WO2020194905A1 - Solid-state imaging element, imaging device, and method for controlling solid-state imaging element - Google Patents

Solid-state imaging element, imaging device, and method for controlling solid-state imaging element Download PDF

Info

Publication number
WO2020194905A1
WO2020194905A1 PCT/JP2019/048373 JP2019048373W WO2020194905A1 WO 2020194905 A1 WO2020194905 A1 WO 2020194905A1 JP 2019048373 W JP2019048373 W JP 2019048373W WO 2020194905 A1 WO2020194905 A1 WO 2020194905A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
pair
vertical
signal
reset
Prior art date
Application number
PCT/JP2019/048373
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 長沼
加藤 昭彦
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2020194905A1 publication Critical patent/WO2020194905A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present technology relates to a solid-state image sensor, an image sensor, and a control method for the solid-state image sensor. More specifically, the present invention relates to a solid-state image sensor, an image pickup device, and a method for controlling a solid-state image sensor that differentially amplify a signal and output it from a vertical signal line.
  • a differential amplification type solid-state image sensor that amplifies the difference between the signals of a pair of pixels.
  • a solid-state image sensor has been proposed in which pixels are arranged in a two-dimensional lattice, the difference between the signals of two adjacent pixels in the row direction is amplified, and the difference is output from a vertical signal line (for example, Patent Document). See 1.).
  • the sensitivity is increased by differential amplification to improve the image quality of image data captured in a dark place.
  • the amount of voltage drop due to the wiring resistance of the vertical signal line increases as the line is farther from the power supply, and the conversion efficiency of converting electric charge into voltage decreases due to the increase in the amount of voltage drop. There is a risk. Due to this difference in conversion efficiency for each row, there is a problem that a density gradient called shading appears in the image data and the image quality deteriorates.
  • This technology was created in view of such a situation, and aims to improve the image quality of image data in a solid-state image sensor that amplifies the difference between the signals of a pair of pixels.
  • the present technology has been made to solve the above-mentioned problems, and the first aspect thereof is a load current that supplies a predetermined load current to a vertical reset input line connected to a node having a predetermined reset voltage.
  • a pair of reset transistors that initialize a pair of stray diffusion layers with a source and a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line, and a pair of stray diffusion layers from one of the pair of photoelectric conversion elements.
  • a transfer transistor that transfers a charge to one side to generate a voltage corresponding to the amount of the charge as a signal voltage, and a pair of amplification transistors that generate an output current according to the difference between the reference voltage and the signal voltage.
  • a solid-state imaging device including a current mirror circuit that outputs a pixel signal having a voltage corresponding to the output current from a vertical signal line, and a control method thereof. This has the effect of increasing the charge-voltage conversion efficiency according to the amount of voltage drop due to the wiring resistance of the vertical reset input line.
  • one of the pair of photoelectric conversion elements, one of the pair of floating diffusion layers, one of the pair of reset transistors, the transfer transistor, and one of the pair of amplification transistors are predetermined.
  • the other of the pair of photoelectric conversion elements, the other of the pair of stray diffusion layers, the other of the pair of reset transistors, and the other of the pair of amplification transistors are arranged on one of the pair of pixels arranged in the direction. It may be arranged on the other side of the pair of pixels. This has the effect of differentially amplifying the signals of each of the pair of pixels.
  • a reset voltage supply transistor that lowers a predetermined power supply voltage and supplies it as a reset voltage to the vertical reset input line may be further provided. This has the effect of supplying a reset voltage lower than the power supply voltage.
  • the wiring resistance per unit length of the vertical reset input line may be larger than the wiring resistance per unit length of the vertical signal line. This has the effect of reducing power consumption.
  • a buffer that amplifies the voltage of the vertical reset input line and supplies it to each of the pair of reset transistors may be further provided. This has the effect of increasing the driving force of the pixels.
  • the voltage drop measuring unit that measures the voltage drop amount due to the wiring resistance of the vertical signal line and supplies the measured value, and the reset voltage that generates the bias voltage corresponding to the measured value. It may further include a bias voltage generator that supplies the gate of the supply transistor. This has the effect of supplying an appropriate reset voltage according to the amount of voltage drop.
  • the differential mode when the differential mode is set, after initializing the pair of floating diffusion layers, one of the pair of photoelectric conversion elements is transferred to one of the pair of floating diffusion layers. Further, a vertical drive unit that controls the transfer of electric charges and controls the transfer of electric charges from the other of the pair of photoelectric conversion elements to the other of the pair of floating diffusion layers after initializing the pair of floating diffusion layers. It may be provided. As a result, in the differential mode, the pixel signal obtained by differentially amplifying each signal of the pair of pixels is read out.
  • the vertical drive unit initializes the pair of floating diffusion layers when the source follower mode is set, and then receives the pair of floating diffusion elements from each of the pair of photoelectric conversion elements. Control may be performed to transfer the charge to the diffusion layer. As a result, in the source follower mode, the pixel signal is read out without differential amplification.
  • the second aspect of the present technology is a load current source that supplies a predetermined load current to a vertical reset input line connected to a node having a predetermined reset voltage, and a voltage drop due to the wiring resistance of the vertical reset input line.
  • a pair of reset transistors that initialize the pair of floating diffusion layers with a reference voltage according to the voltage, and a charge transferred from one of the pair of photoelectric conversion elements to one of the pair of floating diffusion layers according to the amount of the charge.
  • a transfer transistor that generates a voltage as a signal voltage, a pair of amplification transistors that generate an output current corresponding to the difference between the reference voltage and the signal voltage, and a pixel signal having a voltage corresponding to the output current are generated from a vertical signal line.
  • Timing chart which shows an example of the operation at the start of exposure of the solid-state image sensor of the differential mode in 1st Embodiment of this technique. It is a timing chart which shows an example of the operation at the end of exposure of the solid-state image sensor of the differential mode in the 1st Embodiment of this technique. It is a timing chart which shows an example of the operation at the start of the exposure of the solid-state image sensor in SF (Source follower) mode in the modification of the 1st Embodiment of this technique. It is a timing chart which shows an example of the operation at the end of exposure of the solid-state image sensor of SF mode in the modification of the 1st Embodiment of this technique.
  • SF Source follower
  • First Embodiment Example of voltage drop due to wiring resistance of vertical reset input line
  • Second embodiment example of voltage drop due to wiring resistance of a vertical reset input line having a wiring resistance larger than that of a vertical signal line
  • Third embodiment example of reducing the number of transistors and lowering the voltage by the wiring resistance of the vertical reset input line
  • Fourth Embodiment Example of providing a buffer and lowering the voltage by the wiring resistance of the vertical reset input line
  • Fifth Embodiment Example of measuring the voltage drop amount of the vertical signal line and dropping the voltage by the wiring resistance of the vertical reset input line
  • FIG. 1 is a block diagram showing a configuration example of the image pickup apparatus 100 according to the first embodiment of the present technology.
  • the image pickup device 100 is a device for capturing image data, and includes an optical unit 110, a solid-state image sensor 200, and a digital signal processor 120. Further, the image pickup apparatus 100 includes a display unit 130, an operation unit 140, a bus 150, a power supply unit 160, a storage unit 170, and a frame memory 180.
  • a digital camera such as a digital still camera, a smartphone having an image pickup function, a personal computer, an in-vehicle camera, or the like is assumed.
  • the optical unit 110 collects the light from the subject and guides it to the solid-state image sensor 200.
  • the solid-state image sensor 200 generates image data in synchronization with the vertical synchronization signal VSYNC.
  • the vertical synchronization signal VSYNC is a periodic signal having a predetermined frequency (for example, 30 hertz) indicating the timing of imaging.
  • the solid-state image sensor 200 supplies the generated image data to the digital signal processor 120 via the signal line 209.
  • the digital signal processor 120 executes predetermined signal processing such as demosaic processing and noise reduction processing on the image data from the solid-state image sensor 200.
  • the digital signal processor 120 outputs the processed image data to the frame memory 180 or the like via the bus 150. Further, the digital signal processor 120 generates a mode signal indicating either the differential mode or the SF mode and the vertical synchronization signal VSYNC and supplies them to the solid-state image sensor 200.
  • the differential mode is a mode in which the solid-state image sensor 200 generates a signal obtained by amplifying (differential amplification) the difference between the signals of each pair of pixels.
  • the SF mode is a mode in which a source follower circuit is formed to output a pixel signal without differential amplification.
  • the gain for the image signal can be increased to greatly increase the conversion efficiency, but the operating point is narrow and it is difficult to expand the dynamic range. Therefore, the differential mode is suitable for imaging in a dark place, and the SF mode is suitable for imaging in a bright place. Therefore, for example, the digital signal processor 120 measures the amount of ambient light and instructs the differential mode when the metering amount is smaller than a predetermined threshold value, and instructs the SF mode when the metering amount is equal to or more than the threshold value.
  • the display unit 130 displays image data.
  • a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed.
  • the operation unit 140 generates an operation signal according to the operation of the user.
  • the bus 150 is a common route for the optical unit 110, the solid-state image sensor 200, the digital signal processor 120, the display unit 130, the operation unit 140, the power supply unit 160, the storage unit 170, and the frame memory 180 to exchange data with each other. ..
  • the power supply unit 160 supplies power to the solid-state image sensor 200, the digital signal processor 120, the display unit 130, and the like.
  • the storage unit 170 stores various data such as image data.
  • the frame memory 180 holds image data.
  • FIG. 2 is a block diagram showing a configuration example of the solid-state image sensor 200 according to the first embodiment of the present technology.
  • the solid-state image sensor 200 includes a vertical drive unit 210, a pixel array unit 220, a system control unit 291 and a column readout circuit 300, a column signal processing unit 270, a horizontal drive unit 292, a data storage unit 293, and an image processing unit 294.
  • the system control unit 291 controls the vertical drive unit 210, the column readout circuit 300, the column signal processing unit 270, and the horizontal drive unit 292.
  • the system control unit 291 is configured by a timing generator or the like.
  • the system control unit 291 generates a timing signal instructing each operation timing of the vertical drive unit 210, the column signal processing unit 270, and the horizontal drive unit 292 in synchronization with the vertical synchronization signal VSYNC, and supplies the timing signal to the corresponding circuit. Further, the system control unit 291 generates a control signal for controlling the switch in the column read circuit 300 and supplies the control signal to the column read circuit 300.
  • a plurality of pixels are arranged in a two-dimensional grid pattern in the pixel array unit 220.
  • a set of pixels arranged in a predetermined direction (horizontal direction, etc.) is referred to as a "row”
  • a set of pixels arranged in a direction perpendicular to the row is referred to as a "column”.
  • the number of rows in the pixel array unit 220 is M (M is an integer)
  • N is an integer
  • all the pixels in the pixel array unit 220 are effective pixels that perform photoelectric conversion.
  • dummy pixels that are not photoelectrically converted and light-shielding pixels that block incident light can be further arranged in the pixel array unit 220.
  • the vertical drive unit 210 drives by selecting rows in order.
  • the vertical drive unit 210 is composed of a shift register, an address decoder, and the like.
  • the vertical drive unit 210 selects rows one by one, and each time a row is selected, the vertical drive unit 210 drives the odd columns and even columns in the row in order.
  • the vertical drive unit 210 selects rows in order and simultaneously drives all the pixels in the selected rows. Therefore, in the SF mode, one image data is generated by reading M times, and in the differential mode, one image data is generated by reading 2 ⁇ M times.
  • the control method that drives in units of rows in this way is called a rolling shutter method.
  • the vertical drive unit 210 uses a rolling shutter method, a global shutter method that drives all pixels at the same time can also be used.
  • the column reading circuit 300 reads out the pixel signal of each pixel in the row and supplies it to the column signal processing unit 270.
  • the column signal processing unit 270 executes signal processing such as AD (Analog to Digital) conversion processing for the pixel signals from the column for each column.
  • the column signal processing unit 270 outputs each of the pixel data after signal processing to the image processing unit 294 in order according to the control of the horizontal drive unit 292.
  • the column signal processing unit 270 is an example of the signal processing unit described in the claims.
  • the horizontal drive unit 292 controls the column signal processing unit 270 to output pixel data in order.
  • the horizontal drive unit 292 is composed of a shift register and an address decoder.
  • the image processing unit 294 executes various image processing such as pixel addition processing on image data composed of pixel data arranged in a two-dimensional grid pattern.
  • the image processing unit 294 causes the data storage unit 293 to temporarily hold the image data as needed in the image processing. Further, the image processing unit 294 supplies the processed image data to the digital signal processor 120.
  • the image processing unit 294 may be arranged outside the solid-state image sensor 200 (inside the digital signal processor 120, etc.).
  • FIG. 3 is a block diagram showing a configuration example of the column readout circuit 300 according to the first embodiment of the present technology.
  • the column reading circuit 300 includes a unit reading circuit 310 for every two columns. When the number of columns is N, N / 2 unit reading circuits 310 are arranged.
  • Each of the unit reading circuits 310 is connected to the pixel array unit 220 via six signal lines. Further, the unit reading circuit 310 supplies the corresponding two rows of pixel signals Vout1 and Vout2 to the column signal processing unit 270, respectively.
  • FIG. 4 is a circuit diagram showing a configuration example of the unit reading circuit 310 according to the first embodiment of the present technology.
  • the unit readout circuit 310 includes pMOS (p-channel Metal Oxide Semiconductor) 311 to 314, tail current sources 321 and 322, load current sources 323 and 324, and switches 331 to 347.
  • pMOS p-channel Metal Oxide Semiconductor
  • the unit read circuit 310 is connected to the corresponding two rows via the vertical signal lines 22S and 22R, the vertical reset input lines 61S and 61R, and the vertical current supply lines 62S and 62R.
  • the pMOS transistors 311 to 314 are connected in parallel to the node of the power supply voltage VDD.
  • the gate of the pMOS transistor 311 is connected to the gate of the pMOS transistor 312. Further, the pixel signal Vout1 is output from the drain of the pMOS transistor 311 and the pixel signal Vout2 is output from the drain of the pMOS transistor 312.
  • each of the pMOS transistors 313 and 314 the gate and drain are short-circuited.
  • a voltage obtained by lowering the power supply voltage VDD by a predetermined voltage is supplied as the reset voltage Vrst from the drains of the pMOS transistors 313 and 314.
  • the pMOS transistors 313 and 314 are examples of the reset voltage supply transistors described in the claims.
  • the tail current sources 321 and 322 supply a constant tail current to the unit read circuit 310 via the vertical current supply lines 62S and 62R.
  • the load current source 323 supplies a predetermined load current to the vertical reset input line 61S via the switch 346.
  • the load current source 324 supplies a predetermined load current to the vertical reset input line 61R via the switch 347.
  • the switch 331 opens and closes the path between the gate and the drain of the pMOS transistor 311 according to the control signal SW11 from the system control unit 291.
  • the switch 332 opens and closes the path between the gate and the drain of the pMOS transistor 312 according to the control signal SW21 from the system control unit 291.
  • the switch 333 opens and closes the path between the vertical current supply line 62S and the tail current source 321 according to the control signal SW13 from the system control unit 291.
  • the switch 334 opens and closes the path between the vertical current supply line 62R and the tail current source 321 according to the control signal SW0 from the system control unit 291.
  • the switch 335 opens and closes the path between the vertical current supply line 62R and the tail current source 322 according to the control signal SW23 from the system control unit 291.
  • the switch 336 opens and closes the path between the vertical current supply line 62S and the node of the power supply voltage VDD according to the control signal SW12 from the system control unit 291.
  • the switch 337 opens and closes the path between the vertical signal line 22S and the tail current source 321 according to the control signal SW14 from the system control unit 291.
  • the switch 338 opens and closes the path between the vertical current supply line 62R and the node of the power supply voltage VDD according to the control signal SW22 from the system control unit 291.
  • the switch 339 opens and closes the path between the vertical signal line 22R and the tail current source 322 according to the control signal SW24 from the system control unit 291.
  • the switch 340 opens and closes the path between the drain of the pMOS transistor 313 (that is, the node of the reset voltage Vrst) and the vertical reset input line 61S according to the control signal SW16 from the system control unit 291.
  • the switch 341 opens and closes the path between the node of the power supply voltage VDD and the vertical reset input line 61S according to the control signal SW17 from the system control unit 291.
  • the switch 342 opens and closes the path between the drain of the pMOS transistor 314 (that is, the node of the reset voltage Vrst) and the vertical reset input line 61R according to the control signal SW26 from the system control unit 291.
  • the switch 343 opens and closes the path between the node of the power supply voltage VDD and the vertical reset input line 61R according to the control signal SW27 from the system control unit 291.
  • the switch 344 opens and closes the path between the vertical signal line 22S and the vertical reset input line 61S according to the control signal SW15 from the system control unit 291.
  • the switch 346 opens and closes the path between the vertical signal line 22R and the vertical reset input line 61R according to the control signal SW25 from the system control unit 291.
  • the switch 346 opens and closes the path between the vertical reset input line 61S and the load current source 323 according to the control signal SW18 from the system control unit 291.
  • the switch 347 opens and closes the path between the vertical reset input line 61R and the load current source 324 according to the control signal SW28 from the system control unit 291.
  • the load current sources 323 and 324 are arranged in each of the two rows (in other words, the load current sources are arranged in each row), one load current source is shared by a plurality of rows (two rows or all rows). You can also do it. As a result, the number of load current sources and the power consumption can be reduced as compared with the case where the load current sources are arranged for each row.
  • FIG. 5 is a circuit diagram showing a configuration example of pixels 230 and 240 according to the first embodiment of the present technology. Pixels 230 are arranged in odd rows and pixels 240 are arranged in even rows.
  • the pixel 230 includes a photoelectric conversion element 231, a transfer transistor 232, a reset transistor 233, a floating diffusion layer 234, a selection transistor 235, and an amplification transistor 236.
  • the pixel 240 includes a photoelectric conversion element 241, a transfer transistor 242, a reset transistor 243, a floating diffusion layer 244, a selection transistor 245, and an amplification transistor 246.
  • the photoelectric conversion element 231 generates an electric charge by photoelectric conversion.
  • the transfer transistor 232 transfers an electric charge from the photoelectric conversion element 231 to the floating diffusion layer 234 according to the transfer signal TRG1 from the vertical drive unit 210.
  • the reset transistor 233 connects the floating diffusion layer 234 to the vertical reset input line 61S according to the reset signal RST1 from the vertical drive unit 210, extracts the electric charge from the floating diffusion layer 234, and initializes the voltage.
  • the connection nodes of the vertical reset input line 61S and the reset transistor 233 in each row are arranged at regular intervals in the vertical direction.
  • the floating diffusion layer 234 accumulates the transferred electric charge and generates a voltage according to the amount of the electric charge.
  • the amplification transistor 236 generates an output current corresponding to the voltage of the floating diffusion layer 234. Further, the source of the amplification transistor 236 is connected to the vertical current supply line 62S.
  • the selection transistor 235 outputs the output current of the amplification transistor 236 to the vertical signal line 22S according to the selection signal SEL1.
  • the connection nodes between the vertical current supply line 62S and the selection transistor 235 in each row are arranged at regular intervals in the vertical direction.
  • the connection configuration of the photoelectric conversion element 241 in the pixel 240, the transfer transistor 242, the reset transistor 243, the floating diffusion layer 244, the selection transistor 245, and the amplification transistor 246 is the same as that of the pixel 230.
  • the transfer transistor 242 transfers the electric charge according to the transfer signal TRS2
  • the reset transistor 243 connects the floating diffusion layer 244 to the vertical reset input line 61R according to the reset signal RST2.
  • the source of the amplification transistor 246 is connected to the vertical current supply line 62R, and the selection transistor 245 outputs a current to the vertical signal line 22R according to the selection signal SEL2.
  • the column read circuit 300 reads the pixel signal of the read pixel with one of the pixels 230 and 240 in the row as the reference pixel and the other as the read pixel.
  • the read pixel is a pixel that generates a signal voltage according to the exposure amount
  • the reference pixel is a pixel that generates a predetermined reference voltage.
  • the column readout circuit 300 in the solid-state image sensor 200 and the pixels 230 and 240 form a differential amplifier circuit that amplifies the difference between the reference voltage and the signal voltage.
  • the column reading circuit 300 reads the differentially amplified signal as a pixel signal of the read pixel and supplies it to the column signal processing unit 270. Subsequently, the column reading circuit 300 replaces the reference pixel and the read pixel, reads the differentially amplified signal as the pixel signal of the read pixel, and supplies the signal to the column signal processing unit 270.
  • the solid-state image sensor 200 changes the row to be read, and repeats the above process until the reading of all rows is completed. In this way, reading is performed twice for each line. Assuming that the number of lines is M (M is an integer), reading is performed 2 ⁇ M times.
  • FIG. 6 is a block diagram showing a configuration example of the column signal processing unit 270 according to the first embodiment of the present technology.
  • the column signal processing unit 270 includes a plurality of ADCs (Analog to Digital Converters) 271 and an output unit 280.
  • ADC271 is arranged in each row.
  • ADC271 converts an analog pixel signal into digital pixel data.
  • the ADC 271 includes a comparator 272 and a counter 273.
  • the pixel signal Vout1 is input to the ADC271 in the odd-numbered column, and the pixel signal Vout2 is input to the ADC271 in the even-numbered column.
  • the comparator 272 compares the pixel signal of the corresponding row with the saw-wavy lamp signal REF.
  • the comparator 272 supplies the comparison result to the counter 273.
  • the counter 273 counts the count value over a period until the comparison result is reversed.
  • the counter 273 supplies data indicating the count value to the output unit 280 as digital pixel data.
  • the level of the pixel signal generated by supplying the reset signals RST1 and RST2 immediately before the end of exposure is referred to as “reset level”. Further, the level of the pixel signal generated by the supply of the transfer signal TRG1 or TRG2 at the end of exposure is referred to as “signal level”.
  • the counter 273, for example, performs one of up-counting and down-counting of the count value when converting the reset level, and performs the other of up-counting and down-counting when converting the signal level.
  • AD Analog to Digital
  • CDS Correlated Double Sampling
  • the counter 273 may perform only one of up-counting and down-counting, and the CDS processing may be executed by the circuit in the subsequent stage.
  • the output unit 280 outputs pixel data for each column to the image processing unit 294 in order under the control of the horizontal drive unit 292.
  • the odd-numbered row pixel signal Vout1 and the even-numbered row pixel signal Vout2 are generated in order. Therefore, the odd-numbered row ADC271 and the even-numbered row ADC271 perform AD conversion of corresponding pixel signals in order.
  • the ADC271 in all rows simultaneously AD-converts the corresponding pixel signals.
  • FIG. 7 is a timing chart showing an example of the operation of the solid-state image sensor 200 in the differential mode at the start of exposure according to the first embodiment of the present technology.
  • the system control unit 291 sets the control signals SW13 and 23 to a high level and closes the corresponding switches 333 and 335.
  • the vertical drive unit 210 supplies the high-level reset signal RST1 and the transfer signal TRG1 over a predetermined pulse period. Further, the system control unit 291 supplies a high-level control signal SW17 over a pulse period at the timing T1 and closes the corresponding switch 341. By these controls, the electric charge of the floating diffusion layer 234 of the pixel 230 is discharged.
  • the vertical drive unit 210 supplies the high-level reset signal RST2 and the transfer signal TRG2 over a predetermined pulse period. Further, the system control unit 291 supplies a high-level control signal SW27 over a pulse period at the timing T2, and closes the corresponding switch 343. By these controls, the electric charge of the floating diffusion layer 244 of the pixel 240 is discharged.
  • FIG. 8 is a timing chart showing an example of the operation of the solid-state image sensor 200 in the differential mode at the end of exposure according to the first embodiment of the present technology.
  • the vertical drive unit 210 sets the selection signals SEL1 and SEL2 to a high level. Further, at the timing T3, the system control unit 291 sets the control signals SW0, SW15, SW21, SW26 and SW28 to a high level and closes the corresponding switches 334, 344, 332, 342 and 347.
  • the pixels 230 and 240 and the column readout circuit 300 form a differential amplifier circuit in which the pixel 230 is the read pixel and the pixel 240 is the reference pixel. Further, in the differential amplifier circuit, the load current from the load current source 324 is supplied to the vertical reset input line 61R.
  • the vertical drive unit 210 supplies high-level reset signals RST1 and RST2 over the pulse period at the timing T4 immediately before the end of the exposure accumulation period of the odd-numbered rows.
  • RST1 and RST2 supplied over the pulse period at the timing T4 immediately before the end of the exposure accumulation period of the odd-numbered rows.
  • electric charges are discharged from the floating diffusion layers of the read pixel (pixel 230) and the reference pixel (pixel 240), and their voltages are initialized to a predetermined reference voltage.
  • the level of the pixel signal Vout1 that amplifies the difference between these voltages is read out as a reset level.
  • the vertical drive unit 210 supplies a high-level transfer signal TRG1 over the pulse period at the end timing T5 of the exposure accumulation period of the odd-numbered rows.
  • the electric charge is transferred from the photoelectric conversion element 231 of the pixel 230, which is a read pixel, to the floating diffusion layer 234, and the floating diffusion layer 234 generates a voltage corresponding to the amount of the electric charge as a signal voltage.
  • the level of the pixel signal Vout1 obtained by amplifying the difference between the reference voltage of the reference pixel and the signal voltage of the read pixel is read as a signal level.
  • the system control unit 291 lowers the control signals SW15, SW21, SW26 and SW28. Then, at the timing T7 immediately after that, the system control unit 291 sets the control signals SW11, SW16, SW18 and SW25 to a high level and closes the corresponding switches 331, 340, 346 and 345.
  • the pixels 230 and 240 and the column readout circuit 300 form a differential amplifier circuit in which the pixel 240 is the read pixel and the pixel 230 is the reference pixel. In other words, the read pixel and the reference pixel are replaced. Further, in the differential amplifier circuit, the load current from the load current source 323 is supplied to the vertical reset input line 61S.
  • the vertical drive unit 210 supplies high-level reset signals RST1 and RST2 over the pulse period at the timing T8 immediately before the end of the exposure accumulation period of the even-numbered rows.
  • the vertical drive unit 210 supplies high-level reset signals RST1 and RST2 over the pulse period at the timing T8 immediately before the end of the exposure accumulation period of the even-numbered rows.
  • electric charges are discharged from the floating diffusion layers of the read pixel (pixel 240) and the reference pixel (pixel 230), and their voltages are initialized to a predetermined reference voltage.
  • the level of the pixel signal Vout2 that amplifies the difference between these voltages is read out as a reset level.
  • the vertical drive unit 210 supplies a high-level transfer signal TRG2 over the pulse period at the end timing T9 of the even-numbered row of exposure accumulation periods.
  • the charge is transferred from the photoelectric conversion element 241 of the pixel 240, which is a read pixel, to the floating diffusion layer 244, and the floating diffusion layer 244 generates a voltage corresponding to the amount of the charge as a signal voltage.
  • the level of the pixel signal Vout2 obtained by amplifying the difference between the reference voltage of the reference pixel and the signal voltage of the read pixel is read as a signal level.
  • the controls illustrated in FIGS. 7 and 8 are performed row by row in differential mode.
  • FIG. 9 is a timing chart showing an example of the operation of the SF mode solid-state image sensor 200 at the start of exposure in the modified example of the first embodiment of the present technology.
  • the vertical drive unit 210 supplies the high-level reset signals RST1 and RST2 and the high-level transfer signals TRG1 and TRG2 over a predetermined pulse period.
  • the system control unit 291 supplies high-level control signals SW17 and SW27 over a pulse period.
  • the electric charges of the floating diffusion layers of the pixels 230 and 240 are discharged.
  • the driving during the period of timings T2 to T3 does not contribute to the reading of pixels 230 and 240.
  • FIG. 10 is a timing chart showing an example of the operation of the SF mode solid-state image sensor 200 at the end of exposure according to the first embodiment of the present technology.
  • the vertical drive unit 210 sets the selection signals SEL1 and SEL2 to a high level. Further, at the timing T3, the system control unit 291 sets the control signals SW12, SW14, SW17, SW22, SW24 and SW27 to a high level and closes the corresponding switches 336, 337, 341, 338, 339 and 343. As a result, the pixels 230 and 240 and the column readout circuit 300 form a source follower circuit for each column. Further, in the source follower circuit, the load current is not supplied to the vertical reset input lines 61R and 61S.
  • the vertical drive unit 210 supplies high-level reset signals RST1 and RST2 over the pulse period at the timing T4 immediately before the end of the exposure accumulation period.
  • the vertical drive unit 210 supplies high-level reset signals RST1 and RST2 over the pulse period at the timing T4 immediately before the end of the exposure accumulation period.
  • charges are discharged from the floating diffusion layers of the pixels 230 and 240, and their voltages are initialized to a predetermined reference voltage.
  • the respective levels of the pixel signals Vout1 and Vout2 at this time are read out as reset levels.
  • the vertical drive unit 210 supplies high-level transfer signals TRG1 and TRG2 over the pulse period at the end timing T5 of the exposure accumulation period. As a result, electric charges are transferred from the photoelectric conversion element to the floating diffusion layer in the pixels 230 and 240, and a voltage corresponding to the amount of electric charges is generated. The levels of the pixel signals Vout1 and Vout2 at this time are read out as signal levels.
  • the vertical drive unit 210 lowers the selection signals SEL1 and SEL2, and the system control unit 291 lowers the control signals SW12, SW14, SW17, SW22, SW24 and SW27.
  • driving during the period of timings T7 to T8 does not contribute to the reading of pixels 230 and 240.
  • the controls illustrated in FIGS. 9 and 10 are executed line by line in the SF mode.
  • the solid-state image sensor 200 switches the mode to either the differential mode or the SF mode, the SF mode may not be set. In this case, the switch required for mode switching in the unit reading circuit 310 becomes unnecessary.
  • the unit reading circuit 310 has, for example, a configuration in which load current sources 323 and 324 and switches 346 and 347 are added to the circuit shown in FIG. 16 of JP-A-2018-182496.
  • FIG. 11 is an example of an equivalent circuit of the pixel and unit reading circuit 310 in the differential mode according to the first embodiment of the present technology.
  • the figure shows an equivalent circuit in the case where the pixel 230 is a read pixel and the pixel 240 is a reference pixel.
  • switches 331 to 347, tail current source 322, and load current source 323 are omitted.
  • the vertical current supply lines 62R and 62S are represented by a single vertical current supply line 62.
  • the reset transistors 233 and 243 on the read side and the reference side initialize the voltages of the floating diffusion layers 234 and 244 with a reference voltage corresponding to the reset voltage Vrst immediately before the end of exposure. Let this reference voltage be V fdr . Since the load current is supplied to the vertical reset input line 61R, a voltage drop occurs due to the wiring resistance in the vertical reset input line 61R, and the reference voltage V fdr becomes a value corresponding to the voltage drop amount.
  • the transfer transistor 232 on the reading side transfers an electric charge from the photoelectric conversion element 231 on the reading side to the floating diffusion layer 234 at the end of exposure, and generates a voltage corresponding to the amount of the electric charge as a signal voltage. Let this signal voltage be V fds .
  • the pair of amplification transistors 236 and 246 generate an output current I out according to the difference between the reference voltage V fdr and the signal voltage V fds .
  • the current mirror circuit including the pMOS transistors 311 and 312 outputs a pixel signal Vout having a voltage corresponding to the output current I out from the vertical signal line 22S on the reading side.
  • the charge-voltage conversion efficiency ⁇ of the differential amplifier circuit including the pixels 230 and 240 and the unit readout circuit 310 is expressed by, for example, the following equation.
  • e ⁇ / ( ⁇ C fd / Av + C gd ) ⁇ ⁇ ⁇ Equation 1
  • e ⁇ indicates a signal charge.
  • Av indicates the open loop gain of the differential amplifier circuit.
  • C gd is the overlap capacitance between the gate and drain of the amplification transistor 236.
  • C fd indicates the capacity of the floating diffusion layer.
  • the unit of these volumes is, for example, microfarad ( ⁇ F).
  • the open loop gain Av of Equation 1 is expressed by the following equation.
  • Av gm ⁇ Rout amp ⁇ Rout pMOS / (Rout amp + Rout pMOS ) ⁇ ⁇ ⁇ Equation 2
  • gm represents the transconductance of the amplification transistors 236, and the unit is, for example, Siemens (S).
  • Rout amp indicates the output resistance of the amplification transistor 236, and the unit is, for example, ohm ( ⁇ ).
  • Rout pMOS indicates the output resistance of the pMOS transistor 311 and the unit is, for example, ohm ( ⁇ ).
  • the overlap capacitance C gd is smaller than the FD diffusion capacitance and the FD wiring capacitance, and C fd , which is the sum of the gate capacitances of the amplification transistor 236, the transfer transistor 232, and the reset transistor 233. Further, from Equation 1, since C fd is rebated by the open loop gain Av, the effective capacitance becomes small, and a high charge-voltage conversion efficiency ⁇ can be realized.
  • the pixels 230 and 240 for each row form a differential pair, and at the time of reading, the first row to the Mth row are read in order in the vertical direction.
  • the distance from the current mirror circuit differs from line to line, and the wiring resistance of the vertical signal line 22S is small in the line close to the current mirror circuit, and large in the line far from the current mirror circuit. Therefore, the operating point of the amplification transistor 236 on the reading side is not uniformly determined in the vertical direction, and is set while maintaining the in-plane difference.
  • the transconductance gm, output resistance Rout amp , and overlap capacitance C gd which are important in determining the conversion efficiency of the differential amplifier circuit, are bias-dependent, and the vertical signal line 22S determines the output current I out . It's flowing. Therefore, a voltage drop always occurs due to the metal wiring resistance. Due to this voltage drop, the voltage of the drain of the amplification transistor 236 drops, and the drain-source voltage Vds amp decreases.
  • the gate-drain voltage Vgd of the amplification transistor 236 increases. This increase in the gate-drain voltage Vgd increases the overlap capacitance C gd .
  • the charge-voltage conversion efficiency ⁇ decreases as the line is farther from the current mirror circuit. Therefore, in the comparative example, an in-plane difference in the charge-voltage conversion efficiency ⁇ occurs depending on the distance from the current mirror circuit, and in a bright imaging place, the difference is a pixel signal, which is observed as shading.
  • those current sources supply the load current I load to the vertical reset input lines 61R and 61S.
  • the farther from the current mirror circuit than the supply of this load current I load the greater the amount of voltage drop due to the wiring resistance of the vertical reset input lines 61R and 61S. Due to this voltage drop, the farther the line is from the current mirror circuit, the lower the voltage at the time of initialization of the floating diffusion layer (reference voltage V fdr ). Due to this decrease in the reference voltage V fdr , the difference from the signal voltage V fds increases, and the output current I out increases.
  • the drain voltage of the pMOS transistor 311 decreases, and the drain-source voltage Vds pMOS increases.
  • the increase in the drain-source voltage Vds pMOS increases the output resistance Rout pMOS .
  • the open loop gain Av increases by that amount and the charge-voltage conversion efficiency ⁇ increases according to the equation 2.
  • the farther the line is from the current mirror circuit the larger the amount of voltage drop due to the wiring resistance of the vertical signal line 22S, and the output resistance Rout amp of the amplification transistor 236 decreases due to the voltage drop.
  • the farther the line is from the current mirror circuit the larger the amount of voltage drop due to the wiring resistance of the vertical reset input line 61R, and the output resistance Rout pMOS of the pMOS transistor 311 increases due to the voltage drop.
  • the charge-voltage conversion efficiency ⁇ decreases as the output resistance Rout amp decreases, and the charge-voltage conversion efficiency ⁇ increases as the output resistance Rout pMOS increases.
  • the overlap capacitance C gd increases, the charge-voltage conversion efficiency ⁇ decreases.
  • the decrease in the charge-voltage conversion efficiency ⁇ due to the decrease in the output resistance Rout amp and the increase in the overlap capacitance C gd can be offset by the increase in the charge-voltage conversion efficiency ⁇ due to the increase in the output resistance Rout pMOS .
  • shading can be suppressed and the image quality of the image data can be improved.
  • the wiring resistance per unit length of the vertical reset input line 61R is R vpx
  • the wiring resistance per unit length of the vertical signal line 22S is R vsl
  • the wiring resistances are set to substantially the same value, for example.
  • substantially the same means that the two values are exactly the same, or that the difference between them is within a predetermined allowable value.
  • the unit length corresponds to the length between the node to which one of the two adjacent lines is connected and the node to which the other is connected on the vertical reset input line 61R.
  • the open loop gain Av is increased by increasing the output resistance Route pMOS by the amount that the overlap capacitance C gd is increased, the in-plane difference in the charge-voltage conversion efficiency ⁇ can be improved. Therefore, it is not always necessary to adjust the voltage drop due to the wiring resistance of the vertical reset input line 61R and the voltage drop due to the wiring resistance of the vertical signal line 22S equally.
  • the solid-state image sensor 200 amplifies the difference between the signals of the pair of adjacent pixels in the horizontal direction, but is not limited to this configuration, and the difference between the signals of the pair of adjacent pixels in the vertical direction. Can also be amplified.
  • a unit reading circuit 300 is arranged for each column, and differential amplification is performed with one of the odd-numbered row pixels and the even-numbered row of pixels as reference pixels and the other as read pixels.
  • FIG. 12 is a graph showing an example of the charge-voltage conversion efficiency for each row in the first embodiment of the present technology and the comparative example.
  • a is a graph showing an example of charge-voltage conversion efficiency for each row in a comparative example in which the load current sources 323 and 324 are not provided.
  • b is a graph showing an example of the charge-voltage conversion efficiency for each row in the first embodiment in which the load current sources 323 and 324 are provided.
  • the vertical axis shows the charge-voltage conversion efficiency
  • the horizontal axis shows the number of pixels in the vertical direction. It is assumed that the larger the number of pixels in the vertical direction, the longer the distance from the current mirror circuit.
  • the charge-voltage conversion efficiency decreases as the number of pixels in the vertical direction increases (that is, the line farther from the current mirror circuit). .. This is because the farther the line is from the current mirror circuit, the larger the amount of voltage drop due to the wiring resistance of the vertical signal line 22S, and the lower the output resistance Rout amp of the amplification transistor 236 due to the voltage drop.
  • the charge-voltage conversion efficiency decreases as the number of pixels in the vertical direction increases (that is, the line farther from the current mirror circuit).
  • the amount of decrease is smaller than that of the comparative example. This is because the farther the line is from the current mirror circuit, the larger the amount of voltage drop due to the wiring resistance of the vertical reset input line 61R, and the output resistance Rout pMOS of the pMOS transistor 311 in the current mirror circuit increases due to the voltage drop. Because.
  • FIG. 13 is a diagram for explaining the saturation margin in the comparative example.
  • the drain-source voltage Vds pMOS of the pMOS transistor 311 increases as the read line is farther from the current mirror circuit, and saturates at the farthest line.
  • Vdsat1 be the drain-source voltage Vds pMOS when reading a certain line.
  • the drain-source voltage Vds amp of the amplification transistor 236 increases as the distance from the current mirror circuit increases, and saturates at the farthest row.
  • the drain-source voltage Vds amp in a row be Vdsat2.
  • the threshold voltage of the amplification transistor 236 is Vth
  • the difference between the threshold voltage Vth and the gate-drain voltage Vgd of the amplification transistor 236 is set as the saturation margin.
  • the drain - remaining voltage excluding the saturation margin source voltage Vdsat1 and Vdsat2 and amplifier transistor 236, is set as the saturation margin of the pMOS transistor 311 To.
  • FIG. 14 is a diagram for explaining a saturation margin in the first embodiment of the present technology.
  • the load current sources 323 and 324 By providing the load current sources 323 and 324, the amount of voltage drop due to the wiring resistance of the vertical reset input line 61R increases as the line is farther from the current mirror circuit. Due to this voltage drop, the drain-source voltage Vds pMOS of the pMOS transistor 311 increases. By increasing the drain-source voltage Vds pMOS , the saturation margin of the pMOS transistor 311 can be increased as compared with the comparative example.
  • FIG. 15 is a flowchart showing an example of the operation of the solid-state image sensor 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for capturing image data is executed.
  • the solid-state image sensor 200 selects a row, starts exposure of that row (step S901), and ends the exposure at the end of the exposure accumulation period (step S902).
  • the solid-state image sensor 200 performs signal processing such as CDS processing on the pixel signal read from the row (step S903).
  • the solid-state image sensor 200 determines whether or not the differential mode is set (step S904). When the differential mode is set (step S904: Yes), the solid-state image sensor 200 determines whether or not the reading of all rows is completed (step S905). When the reading of all rows is not completed (step S905: No), the solid-state image sensor 200 replaces the read pixels with the reference pixels (step S906).
  • step S904: No When the SF mode is set (step S904: No) and the reading of all columns is completed (step S905: Yes), the solid-state image sensor 200 determines whether or not the reading of all rows is completed (step S904: No). Step S907). When the reading of all lines is not completed (step S907: No), or after step S906, the solid-state image sensor 200 repeatedly executes the processes after step S901. On the other hand, when the reading of all the rows is completed (step S907: Yes), the solid-state image sensor 200 ends the operation for capturing the image data.
  • steps S901 to S907 are repeatedly executed in synchronization with the vertical synchronization signal.
  • the load current source 324 supplies the load current to the vertical reset input line 61R, the reference voltage according to the amount of voltage drop due to the wiring resistance of the signal line.
  • the floating diffusion layer can be initialized by.
  • the voltage drop of the vertical reset input line 61R increases the charge-voltage conversion efficiency ⁇ , and the increase offsets the decrease in the charge-voltage conversion efficiency ⁇ due to the voltage drop of the vertical signal line 22S. As a result, it is possible to reduce the difference in charge-voltage conversion efficiency for each row, suppress shading, and improve the image quality of image data.
  • the wiring resistance per unit length of the vertical reset input line 61R wiring resistance per unit length of the R vpx and vertical signal lines 22S sets the R vsl to the same value Was there.
  • the larger the voltage drop amount of the vertical signal line 22S the larger the load current I load required for suppressing shading, and the larger the power consumption.
  • FIG. 16 is an example of an equivalent circuit of the pixel and unit reading circuit 310 in the second embodiment of the present technology.
  • the wiring resistance R vpx per unit length of the vertical reset input line 61R of the second embodiment is larger than the wiring resistance R vsl per unit length of the vertical signal line 22S.
  • the wiring resistance R vpx is set to about S (S is a real number larger than 1) times the wiring resistance R vsl .
  • the load current source 324 of the second embodiment has a load of 1 / S times that of the I load. Supply current. The same applies to the load current source 323.
  • the required load current can be smaller than that in the first embodiment, so that the power consumption can be reduced.
  • the pMOS transistors 313 and 314 arranged in every two rows generate the reset voltage Vrst.
  • the number of pMOS transistors 313 and 314 to be arranged increases, and the circuit scale of the column readout circuit 300 increases.
  • the solid-state image sensor 200 of the third embodiment is different from the first embodiment in that the number of pMOS transistors is reduced.
  • FIG. 17 is an example of an equivalent circuit of the pixel and unit reading circuit 310 in the differential mode according to the third embodiment of the present technology.
  • the unit readout circuit 310 of the third embodiment is different from the first embodiment in that the pMOS transistors 313 and 314 are not provided.
  • the vertical reset input line 61R is directly connected to the node to which the fixed bias voltage is applied as the reset voltage Vrst without passing through the pMOS transistor 314. The same applies to the vertical reset input line 61S.
  • the reset voltage Vrst is supplied by, for example, an external circuit of the column reading circuit 300.
  • the second embodiment can also be applied to the solid-state image sensor 200 of the third embodiment.
  • the pMOS transistor 314 becomes unnecessary. As a result, the number of pMOS transistors can be reduced and the circuit scale of the column readout circuit 300 can be reduced.
  • the load current sources 323 and 324 supply the load current to the vertical reset input lines 61R and 61S to cause a voltage drop, but in this configuration, the farther the line is from the current mirror circuit, the more the line becomes. The amount of voltage drop increases, and the reference voltage V fdr decreases. Therefore, if the reference voltage V fdr is too low, the driving force of the pixels 230 and 240 may be insufficient.
  • the solid-state image sensor 200 of the fourth embodiment is different from the first embodiment in that the shortage of the driving force is compensated by the buffer.
  • FIG. 18 is an example of an equivalent circuit of the pixel and unit reading circuit 310 in the differential mode according to the fourth embodiment of the present technology.
  • the pixel array unit 220 of the fourth embodiment is different from the first embodiment in that buffers 251 and 252 are further arranged for each row.
  • the buffer 251 is inserted between the node corresponding to the line on the vertical reset input line 61S and the reset transistor 233.
  • the buffer 252 is inserted between the node corresponding to the line on the vertical reset input line 61R and the reset transistor 243.
  • the buffers 251 and 252 amplify the voltage of the connected nodes on the vertical reset input lines 61R and 61S and supply them to the reset transistors 233 and 243, respectively. By amplifying the buffers 251 and 252, the reference voltage V fdr can be increased and the driving force of the pixels 230 and 240 can be improved.
  • each of the second and third embodiments can be applied to the solid-state image sensor 200 of the fourth embodiment.
  • the buffers 251 and 252 amplify the voltage of the node on the vertical reset input lines 61R and 61S, so that the driving force of the pixel can be improved. ..
  • the diode-connected pMOS transistors 313 and 314 supplied the reset voltage Vrst.
  • an appropriate reset voltage Vrst corresponding to the amount of voltage drop of the vertical signal line may not be supplied.
  • the solid-state image sensor 200 of the fifth embodiment is different from the first embodiment in that the voltage drop amount is measured and the reset voltage Vrst corresponding to the measured value is supplied.
  • FIG. 19 is a circuit diagram showing a configuration example of the unit reading circuit 310 according to the fifth embodiment of the present technology.
  • the unit reading circuit 310 of the fifth embodiment is different from the first embodiment in that the voltage drop measuring unit 351 and the bias voltage generating unit 352 are further arranged.
  • the voltage drop measuring unit 351 measures the voltage drop amount of each of the vertical signal lines 22R and 22S. For example, the voltage drop measuring unit 351 measures each of the voltage between the upper end and the lower end of the vertical signal line 22R and the voltage between the upper end and the lower end of the vertical signal line 22S as a voltage drop amount, and measures the measured values. Statistics (total or average) are supplied to the bias voltage generation unit 352.
  • the voltage drop measuring unit 351 measures the voltage drop amount of both the vertical signal lines 22R and 22S, it is also possible to measure only the voltage drop amount of one of the vertical signal lines 22R and 22S.
  • the bias voltage generation unit 352 generates a bias voltage according to the statistic of the measured value and supplies it to the gates of the pMOS transistors 313 and 314. As a result, an appropriate reset voltage Vrst according to the amount of voltage drop is supplied.
  • the bias voltage generation unit 352 supplies a bias voltage corresponding to the statistics of the measured values of both the vertical signal lines 22R and 22S to both the pMOS transistors 313 and 314, but the configuration is not limited to this.
  • the bias voltage generation unit 352 can also supply the bias voltage corresponding to the measured value of the vertical signal line 22S to the pMOS transistor 313 and supply the bias voltage corresponding to the measured value of the vertical signal line 22R to the pMOS transistor 314.
  • each of the second to fourth embodiments can be applied to the solid-state image sensor 200 of the fifth embodiment.
  • the bias voltage generation unit 352 since the bias voltage generation unit 352 generates the bias voltage according to the measured value of the voltage drop amount, the bias voltage is appropriate according to the voltage drop amount. Reset voltage Vrst can be generated.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 20 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a moving body control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • an imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs cooperative control for the purpose of antiglare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
  • FIG. 21 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, 12105.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 21 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more.
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the imaging device 100 of FIG. 1 can be applied to the imaging unit 12031.
  • shading can be suppressed and a photographed image that is easier to see can be obtained, so that driver fatigue can be reduced.
  • the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, and as a program for causing a computer to execute these series of procedures or as a recording medium for storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), MD (MiniDisc), DVD (Digital Versatile Disc), memory card, Blu-ray Disc (Blu-ray (registered trademark) Disc) and the like can be used.
  • the present technology can have the following configurations.
  • a load current source that supplies a predetermined load current to a vertical reset input line connected to a node having a predetermined reset voltage, and A pair of reset transistors that initialize a pair of stray diffusion layers with a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line.
  • a transfer transistor that transfers an electric charge from one of a pair of photoelectric conversion elements to one of the pair of floating diffusion layers and generates a voltage corresponding to the amount of the electric charge as a signal voltage.
  • a pair of amplification transistors that generate an output current according to the difference between the reference voltage and the signal voltage
  • a solid-state image sensor including a current mirror circuit that outputs a pixel signal having a voltage corresponding to the output current from a vertical signal line.
  • a voltage drop measuring unit that measures the amount of voltage drop due to the wiring resistance of the vertical signal line and supplies the measured value
  • the solid-state image sensor according to any one of (1) to (5) above, further comprising a bias voltage generating unit that generates a bias voltage according to the measured value and supplies the bias voltage to the gate of the reset voltage supply transistor.
  • the control is such that after initializing the pair of floating diffusion layers, the electric charge is transferred from one of the pair of photoelectric conversion elements to one of the pair of floating diffusion layers.
  • the above (1) further includes a vertical drive unit that sequentially controls the transfer of electric charges from the other of the pair of photoelectric conversion elements to the other of the pair of floating diffusion layers after initializing the pair of floating diffusion layers.
  • the solid-state imaging device according to any one of (6) to (6).
  • the vertical drive unit initializes the pair of floating diffusion layers when the source follower mode is set, and then transfers the electric charge from each of the pair of photoelectric conversion elements to the pair of floating diffusion layers.
  • the solid-state imaging device according to (7) above, which controls transfer.
  • a load current source that supplies a predetermined load current to a vertical reset input line connected to a node having a predetermined reset voltage.
  • a pair of reset transistors that initialize a pair of stray diffusion layers with a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line.
  • a transfer transistor that transfers an electric charge from one of a pair of photoelectric conversion elements to one of the pair of floating diffusion layers and generates a voltage corresponding to the amount of the electric charge as a signal voltage.
  • a pair of amplification transistors that generate an output current according to the difference between the reference voltage and the signal voltage,
  • a current mirror circuit that outputs a pixel signal with a voltage corresponding to the output current from a vertical signal line, and
  • An image pickup apparatus including a signal processing unit that processes the pixel signal.
  • a pair of reset transistors are connected to a node having a predetermined reset voltage, and a pair of stray diffusion layers are formed by a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line to which a predetermined load current is supplied.
  • Image sensor 110 Optical unit 120
  • Digital signal processor 130 Display unit 140 Operation unit 150
  • Power supply unit 170 Recording unit 180
  • Frame memory 180
  • Solid-state image sensor 210
  • Pixel array unit 230 Pixel array unit 230, 240 pixels 231, 241 Transistor conversion element 232 242 Transfer transistor 233, 243 Reset transistor 234, 244 Floating diffusion layer 235, 245 Selective transistor 236, 246 Amplification transistor 251, 252 Buffer 270
  • Counter 280 Output unit 291 System control unit 292 Horizontal drive unit 293
  • Data storage unit 294 Image processing unit 300
  • Column readout circuit 310 Unit readout circuit 311 to 314 pMOS transistor 321 to 322 Tail current source 323, 324 Load current source 331 ⁇ 347 Switch 351 Voltage drop measurement unit 352 Bias voltage generator 12031 Imaging unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

This solid-state imaging element for amplifying a difference between signals of each pair of pixels enables improvement in quality of image data. A load current source supplies a prescribed load current to a vertical reset input line connected to a node of a prescribed reset voltage. A pair of reset transistors initialize a pair of floating diffusion layers by means of a reference voltage obtained by dropping the reset voltage through wiring resistance of the vertical reset input line. A transfer transistor transfers charges from one of a pair of photoelectric conversion elements to one of the floating diffusion layers, and generates a voltage according to the amount of the charges as a signal voltage. A pair of amplification transistors generate an output current according to a difference between the reference voltage and the signal voltage. A current mirror circuit outputs, from a vertical signal line, a pixel signal of a voltage according to the output current.

Description

固体撮像素子、撮像装置、および、固体撮像素子の制御方法Solid-state image sensor, image sensor, and control method for solid-state image sensor
 本技術は、固体撮像素子、撮像装置、および、固体撮像素子の制御方法に関する。詳しくは、信号を差動増幅して垂直信号線から出力する固体撮像素子、撮像装置、および、固体撮像素子の制御方法に関する。 The present technology relates to a solid-state image sensor, an image sensor, and a control method for the solid-state image sensor. More specifically, the present invention relates to a solid-state image sensor, an image pickup device, and a method for controlling a solid-state image sensor that differentially amplify a signal and output it from a vertical signal line.
 従来より、撮像装置などにおいて、一対の画素のそれぞれの信号の差分を増幅する差動増幅型の固体撮像素子が用いられている。例えば、二次元格子状に画素を配列し、行方向において隣接する2つの画素のそれぞれの信号の差分を増幅して、垂直信号線から出力する固体撮像素子が提案されている(例えば、特許文献1参照。)。 Conventionally, in an image pickup device or the like, a differential amplification type solid-state image sensor that amplifies the difference between the signals of a pair of pixels has been used. For example, a solid-state image sensor has been proposed in which pixels are arranged in a two-dimensional lattice, the difference between the signals of two adjacent pixels in the row direction is amplified, and the difference is output from a vertical signal line (for example, Patent Document). See 1.).
特開2018-182496号公報Japanese Unexamined Patent Publication No. 2018-182496
 上述の従来技術では、差動増幅により感度を高くし、暗所で撮像した画像データの画質向上を図っている。しかしながら、上述の固体撮像素子では、電源から遠い行ほど垂直信号線の配線抵抗による電圧降下量が大きくなり、その電圧降下量の増大に起因して、電荷を電圧に変換する変換効率が低下するおそれがある。この行ごとの変換効率の差異により、シェーディングと呼ばれる濃度勾配が画像データに現れ、画質が低下するという問題がある。 In the above-mentioned conventional technology, the sensitivity is increased by differential amplification to improve the image quality of image data captured in a dark place. However, in the above-mentioned solid-state image sensor, the amount of voltage drop due to the wiring resistance of the vertical signal line increases as the line is farther from the power supply, and the conversion efficiency of converting electric charge into voltage decreases due to the increase in the amount of voltage drop. There is a risk. Due to this difference in conversion efficiency for each row, there is a problem that a density gradient called shading appears in the image data and the image quality deteriorates.
 本技術はこのような状況に鑑みて生み出されたものであり、一対の画素のそれぞれの信号の差分を増幅する固体撮像素子において、画像データの画質を向上させることを目的とする。 This technology was created in view of such a situation, and aims to improve the image quality of image data in a solid-state image sensor that amplifies the difference between the signals of a pair of pixels.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、所定のリセット電圧のノードに接続された垂直リセット入力線に所定の負荷電流を供給する負荷電流源と、上記垂直リセット入力線の配線抵抗による電圧降下量に応じた参照電圧によって一対の浮遊拡散層を初期化する一対のリセットトランジスタと、一対の光電変換素子の一方から上記一対の浮遊拡散層の一方に電荷を転送して上記電荷の量に応じた電圧を信号電圧として生成させる転送トランジスタと、上記参照電圧と上記信号電圧との差分に応じた出力電流を生成する一対の増幅トランジスタと、上記出力電流に応じた電圧の画素信号を垂直信号線から出力するカレントミラー回路とを具備する固体撮像素子、および、その制御方法である。これにより、垂直リセット入力線の配線抵抗による電圧降下量に応じて電荷電圧変換効率が上昇するという作用をもたらす。 The present technology has been made to solve the above-mentioned problems, and the first aspect thereof is a load current that supplies a predetermined load current to a vertical reset input line connected to a node having a predetermined reset voltage. A pair of reset transistors that initialize a pair of stray diffusion layers with a source and a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line, and a pair of stray diffusion layers from one of the pair of photoelectric conversion elements. A transfer transistor that transfers a charge to one side to generate a voltage corresponding to the amount of the charge as a signal voltage, and a pair of amplification transistors that generate an output current according to the difference between the reference voltage and the signal voltage. A solid-state imaging device including a current mirror circuit that outputs a pixel signal having a voltage corresponding to the output current from a vertical signal line, and a control method thereof. This has the effect of increasing the charge-voltage conversion efficiency according to the amount of voltage drop due to the wiring resistance of the vertical reset input line.
 また、この第1の側面において、上記一対の光電変換素子の一方と上記一対の浮遊拡散層の一方と上記一対のリセットトランジスタの一方と上記転送トランジスタと上記一対の増幅トランジスタの一方とは、所定方向に配列された一対の画素の一方に配置され、上記一対の光電変換素子の他方と上記一対の浮遊拡散層の他方と上記一対のリセットトランジスタの他方と上記一対の増幅トランジスタの他方とは、上記一対の画素の他方に配置されてもよい。これにより、一対の画素のそれぞれの信号が差動増幅されるという作用をもたらす。 Further, in the first aspect, one of the pair of photoelectric conversion elements, one of the pair of floating diffusion layers, one of the pair of reset transistors, the transfer transistor, and one of the pair of amplification transistors are predetermined. The other of the pair of photoelectric conversion elements, the other of the pair of stray diffusion layers, the other of the pair of reset transistors, and the other of the pair of amplification transistors are arranged on one of the pair of pixels arranged in the direction. It may be arranged on the other side of the pair of pixels. This has the effect of differentially amplifying the signals of each of the pair of pixels.
 また、この第1の側面において、所定の電源電圧を低下させてリセット電圧として上記垂直リセット入力線に供給するリセット電圧供給トランジスタをさらに具備してもよい。これにより、電源電圧より低いリセット電圧が供給されるという作用をもたらす。 Further, in the first aspect, a reset voltage supply transistor that lowers a predetermined power supply voltage and supplies it as a reset voltage to the vertical reset input line may be further provided. This has the effect of supplying a reset voltage lower than the power supply voltage.
 また、この第1の側面において、上記垂直リセット入力線の単位長さ当たりの上記配線抵抗は、上記垂直信号線の単位長さ当たりの上記配線抵抗よりも大きくてもよい。これにより、消費電力が削減されるという作用をもたらす。 Further, in the first aspect, the wiring resistance per unit length of the vertical reset input line may be larger than the wiring resistance per unit length of the vertical signal line. This has the effect of reducing power consumption.
 また、この第1の側面において、上記垂直リセット入力線の電圧を増幅して上記一対のリセットトランジスタのそれぞれに供給するバッファをさらに具備してもよい。これにより、画素の駆動力が増大するという作用をもたらす。 Further, in this first aspect, a buffer that amplifies the voltage of the vertical reset input line and supplies it to each of the pair of reset transistors may be further provided. This has the effect of increasing the driving force of the pixels.
 また、この第1の側面において、上記垂直信号線の配線抵抗による電圧降下量を測定して測定値を供給する電圧降下測定部と、上記測定値に応じたバイアス電圧を生成して上記リセット電圧供給トランジスタのゲートに供給するバイアス電圧生成部とをさらに具備してもよい。これにより、電圧降下量に応じた適切なリセット電圧が供給されるという作用をもたらす。 Further, in the first aspect, the voltage drop measuring unit that measures the voltage drop amount due to the wiring resistance of the vertical signal line and supplies the measured value, and the reset voltage that generates the bias voltage corresponding to the measured value. It may further include a bias voltage generator that supplies the gate of the supply transistor. This has the effect of supplying an appropriate reset voltage according to the amount of voltage drop.
 また、この第1の側面において、差動モードが設定された場合には上記一対の浮遊拡散層を初期化させた後に上記一対の光電変換素子の一方から上記一対の浮遊拡散層の一方へ上記電荷を転送させる制御と上記一対の浮遊拡散層を初期化させた後に上記一対の光電変換素子の他方から上記一対の浮遊拡散層の他方へ電荷を転送させる制御とを順に行う垂直駆動部をさらに具備してもよい。これにより、差動モードにおいて一対の画素のそれぞれの信号を差動増幅した画素信号が読み出されるという作用をもたらす。 Further, in the first aspect, when the differential mode is set, after initializing the pair of floating diffusion layers, one of the pair of photoelectric conversion elements is transferred to one of the pair of floating diffusion layers. Further, a vertical drive unit that controls the transfer of electric charges and controls the transfer of electric charges from the other of the pair of photoelectric conversion elements to the other of the pair of floating diffusion layers after initializing the pair of floating diffusion layers. It may be provided. As a result, in the differential mode, the pixel signal obtained by differentially amplifying each signal of the pair of pixels is read out.
 また、この第1の側面において、上記垂直駆動部は、ソースフォロワモードが設定された場合には上記一対の浮遊拡散層を初期化させた後に上記一対の光電変換素子のそれぞれから上記一対の浮遊拡散層へ上記電荷を転送させる制御を行ってもよい。これにより、ソースフォロワモードにおいて、差動増幅せずに画素信号が読み出されるという作用をもたらす。 Further, in the first aspect, the vertical drive unit initializes the pair of floating diffusion layers when the source follower mode is set, and then receives the pair of floating diffusion elements from each of the pair of photoelectric conversion elements. Control may be performed to transfer the charge to the diffusion layer. As a result, in the source follower mode, the pixel signal is read out without differential amplification.
 また、本技術の第2の側面は、所定のリセット電圧のノードに接続された垂直リセット入力線に所定の負荷電流を供給する負荷電流源と、上記垂直リセット入力線の配線抵抗による電圧降下量に応じた参照電圧によって一対の浮遊拡散層を初期化する一対のリセットトランジスタと、一対の光電変換素子の一方から上記一対の浮遊拡散層の一方に電荷を転送して上記電荷の量に応じた電圧を信号電圧として生成させる転送トランジスタと、上記参照電圧と上記信号電圧との差分に応じた出力電流を生成する一対の増幅トランジスタと、上記出力電流に応じた電圧の画素信号を垂直信号線から出力するカレントミラー回路と、上記画素信号を処理する信号処理部とを具備する撮像装置である。これにより、垂直リセット入力線の配線抵抗による電圧降下量に応じて上昇した電荷電圧変換効率により変換された電圧の画素信号が処理されるという作用をもたらす。 Further, the second aspect of the present technology is a load current source that supplies a predetermined load current to a vertical reset input line connected to a node having a predetermined reset voltage, and a voltage drop due to the wiring resistance of the vertical reset input line. A pair of reset transistors that initialize the pair of floating diffusion layers with a reference voltage according to the voltage, and a charge transferred from one of the pair of photoelectric conversion elements to one of the pair of floating diffusion layers according to the amount of the charge. A transfer transistor that generates a voltage as a signal voltage, a pair of amplification transistors that generate an output current corresponding to the difference between the reference voltage and the signal voltage, and a pixel signal having a voltage corresponding to the output current are generated from a vertical signal line. It is an image pickup apparatus including a current mirror circuit for output and a signal processing unit for processing the pixel signal. This has the effect of processing the pixel signal of the voltage converted by the charge-voltage conversion efficiency that has increased according to the amount of voltage drop due to the wiring resistance of the vertical reset input line.
本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the image pickup apparatus in the 1st Embodiment of this technique. 本技術の第1の実施の形態における固体撮像素子の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the solid-state image sensor in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるカラム読出し回路の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the column reading circuit in 1st Embodiment of this technique. 本技術の第1の実施の形態における単位読出し回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the unit reading circuit in 1st Embodiment of this technique. 本技術の第1の実施の形態における画素の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of a pixel in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるカラム信号処理部の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the column signal processing part in 1st Embodiment of this technique. 本技術の第1の実施の形態における差動モードの固体撮像素子の露光開始時の動作の一例を示すタイミングチャートである。It is a timing chart which shows an example of the operation at the start of exposure of the solid-state image sensor of the differential mode in 1st Embodiment of this technique. 本技術の第1の実施の形態における差動モードの固体撮像素子の露光終了時の動作の一例を示すタイミングチャートである。It is a timing chart which shows an example of the operation at the end of exposure of the solid-state image sensor of the differential mode in the 1st Embodiment of this technique. 本技術の第1の実施の形態の変形例におけるSF(Source Follower)モードの固体撮像素子の露光開始時の動作の一例を示すタイミングチャートである。It is a timing chart which shows an example of the operation at the start of the exposure of the solid-state image sensor in SF (Source Follower) mode in the modification of the 1st Embodiment of this technique. 本技術の第1の実施の形態の変形例におけるSFモードの固体撮像素子の露光終了時の動作の一例を示すタイミングチャートである。It is a timing chart which shows an example of the operation at the end of exposure of the solid-state image sensor of SF mode in the modification of the 1st Embodiment of this technique. 本技術の第1の実施の形態における差動モードの画素および単位読出し回路の等価回路の一例である。This is an example of an equivalent circuit of a pixel and unit readout circuit in a differential mode according to the first embodiment of the present technology. 本技術の第1の実施の形態と比較例とにおける行ごとの電荷電圧変換効率の一例を示すグラフである。It is a graph which shows an example of the charge-voltage conversion efficiency for each row in the 1st Embodiment of this technique and the comparative example. 比較例における飽和マージンを説明するための図である。It is a figure for demonstrating the saturation margin in the comparative example. 本技術の第1の実施の形態における飽和マージンを説明するための図である。It is a figure for demonstrating the saturation margin in the 1st Embodiment of this technique. 本技術の第1の実施の形態における固体撮像素子の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the solid-state image sensor in 1st Embodiment of this technique. 本技術の第2の実施の形態における画素および単位読出し回路の等価回路の一例である。This is an example of an equivalent circuit of a pixel and unit reading circuit in the second embodiment of the present technology. 本技術の第3の実施の形態における画素および単位読出し回路の等価回路の一例である。This is an example of an equivalent circuit of a pixel and unit reading circuit according to a third embodiment of the present technology. 本技術の第4の実施の形態における画素および単位読出し回路の等価回路の一例である。This is an example of an equivalent circuit of a pixel and unit reading circuit according to a fourth embodiment of the present technology. 本技術の第5の実施の形態における単位読出し回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the unit reading circuit in 5th Embodiment of this technique. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of the vehicle exterior information detection unit and the image pickup unit.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(垂直リセット入力線の配線抵抗により電圧降下させる例)
 2.第2の実施の形態(垂直信号線より配線抵抗の大きな垂直リセット入力線の配線抵抗により電圧降下させる例)
 3.第3の実施の形態(トランジスタを削減し、垂直リセット入力線の配線抵抗により電圧降下させる例)
 4.第4の実施の形態(バッファを設け、垂直リセット入力線の配線抵抗により電圧降下させる例)
 5.第5の実施の形態(垂直信号線の電圧降下量を測定し、垂直リセット入力線の配線抵抗により電圧降下させる例)
 6.移動体への応用例
Hereinafter, embodiments for carrying out the present technology (hereinafter referred to as embodiments) will be described. The explanation will be given in the following order.
1. 1. First Embodiment (Example of voltage drop due to wiring resistance of vertical reset input line)
2. 2. Second embodiment (example of voltage drop due to wiring resistance of a vertical reset input line having a wiring resistance larger than that of a vertical signal line)
3. 3. Third embodiment (example of reducing the number of transistors and lowering the voltage by the wiring resistance of the vertical reset input line)
4. Fourth Embodiment (Example of providing a buffer and lowering the voltage by the wiring resistance of the vertical reset input line)
5. Fifth Embodiment (Example of measuring the voltage drop amount of the vertical signal line and dropping the voltage by the wiring resistance of the vertical reset input line)
6. Application example to moving body
 <1.第1の実施の形態>
 [撮像装置の構成例]
 図1は、本技術の第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するための装置であり、光学部110、固体撮像素子200およびデジタルシグナルプロセッサ120を備える。さらに撮像装置100は、表示部130、操作部140、バス150、電源部160、記憶部170およびフレームメモリ180を備える。撮像装置100としては、例えば、デジタルスチルカメラなどのデジタルカメラの他、撮像機能を持つスマートフォンやパーソナルコンピュータ、車載カメラ等が想定される。
<1. First Embodiment>
[Configuration example of imaging device]
FIG. 1 is a block diagram showing a configuration example of the image pickup apparatus 100 according to the first embodiment of the present technology. The image pickup device 100 is a device for capturing image data, and includes an optical unit 110, a solid-state image sensor 200, and a digital signal processor 120. Further, the image pickup apparatus 100 includes a display unit 130, an operation unit 140, a bus 150, a power supply unit 160, a storage unit 170, and a frame memory 180. As the image pickup device 100, for example, in addition to a digital camera such as a digital still camera, a smartphone having an image pickup function, a personal computer, an in-vehicle camera, or the like is assumed.
 光学部110は、被写体からの光を集光して固体撮像素子200に導くものである。固体撮像素子200は、垂直同期信号VSYNCに同期して画像データを生成するものである。ここで、垂直同期信号VSYNCは、撮像のタイミングを示す所定周波数(例えば、30ヘルツ)の周期信号である。固体撮像素子200は、生成した画像データをデジタルシグナルプロセッサ120に信号線209を介して供給する。 The optical unit 110 collects the light from the subject and guides it to the solid-state image sensor 200. The solid-state image sensor 200 generates image data in synchronization with the vertical synchronization signal VSYNC. Here, the vertical synchronization signal VSYNC is a periodic signal having a predetermined frequency (for example, 30 hertz) indicating the timing of imaging. The solid-state image sensor 200 supplies the generated image data to the digital signal processor 120 via the signal line 209.
 デジタルシグナルプロセッサ120は、固体撮像素子200からの画像データに対し、デモザイク処理やノイズ低減処理などの所定の信号処理を実行するものである。このデジタルシグナルプロセッサ120は、処理後の画像データをバス150を介してフレームメモリ180などに出力する。また、デジタルシグナルプロセッサ120は、差動モードおよびSFモードのいずれかを指示するモード信号と垂直同期信号VSYNCとを生成して固体撮像素子200に供給する。 The digital signal processor 120 executes predetermined signal processing such as demosaic processing and noise reduction processing on the image data from the solid-state image sensor 200. The digital signal processor 120 outputs the processed image data to the frame memory 180 or the like via the bus 150. Further, the digital signal processor 120 generates a mode signal indicating either the differential mode or the SF mode and the vertical synchronization signal VSYNC and supplies them to the solid-state image sensor 200.
 ここで、差動モードは、一対の画素のそれぞれの信号の差分を増幅(差動増幅)した信号を固体撮像素子200が生成するモードである。一方、SFモードは、ソースフォロワ回路を形成して画素信号を差動増幅せずに出力するモードである。差動モードでは、画像信号に対するゲインを大きくして変換効率を大幅に大きくすることができるが、動作点が狭く、ダイナミックレンジの拡大が困難である。このため、差動モードは暗所での撮像に適しており、SFモードは明所での撮像に適している。そこで、デジタルシグナルプロセッサ120は、例えば、環境光の光量を測光して測光量が所定の閾値より小さい場合に差動モードを指示し、測光量が閾値以上の場合にSFモードを指示する。 Here, the differential mode is a mode in which the solid-state image sensor 200 generates a signal obtained by amplifying (differential amplification) the difference between the signals of each pair of pixels. On the other hand, the SF mode is a mode in which a source follower circuit is formed to output a pixel signal without differential amplification. In the differential mode, the gain for the image signal can be increased to greatly increase the conversion efficiency, but the operating point is narrow and it is difficult to expand the dynamic range. Therefore, the differential mode is suitable for imaging in a dark place, and the SF mode is suitable for imaging in a bright place. Therefore, for example, the digital signal processor 120 measures the amount of ambient light and instructs the differential mode when the metering amount is smaller than a predetermined threshold value, and instructs the SF mode when the metering amount is equal to or more than the threshold value.
 表示部130は、画像データを表示するものである。表示部130としては、例えば、液晶パネルや有機EL(Electro Luminescence)パネルが想定される。操作部140は、ユーザの操作に従って操作信号を生成するものである。 The display unit 130 displays image data. As the display unit 130, for example, a liquid crystal panel or an organic EL (Electro Luminescence) panel is assumed. The operation unit 140 generates an operation signal according to the operation of the user.
 バス150は、光学部110、固体撮像素子200、デジタルシグナルプロセッサ120、表示部130、操作部140、電源部160、記憶部170およびフレームメモリ180が互いにデータをやりとりするための共通の経路である。 The bus 150 is a common route for the optical unit 110, the solid-state image sensor 200, the digital signal processor 120, the display unit 130, the operation unit 140, the power supply unit 160, the storage unit 170, and the frame memory 180 to exchange data with each other. ..
 電源部160は、固体撮像素子200、デジタルシグナルプロセッサ120や表示部130などに電源を供給するものである。記憶部170は、画像データなどの様々なデータを記憶するものである。フレームメモリ180は、画像データを保持するものである。 The power supply unit 160 supplies power to the solid-state image sensor 200, the digital signal processor 120, the display unit 130, and the like. The storage unit 170 stores various data such as image data. The frame memory 180 holds image data.
 [固体撮像素子の構成例]
 図2は、本技術の第1の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この固体撮像素子200は、垂直駆動部210、画素アレイ部220、システム制御部291、カラム読出し回路300、カラム信号処理部270、水平駆動部292、データ格納部293および画像処理部294を備える。
[Structure example of solid-state image sensor]
FIG. 2 is a block diagram showing a configuration example of the solid-state image sensor 200 according to the first embodiment of the present technology. The solid-state image sensor 200 includes a vertical drive unit 210, a pixel array unit 220, a system control unit 291 and a column readout circuit 300, a column signal processing unit 270, a horizontal drive unit 292, a data storage unit 293, and an image processing unit 294.
 システム制御部291は、垂直駆動部210、カラム読出し回路300およびカラム信号処理部270および水平駆動部292を制御するものである。このシステム制御部291は、タイミングジェネレータなどにより構成される。システム制御部291は、垂直同期信号VSYNCに同期して垂直駆動部210、カラム信号処理部270および水平駆動部292のそれぞれの動作タイミングを指示するタイミング信号を生成し、対応する回路に供給する。また、システム制御部291は、カラム読出し回路300内のスイッチを制御する制御信号を生成してカラム読出し回路300に供給する。 The system control unit 291 controls the vertical drive unit 210, the column readout circuit 300, the column signal processing unit 270, and the horizontal drive unit 292. The system control unit 291 is configured by a timing generator or the like. The system control unit 291 generates a timing signal instructing each operation timing of the vertical drive unit 210, the column signal processing unit 270, and the horizontal drive unit 292 in synchronization with the vertical synchronization signal VSYNC, and supplies the timing signal to the corresponding circuit. Further, the system control unit 291 generates a control signal for controlling the switch in the column read circuit 300 and supplies the control signal to the column read circuit 300.
 画素アレイ部220内には、二次元格子状に複数の画素が配列される。以下、所定方向(水平方向など)に配列された画素の集合を「行」と称し、行に垂直な方向に配列された画素の集合を「列」と称する。また、画素アレイ部220内の行数をM(Mは整数)とし、列数をN(Nは整数)とする。 A plurality of pixels are arranged in a two-dimensional grid pattern in the pixel array unit 220. Hereinafter, a set of pixels arranged in a predetermined direction (horizontal direction, etc.) is referred to as a "row", and a set of pixels arranged in a direction perpendicular to the row is referred to as a "column". Further, the number of rows in the pixel array unit 220 is M (M is an integer), and the number of columns is N (N is an integer).
 ここで、画素アレイ部220内の画素の全ては、光電変換を行う有効画素であるものとする。なお、有効画素に加えて、光電変換を行わないダミー画素や、入射光を遮断した遮光画素を画素アレイ部220内にさらに配置することもできる。 Here, it is assumed that all the pixels in the pixel array unit 220 are effective pixels that perform photoelectric conversion. In addition to the effective pixels, dummy pixels that are not photoelectrically converted and light-shielding pixels that block incident light can be further arranged in the pixel array unit 220.
 垂直駆動部210は、行を順に選択して駆動するものである。この垂直駆動部210は、シフトレジスタやアドレスデコーダなどにより構成される。差動モードにおいて垂直駆動部210は、1行ずつ順に選択し、行を選択するたびに、その行内の奇数列と偶数列とを順に駆動する。一方、SFモードにおいて垂直駆動部210は、行を順に選択し、選択した行内の全画素を同時に駆動する。このため、SFモードでは、M回の読出しにより1枚の画像データが生成され、差動モードでは、2×M回の読出しにより1枚の画像データが生成される。このように、行単位で駆動する制御方式は、ローリングシャッター方式と呼ばれる。なお、垂直駆動部210は、ローリングシャッター方式を用いているが、全画素を同時に駆動するグローバルシャッター方式を用いることもできる。 The vertical drive unit 210 drives by selecting rows in order. The vertical drive unit 210 is composed of a shift register, an address decoder, and the like. In the differential mode, the vertical drive unit 210 selects rows one by one, and each time a row is selected, the vertical drive unit 210 drives the odd columns and even columns in the row in order. On the other hand, in the SF mode, the vertical drive unit 210 selects rows in order and simultaneously drives all the pixels in the selected rows. Therefore, in the SF mode, one image data is generated by reading M times, and in the differential mode, one image data is generated by reading 2 × M times. The control method that drives in units of rows in this way is called a rolling shutter method. Although the vertical drive unit 210 uses a rolling shutter method, a global shutter method that drives all pixels at the same time can also be used.
 カラム読出し回路300は、行内のそれぞれの画素の画素信号を読み出してカラム信号処理部270に供給するものである。 The column reading circuit 300 reads out the pixel signal of each pixel in the row and supplies it to the column signal processing unit 270.
 カラム信号処理部270は、列ごとに、その列からの画素信号に対して、AD(Analog to Digital)変換処理などの信号処理を実行するものである。このカラム信号処理部270は、信号処理後の画素データのそれぞれを水平駆動部292の制御に従って順に画像処理部294に出力する。なお、カラム信号処理部270は、特許請求の範囲に記載の信号処理部の一例である。 The column signal processing unit 270 executes signal processing such as AD (Analog to Digital) conversion processing for the pixel signals from the column for each column. The column signal processing unit 270 outputs each of the pixel data after signal processing to the image processing unit 294 in order according to the control of the horizontal drive unit 292. The column signal processing unit 270 is an example of the signal processing unit described in the claims.
 水平駆動部292は、カラム信号処理部270を制御して画素データを順に出力させるものである。この水平駆動部292は、シフトレジスタやアドレスデコーダにより構成される。 The horizontal drive unit 292 controls the column signal processing unit 270 to output pixel data in order. The horizontal drive unit 292 is composed of a shift register and an address decoder.
 画像処理部294は、二次元格子状に配列された画素データからなる画像データに対して、画素加算処理などの各種の画像処理を実行するものである。この画像処理部294は、画像処理において必要に応じてデータ格納部293に画像データを一時的に保持させる。また、画像処理部294は、処理後の画像データをデジタルシグナルプロセッサ120に供給する。 The image processing unit 294 executes various image processing such as pixel addition processing on image data composed of pixel data arranged in a two-dimensional grid pattern. The image processing unit 294 causes the data storage unit 293 to temporarily hold the image data as needed in the image processing. Further, the image processing unit 294 supplies the processed image data to the digital signal processor 120.
 なお、画像処理部294を固体撮像素子200の外部(デジタルシグナルプロセッサ120内など)に配置する構成であってもよい。 The image processing unit 294 may be arranged outside the solid-state image sensor 200 (inside the digital signal processor 120, etc.).
 [カラム読出し回路の構成例]
 図3は、本技術の第1の実施の形態におけるカラム読出し回路300の一構成例を示すブロック図である。このカラム読出し回路300は、2列ごとに単位読み出し回路310を備える。列数がNの場合、N/2個の単位読出し回路310が配置される。
[Configuration example of column readout circuit]
FIG. 3 is a block diagram showing a configuration example of the column readout circuit 300 according to the first embodiment of the present technology. The column reading circuit 300 includes a unit reading circuit 310 for every two columns. When the number of columns is N, N / 2 unit reading circuits 310 are arranged.
 単位読出し回路310のそれぞれは、6本の信号線を介して画素アレイ部220に接続される。また、単位読出し回路310は、対応する2列のそれぞれの画素信号Vout1およびVout2をカラム信号処理部270へ供給する。 Each of the unit reading circuits 310 is connected to the pixel array unit 220 via six signal lines. Further, the unit reading circuit 310 supplies the corresponding two rows of pixel signals Vout1 and Vout2 to the column signal processing unit 270, respectively.
 [単位読出し回路の構成例]
 図4は、本技術の第1の実施の形態における単位読出し回路310の一構成例を示す回路図である。この単位読出し回路310は、pMOS(p-channel Metal Oxide Semiconductor)311乃至314と、テール電流源321および322と、負荷電流源323および324と、スイッチ331乃至347とを備える。
[Unit read circuit configuration example]
FIG. 4 is a circuit diagram showing a configuration example of the unit reading circuit 310 according to the first embodiment of the present technology. The unit readout circuit 310 includes pMOS (p-channel Metal Oxide Semiconductor) 311 to 314, tail current sources 321 and 322, load current sources 323 and 324, and switches 331 to 347.
 また、単位読出し回路310は、垂直信号線22Sおよび22Rと、垂直リセット入力線61Sおよび61Rと、垂直電流供給線62Sおよび62Rとを介して対応する2列と接続される。 Further, the unit read circuit 310 is connected to the corresponding two rows via the vertical signal lines 22S and 22R, the vertical reset input lines 61S and 61R, and the vertical current supply lines 62S and 62R.
 pMOSトランジスタ311乃至314は、電源電圧VDDのノードに並列に接続される。pMOSトランジスタ311のゲートは、pMOSトランジスタ312のゲートと接続される。また、pMOSトランジスタ311のドレインからは、画素信号Vout1が出力され、pMOSトランジスタ312のドレインからは画素信号Vout2が出力される。 The pMOS transistors 311 to 314 are connected in parallel to the node of the power supply voltage VDD. The gate of the pMOS transistor 311 is connected to the gate of the pMOS transistor 312. Further, the pixel signal Vout1 is output from the drain of the pMOS transistor 311 and the pixel signal Vout2 is output from the drain of the pMOS transistor 312.
 また、pMOSトランジスタ313および314のそれぞれにおいて、ゲートおよびドレインは短絡される。このダイオード接続により、pMOSトランジスタ313および314のドレインからは、電源電圧VDDを所定電圧だけ低下させた電圧がリセット電圧Vrstとして供給される。なお、pMOSトランジスタ313および314は、特許請求の範囲に記載のリセット電圧供給トランジスタの一例である。 Also, in each of the pMOS transistors 313 and 314, the gate and drain are short-circuited. By this diode connection, a voltage obtained by lowering the power supply voltage VDD by a predetermined voltage is supplied as the reset voltage Vrst from the drains of the pMOS transistors 313 and 314. The pMOS transistors 313 and 314 are examples of the reset voltage supply transistors described in the claims.
 テール電流源321および322は、単位読出し回路310に垂直電流供給線62Sおよび62Rを介して一定のテール電流を供給するものである。負荷電流源323は、スイッチ346を介して垂直リセット入力線61Sに所定の負荷電流を供給するものである。負荷電流源324は、スイッチ347を介して垂直リセット入力線61Rに所定の負荷電流を供給するものである。 The tail current sources 321 and 322 supply a constant tail current to the unit read circuit 310 via the vertical current supply lines 62S and 62R. The load current source 323 supplies a predetermined load current to the vertical reset input line 61S via the switch 346. The load current source 324 supplies a predetermined load current to the vertical reset input line 61R via the switch 347.
 スイッチ331は、システム制御部291からの制御信号SW11に従ってpMOSトランジスタ311のゲートおよびドレインの間の経路を開閉するものである。スイッチ332は、システム制御部291からの制御信号SW21に従ってpMOSトランジスタ312のゲートおよびドレインの間の経路を開閉するものである。 The switch 331 opens and closes the path between the gate and the drain of the pMOS transistor 311 according to the control signal SW11 from the system control unit 291. The switch 332 opens and closes the path between the gate and the drain of the pMOS transistor 312 according to the control signal SW21 from the system control unit 291.
 スイッチ333は、システム制御部291からの制御信号SW13に従って、垂直電流供給線62Sとテール電流源321との間の経路を開閉するものである。スイッチ334は、システム制御部291からの制御信号SW0に従って、垂直電流供給線62Rとテール電流源321との間の経路を開閉するものである。スイッチ335は、システム制御部291からの制御信号SW23に従って、垂直電流供給線62Rとテール電流源322との間の経路を開閉するものである。 The switch 333 opens and closes the path between the vertical current supply line 62S and the tail current source 321 according to the control signal SW13 from the system control unit 291. The switch 334 opens and closes the path between the vertical current supply line 62R and the tail current source 321 according to the control signal SW0 from the system control unit 291. The switch 335 opens and closes the path between the vertical current supply line 62R and the tail current source 322 according to the control signal SW23 from the system control unit 291.
 スイッチ336は、システム制御部291からの制御信号SW12に従って、垂直電流供給線62Sと電源電圧VDDのノードとの間の経路を開閉するものである。スイッチ337は、システム制御部291からの制御信号SW14に従って、垂直信号線22Sとテール電流源321との間の経路を開閉するものである。 The switch 336 opens and closes the path between the vertical current supply line 62S and the node of the power supply voltage VDD according to the control signal SW12 from the system control unit 291. The switch 337 opens and closes the path between the vertical signal line 22S and the tail current source 321 according to the control signal SW14 from the system control unit 291.
 スイッチ338は、システム制御部291からの制御信号SW22に従って、垂直電流供給線62Rと電源電圧VDDのノードとの間の経路を開閉するものである。スイッチ339は、システム制御部291からの制御信号SW24に従って、垂直信号線22Rとテール電流源322との間の経路を開閉するものである。 The switch 338 opens and closes the path between the vertical current supply line 62R and the node of the power supply voltage VDD according to the control signal SW22 from the system control unit 291. The switch 339 opens and closes the path between the vertical signal line 22R and the tail current source 322 according to the control signal SW24 from the system control unit 291.
 スイッチ340は、システム制御部291からの制御信号SW16に従って、pMOSトランジスタ313のドレイン(すなわち、リセット電圧Vrstのノード)と垂直リセット入力線61Sとの間の経路を開閉するものである。スイッチ341は、システム制御部291からの制御信号SW17に従って、電源電圧VDDのノードと垂直リセット入力線61Sとの間の経路を開閉するものである。 The switch 340 opens and closes the path between the drain of the pMOS transistor 313 (that is, the node of the reset voltage Vrst) and the vertical reset input line 61S according to the control signal SW16 from the system control unit 291. The switch 341 opens and closes the path between the node of the power supply voltage VDD and the vertical reset input line 61S according to the control signal SW17 from the system control unit 291.
 スイッチ342は、システム制御部291からの制御信号SW26に従って、pMOSトランジスタ314のドレイン(すなわち、リセット電圧Vrstのノード)と垂直リセット入力線61Rとの間の経路を開閉するものである。スイッチ343は、システム制御部291からの制御信号SW27に従って、電源電圧VDDのノードと垂直リセット入力線61Rとの間の経路を開閉するものである。 The switch 342 opens and closes the path between the drain of the pMOS transistor 314 (that is, the node of the reset voltage Vrst) and the vertical reset input line 61R according to the control signal SW26 from the system control unit 291. The switch 343 opens and closes the path between the node of the power supply voltage VDD and the vertical reset input line 61R according to the control signal SW27 from the system control unit 291.
 スイッチ344は、システム制御部291からの制御信号SW15に従って、垂直信号線22Sと垂直リセット入力線61Sとの間の経路を開閉するものである。スイッチ346は、システム制御部291からの制御信号SW25に従って、垂直信号線22Rと垂直リセット入力線61Rとの間の経路を開閉するものである。 The switch 344 opens and closes the path between the vertical signal line 22S and the vertical reset input line 61S according to the control signal SW15 from the system control unit 291. The switch 346 opens and closes the path between the vertical signal line 22R and the vertical reset input line 61R according to the control signal SW25 from the system control unit 291.
 スイッチ346は、システム制御部291からの制御信号SW18に従って、垂直リセット入力線61Sと負荷電流源323との間の経路を開閉するものである。スイッチ347は、システム制御部291からの制御信号SW28に従って、垂直リセット入力線61Rと負荷電流源324との間の経路を開閉するものである。 The switch 346 opens and closes the path between the vertical reset input line 61S and the load current source 323 according to the control signal SW18 from the system control unit 291. The switch 347 opens and closes the path between the vertical reset input line 61R and the load current source 324 according to the control signal SW28 from the system control unit 291.
 上述のスイッチ331乃至347のそれぞれの制御タイミングについては後述する。 The control timing of each of the above switches 331 to 347 will be described later.
 なお、2列ごとに負荷電流源323および324を配置(言い換えれば、列ごとに負荷電流源を配置)しているが、複数の列(2列や全列)で1つの負荷電流源を共有することもできる。これにより、列ごとに負荷電流源を配置する場合と比較して、負荷電流源の個数や消費電力を削減することができる。 Although the load current sources 323 and 324 are arranged in each of the two rows (in other words, the load current sources are arranged in each row), one load current source is shared by a plurality of rows (two rows or all rows). You can also do it. As a result, the number of load current sources and the power consumption can be reduced as compared with the case where the load current sources are arranged for each row.
 [画素の構成例]
 図5は、本技術の第1の実施の形態における画素230および240の一構成例を示す回路図である。画素230は、奇数列に配置され、画素240は、偶数列に配置される。
[Pixel configuration example]
FIG. 5 is a circuit diagram showing a configuration example of pixels 230 and 240 according to the first embodiment of the present technology. Pixels 230 are arranged in odd rows and pixels 240 are arranged in even rows.
 画素230は、光電変換素子231、転送トランジスタ232、リセットトランジスタ233、浮遊拡散層234、選択トランジスタ235および増幅トランジスタ236を備える。画素240は、光電変換素子241、転送トランジスタ242、リセットトランジスタ243、浮遊拡散層244、選択トランジスタ245および増幅トランジスタ246を備える。 The pixel 230 includes a photoelectric conversion element 231, a transfer transistor 232, a reset transistor 233, a floating diffusion layer 234, a selection transistor 235, and an amplification transistor 236. The pixel 240 includes a photoelectric conversion element 241, a transfer transistor 242, a reset transistor 243, a floating diffusion layer 244, a selection transistor 245, and an amplification transistor 246.
 光電変換素子231は、光電変換により電荷を生成するものである。転送トランジスタ232は、垂直駆動部210からの転送信号TRG1に従って、光電変換素子231から浮遊拡散層234へ電荷を転送するものである。 The photoelectric conversion element 231 generates an electric charge by photoelectric conversion. The transfer transistor 232 transfers an electric charge from the photoelectric conversion element 231 to the floating diffusion layer 234 according to the transfer signal TRG1 from the vertical drive unit 210.
 リセットトランジスタ233は、垂直駆動部210からのリセット信号RST1に従って、垂直リセット入力線61Sに浮遊拡散層234を接続し、浮遊拡散層234から電荷を引き抜いて、その電圧を初期化するものである。垂直リセット入力線61Sとそれぞれの行のリセットトランジスタ233との接続ノードは、垂直方向において一定間隔で配置される。 The reset transistor 233 connects the floating diffusion layer 234 to the vertical reset input line 61S according to the reset signal RST1 from the vertical drive unit 210, extracts the electric charge from the floating diffusion layer 234, and initializes the voltage. The connection nodes of the vertical reset input line 61S and the reset transistor 233 in each row are arranged at regular intervals in the vertical direction.
 浮遊拡散層234は、転送された電荷を蓄積し、その電荷の量に応じた電圧を生成するものである。増幅トランジスタ236は、浮遊拡散層234の電圧に応じた出力電流を生成するものである。また、増幅トランジスタ236のソースは、垂直電流供給線62Sに接続される。選択トランジスタ235は、選択信号SEL1に従って、増幅トランジスタ236の出力電流を垂直信号線22Sへ出力するものである。垂直電流供給線62Sとそれぞれの行の選択トランジスタ235との接続ノードは、垂直方向において一定間隔で配置される。 The floating diffusion layer 234 accumulates the transferred electric charge and generates a voltage according to the amount of the electric charge. The amplification transistor 236 generates an output current corresponding to the voltage of the floating diffusion layer 234. Further, the source of the amplification transistor 236 is connected to the vertical current supply line 62S. The selection transistor 235 outputs the output current of the amplification transistor 236 to the vertical signal line 22S according to the selection signal SEL1. The connection nodes between the vertical current supply line 62S and the selection transistor 235 in each row are arranged at regular intervals in the vertical direction.
 画素240内の光電変換素子241、転送トランジスタ242、リセットトランジスタ243、浮遊拡散層244、選択トランジスタ245および増幅トランジスタ246の接続構成は、画素230と同様である。ただし、転送トランジスタ242は、転送信号TRS2に従って電荷を転送し、リセットトランジスタ243は、リセット信号RST2に従って、垂直リセット入力線61Rに浮遊拡散層244を接続する。また、増幅トランジスタ246のソースは、垂直電流供給線62Rに接続され、選択トランジスタ245は、選択信号SEL2に従って電流を垂直信号線22Rへ出力する。 The connection configuration of the photoelectric conversion element 241 in the pixel 240, the transfer transistor 242, the reset transistor 243, the floating diffusion layer 244, the selection transistor 245, and the amplification transistor 246 is the same as that of the pixel 230. However, the transfer transistor 242 transfers the electric charge according to the transfer signal TRS2, and the reset transistor 243 connects the floating diffusion layer 244 to the vertical reset input line 61R according to the reset signal RST2. Further, the source of the amplification transistor 246 is connected to the vertical current supply line 62R, and the selection transistor 245 outputs a current to the vertical signal line 22R according to the selection signal SEL2.
 差動モードにおいてカラム読出し回路300は、行内の画素230および240の一方を参照画素とし、他方を読出画素として読出画素の画素信号を読み出す。ここで、読出画素は、露光量に応じた信号電圧を生成する画素であり、参照画素は、所定の参照電圧を生成する画素である。 In the differential mode, the column read circuit 300 reads the pixel signal of the read pixel with one of the pixels 230 and 240 in the row as the reference pixel and the other as the read pixel. Here, the read pixel is a pixel that generates a signal voltage according to the exposure amount, and the reference pixel is a pixel that generates a predetermined reference voltage.
 また、差動モードにおいて固体撮像素子200内のカラム読出し回路300と、画素230および240とは、参照電圧と信号電圧との差分を増幅する差動増幅回路を構成する。カラム読出し回路300は、差動増幅した信号を読出画素の画素信号として読み出し、カラム信号処理部270に供給する。続いてカラム読出し回路300は、参照画素と読出画素とを入れ替え、差動増幅した信号を読出画素の画素信号として読み出してカラム信号処理部270に供給する。 Further, in the differential mode, the column readout circuit 300 in the solid-state image sensor 200 and the pixels 230 and 240 form a differential amplifier circuit that amplifies the difference between the reference voltage and the signal voltage. The column reading circuit 300 reads the differentially amplified signal as a pixel signal of the read pixel and supplies it to the column signal processing unit 270. Subsequently, the column reading circuit 300 replaces the reference pixel and the read pixel, reads the differentially amplified signal as the pixel signal of the read pixel, and supplies the signal to the column signal processing unit 270.
 固体撮像素子200は、読み出す対象の行を変更し、全行の読出しが完了するまで上述の処理を繰り返す。このように行ごとに読出しが2回行われる。行数をM(Mは、整数)とすると、2×M回の読出しが行われる。 The solid-state image sensor 200 changes the row to be read, and repeats the above process until the reading of all rows is completed. In this way, reading is performed twice for each line. Assuming that the number of lines is M (M is an integer), reading is performed 2 × M times.
 [カラム信号処理部の構成例]
 図6は、本技術の第1の実施の形態におけるカラム信号処理部270の一構成例を示すブロック図である。このカラム信号処理部270は、複数のADC(Analog to Digital Converter)271と、出力部280とを備える。ADC271は、列ごとに配置される。
[Configuration example of column signal processing unit]
FIG. 6 is a block diagram showing a configuration example of the column signal processing unit 270 according to the first embodiment of the present technology. The column signal processing unit 270 includes a plurality of ADCs (Analog to Digital Converters) 271 and an output unit 280. ADC271 is arranged in each row.
 ADC271は、アナログの画素信号をデジタルの画素データに変換するものである。このADC271は、比較器272およびカウンタ273を備える。奇数列目のADC271には、画素信号Vout1が入力され、偶数列目のADC271には画素信号Vout2が入力される。 ADC271 converts an analog pixel signal into digital pixel data. The ADC 271 includes a comparator 272 and a counter 273. The pixel signal Vout1 is input to the ADC271 in the odd-numbered column, and the pixel signal Vout2 is input to the ADC271 in the even-numbered column.
 比較器272は、対応する列の画素信号と、のこぎり波状のランプ信号REFとを比較するものである。この比較器272は、比較結果をカウンタ273に供給する。カウンタ273は、比較結果が反転するまでの期間に亘って、計数値を計数するものである。このカウンタ273は、計数値を示すデータをデジタルの画素データとして出力部280に供給する。 The comparator 272 compares the pixel signal of the corresponding row with the saw-wavy lamp signal REF. The comparator 272 supplies the comparison result to the counter 273. The counter 273 counts the count value over a period until the comparison result is reversed. The counter 273 supplies data indicating the count value to the output unit 280 as digital pixel data.
 ここで、露光終了の直前において、リセット信号RST1およびRST2の供給により生成される画素信号のレベルを「リセットレベル」と称する。また、露光終了の際に転送信号TRG1またはTRG2の供給により生成される画素信号のレベルを「信号レベル」と称する。 Here, the level of the pixel signal generated by supplying the reset signals RST1 and RST2 immediately before the end of exposure is referred to as "reset level". Further, the level of the pixel signal generated by the supply of the transfer signal TRG1 or TRG2 at the end of exposure is referred to as "signal level".
 カウンタ273は、例えば、リセットレベルの変換時に、計数値のアップカウントおよびダウンカウントの一方を行い、信号レベルの変換時にアップカウントおよびダウンカウントの他方を行う。これにより、AD(Analog to Digital)変換とともに、リセットレベルと信号レベルとの差分を求めるCDS(Correlated Double Sampling)処理が実行される。 The counter 273, for example, performs one of up-counting and down-counting of the count value when converting the reset level, and performs the other of up-counting and down-counting when converting the signal level. As a result, along with AD (Analog to Digital) conversion, CDS (Correlated Double Sampling) processing for obtaining the difference between the reset level and the signal level is executed.
 なお、カウンタ273が、アップカウントおよびダウンカウントのいずれかのみを行い、CDS処理を後段の回路が実行する構成とすることもできる。 It should be noted that the counter 273 may perform only one of up-counting and down-counting, and the CDS processing may be executed by the circuit in the subsequent stage.
 出力部280は、列ごとの画素データを水平駆動部292の制御に従って、順に画像処理部294へ出力するものである。 The output unit 280 outputs pixel data for each column to the image processing unit 294 in order under the control of the horizontal drive unit 292.
 差動モードにおいては、奇数列の画素信号Vout1と偶数列の画素信号Vout2とが順に生成されるため、奇数列のADC271と、偶数列のADC271とは、対応する画素信号を順にAD変換する。一方、SFモードにおいては、奇数列の画素信号Vout1と偶数列の画素信号Vout2とが同時に生成されるため、全列のADC271は、対応する画素信号を同時にAD変換する。 In the differential mode, the odd-numbered row pixel signal Vout1 and the even-numbered row pixel signal Vout2 are generated in order. Therefore, the odd-numbered row ADC271 and the even-numbered row ADC271 perform AD conversion of corresponding pixel signals in order. On the other hand, in the SF mode, since the odd-numbered pixel signal Vout1 and the even-numbered pixel signal Vout2 are generated at the same time, the ADC271 in all rows simultaneously AD-converts the corresponding pixel signals.
 [固体撮像素子の動作例]
 図7は、本技術の第1の実施の形態における差動モードの固体撮像素子200の露光開始時の動作の一例を示すタイミングチャートである。タイミングT0において差動モードが設定されると、システム制御部291は、制御信号SW13および23をハイレベルにして、対応するスイッチ333および335を閉状態にする。
[Operation example of solid-state image sensor]
FIG. 7 is a timing chart showing an example of the operation of the solid-state image sensor 200 in the differential mode at the start of exposure according to the first embodiment of the present technology. When the differential mode is set at timing T0, the system control unit 291 sets the control signals SW13 and 23 to a high level and closes the corresponding switches 333 and 335.
 そして、奇数列の画素230の露光蓄積期間の開始のタイミングT1において、垂直駆動部210は、ハイレベルのリセット信号RST1および転送信号TRG1を所定のパルス期間に亘って供給する。また、システム制御部291は、タイミングT1において、ハイレベルの制御信号SW17をパルス期間に亘って供給し、対応するスイッチ341を閉状態にする。これらの制御により、画素230の浮遊拡散層234の電荷が排出される。 Then, at the start timing T1 of the exposure accumulation period of the pixels 230 in the odd-numbered rows, the vertical drive unit 210 supplies the high-level reset signal RST1 and the transfer signal TRG1 over a predetermined pulse period. Further, the system control unit 291 supplies a high-level control signal SW17 over a pulse period at the timing T1 and closes the corresponding switch 341. By these controls, the electric charge of the floating diffusion layer 234 of the pixel 230 is discharged.
 また、偶数列の画素240の露光蓄積期間の開始のタイミングT2において、垂直駆動部210は、ハイレベルのリセット信号RST2および転送信号TRG2を所定のパルス期間に亘って供給する。また、システム制御部291は、タイミングT2において、ハイレベルの制御信号SW27をパルス期間に亘って供給し、対応するスイッチ343を閉状態にする。これらの制御により、画素240の浮遊拡散層244の電荷が排出される。 Further, at the start timing T2 of the exposure accumulation period of the even-numbered pixels 240, the vertical drive unit 210 supplies the high-level reset signal RST2 and the transfer signal TRG2 over a predetermined pulse period. Further, the system control unit 291 supplies a high-level control signal SW27 over a pulse period at the timing T2, and closes the corresponding switch 343. By these controls, the electric charge of the floating diffusion layer 244 of the pixel 240 is discharged.
 図8は、本技術の第1の実施の形態における差動モードの固体撮像素子200の露光終了時の動作の一例を示すタイミングチャートである。 FIG. 8 is a timing chart showing an example of the operation of the solid-state image sensor 200 in the differential mode at the end of exposure according to the first embodiment of the present technology.
 読出しを開始するタイミングT3において、垂直駆動部210は、選択信号SEL1およびSEL2をハイレベルにする。また、タイミングT3においてシステム制御部291は、制御信号SW0、SW15、SW21、SW26およびSW28をハイレベルにして対応するスイッチ334、344、332、342および347を閉状態にする。これにより、画素230および240とカラム読出し回路300とは、画素230を読出画素とし、画素240を参照画素とする差動増幅回路を構成する。また、差動増幅回路において、垂直リセット入力線61Rに負荷電流源324からの負荷電流が供給される。 At the timing T3 at which the reading is started, the vertical drive unit 210 sets the selection signals SEL1 and SEL2 to a high level. Further, at the timing T3, the system control unit 291 sets the control signals SW0, SW15, SW21, SW26 and SW28 to a high level and closes the corresponding switches 334, 344, 332, 342 and 347. As a result, the pixels 230 and 240 and the column readout circuit 300 form a differential amplifier circuit in which the pixel 230 is the read pixel and the pixel 240 is the reference pixel. Further, in the differential amplifier circuit, the load current from the load current source 324 is supplied to the vertical reset input line 61R.
 そして、垂直駆動部210は、奇数列の露光蓄積期間の終了直前のタイミングT4において、パルス期間に亘ってハイレベルのリセット信号RST1およびRST2を供給する。これにより、読出画素(画素230)および参照画素(画素240)のそれぞれの浮遊拡散層から電荷が排出され、それらの電圧が所定の参照電圧に初期化される。これらの電圧の差分を増幅した画素信号Vout1のレベルは、リセットレベルとして読み出される。 Then, the vertical drive unit 210 supplies high-level reset signals RST1 and RST2 over the pulse period at the timing T4 immediately before the end of the exposure accumulation period of the odd-numbered rows. As a result, electric charges are discharged from the floating diffusion layers of the read pixel (pixel 230) and the reference pixel (pixel 240), and their voltages are initialized to a predetermined reference voltage. The level of the pixel signal Vout1 that amplifies the difference between these voltages is read out as a reset level.
 垂直駆動部210は、奇数列の露光蓄積期間の終了のタイミングT5において、パルス期間に亘ってハイレベルの転送信号TRG1を供給する。これにより、読出画素である画素230の光電変換素子231から浮遊拡散層234へ電荷が転送され、浮遊拡散層234により電荷の量に応じた電圧が信号電圧として生成される。参照画素の参照電圧と、読出画素の信号電圧との差分を増幅した画素信号Vout1のレベルは、信号レベルとして読み出される。 The vertical drive unit 210 supplies a high-level transfer signal TRG1 over the pulse period at the end timing T5 of the exposure accumulation period of the odd-numbered rows. As a result, the electric charge is transferred from the photoelectric conversion element 231 of the pixel 230, which is a read pixel, to the floating diffusion layer 234, and the floating diffusion layer 234 generates a voltage corresponding to the amount of the electric charge as a signal voltage. The level of the pixel signal Vout1 obtained by amplifying the difference between the reference voltage of the reference pixel and the signal voltage of the read pixel is read as a signal level.
 画素信号Vout1の読出しが完了したタイミングT6において、システム制御部291は、制御信号SW15、SW21、SW26およびSW28をローレベルにする。そして、その直後のタイミングT7においてシステム制御部291は、制御信号SW11、SW16、SW18およびSW25をハイレベルにして対応するスイッチ331、340、346および345を閉状態にする。これにより、画素230および240とカラム読出し回路300とは、画素240を読出画素とし、画素230を参照画素とする差動増幅回路を構成する。言い換えれば、読出画素と参照画素との入れ替えが行われる。また、差動増幅回路において、垂直リセット入力線61Sに負荷電流源323からの負荷電流が供給される。 At the timing T6 when the reading of the pixel signal Vout1 is completed, the system control unit 291 lowers the control signals SW15, SW21, SW26 and SW28. Then, at the timing T7 immediately after that, the system control unit 291 sets the control signals SW11, SW16, SW18 and SW25 to a high level and closes the corresponding switches 331, 340, 346 and 345. As a result, the pixels 230 and 240 and the column readout circuit 300 form a differential amplifier circuit in which the pixel 240 is the read pixel and the pixel 230 is the reference pixel. In other words, the read pixel and the reference pixel are replaced. Further, in the differential amplifier circuit, the load current from the load current source 323 is supplied to the vertical reset input line 61S.
 そして、垂直駆動部210は、偶数列の露光蓄積期間の終了直前のタイミングT8において、パルス期間に亘ってハイレベルのリセット信号RST1およびRST2を供給する。これにより、読出画素(画素240)および参照画素(画素230)のそれぞれの浮遊拡散層から電荷が排出され、それらの電圧が所定の参照電圧に初期化される。これらの電圧の差分を増幅した画素信号Vout2のレベルは、リセットレベルとして読み出される。 Then, the vertical drive unit 210 supplies high-level reset signals RST1 and RST2 over the pulse period at the timing T8 immediately before the end of the exposure accumulation period of the even-numbered rows. As a result, electric charges are discharged from the floating diffusion layers of the read pixel (pixel 240) and the reference pixel (pixel 230), and their voltages are initialized to a predetermined reference voltage. The level of the pixel signal Vout2 that amplifies the difference between these voltages is read out as a reset level.
 垂直駆動部210は、偶数列の露光蓄積期間の終了のタイミングT9において、パルス期間に亘ってハイレベルの転送信号TRG2を供給する。これにより、読出画素である画素240の光電変換素子241から浮遊拡散層244へ電荷が転送され、浮遊拡散層244により電荷の量に応じた電圧が信号電圧として生成される。参照画素の参照電圧と、読出画素の信号電圧との差分を増幅した画素信号Vout2のレベルは、信号レベルとして読み出される。 The vertical drive unit 210 supplies a high-level transfer signal TRG2 over the pulse period at the end timing T9 of the even-numbered row of exposure accumulation periods. As a result, the charge is transferred from the photoelectric conversion element 241 of the pixel 240, which is a read pixel, to the floating diffusion layer 244, and the floating diffusion layer 244 generates a voltage corresponding to the amount of the charge as a signal voltage. The level of the pixel signal Vout2 obtained by amplifying the difference between the reference voltage of the reference pixel and the signal voltage of the read pixel is read as a signal level.
 図7および図8に例示した制御は、差動モードにおいて行ごとに実行される。 The controls illustrated in FIGS. 7 and 8 are performed row by row in differential mode.
 図9は、本技術の第1の実施の形態の変形例におけるSFモードの固体撮像素子200の露光開始時の動作の一例を示すタイミングチャートである。露光蓄積期間の開始のタイミングT1において、垂直駆動部210は、ハイレベルのリセット信号RST1およびRST2とハイレベルの転送信号TRG1およびTRG2とを所定のパルス期間に亘って供給する。また、システム制御部291は、ハイレベルの制御信号SW17およびSW27をパルス期間に亘って供給する。これにより、画素230および240のそれぞれの浮遊拡散層の電荷が排出される。同図において、タイミングT2乃至T3の期間の駆動は、画素230および240の読出しに寄与しない。 FIG. 9 is a timing chart showing an example of the operation of the SF mode solid-state image sensor 200 at the start of exposure in the modified example of the first embodiment of the present technology. At the start timing T1 of the exposure accumulation period, the vertical drive unit 210 supplies the high-level reset signals RST1 and RST2 and the high-level transfer signals TRG1 and TRG2 over a predetermined pulse period. Further, the system control unit 291 supplies high-level control signals SW17 and SW27 over a pulse period. As a result, the electric charges of the floating diffusion layers of the pixels 230 and 240 are discharged. In the figure, the driving during the period of timings T2 to T3 does not contribute to the reading of pixels 230 and 240.
 図10は、本技術の第1の実施の形態におけるSFモードの固体撮像素子200の露光終了時の動作の一例を示すタイミングチャートである。 FIG. 10 is a timing chart showing an example of the operation of the SF mode solid-state image sensor 200 at the end of exposure according to the first embodiment of the present technology.
 読出しを開始するタイミングT3において、垂直駆動部210は、選択信号SEL1およびSEL2をハイレベルにする。また、タイミングT3においてシステム制御部291は、制御信号SW12、SW14、SW17、SW22、SW24およびSW27をハイレベルにして対応するスイッチ336、337、341、338、339および343を閉状態にする。これにより、画素230および240とカラム読出し回路300とは、列ごとにソースフォロワ回路を構成する。また、ソースフォロワ回路においては、垂直リセット入力線61Rおよび61Sに負荷電流が供給されない。 At the timing T3 at which the reading is started, the vertical drive unit 210 sets the selection signals SEL1 and SEL2 to a high level. Further, at the timing T3, the system control unit 291 sets the control signals SW12, SW14, SW17, SW22, SW24 and SW27 to a high level and closes the corresponding switches 336, 337, 341, 338, 339 and 343. As a result, the pixels 230 and 240 and the column readout circuit 300 form a source follower circuit for each column. Further, in the source follower circuit, the load current is not supplied to the vertical reset input lines 61R and 61S.
 そして、垂直駆動部210は、露光蓄積期間の終了直前のタイミングT4において、パルス期間に亘ってハイレベルのリセット信号RST1およびRST2を供給する。これにより、画素230および240のそれぞれの浮遊拡散層から電荷が排出され、それらの電圧が所定の参照電圧に初期化される。このときの画素信号Vout1およびVout2のそれぞれのレベルは、リセットレベルとして読み出される。 Then, the vertical drive unit 210 supplies high-level reset signals RST1 and RST2 over the pulse period at the timing T4 immediately before the end of the exposure accumulation period. As a result, charges are discharged from the floating diffusion layers of the pixels 230 and 240, and their voltages are initialized to a predetermined reference voltage. The respective levels of the pixel signals Vout1 and Vout2 at this time are read out as reset levels.
 垂直駆動部210は、露光蓄積期間の終了のタイミングT5において、パルス期間に亘ってハイレベルの転送信号TRG1およびTRG2を供給する。これにより、画素230および240において光電変換素子から浮遊拡散層へ電荷が転送され、電荷の量に応じた電圧が生成される。このときの画素信号Vout1およびVout2のレベルは、信号レベルとして読み出される。 The vertical drive unit 210 supplies high-level transfer signals TRG1 and TRG2 over the pulse period at the end timing T5 of the exposure accumulation period. As a result, electric charges are transferred from the photoelectric conversion element to the floating diffusion layer in the pixels 230 and 240, and a voltage corresponding to the amount of electric charges is generated. The levels of the pixel signals Vout1 and Vout2 at this time are read out as signal levels.
 また、タイミングT6において、垂直駆動部210は、選択信号SEL1およびSEL2をローレベルにし、システム制御部291は、制御信号SW12、SW14、SW17、SW22、SW24およびSW27をローレベルにする。同図において、タイミングT7乃至T8の期間の駆動は、画素230および240の読出しに寄与しない。 Further, at the timing T6, the vertical drive unit 210 lowers the selection signals SEL1 and SEL2, and the system control unit 291 lowers the control signals SW12, SW14, SW17, SW22, SW24 and SW27. In the figure, driving during the period of timings T7 to T8 does not contribute to the reading of pixels 230 and 240.
 図9および図10に例示した制御は、SFモードにおいて行ごとに実行される。なお、固体撮像素子200は、差動モードおよびSFモードのいずれかにモードを切り替えているが、SFモードが設定されない構成とすることもできる。この場合には、単位読出し回路310においてモードの切り替えのために必要なスイッチが不要となる。この場合の単位読出し回路310は、例えば、特開2018-182496号公報の図16に記載の回路に、負荷電流源323および324と、スイッチ346および347とを追加した構成となる。 The controls illustrated in FIGS. 9 and 10 are executed line by line in the SF mode. Although the solid-state image sensor 200 switches the mode to either the differential mode or the SF mode, the SF mode may not be set. In this case, the switch required for mode switching in the unit reading circuit 310 becomes unnecessary. In this case, the unit reading circuit 310 has, for example, a configuration in which load current sources 323 and 324 and switches 346 and 347 are added to the circuit shown in FIG. 16 of JP-A-2018-182496.
 図11は、本技術の第1の実施の形態における差動モードの画素および単位読出し回路310の等価回路の一例である。同図は、画素230を読出画素とし、画素240を参照画素とする場合の等価回路を示す。同図において、スイッチ331乃至347と、テール電流源322および負荷電流源323とは省略されている。また、垂直電流供給線62Rおよび62Sは、一本の垂直電流供給線62により表されている。 FIG. 11 is an example of an equivalent circuit of the pixel and unit reading circuit 310 in the differential mode according to the first embodiment of the present technology. The figure shows an equivalent circuit in the case where the pixel 230 is a read pixel and the pixel 240 is a reference pixel. In the figure, switches 331 to 347, tail current source 322, and load current source 323 are omitted. Further, the vertical current supply lines 62R and 62S are represented by a single vertical current supply line 62.
 読出し側および参照側のリセットトランジスタ233および243は、露光終了の直前において、浮遊拡散層234および244の電圧をリセット電圧Vrstに応じた参照電圧によって初期化する。この参照電圧をVfdrとする。垂直リセット入力線61Rには負荷電流が供給されているため、垂直リセット入力線61Rにおいて配線抵抗による電圧降下が生じ、参照電圧Vfdrは、その電圧降下量に応じた値となる。 The reset transistors 233 and 243 on the read side and the reference side initialize the voltages of the floating diffusion layers 234 and 244 with a reference voltage corresponding to the reset voltage Vrst immediately before the end of exposure. Let this reference voltage be V fdr . Since the load current is supplied to the vertical reset input line 61R, a voltage drop occurs due to the wiring resistance in the vertical reset input line 61R, and the reference voltage V fdr becomes a value corresponding to the voltage drop amount.
 そして、読出し側の転送トランジスタ232は、露光終了時に読出し側の光電変換素子231から浮遊拡散層234に電荷を転送して、その電荷の量に応じた電圧を信号電圧として生成させる。この信号電圧をVfdsとする。 Then, the transfer transistor 232 on the reading side transfers an electric charge from the photoelectric conversion element 231 on the reading side to the floating diffusion layer 234 at the end of exposure, and generates a voltage corresponding to the amount of the electric charge as a signal voltage. Let this signal voltage be V fds .
 一対の増幅トランジスタ236および246は、参照電圧Vfdrと信号電圧Vfdsとの差分に応じた出力電流Ioutを生成する。pMOSトランジスタ311および312からなるカレントミラー回路は、その出力電流Ioutに応じた電圧の画素信号Voutを読出し側の垂直信号線22Sから出力する。 The pair of amplification transistors 236 and 246 generate an output current I out according to the difference between the reference voltage V fdr and the signal voltage V fds . The current mirror circuit including the pMOS transistors 311 and 312 outputs a pixel signal Vout having a voltage corresponding to the output current I out from the vertical signal line 22S on the reading side.
 上述の構成において画素230および240と、単位読出し回路310とからなる差動増幅回路の電荷電圧変換効率ηは、例えば、次の式により表される。
  η=e/(-Cfd/Av+Cgd)         ・・・式1
上式において、eは、信号電荷を示す。Avは、差動増幅回路のオープンループゲインを示す。Cgdは、増幅トランジスタ236のゲート-ドレイン間のオーバーラップ容量である。Cfdは、浮遊拡散層の容量を示す。これらの容量の単位は、例えば、マイクロファラッド(μF)である。
In the above configuration, the charge-voltage conversion efficiency η of the differential amplifier circuit including the pixels 230 and 240 and the unit readout circuit 310 is expressed by, for example, the following equation.
η = e / (−C fd / Av + C gd ) ・ ・ ・ Equation 1
In the above equation, e indicates a signal charge. Av indicates the open loop gain of the differential amplifier circuit. C gd is the overlap capacitance between the gate and drain of the amplification transistor 236. C fd indicates the capacity of the floating diffusion layer. The unit of these volumes is, for example, microfarad (μF).
 式1のオープンループゲインAvは、次の式により表される。
  Av=gm・Routamp・RoutpMOS
     /(Routamp+RoutpMOS)      ・・・式2
上式において、gmは、増幅トランジスタ236の相互コンダクタンスを示し、単位は、例えば、ジーメンス(S)である。Routampは、増幅トランジスタ236の出力抵抗を示し、単位は例えば、オーム(Ω)である。RoutpMOSは、pMOSトランジスタ311の出力抵抗を示し、単位は例えば、オーム(Ω)である。
The open loop gain Av of Equation 1 is expressed by the following equation.
Av = gm ・ Rout amp・ Rout pMOS
/ (Rout amp + Rout pMOS ) ・ ・ ・ Equation 2
In the above equation, gm represents the transconductance of the amplification transistors 236, and the unit is, for example, Siemens (S). Rout amp indicates the output resistance of the amplification transistor 236, and the unit is, for example, ohm (Ω). Rout pMOS indicates the output resistance of the pMOS transistor 311 and the unit is, for example, ohm (Ω).
 FD拡散容量およびFD配線容量や、増幅トランジスタ236、転送トランジスタ232およびリセットトランジスタ233のそれぞれのゲート容量の総和であるCfdと比較すると、オーバーラップ容量Cgdは小さい。さらに、式1よりCfdは、オープンループゲインAvにより割り戻されるため、実効的な容量が小さくなり、高い電荷電圧変換効率ηを実現することができる。 The overlap capacitance C gd is smaller than the FD diffusion capacitance and the FD wiring capacitance, and C fd , which is the sum of the gate capacitances of the amplification transistor 236, the transfer transistor 232, and the reset transistor 233. Further, from Equation 1, since C fd is rebated by the open loop gain Av, the effective capacitance becomes small, and a high charge-voltage conversion efficiency η can be realized.
 行ごとの画素230および240は、差動対を形成しており、読み出し時には垂直方向において1行目からM行目までが順に読み出される。このとき、カレントミラー回路からの距離が行ごとに異なり、カレントミラー回路に近い行では、垂直信号線22Sの配線抵抗が小さく、遠い行では配線抵抗が大きくなる。このため、読出し側の増幅トランジスタ236の動作点は、垂直方向において一様に定まらず、面内差を持ったまま、整定することになる。 The pixels 230 and 240 for each row form a differential pair, and at the time of reading, the first row to the Mth row are read in order in the vertical direction. At this time, the distance from the current mirror circuit differs from line to line, and the wiring resistance of the vertical signal line 22S is small in the line close to the current mirror circuit, and large in the line far from the current mirror circuit. Therefore, the operating point of the amplification transistor 236 on the reading side is not uniformly determined in the vertical direction, and is set while maintaining the in-plane difference.
 差動増幅回路の変換効率を決定する上で重要な相互コンダクタンスgm、出力抵抗Routamp、オーバーラップ容量Cgdは、バイアス依存性があることに加え、垂直信号線22Sは、出力電流Ioutを流している。このため、金属配線抵抗により、必ず電圧降下が起きる。この電圧降下により、増幅トランジスタ236のドレインの電圧が降下し、そのドレイン-ソース間電圧Vdsampが減少する。 The transconductance gm, output resistance Rout amp , and overlap capacitance C gd, which are important in determining the conversion efficiency of the differential amplifier circuit, are bias-dependent, and the vertical signal line 22S determines the output current I out . It's flowing. Therefore, a voltage drop always occurs due to the metal wiring resistance. Due to this voltage drop, the voltage of the drain of the amplification transistor 236 drops, and the drain-source voltage Vds amp decreases.
 ここで、負荷電流源323および324を配置しない比較例を想定する。この比較例では、ドレイン-ソース間電圧Vdsampの減少により、出力抵抗Routampが小さくなる。出力抵抗Routampが小さくなると、式2よりオープンループゲインAvが減少する。 Here, a comparative example in which the load current sources 323 and 324 are not arranged is assumed. In this comparative example, the output resistance Rout amp becomes smaller due to the decrease in the drain-source voltage Vds amp . When the output resistance Rout amp becomes smaller, the open loop gain Av decreases as compared with Equation 2.
 また、信号電圧Vfdsは、露光量が多いほど低くなるため、増幅トランジスタ236のゲート-ドレイン間電圧Vgdが増大する。このゲート-ドレイン間電圧Vgdの増大により、オーバーラップ容量Cgdが増大する。 Further, since the signal voltage V fds becomes lower as the exposure amount increases, the gate-drain voltage Vgd of the amplification transistor 236 increases. This increase in the gate-drain voltage Vgd increases the overlap capacitance C gd .
 上述のオープンループゲインAvの減少と、オーバーラップ容量Cgdの増大とが原因となり、式1より、比較例では、カレントミラー回路から遠い行ほど、電荷電圧変換効率ηが低下する。よって、比較例では、カレントミラー回路からの距離に応じて、電荷電圧変換効率ηの面内差が生じ、明るい撮像場所においては、画素信号の差となり、シェーディングとして観測される。 Due to the decrease in the open loop gain Av and the increase in the overlap capacitance C gd described above, from Equation 1, in the comparative example, the charge-voltage conversion efficiency η decreases as the line is farther from the current mirror circuit. Therefore, in the comparative example, an in-plane difference in the charge-voltage conversion efficiency η occurs depending on the distance from the current mirror circuit, and in a bright imaging place, the difference is a pixel signal, which is observed as shading.
 これに対して、負荷電流源323および324を配置した構成では、それらの電流源が負荷電流Iloadを垂直リセット入力線61Rおよび61Sに供給する。この負荷電流Iloadの供給より、カレントミラー回路から遠い行ほど、垂直リセット入力線61Rおよび61Sの配線抵抗による電圧降下量が増大する。この電圧降下により、カレントミラー回路から遠い行ほど、浮遊拡散層の初期化時の電圧(参照電圧Vfdr)が低下する。この参照電圧Vfdrの低下により、信号電圧Vfdsとの差分が増大し、出力電流Ioutが増大する。この出力電流Ioutの増大により、pMOSトランジスタ311のドレイン電圧が低下し、そのドレイン-ソース間電圧VdspMOSが大きくなる。このドレイン-ソース間電圧VdspMOSの増大により、出力抵抗RoutpMOSが大きくなる。出力抵抗RoutpMOSが大きくなると、式2より、その分オープンループゲインAvが増大して電荷電圧変換効率ηが上昇する。 On the other hand, in the configuration in which the load current sources 323 and 324 are arranged, those current sources supply the load current I load to the vertical reset input lines 61R and 61S. The farther from the current mirror circuit than the supply of this load current I load, the greater the amount of voltage drop due to the wiring resistance of the vertical reset input lines 61R and 61S. Due to this voltage drop, the farther the line is from the current mirror circuit, the lower the voltage at the time of initialization of the floating diffusion layer (reference voltage V fdr ). Due to this decrease in the reference voltage V fdr , the difference from the signal voltage V fds increases, and the output current I out increases. Due to this increase in the output current I out , the drain voltage of the pMOS transistor 311 decreases, and the drain-source voltage Vds pMOS increases. The increase in the drain-source voltage Vds pMOS increases the output resistance Rout pMOS . When the output resistance Rout pMOS becomes large, the open loop gain Av increases by that amount and the charge-voltage conversion efficiency η increases according to the equation 2.
 まとめると、カレントミラー回路から遠い行ほど、垂直信号線22Sの配線抵抗による電圧降下量が大きくなり、その電圧降下に起因して増幅トランジスタ236の出力抵抗Routampが減少する。一方、負荷電流Iloadの供給により、カレントミラー回路から遠い行ほど、垂直リセット入力線61Rの配線抵抗による電圧降下量が大きくなり、その電圧降下に起因してpMOSトランジスタ311の出力抵抗RoutpMOSが増大する。式1および式2に例示するように、出力抵抗Routampの減少により電荷電圧変換効率ηが低下し、出力抵抗RoutpMOSの増大により電荷電圧変換効率ηが上昇する。また、オーバーラップ容量Cgdの増大により、電荷電圧変換効率ηが低下する。 In summary, the farther the line is from the current mirror circuit, the larger the amount of voltage drop due to the wiring resistance of the vertical signal line 22S, and the output resistance Rout amp of the amplification transistor 236 decreases due to the voltage drop. On the other hand, due to the supply of the load current I load, the farther the line is from the current mirror circuit, the larger the amount of voltage drop due to the wiring resistance of the vertical reset input line 61R, and the output resistance Rout pMOS of the pMOS transistor 311 increases due to the voltage drop. Increase. As illustrated in Equations 1 and 2, the charge-voltage conversion efficiency η decreases as the output resistance Rout amp decreases, and the charge-voltage conversion efficiency η increases as the output resistance Rout pMOS increases. Further, as the overlap capacitance C gd increases, the charge-voltage conversion efficiency η decreases.
 このため、出力抵抗Routampの減少とオーバーラップ容量Cgdの増大とによる電荷電圧変換効率ηの低下分を、出力抵抗RoutpMOSの増大による電荷電圧変換効率ηの上昇により相殺することができる。これにより、相互コンダクタンスgm、出力抵抗Routampおよびオーバーラップ容量Cgdのバランスの調整をとることによって電荷電圧変換効率ηの面内差を抑制することが可能となる。この結果、シェーディングを抑制して画像データの画質を向上させることができる。 Therefore, the decrease in the charge-voltage conversion efficiency η due to the decrease in the output resistance Rout amp and the increase in the overlap capacitance C gd can be offset by the increase in the charge-voltage conversion efficiency η due to the increase in the output resistance Rout pMOS . As a result, it is possible to suppress the in-plane difference in the charge-voltage conversion efficiency η by adjusting the balance between the transconductance gm, the output resistance Rout amp, and the overlap capacitance C gd . As a result, shading can be suppressed and the image quality of the image data can be improved.
 垂直リセット入力線61Rの単位長さ当たりの配線抵抗をRvpxとし、垂直信号線22Sの単位長さ当たりの配線抵抗をRvslとし、それらの配線抵抗は、例えば、略同一の値に設定される。ここで、「略同一」は、2つの値が完全一致すること、または、それらの差が所定の許容値以内であることを意味する。また、単位長さは、垂直リセット入力線61Rにおいて、隣接する2行の一方が接続されるノードと、他方が接続されるノードとの間の長さに該当する。 The wiring resistance per unit length of the vertical reset input line 61R is R vpx , the wiring resistance per unit length of the vertical signal line 22S is R vsl, and the wiring resistances are set to substantially the same value, for example. To. Here, "substantially the same" means that the two values are exactly the same, or that the difference between them is within a predetermined allowable value. Further, the unit length corresponds to the length between the node to which one of the two adjacent lines is connected and the node to which the other is connected on the vertical reset input line 61R.
 なお、オーバーラップ容量Cgdが増大した分、出力抵抗RoutpMOSの増大によりオープンループゲインAvを上昇させれば、電荷電圧変換効率ηの面内差を改善することができる。このため、必ずしも、垂直リセット入力線61Rの配線抵抗による電圧降下と、垂直信号線22Sの配線抵抗による電圧降下とを同等に調整する必要は無い。 If the open loop gain Av is increased by increasing the output resistance Route pMOS by the amount that the overlap capacitance C gd is increased, the in-plane difference in the charge-voltage conversion efficiency η can be improved. Therefore, it is not always necessary to adjust the voltage drop due to the wiring resistance of the vertical reset input line 61R and the voltage drop due to the wiring resistance of the vertical signal line 22S equally.
 また、固体撮像素子200は、水平方向において隣接する一対の画素のそれぞれの信号の差分を増幅しているが、この構成に限定されず、垂直方向において隣接する一対の画素のそれぞれの信号の差分を増幅することもできる。この場合には、例えば、列ごとに単位読出し回路300が配置され、奇数行の画素と偶数行の画素との一方が参照画素、他方が読出画素として差動増幅が行われる。 Further, the solid-state image sensor 200 amplifies the difference between the signals of the pair of adjacent pixels in the horizontal direction, but is not limited to this configuration, and the difference between the signals of the pair of adjacent pixels in the vertical direction. Can also be amplified. In this case, for example, a unit reading circuit 300 is arranged for each column, and differential amplification is performed with one of the odd-numbered row pixels and the even-numbered row of pixels as reference pixels and the other as read pixels.
 図12は、本技術の第1の実施の形態と比較例とにおける行ごとの電荷電圧変換効率の一例を示すグラフである。同図におけるaは、負荷電流源323および324を設けない比較例における行ごとの電荷電圧変換効率の一例を示すグラフである。同図におけるbは、負荷電流源323および324を設けた第1の実施の形態における行ごとの電荷電圧変換効率の一例を示すグラフである。同図における縦軸は、電荷電圧変換効率を示し、横軸は、垂直方向の画素数を示す。垂直方向の画素数が多いほど、カレントミラー回路からの距離が長いものとする。 FIG. 12 is a graph showing an example of the charge-voltage conversion efficiency for each row in the first embodiment of the present technology and the comparative example. In the figure, a is a graph showing an example of charge-voltage conversion efficiency for each row in a comparative example in which the load current sources 323 and 324 are not provided. In the figure, b is a graph showing an example of the charge-voltage conversion efficiency for each row in the first embodiment in which the load current sources 323 and 324 are provided. In the figure, the vertical axis shows the charge-voltage conversion efficiency, and the horizontal axis shows the number of pixels in the vertical direction. It is assumed that the larger the number of pixels in the vertical direction, the longer the distance from the current mirror circuit.
 同図におけるaに例示するように、負荷電流源323および324を設けない比較例では、垂直方向の画素数が多いほど(すなわち、カレントミラー回路から遠い行ほど)、電荷電圧変換効率が低下する。これは、カレントミラー回路から遠い行ほど、垂直信号線22Sの配線抵抗による電圧降下量が大きくなり、その電圧降下に起因して増幅トランジスタ236の出力抵抗Routampが減少するためである。 As illustrated in a in the figure, in the comparative example in which the load current sources 323 and 324 are not provided, the charge-voltage conversion efficiency decreases as the number of pixels in the vertical direction increases (that is, the line farther from the current mirror circuit). .. This is because the farther the line is from the current mirror circuit, the larger the amount of voltage drop due to the wiring resistance of the vertical signal line 22S, and the lower the output resistance Rout amp of the amplification transistor 236 due to the voltage drop.
 一方、同図におけるbに例示するように、負荷電流源323および324を設けた場合、垂直方向の画素数が多いほど(すなわち、カレントミラー回路から遠い行ほど)、電荷電圧変換効率が低下するものの、その低下量は比較例よりも小さい。これは、カレントミラー回路から遠い行ほど、垂直リセット入力線61Rの配線抵抗による電圧降下量が大きくなり、その電圧降下に起因してカレントミラー回路内のpMOSトランジスタ311の出力抵抗RoutpMOSが増大するためである。 On the other hand, when the load current sources 323 and 324 are provided as illustrated in b in the figure, the charge-voltage conversion efficiency decreases as the number of pixels in the vertical direction increases (that is, the line farther from the current mirror circuit). However, the amount of decrease is smaller than that of the comparative example. This is because the farther the line is from the current mirror circuit, the larger the amount of voltage drop due to the wiring resistance of the vertical reset input line 61R, and the output resistance Rout pMOS of the pMOS transistor 311 in the current mirror circuit increases due to the voltage drop. Because.
 図13は、比較例における飽和マージンを説明するための図である。負荷電流源323および324を設けない比較例では、pMOSトランジスタ311のドレイン-ソース間電圧VdspMOSは、読み出す行がカレントミラー回路から遠いほど増大し、最も遠い行で飽和する。ある行を読み出す際のドレイン-ソース間電圧VdspMOSをVdsat1とする。また、増幅トランジスタ236のドレイン-ソース間電圧Vdsampは、カレントミラー回路から遠いほど増大し、最も遠い行で飽和する。ある行のドレイン-ソース間電圧VdsampをVdsat2とする。 FIG. 13 is a diagram for explaining the saturation margin in the comparative example. In the comparative example in which the load current sources 323 and 324 are not provided, the drain-source voltage Vds pMOS of the pMOS transistor 311 increases as the read line is farther from the current mirror circuit, and saturates at the farthest line. Let Vdsat1 be the drain-source voltage Vds pMOS when reading a certain line. Further, the drain-source voltage Vds amp of the amplification transistor 236 increases as the distance from the current mirror circuit increases, and saturates at the farthest row. Let the drain-source voltage Vds amp in a row be Vdsat2.
 また、増幅トランジスタ236の閾値電圧をVthとすると、閾値電圧Vthと増幅トランジスタ236のゲート-ドレイン間電圧Vgdとの差分が飽和マージンとして設定される。一方、電源電圧VDDとコモン電圧VCOMとの間の電圧範囲において、ドレイン-ソース間電圧Vdsat1およびVdsat2や増幅トランジスタ236の飽和マージンを除いた残りの電圧が、pMOSトランジスタ311の飽和マージンとして設定される。 Further, assuming that the threshold voltage of the amplification transistor 236 is Vth, the difference between the threshold voltage Vth and the gate-drain voltage Vgd of the amplification transistor 236 is set as the saturation margin. On the other hand, in the voltage range between the power supply voltage VDD and the common voltage V COM, the drain - remaining voltage excluding the saturation margin source voltage Vdsat1 and Vdsat2 and amplifier transistor 236, is set as the saturation margin of the pMOS transistor 311 To.
 図14は、本技術の第1の実施の形態における飽和マージンを説明するための図である。負荷電流源323および324を設けることにより、カレントミラー回路から遠い行ほど、垂直リセット入力線61Rの配線抵抗による電圧降下量が増大する。この電圧降下により、pMOSトランジスタ311のドレイン-ソース間電圧VdspMOSが増大する。このドレイン-ソース間電圧VdspMOSの増大により、比較例と比較して、pMOSトランジスタ311の飽和マージンを大きくすることができる。 FIG. 14 is a diagram for explaining a saturation margin in the first embodiment of the present technology. By providing the load current sources 323 and 324, the amount of voltage drop due to the wiring resistance of the vertical reset input line 61R increases as the line is farther from the current mirror circuit. Due to this voltage drop, the drain-source voltage Vds pMOS of the pMOS transistor 311 increases. By increasing the drain-source voltage Vds pMOS , the saturation margin of the pMOS transistor 311 can be increased as compared with the comparative example.
 図15は、本技術の第1の実施の形態における固体撮像素子200の動作の一例を示すフローチャートである。この動作は、例えば、画像データを撮像するための所定のアプリケーションが実行されたときに開始される。 FIG. 15 is a flowchart showing an example of the operation of the solid-state image sensor 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for capturing image data is executed.
 固体撮像素子200は、行を選択し、その行の露光を開始し(ステップS901)、そして、露光蓄積期間の終了時に露光を終了する(ステップS902)。固体撮像素子200は、行から読み出した画素信号に対してCDS処理などの信号処理を行う(ステップS903)。 The solid-state image sensor 200 selects a row, starts exposure of that row (step S901), and ends the exposure at the end of the exposure accumulation period (step S902). The solid-state image sensor 200 performs signal processing such as CDS processing on the pixel signal read from the row (step S903).
 固体撮像素子200は、差動モードが設定されているか否かを判断する(ステップS904)。差動モードが設定されている場合(ステップS904:Yes)、固体撮像素子200は、全列の読出しが完了したか否かを判断する(ステップS905)。全列の読出しが完了していない場合に(ステップS905:No)、固体撮像素子200は、読出画素と参照画素とを入れ替える(ステップS906)。 The solid-state image sensor 200 determines whether or not the differential mode is set (step S904). When the differential mode is set (step S904: Yes), the solid-state image sensor 200 determines whether or not the reading of all rows is completed (step S905). When the reading of all rows is not completed (step S905: No), the solid-state image sensor 200 replaces the read pixels with the reference pixels (step S906).
 SFモードが設定されている場合(ステップS904:No)、全列の読出しが完了した場合(ステップS905:Yes)、固体撮像素子200は、全行の読出しが完了したか否かを判断する(ステップS907)。全行の読出しが完了していない場合(ステップS907:No)、または、ステップS906の後に固体撮像素子200は、ステップS901以降の処理を繰り返し実行する。一方、全行の読出しが完了した場合(ステップS907:Yes)、固体撮像素子200は、画像データを撮像するための動作を終了する。 When the SF mode is set (step S904: No) and the reading of all columns is completed (step S905: Yes), the solid-state image sensor 200 determines whether or not the reading of all rows is completed (step S904: No). Step S907). When the reading of all lines is not completed (step S907: No), or after step S906, the solid-state image sensor 200 repeatedly executes the processes after step S901. On the other hand, when the reading of all the rows is completed (step S907: Yes), the solid-state image sensor 200 ends the operation for capturing the image data.
 なお、垂直同期信号に同期して複数枚の画像データを撮像する場合には、垂直同期信号に同期してステップS901乃至S907が繰り返し実行される。 When a plurality of image data are captured in synchronization with the vertical synchronization signal, steps S901 to S907 are repeatedly executed in synchronization with the vertical synchronization signal.
 このように、本技術の第1の実施の形態によれば、負荷電流源324が垂直リセット入力線61Rに負荷電流を供給するため、その信号線の配線抵抗による電圧降下量に応じた参照電圧によって浮遊拡散層を初期化することができる。この垂直リセット入力線61Rの電圧降下により電荷電圧変換効率ηが上昇し、その上昇分によって、垂直信号線22Sの電圧低下による電荷電圧変換効率ηの低下分が相殺される。これにより、行ごとの電荷電圧変換効率の差を小さくしてシェーディングを抑制し、画像データの画質を向上させることができる。 As described above, according to the first embodiment of the present technology, since the load current source 324 supplies the load current to the vertical reset input line 61R, the reference voltage according to the amount of voltage drop due to the wiring resistance of the signal line. The floating diffusion layer can be initialized by. The voltage drop of the vertical reset input line 61R increases the charge-voltage conversion efficiency η, and the increase offsets the decrease in the charge-voltage conversion efficiency η due to the voltage drop of the vertical signal line 22S. As a result, it is possible to reduce the difference in charge-voltage conversion efficiency for each row, suppress shading, and improve the image quality of image data.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、垂直リセット入力線61Rの単位長さ当たりの配線抵抗をRvpxと垂直信号線22Sの単位長さ当たりの配線抵抗をRvslとを同一の値に設定していた。しかしながら、この構成では、垂直信号線22Sの電圧降下量が大きいほど、シェーディングの抑制に要する負荷電流Iloadが増大し、消費電力が大きくなってしまう。この第2の実施の形態の固体撮像素子200は、垂直リセット入力線61Rの配線抵抗Rvpxを垂直信号線22Sの配線抵抗Rvslより大きくして、消費電力を削減した点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, the wiring resistance per unit length of the vertical reset input line 61R wiring resistance per unit length of the R vpx and vertical signal lines 22S sets the R vsl to the same value Was there. However, in this configuration, the larger the voltage drop amount of the vertical signal line 22S, the larger the load current I load required for suppressing shading, and the larger the power consumption. The second solid-state imaging device 200 according to the embodiment of the wiring resistance R vpx the vertical reset input line 61R made larger than the wiring resistance R vsl vertical signal line 22S, the first embodiment in that a power consumption is reduced It is different from the form of.
 図16は、本技術の第2の実施の形態における画素および単位読出し回路310の等価回路の一例である。この第2の実施の形態の垂直リセット入力線61Rの単位長さ当たりの配線抵抗Rvpxは、垂直信号線22Sの単位長さ当たりの配線抵抗Rvslより大きい。例えば、配線抵抗Rvpxは、配線抵抗Rvslの約S(Sは、1より大きな実数)倍に設定される。 FIG. 16 is an example of an equivalent circuit of the pixel and unit reading circuit 310 in the second embodiment of the present technology. The wiring resistance R vpx per unit length of the vertical reset input line 61R of the second embodiment is larger than the wiring resistance R vsl per unit length of the vertical signal line 22S. For example, the wiring resistance R vpx is set to about S (S is a real number larger than 1) times the wiring resistance R vsl .
 また、配線抵抗Rvpxが配線抵抗Rvslと略同一とする際に必要な負荷電流をIloadとすると、第2の実施の形態の負荷電流源324は、Iloadの1/S倍の負荷電流を供給する。負荷電流源323についても同様である。このように、第1の実施の形態と比較して、第2の実施の形態では、必要な負荷電流が小さくて済むため、消費電力を削減することができる。 Further, assuming that the load current required when the wiring resistance R vpx is substantially the same as the wiring resistance R vsl is I load , the load current source 324 of the second embodiment has a load of 1 / S times that of the I load. Supply current. The same applies to the load current source 323. As described above, in the second embodiment, the required load current can be smaller than that in the first embodiment, so that the power consumption can be reduced.
 このように、本技術の第2の実施の形態によれば、垂直リセット入力線61Rの配線抵抗Rvpxを垂直信号線22Sの配線抵抗Rvslより大きくしたため、その分、シェーディングの抑制に必要な負荷電流を小さくすることができる。これにより、消費電力を削減することができる。 Thus, according to the second embodiment of the present technology, since the wiring resistance R vpx the vertical reset input line 61R larger than the wiring resistance R vsl vertical signal line 22S, required for that amount, suppressing shading The load current can be reduced. As a result, power consumption can be reduced.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、2列ごとに配置したpMOSトランジスタ313および314がリセット電圧Vrstを生成していた。しかし、この構成では、列数が多くなるほど、配置するpMOSトランジスタ313および314の個数が多くなり、カラム読出し回路300の回路規模が増大してしまう。この第3の実施の形態の固体撮像素子200は、pMOSトランジスタ数を削減した点において第1の実施の形態と異なる。
<3. Third Embodiment>
In the first embodiment described above, the pMOS transistors 313 and 314 arranged in every two rows generate the reset voltage Vrst. However, in this configuration, as the number of columns increases, the number of pMOS transistors 313 and 314 to be arranged increases, and the circuit scale of the column readout circuit 300 increases. The solid-state image sensor 200 of the third embodiment is different from the first embodiment in that the number of pMOS transistors is reduced.
 図17は、本技術の第3の実施の形態における差動モードの画素および単位読出し回路310の等価回路の一例である。この第3の実施の形態の単位読出し回路310は、pMOSトランジスタ313および314が設けられない点において第1の実施の形態と異なる。垂直リセット入力線61Rは、pMOSトランジスタ314を介さずに、固定のバイアス電圧がリセット電圧Vrstとして印加されたノードに直接に接続される。垂直リセット入力線61Sについても同様である。リセット電圧Vrstは、例えば、カラム読出し回路300の外部の回路などにより供給される。 FIG. 17 is an example of an equivalent circuit of the pixel and unit reading circuit 310 in the differential mode according to the third embodiment of the present technology. The unit readout circuit 310 of the third embodiment is different from the first embodiment in that the pMOS transistors 313 and 314 are not provided. The vertical reset input line 61R is directly connected to the node to which the fixed bias voltage is applied as the reset voltage Vrst without passing through the pMOS transistor 314. The same applies to the vertical reset input line 61S. The reset voltage Vrst is supplied by, for example, an external circuit of the column reading circuit 300.
 なお、第3の実施の形態の固体撮像素子200に第2の実施の形態を適用することもできる。 It should be noted that the second embodiment can also be applied to the solid-state image sensor 200 of the third embodiment.
 このように、本技術の第3の実施の形態では、垂直リセット入力線61Rがリセット電圧Vrstのノードに直接に接続されるため、pMOSトランジスタ314が不要となる。これにより、pMOSトランジスタ数を少なくしてカラム読出し回路300の回路規模を削減することができる。 As described above, in the third embodiment of the present technology, since the vertical reset input line 61R is directly connected to the node of the reset voltage Vrst, the pMOS transistor 314 becomes unnecessary. As a result, the number of pMOS transistors can be reduced and the circuit scale of the column readout circuit 300 can be reduced.
 <4.第4の実施の形態>
 上述の第1の実施の形態では、負荷電流源323および324が垂直リセット入力線61Rおよび61Sに負荷電流を供給して電圧降下させていたが、この構成では、カレントミラー回路から遠い行ほど、電圧降下量が大きくなり、参照電圧Vfdrが低下する。このため、参照電圧Vfdrが低すぎると、画素230や240の駆動力が不足するおそれがある。この第4の実施の形態の固体撮像素子200は、バッファにより駆動力の不足を補った点において第1の実施の形態と異なる。
<4. Fourth Embodiment>
In the first embodiment described above, the load current sources 323 and 324 supply the load current to the vertical reset input lines 61R and 61S to cause a voltage drop, but in this configuration, the farther the line is from the current mirror circuit, the more the line becomes. The amount of voltage drop increases, and the reference voltage V fdr decreases. Therefore, if the reference voltage V fdr is too low, the driving force of the pixels 230 and 240 may be insufficient. The solid-state image sensor 200 of the fourth embodiment is different from the first embodiment in that the shortage of the driving force is compensated by the buffer.
 図18は、本技術の第4の実施の形態における差動モードの画素および単位読出し回路310の等価回路の一例である。この第4の実施の形態の画素アレイ部220は、行ごとに、バッファ251および252がさらに配置される点において第1の実施の形態と異なる。 FIG. 18 is an example of an equivalent circuit of the pixel and unit reading circuit 310 in the differential mode according to the fourth embodiment of the present technology. The pixel array unit 220 of the fourth embodiment is different from the first embodiment in that buffers 251 and 252 are further arranged for each row.
 バッファ251は、垂直リセット入力線61S上の行に対応するノードと、リセットトランジスタ233との間に挿入される。バッファ252は、垂直リセット入力線61R上の行に対応するノードと、リセットトランジスタ243との間に挿入される。バッファ251および252は、垂直リセット入力線61Rおよび61S上の接続されたノードの電圧を増幅して、リセットトランジスタ233および243のそれぞれに供給するものである。バッファ251および252の増幅により、参照電圧Vfdrを高くし、画素230や240の駆動力を向上させることができる。 The buffer 251 is inserted between the node corresponding to the line on the vertical reset input line 61S and the reset transistor 233. The buffer 252 is inserted between the node corresponding to the line on the vertical reset input line 61R and the reset transistor 243. The buffers 251 and 252 amplify the voltage of the connected nodes on the vertical reset input lines 61R and 61S and supply them to the reset transistors 233 and 243, respectively. By amplifying the buffers 251 and 252, the reference voltage V fdr can be increased and the driving force of the pixels 230 and 240 can be improved.
 なお、第4の実施の形態の固体撮像素子200に第2および第3の実施の形態のそれぞれを適用することもできる。 It should be noted that each of the second and third embodiments can be applied to the solid-state image sensor 200 of the fourth embodiment.
 このように、本技術の第4の実施の形態によれば、バッファ251および252が、垂直リセット入力線61Rおよび61S上のノードの電圧を増幅するため、画素の駆動力を向上させることができる。 As described above, according to the fourth embodiment of the present technology, the buffers 251 and 252 amplify the voltage of the node on the vertical reset input lines 61R and 61S, so that the driving force of the pixel can be improved. ..
 <5.第5の実施の形態>
 上述の第1の実施の形態では、ダイオード接続したpMOSトランジスタ313および314がリセット電圧Vrstを供給していた。しかしながら、この構成では、垂直信号線の電圧降下量に応じた適切なリセット電圧Vrstが供給されないおそれがある。この第5の実施の形態の固体撮像素子200は、電圧降下量を測定し、その測定値に応じたリセット電圧Vrstを供給する点において第1の実施の形態と異なる。
<5. Fifth Embodiment>
In the first embodiment described above, the diode-connected pMOS transistors 313 and 314 supplied the reset voltage Vrst. However, in this configuration, an appropriate reset voltage Vrst corresponding to the amount of voltage drop of the vertical signal line may not be supplied. The solid-state image sensor 200 of the fifth embodiment is different from the first embodiment in that the voltage drop amount is measured and the reset voltage Vrst corresponding to the measured value is supplied.
 図19は、本技術の第5の実施の形態における単位読出し回路310の一構成例を示す回路図である。この第5の実施の形態の単位読出し回路310は、電圧降下測定部351およびバイアス電圧生成部352がさらに配置される点において第1の実施の形態と異なる。 FIG. 19 is a circuit diagram showing a configuration example of the unit reading circuit 310 according to the fifth embodiment of the present technology. The unit reading circuit 310 of the fifth embodiment is different from the first embodiment in that the voltage drop measuring unit 351 and the bias voltage generating unit 352 are further arranged.
 電圧降下測定部351は、垂直信号線22Rおよび22Sのそれぞれの電圧降下量を測定するものである。例えば、電圧降下測定部351は、垂直信号線22Rの上端および下端の間の電圧と垂直信号線22Sの上端および下端の間の電圧とのそれぞれを電圧降下量として測定し、それらの測定値の統計量(合計や平均)をバイアス電圧生成部352に供給する。 The voltage drop measuring unit 351 measures the voltage drop amount of each of the vertical signal lines 22R and 22S. For example, the voltage drop measuring unit 351 measures each of the voltage between the upper end and the lower end of the vertical signal line 22R and the voltage between the upper end and the lower end of the vertical signal line 22S as a voltage drop amount, and measures the measured values. Statistics (total or average) are supplied to the bias voltage generation unit 352.
 なお、電圧降下測定部351は、垂直信号線22Rおよび22Sの両方の電圧降下量を測定しているが、垂直信号線22Rおよび22Sの一方の電圧降下量のみを測定することもできる。 Although the voltage drop measuring unit 351 measures the voltage drop amount of both the vertical signal lines 22R and 22S, it is also possible to measure only the voltage drop amount of one of the vertical signal lines 22R and 22S.
 バイアス電圧生成部352は、測定値の統計量に応じたバイアス電圧を生成し、pMOSトランジスタ313および314のゲートに供給するものである。これにより、電圧降下量に応じた適切なリセット電圧Vrstが供給される。 The bias voltage generation unit 352 generates a bias voltage according to the statistic of the measured value and supplies it to the gates of the pMOS transistors 313 and 314. As a result, an appropriate reset voltage Vrst according to the amount of voltage drop is supplied.
 なお、バイアス電圧生成部352は、垂直信号線22Rおよび22Sの両方の測定値の統計量に応じたバイアス電圧をpMOSトランジスタ313および314の両方に供給しているが、この構成に限定されない。バイアス電圧生成部352は、垂直信号線22Sの測定値に応じたバイアス電圧をpMOSトランジスタ313に供給し、垂直信号線22Rの測定値に応じたバイアス電圧をpMOSトランジスタ314に供給することもできる。 The bias voltage generation unit 352 supplies a bias voltage corresponding to the statistics of the measured values of both the vertical signal lines 22R and 22S to both the pMOS transistors 313 and 314, but the configuration is not limited to this. The bias voltage generation unit 352 can also supply the bias voltage corresponding to the measured value of the vertical signal line 22S to the pMOS transistor 313 and supply the bias voltage corresponding to the measured value of the vertical signal line 22R to the pMOS transistor 314.
 なお、第5の実施の形態の固体撮像素子200に、第2乃至第4の実施の形態のそれぞれを適用することもできる。 It should be noted that each of the second to fourth embodiments can be applied to the solid-state image sensor 200 of the fifth embodiment.
 このように、本技術の第5の実施の形態によれば、バイアス電圧生成部352が電圧降下量の測定値に応じたバイアス電圧を生成するため、そのバイアス電圧により電圧降下量に応じた適切なリセット電圧Vrstを生成させることができる。 As described above, according to the fifth embodiment of the present technology, since the bias voltage generation unit 352 generates the bias voltage according to the measured value of the voltage drop amount, the bias voltage is appropriate according to the voltage drop amount. Reset voltage Vrst can be generated.
 <6.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<6. Application example to moving body>
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
 図20は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 20 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a moving body control system to which the technique according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図20に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001. In the example shown in FIG. 20, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps. In this case, the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches. The body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, an imaging unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received. The image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects the in-vehicle information. For example, a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit. A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs cooperative control for the purpose of antiglare such as switching the high beam to the low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図20の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger of the vehicle or the outside of the vehicle. In the example of FIG. 20, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
 図21は、撮像部12031の設置位置の例を示す図である。 FIG. 21 is a diagram showing an example of the installation position of the imaging unit 12031.
 図21では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 21, the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, 12105.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100. The imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100. The imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The imaging unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図21には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 21 shows an example of the photographing range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103. The imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining, it is possible to extract as the preceding vehicle a three-dimensional object that is the closest three-dimensional object on the traveling path of the vehicle 12100 and that travels in substantially the same direction as the vehicle 12100 at a predetermined speed (for example, 0 km / h or more). it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. Such pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine. When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、図1の撮像装置100は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、シェーディングを抑制して、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。 The above is an example of a vehicle control system to which the technology according to the present disclosure can be applied. The technique according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. Specifically, the imaging device 100 of FIG. 1 can be applied to the imaging unit 12031. By applying the technique according to the present disclosure to the imaging unit 12031, shading can be suppressed and a photographed image that is easier to see can be obtained, so that driver fatigue can be reduced.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 It should be noted that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention within the scope of claims have a corresponding relationship with each other. Similarly, the matters specifying the invention within the scope of claims and the matters in the embodiment of the present technology having the same name have a corresponding relationship with each other. However, the present technology is not limited to the embodiment, and can be embodied by applying various modifications to the embodiment without departing from the gist thereof.
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。 Further, the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, and as a program for causing a computer to execute these series of procedures or as a recording medium for storing the program. You may catch it. As the recording medium, for example, a CD (Compact Disc), MD (MiniDisc), DVD (Digital Versatile Disc), memory card, Blu-ray Disc (Blu-ray (registered trademark) Disc) and the like can be used.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成もとることができる。
(1)所定のリセット電圧のノードに接続された垂直リセット入力線に所定の負荷電流を供給する負荷電流源と、
 前記垂直リセット入力線の配線抵抗による電圧降下量に応じた参照電圧によって一対の浮遊拡散層を初期化する一対のリセットトランジスタと、
 一対の光電変換素子の一方から前記一対の浮遊拡散層の一方に電荷を転送して前記電荷の量に応じた電圧を信号電圧として生成させる転送トランジスタと、
 前記参照電圧と前記信号電圧との差分に応じた出力電流を生成する一対の増幅トランジスタと、
 前記出力電流に応じた電圧の画素信号を垂直信号線から出力するカレントミラー回路と
を具備する固体撮像素子。
(2)前記一対の光電変換素子の一方と前記一対の浮遊拡散層の一方と前記一対のリセットトランジスタの一方と前記転送トランジスタと前記一対の増幅トランジスタの一方とは、所定方向に配列された一対の画素の一方に配置され、
 前記一対の光電変換素子の他方と前記一対の浮遊拡散層の他方と前記一対のリセットトランジスタの他方と前記一対の増幅トランジスタの他方とは、前記一対の画素の他方に配置される
前記(1)記載の固体撮像素子。
(3)所定の電源電圧を低下させてリセット電圧として前記垂直リセット入力線に供給するリセット電圧供給トランジスタをさらに具備する
前記(1)または(2)に記載の固体撮像素子。
(4)前記垂直リセット入力線の単位長さ当たりの前記配線抵抗は、前記垂直信号線の単位長さ当たりの前記配線抵抗よりも大きい
前記(1)から(3)のいずれかに記載の固体撮像素子。
(5)前記垂直リセット入力線の電圧を増幅して前記一対のリセットトランジスタのそれぞれに供給するバッファをさらに具備する
前記(1)から(4)のいずれかに記載の固体撮像素子。
(6)前記垂直信号線の配線抵抗による電圧降下量を測定して測定値を供給する電圧降下測定部と、
 前記測定値に応じたバイアス電圧を生成して前記リセット電圧供給トランジスタのゲートに供給するバイアス電圧生成部と
をさらに具備する
前記(1)から(5)のいずれかに記載の固体撮像素子。
(7)差動モードが設定された場合には前記一対の浮遊拡散層を初期化させた後に前記一対の光電変換素子の一方から前記一対の浮遊拡散層の一方へ前記電荷を転送させる制御と前記一対の浮遊拡散層を初期化させた後に前記一対の光電変換素子の他方から前記一対の浮遊拡散層の他方へ電荷を転送させる制御とを順に行う垂直駆動部をさらに具備する
前記(1)から(6)のいずれかに記載の固体撮像素子。
(8)前記垂直駆動部は、ソースフォロワモードが設定された場合には前記一対の浮遊拡散層を初期化させた後に前記一対の光電変換素子のそれぞれから前記一対の浮遊拡散層へ前記電荷を転送させる制御を行う
前記(7)記載の固体撮像素子。
(9)所定のリセット電圧のノードに接続された垂直リセット入力線に所定の負荷電流を供給する負荷電流源と、
 前記垂直リセット入力線の配線抵抗による電圧降下量に応じた参照電圧によって一対の浮遊拡散層を初期化する一対のリセットトランジスタと、
 一対の光電変換素子の一方から前記一対の浮遊拡散層の一方に電荷を転送して前記電荷の量に応じた電圧を信号電圧として生成させる転送トランジスタと、
 前記参照電圧と前記信号電圧との差分に応じた出力電流を生成する一対の増幅トランジスタと、
 前記出力電流に応じた電圧の画素信号を垂直信号線から出力するカレントミラー回路と、
 前記画素信号を処理する信号処理部と
を具備する撮像装置。
(10)一対のリセットトランジスタが、所定のリセット電圧のノードに接続され、所定の負荷電流が供給される垂直リセット入力線の配線抵抗による電圧降下量に応じた参照電圧によって一対の浮遊拡散層を初期化する初期化手順と、
 転送トランジスタが、一対の光電変換素子の一方から前記一対の浮遊拡散層の一方に電荷を転送して前記電荷の量に応じた電圧を信号電圧として生成させる転送手順と、
 一対の増幅トランジスタが、前記参照電圧と前記信号電圧との差分に応じた出力電流を生成する増幅手順と、
 カレントミラー回路が、前記出力電流に応じた電圧の画素信号を垂直信号線から出力する出力手順と
を具備する固体撮像素子の制御方法。
The present technology can have the following configurations.
(1) A load current source that supplies a predetermined load current to a vertical reset input line connected to a node having a predetermined reset voltage, and
A pair of reset transistors that initialize a pair of stray diffusion layers with a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line.
A transfer transistor that transfers an electric charge from one of a pair of photoelectric conversion elements to one of the pair of floating diffusion layers and generates a voltage corresponding to the amount of the electric charge as a signal voltage.
A pair of amplification transistors that generate an output current according to the difference between the reference voltage and the signal voltage,
A solid-state image sensor including a current mirror circuit that outputs a pixel signal having a voltage corresponding to the output current from a vertical signal line.
(2) One of the pair of photoelectric conversion elements, one of the pair of floating diffusion layers, one of the pair of reset transistors, the transfer transistor, and one of the pair of amplification transistors are arranged in a predetermined direction. Placed on one of the pixels of
The other of the pair of photoelectric conversion elements, the other of the pair of floating diffusion layers, the other of the pair of reset transistors, and the other of the pair of amplification transistors are arranged on the other of the pair of pixels (1). The solid-state imaging device described.
(3) The solid-state image pickup device according to (1) or (2), further comprising a reset voltage supply transistor that lowers a predetermined power supply voltage and supplies the reset voltage to the vertical reset input line.
(4) The solid according to any one of (1) to (3), wherein the wiring resistance per unit length of the vertical reset input line is larger than the wiring resistance per unit length of the vertical signal line. Image sensor.
(5) The solid-state image sensor according to any one of (1) to (4), further comprising a buffer that amplifies the voltage of the vertical reset input line and supplies the voltage to each of the pair of reset transistors.
(6) A voltage drop measuring unit that measures the amount of voltage drop due to the wiring resistance of the vertical signal line and supplies the measured value, and
The solid-state image sensor according to any one of (1) to (5) above, further comprising a bias voltage generating unit that generates a bias voltage according to the measured value and supplies the bias voltage to the gate of the reset voltage supply transistor.
(7) When the differential mode is set, the control is such that after initializing the pair of floating diffusion layers, the electric charge is transferred from one of the pair of photoelectric conversion elements to one of the pair of floating diffusion layers. (1) The above (1) further includes a vertical drive unit that sequentially controls the transfer of electric charges from the other of the pair of photoelectric conversion elements to the other of the pair of floating diffusion layers after initializing the pair of floating diffusion layers. The solid-state imaging device according to any one of (6) to (6).
(8) The vertical drive unit initializes the pair of floating diffusion layers when the source follower mode is set, and then transfers the electric charge from each of the pair of photoelectric conversion elements to the pair of floating diffusion layers. The solid-state imaging device according to (7) above, which controls transfer.
(9) A load current source that supplies a predetermined load current to a vertical reset input line connected to a node having a predetermined reset voltage.
A pair of reset transistors that initialize a pair of stray diffusion layers with a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line.
A transfer transistor that transfers an electric charge from one of a pair of photoelectric conversion elements to one of the pair of floating diffusion layers and generates a voltage corresponding to the amount of the electric charge as a signal voltage.
A pair of amplification transistors that generate an output current according to the difference between the reference voltage and the signal voltage,
A current mirror circuit that outputs a pixel signal with a voltage corresponding to the output current from a vertical signal line, and
An image pickup apparatus including a signal processing unit that processes the pixel signal.
(10) A pair of reset transistors are connected to a node having a predetermined reset voltage, and a pair of stray diffusion layers are formed by a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line to which a predetermined load current is supplied. Initialization procedure to initialize and
A transfer procedure in which a transfer transistor transfers an electric charge from one of a pair of photoelectric conversion elements to one of the pair of floating diffusion layers to generate a voltage corresponding to the amount of the electric charge as a signal voltage.
An amplification procedure in which a pair of amplification transistors generate an output current according to the difference between the reference voltage and the signal voltage.
A method for controlling a solid-state image sensor, comprising an output procedure in which a current mirror circuit outputs a pixel signal having a voltage corresponding to the output current from a vertical signal line.
 100 撮像装置
 110 光学部
 120 デジタルシグナルプロセッサ
 130 表示部
 140 操作部
 150 バス
 160 電源部
 170 記録部
 180 フレームメモリ
 200 固体撮像素子
 210 垂直駆動部
 220 画素アレイ部
 230、240 画素
 231、241 光電変換素子
 232、242 転送トランジスタ
 233、243 リセットトランジスタ
 234、244 浮遊拡散層
 235、245 選択トランジスタ
 236、246 増幅トランジスタ
 251、252 バッファ
 270 カラム信号処理部
 271 ADC
 272 比較器
 273 カウンタ
 280 出力部
 291 システム制御部
 292 水平駆動部
 293 データ格納部
 294 画像処理部
 300 カラム読出し回路
 310 単位読出し回路
 311~314 pMOSトランジスタ
 321、322 テール電流源
 323、324 負荷電流源
 331~347 スイッチ
 351 電圧降下測定部
 352 バイアス電圧生成部
 12031 撮像部
100 Image sensor 110 Optical unit 120 Digital signal processor 130 Display unit 140 Operation unit 150 Bus 160 Power supply unit 170 Recording unit 180 Frame memory 200 Solid-state image sensor 210 Vertical drive unit 220 Pixel array unit 230, 240 pixels 231, 241 Transistor conversion element 232 242 Transfer transistor 233, 243 Reset transistor 234, 244 Floating diffusion layer 235, 245 Selective transistor 236, 246 Amplification transistor 251, 252 Buffer 270 Column signal processor 271 ADC
272 Comparator 273 Counter 280 Output unit 291 System control unit 292 Horizontal drive unit 293 Data storage unit 294 Image processing unit 300 Column readout circuit 310 Unit readout circuit 311 to 314 pMOS transistor 321 to 322 Tail current source 323, 324 Load current source 331 ~ 347 Switch 351 Voltage drop measurement unit 352 Bias voltage generator 12031 Imaging unit

Claims (10)

  1.  所定のリセット電圧のノードに接続された垂直リセット入力線に所定の負荷電流を供給する負荷電流源と、
     前記垂直リセット入力線の配線抵抗による電圧降下量に応じた参照電圧によって一対の浮遊拡散層を初期化する一対のリセットトランジスタと、
     一対の光電変換素子の一方から前記一対の浮遊拡散層の一方に電荷を転送して前記電荷の量に応じた電圧を信号電圧として生成させる転送トランジスタと、
     前記参照電圧と前記信号電圧との差分に応じた出力電流を生成する一対の増幅トランジスタと、
     前記出力電流に応じた電圧の画素信号を垂直信号線から出力するカレントミラー回路と
    を具備する固体撮像素子。
    A load current source that supplies a given load current to a vertical reset input line connected to a node with a given reset voltage,
    A pair of reset transistors that initialize a pair of stray diffusion layers with a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line.
    A transfer transistor that transfers an electric charge from one of a pair of photoelectric conversion elements to one of the pair of floating diffusion layers and generates a voltage corresponding to the amount of the electric charge as a signal voltage.
    A pair of amplification transistors that generate an output current according to the difference between the reference voltage and the signal voltage,
    A solid-state image sensor including a current mirror circuit that outputs a pixel signal having a voltage corresponding to the output current from a vertical signal line.
  2.  前記一対の光電変換素子の一方と前記一対の浮遊拡散層の一方と前記一対のリセットトランジスタの一方と前記転送トランジスタと前記一対の増幅トランジスタの一方とは、所定方向に配列された一対の画素の一方に配置され、
     前記一対の光電変換素子の他方と前記一対の浮遊拡散層の他方と前記一対のリセットトランジスタの他方と前記一対の増幅トランジスタの他方とは、前記一対の画素の他方に配置される
    請求項1記載の固体撮像素子。
    One of the pair of photoelectric conversion elements, one of the pair of floating diffusion layers, one of the pair of reset transistors, the transfer transistor, and one of the pair of amplification transistors are a pair of pixels arranged in a predetermined direction. Placed on one side,
    The first aspect of claim 1, wherein the other of the pair of photoelectric conversion elements, the other of the pair of floating diffusion layers, the other of the pair of reset transistors, and the other of the pair of amplification transistors are arranged on the other of the pair of pixels. Solid-state image sensor.
  3.  所定の電源電圧を低下させてリセット電圧として前記垂直リセット入力線に供給するリセット電圧供給トランジスタをさらに具備する
    請求項1記載の固体撮像素子。
    The solid-state image sensor according to claim 1, further comprising a reset voltage supply transistor that lowers a predetermined power supply voltage and supplies the reset voltage to the vertical reset input line.
  4.  前記垂直リセット入力線の単位長さ当たりの前記配線抵抗は、前記垂直信号線の単位長さ当たりの前記配線抵抗よりも大きい
    請求項1記載の固体撮像素子。
    The solid-state image sensor according to claim 1, wherein the wiring resistance per unit length of the vertical reset input line is larger than the wiring resistance per unit length of the vertical signal line.
  5.  前記垂直リセット入力線の電圧を増幅して前記一対のリセットトランジスタのそれぞれに供給するバッファをさらに具備する
    請求項1記載の固体撮像素子。
    The solid-state image sensor according to claim 1, further comprising a buffer that amplifies the voltage of the vertical reset input line and supplies the voltage to each of the pair of reset transistors.
  6.  前記垂直信号線の配線抵抗による電圧降下量を測定して測定値を供給する電圧降下測定部と、
     前記測定値に応じたバイアス電圧を生成して前記リセット電圧供給トランジスタのゲートに供給するバイアス電圧生成部と
    をさらに具備する
    請求項1記載の固体撮像素子。
    A voltage drop measuring unit that measures the amount of voltage drop due to the wiring resistance of the vertical signal line and supplies the measured value,
    The solid-state image sensor according to claim 1, further comprising a bias voltage generating unit that generates a bias voltage according to the measured value and supplies the bias voltage to the gate of the reset voltage supply transistor.
  7.  差動モードが設定された場合には前記一対の浮遊拡散層を初期化させた後に前記一対の光電変換素子の一方から前記一対の浮遊拡散層の一方へ前記電荷を転送させる制御と前記一対の浮遊拡散層を初期化させた後に前記一対の光電変換素子の他方から前記一対の浮遊拡散層の他方へ電荷を転送させる制御とを順に行う垂直駆動部をさらに具備する
    請求項1記載の固体撮像素子。
    When the differential mode is set, the control of initializing the pair of floating diffusion layers and then transferring the charge from one of the pair of photoelectric conversion elements to one of the pair of floating diffusion layers and the pair of The solid-state imaging according to claim 1, further comprising a vertical drive unit that sequentially controls the transfer of electric charges from the other of the pair of photoelectric conversion elements to the other of the pair of floating diffusion layers after initializing the floating diffusion layer. element.
  8.  前記垂直駆動部は、ソースフォロワモードが設定された場合には前記一対の浮遊拡散層を初期化させた後に前記一対の光電変換素子のそれぞれから前記一対の浮遊拡散層へ前記電荷を転送させる制御を行う
    請求項7記載の固体撮像素子。
    When the source follower mode is set, the vertical drive unit initializes the pair of floating diffusion layers and then transfers the electric charge from each of the pair of photoelectric conversion elements to the pair of floating diffusion layers. 7. The solid-state image sensor according to claim 7.
  9.  所定のリセット電圧のノードに接続された垂直リセット入力線に所定の負荷電流を供給する負荷電流源と、
     前記垂直リセット入力線の配線抵抗による電圧降下量に応じた参照電圧によって一対の浮遊拡散層を初期化する一対のリセットトランジスタと、
     一対の光電変換素子の一方から前記一対の浮遊拡散層の一方に電荷を転送して前記電荷の量に応じた電圧を信号電圧として生成させる転送トランジスタと、
     前記参照電圧と前記信号電圧との差分に応じた出力電流を生成する一対の増幅トランジスタと、
     前記出力電流に応じた電圧の画素信号を垂直信号線から出力するカレントミラー回路と、
     前記画素信号を処理する信号処理部と
    を具備する撮像装置。
    A load current source that supplies a given load current to a vertical reset input line connected to a node with a given reset voltage,
    A pair of reset transistors that initialize a pair of stray diffusion layers with a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line.
    A transfer transistor that transfers an electric charge from one of a pair of photoelectric conversion elements to one of the pair of floating diffusion layers and generates a voltage corresponding to the amount of the electric charge as a signal voltage.
    A pair of amplification transistors that generate an output current according to the difference between the reference voltage and the signal voltage,
    A current mirror circuit that outputs a pixel signal with a voltage corresponding to the output current from a vertical signal line, and
    An image pickup apparatus including a signal processing unit that processes the pixel signal.
  10.  一対のリセットトランジスタが、所定のリセット電圧のノードに接続され、所定の負荷電流が供給される垂直リセット入力線の配線抵抗による電圧降下量に応じた参照電圧によって一対の浮遊拡散層を初期化する初期化手順と、
     転送トランジスタが、一対の光電変換素子の一方から前記一対の浮遊拡散層の一方に電荷を転送して前記電荷の量に応じた電圧を信号電圧として生成させる転送手順と、
     一対の増幅トランジスタが、前記参照電圧と前記信号電圧との差分に応じた出力電流を生成する増幅手順と、
     カレントミラー回路が、前記出力電流に応じた電圧の画素信号を垂直信号線から出力する出力手順と
    を具備する固体撮像素子の制御方法。
    A pair of reset transistors are connected to a node with a predetermined reset voltage, and a pair of stray diffusion layers are initialized by a reference voltage according to the amount of voltage drop due to the wiring resistance of the vertical reset input line to which a predetermined load current is supplied. Initialization procedure and
    A transfer procedure in which a transfer transistor transfers an electric charge from one of a pair of photoelectric conversion elements to one of the pair of floating diffusion layers to generate a voltage corresponding to the amount of the electric charge as a signal voltage.
    An amplification procedure in which a pair of amplification transistors generate an output current according to the difference between the reference voltage and the signal voltage.
    A method for controlling a solid-state image sensor, comprising an output procedure in which a current mirror circuit outputs a pixel signal having a voltage corresponding to the output current from a vertical signal line.
PCT/JP2019/048373 2019-03-26 2019-12-11 Solid-state imaging element, imaging device, and method for controlling solid-state imaging element WO2020194905A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019057606A JP2020161914A (en) 2019-03-26 2019-03-26 Solid state image sensor, imaging apparatus, and control method of solid state image sensor
JP2019-057606 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020194905A1 true WO2020194905A1 (en) 2020-10-01

Family

ID=72609396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048373 WO2020194905A1 (en) 2019-03-26 2019-12-11 Solid-state imaging element, imaging device, and method for controlling solid-state imaging element

Country Status (2)

Country Link
JP (1) JP2020161914A (en)
WO (1) WO2020194905A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112820A (en) * 2012-10-31 2014-06-19 Renesas Electronics Corp Solid-state imaging device
JP2018182496A (en) * 2017-04-11 2018-11-15 ソニーセミコンダクタソリューションズ株式会社 Signal processor and solid state image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112820A (en) * 2012-10-31 2014-06-19 Renesas Electronics Corp Solid-state imaging device
JP2018182496A (en) * 2017-04-11 2018-11-15 ソニーセミコンダクタソリューションズ株式会社 Signal processor and solid state image sensor

Also Published As

Publication number Publication date
JP2020161914A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2019146527A1 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
WO2020110679A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
JP7227709B2 (en) Solid-state imaging device and imaging device
WO2020110484A1 (en) Solid-state image sensor, imaging device, and control method of solid-state image sensor
JP7365775B2 (en) solid-state image sensor
WO2020235146A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2019159499A1 (en) Solid-state image sensor, imaging device, and solid-state image sensor control method
JP2023053312A (en) Solid-state imaging element and imaging device
EP3809694B1 (en) Signal processing circuit, solid-state imaging element, and control method for signal processing circuit
WO2019167608A1 (en) Sensor element and electronic device
WO2019239887A1 (en) Imaging element, control method, and electronic apparatus
WO2021090538A1 (en) Sensing device, electronic apparatus, and method for controlling sensing device
WO2020194905A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
US11283417B2 (en) Amplification circuit, imaging device, and control method of amplification circuit
WO2023276199A1 (en) Solid-state imaging element, electronic device, and method for controlling solid-state imaging element
WO2023042415A1 (en) Solid-state imaging element, control method for solid-state imaging element, and electronic device
WO2023067961A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2023032252A1 (en) Solid-state imaging element
WO2023089958A1 (en) Solid-state imaging element
WO2022004125A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2023157489A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
WO2022038903A1 (en) Solid-state imaging element
WO2023007772A1 (en) Solid-state imaging element
EP3745710B1 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
WO2020090272A1 (en) Electronic circuit, solid-state imaging element, and method for manufacturing electronic circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921724

Country of ref document: EP

Kind code of ref document: A1