substrate S instead of the nozzle 354. The cooling gas supply unit 34 has a structure in which a nozzle 344 is attached to the tip of an arm 343 extending horizontally from a rotation support shaft 342 rotatably provided with respect to a base 341 fixed to the processing chamber 110. There is. Similar to the processing liquid supply unit 33, the rotation support shaft 342 rotates in response to a control command from the control unit 90, so that the arm 343 swings. In this way, the nozzle 344 at the tip of the arm 343 moves between the retracted position retracted laterally from above the substrate S and the processing position above the substrate S.
 ノズル344は制御ユニット90に設けられた冷却ガス供給部(図示省略)に接続されている。冷却ガス供給部から供給される、液膜LFを構成する凝固液の凝固点よりも低温の冷却ガスGが、ノズル344から基板Sに向けて吐出される。これにより基板S上の液膜LFがその表面側から冷却される。図3Cに示すように、液膜LFが形成された基板上面Saに低温の冷却ガスGを吐出するノズル344が、基板Sの外周部に向けて走査移動する。こうすることで、基板上面Saの液膜LFが中心部から順次凝固し、最終的には基板上面Saの液膜LF全体が、凝固液が凝固してなる凝固膜FFに転換する。 The nozzle 344 is connected to a cooling gas supply unit (not shown) provided in the control unit 90. The cooling gas G, which is supplied from the cooling gas supply unit and has a temperature lower than the freezing point of the coagulating liquid constituting the liquid film LF, is discharged from the nozzle 344 toward the substrate S. As a result, the liquid film LF on the substrate S is cooled from the surface side thereof. As shown in FIG. 3C, the nozzle 344 that discharges the low-temperature cooling gas G onto the upper surface Sa of the substrate on which the liquid film LF is formed scans and moves toward the outer peripheral portion of the substrate S. By doing so, the liquid film LF on the upper surface Sa of the substrate is sequentially solidified from the central portion, and finally the entire liquid film LF on the upper surface Sa of the substrate is converted into a solidified film FF formed by solidifying the coagulating liquid.
 ここで、本実施形態では液膜LFの全体が凝固する必要はなく、少なくとも液膜LFの表面近傍が凝固していれば足りる。すなわち、液膜LFの表面全体が搬送に支障がない程度、つまり搬送時の振動等によって変形することがない程度まで凝固していればよい。例えば凝固膜FFと基板Sとの間において、液膜LFが液状に維持されていてもよい。全体の凝固を必要としないことで、凝固のための消費エネルギーおよび処理時間を低減することができる。 Here, in the present embodiment, it is not necessary to solidify the entire liquid film LF, and it is sufficient that at least the vicinity of the surface of the liquid film LF is solidified. That is, the entire surface of the liquid film LF may be solidified to the extent that it does not interfere with transportation, that is, to the extent that it is not deformed by vibration or the like during transportation. For example, the liquid film LF may be maintained in a liquid state between the solidifying film FF and the substrate S. By not requiring the entire coagulation, the energy consumption and processing time for coagulation can be reduced.
 なお、基板Sを凝固膜で覆う処理は、上記のように液膜LFを冷却する方法に限定されない。例えば、室温より高い凝固点を有し凝固点以上に加温された状態の液体を基板Sに供給し、自然冷却によって固化させる方法でもよい。また、室温より高い凝固点を有する物質を適宜の溶媒に溶解させた溶液として基板Sに供給し、溶媒を揮発させることで固化させる方法でもよい。この方法としては、例えば固化物質としてのターシャリーブチルアルコール(TBA)を溶媒としてのIPAに溶解させた溶液を、凝固液として用いることができる。 The process of covering the substrate S with the solidifying film is not limited to the method of cooling the liquid film LF as described above. For example, a method may be used in which a liquid having a freezing point higher than room temperature and heated above the freezing point is supplied to the substrate S and solidified by natural cooling. Alternatively, a method may be used in which a substance having a freezing point higher than room temperature is supplied to the substrate S as a solution dissolved in an appropriate solvent and solidified by volatilizing the solvent. As this method, for example, a solution in which tert-butyl alcohol (TBA) as a solidifying substance is dissolved in IPA as a solvent can be used as a coagulating liquid.
 TBAの融点(凝固点)は略室温(25.5℃)である。IPA溶媒にTBAを溶解させた溶液により液膜を基板Sに形成すると、表面のIPA溶媒が蒸発するのに伴い液膜の表面近傍から凝固膜が形成される。これにより、基板Sと凝固膜FFとの間に液状の溶液の層が維持された状態を実現することができる。 The melting point (freezing point) of TBA is approximately room temperature (25.5 ° C.). When a liquid film is formed on the substrate S with a solution in which TBA is dissolved in an IPA solvent, a solidifying film is formed from the vicinity of the surface of the liquid film as the IPA solvent on the surface evaporates. As a result, it is possible to realize a state in which a layer of a liquid solution is maintained between the substrate S and the coagulation film FF.
 このように上面Saが凝固膜FFで覆われた状態で搬出される基板Sは、基板処理ユニット13Aに搬送されて乾燥処理を受ける。すなわち基板処理ユニット13Aは、基板処理として、水平姿勢で搬入される基板Sの上面Saに形成されている凝固膜FFを除去し、基板Sを乾燥させる乾燥処理を実行する機能を有する。乾燥処理としては、基板Sを超臨界流体で覆ってから超臨界流体を(液相を介することなく)気化させ除去する、超臨界乾燥が適用される。ここでは基板処理ユニット13Aの構成について説明するが、乾燥処理を実行する他の基板処理ユニット13B,14A等の構成も基本的に同じである。 The substrate S carried out with the upper surface Sa covered with the solidifying film FF is conveyed to the substrate processing unit 13A and subjected to drying treatment. That is, the substrate processing unit 13A has a function of performing a drying process of removing the solidified film FF formed on the upper surface Sa of the substrate S carried in the horizontal posture and drying the substrate S as the substrate processing. As the drying treatment, supercritical drying is applied in which the substrate S is covered with a supercritical fluid and then the supercritical fluid is vaporized and removed (without going through a liquid phase). Although the configuration of the substrate processing unit 13A will be described here, the configurations of the other substrate processing units 13B, 14A, etc. that execute the drying process are basically the same.
 図4は超臨界乾燥処理を実行する基板処理ユニットを示す図である。より具体的には、図4は基板処理ユニット13Aの内部構造を示す側面断面図である。超臨界乾燥処理の原理およびそのために必要な基本構成は公知であるため、ここでは詳しい説明を省略する。基板処理ユニット13Aは高圧チャンバ130を備え、その内部に、乾燥処理の実行主体としての乾燥処理部40が設けられている。乾燥処理部40では、基板Sを載置するためのステージ41が高圧チャンバ130内に設置されている。ステージ41は吸着保持または機械的保持により、上面Saが凝固膜に覆われた基板Sを保持する。高圧チャンバ130は高圧となるため、これに耐えるために内部構成は比較的簡素であり、また高圧に耐え得る部材が使用される。 FIG. 4 is a diagram showing a substrate processing unit that executes supercritical drying processing. More specifically, FIG. 4 is a side sectional view showing the internal structure of the substrate processing unit 13A. Since the principle of supercritical drying treatment and the basic configuration required for it are known, detailed description thereof will be omitted here. The substrate processing unit 13A includes a high-pressure chamber 130, and a drying processing unit 40 as an execution body of the drying processing is provided inside the high-pressure chamber 130. In the drying processing unit 40, a stage 41 for mounting the substrate S is installed in the high pressure chamber 130. The stage 41 holds the substrate S whose upper surface Sa is covered with a solidifying film by suction holding or mechanical holding. Since the high pressure chamber 130 has a high pressure, the internal structure is relatively simple to withstand the high pressure, and a member capable of withstanding the high pressure is used.
 ステージ41の下面中央には回転支軸42が下向きに延びている。回転支軸42は高圧チャンバ130の底面に高圧シール回転導入機構43を介して挿通されている。高圧シール回転導入機構43の回転軸431は回転機構432に接続されている。このため、制御ユニット90からの制御指令に応じて回転機構432が作動すると、基板Sがステージ41と共に、1点鎖線で示す鉛直方向の回転軸周りに回転する。 A rotary support shaft 42 extends downward in the center of the lower surface of the stage 41. The rotary support shaft 42 is inserted through the bottom surface of the high pressure chamber 130 via a high pressure seal rotation introduction mechanism 43. The rotation shaft 431 of the high-pressure seal rotation introduction mechanism 43 is connected to the rotation mechanism 432. Therefore, when the rotation mechanism 432 operates in response to the control command from the control unit 90, the substrate S rotates together with the stage 41 around the rotation axis in the vertical direction indicated by the alternate long and short dash line.
 高圧チャンバ130の内部でステージ41の上方には流体分散部材44が設けられている。流体分散部材44は、平板状の閉塞板441に対し上下に貫通する貫通孔442を複数設けたものである。高圧チャンバ130の上部には二酸化炭素供給部45から二酸化炭素ガスが必要に応じて供給される。二酸化炭素ガスは流体分散部材44により整流されて、基板Sの上方から均一に基板Sに向けて供給される。 A fluid dispersion member 44 is provided above the stage 41 inside the high pressure chamber 130. The fluid dispersion member 44 is provided with a plurality of through holes 442 that penetrate vertically through the flat plate-shaped closing plate 441. Carbon dioxide gas is supplied to the upper part of the high-pressure chamber 130 from the carbon dioxide supply unit 45 as needed. The carbon dioxide gas is rectified by the fluid dispersion member 44 and is uniformly supplied toward the substrate S from above the substrate S.
 また、高圧チャンバ130内には窒素供給部46から窒素が必要に応じて導入される。窒素は必要に応じて種々の形態で供給される。すなわち、高圧チャンバ130内のガスをパージしたりチャンバ内を冷却したりする目的に応じて、常温または昇温されたガスとして、あるいは冷却されて液化した液体窒素として高圧チャンバ130内に供給される。 Further, nitrogen is introduced into the high pressure chamber 130 from the nitrogen supply unit 46 as needed. Nitrogen is supplied in various forms as needed. That is, depending on the purpose of purging the gas in the high-pressure chamber 130 or cooling the inside of the chamber, it is supplied into the high-pressure chamber 130 as a gas at room temperature or a temperature rise, or as a cooled and liquefied liquid nitrogen. ..
 また、高圧チャンバ130内には溶解液供給部47から溶解液が必要に応じて供給される。溶解液は凝固膜FFを溶解するための液体であり、凝固膜FFが形成された状態で搬入される基板Sの上面Saに供給される。溶解液としては、凝固膜FFを構成する液体である凝固液に対する混和性を有し、より好ましくは表面張力が凝固液と同等またはより低い液体を用いることができる。例えば凝固液がIPAを含むものである場合、溶解液としてはIPA、アセトン等の有機溶剤、またはIPAを可溶な超臨界流体、例えば超臨界二酸化炭素を用いることができる。 Further, the solution is supplied from the solution supply unit 47 into the high pressure chamber 130 as needed. The dissolution liquid is a liquid for dissolving the coagulation film FF, and is supplied to the upper surface Sa of the substrate S which is carried in with the coagulation film FF formed. As the dissolution liquid, a liquid having miscibility with the coagulation liquid which is a liquid constituting the coagulation membrane FF and having a surface tension equal to or lower than that of the coagulation liquid can be used more preferably. For example, when the coagulation liquid contains IPA, an organic solvent such as IPA or acetone, or a supercritical fluid in which IPA is soluble, for example, supercritical carbon dioxide can be used as the dissolution liquid.
 なお、後述するように、この実施形態では、高圧チャンバ130内に導入された二酸化炭素ガスを加圧して液化しさらに超臨界流体化するため、これを溶解液として用いる場合には溶解液供給部47を別途設ける必要はない。 As will be described later, in this embodiment, the carbon dioxide gas introduced into the high-pressure chamber 130 is pressurized and liquefied to become a supercritical fluid. Therefore, when this is used as a dissolution liquid, the dissolution liquid supply unit It is not necessary to provide 47 separately.
 さらに、高圧チャンバ130には排出機構48が接続されている。排出機構48は、高圧チャンバ130内に導入される気体や液体等の各種流体を必要に応じて排出する機能を有する。排出機構48は、このための配管やバルブ、ポンプ等を備える。これにより、必要な場合には高圧チャンバ130内の流体を速やかに排出することができる。 Further, a discharge mechanism 48 is connected to the high pressure chamber 130. The discharge mechanism 48 has a function of discharging various fluids such as gas and liquid introduced into the high pressure chamber 130 as needed. The discharge mechanism 48 includes piping, a valve, a pump, and the like for this purpose. This allows the fluid in the high pressure chamber 130 to be expelled quickly if necessary.
 図示を省略するが、制御ユニット90は、高圧チャンバ130内の圧力や温度を検出するための構成およびこれらを所定値に制御するための構成を有している。すなわち、制御ユニット90は、高圧チャンバ130内の圧力および温度を所定の目標値に制御する機能を有している。 Although not shown, the control unit 90 has a configuration for detecting the pressure and temperature in the high pressure chamber 130 and a configuration for controlling these to a predetermined value. That is, the control unit 90 has a function of controlling the pressure and temperature in the high pressure chamber 130 to predetermined target values.
 次に、上記のように構成された基板処理装置1の動作について説明する。これまでに説明したように、この基板処理装置1は、基板Sに対し湿式処理および乾燥処理を順番に実行する装置である。この処理の主な流れは以下の通りである。すなわち、湿式処理を実行する基板処理ユニットに基板Sを搬送して処理液による処理を行った後、凝固液による凝固膜を形成し、乾燥処理を実行する基板処理ユニットにこの基板Sを搬送して凝固膜を除去し基板Sを乾燥させる。以下、その具体的な処理内容について説明する。 Next, the operation of the substrate processing device 1 configured as described above will be described. As described above, the substrate processing apparatus 1 is an apparatus that sequentially executes a wet treatment and a drying treatment on the substrate S. The main flow of this process is as follows. That is, the substrate S is conveyed to the substrate processing unit that executes the wet treatment to perform the treatment with the processing liquid, then a coagulating film is formed by the coagulating liquid, and the substrate S is conveyed to the substrate processing unit that executes the drying treatment. The solidifying film is removed and the substrate S is dried. The specific processing contents will be described below.
 ここでは1つの基板Sに対し基板処理ユニット11Aが湿式処理を実行し、基板処理ユニット13Aが乾燥処理を実行するものとして説明する。しかしながら、湿式処理を実行する基板処理ユニットと乾燥処理を実行する基板処理ユニットとの組み合わせはこれに限定されるものではなく任意である。また、以下の説明においては、各基板処理ユニットの役割を明示するために、湿式処理を実行する基板処理ユニット11A等を「湿式処理ユニット」と称することがある。また、乾燥処理を実行する基板処理ユニット13A等を「乾燥処理ユニット」と称することがある。 Here, it is assumed that the substrate processing unit 11A executes the wet treatment and the substrate processing unit 13A executes the drying treatment on one substrate S. However, the combination of the substrate processing unit that executes the wet treatment and the substrate processing unit that executes the drying treatment is not limited to this, and is arbitrary. Further, in the following description, in order to clarify the role of each substrate processing unit, the substrate processing unit 11A or the like that executes the wet processing may be referred to as a “wet processing unit”. Further, the substrate processing unit 13A or the like that executes the drying process may be referred to as a “drying process unit”.
 図5はこの基板処理装置の動作を示すフローチャートである。この動作は、CPU91が予め準備された制御プログラムを実行して装置各部に所定の動作を行わせることにより実現される。最初に、インデクサロボット22が未処理基板を収容する容器Cの1つから1枚の未処理基板Sを取り出す(ステップS101)。そして、基板Sはインデクサロボット22からセンターロボット15に受け渡される(ステップS102)。センターロボット15は、湿式処理を実行する基板処理ユニット(湿式処理ユニット)11Aに基板Sを搬入する(ステップS103)。 FIG. 5 is a flowchart showing the operation of this substrate processing device. This operation is realized by the CPU 91 executing a control program prepared in advance to cause each part of the device to perform a predetermined operation. First, the indexer robot 22 takes out one unprocessed substrate S from one of the containers C containing the unprocessed substrate (step S101). Then, the substrate S is handed over from the indexer robot 22 to the center robot 15 (step S102). The center robot 15 carries the substrate S into the substrate processing unit (wet processing unit) 11A that executes the wet processing (step S103).
 基板Sが搬入された基板処理ユニット11Aは、基板Sに対し湿式処理を実行する(ステップS104)。湿式処理の内容は、先に説明したように、基板Sに処理液を供給して基板上面Saの加工や洗浄を行うものである。湿式処理後の基板Sに対しては、凝固膜FFを形成するための凝固処理が実行される(ステップS105)。 The substrate processing unit 11A into which the substrate S has been carried performs wet processing on the substrate S (step S104). As described above, the content of the wet treatment is to supply a treatment liquid to the substrate S to process or clean the upper surface Sa of the substrate. A solidification process for forming the solidifying film FF is executed on the substrate S after the wet treatment (step S105).
 図6は凝固処理を示すフローチャートである。凝固処理においては、基板Sの回転中心上方に配置された凝固液供給部35のノズル354から、湿式処理後の基板上面Saに対し凝固液として例えばIPAのような有機溶剤が供給される。これにより、基板上面Saに残留する処理液が凝固液によって置換され、基板上面Saに凝固液による液膜LFが形成される(ステップS201)。続いて、冷却ガスを吐出するノズル344が基板上面Saに沿って走査移動することにより、液膜LFが冷却されて凝固し凝固膜FFが形成される(ステップS202)。 FIG. 6 is a flowchart showing the solidification process. In the coagulation treatment, an organic solvent such as IPA is supplied as a coagulation liquid to the upper surface Sa of the substrate after the wet treatment from the nozzle 354 of the coagulation liquid supply unit 35 arranged above the rotation center of the substrate S. As a result, the treatment liquid remaining on the upper surface Sa of the substrate is replaced by the coagulating liquid, and a liquid film LF formed by the coagulating liquid is formed on the upper surface Sa of the substrate (step S201). Subsequently, the nozzle 344 that discharges the cooling gas scans and moves along the upper surface Sa of the substrate, so that the liquid film LF is cooled and solidified to form a solidified film FF (step S202).
 図5に戻って、凝固処理により上面Saに凝固膜FFが形成された基板Sは、センターロボット15により基板処理ユニット11Aから取り出される(ステップS106)。そして、乾燥処理を実行する基板処理ユニット(乾燥処理ユニット)13Aに基板Sが搬入される(ステップS107)。 Returning to FIG. 5, the substrate S on which the solidifying film FF is formed on the upper surface Sa by the solidification process is taken out from the substrate processing unit 11A by the center robot 15 (step S106). Then, the substrate S is carried into the substrate processing unit (drying processing unit) 13A that executes the drying process (step S107).
 基板Sが搬入された基板処理ユニット13Aは、基板Sに対し乾燥処理を実行する。すなわち、基板Sに付着している液体を除去して基板Sを乾燥させる(ステップS108)。乾燥処理の内容については後で説明する。処理後の基板Sはセンターロボット15により基板処理ユニット13Aから取り出される(ステップS109)。取り出された処理後の基板Sはセンターロボット15からインデクサロボット22へ受け渡される(ステップS110)。インデクサロボット22は、基板Sを容器Cの1つへ収容する(ステップS111)。処理済みの基板Sが収容される容器Cは、未処理状態の当該基板Sが収容されていた容器でもよく、また別容器でもよい。 The substrate processing unit 13A into which the substrate S has been carried performs a drying process on the substrate S. That is, the liquid adhering to the substrate S is removed to dry the substrate S (step S108). The contents of the drying process will be described later. The processed substrate S is taken out from the substrate processing unit 13A by the center robot 15 (step S109). The removed substrate S after processing is delivered from the center robot 15 to the indexer robot 22 (step S110). The indexer robot 22 accommodates the substrate S in one of the containers C (step S111). The container C in which the processed substrate S is housed may be the container in which the untreated board S is housed, or may be another container.
 さらに処理すべき基板がある場合には(ステップS112においてYES)、ステップS101に戻り、次の基板Sに対し上記した処理が実行される。処理すべき基板がなければ(ステップS112においてNO)、処理は終了する。 If there is a substrate to be further processed (YES in step S112), the process returns to step S101, and the above processing is executed for the next substrate S. If there is no substrate to be processed (NO in step S112), the processing ends.
 以上、1枚の基板Sを処理する場合の流れについて説明したが、実際の装置では複数基板に対する処理が並行して実行される。すなわち、1枚の基板Sが1つの基板処理ユニット内で処理を受けている間、同時にインデクサロボット22およびセンターロボット15による他の基板の搬送、ならびに他の基板処理ユニットによる基板処理、の少なくとも1つを並行して実行することが可能である。 The flow of processing one substrate S has been described above, but in an actual device, processing for a plurality of substrates is executed in parallel. That is, at least one of the transfer of another substrate by the indexer robot 22 and the center robot 15 and the substrate processing by the other substrate processing unit while the one substrate S is being processed in one substrate processing unit at the same time. It is possible to execute one in parallel.
 より具体的には、例えばステップS102において基板Sがインデクサロボット22からセンターロボット15に受け渡された後では、インデクサロボット22は新たに容器Cにアクセスして他の基板を取り出すことが可能である。また例えば、ステップS103において1枚の基板Sが基板処理ユニット11Aに搬入された後、センターロボット15は他の基板を他の基板処理ユニットに搬入する、あるいは他の基板処理ユニットで処理された他の基板を搬出することが可能である。 More specifically, for example, after the substrate S is handed over from the indexer robot 22 to the center robot 15 in step S102, the indexer robot 22 can newly access the container C and take out another substrate. .. Further, for example, after one substrate S is carried into the substrate processing unit 11A in step S103, the center robot 15 carries another substrate into another substrate processing unit, or is processed by another substrate processing unit. It is possible to carry out the board.
 したがって、複数枚の基板Sに対し順次処理を行う必要がある場合には、各基板Sを処理するための装置各部の動作シーケンスを適宜に調節することで、複数枚の基板への処理を並行して進行させる。こうすることで、基板処理装置1全体としての処理のスループットを向上させることが可能となる。具体的な動作シーケンスは、処理の仕様、上記各ステップの所要時間や同時処理の可否等に応じて適切に定められる必要がある。 Therefore, when it is necessary to sequentially process a plurality of boards S, the processing on a plurality of boards can be performed in parallel by appropriately adjusting the operation sequence of each part of the device for processing each board S. And proceed. By doing so, it is possible to improve the processing throughput of the substrate processing apparatus 1 as a whole. The specific operation sequence needs to be appropriately determined according to the processing specifications, the time required for each of the above steps, the possibility of simultaneous processing, and the like.
 図7は乾燥処理を示すフローチャートである。基板処理ユニット(乾燥処理ユニット)13Aは、上面Saが凝固膜FFで覆われた状態の基板Sを受け入れて乾燥処理を実行する。前述の通り、ここでは超臨界流体を用いた超臨界乾燥処理が行われる。具体的には、まず溶解液供給部47が基板上面Saに対して溶解液を供給し、これにより凝固膜FFを溶解させる(ステップS301)。 FIG. 7 is a flowchart showing the drying process. The substrate processing unit (drying treatment unit) 13A receives the substrate S in which the upper surface Sa is covered with the solidifying film FF and executes the drying treatment. As described above, supercritical drying treatment using a supercritical fluid is performed here. Specifically, first, the dissolution liquid supply unit 47 supplies the dissolution liquid to the upper surface Sa of the substrate, thereby dissolving the coagulation film FF (step S301).
 溶解液が凝固膜FFを構成する物質と同じものである場合、基板上面Saは湿式処理ユニット11Aから搬出される直前の状態、つまり上面Saが凝固液の液膜LFで覆われた状態に戻る。例えば凝固膜FFがIPAにより形成され、溶解液もIPAである場合がこれに該当する。 When the solution is the same as the substance constituting the coagulation film FF, the upper surface Sa of the substrate returns to the state immediately before being carried out from the wet treatment unit 11A, that is, the upper surface Sa is covered with the liquid film LF of the coagulation film. .. For example, this corresponds to the case where the coagulation film FF is formed by IPA and the solution is also IPA.
 一方、溶解液が凝固膜の材料とは異なりこれを溶解する性質のものである場合には、基板上面Saは凝固液と溶解液との混合液の液膜で覆われることになる。さらに溶解液を供給することで、基板上面Saに残存する凝固液を溶解液により置換することができる。 On the other hand, if the solution has the property of dissolving the solution unlike the material of the coagulation film, the upper surface Sa of the substrate will be covered with the film of the mixture of the coagulant and the solution. Further, by supplying the dissolution liquid, the coagulation liquid remaining on the upper surface Sa of the substrate can be replaced with the dissolution liquid.
 その後、基板Sの回転により液膜を振り切ると(ステップS302)、基板上面Saの溶解液の大部分は除去されるが、パターン内には溶解液が残存した状態となる。振り切られた液体は排出機構48により排出される。この状態で二酸化炭素供給部45から二酸化炭素が高圧チャンバ130内に導入される。 After that, when the liquid film is shaken off by the rotation of the substrate S (step S302), most of the dissolved liquid on the upper surface Sa of the substrate is removed, but the dissolved liquid remains in the pattern. The shaken-out liquid is discharged by the discharge mechanism 48. In this state, carbon dioxide is introduced into the high pressure chamber 130 from the carbon dioxide supply unit 45.
 二酸化炭素ガスを高圧チャンバ130に供給しチャンバ内圧を十分に高めることで、二酸化炭素を液化してもよい。また、液状の二酸化炭素が高圧チャンバ130に導入されてもよい。液状の二酸化炭素は基板上面Saを覆う。液化した二酸化炭素は有機溶剤をよく溶かす。したがって、パターン内に残存するIPA等の溶解液は、液状の二酸化炭素によって置換される(ステップS303)。 Carbon dioxide gas may be liquefied by supplying carbon dioxide gas to the high pressure chamber 130 to sufficiently increase the pressure inside the chamber. In addition, liquid carbon dioxide may be introduced into the high pressure chamber 130. The liquid carbon dioxide covers the upper surface Sa of the substrate. Liquefied carbon dioxide dissolves organic solvents well. Therefore, the solution such as IPA remaining in the pattern is replaced with liquid carbon dioxide (step S303).
 なお、溶解液として液状の二酸化炭素が用いられる場合、ステップS303における二酸化炭素の供給は、置換のためではなく次に超臨界状態を創出するための準備としての意味を持つことになる。 When liquid carbon dioxide is used as the solution, the supply of carbon dioxide in step S303 has a meaning not for substitution but as preparation for creating the next supercritical state.
 続いて、高圧チャンバ130内の温度および圧力が、二酸化炭素を超臨界状態とする条件に調整される。これにより高圧チャンバ130内の二酸化炭素が超臨界流体となる(ステップS304)。超臨界状態の流体は極めて流動性が高く表面張力が小さい。特に二酸化炭素から生成された超臨界流体は、IPA、アセトン等の有機溶剤をよく溶かす。このため、二酸化炭素の超臨界流体は微細なパターンの奥深くまで入り込み、残存する有機溶剤成分をパターン内から運び去る。比較的低圧、低温で超臨界状態となる点も、二酸化炭素が超臨界乾燥処理に適している理由の1つである。 Subsequently, the temperature and pressure in the high-pressure chamber 130 are adjusted to conditions that bring carbon dioxide into a supercritical state. As a result, carbon dioxide in the high-pressure chamber 130 becomes a supercritical fluid (step S304). A fluid in a supercritical state has extremely high fluidity and low surface tension. In particular, the supercritical fluid generated from carbon dioxide dissolves organic solvents such as IPA and acetone well. Therefore, the supercritical fluid of carbon dioxide penetrates deep into the fine pattern and carries away the remaining organic solvent component from the pattern. One of the reasons why carbon dioxide is suitable for supercritical drying treatment is that it becomes supercritical at relatively low pressure and low temperature.
 そして、高圧チャンバ130内が急激に減圧される(ステップS305)。これにより、超臨界流体は液相を経ることなく直接気化し基板Sから除去される。これにより、基板Sは液体成分が完全に除去されて乾燥した状態となる。パターン内に残存する液体成分は超臨界流体によって置換され、超臨界流体が直接気化することにより、パターン内の液体の表面張力に起因するパターン倒壊の問題は回避される。 Then, the pressure inside the high pressure chamber 130 is rapidly reduced (step S305). As a result, the supercritical fluid is directly vaporized and removed from the substrate S without passing through the liquid phase. As a result, the substrate S is in a dry state with the liquid component completely removed. The liquid component remaining in the pattern is replaced by the supercritical fluid, and the supercritical fluid is directly vaporized to avoid the problem of pattern collapse due to the surface tension of the liquid in the pattern.
 このように、パターン内に残存する液体は最終的に超臨界流体により置換される。そのため、搬送時に形成される凝固膜FFは、必ずしも低表面張力物質で構成される必要はないとも言える。例えば水を主成分とする液体で凝固膜FFを形成したとしても、上記した搬送時の利点は得られる。しかしながら、水は液状または超臨界状態の二酸化炭素に対する溶解度が低いため、効果的に置換を行わせるとの観点からは好ましくない。二酸化炭素に対し高い溶解度を示すのがIPA、アセトン等の有機溶剤であり、これらは概して水より表面張力が低い。また、処理の性質から考えても、凝固液および溶解液については表面張力が低い方が有利であることは確かである。 In this way, the liquid remaining in the pattern is finally replaced by the supercritical fluid. Therefore, it can be said that the coagulation film FF formed during transportation does not necessarily have to be composed of a low surface tension substance. For example, even if the coagulation film FF is formed of a liquid containing water as a main component, the above-mentioned advantages during transportation can be obtained. However, since water has low solubility in carbon dioxide in a liquid or supercritical state, it is not preferable from the viewpoint of effectively performing substitution. Organic solvents such as IPA and acetone show high solubility in carbon dioxide, and these generally have lower surface tension than water. In addition, considering the nature of the treatment, it is certain that a lower surface tension is advantageous for the coagulant and the solution.
 以上のように、この実施形態では、湿式処理ユニット11Aにおいて基板Sの上面Saを液膜で覆って凝固させ、凝固状態のまま搬送する。これにより、搬送中の落液に起因する基板上面Saの露出の回避など、液状での搬送よりも利便性が高められている。一方、この基板Sを受け入れる乾燥処理ユニット13Aでは、凝固膜をいったん溶解させた後、最終的に超臨界流体により置換することで、液体成分を残存させず、しかもパターン倒壊を生じさせずに基板Sを乾燥させる。 As described above, in this embodiment, in the wet processing unit 11A, the upper surface Sa of the substrate S is covered with a liquid film to be solidified, and the substrate S is conveyed in the solidified state. As a result, the convenience is improved as compared with the liquid transport, such as avoiding the exposure of the substrate upper surface Sa due to the liquid drop during the transport. On the other hand, in the drying treatment unit 13A that accepts the substrate S, the solidified film is once dissolved and then finally replaced with a supercritical fluid, so that no liquid component remains and the substrate does not collapse. Dry S.
 このように、本実施形態では、基板に凝固膜を形成した状態で搬送し、凝固膜を除去することで基板を乾燥させる。このような処理内容は、昇華性物質で形成した凝固膜を昇華させることで除去する従来技術である、昇華乾燥処理と類似していると言える。しかしながら、本実施形態では、凝固膜を溶解して液状に戻した後、超臨界流体による置換および乾燥というプロセスを採っている。これは、単に搬送上の便宜のみではなく、以下の事情をも考慮したものである。 As described above, in the present embodiment, the substrate is conveyed with the solidified film formed on the substrate, and the substrate is dried by removing the solidified film. It can be said that such a treatment content is similar to the sublimation drying treatment, which is a conventional technique for removing a coagulation film formed of a sublimable substance by sublimation. However, in the present embodiment, after the coagulation film is dissolved and returned to a liquid state, a process of replacement with a supercritical fluid and drying is adopted. This is not only for convenience in transportation, but also for the following circumstances.
 図8Aないし図8Cは凝固膜に生じ得る問題を模式的に示す図である。図8Aに示すように、基板Sの上面Saに微細なパターンPTが互いに近接して多数形成され、湿式処理後にはこれらが凝固液の液膜LFにより覆われているとする。ここで、隣接するパターンPT間の間隔をギャップサイズGSと称することとする。液膜LFにその凝固点よりも低温の冷却ガスを供給することで液膜LFは凝固する。ただし、ギャップサイズGSが微小になると次のような問題が生じてくる。 8A to 8C are diagrams schematically showing problems that may occur in the coagulation film. As shown in FIG. 8A, it is assumed that a large number of fine pattern PTs are formed close to each other on the upper surface Sa of the substrate S, and these are covered with the liquid film LF of the coagulating liquid after the wet treatment. Here, the interval between adjacent pattern PTs is referred to as a gap size GS. The liquid film LF solidifies by supplying a cooling gas having a temperature lower than the freezing point to the liquid film LF. However, when the gap size GS becomes small, the following problems occur.
 微小な空間に入れられた液体では凝固点が急激に低下するという現象がある。例えば水の場合、図8Bに示すように、十分に広い(ギャップサイズGSが大きい)空間内では水の凝固点は0℃である。しかしながら、例えば100nm以下の狭いギャップ内では凝固点が次第に低下し、例えばギャップサイズGSが1nm程度であれば凝固点は(-50)℃程度まで低下する。液膜材料として一般に利用されるIPAでも、同様の傾向があることがわかっている。 There is a phenomenon that the freezing point drops sharply with a liquid placed in a minute space. For example, in the case of water, as shown in FIG. 8B, the freezing point of water is 0 ° C. in a sufficiently wide space (with a large gap size GS). However, for example, the freezing point gradually decreases in a narrow gap of 100 nm or less, and for example, when the gap size GS is about 1 nm, the freezing point decreases to about (-50) ° C. It is known that IPA, which is generally used as a liquid film material, has a similar tendency.
 水を主成分とする液膜を凝固させようとする場合、自由空間での凝固点(0℃)よりも十分に低温の冷却ガスが用いられることになる。その温度Tgとしては、例えば(-5)℃ないし(-20)℃程度が現実的と考えられる。しかしながら、図8Bは、ギャップサイズがナノメーターのオーダーになってくると、この温度Tgではギャップ内の液体を凝固させることはできないことを示している。 When trying to solidify a liquid film containing water as a main component, a cooling gas having a temperature sufficiently lower than the freezing point (0 ° C.) in the free space is used. As the temperature Tg, for example, about (-5) ° C. to (-20) ° C. is considered to be realistic. However, FIG. 8B shows that when the gap size is on the order of nanometers, the liquid in the gap cannot be solidified at this temperature Tg.
 その結果、図8Cに示すように、たとえ液膜LFの表面が冷却により凝固膜FFに転換していたとしても、冷却温度および時間によっては、パターンの深部では液体状態のままとなっている可能性がある。昇華乾燥処理においてこのような現象が生じていると、期待される固相から気相への相変化でなく、液相から気相への相変化によって乾燥が進行することになる。そうすると、液体の表面張力に起因するパターン倒壊を防止するという目的は達成されない。 As a result, as shown in FIG. 8C, even if the surface of the liquid film LF is converted to the coagulation film FF by cooling, it is possible that the liquid state remains in the deep part of the pattern depending on the cooling temperature and time. There is sex. When such a phenomenon occurs in the sublimation drying process, the drying proceeds not by the expected phase change from the solid phase to the gas phase but by the phase change from the liquid phase to the gas phase. Then, the purpose of preventing the pattern collapse due to the surface tension of the liquid is not achieved.
 本実施形態では、凝固膜を溶解させてから超臨界流体に置換して除去するため、このような問題は生じない。すなわち、本実施形態では、凝固膜を形成した状態で搬送し、搬送後に凝固膜を溶解させてから超臨界乾燥処理を行う。このような処理は、単に搬送の便宜のためだけでなく、特に微細なパターンであってもその倒壊を確実に防止するという目的にも叶ったものとなっている。 In the present embodiment, since the coagulation film is dissolved and then replaced with a supercritical fluid for removal, such a problem does not occur. That is, in the present embodiment, the solidified film is transported in a state of being formed, and after the solidified film is dissolved, the supercritical drying treatment is performed. Such a process is not only for the convenience of transportation, but also for the purpose of surely preventing the collapse of even a fine pattern.
 言い換えると、この実施形態の処理において凝固膜は、搬送時の便宜のために少なくとも表面が流動しない程度に凝固していればよく、パターンの奥部まで完全に凝固することを要しない。このことは、液膜LFを冷却する際の温度および処理時間における条件が、液膜を完全に凝固させる場合よりも緩和されることを意味する。したがって、冷却に要するエネルギーを低減させ冷却時間を短縮することが可能である。また、液膜の表層が凝固していれば深部は液状でも構わない、という観点からは、以下のような変形例も成立し得る。 In other words, in the treatment of this embodiment, the coagulating film needs to be solidified at least to the extent that the surface does not flow for convenience during transportation, and it is not necessary to completely solidify to the inner part of the pattern. This means that the temperature and treatment time conditions for cooling the liquid film LF are relaxed as compared with the case where the liquid film is completely solidified. Therefore, it is possible to reduce the energy required for cooling and shorten the cooling time. Further, from the viewpoint that the deep part may be liquid as long as the surface layer of the liquid film is solidified, the following modified examples can be established.
 図9は凝固処理の他の例を示すフローチャートである。また、図10はこの変形例における液膜の状態を模式的に示す図である。図9に示す処理は、図5のステップS105に適用される処理として、図6の凝固処理に代えて実行可能なものである。この変形例においては、凝固膜の形成に際して、まずパターン内を液体で満たすための充填用液膜F1が形成される(ステップS401)。充填用液膜F1はパターン内に充填されることを目的とするものであり、上記理由から、凝固することを必要とされない。したがって、その凝固点に制約されることなく、表面張力が十分に小さい物質が選ばれればよい。冷却温度では凝固しない材料が意図的に選ばれてもよい。また、液膜F1の厚さは、パターンPTの高さと同程度あればよい。 FIG. 9 is a flowchart showing another example of the solidification process. Further, FIG. 10 is a diagram schematically showing the state of the liquid film in this modified example. The process shown in FIG. 9 can be executed instead of the solidification process of FIG. 6 as the process applied to step S105 of FIG. In this modification, when the solidifying film is formed, a filling liquid film F1 for filling the inside of the pattern with a liquid is first formed (step S401). The filling liquid film F1 is intended to be filled in the pattern, and for the above reason, it is not required to solidify. Therefore, a substance having a sufficiently small surface tension may be selected without being restricted by the freezing point. A material that does not solidify at the cooling temperature may be intentionally selected. Further, the thickness of the liquid film F1 may be about the same as the height of the pattern PT.
 次に、充填用液膜F1を覆うように、凝固液による凝固用液膜F2が形成される(ステップS402)。凝固用液膜F2については、表面張力に制約されず、凝固しやすい材料を選択して用いることができる。充填用液膜F1と凝固用液膜F2とは混じり合わなくてもよい。こうして形成された液膜F1,F2に冷却ガスが供給されて、凝固用液膜F2が凝固する(ステップS403)。 Next, the coagulation liquid film F2 is formed by the coagulation liquid so as to cover the filling liquid film F1 (step S402). As the coagulation liquid film F2, a material that easily coagulates can be selected and used without being restricted by surface tension. The filling liquid film F1 and the coagulating liquid film F2 do not have to be mixed. Cooling gas is supplied to the liquid films F1 and F2 formed in this way, and the solidifying liquid film F2 solidifies (step S403).
 ここで、例えば充填用液膜F1を構成する液体の凝固点が室温以上であり、凝固用液膜F2を構成する液体の凝固点が室温以下であれば、特別に冷却を行うことなく凝固用液膜F2を凝固させることも可能である。ただし、凝固用液膜F2を構成する液体は基板Sに供給される時点で液体であることを要し、例えば凝固点より若干高い温度に加温された状態で供給されればよい。 Here, for example, if the freezing point of the liquid constituting the filling liquid film F1 is at room temperature or higher and the freezing point of the liquid constituting the solidifying liquid film F2 is at room temperature or lower, the solidifying liquid film without special cooling is performed. It is also possible to solidify F2. However, the liquid constituting the solidification liquid film F2 needs to be a liquid at the time of being supplied to the substrate S, and may be supplied in a state of being heated to a temperature slightly higher than the freezing point, for example.
 この変形例では、上記実施形態と同様に、凝固用液膜F2が凝固していることで搬送時の利便性向上という利点を得られる。また、冷却温度を従来よりも高く設定することで消費エネルギーの低減を図ることができる。一方で、充填用液膜F1は完全には凝固せず液状であるため、搬送後の除去が容易である。そして、液膜で覆うことによる搬送中のパターン保護作用も十分に機能する。また、液膜形成材料の選択の自由度も高くなる。 In this modified example, as in the above embodiment, the coagulation liquid film F2 is coagulated, which has the advantage of improving convenience during transportation. In addition, energy consumption can be reduced by setting the cooling temperature higher than before. On the other hand, since the filling liquid film F1 is not completely solidified and is liquid, it can be easily removed after transportation. And, the pattern protection action during transportation by covering with a liquid film also functions sufficiently. In addition, the degree of freedom in selecting the liquid film forming material is increased.
 また、本実施形態と従来技術である昇華乾燥処理との対比では、次のような差異もある。従来技術において基板を覆う凝固膜は昇華性物質により形成される。昇華性物質は揮発性が高いため、搬送中にも揮発が進み基板表面が露出してしまうおそれがある。また、揮発した昇華性物質が飛散して装置内で再析出し、それが装置や処理中の基板の汚染源となるおそれがある。あるいは、飛散した物質が装置外へ漏れ出さないようにするための対策を講じなければならない状況も生じ得る。一方、本実施形態では凝固膜に昇華性が求められないため、このような問題発生のおそれは大きく低減される。 In addition, there are the following differences in the comparison between this embodiment and the conventional sublimation drying treatment. In the prior art, the coagulating film covering the substrate is formed of a sublimable substance. Since the sublimable substance is highly volatile, it may volatilize during transportation and the surface of the substrate may be exposed. In addition, the volatilized sublimable substance may scatter and reprecipitate in the apparatus, which may become a source of contamination of the apparatus and the substrate being processed. Alternatively, there may be situations in which measures must be taken to prevent the scattered material from leaking out of the device. On the other hand, in the present embodiment, the coagulation film is not required to have sublimation properties, so that the possibility of such a problem occurring is greatly reduced.
 以上説明したように、上記実施形態においては、湿式処理ユニットである基板処理ユニット11A等が本発明の「第1処理部」として機能し、乾燥処理ユニットである基板処理ユニット13A等が本発明の「第2処理部」として機能している。そして、センターロボット15が本発明の「搬送機構」として機能している。また、高圧チャンバ130が本発明の「チャンバ」として機能し、二酸化炭素供給部45が本発明の「流体供給部」として機能している。 As described above, in the above embodiment, the substrate processing unit 11A or the like which is a wet processing unit functions as the "first processing unit" of the present invention, and the substrate processing unit 13A or the like which is a drying processing unit of the present invention. It functions as a "second processing unit". The center robot 15 functions as the "transport mechanism" of the present invention. Further, the high pressure chamber 130 functions as the "chamber" of the present invention, and the carbon dioxide supply unit 45 functions as the "fluid supply unit" of the present invention.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態は、本発明の「第1処理部」、「第2処理部」、「搬送機構」にそれぞれ相当する基板処理ユニット11A、基板処理ユニット13A、センターロボット15が1つの筐体に収められて一体の処理システムを構成するものである。しかしながら、本発明は、互いに独立して設けられた第1処理部および第2処理部と、これらの間で基板を搬送する搬送機構とを有する処理システムに対しても適用可能である。 The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, the substrate processing unit 11A, the substrate processing unit 13A, and the center robot 15 corresponding to the "first processing unit", the "second processing unit", and the "conveying mechanism" of the present invention are contained in one housing. It is housed in the box and constitutes an integrated processing system. However, the present invention is also applicable to a processing system having a first processing unit and a second processing unit provided independently of each other and a transport mechanism for transporting a substrate between them.
 また、上記実施形態で使用される各種の化学物質は一部の例を示したものであり、上記した本発明の技術思想に合致するものであれば、これに代えて種々のものを使用することが可能である。 In addition, the various chemical substances used in the above-described embodiments show some examples, and if they are consistent with the above-mentioned technical idea of the present invention, various chemical substances are used instead. It is possible.
 また、上記実施形態の説明においては、凹凸パターンの奥部に入り込んだ液体が凝固してない可能性について言及している。しかしながら、上記したプロセス自体は、パターン内で液体が完全に凝固しているか否かによらず成立するものである。なお、パターン内部で液状であるという状態を確実なものにするためには、例えば冷却ガスの温度を、液膜を構成する液体の自由空間における凝固点よりは低く、かつ処理対象基板のパターンが有するギャップサイズに対応する凝固点よりは高くなるように設定すればよい。 Further, in the description of the above embodiment, the possibility that the liquid that has entered the inner part of the uneven pattern is not solidified is mentioned. However, the process itself described above is established regardless of whether or not the liquid is completely solidified in the pattern. In order to ensure that the inside of the pattern is liquid, for example, the temperature of the cooling gas is lower than the freezing point of the liquid constituting the liquid film in the free space, and the pattern of the substrate to be processed has. It may be set to be higher than the freezing point corresponding to the gap size.
 また、本発明の基板処理方法は、所定の構成を有する基板処理装置を制御するコンピュータにより実行される制御プログラムとして実施することも可能である。また、この制御プログラムをコンピュータ読み取り可能な形式で非一時的に記録した記録媒体により、本発明の実施態様を頒布することも可能である。 Further, the substrate processing method of the present invention can also be implemented as a control program executed by a computer that controls a substrate processing apparatus having a predetermined configuration. It is also possible to distribute embodiments of the present invention on a recording medium in which this control program is recorded in a computer-readable format non-temporarily.
 以上、具体的な実施形態を例示して説明してきたように、本発明に係る基板処理方法において、例えば凝固膜が、液膜の少なくとも表面を冷却することにより形成されてもよい。本発明において液膜は全体が凝固することを必要とされず、少なくともその表面が搬送に適した程度まで凝固していればよい。したがって、液膜の表面およびその近傍を冷却して凝固膜を形成する方法は熱効率の点で有効である。 As described above by exemplifying a specific embodiment, in the substrate treatment method according to the present invention, for example, a coagulation film may be formed by cooling at least the surface of the liquid film. In the present invention, the liquid film is not required to solidify as a whole, as long as its surface is solidified to at least a degree suitable for transport. Therefore, a method of cooling the surface of the liquid film and its vicinity to form a solidified film is effective in terms of thermal efficiency.
 この場合、例えば、基板を乾燥させる工程では、超臨界流体を用いて基板を乾燥させてよい。このような構成によれば、表面張力が極めて低い超臨界流体でパターン内部の残残液体を置換し除去することができる。そのため、微細な凹凸パターンを有する基板についても良好に乾燥させることができる。 In this case, for example, in the step of drying the substrate, the substrate may be dried using a supercritical fluid. According to such a configuration, the residual liquid inside the pattern can be replaced and removed with a supercritical fluid having an extremely low surface tension. Therefore, even a substrate having a fine uneven pattern can be satisfactorily dried.
 例えば、第2処理部は、基板を受け入れるチャンバを有し、チャンバ内で液状の低表面張力液により溶解液を置換した後、低表面張力液を超臨界流体の状態から気化させて基板を乾燥させることができる。ここでいう低表面張力液は、溶解液よりも表面張力が小さい液体である。このような構成によれば、元より表面張力の小さい液体が超臨界状態を経て気化することで基板が乾燥するので、液相の介在によるパターン倒壊を効果的に抑制することが可能である。 For example, the second processing unit has a chamber that receives the substrate, and after replacing the solution with a liquid low surface tension liquid in the chamber, the low surface tension liquid is vaporized from the state of the supercritical fluid to dry the substrate. Can be made to. The low surface tension liquid referred to here is a liquid having a lower surface tension than the dissolution liquid. According to such a configuration, since the substrate is dried by vaporizing the liquid having a lower surface tension than the original through the supercritical state, it is possible to effectively suppress the pattern collapse due to the intervention of the liquid phase.
 これらの場合において、超臨界流体としては二酸化炭素を用いることができる。二酸化炭素における超臨界条件は、超臨界状態となる物質の中では比較的低温、低圧である。このため、超臨界状態を実現するための装置の構成は比較的小規模なもので済み処理コストを抑えることができる。また、超臨界状態の二酸化炭素は有機溶剤をよく溶かすため、基板に残存する有機溶剤成分を除去するのに好適である。 In these cases, carbon dioxide can be used as the supercritical fluid. The supercritical conditions in carbon dioxide are relatively low temperature and low pressure among the substances in the supercritical state. Therefore, the configuration of the device for realizing the supercritical state is relatively small, and the processing cost can be suppressed. Further, since carbon dioxide in the supercritical state dissolves the organic solvent well, it is suitable for removing the organic solvent component remaining on the substrate.
 また例えば、液膜の少なくとも表面が冷却によって凝固膜に転換される一方、凝固膜と基板との間で液膜の一部が液状に維持されていてもよい。本発明において凝固膜はパターンを保護しつつ基板の可搬性を高めるために形成され、搬送後に凝固膜は溶解される。したがってパターンを保護する液膜は液状であってよい。液膜全体を凝固させないことで、凝固に要するエネルギーおよび処理時間を低減することが可能である。 Further, for example, while at least the surface of the liquid film is converted into a coagulating film by cooling, a part of the liquid film may be maintained in a liquid state between the coagulating film and the substrate. In the present invention, the coagulation film is formed to protect the pattern and increase the portability of the substrate, and the coagulation film is dissolved after transportation. Therefore, the liquid film that protects the pattern may be liquid. By not coagulating the entire liquid film, it is possible to reduce the energy and processing time required for coagulation.
 また例えば、液膜は有機溶剤に加えて融点が常温と同等またはそれ以上である添加剤を含んでいてもよい。このような構成によれば、液膜表面からの有機溶剤の蒸発によって添加剤が凝固し凝固膜が形成されるので、通常の使用環境では冷却のための構成および処理を省くことが可能である。このような添加剤として好適な物質として、例えばターシャリーブチルアルコールを用いることができる。ここで、「常温」とは、広義には日本工業規格に「JIS Z8703」として規定されている5℃ないし35℃を指し、より狭義には15℃ないし25℃を指す。実際の運用においては、本発明の基板処理装置が設置される環境における周囲温度を「常温」とみなすことができる。 Further, for example, the liquid film may contain an additive having a melting point equal to or higher than normal temperature in addition to the organic solvent. According to such a configuration, the additive is solidified by evaporation of the organic solvent from the liquid film surface to form a solidified film, so that it is possible to omit the configuration and treatment for cooling in a normal use environment. .. As a suitable substance as such an additive, for example, tert-butyl alcohol can be used. Here, "normal temperature" refers to 5 ° C to 35 ° C, which is defined as "JIS Z8703" in the Japanese Industrial Standards in a broad sense, and 15 ° C to 25 ° C in a narrower sense. In actual operation, the ambient temperature in the environment in which the substrate processing apparatus of the present invention is installed can be regarded as "normal temperature".
 また例えば、液膜に含まれる有機溶剤および溶解液の少なくとも一方は、イソプロピルアルコールまたはアセトンであってよい。これらの液体は、例えば水を主体とする液体よりも表面張力が小さく、本発明の目的に好適なものである。 Further, for example, at least one of the organic solvent and the solution contained in the liquid film may be isopropyl alcohol or acetone. These liquids have a lower surface tension than, for example, water-based liquids, and are suitable for the object of the present invention.
 また例えば、液膜として、凹凸パターンの内部を充填する充填用液膜と、充填用液膜とは異なる材料により充填用液膜を覆う凝固用液膜とを形成し、凝固用液膜を構成する液体の凝固点よりも低温に冷却することで凝固用液膜を凝固させる構成としてよい。このような構成によれば、凹凸パターンの内部を充填用液膜で充填した状態で、これを覆う凝固膜が形成される。これにより搬送時の利便性は確保されており、しかも後の凝固膜除去を効率的に実行することができる。また充填用液膜と凝固用液膜とで異なる材料を使用可能であり、材料選択や処理条件の設定における自由度が高くなる。 Further, for example, as the liquid film, a filling liquid film that fills the inside of the uneven pattern and a coagulating liquid film that covers the filling liquid film with a material different from the filling liquid film are formed to form a coagulation liquid film. The coagulation liquid film may be coagulated by cooling at a temperature lower than the freezing point of the liquid to be coagulated. According to such a configuration, a solidifying film is formed so as to cover the inside of the uneven pattern with the filling liquid film. As a result, convenience during transportation is ensured, and the coagulation film can be efficiently removed later. Further, different materials can be used for the filling liquid film and the coagulation liquid film, which increases the degree of freedom in material selection and setting of processing conditions.
 この場合、例えば、充填用液膜を構成する液体としてはその凝固点が常温以下のものを、また凝固用液膜を構成する液体としてはその凝固点が常温以上のものを用いることができる。このような構成によれば、常温程度の使用環境において凝固膜と液膜との共存を実現するために、特別の装置や処理を必要としない。 In this case, for example, a liquid having a freezing point of room temperature or lower can be used as the liquid constituting the filling liquid membrane, and a liquid having a freezing point of room temperature or higher can be used as the liquid constituting the solidifying liquid membrane. According to such a configuration, no special equipment or treatment is required to realize the coexistence of the coagulation film and the liquid film in a usage environment of about room temperature.
 また、本発明に係る基板処理装置では、第2処理部は、凝固膜に対して溶解液としての有機溶剤を供給する溶解液供給部を有してよい。このような構成によれば、凝固膜を有機溶剤で溶解して、基板が液膜に覆われた状態を容易に復元することができる。 Further, in the substrate processing apparatus according to the present invention, the second processing unit may have a solution supply unit that supplies an organic solvent as a solution to the coagulation film. According to such a configuration, the solidified film can be dissolved with an organic solvent to easily restore the state in which the substrate is covered with the liquid film.
 以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。 The invention has been described above according to a specific embodiment, but this description is not intended to be interpreted in a limited sense. With reference to the description of the invention, various variations of the disclosed embodiments, as well as other embodiments of the present invention, will be apparent to those familiar with the art. Therefore, the appended claims are considered to include such modifications or embodiments without departing from the true scope of the invention.
 この発明は、基板を凝固膜で覆った状態で搬送し、搬送先で凝固膜を除去し基板を乾燥させるプロセスを含む基板処理技術全般に適用することができる。特に、微細な凹凸パターンを有する基板の処理に好適である。 The present invention can be applied to all substrate processing technologies including a process of transporting a substrate covered with a solidifying film, removing the solidifying film at the transporting destination, and drying the substrate. In particular, it is suitable for processing a substrate having a fine uneven pattern.
 1 基板処理装置
 11A 湿式処理ユニット、基板処理ユニット(第1処理部)
 13A 乾燥処理ユニット、基板処理ユニット(第2処理部)
 15 センターロボット(搬送機構)
 130 高圧チャンバ(チャンバ)
 FF 凝固膜
 LF 液膜
 PT パターン(凹凸パターン)
 S 基板
1 Substrate processing device 11A Wet processing unit, substrate processing unit (first processing unit)
13A Drying processing unit, substrate processing unit (second processing unit)
15 Center robot (conveyance mechanism)
130 High pressure chamber (chamber)
FF coagulation film LF liquid film PT pattern (concavo-convex pattern)
S board

Claims (19)

  1.  第1処理部で、表面に凹凸パターンが形成された基板に湿式処理を施した後、前記基板の表面を有機溶剤を含む液膜で覆う工程と、
     前記液膜の少なくとも表面を凝固させて凝固膜を形成する工程と、
     前記凝固膜で覆われた前記基板を第2処理部へ搬送する工程と、
     前記第2処理部で、前記凝固膜に対し溶解液を供給して、前記凝固膜を溶解する工程と、
     前記基板の表面から前記溶解液を除去して前記基板を乾燥させる工程と
    を備える基板処理方法。
    In the first treatment section, a step of wet-treating a substrate having an uneven pattern formed on the surface and then covering the surface of the substrate with a liquid film containing an organic solvent.
    The step of coagulating at least the surface of the liquid film to form a coagulation film,
    A step of transporting the substrate covered with the solidifying film to the second processing unit, and
    In the second processing unit, a step of supplying a solution to the coagulating film to dissolve the coagulating film, and
    A substrate processing method comprising a step of removing the solution from the surface of the substrate and drying the substrate.
  2.  前記凝固膜が、前記液膜の少なくとも表面を冷却することにより形成される請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the coagulating film is formed by cooling at least the surface of the liquid film.
  3.  前記基板を乾燥させる工程では、超臨界流体を用いて前記基板を乾燥させる請求項1または2に記載の基板処理方法。 The substrate processing method according to claim 1 or 2, wherein in the step of drying the substrate, the substrate is dried using a supercritical fluid.
  4.  前記第2処理部は、前記基板を受け入れるチャンバを有し、
     前記チャンバ内で、液状の低表面張力液により前記溶解液を置換した後、前記低表面張力液を超臨界流体の状態から気化させて前記基板を乾燥させる請求項1ないし3のいずれかに記載の基板処理方法。
    The second processing unit has a chamber for receiving the substrate, and has a chamber for receiving the substrate.
    The invention according to any one of claims 1 to 3, wherein the solution is replaced with a liquid low surface tension liquid in the chamber, and then the low surface tension liquid is vaporized from the state of a supercritical fluid to dry the substrate. Substrate processing method.
  5.  前記超臨界流体が二酸化炭素である請求項3または4に記載の基板処理方法。 The substrate processing method according to claim 3 or 4, wherein the supercritical fluid is carbon dioxide.
  6.  前記液膜の少なくとも表面が冷却によって前記凝固膜に転換される一方、前記凝固膜と前記基板との間で前記液膜の一部が液状に維持される請求項1ないし5のいずれかに記載の基板処理方法。 4. Substrate processing method.
  7.  前記液膜に含まれる前記有機溶剤がイソプロピルアルコールまたはアセトンである請求項1ないし6のいずれかに記載の基板処理方法。 The substrate treatment method according to any one of claims 1 to 6, wherein the organic solvent contained in the liquid film is isopropyl alcohol or acetone.
  8.  前記液膜は、前記有機溶剤に加えて、融点が常温と同じまたはそれ以上である添加剤を含む請求項1ないし7のいずれかに記載の基板処理方法。 The substrate treatment method according to any one of claims 1 to 7, wherein the liquid film contains an additive having a melting point equal to or higher than room temperature in addition to the organic solvent.
  9.  前記添加剤がターシャリーブチルアルコールである請求項8に記載の基板処理方法。 The substrate processing method according to claim 8, wherein the additive is tert-butyl alcohol.
  10.  前記溶解液がイソプロピルアルコールまたはアセトンである請求項1ないし9のいずれかに記載の基板処理方法。 The substrate treatment method according to any one of claims 1 to 9, wherein the solution is isopropyl alcohol or acetone.
  11.  前記液膜として、前記凹凸パターンの内部を充填する充填用液膜と、前記充填用液膜とは異なる材料により前記充填用液膜を覆う凝固用液膜とを形成し、
     前記凝固用液膜を構成する液体の凝固点よりも低温に冷却することで前記凝固用液膜を凝固させる請求項1ないし10のいずれかに記載の基板処理方法。
    As the liquid film, a filling liquid film that fills the inside of the uneven pattern and a coagulation liquid film that covers the filling liquid film with a material different from the filling liquid film are formed.
    The substrate processing method according to any one of claims 1 to 10, wherein the coagulation liquid film is coagulated by cooling to a temperature lower than the freezing point of the liquid constituting the coagulation liquid film.
  12.  前記凝固用液膜を構成する液体の凝固点が、前記充填用液膜を構成する液体の凝固点よりも低い請求項11に記載の基板処理方法。 The substrate processing method according to claim 11, wherein the freezing point of the liquid constituting the solidifying liquid film is lower than the freezing point of the liquid constituting the filling liquid film.
  13.  前記充填用液膜を構成する液体の凝固点が常温以下であり、前記凝固用液膜を構成する液体の凝固点が常温以上である請求項11に記載の基板処理方法。 The substrate processing method according to claim 11, wherein the freezing point of the liquid constituting the filling liquid film is at room temperature or lower, and the freezing point of the liquid constituting the solidifying liquid film is at room temperature or higher.
  14.  表面に凹凸パターンが形成された基板に対し、湿式処理、前記基板の表面を液膜で覆う処理、および、前記液膜を構成する液体の凝固点よりも低温に冷却して前記液膜を凝固させ、凝固膜に転換させる処理を実行する第1処理部と、
     前記凝固膜が形成された前記基板を受け入れ、前記凝固膜に対し溶解液を供給して前記凝固膜を溶解させる処理、および、前記基板の表面から前記溶解液を除去して前記基板を乾燥させる処理を実行する第2処理部と、
     前記第1処理部から前記第2処理部へ、前記凝固膜が形成された前記基板を搬送する搬送機構と
    を備える基板処理装置。
    The substrate having the uneven pattern formed on the surface is wet-treated, the surface of the substrate is covered with a liquid film, and the liquid film is cooled to a temperature lower than the freezing point of the liquid constituting the liquid film to solidify the liquid film. , The first processing unit that executes the processing to convert to a coagulating film,
    The substrate on which the coagulation film is formed is received, a solution is supplied to the coagulation film to dissolve the coagulation film, and the solution is removed from the surface of the substrate to dry the substrate. The second processing unit that executes processing and
    A substrate processing apparatus including a transport mechanism for transporting the substrate on which the solidifying film is formed from the first processing unit to the second processing unit.
  15.  前記第1処理部は、
     前記湿式処理のための処理液を前記基板に供給する処理液供給部と、
     前記液膜を形成するための凝固液を前記基板に供給する凝固液供給部と、
     前記凝固液の凝固点よりも低温の冷却ガスを前記基板に供給する冷却ガス供給部と
    を備え、
     前記第2処理部は、
     前記溶解液を前記基板に供給する溶解液供給部と、
     前記溶解液を置換する流体を供給する流体供給部と
    を備える請求項14に記載の基板処理装置。
    The first processing unit
    A treatment liquid supply unit that supplies the treatment liquid for the wet treatment to the substrate,
    A coagulation liquid supply unit that supplies the coagulation liquid for forming the liquid film to the substrate, and
    A cooling gas supply unit for supplying a cooling gas having a temperature lower than the freezing point of the coagulating liquid to the substrate is provided.
    The second processing unit
    A dissolution liquid supply unit that supplies the dissolution liquid to the substrate,
    The substrate processing apparatus according to claim 14, further comprising a fluid supply unit that supplies a fluid that replaces the solution.
  16.  前記第2処理部は前記基板を収容するチャンバを有し、前記流体供給部は前記チャンバの内部空間に超臨界状態の前記流体を供給する請求項15に記載の基板処理装置。 The substrate processing apparatus according to claim 15, wherein the second processing unit has a chamber for accommodating the substrate, and the fluid supply unit supplies the fluid in a supercritical state to the internal space of the chamber.
  17.  前記流体が二酸化炭素である請求項15または16に記載の基板処理装置。 The substrate processing apparatus according to claim 15 or 16, wherein the fluid is carbon dioxide.
  18.  前記溶解液が有機溶剤である請求項14ないし17のいずれかに記載の基板処理装置。 The substrate processing apparatus according to any one of claims 14 to 17, wherein the solution is an organic solvent.
  19.  前記溶解液がイソプロピルアルコールまたはアセトンである請求項18に記載の基板処理装置。 The substrate processing apparatus according to claim 18, wherein the solution is isopropyl alcohol or acetone.
PCT/JP2020/007669 2019-03-26 2020-02-26 Substrate processing method and substrate processing device WO2020195474A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080021459.3A CN113574340B (en) 2019-03-26 2020-02-26 Substrate processing method and substrate processing apparatus
KR1020217029411A KR102626637B1 (en) 2019-03-26 2020-02-26 Substrate processing method and substrate processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058735A JP7183094B2 (en) 2019-03-26 2019-03-26 Substrate processing method and substrate processing apparatus
JP2019-058735 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195474A1 true WO2020195474A1 (en) 2020-10-01

Family

ID=72611854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007669 WO2020195474A1 (en) 2019-03-26 2020-02-26 Substrate processing method and substrate processing device

Country Status (5)

Country Link
JP (1) JP7183094B2 (en)
KR (1) KR102626637B1 (en)
CN (1) CN113574340B (en)
TW (1) TWI757698B (en)
WO (1) WO2020195474A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015417A1 (en) * 2021-08-09 2023-02-16 盛美半导体设备(上海)股份有限公司 Drying apparatus and method based on supercritical fluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074564A (en) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2015050414A (en) * 2013-09-04 2015-03-16 株式会社Screenホールディングス Substrate drier
JP2018163992A (en) * 2017-03-27 2018-10-18 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2019029491A (en) * 2017-07-27 2019-02-21 株式会社Screenホールディングス Substrate processing method, substrate processing liquid and substrate processing device
JP2019046942A (en) * 2017-08-31 2019-03-22 株式会社Screenホールディングス Substrate drying method and substrate processing apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130685A (en) * 2006-11-17 2008-06-05 Sony Corp Microstructure processing method and apparatus, and the microstructure
JP4895774B2 (en) * 2006-11-24 2012-03-14 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method
JP5681560B2 (en) 2011-05-17 2015-03-11 東京エレクトロン株式会社 Substrate drying method and substrate processing apparatus
JP5859888B2 (en) 2012-03-26 2016-02-16 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6131162B2 (en) * 2012-11-08 2017-05-17 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP6304592B2 (en) * 2014-03-25 2018-04-04 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP6612632B2 (en) * 2016-01-26 2019-11-27 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6703858B2 (en) * 2016-02-26 2020-06-03 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6914138B2 (en) * 2017-07-26 2021-08-04 株式会社Screenホールディングス Substrate processing method and substrate processing equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074564A (en) * 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2015050414A (en) * 2013-09-04 2015-03-16 株式会社Screenホールディングス Substrate drier
JP2018163992A (en) * 2017-03-27 2018-10-18 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2019029491A (en) * 2017-07-27 2019-02-21 株式会社Screenホールディングス Substrate processing method, substrate processing liquid and substrate processing device
JP2019046942A (en) * 2017-08-31 2019-03-22 株式会社Screenホールディングス Substrate drying method and substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015417A1 (en) * 2021-08-09 2023-02-16 盛美半导体设备(上海)股份有限公司 Drying apparatus and method based on supercritical fluid

Also Published As

Publication number Publication date
KR20210126694A (en) 2021-10-20
JP7183094B2 (en) 2022-12-05
JP2020161610A (en) 2020-10-01
KR102626637B1 (en) 2024-01-18
TWI757698B (en) 2022-03-11
TW202038355A (en) 2020-10-16
CN113574340A (en) 2021-10-29
CN113574340B (en) 2023-04-28

Similar Documents

Publication Publication Date Title
US10121646B2 (en) Substrate processing apparatus and substrate processing method
JP5647845B2 (en) Substrate drying apparatus and substrate drying method
JP7018792B2 (en) Board processing method and board processing equipment
KR102611130B1 (en) Method for producing a liquid containing a sublimable substance, method for drying a substrate, and apparatus for processing a substrate
CN109560014B (en) Substrate processing method, substrate processing liquid, and substrate processing apparatus
JP2019029491A (en) Substrate processing method, substrate processing liquid and substrate processing device
CN110660641B (en) Substrate processing method and substrate processing apparatus
JP2018107426A (en) Substrate processing device and substrate processing method
WO2020195474A1 (en) Substrate processing method and substrate processing device
TWI742661B (en) Substrate processing apparatus
WO2020195175A1 (en) Substrate processing device and transfer control method therefor
JP5859888B2 (en) Substrate processing apparatus and substrate processing method
JP7232583B2 (en) Substrate processing method and substrate processing apparatus
KR102658643B1 (en) Substrate processing device and its transport control method
JP7300272B2 (en) Substrate processing method and substrate processing apparatus
WO2020039835A1 (en) Substrate processing method and substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217029411

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778432

Country of ref document: EP

Kind code of ref document: A1