WO2020194691A1 - Optical scanning device and method of controlling same - Google Patents
Optical scanning device and method of controlling same Download PDFInfo
- Publication number
- WO2020194691A1 WO2020194691A1 PCT/JP2019/013724 JP2019013724W WO2020194691A1 WO 2020194691 A1 WO2020194691 A1 WO 2020194691A1 JP 2019013724 W JP2019013724 W JP 2019013724W WO 2020194691 A1 WO2020194691 A1 WO 2020194691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mirror
- scanning mirror
- signal
- scanning
- optical scanning
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
Definitions
- the present invention relates to an optical scanning device and a control method thereof.
- an optical scanning device that enables scanning of a light beam by changing the posture of the mirror to change the reflection direction of the light beam incident on the mirror.
- an optical scanning device when the scanning direction of an optical beam is periodically changed in a saw-wave shape by driving an actuator that changes the posture of a mirror with a saw-wave periodic signal, the high-frequency component contained in the saw-wave periodic signal is generated.
- the resonance characteristics of the mirror When amplified by the resonance characteristics of the mirror, ringing in the orientation of the mirror and the scanning direction of the light beam may occur.
- Japanese Patent Application Laid-Open No. 2013-205818 discloses an optical deflector capable of suppressing the occurrence of ringing as described above.
- This optical deflector is equipped with a circuit that detects the mechanical resonance frequency from the posture of the mirror when the posture of the mirror is changed by the piezoelectric actuator, and the resonance frequency and its harmonic component are removed by a notch filter. By driving the piezoelectric actuator with a periodic signal, the occurrence of ringing is suppressed.
- Patent Document 1 it is necessary to provide a notch filter having steep characteristics in order to remove harmonic components for suppressing the occurrence of ringing.
- the size of the control circuit for adjusting the characteristics of the notch filter becomes large.
- the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide an optical scanning device capable of suppressing the occurrence of ringing without using a notch filter.
- the optical scanning device is configured to reflect a light source, a first scanning mirror including a reflecting portion configured to reflect the light emitted from the light source, and light reflected by the first scanning mirror.
- a control device configured to control the light emission direction by controlling the posture of the reflecting portion of the first scanning mirror and the posture of the reflecting portion of the second scanning mirror, and the second scanning mirror including the reflecting portion.
- the control device generates a first signal that changes periodically at the fundamental frequency, generates a second signal by adding frequency components selected from the harmonics of the fundamental frequency, and generates a second signal from the first signal to the second signal. Is subtracted to generate a difference signal.
- the first scanning mirror is driven by the first signal.
- the second scanning mirror is driven by the difference signal.
- an optical scanning device capable of suppressing the occurrence of ringing without using a notch filter.
- FIG. 2 is a sectional view taken along line III-III of the first mirror.
- the figure which shows the waveform of a triangular wave The figure which shows the waveform (sine wave) of the 1st order harmonic component.
- a block diagram showing the function of the control device A flowchart showing an outline of the processing executed by the control device.
- FIG. 16 is a cross-sectional view taken along the line XVII-XVII of the second mirror.
- FIG. 5 is a diagram schematically showing a configuration of an optical scanning device (No. 5).
- FIG. 1 is a diagram schematically showing a configuration of an optical scanning device 1 according to the present embodiment.
- the optical scanning device 1 includes a light source unit (hereinafter, also simply referred to as “light source”) 101, a first scanning mirror (hereinafter, also simply referred to as “first mirror”) 102, and a second scanning mirror (hereinafter, simply referred to as “first mirror”). It is provided with 103 (also referred to as "two mirrors”) and a control device 104.
- the light source 101 emits a laser beam in the form of a beam.
- the light source 101 includes an LD (Laser Diode) element and a collimating lens.
- the collimating lens converts the light generated by the LD element into a parallel luminous flux.
- Each of the first mirror 102 and the second mirror 103 is a MEMS (Micro Electro Mechanical Systems) type mirror, that is, a piezoelectric drive type mirror to which the MEMS device technology is applied.
- the first mirror 102 has a reference plane P1 arranged on the traveling path of the light beam emitted from the light source 101.
- the second mirror 103 has a reference plane P2 arranged on the traveling path of the light beam emitted from the light source 101 and reflected by the first mirror 102.
- the reference surface P1 of the first mirror 102 and the reference surface P2 of the second mirror 103 face each other and are arranged in parallel.
- the extending direction of the reference planes P1 and P2 is the "X direction”
- the direction perpendicular to the reference planes P1 and P2 is the "Z direction”
- the directions perpendicular to the X direction and the Z direction are defined. Also referred to as "Y direction”.
- the first mirror 102 includes a reflecting unit 111 configured to reflect the light emitted from the light source 101.
- the second mirror 103 includes a reflecting unit 161 configured to reflect the light reflected by the reflecting unit 111 of the first mirror 102.
- the control device 104 is configured to generate a signal for controlling the posture of the reflection unit 111 of the first mirror 102 and the posture of the reflection unit 161 of the second mirror 103.
- the first mirror 102 has a rotation axis Y1 extending in the Y direction, and the reflecting portion 111 is configured to be rotatable around the rotation axis Y1.
- the second mirror 103 has a rotation axis Y2 extending in the same Y direction as the rotation axis Y1, and the reflecting portion 161 is configured to be rotatable around the rotation axis Y2. That is, the rotation axis Y1 of the first mirror 102 and the rotation axis Y2 of the first mirror 102 are arranged in parallel with each other.
- the first mirror 102 and the second mirror 103 can rotate around the rotation axes Y1 and Y2, respectively, and are configured to change their postures according to the drive signal from the control device 104.
- the light beam emitted from the light source 101 is reflected by the reflecting portion 111 of the first mirror 102, then further reflected by the reflecting portion 161 of the second mirror 103, and is emitted to the outside of the light scanning device 1.
- the emission direction of the light beam from the optical scanning device 1 can be changed.
- the clockwise direction in FIG. 1 is set as the positive direction, and the counterclockwise direction in FIG. It will be described as a negative direction.
- FIG. 2 is a top view (viewed from the Z direction) of the first mirror 102.
- FIG. 3 is a sectional view taken along line III-III of FIG. 2 of the first mirror 102.
- the first mirror 102 includes a reflective portion 111, a fixed portion 112, beams 113 and 114, insulating films 121 and 131, electrodes 122 and 132, and a piezoelectric film (piezoelectric material) such as lead zirconate titanate (PZT). ) 123, 133 and electrodes 124, 134.
- piezoelectric film piezoelectric material
- PZT lead zirconate titanate
- a reflective film 115 such as Au (gold) that reflects a light beam is formed on the surface of the reflective portion 111.
- One end of each of the beams 113 and 114 is connected to the reflective portion 111, and the other end is connected to the fixed portion 112.
- the reflective portion 111 is supported by the fixed portions 112 by the beams 113 and 114.
- the insulating film 121, the electrode 122, the piezoelectric film 123, and the electrode 124 are formed on the beam 113 in this order.
- the insulating film 131, the electrode 132, the piezoelectric film 133, and the electrode 134 are formed on the beam 114 in this order.
- the electrodes 122, 124, 132, and 134 are electrically insulated from each other. Each electrode is configured to be electrically connectable to the power supply or the electrode of the control device 104 via wiring (not shown).
- connection portion between the beam 113 and the reflecting portion 111 can be displaced in the Z direction. Further, the connection portion between the beam 114 and the reflecting portion 111 can be displaced in the Z direction by expanding and contracting the piezoelectric film 133 by applying a voltage to the electrodes 132 and 134 to deform the beam 114. As a result, the reflecting portion 111 can be rotationally displaced around the rotation axis Y1.
- the structure of the first mirror 102 can be manufactured by applying, for example, a so-called MEMS device technique in which processes such as film formation, patterning, and etching are repeated on a silicon substrate.
- An SOI (Silicon On Insulator) substrate 140 is used for manufacturing the first mirror 102.
- the SOI substrate 140 has an insulating silicon oxide film 142, a conductive single crystal silicon layer 143 arranged on the front surface side of the silicon oxide film 142, and a non-silicon oxide film 142 arranged on the back surface side of the silicon oxide film 142. Includes a conductive single crystal silicon layer 141.
- the structure of the first mirror 102 is such that the insulating film 121 is formed, the metal material Pt (platinum) is formed, the piezoelectric material (PZT) is formed, and the metal material Au (gold) is formed on the SOI substrate 140. It is manufactured by performing patterning, patterning of a piezoelectric material (PZT), patterning of a metal material Pt (platinum), etching of single crystal silicon layers 141 and 143 on the front and back surfaces, and etching of a silicon oxide film 142.
- the operation of the first mirror 102 will be described below.
- a voltage is applied between the electrodes 122 and 124, an electric field in the film thickness direction is applied to the piezoelectric film 123, and the piezoelectric film 123 extends in the in-plane direction (expansion of the piezoelectric film 123) according to the direction of the electric field. It expands and contracts in the current direction).
- the piezoelectric film 123 is deformed so as to warp the beam 113. For example, when the downward electric field shown in FIG.
- the piezoelectric film 123 is deformed so as to extend in the in-plane direction, and the beam 113 warps in an upwardly convex shape.
- the piezoelectric film 123 is deformed so as to contract in the in-plane direction, and the beam 113 warps in a downwardly convex shape.
- the direction of warpage of the beam 113 can be changed by changing the sign of the voltage applied to the piezoelectric film 123. Further, the curvature of the warp of the beam 113 can be changed by changing the magnitude of the voltage applied to the piezoelectric film 123. That is, it is possible to control the deformation of the beam 113 by the positive / negative and magnitude of the voltage applied to the piezoelectric film 123.
- the deformation of the beam 114 can be controlled by applying a voltage between the electrodes 132 and 134.
- the reflecting portion 111 of the first mirror 102 can be rotationally displaced around the rotation axis Y1 by deforming the beams 113 and 114 that support the reflecting portion 111 on the fixed portion 112.
- the mechanical resonance frequency for the rotation of the reflecting portion 111 of the first mirror 102 around the rotation axis Y1 is referred to as “Fy1”.
- the emission direction of the light beam reflected by the reflecting portion 111 of the first mirror 102 can be changed in the XX plane.
- the reflecting portion 111 of the first mirror 102 rotates around the rotation axis Y1 and periodically repeats a fixed posture. As a result, the light beam reflected by the reflecting portion 111 of the first mirror 102 can be periodically scanned in a fixed direction.
- FIG. 4 is a diagram schematically showing the relationship between the inclination angle of the first mirror 102 and the traveling direction of the light beam.
- the inclination angle of the first mirror 102 is an inclination angle of the reflection surface (surface) of the reflection portion 111 with respect to the reference surface P1 of the first mirror 102.
- theta 1 which positive value theta 1/2 with respect to the reference plane P1 of the reflecting surface of the reflecting portion 111 is inclined in only the forward direction (clockwise), i.e.
- the first mirror 102 When the tilt angle of is ⁇ 1/2 , the normal of the reflecting surface of the reflecting portion 111 is tilted in the positive direction by ⁇ 1/2 , so that the traveling direction of the light beam is the reference direction (the first mirror 102 is tilted). It is tilted in the positive direction by ⁇ 1 with respect to the traveling direction of the previous light beam).
- FIG. 5 is a diagram showing an example of the correspondence between the drive voltage of the first mirror 102 and the inclination angle of the first mirror 102.
- the inclination angle of the first mirror 102 is shown in FIG. It can be uniquely associated with each other as in 5.
- FIG. 6 is a diagram schematically showing the frequency response characteristics and resonance frequency of a general structure.
- the structure resonates, and even if vibration of the same magnitude is input, vibration of a frequency other than the resonance frequency is input.
- a resonance phenomenon occurs in which the displacement of the structure is larger than that in the case of the above.
- the resonance frequency of the structure is generally designed to be sufficiently higher than the frequency of the drive signal of the actuator in order to suppress the influence of resonance.
- the resonance frequency of the structure and the degree of displacement depend on the temperature and pressure around the structure. That is, the frequency response characteristics of the structure change depending on the temperature environment and pressure environment.
- the second mirror 103 will be described below.
- the second mirror 103 has the same configuration and the same size as the first mirror 102. Further, the second mirror 103 is manufactured by the same manufacturing method as the first mirror 102. Further, the second mirror 103 can operate in the same manner as the first mirror 102.
- the mechanical resonance frequency for the rotation of the second mirror 103 around the rotation axis Y2 is referred to as "Fy2". Since the first mirror 102 and the second mirror 103 are manufactured by the same configuration, the same size, and the same manufacturing method, the resonance frequency Fy2 of the second mirror 103 is the same value as the resonance frequency Fy1 of the first mirror 102. ..
- FIG. 7 is a diagram schematically showing the relationship between the inclination angle of the second mirror 103 and the traveling direction of the light beam.
- the inclination angle of the second mirror 103 is the inclination angle of the reflection surface (surface) of the reflection portion 161 with respect to the reference surface P2 of the second mirror 103.
- the first mirror 102 and the second mirror 103 can operate independently of each other.
- a positive drive voltage is applied to the first mirror 102 and the second mirror 103
- the reflective surface of the first mirror 102 rotates in the positive direction
- the reflective surface of the second mirror 103 rotates in the negative direction. It shall be.
- FIG. 8 is a diagram schematically showing a traveling direction ⁇ (hereinafter, also simply referred to as “light beam emitting direction”) ⁇ of a light beam emitted from the optical scanning device 1 to the outside.
- the emission direction ⁇ of the light beam is represented with reference to the traveling direction of the light beam before tilting the first mirror 102 and the second mirror 103.
- ⁇ (t) ⁇ 1 (t) + ⁇ 2 (t)... (1)
- the relationship between the periodic drive signal applied to the first mirror 102 and the second mirror 103 and the posture change of the first mirror 102 and the second mirror 103 will be described.
- the emission direction ⁇ of the light beam is periodically and repeatedly changed at the fundamental frequency Fd with respect to the time t.
- the periodic signal is generally represented by the sum of the component of the fundamental frequency Fd and its harmonic component.
- FIG. 9 is a diagram showing an example of the waveform of the triangular wave T (t).
- the Fourier transform of the triangular wave T (t) as shown in FIG. 9 can be described by the following equation (2).
- N is a natural number
- the resonance characteristic of the structure amplifies the displacement of the structure and superimposes it on the desired displacement, that is, so-called ringing occurs. ..
- the sum of the components of an arbitrary frequency selected from the frequency components smaller than the resonance frequency of the structure is referred to as the "low frequency component”. Is defined.
- FIG. 10A to 10F are diagrams showing a waveform obtained by adding low frequency components of a triangular wave and harmonics of the first to fifth harmonics of the triangular wave.
- FIG. 10A shows a triangular wave waveform
- FIG. 10B shows a waveform of a first-order harmonic component (sine wave)
- FIG. 10C shows a waveform obtained by adding low-frequency components from the first-order to the second-order.
- FIG. 10D Shows a waveform obtained by adding low frequency components from 1st to 3rd order
- FIG. 10E shows a waveform obtained by adding low frequency components from 1st to 4th order
- FIG. 10F shows a waveform obtained by adding low frequency components from 1st to 5th order. The waveform obtained by adding the low frequency components is shown.
- T 1 (t) the first term on the right side of the equation (3)
- T 2 (t) the second term
- the first term T 1 (t) is a substantially triangular wave, which is a low frequency component lower than the resonance frequency of the structure.
- the second term T 2 (t) includes a band of the resonance frequency of the structure with other harmonic components.
- the control device 104 generates a drive signal to the first mirror 102 and the second mirror 103 in order to incline the emission direction ⁇ of the light beam in a desired direction.
- FIG. 11 is a block diagram showing the functions of the control device 104.
- the control device 104 includes a periodic signal generation unit 104a, a low frequency component generation unit 104b, and a calculation unit 104c.
- the fundamental frequency Fd of the periodic signal and its waveform are input to the periodic signal generation unit 104a and the low frequency component generation unit 104b from the outside, respectively.
- the case where the waveform of the periodic signal is a triangular wave will be described below.
- the periodic signal generation unit 104a generates a triangular wave signal V 1 (t) that changes at the fundamental frequency Fd.
- the periodic signal generation unit 104a outputs the generated triangular wave signal V 1 (t) to the calculation unit 104c and the first mirror 102. As a result, the first mirror 102 is driven by the triangular wave signal V 1 (t).
- the low frequency component generation unit 104b generates a signal V b (t) obtained by adding low frequency components from the first harmonic to the Nth (for example, fifth) harmonic to the fundamental frequency Fd.
- the low frequency component generation unit 104b outputs the generated signal V b (t) to the calculation unit 104c.
- the calculation unit 104c obtains a difference signal V 2 (t) obtained by subtracting the signal V b (t) generated by the low frequency component generation unit 104b from the triangular wave signal V 1 (t) generated by the periodic signal generation unit 104a. Generate.
- the calculation unit 104c outputs the generated difference signal V 2 (t) to the second mirror 103. As a result, the second mirror 103 is driven by the difference signal V 2 (t).
- the first mirror 102 is driven by the triangular wave signal V 1 (t) generated by the control device 104. That is, the first mirror 102 is a signal including a substantially triangular wave signal T 1 (t) obtained by adding low frequency components lower than the resonance frequency of the first mirror 102 and a frequency component near the resonance frequency of the first mirror 102. The attitude is changed according to the frequency response characteristic of the first mirror 102 by the signal V 1 (t) which is the sum of T 2 (t).
- attitude change of the signal T 2 (t) including the frequency component near the resonance frequency of the first mirror 102 amplified by the frequency response characteristic of the first mirror 102 is defined as “R 1 (t)”
- the first mirror The amount of change in attitude ⁇ 1 (t) of 102 can be described as the following equation (7) by normalizing with amplitude and paying attention only to the waveform.
- ⁇ 1 (t) AT 1 (t) + R 1 (t)... (7)
- the second mirror 103 is driven by the difference signal V 2 (t) generated by the control device 104. That is, the second mirror 103 changes its posture according to the frequency response characteristic of the second mirror 103 by the difference signal V 2 (t).
- the difference signal V 2 (t) is the signal T 2 (t) as shown in the above equation (6). If the signal T 2 (t) amplified by the frequency response characteristic of the second mirror 103 is defined as “R 2 (t)”, the attitude change amount ⁇ 2 (t) of the second mirror 103 is normal in amplitude. If we pay attention to the waveform, we can describe it as the following equation (8).
- ⁇ 2 (t) ⁇ R 2 (t)... (8)
- the sign on the right side of the above equation (8) is "-" (minus) because the reflective surface of the second mirror 103 is changed when a positive drive voltage is applied to the second mirror 103 as described above. By rotating in the negative direction.
- the emission direction ⁇ (t) of the light beam can be described by the following equation (9).
- the relational expression of the following equation (10) is established. To establish.
- ⁇ (t) AT 1 (t)... (11)
- the light beam emission direction ⁇ (t) is amplified by the attitude change R 1 (t) amplified by the frequency response characteristic of the first mirror 102 and the frequency response characteristic of the second mirror 103. It can be understood that the influence of the attitude change R 2 (t) is eliminated. As a result, ringing of the light beam can be suppressed.
- the optical scanning device 1 is placed in a temperature environment and a pressure environment. Since the resonance frequency and frequency response characteristics of the first mirror 102 and the second mirror 103 change depending on the environment, the attitude change R 1 (t) amplified by the frequency response characteristics of the first mirror 102 and the second mirror 103 The attitude change R 2 (t) amplified by the frequency response characteristic of is also changed.
- the first mirror 102 and the second mirror 103 have the same structure and size and are manufactured by the same manufacturing method, R 1 (t) and R 2 (t) in a temperature environment and a pressure environment The change has the same characteristics. Therefore,
- the optical scanning apparatus 1 in the optical scanning apparatus 1 according to the present embodiment, ringing can be suppressed without using a notch filter as used in the prior art. Further, a control circuit for adjusting the characteristics of the notch filter according to individual differences in the characteristics of individual mirrors due to changes in the mechanical resonance frequency of the mirrors, manufacturing variations, and the like becomes unnecessary. Therefore, the size of the optical scanning device 1 can be reduced. Further, since the notch filter generally changes its phase significantly in the vicinity of its cutoff frequency, the degree of freedom in design regarding control can be increased by not using the notch filter.
- FIG. 12 is a flowchart showing an outline of the processing executed when the control device 104 of the optical scanning device 1 controls the first mirror 102 and the second mirror 103.
- the control device 104 acquires the fundamental frequency Fd and the waveform of the periodic signal from the outside (step S10).
- the waveform of the periodic signal is, for example, a triangular wave.
- control device 104 generates a drive signal V 1 (t) that changes with the fundamental frequency Fd and the periodic signal waveform acquired in step S10 (step S11).
- control device 104 generates a signal V b (t) obtained by adding low frequency components from the first order to the Nth order (for example, the fifth order) with respect to the fundamental frequency Fd (step S12).
- control device 104 generates a difference signal V 2 (t) obtained by subtracting the signal V b (t) generated in step S12 from the drive signal V 1 (t) generated in step S11 (step S13). ).
- control device 104 outputs the drive signal V 1 (t) generated in step S11 to the first mirror 102, and drives the first mirror 102 by the drive signal V 1 (t) (step S14).
- control device 104 outputs the difference signal V 2 (t) generated in step S13 to the second mirror 103, and drives the second mirror 103 by the difference signal V 2 (t) (step S15).
- the optical scanning apparatus 1 includes a light source 101, a first mirror 102 including a reflecting unit 111 configured to reflect the light emitted from the light source 101, and a first mirror 102.
- a first mirror 102 including a reflecting unit 111 configured to reflect the light emitted from the light source 101
- a first mirror 102 By controlling the posture of the second mirror 103 including the reflecting portion 161 configured to reflect the light reflected by the first mirror 102, the posture of the reflecting portion 111 of the first mirror 102, and the posture of the reflecting portion 161 of the second mirror 103.
- a control device 104 configured to control the emission direction ⁇ of the light beam is provided.
- the control device 104 generates a triangular wave signal that changes at the fundamental frequency Fd as a drive signal V 1 (t), and adds low frequency components of harmonics from the first to the fifth order of the fundamental frequency Fd to signal V b ( t) is generated, and the difference signal V 2 (t) obtained by subtracting the signal V b (t) from the drive signal V 1 (t) is generated. Then, the control device 104 drives the first mirror 102 by the drive signal V 1 (t), and drives the second mirror 103 by the difference signal V 2 (t). As a result, the occurrence of ringing can be suppressed without using a notch filter. Further, since the notch filter is not used, the size of the optical scanning device 1 can be reduced. Further, since the notch filter generally changes its phase significantly in the vicinity of its cutoff frequency, the degree of freedom in design regarding control can be increased by not using the notch filter.
- the signal used for scanning may be a periodic signal, and for example, a sawtooth signal may be adopted.
- the periodic signal When the drive target is driven by a periodic signal having a period of 1 / Fd, the periodic signal generally contains a harmonic component N times the fundamental frequency Fd (N is a natural number), and the harmonic component is driven. If it is in the vicinity of the resonance frequency of the target, there is a concern that the displacement will be amplified due to the frequency response characteristic of the drive target, and so-called ringing will occur. However, by applying the control according to the present disclosure, ringing can be suppressed as in the case of using a triangular wave signal, so that scanning with reduced distortion can be realized.
- scanning can be performed at a constant speed, and the spatial resolution of the scanning point can be kept constant.
- an optical component such as a beam splitter may be arranged in at least one of the optical path between the light source 101 and the first mirror 102 and the optical path between the first mirror 102 and the second mirror 103.
- FIG. 13 is a diagram schematically showing the configuration of the optical scanning device 1A according to the modified example.
- the optical scanning device 1A further includes beam splitters 105 and 106 in addition to the light source 101, the first mirror 102, the second mirror 103, and the control device 104.
- the beam splitter 105 is arranged in the optical path between the light source 101 and the first mirror 102, and guides the light beam emitted from the light source 101 to the first mirror 102. Further, the beam splitters 105 and 106 are arranged in the optical path between the first mirror 102 and the second mirror 103, and guide the light beam reflected by the first mirror 102 to the second mirror 103.
- the control according to the present disclosure can be applied to such an optical scanning device 1A.
- the light beam reflected by the second mirror 103 is directly emitted to the outside of the optical scanning device 1, but may be emitted to the outside through an optical component such as a mirror.
- an optical component such as a mirror
- the first mirror 102 and the second mirror 103 are arranged so that the reference surface P1 of the first mirror 102 and the reference surface P2 of the second mirror 103 are parallel to each other.
- the arrangement of the first mirror 102 and the second mirror 103 may be any arrangement as long as the light beam reflected by the first mirror 102 can be reflected by the second mirror 103, and the reference planes P1 and P2 are necessarily arranged in parallel with each other. Not limited to being done.
- each of the first mirror 102 and the second mirror 103 supports the reflecting portion by two beams on the fixed portion, and reflects by utilizing the deformation of the piezoelectric film provided on the beams. Tilt the part.
- the number, arrangement, shape, type, arrangement, and shape of the piezoelectric film can be determined in the above-described first embodiment. Not limited to what has been described.
- first mirror 102 and the second mirror 103 may be mirrors that can be rotationally displaced and have the same mechanical frequency response characteristics around the axis, and may not be MEMS type mirrors.
- the manufacturing method is not limited.
- each of the first mirror 102 and the second mirror 103 changes the posture of the reflecting surface by utilizing the deformation of the piezoelectric film due to the application of an electric field to the piezoelectric film provided on the beam.
- the method of changing the posture of the reflective surface may be one that utilizes the electrostatic attraction generated by applying a voltage to the electrodes, or by applying a magnetic field and passing a current through the wiring arranged on the element. It may utilize the generated electromagnetic force.
- the electrostatic attraction it is not necessary to form a piezoelectric film, an insulating film, or the like on the beam, so that it is possible to reduce the generation of stress generated in the manufacturing process between the piezoelectric film and the insulating film and the silicon substrate.
- electromagnetic force there is an advantage that the electromagnetic force can generally generate a force larger than the electrostatic attraction force and the force due to the deformation of the piezoelectric material.
- the rotation axis of the mirror in FIG. 2 is in the X-axis direction in FIG. 2, unlike the case where the piezoelectric film is used, but when applied to the optical scanning device 1 shown in FIG. 1, the rotation axis is in the Y-axis direction. It may be arranged so as to be.
- a square metal film is used as the reflective film of the first mirror 102 and the second mirror 103.
- the reflective film may be any one that reflects a light beam, and its shape and material are not limited to those described above.
- an LD element is used as a light source of the optical scanning device 1
- the type of the light source is not particularly limited.
- a light emitting diode element (LED) element is used instead of the LD element. May be used.
- FIG. 14 is a diagram schematically showing the configuration of the optical scanning device 2 according to the second embodiment.
- the optical scanning apparatus 2 according to the second embodiment is different from the optical scanning apparatus 1 according to the first embodiment in that the first mirror 102 and the second mirror 103 are arranged on the same substrate 201.
- FIG. 15 is a top view (viewed from the Z direction) of the first mirror 102 and the second mirror 103 in the optical scanning device 2 according to the second embodiment. As shown in FIG. 15, in the optical scanning apparatus 2, the first mirror 102 and the second mirror 103 are manufactured on the same substrate 201.
- the optical scanning apparatus 2 in order to guide the light beam reflected by the first mirror 102 to the second mirror 103, the light beam is reflected by the first mirror 102 at a position facing the substrate 201.
- the fixed mirror 207 is arranged at a position where the light beam is incident on the second mirror 103.
- the light reflected by the first mirror 102 is reflected by the fixed mirror 207 and guided to the second mirror 103.
- the light reflected by the first mirror 102 is reflected by the fixed mirror 207 and guided to the second mirror 103. Therefore, the change in the optical axis of the light beam reaching the second mirror 103 with respect to the reference direction is twice as large as that in the optical scanning device 1, and the direction of change is reversed. Therefore, in the optical scanning device 2, if the second mirror 103 is driven by a signal whose magnitude is doubled and the code is inverted with respect to the difference signal V 2 (t) used in the optical scanning device 1. Good. By doing so, the attitude change amount amplified by the frequency response characteristic of the first mirror 102 and the attitude change amount amplified by the frequency response characteristic of the second mirror 103 cancel each other out. Ringing of the light emitted from the optical scanning device 2 can be suppressed.
- the first mirror 102 and the second mirror 103 are manufactured on the same substrate 201, the deviation of the resonance frequency and the frequency response characteristic from the design values due to the manufacturing variation is the first mirror. The same occurs in both 102 and the second mirror 103. Therefore, as compared with the case where the first mirror 102 and the second mirror 103 are manufactured on different substrates, the attitude change amount amplified by the frequency response characteristic of the first mirror 102 and the frequency response characteristic of the second mirror 103 It is possible to more appropriately cancel each other's posture changes amplified by.
- the optical scanning device 2 since the first mirror 102 and the second mirror 103 are arranged on the same substrate 201, the relative positional relationship between the first mirror 102 and the second mirror 103 is fixed. Therefore, the optical scanning device 2 can be easily assembled and aligned with other members.
- the reference surface of the substrate 201 and the reflecting surface of the fixed mirror 207 are arranged so as to be parallel to each other. However, if the light beam reflected by the first mirror 102 is reflected by the fixed mirror and guided to the second mirror 103, the reference surface of the substrate 201 may be arranged at an angle with respect to the reflecting surface of the fixed mirror 207. ..
- FIG. 16 is a top view (viewed from the Z direction) of the first mirror 102 and the second mirror 103 of the optical scanning apparatus 3 according to the third embodiment.
- FIG. 17 is a cross-sectional view taken along the line XVII-XVII of FIG. 16 of the second mirror 303.
- the optical scanning device 3 according to the third embodiment has a second mirror 303 instead of the second mirror 103 of the optical scanning device 2 according to the second embodiment described above.
- the second mirror 303 is manufactured so as to be rotatable not only around the Y axis but also around the X axis.
- the second mirror 303 includes a reflecting portion 161, beams 163 and 164, an intermediate fixing portion 312, and beams 173 and 174.
- the reflecting portion 161 is supported by the intermediate fixing portion 312 by beams 163 and 164 extending in the X-axis direction.
- the configurations of the reflecting portions 161 and the beams 163 and 164 are the same as those of the second mirror 103 according to the second embodiment described above. Therefore, the control device 104 expands and contracts the piezoelectric film on the surface of the beams 163 and 164, so that the reflecting portion 161 rotates around the Y axis.
- the mechanical frequency response characteristic of the second mirror 303 around the Y axis is the same as the mechanical frequency response characteristic of the first mirror 102 around the Y axis.
- the intermediate fixing portion 312 is arranged on the outer periphery of the reflecting portion 161 and the beams 163 and 164, and is supported by the fixing portion 112 by the beams 173 and 174 extending in the Y-axis direction.
- an insulating film 321 and an electrode 322, a piezoelectric film 323, and an electrode 324 are formed on the beam 173 in this order.
- An insulating film 331, an electrode 332, a piezoelectric film 333, and an electrode 334 are formed on the beam 174 in this order.
- the electrodes 322, 324, 332, and 334 are electrically insulated from each other, and are configured to be electrically connectable to the electrodes of the power supply or the control device 104 via wiring (not shown).
- the connecting portion between the beam 173 and the intermediate fixing portion 312 can be displaced in the Z direction.
- the connection portion between the beam 174 and the intermediate fixing portion 312 can be displaced in the Z direction by expanding and contracting the piezoelectric film 333 by applying a voltage between the electrodes 332 and 334 to deform the beam 174. Therefore, the control device 104 applies a driving voltage between the electrodes 322 and 324 and between the electrodes 332 and 334 on the surface of the beams 173 and 174 to expand and contract the piezoelectric films 323 and 333 so that the reflecting portion 161 is around the Y axis.
- the reflection portion 161 supported by the beams 163 and 164 on the intermediate fixing portion 312 and the intermediate fixing portion 312 can be rotated around the X axis.
- the mechanical resonance frequency for the rotation of the second mirror 303 around the X axis is defined as "Fx2".
- FIG. 18 is a diagram schematically showing biaxial scanning of the light beam by the optical scanning device 3.
- a sine wave having a frequency of Fdx is applied between the electrodes 322 and 324 as a drive signal
- the second mirror 303 rotates about the X axis. Since the rotation of the second mirror 103 around the X axis is independent of the rotation around the Y axis, the optical scanning device 3 can scan the light beam in the biaxial direction as shown in FIG.
- the frequency Fdx of the drive signal around the X axis of the second mirror 303 is set to be an integral multiple of the fundamental frequency Fd, 1 / Fd can be set as one cycle and the same direction can be scanned periodically. it can.
- Fdx Fx2
- the drive frequency around the X axis of the second mirror 103 is set as the resonance frequency
- the applied energy can be efficiently converted into vibration, and a large amplitude can be obtained with a small applied voltage. it can.
- the ringing of the light emitted from the optical scanning device 3 can be suppressed, so that scanning with reduced distortion can be realized.
- the second mirror 303 is rotatable around two axes to be a mirror capable of two-axis scanning.
- the first mirror 102 may be a mirror capable of biaxial scanning.
- the second mirror 303 receives the light reflected by the first mirror 102, so that it is relative to the case where the second mirror 303 is biaxially scannable. It is necessary to increase the size of the mirror. Therefore, the optical scanning device can be downsized when the second mirror 303 is capable of biaxial scanning.
- the second mirror 303 is a beam extending in the Y-axis direction in which a piezoelectric film is formed on the outer periphery of the structure having the same mechanical frequency response characteristic as that of the first mirror 102 around the Y-axis.
- the structure is such that 173 and 174 are provided.
- the structure of the second mirror 303 only needs to be able to give a rotational displacement around the X-axis independently of the Y-axis, and the number, arrangement, shape of beams, and the type, arrangement, and shape of the piezoelectric film are particularly limited. Not done.
- the drive method for giving rotational displacement around the X-axis and the drive method for giving rotational displacement around the Y-axis are the same. However, it suffices if a rotational displacement can be applied around the X-axis independently of the Y-axis, and a structure and a drive method for imparting a rotational displacement around the X-axis, a structure for imparting a rotational displacement around the Y-axis, and The drive system may be different.
- FIG. 19 is a diagram schematically showing the configuration of the optical scanning device 4 according to the fourth embodiment.
- the optical scanning device 4 differs from the optical scanning device 3 according to the third embodiment in the following points.
- the optical scanning device 4 includes an optical detector 481, a calculation unit 482, and a beam splitter 483, in addition to the configuration of the optical scanning device 3.
- the beam splitter 483 is arranged in the optical path between the light source 101 and the first mirror 102.
- the light detector 481 is a position where the light incident on the light scanning device 3 from the emission direction of the light scanning device 3 can be detected by the light reflected by the reflecting surface of the beam splitter 483 through the second mirror 303 and the first mirror 102. It is placed in.
- the calculation unit 482 performs a calculation for measuring the distance to the object by comparing the light emitted from the light source 101 with the light detected by the photodetector 481. That is, the calculation unit 482 detects the light reflected by the object by the light beam emitted from the optical scanning device 4, and measures the distance to the object by comparing the detected reflected light with the emitted light. .. For example, when a light beam is emitted in a pulse shape, a pulse-shaped reflected light is also obtained from the object, so that the distance to the object can be calculated from the time difference between the emitted light and the pulse of the reflected light.
- the optical scanning device 4 can scan the light beam in two dimensions, the distance around the optical scanning device 4 can be obtained by combining the information on the distance to the object and the information on the scanning direction of the light beam. Images can be acquired.
- the optical scanning device 4 can also suppress the ringing of the light emitted from the optical scanning device 4, so that a distance image with reduced distortion can be obtained.
- the reflected light from the object is guided to the photodetector 481 via the same optical path as the emitted light, that is, via the second mirror 303 and the second mirror 103. ..
- the reflected light from the object may be guided to the photodetector 481 by an optical path different from the emitted light.
- FIG. 20 is a diagram schematically showing the configuration of the optical scanning device 4A according to the modified example of the fourth embodiment.
- the photodetector 4A arranges the photodetector 481 so that the reflected light from the object is guided to the photodetector 481 without passing through the second mirror 303 and the second mirror 103. This is changed to the vicinity of the exit of the emitted light of the photodetector 4A.
- the distance to the object can be calculated by comparing the emitted light and the reflected light, and the information on the distance to the object and the information on the scanning direction of the light beam are combined to provide information on the surroundings. A distance image can be acquired.
- optical scanning device 101 light source, 102 first mirror, 103 second mirror, 104 control device, 111, 161 reflector.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Micromachines (AREA)
Abstract
This optical scanning device (1) comprises: a light source (101); a first mirror (102) that includes a reflective part (111) configured to reflect light emitted from the light source; a second mirror (103) that includes a reflective part (161) configured to reflect the light reflected by the first mirror; and a control device (104). The control device generates, as a drive signal V1, a triangular wave signal changed at a fundamental frequency Fd, generates a signal Vb obtained by adding low-frequency components selected from among harmonics of the fundamental frequency Fd, and generates a differential signal V2 obtained by subtracting Vb from the drive signal V1. The control device drives the first mirror by means of the drive signal V1 and drives the second mirror by means of the differential signal V2.
Description
本発明は、光走査装置およびその制御方法に関する。
The present invention relates to an optical scanning device and a control method thereof.
従来、ミラーの姿勢を変化させてミラーに入射する光ビームの反射方向を変化させることで、光ビームの走査を可能とする光走査装置が知られている。光走査装置において、ミラーの姿勢を変化させるアクチュエータをのこぎり波状の周期信号で駆動することによって光ビームの走査方向をのこぎり波状に周期的に変化させる場合、のこぎり波状の周期信号に含まれる高周波成分がミラーの共振特性によって増幅されると、ミラーの姿勢および光ビームの走査方向のリンギングが発生する場合がある。
Conventionally, an optical scanning device that enables scanning of a light beam by changing the posture of the mirror to change the reflection direction of the light beam incident on the mirror is known. In an optical scanning device, when the scanning direction of an optical beam is periodically changed in a saw-wave shape by driving an actuator that changes the posture of a mirror with a saw-wave periodic signal, the high-frequency component contained in the saw-wave periodic signal is generated. When amplified by the resonance characteristics of the mirror, ringing in the orientation of the mirror and the scanning direction of the light beam may occur.
たとえば、特開2013-205818号公報には、上記のようなリンギングの発生を抑制することができる光偏向器が開示されている。この光偏向器は、圧電アクチュエータによりミラーの姿勢を変化させる際に、ミラーの姿勢から機械的な共振周波数を検知する回路を備え、共振周波数とその高調波成分をノッチフィルタにより除去したのこぎり波状の周期信号で圧電アクチュエータを駆動することによって、リンギングの発生を抑制している。
For example, Japanese Patent Application Laid-Open No. 2013-205818 discloses an optical deflector capable of suppressing the occurrence of ringing as described above. This optical deflector is equipped with a circuit that detects the mechanical resonance frequency from the posture of the mirror when the posture of the mirror is changed by the piezoelectric actuator, and the resonance frequency and its harmonic component are removed by a notch filter. By driving the piezoelectric actuator with a periodic signal, the occurrence of ringing is suppressed.
しかしながら、特許文献1では、リンギング発生の抑制に向けた高調波成分の除去のために、急峻な特性を有するノッチフィルタを設ける必要があった。また、温度および圧力等の環境変化によるミラーの機械的な応答特性の変化および製造ばらつき等による個々のミラーの特性の違い(個体差)に合わせてノッチフィルタの特性を調整する必要があるために、ノッチフィルタの特性を調整する制御回路のサイズが大きくなってしまうという問題点があった。
However, in Patent Document 1, it is necessary to provide a notch filter having steep characteristics in order to remove harmonic components for suppressing the occurrence of ringing. In addition, it is necessary to adjust the characteristics of the notch filter according to the changes in the mechanical response characteristics of the mirror due to environmental changes such as temperature and pressure, and the differences in the characteristics of individual mirrors (individual differences) due to manufacturing variations, etc. However, there is a problem that the size of the control circuit for adjusting the characteristics of the notch filter becomes large.
本開示は、上述の課題を解決するためになされたものであって、その目的は、ノッチフィルタを用いることなくリンギングの発生を抑制可能な光走査装置を提供することである。
The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide an optical scanning device capable of suppressing the occurrence of ringing without using a notch filter.
本開示による光走査装置は、光源と、光源から出射された光を反射するように構成された反射部を含む第1走査ミラーと、第1走査ミラーで反射された光を反射するように構成された反射部を含む第2走査ミラーと、第1走査ミラーの反射部の姿勢および第2走査ミラーの反射部の姿勢を制御することによって光の出射方向を制御するように構成された制御装置とを備える。制御装置は、基本周波数で周期的に変化する第1信号を生成し、基本周波数の高調波のうちから選択された周波数成分を足し合わせた第2信号を生成し、第1信号から第2信号を差し引いた差分信号を生成する。第1走査ミラーは、第1信号によって駆動される。第2走査ミラーは、差分信号によって駆動される。
The optical scanning device according to the present disclosure is configured to reflect a light source, a first scanning mirror including a reflecting portion configured to reflect the light emitted from the light source, and light reflected by the first scanning mirror. A control device configured to control the light emission direction by controlling the posture of the reflecting portion of the first scanning mirror and the posture of the reflecting portion of the second scanning mirror, and the second scanning mirror including the reflecting portion. And. The control device generates a first signal that changes periodically at the fundamental frequency, generates a second signal by adding frequency components selected from the harmonics of the fundamental frequency, and generates a second signal from the first signal to the second signal. Is subtracted to generate a difference signal. The first scanning mirror is driven by the first signal. The second scanning mirror is driven by the difference signal.
本開示によれば、ノッチフィルタを用いることなくリンギングの発生を抑制可能な光走査装置を提供することができる。
According to the present disclosure, it is possible to provide an optical scanning device capable of suppressing the occurrence of ringing without using a notch filter.
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description is not repeated.
実施の形態1.
図1は、本実施の形態による光走査装置1の構成を概略的に示す図である。光走査装置1は、光源ユニット(以下、単に「光源」ともいう)101と、第1走査ミラー(以下、単に「第1ミラー」ともいう)102と、第2走査ミラー(以下、単に「第2ミラー」ともいう)103と、制御装置104とを備える。Embodiment 1.
FIG. 1 is a diagram schematically showing a configuration of anoptical scanning device 1 according to the present embodiment. The optical scanning device 1 includes a light source unit (hereinafter, also simply referred to as “light source”) 101, a first scanning mirror (hereinafter, also simply referred to as “first mirror”) 102, and a second scanning mirror (hereinafter, simply referred to as “first mirror”). It is provided with 103 (also referred to as "two mirrors") and a control device 104.
図1は、本実施の形態による光走査装置1の構成を概略的に示す図である。光走査装置1は、光源ユニット(以下、単に「光源」ともいう)101と、第1走査ミラー(以下、単に「第1ミラー」ともいう)102と、第2走査ミラー(以下、単に「第2ミラー」ともいう)103と、制御装置104とを備える。
FIG. 1 is a diagram schematically showing a configuration of an
光源101は、ビーム状にレーザ光を出射する。光源101は、LD(Laser Diode)素子とコリメートレンズとを含む。コリメートレンズは、LD素子により発生した光を平行な光束に変換する。
The light source 101 emits a laser beam in the form of a beam. The light source 101 includes an LD (Laser Diode) element and a collimating lens. The collimating lens converts the light generated by the LD element into a parallel luminous flux.
第1ミラー102および第2ミラー103の各々は、MEMS(Micro Electro Mechanical Systems)方式のミラー、すなわちMEMSデバイス技術を応用した圧電駆動式のミラーである。第1ミラー102は、光源101から出射された光ビームの進行経路上に配置された基準面P1を有する。第2ミラー103は、光源101から出射され第1ミラー102で反射された光ビームの進行経路上に配置された基準面P2を有する。
Each of the first mirror 102 and the second mirror 103 is a MEMS (Micro Electro Mechanical Systems) type mirror, that is, a piezoelectric drive type mirror to which the MEMS device technology is applied. The first mirror 102 has a reference plane P1 arranged on the traveling path of the light beam emitted from the light source 101. The second mirror 103 has a reference plane P2 arranged on the traveling path of the light beam emitted from the light source 101 and reflected by the first mirror 102.
第1ミラー102の基準面P1および第2ミラー103の基準面P2は、互いに対向し、平行に配置される。以下では、図1に示すように、基準面P1,P2の延在方向を「X方向」、基準面P1,P2に垂直な方向を「Z方向」、X方向およびZ方向に垂直な方向を「Y方向」とも称する。
The reference surface P1 of the first mirror 102 and the reference surface P2 of the second mirror 103 face each other and are arranged in parallel. In the following, as shown in FIG. 1, the extending direction of the reference planes P1 and P2 is the "X direction", the direction perpendicular to the reference planes P1 and P2 is the "Z direction", and the directions perpendicular to the X direction and the Z direction are defined. Also referred to as "Y direction".
第1ミラー102は、光源101から出射された光を反射するように構成された反射部111を含む。第2ミラー103は、第1ミラー102の反射部111で反射された光を反射するように構成された反射部161を含む。
The first mirror 102 includes a reflecting unit 111 configured to reflect the light emitted from the light source 101. The second mirror 103 includes a reflecting unit 161 configured to reflect the light reflected by the reflecting unit 111 of the first mirror 102.
制御装置104は、第1ミラー102の反射部111の姿勢および第2ミラー103の反射部161の姿勢を制御する信号を生成するように構成される。第1ミラー102は、Y方向に延在する回転軸Y1を有しており、反射部111を回転軸Y1まわりに回転可能に構成される。第2ミラー103は、回転軸Y1と同じY方向に延在する回転軸Y2を有しており、反射部161を回転軸Y2まわりに回転可能に構成される。すなわち、第1ミラー102の回転軸Y1と第1ミラー102の回転軸Y2とは、互いに平行に配置される。
The control device 104 is configured to generate a signal for controlling the posture of the reflection unit 111 of the first mirror 102 and the posture of the reflection unit 161 of the second mirror 103. The first mirror 102 has a rotation axis Y1 extending in the Y direction, and the reflecting portion 111 is configured to be rotatable around the rotation axis Y1. The second mirror 103 has a rotation axis Y2 extending in the same Y direction as the rotation axis Y1, and the reflecting portion 161 is configured to be rotatable around the rotation axis Y2. That is, the rotation axis Y1 of the first mirror 102 and the rotation axis Y2 of the first mirror 102 are arranged in parallel with each other.
上述のように、第1ミラー102および第2ミラー103は、それぞれ回転軸Y1,Y2まわりに回転可能で、制御装置104からの駆動信号に応じて姿勢を変えるように構成される。光源101から出射された光ビームは、第1ミラー102の反射部111で反射し、その後、さらに第2ミラー103の反射部161で反射して光走査装置1の外部に出射される。第1ミラー102の反射部111および第2ミラー103の反射部161の姿勢を変えることで、光走査装置1からの光ビームの出射方向を変えることができる。
As described above, the first mirror 102 and the second mirror 103 can rotate around the rotation axes Y1 and Y2, respectively, and are configured to change their postures according to the drive signal from the control device 104. The light beam emitted from the light source 101 is reflected by the reflecting portion 111 of the first mirror 102, then further reflected by the reflecting portion 161 of the second mirror 103, and is emitted to the outside of the light scanning device 1. By changing the postures of the reflecting portion 111 of the first mirror 102 and the reflecting portion 161 of the second mirror 103, the emission direction of the light beam from the optical scanning device 1 can be changed.
以下では、第1ミラー102の反射部111および第2ミラー103の反射部161の回転軸まわりの姿勢変化の向きについて、図1における時計回り方向を正方向とし、図1における反時計回り方向を負方向として説明する。
In the following, regarding the direction of the attitude change around the rotation axis of the reflecting portion 111 of the first mirror 102 and the reflecting portion 161 of the second mirror 103, the clockwise direction in FIG. 1 is set as the positive direction, and the counterclockwise direction in FIG. It will be described as a negative direction.
図2は、第1ミラー102の上面図(Z方向から見た図)である。図3は、第1ミラー102の図2におけるIII-III断面図である。第1ミラー102は、反射部111と、固定部112と、梁113,114と、絶縁膜121,131と、電極122,132と、チタン酸ジルコン酸鉛(PZT)等の圧電膜(圧電材料)123、133と、電極124、134とを含む。
FIG. 2 is a top view (viewed from the Z direction) of the first mirror 102. FIG. 3 is a sectional view taken along line III-III of FIG. 2 of the first mirror 102. The first mirror 102 includes a reflective portion 111, a fixed portion 112, beams 113 and 114, insulating films 121 and 131, electrodes 122 and 132, and a piezoelectric film (piezoelectric material) such as lead zirconate titanate (PZT). ) 123, 133 and electrodes 124, 134.
反射部111の表面には、光ビームを反射する、Au(金)等の反射膜115が形成される。梁113,114の各々は、一方の端部が反射部111に接続され、他方の端部が固定部112に接続される。これにより、反射部111は、梁113,114によって固定部112に支持される。絶縁膜121、電極122、圧電膜123、および電極124は、梁113上にこの順に形成される。絶縁膜131、電極132、圧電膜133、および電極134は、梁114上にこの順に形成される。
A reflective film 115 such as Au (gold) that reflects a light beam is formed on the surface of the reflective portion 111. One end of each of the beams 113 and 114 is connected to the reflective portion 111, and the other end is connected to the fixed portion 112. As a result, the reflective portion 111 is supported by the fixed portions 112 by the beams 113 and 114. The insulating film 121, the electrode 122, the piezoelectric film 123, and the electrode 124 are formed on the beam 113 in this order. The insulating film 131, the electrode 132, the piezoelectric film 133, and the electrode 134 are formed on the beam 114 in this order.
電極122,124,132,134は、互いに電気的に絶縁されている。各電極は、図示しない配線を介して電源あるいは制御装置104の電極と電気的に接続可能に構成される。
The electrodes 122, 124, 132, and 134 are electrically insulated from each other. Each electrode is configured to be electrically connectable to the power supply or the electrode of the control device 104 via wiring (not shown).
電極122,124への電圧印加によって圧電膜123を伸縮させて梁113を変形させることによって、梁113と反射部111との接続部分をZ方向に変位させることができる。また、電極132,134への電圧印加によって圧電膜133を伸縮させて梁114を変形させることによって、梁114と反射部111との接続部分をZ方向に変位させることができる。これにより、反射部111を回転軸Y1まわりに回転変位させることができる。
By applying a voltage to the electrodes 122 and 124 to expand and contract the piezoelectric film 123 and deform the beam 113, the connection portion between the beam 113 and the reflecting portion 111 can be displaced in the Z direction. Further, the connection portion between the beam 114 and the reflecting portion 111 can be displaced in the Z direction by expanding and contracting the piezoelectric film 133 by applying a voltage to the electrodes 132 and 134 to deform the beam 114. As a result, the reflecting portion 111 can be rotationally displaced around the rotation axis Y1.
以下、第1ミラー102の製造方法の一例について説明する。第1ミラー102の構造は、たとえばシリコン基板上に成膜、パターニング、エッチングといったプロセスを繰り返し行う、いわゆるMEMSデバイス技術を適用して製造することができる。
Hereinafter, an example of the manufacturing method of the first mirror 102 will be described. The structure of the first mirror 102 can be manufactured by applying, for example, a so-called MEMS device technique in which processes such as film formation, patterning, and etching are repeated on a silicon substrate.
第1ミラー102の製造には、SOI(Silicon On Insulator)基板140が用いられる。このSOI基板140は、絶縁性を有するシリコン酸化膜142と、シリコン酸化膜142の表面側に配置される導電性を有する単結晶シリコン層143と、シリコン酸化膜142の裏面側に配置される非導電性単結晶シリコン層141とを含む。
An SOI (Silicon On Insulator) substrate 140 is used for manufacturing the first mirror 102. The SOI substrate 140 has an insulating silicon oxide film 142, a conductive single crystal silicon layer 143 arranged on the front surface side of the silicon oxide film 142, and a non-silicon oxide film 142 arranged on the back surface side of the silicon oxide film 142. Includes a conductive single crystal silicon layer 141.
第1ミラー102の構造は、SOI基板140に対して、絶縁膜121の成膜、金属材料Pt(白金)の成膜、圧電材料(PZT)の成膜、金属材料Au(金)の成膜およびパターニング、圧電材料(PZT)のパターニング、金属材料Pt(白金)のパターニング、表裏面の単結晶シリコン層141,143のエッチング、シリコン酸化膜142のエッチングを行うことで、製造される。
The structure of the first mirror 102 is such that the insulating film 121 is formed, the metal material Pt (platinum) is formed, the piezoelectric material (PZT) is formed, and the metal material Au (gold) is formed on the SOI substrate 140. It is manufactured by performing patterning, patterning of a piezoelectric material (PZT), patterning of a metal material Pt (platinum), etching of single crystal silicon layers 141 and 143 on the front and back surfaces, and etching of a silicon oxide film 142.
以下、第1ミラー102の動作について説明する。図3に示す状態において、電極122,124間に電圧を印加すると、圧電膜123に膜厚方向の電界が印加され、圧電膜123は電界の方向に応じて面内方向(圧電膜123の延在方向)に伸縮する。これにより、圧電膜123は梁113を反らせるように変形する。たとえば、圧電膜123に図3における下向きの電界が印加されたときに、圧電膜123が面内方向に伸びるように変形し、梁113は上に凸の形状に反る。一方、圧電膜123に図3における上向きの電界が印加されると、圧電膜123は面内方向に縮むように変形し、梁113は下に凸の形状に反る。
The operation of the first mirror 102 will be described below. In the state shown in FIG. 3, when a voltage is applied between the electrodes 122 and 124, an electric field in the film thickness direction is applied to the piezoelectric film 123, and the piezoelectric film 123 extends in the in-plane direction (expansion of the piezoelectric film 123) according to the direction of the electric field. It expands and contracts in the current direction). As a result, the piezoelectric film 123 is deformed so as to warp the beam 113. For example, when the downward electric field shown in FIG. 3 is applied to the piezoelectric film 123, the piezoelectric film 123 is deformed so as to extend in the in-plane direction, and the beam 113 warps in an upwardly convex shape. On the other hand, when the upward electric field shown in FIG. 3 is applied to the piezoelectric film 123, the piezoelectric film 123 is deformed so as to contract in the in-plane direction, and the beam 113 warps in a downwardly convex shape.
圧電膜123に印加される電界の方向によって圧電膜123が伸びたり縮んだりするため、圧電膜123に印加される電圧の符号を変えるによって、梁113の反りの方向を変えることができる。また、圧電膜123に印加される電圧の大きさを変えることによって、梁113の反りの曲率を変えることができる。すなわち、圧電膜123に印加される電圧の正負および大きさによって梁113の変形を制御することが可能である。
Since the piezoelectric film 123 expands or contracts depending on the direction of the electric field applied to the piezoelectric film 123, the direction of warpage of the beam 113 can be changed by changing the sign of the voltage applied to the piezoelectric film 123. Further, the curvature of the warp of the beam 113 can be changed by changing the magnitude of the voltage applied to the piezoelectric film 123. That is, it is possible to control the deformation of the beam 113 by the positive / negative and magnitude of the voltage applied to the piezoelectric film 123.
同様に、電極132と電極134との間にも電圧の印加を行って、梁114の変形を制御することができる。このように、反射部111を固定部112に支持する梁113,114の変形によって、第1ミラー102の反射部111を回転軸Y1まわりに回転変位させることができる。以下では、第1ミラー102の反射部111の回転軸Y1まわりの回転についての機械的な共振周波数を「Fy1」とする。
Similarly, the deformation of the beam 114 can be controlled by applying a voltage between the electrodes 132 and 134. In this way, the reflecting portion 111 of the first mirror 102 can be rotationally displaced around the rotation axis Y1 by deforming the beams 113 and 114 that support the reflecting portion 111 on the fixed portion 112. In the following, the mechanical resonance frequency for the rotation of the reflecting portion 111 of the first mirror 102 around the rotation axis Y1 is referred to as “Fy1”.
第1ミラー102の反射部111を回転軸Y1まわりに回転変位させるにより、第1ミラー102の反射部111で反射した光ビームの出射方向をX-Z平面内で変えることができる。MEMS方式の第1ミラー102を周期的に変化する信号で駆動させることにより、第1ミラー102の反射部111は回転軸Y1まわりに回転し、決まった姿勢を周期的に繰り返す。これにより、第1ミラー102の反射部111で反射する光ビームを決まった方向に周期的に走査させることができる。
By rotationally displacing the reflecting portion 111 of the first mirror 102 around the rotation axis Y1, the emission direction of the light beam reflected by the reflecting portion 111 of the first mirror 102 can be changed in the XX plane. By driving the MEMS-type first mirror 102 with a signal that changes periodically, the reflecting portion 111 of the first mirror 102 rotates around the rotation axis Y1 and periodically repeats a fixed posture. As a result, the light beam reflected by the reflecting portion 111 of the first mirror 102 can be periodically scanned in a fixed direction.
図4は、第1ミラー102の傾斜角と光ビームの進行方向との関係を模式的に示す図である。ここで、第1ミラー102の傾斜角とは、第1ミラー102の基準面P1に対する反射部111の反射面(表面)の傾斜角である。図4に示すように、反射部111の反射面を基準面P1に対してθ1/2(θ1は正の値)だけ正方向(時計回り)に傾斜させたとき、すなわち第1ミラー102の傾斜角をθ1/2としたとき、反射部111の反射面の法線がθ1/2だけ正方向に傾くので、光ビームの進行方向は、基準方向(第1ミラー102を傾斜させる前の光ビームの進行方向)に対してθ1だけ正方向に傾くことになる。
FIG. 4 is a diagram schematically showing the relationship between the inclination angle of the first mirror 102 and the traveling direction of the light beam. Here, the inclination angle of the first mirror 102 is an inclination angle of the reflection surface (surface) of the reflection portion 111 with respect to the reference surface P1 of the first mirror 102. As shown in FIG. 4, when (the theta 1 which positive value) theta 1/2 with respect to the reference plane P1 of the reflecting surface of the reflecting portion 111 is inclined in only the forward direction (clockwise), i.e. the first mirror 102 When the tilt angle of is θ 1/2 , the normal of the reflecting surface of the reflecting portion 111 is tilted in the positive direction by θ 1/2 , so that the traveling direction of the light beam is the reference direction (the first mirror 102 is tilted). It is tilted in the positive direction by θ 1 with respect to the traveling direction of the previous light beam).
図5は、第1ミラー102の駆動電圧と、第1ミラー102の傾斜角との対応関係の一例を示す図である。1つの駆動電圧の大きさに応じて、2つの梁113,114の圧電膜123,133に同じ大きさ、かつ互いに逆向きの電圧を印加することによって、第1ミラー102の傾斜角は、図5のように一意に対応させることができる。図5には、傾斜角が駆動電圧に対して正比例する関係にあり、その比例定数を「A」とする場合が例示されている。すなわち、駆動電圧、傾斜角、比例定数Aとの間には、傾斜角=A×駆動電圧の関係が成立する。
FIG. 5 is a diagram showing an example of the correspondence between the drive voltage of the first mirror 102 and the inclination angle of the first mirror 102. By applying voltages of the same magnitude and opposite directions to the piezoelectric films 123 and 133 of the two beams 113 and 114 according to the magnitude of one drive voltage, the inclination angle of the first mirror 102 is shown in FIG. It can be uniquely associated with each other as in 5. FIG. 5 illustrates a case where the inclination angle is directly proportional to the drive voltage and the proportionality constant is set to “A”. That is, the relationship of inclination angle = A × drive voltage is established between the drive voltage, the inclination angle, and the proportionality constant A.
図6は、一般的な構造物の周波数応答特性および共振周波数を模式的に示す図である。一般に、構造物の共振周波数あるいはその近傍の周波数の振動が構造物に入力された場合、構造物は共振し、同じ大きさの振動が入力された場合でも、共振周波数以外の周波数の振動が入力された場合よりも、構造物の変位が大きくなるという共振現象が生じる。アクチュエータによって構造物の姿勢を変化させる場合、一般的に、共振の影響を抑えるために、構造物の共振周波数はアクチュエータの駆動信号の周波数に対して充分高くなるように設計される。構造物の共振周波数および変位の大きくなる度合いは、構造物周辺の温度および圧力に依存する。すなわち、構造物の周波数応答特性は温度環境および圧力環境によって変化する。
FIG. 6 is a diagram schematically showing the frequency response characteristics and resonance frequency of a general structure. Generally, when vibration of a frequency at or near the resonance frequency of a structure is input to the structure, the structure resonates, and even if vibration of the same magnitude is input, vibration of a frequency other than the resonance frequency is input. A resonance phenomenon occurs in which the displacement of the structure is larger than that in the case of the above. When the attitude of the structure is changed by the actuator, the resonance frequency of the structure is generally designed to be sufficiently higher than the frequency of the drive signal of the actuator in order to suppress the influence of resonance. The resonance frequency of the structure and the degree of displacement depend on the temperature and pressure around the structure. That is, the frequency response characteristics of the structure change depending on the temperature environment and pressure environment.
以下、第2ミラー103について説明する。本実施の形態において、第2ミラー103は、第1ミラー102と同じ構成、同じ大きさである。また、第2ミラー103は、第1ミラー102と同じ製造方法にて製造される。また、第2ミラー103は、第1ミラー102と同様の動作が可能である。
The second mirror 103 will be described below. In the present embodiment, the second mirror 103 has the same configuration and the same size as the first mirror 102. Further, the second mirror 103 is manufactured by the same manufacturing method as the first mirror 102. Further, the second mirror 103 can operate in the same manner as the first mirror 102.
以下では、第2ミラー103の回転軸Y2まわりの回転についての機械的な共振周波数を「Fy2」とする。第1ミラー102と第2ミラー103とは同じ構成、同じ大きさ、同じ製造方法により製造されるため、第2ミラー103の共振周波数Fy2は、第1ミラー102の共振周波数Fy1と同じ値である。
In the following, the mechanical resonance frequency for the rotation of the second mirror 103 around the rotation axis Y2 is referred to as "Fy2". Since the first mirror 102 and the second mirror 103 are manufactured by the same configuration, the same size, and the same manufacturing method, the resonance frequency Fy2 of the second mirror 103 is the same value as the resonance frequency Fy1 of the first mirror 102. ..
図7は、第2ミラー103の傾斜角と光ビームの進行方向との関係を模式的に示す図である。ここで、第2ミラー103の傾斜角とは、第2ミラー103の基準面P2に対する反射部161の反射面(表面)の傾斜角である。
FIG. 7 is a diagram schematically showing the relationship between the inclination angle of the second mirror 103 and the traveling direction of the light beam. Here, the inclination angle of the second mirror 103 is the inclination angle of the reflection surface (surface) of the reflection portion 161 with respect to the reference surface P2 of the second mirror 103.
図7に示すように、反射部161の反射面を基準面P2に対してθ2/2(θ2は正の値)だけ負方向(反時計回り)に傾斜させたとき、すなわち第2ミラー103の傾斜角を-θ2/2としたとき、反射部161の反射面の法線がθ2/2だけ負方向に傾くので、光ビームの進行方向は、基準方向(第2ミラー103を傾斜させる前の光ビームの進行方向)に対してθ2だけ負方向(反時計回り)に傾くことになる。
As shown in FIG. 7, when (the theta 2 which positive values) theta 2/2 with respect to the reference plane P2 of the reflection surface of the reflection portion 161 is inclined in only the negative direction (counterclockwise), i.e. the second mirror when 103 the inclination angle was set to - [theta] 2/2, since the normal line of the reflecting surface of the reflecting portion 161 is inclined in the negative direction by theta 2/2, the traveling direction of the light beam, a reference direction (the second mirror 103 It tilts in the negative direction (counterclockwise) by θ 2 with respect to the traveling direction of the light beam before tilting.
第1ミラー102と第2ミラー103とは、互いに独立した動作が可能である。以下では、第1ミラー102および第2ミラー103に正の駆動電圧をそれぞれ印加した場合に、第1ミラー102の反射面は正方向に回転し、第2ミラー103の反射面は負方向に回転するものとする。
The first mirror 102 and the second mirror 103 can operate independently of each other. In the following, when a positive drive voltage is applied to the first mirror 102 and the second mirror 103, the reflective surface of the first mirror 102 rotates in the positive direction, and the reflective surface of the second mirror 103 rotates in the negative direction. It shall be.
図8は、光走査装置1から外部に出射される光ビームの進行方向(以下、単に「光ビームの出射方向」ともいう)φを模式的に示す図である。なお、光ビームの出射方向φは、第1ミラー102および第2ミラー103を傾斜させる前の光ビームの進行方向を基準として表わされる。第1ミラー102の光軸を正方向(時計回り)にθ1だけ傾け、第2ミラー103の光軸を負方向(反時計回り)にθ2だけ傾けた場合、光ビームの出射方向φは、図8に示すように、φ=θ1+θ2で表わすことができる。したがって、第1ミラー102および第2ミラー103の姿勢をそれぞれ時間tに対してθ1(t)/2、θ2(t)/2と変化させた場合、光ビームの出射方向φ(t)は、下記の式(1)で表わすことができる。
FIG. 8 is a diagram schematically showing a traveling direction φ (hereinafter, also simply referred to as “light beam emitting direction”) φ of a light beam emitted from the optical scanning device 1 to the outside. The emission direction φ of the light beam is represented with reference to the traveling direction of the light beam before tilting the first mirror 102 and the second mirror 103. When the optical axis of the first mirror 102 is tilted by θ 1 in the positive direction (clockwise) and the optical axis of the second mirror 103 is tilted by θ 2 in the negative direction (counterclockwise), the emission direction φ of the light beam is , As shown in FIG. 8, it can be represented by φ = θ 1 + θ 2 . Therefore, when the postures of the first mirror 102 and the second mirror 103 are changed to θ 1 (t) / 2 and θ 2 (t) / 2, respectively with respect to time t, the light beam emission direction φ (t) Can be expressed by the following equation (1).
φ(t)=θ1(t)+θ2(t) …(1)
ここで、第1ミラー102および第2ミラー103に印加される周期的な駆動信号と、第1ミラー102および第2ミラー103の姿勢変化との関係について説明する。時間tに対して光ビームの出射方向φを基本周波数Fdで周期的に繰り返して変化させる場合を考える。三角波およびのこぎり波等の周期信号の周期が1/Fdである場合、その周期信号は、一般的に、基本周波数Fdの成分と、その高調波成分との和によって表わされる。 φ (t) = θ 1 (t) + θ 2 (t)… (1)
Here, the relationship between the periodic drive signal applied to thefirst mirror 102 and the second mirror 103 and the posture change of the first mirror 102 and the second mirror 103 will be described. Consider a case where the emission direction φ of the light beam is periodically and repeatedly changed at the fundamental frequency Fd with respect to the time t. When the period of a periodic signal such as a triangular wave and a sawtooth wave is 1 / Fd, the periodic signal is generally represented by the sum of the component of the fundamental frequency Fd and its harmonic component.
ここで、第1ミラー102および第2ミラー103に印加される周期的な駆動信号と、第1ミラー102および第2ミラー103の姿勢変化との関係について説明する。時間tに対して光ビームの出射方向φを基本周波数Fdで周期的に繰り返して変化させる場合を考える。三角波およびのこぎり波等の周期信号の周期が1/Fdである場合、その周期信号は、一般的に、基本周波数Fdの成分と、その高調波成分との和によって表わされる。 φ (t) = θ 1 (t) + θ 2 (t)… (1)
Here, the relationship between the periodic drive signal applied to the
図9は、三角波T(t)の波形の一例を示す図である。図9に示すような三角波T(t)のフーリエ変換は、下記の式(2)のように記述できる。
FIG. 9 is a diagram showing an example of the waveform of the triangular wave T (t). The Fourier transform of the triangular wave T (t) as shown in FIG. 9 can be described by the following equation (2).
三角波T(t)の周期信号には、基本周波数Fdの成分のほか、基本周波数の奇数倍(2N+1倍、Nは自然数)の周波数(=3Fd、5Fd、7Fd…)の高調波成分が含まれている。高調波成分の周波数が構造物の共振周波数近辺にある場合、構造物の共振特性によって、構造物の変位が増幅されて所望の変位に重畳される、いわゆるリンギングが生じてしまうことが懸念される。
The periodic signal of the triangular wave T (t) includes a component of the fundamental frequency Fd and a harmonic component of an odd multiple (2N + 1 times, N is a natural number) of the fundamental frequency (= 3Fd, 5Fd, 7Fd ...). ing. When the frequency of the harmonic component is near the resonance frequency of the structure, there is a concern that the resonance characteristic of the structure amplifies the displacement of the structure and superimposes it on the desired displacement, that is, so-called ringing occurs. ..
ここで、周期信号を構成する基本周波数Fdおよびその高調波の成分のうち、構造物の共振周波数よりも小さい周波数成分の中から選択された任意の周波数の成分を足し合わせものを「低周波成分」と定義する。
Here, among the components of the fundamental frequency Fd and its harmonics constituting the periodic signal, the sum of the components of an arbitrary frequency selected from the frequency components smaller than the resonance frequency of the structure is referred to as the "low frequency component". Is defined.
図10A~図10Fは、三角波と、三角波の1次から5次までの高調波の低周波成分を足し合わせた波形とを示す図である。図10Aは三角波の波形を示し、図10Bは1次の高調波成分の波形(正弦波)を示し、図10Cは1次から2次までの低周波成分を足し合わせた波形を示し、図10Dは1次から3次までの低周波成分を足し合わせた波形を示し、図10Eは1次から4次までの低周波成分を足し合わせた波形を示し、図10Fは1次から5次までの低周波成分を足し合わせた波形を示す。
10A to 10F are diagrams showing a waveform obtained by adding low frequency components of a triangular wave and harmonics of the first to fifth harmonics of the triangular wave. FIG. 10A shows a triangular wave waveform, FIG. 10B shows a waveform of a first-order harmonic component (sine wave), and FIG. 10C shows a waveform obtained by adding low-frequency components from the first-order to the second-order. FIG. 10D. Shows a waveform obtained by adding low frequency components from 1st to 3rd order, FIG. 10E shows a waveform obtained by adding low frequency components from 1st to 4th order, and FIG. 10F shows a waveform obtained by adding low frequency components from 1st to 5th order. The waveform obtained by adding the low frequency components is shown.
三角波の場合、1次から5次程度までの低周波成分を加えるだけで、もとの三角波に近い波形を得ることができる。すなわち、三角波T(t)は次の式(3)のように分割できる。ただし、式(3)においてm=5である。
In the case of a triangular wave, a waveform close to the original triangular wave can be obtained simply by adding low frequency components from the 1st to the 5th order. That is, the triangular wave T (t) can be divided as shown in the following equation (3). However, in the formula (3), m = 5.
ここで、式(3)の右辺における第1項を「T1(t)」、第2項を「T2(t)」と定義する。第1項T1(t)は、ほぼ三角波であり、構造物の共振周波数よりも低い低周波成分である。また、第2項T2(t)は、それ以外の高調波成分で構造物の共振周波数の帯域を含んでいる。
Here, the first term on the right side of the equation (3) is defined as "T 1 (t)", and the second term is defined as "T 2 (t)". The first term T 1 (t) is a substantially triangular wave, which is a low frequency component lower than the resonance frequency of the structure. Further, the second term T 2 (t) includes a band of the resonance frequency of the structure with other harmonic components.
以下、光走査装置1の制御装置104の機能について説明する。制御装置104は、光ビームの出射方向φを所望の方向に傾けるために、第1ミラー102および第2ミラー103への駆動信号を生成する。
Hereinafter, the function of the control device 104 of the optical scanning device 1 will be described. The control device 104 generates a drive signal to the first mirror 102 and the second mirror 103 in order to incline the emission direction φ of the light beam in a desired direction.
図11は、制御装置104の機能を示すブロック図である。制御装置104は、周期信号生成部104aと、低周波成分生成部104bと、演算部104cとを含む。
FIG. 11 is a block diagram showing the functions of the control device 104. The control device 104 includes a periodic signal generation unit 104a, a low frequency component generation unit 104b, and a calculation unit 104c.
周期信号生成部104aおよび低周波成分生成部104bには、外部から、周期信号の基本周波数Fdとその波形が、それぞれ入力される。以下では、周期信号の波形が三角波である場合について説明する。
The fundamental frequency Fd of the periodic signal and its waveform are input to the periodic signal generation unit 104a and the low frequency component generation unit 104b from the outside, respectively. The case where the waveform of the periodic signal is a triangular wave will be described below.
周期信号生成部104aは、基本周波数Fdで変化する三角波信号V1(t)を生成する。周期信号生成部104aは、生成された三角波信号V1(t)を演算部104cおよび第1ミラー102に出力する。これにより、第1ミラー102は、三角波信号V1(t)によって駆動される。
The periodic signal generation unit 104a generates a triangular wave signal V 1 (t) that changes at the fundamental frequency Fd. The periodic signal generation unit 104a outputs the generated triangular wave signal V 1 (t) to the calculation unit 104c and the first mirror 102. As a result, the first mirror 102 is driven by the triangular wave signal V 1 (t).
低周波成分生成部104bは、基本周波数Fdに対し、1次の高調波からN次(たとえば5次)の高調波までの低周波成分を足し合わせた信号Vb(t)を生成する。低周波成分生成部104bは、生成された信号Vb(t)を演算部104cに出力する。
The low frequency component generation unit 104b generates a signal V b (t) obtained by adding low frequency components from the first harmonic to the Nth (for example, fifth) harmonic to the fundamental frequency Fd. The low frequency component generation unit 104b outputs the generated signal V b (t) to the calculation unit 104c.
演算部104cは、周期信号生成部104aで生成された三角波信号V1(t)から、低周波成分生成部104bで生成された信号Vb(t)を差し引いた差分信号V2(t)を生成する。演算部104cは、生成された差分信号V2(t)を第2ミラー103に出力する。これにより、第2ミラー103は、差分信号V2(t)によって駆動される。
The calculation unit 104c obtains a difference signal V 2 (t) obtained by subtracting the signal V b (t) generated by the low frequency component generation unit 104b from the triangular wave signal V 1 (t) generated by the periodic signal generation unit 104a. Generate. The calculation unit 104c outputs the generated difference signal V 2 (t) to the second mirror 103. As a result, the second mirror 103 is driven by the difference signal V 2 (t).
三角波信号V1(t)、信号Vb(t)、差分信号V2(t)を波形に注目して上記の式(3)に示す三角波T(t)を用いて表せば、それぞれ下記の式(4)、式(5)、式(6)となる。
If the triangular wave signal V 1 (t), the signal V b (t), and the difference signal V 2 (t) are expressed using the triangular wave T (t) shown in the above equation (3) by paying attention to the waveform, they are as follows. Equations (4), (5), and (6) are obtained.
V1(t)=T(t)=T1(t)+T2(t) …(4)
Vb(t)=T1(t) …(5)
V2(t)=V1(t)-Vb(t)=T(t)-T1(t)=T2(t) …(6)
第1ミラー102は、制御装置104により生成された三角波信号V1(t)によって駆動される。すなわち、第1ミラー102は、第1ミラー102の共振周波数よりも低い低周波成分を足し合わせたほぼ三角波の信号T1(t)と、第1ミラー102の共振周波数近傍の周波数成分を含む信号T2(t)との和である信号V1(t)によって、第1ミラー102の周波数応答特性に応じて姿勢を変える。 V 1 (t) = T (t) = T 1 (t) + T 2 (t) ... (4)
V b (t) = T 1 (t) ... (5)
V 2 (t) = V 1 (t) -V b (t) = T (t) -T 1 (t) = T 2 (t) ... (6)
Thefirst mirror 102 is driven by the triangular wave signal V 1 (t) generated by the control device 104. That is, the first mirror 102 is a signal including a substantially triangular wave signal T 1 (t) obtained by adding low frequency components lower than the resonance frequency of the first mirror 102 and a frequency component near the resonance frequency of the first mirror 102. The attitude is changed according to the frequency response characteristic of the first mirror 102 by the signal V 1 (t) which is the sum of T 2 (t).
Vb(t)=T1(t) …(5)
V2(t)=V1(t)-Vb(t)=T(t)-T1(t)=T2(t) …(6)
第1ミラー102は、制御装置104により生成された三角波信号V1(t)によって駆動される。すなわち、第1ミラー102は、第1ミラー102の共振周波数よりも低い低周波成分を足し合わせたほぼ三角波の信号T1(t)と、第1ミラー102の共振周波数近傍の周波数成分を含む信号T2(t)との和である信号V1(t)によって、第1ミラー102の周波数応答特性に応じて姿勢を変える。 V 1 (t) = T (t) = T 1 (t) + T 2 (t) ... (4)
V b (t) = T 1 (t) ... (5)
V 2 (t) = V 1 (t) -V b (t) = T (t) -T 1 (t) = T 2 (t) ... (6)
The
第1ミラー102の共振周波数近傍の周波数成分を含む信号T2(t)が第1ミラー102の周波数応答特性によって増幅された姿勢変化分を「R1(t)」と定義すると、第1ミラー102の姿勢変化量θ1(t)は、振幅で正規化しその波形にのみに注目すれば、次の式(7)のように記述できる。
If the attitude change of the signal T 2 (t) including the frequency component near the resonance frequency of the first mirror 102 amplified by the frequency response characteristic of the first mirror 102 is defined as “R 1 (t)”, the first mirror The amount of change in attitude θ 1 (t) of 102 can be described as the following equation (7) by normalizing with amplitude and paying attention only to the waveform.
θ1(t)=A・T1(t)+R1(t) …(7)
第2ミラー103は、制御装置104により生成された差分信号V2(t)によって駆動される。すなわち、第2ミラー103は、差分信号V2(t)によって、第2ミラー103の周波数応答特性に応じて姿勢を変える。ここで、差分信号V2(t)は、上記の式(6)に示すように信号T2(t)である。信号T2(t)が第2ミラー103の周波数応答特性によって増幅された信号を「R2(t)」と定義すると、第2ミラー103の姿勢変化量θ2(t)は、振幅で正規化しその波形に注目すれば、下記の式(8)のように記述できる。 θ 1 (t) = AT 1 (t) + R 1 (t)… (7)
Thesecond mirror 103 is driven by the difference signal V 2 (t) generated by the control device 104. That is, the second mirror 103 changes its posture according to the frequency response characteristic of the second mirror 103 by the difference signal V 2 (t). Here, the difference signal V 2 (t) is the signal T 2 (t) as shown in the above equation (6). If the signal T 2 (t) amplified by the frequency response characteristic of the second mirror 103 is defined as “R 2 (t)”, the attitude change amount θ 2 (t) of the second mirror 103 is normal in amplitude. If we pay attention to the waveform, we can describe it as the following equation (8).
第2ミラー103は、制御装置104により生成された差分信号V2(t)によって駆動される。すなわち、第2ミラー103は、差分信号V2(t)によって、第2ミラー103の周波数応答特性に応じて姿勢を変える。ここで、差分信号V2(t)は、上記の式(6)に示すように信号T2(t)である。信号T2(t)が第2ミラー103の周波数応答特性によって増幅された信号を「R2(t)」と定義すると、第2ミラー103の姿勢変化量θ2(t)は、振幅で正規化しその波形に注目すれば、下記の式(8)のように記述できる。 θ 1 (t) = AT 1 (t) + R 1 (t)… (7)
The
θ2(t)=-R2(t) …(8)
なお、上記の式(8)の右辺の符号を「-」(マイナス)としているのは、上述したように第2ミラー103に正の駆動電圧を印加した場合に第2ミラー103の反射面が負方向に回転することによる。 θ 2 (t) = −R 2 (t)… (8)
The sign on the right side of the above equation (8) is "-" (minus) because the reflective surface of thesecond mirror 103 is changed when a positive drive voltage is applied to the second mirror 103 as described above. By rotating in the negative direction.
なお、上記の式(8)の右辺の符号を「-」(マイナス)としているのは、上述したように第2ミラー103に正の駆動電圧を印加した場合に第2ミラー103の反射面が負方向に回転することによる。 θ 2 (t) = −R 2 (t)… (8)
The sign on the right side of the above equation (8) is "-" (minus) because the reflective surface of the
したがって、光ビームの出射方向φ(t)は下記の式(9)のように記述できる。
φ(t)=θ1(t)+θ2(t)=A・T1(t)+R1(t)-R2(t)…(9)
ここで、第1ミラー102と第2ミラー103とは同様の構成、同様の製造方法により製造され、同じ大きさであるため同じ周波数応答特性を持つから、下記の式(10)の関係式が成立する。 Therefore, the emission direction φ (t) of the light beam can be described by the following equation (9).
φ (t) = θ 1 (t) + θ 2 (t) = AT 1 (t) + R 1 (t) -R 2 (t) ... (9)
Here, since thefirst mirror 102 and the second mirror 103 are manufactured by the same configuration and the same manufacturing method and have the same frequency response characteristics because they have the same size, the relational expression of the following equation (10) is established. To establish.
φ(t)=θ1(t)+θ2(t)=A・T1(t)+R1(t)-R2(t)…(9)
ここで、第1ミラー102と第2ミラー103とは同様の構成、同様の製造方法により製造され、同じ大きさであるため同じ周波数応答特性を持つから、下記の式(10)の関係式が成立する。 Therefore, the emission direction φ (t) of the light beam can be described by the following equation (9).
φ (t) = θ 1 (t) + θ 2 (t) = AT 1 (t) + R 1 (t) -R 2 (t) ... (9)
Here, since the
|R1(t)|=|R2(t)| …(10)
したがって、上記の式(9)において、第1ミラー102の周波数応答特性によって増幅された姿勢変化分「R1(t)」と、第2ミラー103の周波数応答特性によって増幅された姿勢変化分「-R2(t)」とが互いに相殺し合うことになり、下記の式(11)が得られる。 | R 1 (t) | = | R 2 (t) | ... (10)
Therefore, in the above equation (9), the attitude change “R 1 (t)” amplified by the frequency response characteristic of thefirst mirror 102 and the attitude change “R 1 (t)” amplified by the frequency response characteristic of the second mirror 103. -R 2 (t) "will cancel each other out, and the following equation (11) will be obtained.
したがって、上記の式(9)において、第1ミラー102の周波数応答特性によって増幅された姿勢変化分「R1(t)」と、第2ミラー103の周波数応答特性によって増幅された姿勢変化分「-R2(t)」とが互いに相殺し合うことになり、下記の式(11)が得られる。 | R 1 (t) | = | R 2 (t) | ... (10)
Therefore, in the above equation (9), the attitude change “R 1 (t)” amplified by the frequency response characteristic of the
φ(t)=A・T1(t) …(11)
式(11)から、光ビームの出射方向φ(t)には、第1ミラー102の周波数応答特性によって増幅された姿勢変化分R1(t)、および第2ミラー103の周波数応答特性によって増幅された姿勢変化分R2(t)の影響が排除されていることが理解できる。これにより、光ビームのリンギングを抑制することができる。 φ (t) = AT 1 (t)… (11)
From the equation (11), the light beam emission direction φ (t) is amplified by the attitude change R 1 (t) amplified by the frequency response characteristic of thefirst mirror 102 and the frequency response characteristic of the second mirror 103. It can be understood that the influence of the attitude change R 2 (t) is eliminated. As a result, ringing of the light beam can be suppressed.
式(11)から、光ビームの出射方向φ(t)には、第1ミラー102の周波数応答特性によって増幅された姿勢変化分R1(t)、および第2ミラー103の周波数応答特性によって増幅された姿勢変化分R2(t)の影響が排除されていることが理解できる。これにより、光ビームのリンギングを抑制することができる。 φ (t) = AT 1 (t)… (11)
From the equation (11), the light beam emission direction φ (t) is amplified by the attitude change R 1 (t) amplified by the frequency response characteristic of the
さらに、光走査装置1が温度環境および圧力環境のもとに置かれた場合を考える。第1ミラー102および第2ミラー103の共振周波数および周波数応答特性はその環境によって変化するため、第1ミラー102の周波数応答特性によって増幅された姿勢変化分R1(t)、および第2ミラー103の周波数応答特性によって増幅された姿勢変化分R2(t)も変化する。しかしながら、第1ミラー102および第2ミラー103は同じ構造および大きさであり、同じ製造方法にて製造されているため、温度環境および圧力環境でのR1(t)、R2(t)の変化も同じ特性となる。そのため、温度環境および圧力環境に依らず|R1(t)|=|R2(t)|が成立するため、温度環境および圧力環境が変化したとしても光ビームのリンギングを抑制することが可能である。
Further, consider the case where the optical scanning device 1 is placed in a temperature environment and a pressure environment. Since the resonance frequency and frequency response characteristics of the first mirror 102 and the second mirror 103 change depending on the environment, the attitude change R 1 (t) amplified by the frequency response characteristics of the first mirror 102 and the second mirror 103 The attitude change R 2 (t) amplified by the frequency response characteristic of is also changed. However, since the first mirror 102 and the second mirror 103 have the same structure and size and are manufactured by the same manufacturing method, R 1 (t) and R 2 (t) in a temperature environment and a pressure environment The change has the same characteristics. Therefore, | R 1 (t) | = | R 2 (t) | is established regardless of the temperature environment and pressure environment, so that ringing of the light beam can be suppressed even if the temperature environment and pressure environment change. Is.
また、本実施の形態による光走査装置1においては、先行技術で用いられていたようなノッチフィルタを用いることなく、リンギングを抑制することができる。また、ミラーの機械的な共振周波数の変化および製造ばらつき等による個々のミラーの特性の個体差に合わせてノッチフィルタの特性を調整するための制御回路も不要となる。そのため、光走査装置1のサイズを小型化することができる。さらに、ノッチフィルタは一般的にその遮断周波数近辺で大きく位相を変化させるため、ノッチフィルタを用いないことにより、制御に関する設計の自由度を高めることができる。
Further, in the optical scanning apparatus 1 according to the present embodiment, ringing can be suppressed without using a notch filter as used in the prior art. Further, a control circuit for adjusting the characteristics of the notch filter according to individual differences in the characteristics of individual mirrors due to changes in the mechanical resonance frequency of the mirrors, manufacturing variations, and the like becomes unnecessary. Therefore, the size of the optical scanning device 1 can be reduced. Further, since the notch filter generally changes its phase significantly in the vicinity of its cutoff frequency, the degree of freedom in design regarding control can be increased by not using the notch filter.
図12は、光走査装置1の制御装置104が第1ミラー102および第2ミラー103を制御する際に実行する処理の概要を示すフローチャートである。
FIG. 12 is a flowchart showing an outline of the processing executed when the control device 104 of the optical scanning device 1 controls the first mirror 102 and the second mirror 103.
制御装置104は、外部から、周期信号の基本周波数Fdおよび波形を取得する(ステップS10)。なお、周期信号の波形は、上述のように、たとえば三角波である。
The control device 104 acquires the fundamental frequency Fd and the waveform of the periodic signal from the outside (step S10). As described above, the waveform of the periodic signal is, for example, a triangular wave.
次いで、制御装置104は、ステップS10において取得した基本周波数Fdおよび周期信号波形で変化する駆動信号V1(t)を生成する(ステップS11)。
Next, the control device 104 generates a drive signal V 1 (t) that changes with the fundamental frequency Fd and the periodic signal waveform acquired in step S10 (step S11).
次いで、制御装置104は、基本周波数Fdに対し、1次からN次(たとえば5次)までの低周波成分を足し合わせた信号Vb(t)を生成する(ステップS12)。
Next, the control device 104 generates a signal V b (t) obtained by adding low frequency components from the first order to the Nth order (for example, the fifth order) with respect to the fundamental frequency Fd (step S12).
次いで、制御装置104は、ステップS11において生成された駆動信号V1(t)から、ステップS12において生成された信号Vb(t)を差し引いた差分信号V2(t)を生成する(ステップS13)。
Next, the control device 104 generates a difference signal V 2 (t) obtained by subtracting the signal V b (t) generated in step S12 from the drive signal V 1 (t) generated in step S11 (step S13). ).
次いで、制御装置104は、ステップS11において生成された駆動信号V1(t)を第1ミラー102に出力して、駆動信号V1(t)によって第1ミラー102を駆動する(ステップS14)。
Next, the control device 104 outputs the drive signal V 1 (t) generated in step S11 to the first mirror 102, and drives the first mirror 102 by the drive signal V 1 (t) (step S14).
次いで、制御装置104は、ステップS13において生成された差分信号V2(t)を第2ミラー103に出力して、差分信号V2(t)によって第2ミラー103を駆動する(ステップS15)。
Next, the control device 104 outputs the difference signal V 2 (t) generated in step S13 to the second mirror 103, and drives the second mirror 103 by the difference signal V 2 (t) (step S15).
以上のように、本実施の形態による光走査装置1は、光源101と、光源101から出射された光を反射するように構成された反射部111を含む第1ミラー102と、第1ミラー102で反射された光を反射するように構成された反射部161を含む第2ミラー103と、第1ミラー102の反射部111の姿勢および第2ミラー103の反射部161の姿勢を制御することによって光ビームの出射方向φを制御するように構成された制御装置104とを備える。制御装置104は、基本周波数Fdで変化する三角波信号を駆動信号V1(t)として生成し、基本周波数Fdの1次から5次までの高調波の低周波成分を足し合わせた信号Vb(t)を生成し、駆動信号V1(t)から信号Vb(t)を差し引いた差分信号V2(t)を生成する。そして、制御装置104は、駆動信号V1(t)によって第1ミラー102を駆動し、差分信号V2(t)によって第2ミラー103を駆動する。これにより、ノッチフィルタを用いることなく、リンギングの発生を抑制することができる。また、ノッチフィルタを用いないため、光走査装置1のサイズを小型化することができる。さらに、ノッチフィルタは一般的にその遮断周波数近辺で大きく位相を変化させるため、ノッチフィルタを用いないことにより、制御に関する設計の自由度を高めることができる。
As described above, the optical scanning apparatus 1 according to the present embodiment includes a light source 101, a first mirror 102 including a reflecting unit 111 configured to reflect the light emitted from the light source 101, and a first mirror 102. By controlling the posture of the second mirror 103 including the reflecting portion 161 configured to reflect the light reflected by the first mirror 102, the posture of the reflecting portion 111 of the first mirror 102, and the posture of the reflecting portion 161 of the second mirror 103. A control device 104 configured to control the emission direction φ of the light beam is provided. The control device 104 generates a triangular wave signal that changes at the fundamental frequency Fd as a drive signal V 1 (t), and adds low frequency components of harmonics from the first to the fifth order of the fundamental frequency Fd to signal V b ( t) is generated, and the difference signal V 2 (t) obtained by subtracting the signal V b (t) from the drive signal V 1 (t) is generated. Then, the control device 104 drives the first mirror 102 by the drive signal V 1 (t), and drives the second mirror 103 by the difference signal V 2 (t). As a result, the occurrence of ringing can be suppressed without using a notch filter. Further, since the notch filter is not used, the size of the optical scanning device 1 can be reduced. Further, since the notch filter generally changes its phase significantly in the vicinity of its cutoff frequency, the degree of freedom in design regarding control can be increased by not using the notch filter.
上述の実施の形態1においては三角波信号を用いて走査する例を示したが、走査に用いられる信号は、周期信号であればよく、たとえば、のこぎり波信号を採用してもよい。
In the first embodiment described above, an example of scanning using a triangular wave signal is shown, but the signal used for scanning may be a periodic signal, and for example, a sawtooth signal may be adopted.
周期が1/Fdである周期信号によって駆動対象を駆動する場合、一般的に、周期信号には基本周波数FdのN倍(Nは自然数)の高調波成分が含まれ、その高調波成分が駆動対象の共振周波数近傍にあれば、駆動対象の周波数応答特性により、その変位が増幅され、いわゆるリンギングが生じてしまうことが懸念される。しかしながら、本開示による制御を適用することによって、三角波信号を用いる場合と同様にリンギングを抑制することができるので、ひずみを低減した走査を実現することができる。
When the drive target is driven by a periodic signal having a period of 1 / Fd, the periodic signal generally contains a harmonic component N times the fundamental frequency Fd (N is a natural number), and the harmonic component is driven. If it is in the vicinity of the resonance frequency of the target, there is a concern that the displacement will be amplified due to the frequency response characteristic of the drive target, and so-called ringing will occur. However, by applying the control according to the present disclosure, ringing can be suppressed as in the case of using a triangular wave signal, so that scanning with reduced distortion can be realized.
また、走査に用いる信号として三角波信号あるいはのこぎり波信号を採用する場合、走査を一定の速度で行うことができ、走査点の空間分解能を一定に保つことができる。
Further, when a triangular wave signal or a sawtooth wave signal is adopted as the signal used for scanning, scanning can be performed at a constant speed, and the spatial resolution of the scanning point can be kept constant.
上述の実施の形態1においては、光源101から出射された光ビームが第1ミラー102に直接導かれ、また、第1ミラー102で反射した光ビームが第2ミラー103に直接導かれる例について説明した。
In the first embodiment described above, an example will be described in which the light beam emitted from the light source 101 is directly guided to the first mirror 102, and the light beam reflected by the first mirror 102 is directly guided to the second mirror 103. did.
しかしながら、光源101と第1ミラー102との間の光路、および第1ミラー102と第2ミラー103との間の光路の少なくとも一方に、ビームスプリッタ等の光学部品を配置するようにしてもよい。
However, an optical component such as a beam splitter may be arranged in at least one of the optical path between the light source 101 and the first mirror 102 and the optical path between the first mirror 102 and the second mirror 103.
図13は、変形例による光走査装置1Aの構成を概略的に示す図である。光走査装置1Aは、光源101、第1ミラー102、第2ミラー103、および制御装置104に加えて、ビームスプリッタ105,106をさらに備える。
FIG. 13 is a diagram schematically showing the configuration of the optical scanning device 1A according to the modified example. The optical scanning device 1A further includes beam splitters 105 and 106 in addition to the light source 101, the first mirror 102, the second mirror 103, and the control device 104.
ビームスプリッタ105は、光源101と第1ミラー102との間の光路に配置され、光源101から出射された光ビームを第1ミラー102に導く。また、ビームスプリッタ105,106は、第1ミラー102と第2ミラー103との間の光路に配置され、第1ミラー102で反射した光ビームを第2ミラー103に導く。このような光走査装置1Aにも本開示による制御を適用可能である。
The beam splitter 105 is arranged in the optical path between the light source 101 and the first mirror 102, and guides the light beam emitted from the light source 101 to the first mirror 102. Further, the beam splitters 105 and 106 are arranged in the optical path between the first mirror 102 and the second mirror 103, and guide the light beam reflected by the first mirror 102 to the second mirror 103. The control according to the present disclosure can be applied to such an optical scanning device 1A.
上述の実施の形態1においては第2ミラー103で反射した光ビームが光走査装置1の外部に直接出射されるが、ミラー等の光学部品を介して外部に出射されてもよい。これにより、光走査装置1を構成する部品の配置の自由度を上げることができる。
In the first embodiment described above, the light beam reflected by the second mirror 103 is directly emitted to the outside of the optical scanning device 1, but may be emitted to the outside through an optical component such as a mirror. As a result, the degree of freedom in arranging the components constituting the optical scanning device 1 can be increased.
上述の実施の形態1においては第1ミラー102の基準面P1と第2ミラー103の基準面P2とが互いに平行になるように第1ミラー102および第2ミラー103が配置される。しかしながら、第1ミラー102および第2ミラー103の配置は、第1ミラー102で反射した光ビームが第2ミラー103で反射可能な配置であればよく、必ずしも基準面P1,P2が互いに平行に配置されることに限定されない。
In the first embodiment described above, the first mirror 102 and the second mirror 103 are arranged so that the reference surface P1 of the first mirror 102 and the reference surface P2 of the second mirror 103 are parallel to each other. However, the arrangement of the first mirror 102 and the second mirror 103 may be any arrangement as long as the light beam reflected by the first mirror 102 can be reflected by the second mirror 103, and the reference planes P1 and P2 are necessarily arranged in parallel with each other. Not limited to being done.
上述の実施の形態1においては、第1ミラー102および第2ミラー103の各々は、反射部を2本の梁で固定部に支持し、梁上に設けた圧電膜の変形を利用して反射部を傾斜させる。しかしながら、反射部の姿勢を変えることにより光軸の方向を変化させることができるものであれば、梁の本数、配置、形状、圧電膜の種類、配置、形状は、上述の実施の形態1で説明したものに限定されない。
In the first embodiment described above, each of the first mirror 102 and the second mirror 103 supports the reflecting portion by two beams on the fixed portion, and reflects by utilizing the deformation of the piezoelectric film provided on the beams. Tilt the part. However, as long as the direction of the optical axis can be changed by changing the posture of the reflecting portion, the number, arrangement, shape, type, arrangement, and shape of the piezoelectric film can be determined in the above-described first embodiment. Not limited to what has been described.
上述の実施の形態1においては、第1ミラー102および第2ミラー103として、半導体微細加工技術により製造した、いわゆるMEMS方式のミラーが用いられる例を説明した。しかしながら、第1ミラー102および第2ミラー103は、回転変位可能で、軸まわりの機械的な周波数応答特性が同じであるミラーであればよく、MEMS方式のミラーでなくてもよく、また、その製造方法は限定されない。
In the above-described first embodiment, an example in which a so-called MEMS type mirror manufactured by semiconductor microfabrication technology is used as the first mirror 102 and the second mirror 103 has been described. However, the first mirror 102 and the second mirror 103 may be mirrors that can be rotationally displaced and have the same mechanical frequency response characteristics around the axis, and may not be MEMS type mirrors. The manufacturing method is not limited.
上述の実施の形態1においては、第1ミラー102および第2ミラー103の各々は、梁上に設けた圧電膜への電界印加による圧電膜の変形を利用して反射面の姿勢を変化させる。
In the first embodiment described above, each of the first mirror 102 and the second mirror 103 changes the posture of the reflecting surface by utilizing the deformation of the piezoelectric film due to the application of an electric field to the piezoelectric film provided on the beam.
しかしながら、反射面の姿勢を変化させる手法に依らない。たとえば、反射面の姿勢を変化させる手法は、電極への電圧印加により発生する静電引力を利用するものであってもよいし、磁界を印加し素子上に配置した配線に電流を流すことにより発生する電磁力を利用するものであってもよい。静電引力を利用する場合には、梁に圧電膜および絶縁膜等を製膜する必要がないため、圧電膜および絶縁膜とシリコン基板との間に製造プロセス上で生じる応力発生を低減できる。また、電磁力を利用する場合には、電磁力は一般的に静電引力および圧電材料の変形による力よりも大きな力を発生することができるという利点がある。
However, it does not depend on the method of changing the posture of the reflective surface. For example, the method of changing the posture of the reflecting surface may be one that utilizes the electrostatic attraction generated by applying a voltage to the electrodes, or by applying a magnetic field and passing a current through the wiring arranged on the element. It may utilize the generated electromagnetic force. When the electrostatic attraction is used, it is not necessary to form a piezoelectric film, an insulating film, or the like on the beam, so that it is possible to reduce the generation of stress generated in the manufacturing process between the piezoelectric film and the insulating film and the silicon substrate. Further, when electromagnetic force is used, there is an advantage that the electromagnetic force can generally generate a force larger than the electrostatic attraction force and the force due to the deformation of the piezoelectric material.
静電引力および電磁力を用いる場合、一般にミラーを支持する梁をねじる方向に力を加え、ミラーの姿勢を変化させる。その場合、図2におけるミラーの回転軸は、圧電膜を用いる場合とは異なり、図2のX軸方向となるが、図1に示す光走査装置1に適用する際に回転軸をY軸方向となるように配置すればよい。
When electrostatic attraction and electromagnetic force are used, generally, a force is applied in the direction of twisting the beam that supports the mirror to change the posture of the mirror. In that case, the rotation axis of the mirror in FIG. 2 is in the X-axis direction in FIG. 2, unlike the case where the piezoelectric film is used, but when applied to the optical scanning device 1 shown in FIG. 1, the rotation axis is in the Y-axis direction. It may be arranged so as to be.
上述の実施の形態1においては、第1ミラー102および第2ミラー103の反射膜として、四角形状の金属膜が用いられている。しかしながら、反射膜は、光ビームを反射するものであればよく、その形状、材質は上記のものに限定されない。
In the above-described first embodiment, a square metal film is used as the reflective film of the first mirror 102 and the second mirror 103. However, the reflective film may be any one that reflects a light beam, and its shape and material are not limited to those described above.
本実施の形態1においては光走査装置1の光源としてLD素子を用いる例を示したが、光源の種類は特に限定されるものではなく、たとえば、LD素子に変えて発光ダイオード素子(LED)素子を用いるようにしてもよい。
In the first embodiment, an example in which an LD element is used as a light source of the optical scanning device 1 is shown, but the type of the light source is not particularly limited. For example, a light emitting diode element (LED) element is used instead of the LD element. May be used.
実施の形態2.
図14は、本実施の形態2による光走査装置2の構成を概略的に示す図である。本実施の形態2による光走査装置2は、上述の実施の形態1による光走査装置1に対して、第1ミラー102と第2ミラー103とが同じ基板201上に配置される点が異なる。Embodiment 2.
FIG. 14 is a diagram schematically showing the configuration of theoptical scanning device 2 according to the second embodiment. The optical scanning apparatus 2 according to the second embodiment is different from the optical scanning apparatus 1 according to the first embodiment in that the first mirror 102 and the second mirror 103 are arranged on the same substrate 201.
図14は、本実施の形態2による光走査装置2の構成を概略的に示す図である。本実施の形態2による光走査装置2は、上述の実施の形態1による光走査装置1に対して、第1ミラー102と第2ミラー103とが同じ基板201上に配置される点が異なる。
FIG. 14 is a diagram schematically showing the configuration of the
図15は、本実施の形態2による光走査装置2における第1ミラー102および第2ミラー103の上面図(Z方向から見た図)である。図15に示すように、光走査装置2においては、第1ミラー102と第2ミラー103とが同じ基板201上に製造されている。
FIG. 15 is a top view (viewed from the Z direction) of the first mirror 102 and the second mirror 103 in the optical scanning device 2 according to the second embodiment. As shown in FIG. 15, in the optical scanning apparatus 2, the first mirror 102 and the second mirror 103 are manufactured on the same substrate 201.
さらに、本実施の形態2による光走査装置2においては、第1ミラー102で反射した光ビームを第2ミラー103に導くために、基板201と対向する位置であって、第1ミラー102で反射した光ビームが第2ミラー103に入射する位置に、固定ミラー207が配置されている。光走査装置2においては、第1ミラー102によって反射した光が、固定ミラー207により反射して第2ミラー103に導かれる。
Further, in the optical scanning apparatus 2 according to the second embodiment, in order to guide the light beam reflected by the first mirror 102 to the second mirror 103, the light beam is reflected by the first mirror 102 at a position facing the substrate 201. The fixed mirror 207 is arranged at a position where the light beam is incident on the second mirror 103. In the optical scanning device 2, the light reflected by the first mirror 102 is reflected by the fixed mirror 207 and guided to the second mirror 103.
光走査装置2においては、第1ミラー102で反射した光が、固定ミラー207で反射して第2ミラー103に導かれている。そのため、第2ミラー103に達した光ビームの基準方向に対する光軸変化は、光走査装置1に対して、光軸変化の大きさは2倍になり、変化方向は反転する。したがって、光走査装置2においては、光走査装置1で用いた差分信号V2(t)に対して、大きさを2倍に、符号を反転させた信号で、第2ミラー103を駆動すればよい。このようにすることで、第1ミラー102の周波数応答特性によって増幅された姿勢変化分と、第2ミラー103の周波数応答特性によって増幅された姿勢変化分とが互いに相殺し合うことになるため、光走査装置2からの出射光のリンギングを抑制することができる。
In the optical scanning device 2, the light reflected by the first mirror 102 is reflected by the fixed mirror 207 and guided to the second mirror 103. Therefore, the change in the optical axis of the light beam reaching the second mirror 103 with respect to the reference direction is twice as large as that in the optical scanning device 1, and the direction of change is reversed. Therefore, in the optical scanning device 2, if the second mirror 103 is driven by a signal whose magnitude is doubled and the code is inverted with respect to the difference signal V 2 (t) used in the optical scanning device 1. Good. By doing so, the attitude change amount amplified by the frequency response characteristic of the first mirror 102 and the attitude change amount amplified by the frequency response characteristic of the second mirror 103 cancel each other out. Ringing of the light emitted from the optical scanning device 2 can be suppressed.
光走査装置2では、第1ミラー102と第2ミラー103とが同じ基板201上に製造されているため、製造ばらつきに起因する共振周波数および周波数応答特性の設計値からのずれは、第1ミラー102と第2ミラー103とのどちらにも同じように生ずる。そのため、第1ミラー102と第2ミラー103とを別の基板上に製造する場合に比べて、第1ミラー102の周波数応答特性によって増幅された姿勢変化分と、第2ミラー103の周波数応答特性によって増幅された姿勢変化分とを、より適切に互いに相殺させることができる。
In the optical scanning device 2, since the first mirror 102 and the second mirror 103 are manufactured on the same substrate 201, the deviation of the resonance frequency and the frequency response characteristic from the design values due to the manufacturing variation is the first mirror. The same occurs in both 102 and the second mirror 103. Therefore, as compared with the case where the first mirror 102 and the second mirror 103 are manufactured on different substrates, the attitude change amount amplified by the frequency response characteristic of the first mirror 102 and the frequency response characteristic of the second mirror 103 It is possible to more appropriately cancel each other's posture changes amplified by.
また、光走査装置2においては、第1ミラー102および第2ミラー103を同じ基板201に配置しているため、第1ミラー102と第2ミラー103との相対的な位置関係が固定される。そのため、光走査装置2の組み立ておよび他の部材とのアライメントを容易に行うことができる。
Further, in the optical scanning device 2, since the first mirror 102 and the second mirror 103 are arranged on the same substrate 201, the relative positional relationship between the first mirror 102 and the second mirror 103 is fixed. Therefore, the optical scanning device 2 can be easily assembled and aligned with other members.
なお、光走査装置2においては、基板201の基準面と固定ミラー207の反射面とが平行となるように配置されている。しかしながら、第1ミラー102で反射した光ビームが固定ミラーで反射し第2ミラー103に導かれるのであれば、基板201の基準面を固定ミラー207の反射面に対して傾けて配置してもよい。
In the optical scanning device 2, the reference surface of the substrate 201 and the reflecting surface of the fixed mirror 207 are arranged so as to be parallel to each other. However, if the light beam reflected by the first mirror 102 is reflected by the fixed mirror and guided to the second mirror 103, the reference surface of the substrate 201 may be arranged at an angle with respect to the reflecting surface of the fixed mirror 207. ..
実施の形態3.
図16は、本実施の形態3による光走査装置3の第1ミラー102および第2ミラー103の上面図(Z方向から見た図)である。図17は、第2ミラー303の図16におけるXVII-XVII断面図である。Embodiment 3.
FIG. 16 is a top view (viewed from the Z direction) of thefirst mirror 102 and the second mirror 103 of the optical scanning apparatus 3 according to the third embodiment. FIG. 17 is a cross-sectional view taken along the line XVII-XVII of FIG. 16 of the second mirror 303.
図16は、本実施の形態3による光走査装置3の第1ミラー102および第2ミラー103の上面図(Z方向から見た図)である。図17は、第2ミラー303の図16におけるXVII-XVII断面図である。
FIG. 16 is a top view (viewed from the Z direction) of the
本実施の形態3による光走査装置3は、上述の実施の形態2による光走査装置2の第2ミラー103に代えて、第2ミラー303を有する。第2ミラー303は、Y軸まわりだけでなくX軸まわりにも回転可能に製造されている。
The optical scanning device 3 according to the third embodiment has a second mirror 303 instead of the second mirror 103 of the optical scanning device 2 according to the second embodiment described above. The second mirror 303 is manufactured so as to be rotatable not only around the Y axis but also around the X axis.
すなわち、第2ミラー303は、反射部161と、梁163,164と、中間固定部312と、梁173,174とを備える。反射部161は、X軸方向に延在する梁163,164によって中間固定部312に支持される。反射部161および梁163,164の構成は、上述の実施の形態2による第2ミラー103と同じである。したがって、制御装置104が梁163,164の表面の圧電膜を伸縮させることによって、反射部161がY軸まわりに回転する。なお、第2ミラー303のY軸まわりの機械的な周波数応答特性は、第1ミラー102のY軸まわりの機械的な周波数応答特性と同一である。
That is, the second mirror 303 includes a reflecting portion 161, beams 163 and 164, an intermediate fixing portion 312, and beams 173 and 174. The reflecting portion 161 is supported by the intermediate fixing portion 312 by beams 163 and 164 extending in the X-axis direction. The configurations of the reflecting portions 161 and the beams 163 and 164 are the same as those of the second mirror 103 according to the second embodiment described above. Therefore, the control device 104 expands and contracts the piezoelectric film on the surface of the beams 163 and 164, so that the reflecting portion 161 rotates around the Y axis. The mechanical frequency response characteristic of the second mirror 303 around the Y axis is the same as the mechanical frequency response characteristic of the first mirror 102 around the Y axis.
図16に示すように、中間固定部312は、反射部161および梁163,164の外周に配置され、Y軸方向に延在する梁173,174によって、固定部112に支持される。図17に示すように、梁173上には、絶縁膜321、電極322、圧電膜323、および電極324が、この順に形成される。梁174上には、絶縁膜331、電極332、圧電膜333、および電極334が、この順に形成される。電極322,324,332,334は、互いに電気的に絶縁されており、図示しない配線を介して電源あるいは制御装置104の電極と電気的に接続可能に構成される。
As shown in FIG. 16, the intermediate fixing portion 312 is arranged on the outer periphery of the reflecting portion 161 and the beams 163 and 164, and is supported by the fixing portion 112 by the beams 173 and 174 extending in the Y-axis direction. As shown in FIG. 17, an insulating film 321 and an electrode 322, a piezoelectric film 323, and an electrode 324 are formed on the beam 173 in this order. An insulating film 331, an electrode 332, a piezoelectric film 333, and an electrode 334 are formed on the beam 174 in this order. The electrodes 322, 324, 332, and 334 are electrically insulated from each other, and are configured to be electrically connectable to the electrodes of the power supply or the control device 104 via wiring (not shown).
電極322,324間への電圧印加によって圧電膜323を伸縮させて梁173を変形させることによって、梁173と中間固定部312との接続部分をZ方向に変位させることができる。また、電極332,334間への電圧印加によって圧電膜333を伸縮させて梁174を変形させることによって、梁174と中間固定部312との接続部分をZ方向に変位させることができる。したがって、制御装置104が梁173,174の表面の電極322,324間および電極332,334間へ駆動電圧を印加して圧電膜323,333を伸縮させることによって、反射部161のY軸まわりの回転とは独立に、中間固定部312および中間固定部312に梁163,164によって支持される反射部161をX軸まわりに回転させることができる。ここで、第2ミラー303のX軸まわりの回転についての機械的な共振周波数を「Fx2」とする。
By applying a voltage between the electrodes 322 and 324 to expand and contract the piezoelectric film 323 and deform the beam 173, the connecting portion between the beam 173 and the intermediate fixing portion 312 can be displaced in the Z direction. Further, the connection portion between the beam 174 and the intermediate fixing portion 312 can be displaced in the Z direction by expanding and contracting the piezoelectric film 333 by applying a voltage between the electrodes 332 and 334 to deform the beam 174. Therefore, the control device 104 applies a driving voltage between the electrodes 322 and 324 and between the electrodes 332 and 334 on the surface of the beams 173 and 174 to expand and contract the piezoelectric films 323 and 333 so that the reflecting portion 161 is around the Y axis. Independent of the rotation, the reflection portion 161 supported by the beams 163 and 164 on the intermediate fixing portion 312 and the intermediate fixing portion 312 can be rotated around the X axis. Here, the mechanical resonance frequency for the rotation of the second mirror 303 around the X axis is defined as "Fx2".
図18は、光走査装置3による光ビームの2軸方向の走査を模式的に示す図である。電極322、324間に周波数Fdxの正弦波が駆動信号として印加されると、第2ミラー303がX軸まわりに回転する。第2ミラー103のX軸まわりの回転はY軸まわりの回転とは独立なので、図18に示すように、光走査装置3は光ビームを2軸方向に走査可能である。
FIG. 18 is a diagram schematically showing biaxial scanning of the light beam by the optical scanning device 3. When a sine wave having a frequency of Fdx is applied between the electrodes 322 and 324 as a drive signal, the second mirror 303 rotates about the X axis. Since the rotation of the second mirror 103 around the X axis is independent of the rotation around the Y axis, the optical scanning device 3 can scan the light beam in the biaxial direction as shown in FIG.
また、第2ミラー303のX軸まわりの駆動信号の周波数Fdxが、基本周波数Fdの整数倍となるように設定すれば、1/Fdを1周期として、周期的に同じ方向を走査することができる。
Further, if the frequency Fdx of the drive signal around the X axis of the second mirror 303 is set to be an integral multiple of the fundamental frequency Fd, 1 / Fd can be set as one cycle and the same direction can be scanned periodically. it can.
さらに、Fdx=Fx2、すなわち第2ミラー103のX軸まわり駆動周波数を、その共振周波数とすれば、印加したエネルギーを効率よく振動に変換することができ、小さな印加電圧で大きな振幅を得ることができる。
Further, if Fdx = Fx2, that is, the drive frequency around the X axis of the second mirror 103 is set as the resonance frequency, the applied energy can be efficiently converted into vibration, and a large amplitude can be obtained with a small applied voltage. it can.
本実施の形態3による光走査装置3においても、光走査装置3からの出射光のリンギングを抑制することができるので、ひずみを低減した走査を実現することができる。
Also in the optical scanning device 3 according to the third embodiment, the ringing of the light emitted from the optical scanning device 3 can be suppressed, so that scanning with reduced distortion can be realized.
なお、光走査装置3では、第2ミラー303を2軸まわりに回転可能として、2軸走査が可能なミラーとしている。しかしながら、第2ミラー303に変えて第1ミラー102を2軸走査が可能なミラーとしてもよい。第1ミラー102を2軸走査可能とした場合には、第2ミラー303は第1ミラー102で反射した光を受けるために、第2ミラー303を2軸走査可能とした場合に較べ、相対的にミラーのサイズを大きくする必要がある。そのため、第2ミラー303を2軸走査可能とした場合の方が、光走査装置を小型化することができる。
In the optical scanning device 3, the second mirror 303 is rotatable around two axes to be a mirror capable of two-axis scanning. However, instead of the second mirror 303, the first mirror 102 may be a mirror capable of biaxial scanning. When the first mirror 102 is biaxially scantable, the second mirror 303 receives the light reflected by the first mirror 102, so that it is relative to the case where the second mirror 303 is biaxially scannable. It is necessary to increase the size of the mirror. Therefore, the optical scanning device can be downsized when the second mirror 303 is capable of biaxial scanning.
また、光走査装置3では、第2ミラー303を、Y軸まわりの機械的な周波数応答特性が第1ミラー102と同一の構造の外周に、圧電膜を形成したY軸方向に延在する梁173,174を設ける構造としている。しかしながら、第2ミラー303の構造は、X軸まわりにY軸まわりとは独立に回転変位を与えることができればよく、梁の本数、配置、形状、および圧電膜の種類、配置、形状は特に限定されない。
Further, in the optical scanning device 3, the second mirror 303 is a beam extending in the Y-axis direction in which a piezoelectric film is formed on the outer periphery of the structure having the same mechanical frequency response characteristic as that of the first mirror 102 around the Y-axis. The structure is such that 173 and 174 are provided. However, the structure of the second mirror 303 only needs to be able to give a rotational displacement around the X-axis independently of the Y-axis, and the number, arrangement, shape of beams, and the type, arrangement, and shape of the piezoelectric film are particularly limited. Not done.
また、光走査装置3では、X軸まわりに回転変位を与えるための駆動方式と、Y軸まわりの回転変位を与えるための駆動方式とが同じである。しかしながら、X軸まわりにY軸まわりとは独立に回転変位を与えることができればよく、X軸まわりに回転変位を与えるための構造および駆動方式と、Y軸まわりの回転変位を与えるための構造および駆動方式とが異なってもよい。
Further, in the optical scanning device 3, the drive method for giving rotational displacement around the X-axis and the drive method for giving rotational displacement around the Y-axis are the same. However, it suffices if a rotational displacement can be applied around the X-axis independently of the Y-axis, and a structure and a drive method for imparting a rotational displacement around the X-axis, a structure for imparting a rotational displacement around the Y-axis, and The drive system may be different.
実施の形態4.
図19は、本実施の形態4による光走査装置4の構成を概略的に示す図である。光走査装置4は、実施の形態3による光走査装置3と以下の点が異なる。Embodiment 4.
FIG. 19 is a diagram schematically showing the configuration of theoptical scanning device 4 according to the fourth embodiment. The optical scanning device 4 differs from the optical scanning device 3 according to the third embodiment in the following points.
図19は、本実施の形態4による光走査装置4の構成を概略的に示す図である。光走査装置4は、実施の形態3による光走査装置3と以下の点が異なる。
FIG. 19 is a diagram schematically showing the configuration of the
光走査装置4は、光走査装置3の構成に加えて、光検出器481と、演算部482と、ビームスプリッタ483とを備える。
The optical scanning device 4 includes an optical detector 481, a calculation unit 482, and a beam splitter 483, in addition to the configuration of the optical scanning device 3.
ビームスプリッタ483は、光源101と第1ミラー102との間の光路に配置される。光検出器481は、光走査装置3の出射方向から反対に光走査装置3に入射した光が第2ミラー303、第1ミラー102を経てビームスプリッタ483の反射面で反射した光が検出できる位置に配置している。
The beam splitter 483 is arranged in the optical path between the light source 101 and the first mirror 102. The light detector 481 is a position where the light incident on the light scanning device 3 from the emission direction of the light scanning device 3 can be detected by the light reflected by the reflecting surface of the beam splitter 483 through the second mirror 303 and the first mirror 102. It is placed in.
演算部482は、光源101から出射された光と光検出器481にて検出された光とを比較することによって、物体までの距離を測定するための演算を行なう。すなわち、演算部482は、光走査装置4から出射された光ビームが物体で反射した光を検出し、検出された反射光と出射光とを比較することで、その物体までの距離を測定する。たとえば、光ビームをパルス状に出射すると、物体からもパルス状の反射光を得るので、出射光と反射光のパルスの時間差により物体までの距離を算出できる。
The calculation unit 482 performs a calculation for measuring the distance to the object by comparing the light emitted from the light source 101 with the light detected by the photodetector 481. That is, the calculation unit 482 detects the light reflected by the object by the light beam emitted from the optical scanning device 4, and measures the distance to the object by comparing the detected reflected light with the emitted light. .. For example, when a light beam is emitted in a pulse shape, a pulse-shaped reflected light is also obtained from the object, so that the distance to the object can be calculated from the time difference between the emitted light and the pulse of the reflected light.
さらに、光走査装置4は、2次元的に光ビームを走査することができるので、物体までの距離の情報と光ビームの走査方向の情報とを合わせることで、光走査装置4の周辺の距離画像を取得することができる。
Further, since the optical scanning device 4 can scan the light beam in two dimensions, the distance around the optical scanning device 4 can be obtained by combining the information on the distance to the object and the information on the scanning direction of the light beam. Images can be acquired.
光走査装置4においても、光走査装置4からの出射光のリンギングを抑制することができるので、ひずみを低減した距離画像を得ることができる。
The optical scanning device 4 can also suppress the ringing of the light emitted from the optical scanning device 4, so that a distance image with reduced distortion can be obtained.
なお、光走査装置4においては、物体からの反射光が、出射光と同じ光路を経由して、すなわち第2ミラー303および第2ミラー103を経由して、光検出器481に導かれている。しかしながら、出射光とは別の光路によって物体からの反射光を光検出器481に導いてもよい。
In the optical scanning device 4, the reflected light from the object is guided to the photodetector 481 via the same optical path as the emitted light, that is, via the second mirror 303 and the second mirror 103. .. However, the reflected light from the object may be guided to the photodetector 481 by an optical path different from the emitted light.
図20は、実施の形態4の変形例による光走査装置4Aの構成を概略的に示す図である。光走査装置4Aは、光走査装置4に対し、物体からの反射光が第2ミラー303および第2ミラー103を経由することなく光検出器481に導かれるように、光検出器481の配置を光走査装置4Aの出射光の出口付近に変更したものである。このような光走査装置4Aにおいても、出射光と反射光とを比較することで物体までの距離を算出でき、物体までの距離の情報と光ビームの走査方向の情報とを合わせることで周辺の距離画像を取得することができる。
FIG. 20 is a diagram schematically showing the configuration of the optical scanning device 4A according to the modified example of the fourth embodiment. The photodetector 4A arranges the photodetector 481 so that the reflected light from the object is guided to the photodetector 481 without passing through the second mirror 303 and the second mirror 103. This is changed to the vicinity of the exit of the emitted light of the photodetector 4A. Even in such an optical scanning device 4A, the distance to the object can be calculated by comparing the emitted light and the reflected light, and the information on the distance to the object and the information on the scanning direction of the light beam are combined to provide information on the surroundings. A distance image can be acquired.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
1 光走査装置、101 光源、102 第1ミラー、103 第2ミラー、104 制御装置、111,161 反射部。
1 optical scanning device, 101 light source, 102 first mirror, 103 second mirror, 104 control device, 111, 161 reflector.
Claims (14)
- 光源と、
前記光源から出射された光を反射するように構成された反射部を含む第1走査ミラーと、
前記第1走査ミラーで反射された光を反射するように構成された反射部を含む第2走査ミラーと、
前記第1走査ミラーの前記反射部の姿勢および前記第2走査ミラーの前記反射部の姿勢を制御することによって光の出射方向を制御するように構成された制御装置とを備え、
前記制御装置は、
基本周波数で周期的に変化する第1信号を生成し、
前記基本周波数の高調波のうちから選択された周波数成分を足し合わせた第2信号を生成し、
前記第1信号から前記第2信号を差し引いた差分信号を生成し、
前記第1走査ミラーは、前記第1信号によって駆動され、
前記第2走査ミラーは、前記差分信号によって駆動される、光走査装置。 Light source and
A first scanning mirror including a reflecting unit configured to reflect the light emitted from the light source, and
A second scanning mirror including a reflecting portion configured to reflect the light reflected by the first scanning mirror, and a second scanning mirror.
A control device configured to control the light emission direction by controlling the posture of the reflecting portion of the first scanning mirror and the posture of the reflecting portion of the second scanning mirror is provided.
The control device is
Generates a first signal that changes periodically at the fundamental frequency,
A second signal is generated by adding the frequency components selected from the harmonics of the fundamental frequency.
A difference signal obtained by subtracting the second signal from the first signal is generated.
The first scanning mirror is driven by the first signal.
The second scanning mirror is an optical scanning device driven by the difference signal. - 前記選択された周波数成分は、前記第1走査ミラーの共振周波数および前記第2走査ミラーの共振周波数よりも低い周波数成分である、請求項1に記載の光走査装置。 The optical scanning apparatus according to claim 1, wherein the selected frequency component is a frequency component lower than the resonance frequency of the first scanning mirror and the resonance frequency of the second scanning mirror.
- 前記第1信号は、三角波またはのこぎり波である、請求項1または2に記載の光走査装置。 The optical scanning device according to claim 1 or 2, wherein the first signal is a triangular wave or a sawtooth wave.
- 前記第1走査ミラーの少なくとも1軸まわりの機械的な周波数応答特性と、前記第2走査ミラーの少なくとも1軸まわりの機械的な周波数応答特性とが同じである、請求項1~3のいずれか1項に記載の光走査装置。 Any one of claims 1 to 3, wherein the mechanical frequency response characteristic around at least one axis of the first scanning mirror is the same as the mechanical frequency response characteristic around at least one axis of the second scanning mirror. The optical scanning apparatus according to item 1.
- 前記第1走査ミラーの構造と前記第2走査ミラーの構造とが同じである、請求項1~4のいずれか1項に記載の光走査装置。 The optical scanning apparatus according to any one of claims 1 to 4, wherein the structure of the first scanning mirror and the structure of the second scanning mirror are the same.
- 前記第1走査ミラーと前記第2走査ミラーとの間の光路に配置され、前記第1走査ミラーで反射された光を反射するように構成された固定ミラーをさらに備え、
前記第2走査ミラーは、前記第1走査ミラーで反射され、かつ前記固定ミラーで反射された光を反射するように構成される、請求項1~5のいずれか1項に記載の光走査装置。 Further comprising a fixed mirror arranged in an optical path between the first scanning mirror and the second scanning mirror and configured to reflect the light reflected by the first scanning mirror.
The optical scanning apparatus according to any one of claims 1 to 5, wherein the second scanning mirror is configured to reflect light reflected by the first scanning mirror and reflected by the fixed mirror. .. - 前記第1走査ミラーおよび前記第2走査ミラーは、同一の基板上に配置される、請求項6に記載の光走査装置。 The optical scanning apparatus according to claim 6, wherein the first scanning mirror and the second scanning mirror are arranged on the same substrate.
- 前記第1走査ミラーおよび前記第2走査ミラーは、MEMS方式のミラーである、請求項1~7のいずれか1項に記載の光走査装置。 The optical scanning device according to any one of claims 1 to 7, wherein the first scanning mirror and the second scanning mirror are MEMS type mirrors.
- 前記第1走査ミラーの回転軸方向と前記第2走査ミラーの回転軸方向とが同じである、請求項1~8のいずれか1項に記載の光走査装置。 The optical scanning apparatus according to any one of claims 1 to 8, wherein the rotation axis direction of the first scanning mirror and the rotation axis direction of the second scanning mirror are the same.
- 前記第1走査ミラーおよび前記第2走査ミラーの各々は、圧電材料の変形、静電力あるいは電磁力による変位、変形のいずれかにより前記反射部の姿勢を変化させる、請求項1~9のいずれか1項に記載の光走査装置。 Any of claims 1 to 9, wherein each of the first scanning mirror and the second scanning mirror changes the posture of the reflecting portion by any of deformation of the piezoelectric material, displacement due to electrostatic force or electromagnetic force, and deformation. The optical scanning apparatus according to item 1.
- 前記第1走査ミラーおよび前記第2走査ミラーの少なくとも一方は、2軸方向に走査可能に構成される、請求項1~10のいずれか1項に記載の光走査装置。 The optical scanning apparatus according to any one of claims 1 to 10, wherein at least one of the first scanning mirror and the second scanning mirror is configured to be capable of scanning in two axial directions.
- 前記第2走査ミラーは、2軸方向に走査可能に構成される、請求項1~10のいずれか1項に記載の光走査装置。 The optical scanning device according to any one of claims 1 to 10, wherein the second scanning mirror is configured to be capable of scanning in two axial directions.
- 前記光走査装置は、
前記光走査装置からの出射光が照射された物体からの反射光を受ける光検出器と、
前記出射光と前記反射光との関係から前記物体までの距離を算出するように構成された演算装置とをさらに備える、請求項1~12のいずれかに記載の光走査装置。 The optical scanning device is
A photodetector that receives reflected light from an object irradiated with light emitted from the optical scanning device, and a photodetector.
The optical scanning apparatus according to any one of claims 1 to 12, further comprising an arithmetic unit configured to calculate a distance to the object from the relationship between the emitted light and the reflected light. - 光走査装置の制御方法であって、
前記光走査装置は、
光源と、
前記光源から出射された光を反射するように構成された反射部を含む第1走査ミラーと、
前記第1走査ミラーで反射された光を反射するように構成された反射部を含む第2走査ミラーとを備え、
前記制御方法は、
基本周波数で周期的に変化する第1信号を生成するステップと、
前記基本周波数の高調波のうちから選択された周波数成分を足し合わせた第2信号を生成するステップと、
前記第1信号から前記第2信号を差し引いた差分信号を生成するステップと、
前記第1信号によって前記第1走査ミラーを駆動するステップと、
前記差分信号によって前記第2走査ミラーを駆動するステップとを含む、光走査装置の制御方法。 It is a control method of an optical scanning device.
The optical scanning device is
Light source and
A first scanning mirror including a reflecting unit configured to reflect the light emitted from the light source, and
A second scanning mirror including a reflecting portion configured to reflect the light reflected by the first scanning mirror is provided.
The control method is
The step of generating the first signal that changes periodically at the fundamental frequency,
A step of generating a second signal by adding frequency components selected from the harmonics of the fundamental frequency, and
A step of generating a difference signal obtained by subtracting the second signal from the first signal, and
The step of driving the first scanning mirror by the first signal and
A method for controlling an optical scanning apparatus, which comprises a step of driving the second scanning mirror by the difference signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/013724 WO2020194691A1 (en) | 2019-03-28 | 2019-03-28 | Optical scanning device and method of controlling same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/013724 WO2020194691A1 (en) | 2019-03-28 | 2019-03-28 | Optical scanning device and method of controlling same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020194691A1 true WO2020194691A1 (en) | 2020-10-01 |
Family
ID=72611251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/013724 WO2020194691A1 (en) | 2019-03-28 | 2019-03-28 | Optical scanning device and method of controlling same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020194691A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1078559A (en) * | 1996-09-05 | 1998-03-24 | Hamamatsu Photonics Kk | Optical beam scanner |
JP2011090030A (en) * | 2009-10-20 | 2011-05-06 | Brother Industries Ltd | Image display device |
JP2013205818A (en) * | 2012-03-29 | 2013-10-07 | Stanley Electric Co Ltd | Light deflector |
-
2019
- 2019-03-28 WO PCT/JP2019/013724 patent/WO2020194691A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1078559A (en) * | 1996-09-05 | 1998-03-24 | Hamamatsu Photonics Kk | Optical beam scanner |
JP2011090030A (en) * | 2009-10-20 | 2011-05-06 | Brother Industries Ltd | Image display device |
JP2013205818A (en) * | 2012-03-29 | 2013-10-07 | Stanley Electric Co Ltd | Light deflector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5151065B2 (en) | Optical scanner and scanning projector | |
JP5728823B2 (en) | Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus | |
EP3021154B1 (en) | Light deflector, and devices incorporating the same | |
JP6789438B2 (en) | Optical scanning device and its control method | |
JP5614167B2 (en) | Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus | |
JP6333079B2 (en) | Optical scanner | |
US9323048B2 (en) | Optical deflector including meander-type piezoelectric actuators coupled by crossing bars therebetween | |
JP6278180B2 (en) | Optical scanning device, image display device, and moving body | |
US11644664B2 (en) | Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device | |
JPWO2013168385A1 (en) | Optical reflection element | |
JP2008295174A (en) | Oscillation device, light scanner using the device, image display device, and control method of oscillation device | |
JP6743353B2 (en) | Optical deflector, optical scanning device, image forming device, image projection device, and head-up display | |
JP6686480B2 (en) | Optical deflector and image projection device | |
US8270057B2 (en) | Oscillator device, optical deflecting device and method of controlling the same | |
JP6485013B2 (en) | Optical deflector, image display device, and object device | |
JP2017016018A (en) | Optical deflector, optical scanner, image formation device, image projection device, head-up display device and rader device | |
WO2015170624A1 (en) | Mobile reflection element and two-dimensional scanning device | |
JP6648443B2 (en) | Optical deflector, two-dimensional image display device, optical scanning device, and image forming device | |
WO2020194691A1 (en) | Optical scanning device and method of controlling same | |
US11640053B2 (en) | Movable device, image projection apparatus, heads-up display, laser headlamp, head-mounted display, object recognition device, and mobile object | |
JP2020101588A (en) | Movable device, distance measuring device, image projection device, vehicle, and seating | |
JP2022143323A (en) | Movable device, image projector, head-up display, laser head lamp, head-mount display, distance measuring device, and mobile body | |
JP2013195479A (en) | Optical deflector, optical scanning device, image formation device and image projection device | |
JP2021071582A (en) | Light deflector, image projection device, head-up display, laser head lamp, head-mounted display, object recognition device, and vehicle | |
US20230359022A1 (en) | Deflection device with a mirror for use in scanner technical field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19921022 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19921022 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |