WO2020193584A1 - Method for manufacturing mastic beads - Google Patents

Method for manufacturing mastic beads Download PDF

Info

Publication number
WO2020193584A1
WO2020193584A1 PCT/EP2020/058234 EP2020058234W WO2020193584A1 WO 2020193584 A1 WO2020193584 A1 WO 2020193584A1 EP 2020058234 W EP2020058234 W EP 2020058234W WO 2020193584 A1 WO2020193584 A1 WO 2020193584A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
supporting structure
sizes
vessel
deviations
Prior art date
Application number
PCT/EP2020/058234
Other languages
French (fr)
Inventor
Pierre LANDRU
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to KR1020217030355A priority Critical patent/KR20210154144A/en
Priority to CN202080028882.6A priority patent/CN113710950B/en
Publication of WO2020193584A1 publication Critical patent/WO2020193584A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0478Position or presence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0678Position or presence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks with membranes.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) exhibiting by example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at approximately -162 ° C at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • the liquefied gas is LNG, which is a mixture with a high methane content stored at a temperature of about -162 ° C at atmospheric pressure.
  • Other liquefied gases can also be considered, including ethane, propane, butane or ethylene, but also hydrogen.
  • Liquefied gases can also be stored under pressure, for example at a relative pressure between 2 and 20 bar, and in particular at a relative pressure close to 2 bar.
  • the tank can be produced using different techniques, in particular in the form of an integrated membrane tank or a self-supporting tank.
  • a sealed and thermally insulating tank for liquefied natural gas storage arranged in a supporting structure has a multilayer structure, namely from the outside to the inside of the tank, a secondary thermally insulating barrier anchored against the supporting structure, a waterproof membrane secondary which rests on the secondary thermally insulating barrier, a primary thermally insulating barrier which rests on the secondary waterproof membrane and a primary waterproof membrane which rests on the primary thermally insulating barrier and which is intended to be in contact with the liquefied natural gas stored in tank.
  • each thermally insulating barrier comprises a set of insulating blocks, respectively primary and secondary (according to other embodiments, the tank has only one barrier thermally insulating), of generally parallelepipedal shape which are juxtaposed and which thus form a support surface for the respective waterproof membrane.
  • This support surface must have good flatness in order to provide a continuous and flat support for the waterproof membranes.
  • the walls of tanks are subject to numerous thermal, hydrostatic and hydrodynamic constraints when the tank contains LNG.
  • a flat and continuous bearing surface avoids the generation of stress concentration areas in the waterproof membrane, these stress concentration areas potentially causing degradation of the waterproof membrane.
  • the insulating blocks have a flat internal surface to form the support surface of the waterproof membrane
  • the supporting structure on which said blocks are anchored does not always have sufficient flatness for the blocks anchored on said supporting structure to form a continuous and flat support surface.
  • the junction zones between the various portions of the double hull form irregularities with respect to the general plane of the corresponding supporting wall, these irregularities being by example related to the weld between said two portions of double shell.
  • beads of mastic are usually interposed between the insulating blocks and the supporting structure, as described in FR-A-2259008.
  • the beads of mastic can be deposited on a lower surface of the insulating blocks in a plastic state, then pressed against the bearing wall to flow until exactly filling the gap between the bearing wall and the insulating blocks when the latter are in their final position.
  • Such cords of mastics are for example also described in documents FR2909356, FR2877638 or WO14057221 which describe different structures of sealed and thermally insulating tanks integrated in different types of load-bearing structures.
  • An idea underlying the invention is to provide a method of manufacturing cords of mastics intended to be interposed between a sealed and thermally insulating tank and a supporting structure.
  • an idea underlying the invention is to manufacture cords of sealants having a satisfactory thickness dimension to allow the formation of a support surface for the waterproof membranes having a satisfactory flatness.
  • An idea underlying the invention is also to avoid excessive consumption of putty during the manufacture of the mastic beads.
  • the invention provides a method of manufacturing cords of mastics intended to install a sealed and thermally insulating tank in a supporting structure, the supporting structure comprising an internal surface delimiting an internal space, the process comprising the steps of: - determining a plurality of differences between a plurality of measurement points distributed on an external surface of the tank and the internal surface of the supporting structure, said differences being determined parallel to a thickness direction of the tank at the level of said points of measurement, said deviations being determined as a function of an implantation position of the tank in the internal space of the supporting structure and of three-dimensional dimensions of said tank and of said internal space of the supporting structure, - Manufacturing mastic beads intended to be applied between the internal surface of the supporting structure and the external surface of the tank, said beads having cross-sectional dimensions defined as a function of said determined deviations.
  • cords of mastics making it possible to compensate for the defects of flatness of the internal surface of the supporting structure.
  • cords of mastics produced by such a process make it possible to provide a thermally insulating barrier having satisfactory flatness for the support of the waterproof membrane.
  • such a method of manufacturing cords of mastics may include one or more of the following characteristics.
  • a bead of mastic can be made by depositing an amount of polymerizable mastic in a plastic state on a surface selected from the internal surface of the supporting structure and the external surface of the vessel.
  • the cross-sectional shape of the bead of mastic thus deposited may be more or less irregular, for example approximately circular.
  • This shape is then modified into a substantially rectangular section by crushing between the internal surface of the supporting structure and the external surface of the tank during the installation of the tank in the supporting structure, then the bead hardens by polymerization in this shape. substantially rectangular.
  • the cross section of the bead during the deposition of the polymerizable mastic is preferably sufficient so that the section of the bead of finally cured mastic has a width greater than or equal to a predefined constant.
  • This predefined constant i.e. minimum admissible width
  • the bead of mastic is produced continuously over a length corresponding to the length of application of said bead of mastic on the external surface of the tank or the internal surface of the supporting structure.
  • such a method may further comprise: - providing a plurality of sizes of cross section, said plurality of sizes comprising an integer t of sizes, the plurality of sizes having an upper limit, said upper limit being greater than a rectangular section associated with the maximum deviation of the a plurality of gaps, the associated rectangular section having a predefined width and a height equal to the maximum gap of the plurality of gaps.
  • the sealant beads are made with cross-sectional dimensions selected from said plurality of sizes.
  • the integer t is less than a total number of said deviations of the plurality of deviations.
  • the invention is not limited to the production of a limited number of sizes of cords optimized to compensate for the flatness defects of the supporting structure, it makes it possible to offer a flexible choice to the operators, in charge of the assembly / assembly of each tank in a supporting structure, with regard to two key parameters, namely: - a limited number of sizes of mastic beads adapted to the flatness defects of the supporting structure, and - perfect optimization of the quantity of mastic necessary for adequate assembly / assembly (with regard to all the structural and mechanical strength requirements) and perennial of the tank in the supporting structure.
  • the operators thanks to the method according to the invention, have the possibility of favoring the choice of a limited number of sizes of mastic beads, for example a number of sizes of mastic beads desired between 3 and 8, or to favor the perfect optimization of the quantity of mastic necessary for the assembly / assembly operation of the tank.
  • the invention nevertheless not only makes it possible to optimize the size of the mastic beads with the flatness defects of the supporting structure in order to reduce the non-technically useful quantity of mastic but also offers the operators the possibility of choosing the number sizes of cords that they desire or that they can use as part of the tank assembly / assembly operation.
  • a bead of mastic is manufactured, the cross-sectional dimension of which is equal to a minimum size among the sizes which is greater than or equal to a rectangular section associated with said deviation, the associated rectangular section having said predefined width and a height equal to said gap.
  • the cords of mastics produced make it possible to correct the flatness defects of the supporting structure satisfactorily without excessive consumption of mastic.
  • the step of providing the plurality of cross section sizes comprises: - calculate a frequency of occurrence of the deviations of the plurality of deviations, - calculating the plurality of sizes of sealant beads as a function of the frequency of occurrence of the deviations and the determined deviations so that each deviation of the plurality of deviations can be associated with a size of the plurality of sizes which is immediately greater than the rectangular section associated with said gap, and so as to limit an accumulated difference between the rectangular sections associated with said gaps of the plurality of gaps and said sizes with which said gaps are associated.
  • the fixing of the number t of different sizes and / or the calculation of the t sizes are operations which can be carried out according to different strategies.
  • the fixing of the number t of different sizes and / or the calculation of the t sizes can be carried out for a larger or smaller construction unit, for example for a plurality of tanks, for a single tank or for a portion of the tank, in particular for a flat wall of a polyhedral tank, or even for a portion of a flat wall. It is necessary to reconfigure the mastic bead production tool more often than the construction unit for which the calculation was made is small.
  • the process amounts to manufacturing each bead of sealant to measure, which very substantially eliminates any overconsumption of sealant, but Significantly increases operational constraints when installing the tank, since each bead of sealant will have to be manufactured and routed to a precisely localized location.
  • a relatively low number t makes it possible to standardize the manufacture of mastic beads, at least for one construction unit, and to reduce operational constraints.
  • the whole number t of sizes is less than or equal to 10, preferably less than or equal to 5.
  • such a method may further comprise: - carry out a three-dimensional measurement of the internal space of the supporting structure, - defining dimensions and a shape of the tank as a function of said three-dimensional measurement so as to allow the insertion of said tank into the internal space of the supporting structure, - Define the installation position of the tank in the internal space of the supporting structure as a function of the three-dimensional measurement of the internal space of the supporting structure and the dimensions and shape of the defined tank.
  • the tank comprises a plurality of insulating blocks comprising bottom panels defining said outer surface of the tank, and in which defining an implantation position of the tank comprises defining an anchoring position for the plurality of insulating blocks on the internal surface of the supporting structure.
  • one or more or each of the insulating blocks has a parallelepipedal shape, for example rectangular parallelepiped.
  • the measurement points comprise, for each insulating block, a point of a bottom panel of said insulating block when said insulating block is in the anchoring position.
  • the supporting structure comprises at least one flat supporting wall, the tank comprising a tank wall comprising a plurality of insulating blocks intended to be anchored on the supporting wall, said insulating blocks having an internal surface parallel to the control panel. bottom, said internal surface forming a support surface for a sealed membrane of the vessel wall, the method further comprising: - determine a reference plane for the load-bearing wall, and the anchoring position of the insulating blocks is defined so that the internal surface of said insulating block has, when said insulating block is in the anchoring position, an inclination less than a threshold angle with respect to the reference plane.
  • a tank wall comprises a plurality of insulating blocks juxtaposed in a regular pattern.
  • the sealed and thermally insulating tank further comprises a sealed membrane resting on the internal surface of the insulating blocks.
  • the threshold angle is less than Arctan (10 - 2), preferably less than Arctan (6.10 -3 ).
  • the cords of sealants are manufactured so that the internal surface of the insulating block has an inclination less than said threshold angle with respect to the internal surface of an insulating block having an adjacent anchoring position on the load-bearing wall.
  • the sealant beads are made with a length less than or equal to a dimension of the bottom panel of an insulating block.
  • the internal space of the supporting structure has a longitudinal direction, a transverse direction and a height direction
  • the method comprising the steps of - defining a longitudinal central axis of the tank, said longitudinal central axis being parallel to the longitudinal axis of the internal space of the supporting structure, - defining a transverse central axis of the tank, said transverse central axis being parallel to the transverse axis of the internal space of the supporting structure, and - Define a central height axis of the tank, said central height axis being parallel to the height axis of the internal space of the supporting structure.
  • the step of positioning the tank in the internal space of the supporting structure comprises a step of defining a plurality of first positioning lines and a plurality of second positioning lines, the first positioning lines being parallel to each other, the second positioning lines being parallel to each other, the first positioning lines being perpendicular to the second positioning lines, the first positioning lines being spaced by a first spacing step equal to the dimension on a first side of the outer surface of an insulating block, the second positioning lines being spaced apart by a second spacing pitch equal to the dimension of a second side of the outer surface of said insulating block.
  • At least one of the longitudinal central axis of the tank, the transverse central axis of the tank and the central height axis of the tank defines a first or a second positioning line of the tank. vessel wall and / or an axis of symmetry of the first or second positioning lines of said vessel wall.
  • the invention also provides a storage installation comprising a supporting structure and a sealed and thermally insulating tank installed in an internal space of the supporting structure, said storage installation comprising cords of sealants produced according to the aforementioned methods. and applied between an internal surface of the internal space of the supporting structure and an external surface of the vessel.
  • Such a tank can be part of an onshore storage installation, for example to store LNG or be installed in a floating, coastal or deep water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU). , a floating production and storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and storage unit
  • Such a tank can also serve as a fuel tank in any type of vessel.
  • the invention also provides such a storage facility in the form of a vessel for the transport of a cold liquid product comprising a double hull forming said supporting structure.
  • the invention also provides a method for loading or unloading such a ship, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage installation to or from the vessel tank.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating storage installation. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipes from or towards the floating or terrestrial storage installation towards or from the vessel of the vessel.
  • FIG. 1 is a cutaway view of a supporting structure intended to receive a sealed and thermally insulating tank.
  • FIG. 2 is a schematic representation of the transverse wall of the supporting structure of FIG. 1 illustrating the position of installation of the insulating blocks of the sealed and thermally insulating tank wall intended to be anchored to said transverse supporting wall.
  • FIG. 3 is a sectional view of the transverse bearing wall of FIG. 2 illustrating the defects of flatness of an internal surface of said transverse bearing wall.
  • Figure 4 is a sectional view of the transverse load-bearing wall of Figure 3 illustrating an optimum reference plane.
  • FIG. 5 is a view similar to FIG. 4 illustrating an interpolation of the reference plane of FIG. 4 by linear sections corresponding to the dimensions of the insulating blocks of the vessel wall intended to be anchored on said transverse bearing wall.
  • Figure 6 is a view similar to Figure 3 on which are anchored insulating blocks of the sealed and thermally insulating tank wall.
  • FIG. 7 is a graph illustrating the dimensions of the sealant beads as a function of the frequency of occurrence of the gaps to be made up between the external surface of the sealed and thermally insulating tank and the internal surface of the supporting structure and manufactured according to different methods of production.
  • FIG. 8 is a cut-away schematic representation of an LNG tanker tank comprising a sealed and thermally insulating tank and of a loading / unloading terminal for this tank.
  • the supporting structure 1 intended to receive the walls of a sealed and thermally insulating tank.
  • the supporting structure 1 is formed by the double hull of a ship.
  • the supporting structure 1 has a general polyhedral shape.
  • the supporting structure 1 has transverse walls 2, typically front and rear, here octagonal in shape.
  • the front transverse wall 2 is only partially shown in order to allow visualization of an internal space 9 of the supporting structure 1.
  • the transverse walls 2 are cofferdam walls of the ship and extend transversely to the longitudinal direction of the ship.
  • the supporting structure 1 also comprises an upper wall 3, a lower wall 4 and side walls 5.
  • the upper wall 3, the lower wall 4 and the side walls 5 extend in the longitudinal direction of the ship and connect the transverse walls 2 front and rear.
  • the upper wall 3 comprises, near the rear transverse wall 2, a space, of rectangular parallelepiped shape, projecting upwards, called the liquid dome 6.
  • the liquid dome 6 defines an opening 7 of the upper wall 3 allowing passage. of liquid transfer pipes from or to the tank when the latter is mounted in the supporting structure 1.
  • the supporting walls 2, 3, 4, 5 of the supporting structure have an internal surface 10 defining the internal space 9 in which the tank is housed.
  • the tank comprises a plurality of tank walls, each tank wall being anchored to a respective supporting wall 2, 3, 4, 5 of the supporting structure 1.
  • the tank is a membrane tank having a multilayer structure.
  • each wall of the tank has successively, from the outside to the inside, according to the thickness direction of the corresponding tank wall, a secondary thermally insulating barrier anchored on the corresponding bearing wall 2, 3, 4, 5 , a secondary waterproof membrane resting on the secondary thermally insulating barrier, a primary thermally insulating barrier resting against the secondary waterproof membrane and a primary waterproof membrane resting on the primary thermally insulating barrier and intended to be in contact with the fluid contained in the tank.
  • each tank wall comprises a plurality of insulating blocks 11 forming at least the secondary thermally insulating barrier. These insulating blocks 11 are prefabricated outside the internal space and have standardized dimensions.
  • the insulating blocks 11 are of parallelepiped shape.
  • the primary and secondary thermally insulating barriers are formed by a plurality of these juxtaposed parallelepipedal insulating blocks 11.
  • the insulating blocks 11 comprise a portion of a secondary thermally insulating barrier and a portion of a primary thermally insulating barrier superimposed.
  • a waterproof layer forming a portion of the secondary waterproof membrane being interposed between these two portions of thermally insulating barrier.
  • the portions of the primary and secondary insulating barriers have parallelepipedal shapes and the portion of the primary thermally insulating barrier has dimensions smaller than the dimensions of the portion of the secondary thermally insulating barrier.
  • the insulating blocks 11 have a bottom panel forming a rectangular outer surface 12, this outer surface 12 being intended to rest against the inner surface 10 of the inner space 9. Similarly, these insulating blocks 11 have a flat internal surface forming a support surface for receiving a waterproof membrane.
  • the supporting structure 1 has in practice dimensions which may vary from the theoretical dimensions. It is therefore necessary to take into account the variations in the dimensions of the supporting structure 1 linked for example to construction tolerances to integrate a sealed and thermally insulating tank in the internal space 9.
  • a three-dimensional measurement of the internal space 9 of the supporting structure 1 is carried out.
  • This three-dimensional measurement of the internal space 9 is carried out by any suitable means, for example by using laser rangefinders or laser emitters and sensors positioned in the internal space 9 in order to measure the dimensions and the arrangement of the various bearing walls. 2, 3, 4, 5.
  • the vessel walls are dimensioned and their position determined on the one hand as a function of the dimensions of the insulating blocks 11, and more particularly of the outer surface 12 of said insulating blocks 11, and on the other hand of the three-dimensional measurement of the 'internal space 9.
  • the insulating blocks 11 being anchored juxtaposed in a regular mesh on each bearing wall 2, 3, 4, 5, anchoring positions of the insulating blocks 11 on the bearing wall 2, 3, 4, 5 corresponding values are determined for each tank wall.
  • FIG. 2 illustrates an example of a mesh 15 on a transverse carrying wall 2.
  • This mesh 15 comprises a plurality of first positioning lines 16 and a plurality of second positioning lines 17.
  • the first positioning lines 16 are mutually parallel.
  • the second positioning lines 17 are mutually parallel.
  • the first positioning lines 16 and the second positioning lines 17 are perpendicular to each other.
  • the first positioning lines 16 are spaced according to a first regular spacing step 18, this first spacing step 18 corresponding to the dimension of a first side of the external surface 12 of an insulating block 11.
  • the second positioning lines 17 are spaced apart by a second regular spacing pitch 19, this second spacing pitch 19 corresponding to the dimension of a second side of the outer surface 12 of the insulating blocks 11.
  • These first positioning lines 16 and these second positioning lines 17 correspond to lines along which said insulating blocks 11 are anchored to the transverse bearing wall 2, for example by means of anchoring members, not shown, such as studs.
  • the mesh 15 thus makes it possible to determine the positions of the insulating blocks 11 on the transverse supporting wall 2.
  • a longitudinal central axis (not illustrated), a transverse central axis 13 (see FIG. 2) and a central height axis 14 (see FIG. 2) of the tank are calculated.
  • These central axes are determined according to the three-dimensional measurement of the internal space 9.
  • These central axes are possibly adjusted according to the position of the liquid dome 6 in the supporting structure 1 and make it possible to determine the arrangement of the mesh 15.
  • the mesh 15 determined for anchoring the insulating blocks 11 on a transverse load-bearing wall 2 can be symmetrical on either side of the central axis of height 14.
  • the transverse central axis 13 can determine a first positioning line 16.
  • the meshes 15 on the various bearing walls 2, 3, 4, 5 are preferably determined so as to ensure continuity in the corrugations between the different walls of the tank.
  • the positioning of the insulating blocks 11 on two adjacent bearing walls 2, 3, 4, 5 are modulated so as to form support surfaces allowing installation of the waterproof membrane so that the corrugations can be continuous between the walls of tanks.
  • the internal surface 10 formed by the supporting walls 2, 3, 4, 5 may have imperfect flatness due, for example, to construction tolerances or even to the assembly of the various elements forming said supporting walls 2, 3, 4 5
  • the welds made between two portions of a double shell assembled together can constitute zones of irregularity in the flatness of the internal surface 10.
  • the zones comprising stiffeners arranged between the two walls forming the double shell. of a ship can also form areas of irregularity in the flatness of the internal surface 10.
  • FIG. 3 illustrates a transverse load-bearing wall 2 exhibiting such flatness defects. These flatness defects generate more or less significant differences between the points of the internal surface 10 and a flat mean line of the bearing wall.
  • a reference plane 21 is determined corresponding to an ideal position of the waterproof membrane, that is to say an ideal position of the internal surface 22 of the insulating blocks 11.
  • This reference plane 21 illustrated in FIG. 4 is substantially parallel to a mean plane of the transverse load-bearing wall 2, that is to say it corresponds to a plane parallel to the transverse load-bearing wall 2, apart from the aforementioned flatness defects.
  • the first positioning lines 16 are also illustrated.
  • the reference plane 21 is an optimal theoretical plane. It can be tolerated that the insulating blocks 11 have an internal surface 22, that is to say a support surface for a primary or secondary waterproof membrane, exhibiting a slight inclination with respect to this reference plane 21. Each insulating block 11 has an internal surface 22 exhibiting with the optimum reference plane 21 an angle less than Arctan (10 -2 ), and preferably less than Arctan (6.10 -3 ). In addition, the internal surface 22 of two adjacent insulating blocks 11 must not form an angle that is too large and preferably less than Arctan (10 -2 ), and preferably less than Arctan (6.10 -3 ). These angles correspond to a limit beyond which the support surface of the waterproof membrane would have insufficient flatness and likely to generate in use one or more areas of stress concentration on the waterproof membrane.
  • a reference line 23 is interpolated by linear portions 24 from the reference plane 21 for each second positioning line 17.
  • Each linear portion 24 has a dimension corresponding to the first spacing step, in other words, each linear portion corresponds to the side dimension of an insulating block 11. This interpolation is carried out in a similar manner for each first positioning line with linear portions corresponding to the second step spacing.
  • shims 25 are arranged on or near the anchoring members intended to cooperate with the insulating blocks 11. These wedges 25 are dimensioned so as to have a constant gap, equal to the thickness of an insulating block 21, between the internal surface of said wedges 25 and the reference line 23.
  • beads of mastic 26 are interposed between the outer surface 12 of the insulating blocks 11 and the inner surface 10.
  • These cords of mastic 26 are made by mixing a polymerizable resin and a hardener on the site of manufacture of the tank in order to be applied immediately, before curing by polymerization, on the insulating blocks 11. This manufacture on site is necessary if the curing time of the mastic is relatively short, for example about 1 hour or less.
  • these beads of mastic 26 make it possible to make up for the defects of flatness of the internal surface 10 and to provide a support for the insulating blocks 11 between the shims 25.
  • the cords of mastic 26 are dimensioned to fill the gaps 27 between the external surface 12 of the insulating blocks 11 and the internal surface 10 while having a surface of cooperation with, on the one hand, the insulating blocks 11 on which they are applied and, on the other hand, the internal surface 10 of the supporting structure sufficient to support said insulating blocks 11 and transmit the forces between the insulating blocks 11 and the supporting structure 1.
  • these beads of mastic 26 are dimensioned according to the distances 27 measured between the outer surface 12 of the insulating blocks 11 and the internal surface 10 and as a function of a predefined width of said cooperation surface.
  • the quantity of mastic deposited in a malleable state to form a bead of mastics 26 is therefore dimensioned with a sufficient cross section so that, in the final state, after crushing of said bead of mastic 26 between the outer surface 12 of the insulating block 11 and the internal surface 10 when placing said insulating block 11 on the supporting structure 1, an application surface of said bead of mastic 26 on the insulating block 11 and on the internal surface 10 has a width greater than or equal to a width minimum predefined.
  • the dimensioning of the cross section of the mastic beads is therefore determined from the predefined minimum width and the positions of the mastic beads, since the thickness dimension of a bead depends on the gap 27 to be filled at its precise location. .
  • These positions (and therefore the number of mastic beads 26 to be laid) as well as this predefined width result from a preliminary calculation taking into account the mechanical bending strength of the insulating blocks 11.
  • the deviations 27 are measured on the one hand on the reference lines 23 and on the other hand on the three-dimensional measurement of the internal surface 10 carried out previously. More particularly, for the anchoring position of each insulating block 11 determined by the mesh 15, a plurality of gaps 27 between the outer surface 12 of said insulating block 11 and the inner surface 10 of the supporting structure 1. In the example illustrated in Figure 6, three cords of mastic 26 are interposed between each insulating block 11 and the internal surface 10 of the supporting structure 1, these cords of mastic developing over the entire length of the insulating block 11. Thus, one or more gaps 27 are measured along each line of the outer surface 12 of the insulating blocks at which the sealant beads 26 are to be applied.
  • these deviations 27 are measured in a direction of thickness of the corresponding tank wall.
  • the deviation is measured at one or more measuring points, for example three measuring points, for each bead of sealant. If several measurement points are associated with the same bead of mastic, the sizing of the bead of mastic can be carried out variably in the length of the bead of mastic, or uniformly over the entire length of the bead of mastic at an average value. of the deviations obtained at these measurement points.
  • such cords of mastic 26 are produced continuously by means of a mastic extruder.
  • Various techniques can be used to adjust the cross section of the sealant beads 26 during manufacture.
  • Adjustment of the cross section can be achieved by adjusting the flow rate of sealant through the dispensing head of the extruder.
  • This flow rate adjustment can optionally be accompanied by an adjustment of the outlet section of the extruder dispensing head.
  • This adjustment of the outlet section can be carried out in different ways, for example by means of an adjustable section distribution head or by means of interchangeable distribution heads, having different fixed sections.
  • Another way to adjust the cross section of the bead of mastic, especially if the mastic is sufficiently thixotropic, is to adjust a relative feed rate between the dispensing head of the extruder and the surface on which the bead of mastic is deposited. , that is to say for example by adjusting the travel speed of the insulating blocks in the technique described by the publication FR-A-2259008.
  • a first method of dimensioning the sealant beads consists in dimensioning the cross section of each bead of mastic 26 to measure, as a function of the distance 27 measured at the location that the bead of mastic must occupy on the supporting structure 1.
  • a sizing method has the drawback of having to permanently modify the setting of the production tool.
  • the sealant beads cannot be made uniformly.
  • FIG. 7 illustrates a distribution 28 of the deviations 27 measured as described above.
  • the ordinate represents the dimension of the gap 27 in the direction of thickness of the vessel wall. This dimension can be multiplied by the predefined width to obtain the ideal cross-sectional area of the bead of sealant.
  • the abscissa represents the population of the measurement points, reduced to a percentage.
  • the distribution has been ordered in ascending order of deviations 27 and thus provides the frequency of occurrence of each deviation in the distribution. The more frequent a deviation, the more it occupies a large place in the distribution 28.
  • cords of sealants 26 are produced in different sizes for all of the distances 27 measured between the internal surface 10 and the external surface of the tank, typically the external surface 12 of the insulating blocks 11.
  • This distribution deviations could however be determined at the scale of a building unit other than a whole tank, for example a flat wall of the tank.
  • the distribution 28 of the deviations can be increased by a certain safety coefficient, for example increased by approximately 8%, relative to the actual measured value. This increase makes it possible to slightly oversize the sections of the sealant beads 26 to guarantee a satisfactory cooperation surface, that is to say in particular to obtain by creep a final width greater than or equal to the predefined width.
  • a second curve 29 corresponds to a polynomial interpolation of the distribution 28 of the deviations.
  • the sizes of the sealant beads 26 are determined equally.
  • a curve of equally distributed sizes 30 illustrates in dotted lines the different sizes 31 to 35.
  • a first evenly distributed size 31 has a thickness of 5.7mm
  • a second equally distributed size 32 has a thickness of 8.4mm
  • a third size evenly distributed 33 has a thickness of 10.3mm
  • a fourth evenly distributed size 34 has a thickness of 12.9mm
  • a fifth evenly distributed size 35 has a thickness of 23mm.
  • Corresponding cross sections can be obtained by multiplying these thicknesses by the predefined width.
  • an equal number of beads of sealant is used in each of sizes 31 to 35.
  • sealant beads 26 of the first evenly distributed size 31 are used.
  • sealant beads 26 according to the second size evenly distributed 32 are used, etc.
  • Such evenly distributed sizes 31, 32, 33, 34 and 35 facilitate the manufacture of the sealant beads 26 and make it possible to make up all of the measured deviations 27 simply, quickly and reliably.
  • these evenly distributed sizes are not suitable for the manufacture of all tanks.
  • the flatness defects of the internal surface 10 being different from one tank to another, these evenly distributed sizes can generate an excessive consumption of mastic when the deviations 27 are mainly far from the dimensions of the equally distributed sizes 31, 32, 33, 34 and 35.
  • the fifth evenly distributed size 35 of sealant beads 26 is very significantly greater than the difference 27 measured for a large part of the measurement points which will be associated with said fifth size 35 of beads. of mastic 26, causing a significant excess consumption of mastic, that is to say in particular an excess width due to excessive creep of the bead of mastic.
  • the resulting excess width could completely fill the gap between the bead of mastic 26 and an adjacent bead of mastic, and thus create an air pocket trapped in the mastic. In the event that the tank must contain flammable materials, such an air pocket may be prohibited by regulations.
  • the discrete sizes of the sealant beads are determined as a function of the frequency of occurrence of the measured deviations 27, so as to limit an accumulated difference between the deviations 27 and said associated sizes.
  • limiting a cumulative difference is understood to mean the fact of obtaining a better dimensioning of the beads of mastic compared with the evenly distributed sizes. For this, it is necessary to minimize the area 37 located between the distribution 28 of the deviations and the notched curve 36 representing the discrete sizes of the beads, that is to say the integral value of the difference between the two curves. This problem can be solved with numerical optimization methods. .
  • the technique described above for producing a sealed and thermally insulating tank can be used in various types of tanks, for example to constitute an LNG tank in an onshore installation or in a floating structure such as an LNG or other vessel.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the vessel 71 comprises a primary waterproof barrier intended to be in contact with the LNG contained in the vessel, a secondary waterproof barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the vessel. primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double shell 72.
  • loading / unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
  • FIG. 8 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm. mobile 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the mobile swivel arm 74 adapts to all sizes of LNG carriers .
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

The invention relates to a method for manufacturing mastic beads intended for installing a sealed, thermally insulating vessel in a supporting structure, which comprises the steps of: - determining a plurality of deviations (27) between a plurality of measurement points distributed on an external surface of the vessel and the internal surface of the supporting structure, said deviations (27) being determined parallel to a thickness direction of the vessel at said measurement points, said deviations (27) being determined as a function of an implantation position of the vessel in the internal space of the supporting structure and of three-dimensional dimensions of said vessel and of said internal space of the supporting structure, - manufacturing mastic beads intended for being applied between the internal surface of the supporting structure and the external surface of the vessel, said beads having cross-sectional dimensions defined as a function of said determined deviations (27).

Description

Procédé de fabrication de cordons de masticMastic bead manufacturing process
L’invention se rapporte au domaine des cuves étanches et thermiquement isolantes, à membranes. En particulier, l’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.The invention relates to the field of sealed and thermally insulating tanks with membranes. In particular, the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) exhibiting by example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at approximately -162 ° C at atmospheric pressure. These tanks can be installed on land or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied gas or to receive liquefied gas serving as fuel for the propulsion of the floating structure.
Dans un mode de réalisation, le gaz liquéfié est du GNL, à savoir un mélange à forte teneur en méthane stocké à une température d’environ -162°C à la pression atmosphérique. D’autres gaz liquéfiés peuvent aussi être envisagés, notamment l’éthane, le propane, le butane ou l’éthylène mais aussi l’hydrogène. Des gaz liquéfiés peuvent aussi être stockés sous pression, par exemple à une pression relative comprise entre 2 et 20 bar, et en particulier à une pression relative voisine de 2 bar. La cuve peut être réalisée selon différentes techniques, notamment sous la forme d’une cuve intégrée à membrane ou d’une cuve autoporteuse.In one embodiment, the liquefied gas is LNG, which is a mixture with a high methane content stored at a temperature of about -162 ° C at atmospheric pressure. Other liquefied gases can also be considered, including ethane, propane, butane or ethylene, but also hydrogen. Liquefied gases can also be stored under pressure, for example at a relative pressure between 2 and 20 bar, and in particular at a relative pressure close to 2 bar. The tank can be produced using different techniques, in particular in the form of an integrated membrane tank or a self-supporting tank.
Arrière-plan technologiqueTechnological background
Une cuve étanche et thermiquement isolante de stockage de gaz naturel liquéfié agencée dans une structure porteuse présente une structure multicouche, à savoir de l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire ancrée contre la structure porteuse, une membrane étanche secondaire qui repose sur la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire qui repose sur la membrane étanche secondaire et une membrane étanche primaire qui repose sur la barrière thermiquement isolante primaire et qui est destinée à être en contact avec le gaz naturel liquéfie stocké dans la cuve.A sealed and thermally insulating tank for liquefied natural gas storage arranged in a supporting structure has a multilayer structure, namely from the outside to the inside of the tank, a secondary thermally insulating barrier anchored against the supporting structure, a waterproof membrane secondary which rests on the secondary thermally insulating barrier, a primary thermally insulating barrier which rests on the secondary waterproof membrane and a primary waterproof membrane which rests on the primary thermally insulating barrier and which is intended to be in contact with the liquefied natural gas stored in tank.
Selon un exemple de réalisation d’une telle cuve, chaque barrière thermiquement isolante, primaire et secondaire, comporte un ensemble de blocs isolants, respectivement primaire et secondaire (selon d’autres modes d’exécution, la cuve ne comporte qu’une seule barrière thermiquement isolante), de forme générale parallélépipédique qui sont juxtaposés et qui forment ainsi une surface de support pour la membrane étanche respective. Cette surface de support doit présenter une bonne planéité afin de fournir un appui continu et plat pour les membranes étanches. En effet, les parois de cuves sont sujettes à de nombreuses contraintes thermiques, hydrostatiques et hydrodynamiques lorsque la cuve contient du GNL. Une surface d’appui plane et continue permet d’éviter la génération de zones de concentration des contraintes dans la membrane étanche, ces zones de concentration des contraintes pouvant entraîner la dégradation de la membrane étanche.According to an exemplary embodiment of such a tank, each thermally insulating barrier, primary and secondary, comprises a set of insulating blocks, respectively primary and secondary (according to other embodiments, the tank has only one barrier thermally insulating), of generally parallelepipedal shape which are juxtaposed and which thus form a support surface for the respective waterproof membrane. This support surface must have good flatness in order to provide a continuous and flat support for the waterproof membranes. In fact, the walls of tanks are subject to numerous thermal, hydrostatic and hydrodynamic constraints when the tank contains LNG. A flat and continuous bearing surface avoids the generation of stress concentration areas in the waterproof membrane, these stress concentration areas potentially causing degradation of the waterproof membrane.
Cependant, bien que les blocs isolants présentent une surface interne plane pour former la surface de support de la membrane étanche, la structure porteuse sur laquelle sont ancrés lesdits blocs ne présente elle pas toujours une planéité suffisante pour que les blocs ancrés sur ladite structure porteuse forment une surface de support continue et plane. Par exemple dans le cadre d’une structure porteuse formée par la double coque d’un navire, les zones de jonction entre les différentes portions de la double coque forment des irrégularités par rapport au plan général de la paroi porteuse correspondante, ces irrégularités étant par exemple liées à la soudure entre lesdites deux portions de double coque. However, although the insulating blocks have a flat internal surface to form the support surface of the waterproof membrane, the supporting structure on which said blocks are anchored does not always have sufficient flatness for the blocks anchored on said supporting structure to form a continuous and flat support surface. For example in the context of a supporting structure formed by the double hull of a ship, the junction zones between the various portions of the double hull form irregularities with respect to the general plane of the corresponding supporting wall, these irregularities being by example related to the weld between said two portions of double shell.
Afin de rattraper ces défauts de planéité, des cordons de mastic sont habituellement intercalés entre les blocs isolants et la structure porteuse, comme décrit dans FR-A-2259008. En particulier les cordons de mastic peuvent être déposés sur une surface inférieure des blocs isolants dans un état plastique, puis appuyés contre la paroi porteuse pour fluer jusqu’à remplir exactement l’écart entre la paroi porteuse et les blocs isolants lorsque ceux-ci sont dans leur position finale. De tels cordons de mastics sont par exemple décrits aussi dans les documents FR2909356, FR2877638 ou WO14057221 qui décrivent différentes structures de cuves étanches et thermiquement isolantes intégrées dans différents types de structures porteuses.In order to make up for these flatness defects, beads of mastic are usually interposed between the insulating blocks and the supporting structure, as described in FR-A-2259008. In particular, the beads of mastic can be deposited on a lower surface of the insulating blocks in a plastic state, then pressed against the bearing wall to flow until exactly filling the gap between the bearing wall and the insulating blocks when the latter are in their final position. Such cords of mastics are for example also described in documents FR2909356, FR2877638 or WO14057221 which describe different structures of sealed and thermally insulating tanks integrated in different types of load-bearing structures.
Résumésummary
Une idée à la base de l’invention est de fournir un procédé de fabrication des cordons de mastics destinés à être intercalés entre une cuve étanche et thermiquement isolante et une structure porteuse. En particulier, une idée à la base de l’invention est de fabriquer des cordons de mastics présentant une dimension d’épaisseur satisfaisante pour permettre la formation d’une surface de support pour les membranes étanches présentant une planéité satisfaisante. Une idée à la base de l’invention est également d’éviter une consommation excessive de mastic lors de la fabrication des cordons de mastic. An idea underlying the invention is to provide a method of manufacturing cords of mastics intended to be interposed between a sealed and thermally insulating tank and a supporting structure. In particular, an idea underlying the invention is to manufacture cords of sealants having a satisfactory thickness dimension to allow the formation of a support surface for the waterproof membranes having a satisfactory flatness. An idea underlying the invention is also to avoid excessive consumption of putty during the manufacture of the mastic beads.
Selon un mode de réalisation, l’invention fournit un procédé de fabrication de cordons de mastics destinés à installer une cuve étanche et thermiquement isolante dans une structure porteuse, la structure porteuse comportant une surface interne délimitant un espace interne,
le procédé comportant les étapes de :
- déterminer une pluralité d’écarts entre une pluralité de points de mesure distribués sur une surface externe de la cuve et la surface interne de la structure porteuse, lesdits écarts étant déterminés parallèlement à une direction d’épaisseur de la cuve au niveau desdits points de mesure, lesdits écarts étant déterminés en fonction d’une position d’implantation de la cuve dans l’espace interne de la structure porteuse et de dimensions tridimensionnelles de ladite cuve et dudit espace interne de la structure porteuse,
- fabriquer des cordons de mastic destinés à être appliqués entre la surface interne de la structure porteuse et la surface externe de la cuve, lesdits cordons présentant des dimensions de section transversale définies en fonction desdits écarts déterminés.
According to one embodiment, the invention provides a method of manufacturing cords of mastics intended to install a sealed and thermally insulating tank in a supporting structure, the supporting structure comprising an internal surface delimiting an internal space,
the process comprising the steps of:
- determining a plurality of differences between a plurality of measurement points distributed on an external surface of the tank and the internal surface of the supporting structure, said differences being determined parallel to a thickness direction of the tank at the level of said points of measurement, said deviations being determined as a function of an implantation position of the tank in the internal space of the supporting structure and of three-dimensional dimensions of said tank and of said internal space of the supporting structure,
- Manufacturing mastic beads intended to be applied between the internal surface of the supporting structure and the external surface of the tank, said beads having cross-sectional dimensions defined as a function of said determined deviations.
Grâce à ces caractéristiques, il est possible de fabriquer des cordons de mastics permettant de rattraper les défauts de planéité de la surface interne de la structure porteuse. En outre, des cordons de mastics fabriqués selon un tel procédé permettent de fournir une barrière thermiquement isolante présentant une planéité satisfaisante pour le support de la membrane étanche.Thanks to these characteristics, it is possible to manufacture cords of mastics making it possible to compensate for the defects of flatness of the internal surface of the supporting structure. In addition, cords of mastics produced by such a process make it possible to provide a thermally insulating barrier having satisfactory flatness for the support of the waterproof membrane.
Selon des modes de réalisation, un tel procédé de fabrication de cordons de mastics peut comporter une ou plusieurs des caractéristiques suivantes.According to embodiments, such a method of manufacturing cords of mastics may include one or more of the following characteristics.
Un cordon de mastic peut être fabriqué par dépôt d’une quantité de mastic polymérisable dans un état plastique sur une surface choisie parmi la surface interne de la structure porteuse et la surface externe de la cuve. La forme en section transversale du cordon de mastic ainsi déposé peut être plus ou moins irrégulière, par exemple approximativement circulaire. Cette forme est ensuite modifiée en une section sensiblement rectangulaire par écrasement entre la surface interne de la structure porteuse et la surface externe de la cuve lors de la mise en place de la cuve dans la structure porteuse, puis le cordon durcit par polymérisation dans cette forme sensiblement rectangulaire. La section transversale du cordon lors du dépôt du mastic polymérisable est de préférence suffisante pour que la section du cordon de mastic finalement polymérisé présente une largeur supérieure ou égale à une constante prédéfinie. Cette constante prédéfinie (i.e. largeur minimale admissible) peut être obtenue dans une phase antérieure par un calcul de dimensionnement. A bead of mastic can be made by depositing an amount of polymerizable mastic in a plastic state on a surface selected from the internal surface of the supporting structure and the external surface of the vessel. The cross-sectional shape of the bead of mastic thus deposited may be more or less irregular, for example approximately circular. This shape is then modified into a substantially rectangular section by crushing between the internal surface of the supporting structure and the external surface of the tank during the installation of the tank in the supporting structure, then the bead hardens by polymerization in this shape. substantially rectangular. The cross section of the bead during the deposition of the polymerizable mastic is preferably sufficient so that the section of the bead of finally cured mastic has a width greater than or equal to a predefined constant. This predefined constant (i.e. minimum admissible width) can be obtained in an earlier phase by a sizing calculation.
Selon un mode de réalisation, le cordon de mastic est fabriqué continûment sur une longueur correspondant à la longueur d’application dudit cordon de mastic sur la surface externe de la cuve ou la surface interne de la structure porteuse.According to one embodiment, the bead of mastic is produced continuously over a length corresponding to the length of application of said bead of mastic on the external surface of the tank or the internal surface of the supporting structure.
Selon un mode de réalisation, un tel procédé peut comporter en outre :
- fournir une pluralité de tailles de section transversale, ladite pluralité de tailles comportant un nombre entier t de tailles, la pluralité de tailles présentant une borne supérieure, ladite borne supérieure étant plus grande qu’une section rectangulaire associée à l’écart maximal de la pluralité d’écarts, la section rectangulaire associée présentant une largeur prédéfinie et une hauteur égale à l’écart maximal de la pluralité d’écarts.
Dans ce procédé, les cordons de mastics sont fabriqués avec des dimensions de section transversale choisies parmi ladite pluralité de tailles.
According to one embodiment, such a method may further comprise:
- providing a plurality of sizes of cross section, said plurality of sizes comprising an integer t of sizes, the plurality of sizes having an upper limit, said upper limit being greater than a rectangular section associated with the maximum deviation of the a plurality of gaps, the associated rectangular section having a predefined width and a height equal to the maximum gap of the plurality of gaps.
In this method, the sealant beads are made with cross-sectional dimensions selected from said plurality of sizes.
Selon un mode de réalisation, le nombre entier t est inférieur à un nombre total desdits écarts de la pluralité d’écarts.According to one embodiment, the integer t is less than a total number of said deviations of the plurality of deviations.
Grâce à ces caractéristiques, il est possible de limiter le nombre des différentes tailles de cordons de mastics à fabriquer. Un tel procédé de fabrication permet ainsi une fabrication simple et rapide des cordons de mastics pour rattraper les défauts de planéité de la structure porteuse. Si la distribution des écarts est très hétérogène, notamment si quelques valeurs très élevées sont isolées par rapport au restant de la distribution, il peut être avantageux de traiter séparément les quelques écarts les plus élevés, par exemple en construisant des cordons de mastic sur mesure pour ces points isolés, et de déterminer la pluralité de tailles uniquement pour couvrir la distribution d’écarts restante.Thanks to these characteristics, it is possible to limit the number of different sizes of sealant beads to be manufactured. Such a manufacturing process thus allows simple and rapid manufacturing of the sealant beads to make up for the flatness defects of the supporting structure. If the deviation distribution is very heterogeneous, especially if a few very high values are isolated from the remainder of the distribution, it may be advantageous to treat the few larger deviations separately, for example by building custom mastic beads for these isolated points, and determine the plurality of sizes only to cover the remaining deviation distribution.
L’invention n’est pas limitée à la réalisation d’un nombre limité de tailles de cordons optimisé pour rattraper les défauts de planéité de la structure porteuse, elle permet d’offrir un choix modulable aux opérateurs, en charge du montage/assemblage de chaque cuve dans une structure porteuse, au regard de deux paramètres clés, à savoir :
– un nombre de tailles de cordons de mastic limité et adapté aux défauts de planéité de la structure porteuse, et
- une optimisation parfaite de la quantité de mastic nécessaire au montage/assemblage adéquat (au regard de toutes les exigences structurelles et de tenue mécanique) et pérenne de la cuve dans la structure porteuse.
The invention is not limited to the production of a limited number of sizes of cords optimized to compensate for the flatness defects of the supporting structure, it makes it possible to offer a flexible choice to the operators, in charge of the assembly / assembly of each tank in a supporting structure, with regard to two key parameters, namely:
- a limited number of sizes of mastic beads adapted to the flatness defects of the supporting structure, and
- perfect optimization of the quantity of mastic necessary for adequate assembly / assembly (with regard to all the structural and mechanical strength requirements) and perennial of the tank in the supporting structure.
Ainsi, en fonction de l’étape de détermination d’une pluralité d’écarts entre une pluralité de points de mesure distribués sur une surface externe de la cuve et la surface interne de la structure porteuse, c’est-à-dire essentiellement en fonction de la précision ou du nombre de points de mesure lors d’une telle étape de détermination, les opérateurs, grâce au procédé selon l’invention, ont la possibilité de privilégier le choix d’un nombre limité de tailles de cordons de mastic, par exemple un nombre de tailles de cordons de mastic souhaité compris entre 3 et 8, ou de privilégier l’optimisation parfaite de la quantité de mastic nécessaire à l’opération de montage/assemblage de la cuve.Thus, depending on the step of determining a plurality of differences between a plurality of measurement points distributed over an external surface of the tank and the internal surface of the supporting structure, that is to say essentially in depending on the precision or the number of measurement points during such a determination step, the operators, thanks to the method according to the invention, have the possibility of favoring the choice of a limited number of sizes of mastic beads, for example a number of sizes of mastic beads desired between 3 and 8, or to favor the perfect optimization of the quantity of mastic necessary for the assembly / assembly operation of the tank.
En effet, la gestion d’un grand nombre de tailles de cordons de mastic peut s’avérer problématique pour les opérateurs ou tout simplement impossible compte tenu d’un équipement de fabrication desdits cordons non adapté.Indeed, the management of a large number of sizes of mastic beads can be problematic for operators or simply impossible given the unsuitable manufacturing equipment of said beads.
Dans ce dernier cas, l’invention permet néanmoins non seulement d’optimiser la taille des cordons de mastic aux défauts de planéité de la structure porteuse afin de réduire la quantité non techniquement utile de mastic mais offre également la possibilité aux opérateurs de choisir le nombre de tailles de cordons qu’ils désirent ou qu’ils peuvent utiliser dans le cadre de l’opération de montage/assemblage de la cuve.In the latter case, the invention nevertheless not only makes it possible to optimize the size of the mastic beads with the flatness defects of the supporting structure in order to reduce the non-technically useful quantity of mastic but also offers the operators the possibility of choosing the number sizes of cords that they desire or that they can use as part of the tank assembly / assembly operation.
Dans une situation inverse dans laquelle les opérateurs disposent d’un équipement de fabrication de cordons de mastic leur permettant de fabriquer un nombre illimité de tailles de cordons de mastic et que ces opérateurs choisissent ou sont disposés à utiliser autant de tailles de cordons de mastic qu’il sera utile ou nécessaire pour réduire la quantité de mastic non techniquement utile, l’invention permet la meilleure optimisation possible de la quantité de mastic.In a reverse situation where operators have putty bead making equipment that allows them to fabricate an unlimited number of sizes of putty beads and these operators choose or are willing to use as many sizes of putty bead as they can. 'it will be useful or necessary to reduce the amount of mastic not technically useful, the invention allows the best possible optimization of the amount of mastic.
Pour toutes les situations intermédiaires entre les deux situations extrêmes exposées ci-dessus, le procédé selon l’invention apporte une solution technique optimisée, compte tenu en particulier, mais non exclusivement, des paramètres relatifs à :
  • un choix d’un nombre de tailles de cordons de mastic, prédéterminé ou déterminable dans un domaine de nombre de tailles de cordons de mastic suite à l’étape de de détermination d’une pluralité d’écarts entre une pluralité de points de mesure distribués sur une surface externe de la cuve et la surface interne de la structure porteuse,
  • les caractéristiques de l’équipement de fabrication de cordons de mastic (en particulier ses capacités de fabrication et sa localisation),
  • la nature et les caractéristiques du mastic (à l’heure actuelle de type époxy incorporant un taux élevé de charges et/ou de microsphères),
  • les caractéristiques des opérateurs (nombre, qualification etc.) en charge du montage/assemblage de la cuve dans la structure porteuse.
For all the intermediate situations between the two extreme situations described above, the method according to the invention provides an optimized technical solution, taking into account in particular, but not exclusively, the parameters relating to:
  • a choice of a number of sizes of mastic beads, predetermined or determinable in a range of number of sizes of mastic beads following the step of determining a plurality of differences between a plurality of distributed measurement points on an external surface of the tank and the internal surface of the supporting structure,
  • the characteristics of the mastic bead manufacturing equipment (in particular its manufacturing capabilities and location),
  • the nature and characteristics of the mastic (currently epoxy type incorporating a high rate of fillers and / or microspheres),
  • the characteristics of the operators (number, qualification, etc.) in charge of mounting / assembling the tank in the supporting structure.
Selon un mode de réalisation, pour un écart de la pluralité d’écarts, on fabrique un cordon de mastic dont la dimension de section transversale est égale à une taille minimale parmi les tailles qui est supérieure ou égale à une section rectangulaire associée audit écart, la section rectangulaire associée présentant ladite largeur prédéfinie et une hauteur égale audit écart.According to one embodiment, for a deviation of the plurality of deviations, a bead of mastic is manufactured, the cross-sectional dimension of which is equal to a minimum size among the sizes which is greater than or equal to a rectangular section associated with said deviation, the associated rectangular section having said predefined width and a height equal to said gap.
Grâce à ces caractéristiques, les cordons de mastics fabriqués permettent un rattrapage des défauts de planéité de la structure porteuse satisfaisant sans consommation excessive de mastic.By virtue of these characteristics, the cords of mastics produced make it possible to correct the flatness defects of the supporting structure satisfactorily without excessive consumption of mastic.
Selon un mode de réalisation, l’étape de fournir la pluralité de tailles de section transversale comporte :
- calculer une fréquence d’apparition des écarts de la pluralité d’écarts,
- calculer la pluralité de tailles de cordons de mastics en fonction de la fréquence d’apparition des écarts et des écarts déterminés de manière à ce que chaque écart de la pluralité d’écarts puisse être associé à une taille de la pluralité de tailles qui est immédiatement supérieure à la section rectangulaire associée audit écart, et de manière à limiter une différence cumulée entre les sections rectangulaires associées auxdits écarts de la pluralité d’écarts et lesdites tailles auxquels lesdits écarts sont associés.
According to one embodiment, the step of providing the plurality of cross section sizes comprises:
- calculate a frequency of occurrence of the deviations of the plurality of deviations,
- calculating the plurality of sizes of sealant beads as a function of the frequency of occurrence of the deviations and the determined deviations so that each deviation of the plurality of deviations can be associated with a size of the plurality of sizes which is immediately greater than the rectangular section associated with said gap, and so as to limit an accumulated difference between the rectangular sections associated with said gaps of the plurality of gaps and said sizes with which said gaps are associated.
En complément de ce qui a été exposé précédemment, la fixation du nombre t de tailles différentes et/ou le calcul des t tailles sont des opérations qui peuvent être effectuées selon différentes stratégies. Par exemple la fixation du nombre t de tailles différentes et/ou le calcul des t tailles peuvent être effectués pour une unité de construction plus ou moins grande, par exemple pour une pluralité de cuves, pour une seule cuve ou pour une portion de cuve, notamment pour une paroi plane d’une cuve polyédrique, voire encore pour une portion de paroi plane. Il est nécessaire de reconfigurer l’outil de production des cordons de mastic d’autant plus souvent que l’unité de construction pour laquelle le calcul a été réalisé est petite. In addition to what has been explained previously, the fixing of the number t of different sizes and / or the calculation of the t sizes are operations which can be carried out according to different strategies. For example, the fixing of the number t of different sizes and / or the calculation of the t sizes can be carried out for a larger or smaller construction unit, for example for a plurality of tanks, for a single tank or for a portion of the tank, in particular for a flat wall of a polyhedral tank, or even for a portion of a flat wall. It is necessary to reconfigure the mastic bead production tool more often than the construction unit for which the calculation was made is small.
Si le nombre t est très élevé, par exemple proche du nombre total de cordons de mastics à fabriquer dans l’unité de construction, le procédé revient à fabriquer chaque cordon de mastic sur mesure, ce qui supprime très sensiblement toute surconsommation de mastic, mais accroît sensiblement les contraintes opérationnelles lors de l’installation de la cuve, puisque chaque cordon de mastic devra être fabriqué et acheminé à un emplacement précisément localisé. Inversement, un nombre t relativement faible permet de standardiser la fabrication des cordons de mastic, au moins pour une unité de construction, et de réduire les contraintes opérationnelles. Selon un mode de réalisation, le nombre entier t de tailles est inférieur ou égal à 10, de préférence inférieur ou égal à 5.If the number t is very high, for example close to the total number of bead of sealants to be manufactured in the building unit, the process amounts to manufacturing each bead of sealant to measure, which very substantially eliminates any overconsumption of sealant, but Significantly increases operational constraints when installing the tank, since each bead of sealant will have to be manufactured and routed to a precisely localized location. Conversely, a relatively low number t makes it possible to standardize the manufacture of mastic beads, at least for one construction unit, and to reduce operational constraints. According to one embodiment, the whole number t of sizes is less than or equal to 10, preferably less than or equal to 5.
Selon un mode de réalisation, un tel procédé peut comporter en outre :
- réaliser une mesure tridimensionnelle de l’espace interne de la structure porteuse,
- définir des dimensions et une forme de la cuve en fonction de ladite mesure tridimensionnelle de manière à permettre l’insertion de ladite cuve dans l’espace interne de la structure porteuse,
- définir la position d’implantation de la cuve dans l’espace interne de la structure porteuse en fonction de la mesure tridimensionnelle de l’espace interne de la structure porteuse et des dimensions et de la forme de la cuve définies.
According to one embodiment, such a method may further comprise:
- carry out a three-dimensional measurement of the internal space of the supporting structure,
- defining dimensions and a shape of the tank as a function of said three-dimensional measurement so as to allow the insertion of said tank into the internal space of the supporting structure,
- Define the installation position of the tank in the internal space of the supporting structure as a function of the three-dimensional measurement of the internal space of the supporting structure and the dimensions and shape of the defined tank.
Grâce à ces caractéristiques, il est possible de connaître les écarts à rattraper de manière précise, permettant ainsi une fabrication des cordons de mastics plus précise.Thanks to these characteristics, it is possible to know the gaps to be made up precisely, thus allowing a more precise manufacture of the sealant beads.
Selon un mode de réalisation, la cuve comporte une pluralité de blocs isolants comportant des panneaux de fond définissant ladite surface externe de la cuve, et dans lequel définir une position d’implantation de la cuve comporte définir une position d’ancrage de la pluralité de blocs isolants sur la surface interne de la structure porteuse.According to one embodiment, the tank comprises a plurality of insulating blocks comprising bottom panels defining said outer surface of the tank, and in which defining an implantation position of the tank comprises defining an anchoring position for the plurality of insulating blocks on the internal surface of the supporting structure.
Selon un mode de réalisation, un ou plusieurs ou chacun des blocs isolants présente une forme parallélépipédique, par exemple parallélépipédique rectangle. According to one embodiment, one or more or each of the insulating blocks has a parallelepipedal shape, for example rectangular parallelepiped.
Selon un mode de réalisation, les points de mesure comportent, pour chaque bloc isolant, un point d’un panneau de fond dudit bloc isolant lorsque ledit bloc isolant est dans la position d’ancrage.According to one embodiment, the measurement points comprise, for each insulating block, a point of a bottom panel of said insulating block when said insulating block is in the anchoring position.
Selon un mode de réalisation, la structure porteuse comporte au moins une paroi porteuse plane, la cuve comportant une paroi de cuve comportant une pluralité de blocs isolants destinés à être ancrés sur la paroi porteuse, lesdits blocs isolants présentant une surface interne parallèle au panneau de fond, ladite surface interne formant une surface de support pour une membrane étanche de la paroi de cuve, le procédé comportant en outre :
- déterminer pour la paroi porteuse un plan de référence,
et la position d’ancrage des blocs isolants est définie de manière que la surface interne dudit bloc isolant présente, lorsque ledit bloc isolant est dans la position d’ancrage, une inclinaison inférieure à un angle seuil par rapport au plan de référence.
According to one embodiment, the supporting structure comprises at least one flat supporting wall, the tank comprising a tank wall comprising a plurality of insulating blocks intended to be anchored on the supporting wall, said insulating blocks having an internal surface parallel to the control panel. bottom, said internal surface forming a support surface for a sealed membrane of the vessel wall, the method further comprising:
- determine a reference plane for the load-bearing wall,
and the anchoring position of the insulating blocks is defined so that the internal surface of said insulating block has, when said insulating block is in the anchoring position, an inclination less than a threshold angle with respect to the reference plane.
Selon un mode de réalisation, une paroi de cuve comporte une pluralité de blocs isolants juxtaposés selon un motif régulier.According to one embodiment, a tank wall comprises a plurality of insulating blocks juxtaposed in a regular pattern.
Selon un mode de réalisation, la cuve étanche et thermiquement isolante comporte en outre une membrane étanche reposant sur la surface interne des blocs isolants.According to one embodiment, the sealed and thermally insulating tank further comprises a sealed membrane resting on the internal surface of the insulating blocks.
Selon un mode de réalisation, l’angle seuil est inférieur à Arctan(10-²), de préférence inférieur à Arctan(6.10-3).According to one embodiment, the threshold angle is less than Arctan (10 - ²), preferably less than Arctan (6.10 -3 ).
Selon un mode de réalisation, les cordons de mastics sont fabriqués de manière à ce que la surface interne du bloc isolant présente une inclinaison inférieure audit angle seuil par rapport à la surface interne d’un bloc isolant présentant une position d’ancrage adjacente sur la paroi porteuse.According to one embodiment, the cords of sealants are manufactured so that the internal surface of the insulating block has an inclination less than said threshold angle with respect to the internal surface of an insulating block having an adjacent anchoring position on the load-bearing wall.
Selon un mode de réalisation, les cordons de mastics sont fabriqués avec une longueur inférieure ou égale une dimension du panneau de fond d’un bloc isolant.According to one embodiment, the sealant beads are made with a length less than or equal to a dimension of the bottom panel of an insulating block.
Selon un mode de réalisation, l’espace interne de la structure porteuse présente une direction longitudinale, une direction transversale et une direction de hauteur, le procédé comportant les étapes de
- définir un axe central longitudinal de la cuve, ledit axe central longitudinal étant parallèle à l’axe longitudinal de l’espace interne de la structure porteuse,
- définir un axe central transversal de la cuve, ledit axe central transversal étant parallèle à l’axe transversal de l’espace interne de la structure porteuse, et
- définir un axe central de hauteur de la cuve, ledit axe central de hauteur étant parallèle à l’axe de hauteur de l’espace interne de la structure porteuse.
According to one embodiment, the internal space of the supporting structure has a longitudinal direction, a transverse direction and a height direction, the method comprising the steps of
- defining a longitudinal central axis of the tank, said longitudinal central axis being parallel to the longitudinal axis of the internal space of the supporting structure,
- defining a transverse central axis of the tank, said transverse central axis being parallel to the transverse axis of the internal space of the supporting structure, and
- Define a central height axis of the tank, said central height axis being parallel to the height axis of the internal space of the supporting structure.
Selon un mode de réalisation, l’étape de positionnement de la cuve dans l’espace interne de la structure porteuse comporte une étape de définition d’une pluralité de premières lignes de positionnement et d’une pluralité de deuxièmes lignes de positionnement, les première lignes de positionnements étant parallèles entre elles, les deuxièmes lignes de positionnement étant parallèles entre elles, les premières lignes de positionnement étant perpendiculaires aux deuxièmes lignes de positionnement, les premières lignes de positionnement étant espacées d’un premier pas d’écartement égal à la dimension d’un premier côté de la surface externe d’un bloc isolant, les deuxièmes lignes de positionnement étant espacées d’un deuxième pas d’écartement égal à la dimension d’un deuxième côté de la surface externe dudit bloc isolant.According to one embodiment, the step of positioning the tank in the internal space of the supporting structure comprises a step of defining a plurality of first positioning lines and a plurality of second positioning lines, the first positioning lines being parallel to each other, the second positioning lines being parallel to each other, the first positioning lines being perpendicular to the second positioning lines, the first positioning lines being spaced by a first spacing step equal to the dimension on a first side of the outer surface of an insulating block, the second positioning lines being spaced apart by a second spacing pitch equal to the dimension of a second side of the outer surface of said insulating block.
Selon un mode de réalisation, au moins l’un parmi l’axe central longitudinal de la cuve, l’axe central transversal de la cuve et l’axe central de hauteur de la cuve définit une première ou une deuxième ligne de positionnement de la paroi de cuve et/ou un axe de symétrie des premières ou deuxièmes lignes de positionnement de ladite paroi de cuve.According to one embodiment, at least one of the longitudinal central axis of the tank, the transverse central axis of the tank and the central height axis of the tank defines a first or a second positioning line of the tank. vessel wall and / or an axis of symmetry of the first or second positioning lines of said vessel wall.
Selon un mode de réalisation, l’invention fournit aussi une installation de stockage comportant une structure porteuse et une cuve étanche et thermiquement isolante installée dans un espace interne de la structure porteuse, ladite installation de stockage comportant des cordons de mastics fabriqués selon les procédés précités et appliqués entre une surface interne de l’espace interne de la structure porteuse et une surface externe de la cuve.According to one embodiment, the invention also provides a storage installation comprising a supporting structure and a sealed and thermally insulating tank installed in an internal space of the supporting structure, said storage installation comprising cords of sealants produced according to the aforementioned methods. and applied between an internal surface of the internal space of the supporting structure and an external surface of the vessel.
Une telle cuve peut faire partie d’une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Une telle cuve peut aussi servir de réservoir de carburant dans tout type de navire.Such a tank can be part of an onshore storage installation, for example to store LNG or be installed in a floating, coastal or deep water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU). , a floating production and storage unit (FPSO) and others. Such a tank can also serve as a fuel tank in any type of vessel.
Selon un mode de réalisation, l’invention fournit également une telle installation de stockage sous la forme d’un navire pour le transport d’un produit liquide froid comportant une double coque formant ladite structure porteuse.According to one embodiment, the invention also provides such a storage facility in the form of a vessel for the transport of a cold liquid product comprising a double hull forming said supporting structure.
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire. According to one embodiment, the invention also provides a method for loading or unloading such a ship, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage installation to or from the vessel tank.
Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating storage installation. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipes from or towards the floating or terrestrial storage installation towards or from the vessel of the vessel.
Brève description des figuresBrief description of the figures
. L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.. The invention will be better understood, and other aims, details, characteristics and advantages thereof will emerge more clearly during the following description of several particular embodiments of the invention, given solely by way of illustration and not by way of limitation. , with reference to the accompanying drawings.
La figure 1 est une vue avec écorché d’une structure porteuse destinée à recevoir une cuve étanche et thermiquement isolante. FIG. 1 is a cutaway view of a supporting structure intended to receive a sealed and thermally insulating tank.
La figure 2 est une représentation schématique de la paroi transversale de la structure porteuse de la figure 1 illustrant la position d’implantation des blocs isolants de la paroi de cuve étanche et thermiquement isolante destinée à être ancrée sur ladite paroi porteuse transversale. FIG. 2 is a schematic representation of the transverse wall of the supporting structure of FIG. 1 illustrating the position of installation of the insulating blocks of the sealed and thermally insulating tank wall intended to be anchored to said transverse supporting wall.
la figure 3 est une vue en coupe de la paroi porteuse transversale de la figure 2 illustrant les défauts de planéité d’une surface interne de ladite paroi porteuse transversale. FIG. 3 is a sectional view of the transverse bearing wall of FIG. 2 illustrating the defects of flatness of an internal surface of said transverse bearing wall.
la figure 4 est une vue en coupe de la paroi porteuse transversale de la figure 3 illustrant un plan de référence optimal. Figure 4 is a sectional view of the transverse load-bearing wall of Figure 3 illustrating an optimum reference plane.
la figure 5 est une vue analogue à la figure 4 illustrant une interpolation du plan de référence de la figure 4 par sections linéaires correspondant aux dimensions des blocs isolants de la paroi de cuve destinée à être ancrée sur ladite paroi porteuse transversale. FIG. 5 is a view similar to FIG. 4 illustrating an interpolation of the reference plane of FIG. 4 by linear sections corresponding to the dimensions of the insulating blocks of the vessel wall intended to be anchored on said transverse bearing wall.
la figure 6 est une vue analogue à la figure 3 sur laquelle sont ancrés des blocs isolants de la paroi de cuve étanche et thermiquement isolante. Figure 6 is a view similar to Figure 3 on which are anchored insulating blocks of the sealed and thermally insulating tank wall.
La figure 7 est un graphique illustrant des dimensions des cordons de mastics en fonction de la fréquence d’apparition des écarts à rattraper entre la surface externe de la cuve étanche et thermiquement isolante et la surface interne de la structure porteuse et fabriqués selon différents modes de réalisation. FIG. 7 is a graph illustrating the dimensions of the sealant beads as a function of the frequency of occurrence of the gaps to be made up between the external surface of the sealed and thermally insulating tank and the internal surface of the supporting structure and manufactured according to different methods of production.
la figure 8 est une représentation schématique écorchée d’une cuve de navire méthanier comportant une cuve étanche et thermiquement isolante et d’un terminal de chargement/déchargement de cette cuve. FIG. 8 is a cut-away schematic representation of an LNG tanker tank comprising a sealed and thermally insulating tank and of a loading / unloading terminal for this tank.
Dans la suite de la description, on utilisera les termes "externe" et "interne" pour désigner, selon les définitions données dans la description, la position relative d'un élément par rapport à un autre, par référence à l'intérieur de la cuve. Ainsi, un élément proche de ou tourné vers l'intérieur de la cuve est qualifié d'interne par opposition à un élément externe situé proche de ou tourné vers l’extérieur de la cuve.In the remainder of the description, the terms “external” and “internal” will be used to designate, according to the definitions given in the description, the relative position of an element with respect to another, by reference inside the tank. Thus, an element close to or facing the interior of the tank is referred to as internal as opposed to an external element located close to or facing the outside of the tank.
En relation avec la figure 1, on observe une structure porteuse 1 destinée à recevoir les parois d’une cuve étanche et thermiquement isolante. La structure porteuse 1 est formée par la double coque d’un navire. La structure porteuse 1 présente une forme générale polyédrique. La structure porteuse 1 présente des parois transversales 2, typiquement avant et arrière, ici de forme octogonale. Sur la figure 1, la paroi transversale 2 avant n’est représentée que partiellement afin de permettre la visualisation d’un espace interne 9 de la structure porteuse 1. Les parois transversales 2 sont des parois de cofferdam du navire et s’étendent transversalement à la direction longitudinale du navire. La structure porteuse 1 comporte également une paroi supérieure 3, une paroi inférieure 4 et des parois latérales 5. La paroi supérieure 3, la paroi inférieure 4 et les parois latérales 5 s’étendent selon la direction longitudinale du navire et relient les parois transversales 2 avant et arrière.In relation to Figure 1, there is a supporting structure 1 intended to receive the walls of a sealed and thermally insulating tank. The supporting structure 1 is formed by the double hull of a ship. The supporting structure 1 has a general polyhedral shape. The supporting structure 1 has transverse walls 2, typically front and rear, here octagonal in shape. In Figure 1, the front transverse wall 2 is only partially shown in order to allow visualization of an internal space 9 of the supporting structure 1. The transverse walls 2 are cofferdam walls of the ship and extend transversely to the longitudinal direction of the ship. The supporting structure 1 also comprises an upper wall 3, a lower wall 4 and side walls 5. The upper wall 3, the lower wall 4 and the side walls 5 extend in the longitudinal direction of the ship and connect the transverse walls 2 front and rear.
La paroi supérieure 3 comporte, à proximité de la paroi transversale 2 arrière, un espace, de forme parallélépipédique rectangle, en saillie vers le haut, appelé dôme liquide 6. Le dôme liquide 6 délimite une ouverture 7 de la paroi supérieure 3 permettant le passage de conduites de transfert de liquide depuis ou vers la cuve lorsque celle-ci est montée dans la structure porteuse 1.The upper wall 3 comprises, near the rear transverse wall 2, a space, of rectangular parallelepiped shape, projecting upwards, called the liquid dome 6. The liquid dome 6 defines an opening 7 of the upper wall 3 allowing passage. of liquid transfer pipes from or to the tank when the latter is mounted in the supporting structure 1.
Les parois porteuses 2, 3, 4, 5 de la structure porteuse présentent une surface interne 10 délimitant l’espace interne 9 dans lequel est logée la cuve. La cuve comporte une pluralité de parois de cuve, chaque paroi de cuve étant ancrée sur une paroi porteuse 2, 3, 4, 5 respective de la structure porteuse 1. The supporting walls 2, 3, 4, 5 of the supporting structure have an internal surface 10 defining the internal space 9 in which the tank is housed. The tank comprises a plurality of tank walls, each tank wall being anchored to a respective supporting wall 2, 3, 4, 5 of the supporting structure 1.
Dans l’exemple choisi ici pour illustrer, la cuve est une cuve à membrane présentant une structure multicouche. Aussi, chaque paroi de la cuve présente successivement, de l’extérieur vers l’intérieur, selon la direction d’épaisseur de la paroi de cuve correspondante, une barrière thermiquement isolante secondaire ancrée sur la paroi porteuse 2, 3, 4, 5 correspondante, une membrane étanche secondaire reposant sur la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire reposant contre la membrane étanche secondaire et une membrane étanche primaire reposant sur la barrière thermiquement isolante primaire et destinée à être en contact avec le fluide contenu dans la cuve. In the example chosen here to illustrate, the tank is a membrane tank having a multilayer structure. Also, each wall of the tank has successively, from the outside to the inside, according to the thickness direction of the corresponding tank wall, a secondary thermally insulating barrier anchored on the corresponding bearing wall 2, 3, 4, 5 , a secondary waterproof membrane resting on the secondary thermally insulating barrier, a primary thermally insulating barrier resting against the secondary waterproof membrane and a primary waterproof membrane resting on the primary thermally insulating barrier and intended to be in contact with the fluid contained in the tank.
A titre d’exemples, les parois de la cuve peuvent être fabriquées selon différentes techniques décrites dans FR-A-2691520, FR-A-2877638, ou WO-A-14057221. Dans ces différents modes de réalisation, chaque paroi de cuve comporte une pluralité de blocs isolants 11 formant au moins la barrière thermiquement isolante secondaire. Ces blocs isolants 11 sont préfabriqués hors de l’espace interne et présentent des dimensions standardisées.By way of example, the walls of the tank can be manufactured according to different techniques described in FR-A-2691520, FR-A-2877638, or WO-A-14057221. In these different embodiments, each tank wall comprises a plurality of insulating blocks 11 forming at least the secondary thermally insulating barrier. These insulating blocks 11 are prefabricated outside the internal space and have standardized dimensions.
Selon un mode de réalisation tel que par exemple décrit dans le document FR2877638, les blocs isolants 11 sont de forme parallélépipédique. Les barrières thermiquement isolantes primaire et secondaire sont formées par une pluralité de ces blocs isolants 11 parallélépipédiques juxtaposés.According to an embodiment such as for example described in document FR2877638, the insulating blocks 11 are of parallelepiped shape. The primary and secondary thermally insulating barriers are formed by a plurality of these juxtaposed parallelepipedal insulating blocks 11.
Selon un autre mode de réalisation par exemple décrit dans le document FR2691520, les blocs isolants 11 comportent une portion de barrière thermiquement isolante secondaire et une portion de barrière thermiquement isolante primaire superposées. Une couche étanche formant une portion de la membrane étanche secondaire étant intercalé entre ces deux portions de barrière thermiquement isolante. Dans ce mode de réalisation, les portions de barrières isolantes primaire et secondaire présentent des forment parallélépipédique et la portion de barrière thermiquement isolante primaire présente des dimensions inférieures aux dimensions de la portion de barrière thermiquement isolante secondaire. According to another embodiment for example described in document FR2691520, the insulating blocks 11 comprise a portion of a secondary thermally insulating barrier and a portion of a primary thermally insulating barrier superimposed. A waterproof layer forming a portion of the secondary waterproof membrane being interposed between these two portions of thermally insulating barrier. In this embodiment, the portions of the primary and secondary insulating barriers have parallelepipedal shapes and the portion of the primary thermally insulating barrier has dimensions smaller than the dimensions of the portion of the secondary thermally insulating barrier.
Dans tous ces cas, les blocs isolants 11 présentent un panneau de fond formant une surface externe 12 rectangulaire, cette surface externe 12 étant destinée à reposer contre la surface interne 10 de l’espace interne 9. De même, ces blocs isolants 11 présentent une surface interne plane formant une surface de support pour recevoir une membrane étanche.In all these cases, the insulating blocks 11 have a bottom panel forming a rectangular outer surface 12, this outer surface 12 being intended to rest against the inner surface 10 of the inner space 9. Similarly, these insulating blocks 11 have a flat internal surface forming a support surface for receiving a waterproof membrane.
Cependant, la structure porteuse 1 présente en pratique des dimensions pouvant varier par rapport aux dimensions théoriques. Il est donc nécessaire de prendre en compte les variations de dimensions de la structure porteuse 1 liées par exemple aux tolérances de constructions pour intégrer une cuve étanche et thermiquement isolante dans l’espace interne 9. However, the supporting structure 1 has in practice dimensions which may vary from the theoretical dimensions. It is therefore necessary to take into account the variations in the dimensions of the supporting structure 1 linked for example to construction tolerances to integrate a sealed and thermally insulating tank in the internal space 9.
Pour cela, une mesure tridimensionnelle de l’espace interne 9 de la structure porteuse 1 est réalisée. Cette mesure tridimensionnelle de l’espace interne 9 est réalisée par tout moyen adapté, par exemple en utilisant des télémètres lasers ou des émetteurs lasers et des capteurs positionnés dans l’espace interne 9 afin de mesurer les dimensions et l’agencement des différentes parois porteuses 2, 3, 4, 5. For this, a three-dimensional measurement of the internal space 9 of the supporting structure 1 is carried out. This three-dimensional measurement of the internal space 9 is carried out by any suitable means, for example by using laser rangefinders or laser emitters and sensors positioned in the internal space 9 in order to measure the dimensions and the arrangement of the various bearing walls. 2, 3, 4, 5.
A partir de cette mesure tridimensionnelle de l’espace interne 9, une position et des dimensions de la cuve à installer dans la structure porteuse sont calculées. From this three-dimensional measurement of the internal space 9, a position and dimensions of the tank to be installed in the supporting structure are calculated.
Plus particulièrement, les parois de cuve sont dimensionnées et leur position déterminée d’une part en fonction des dimensions des blocs isolants 11, et plus particulièrement de la surface externe 12 desdits blocs isolants 11, et d’autre part de la mesure tridimensionnelle de l’espace interne 9. Les blocs isolants 11 étant ancrés de façon juxtaposée selon un maillage régulier sur chaque paroi porteuse 2, 3, 4, 5, des positions d’ancrage des blocs isolants 11 sur la paroi porteuse 2, 3, 4, 5 correspondante sont déterminées pour chaque paroi de cuve.More particularly, the vessel walls are dimensioned and their position determined on the one hand as a function of the dimensions of the insulating blocks 11, and more particularly of the outer surface 12 of said insulating blocks 11, and on the other hand of the three-dimensional measurement of the 'internal space 9. The insulating blocks 11 being anchored juxtaposed in a regular mesh on each bearing wall 2, 3, 4, 5, anchoring positions of the insulating blocks 11 on the bearing wall 2, 3, 4, 5 corresponding values are determined for each tank wall.
Pour chaque paroi de cuve, un maillage 15 des blocs isolants 11 est ainsi calculé. La figure 2 illustre un exemple de maillage 15 sur une paroi porteuse transversale 2. Ce maillage 15 comporte une pluralité de premières lignes de positionnement 16 et une pluralité de deuxièmes lignes de positionnement 17. Les premières lignes de positionnement 16 sont parallèles entre elles. De même, les deuxièmes lignes de positionnement 17 sont parallèles entre elles. Les premières lignes de positionnement 16 et les deuxièmes lignes de positionnement 17 sont perpendiculaires entre elles. Les premières lignes de positionnement 16 sont espacées selon un premier pas d’écartement 18 régulier, ce premier pas d’écartement 18 correspondant à la dimension d’un premier côté de la surface externe 12 d’un bloc isolant 11. De même, les deuxièmes lignes de positionnement 17 sont écartées d’un deuxième pas d’écartement 19 régulier, ce deuxième pas d’écartement 19 correspondant à la dimension d’un deuxième côté de la surface externe 12 des blocs isolants 11. Ces premières lignes de positionnement 16 et ces deuxièmes lignes de positionnement 17 correspondent à des lignes le long desquelles lesdits blocs isolants 11 sont ancrés sur la paroi porteuse transversale 2, par exemple au moyen d’organes d’ancrage non représentés tels que des goujons. Le maillage 15 permet ainsi de déterminer les positions des blocs isolants 11 sur la paroi porteuse 2 transversale.For each tank wall, a mesh 15 of the insulating blocks 11 is thus calculated. FIG. 2 illustrates an example of a mesh 15 on a transverse carrying wall 2. This mesh 15 comprises a plurality of first positioning lines 16 and a plurality of second positioning lines 17. The first positioning lines 16 are mutually parallel. Likewise, the second positioning lines 17 are mutually parallel. The first positioning lines 16 and the second positioning lines 17 are perpendicular to each other. The first positioning lines 16 are spaced according to a first regular spacing step 18, this first spacing step 18 corresponding to the dimension of a first side of the external surface 12 of an insulating block 11. Likewise, the second positioning lines 17 are spaced apart by a second regular spacing pitch 19, this second spacing pitch 19 corresponding to the dimension of a second side of the outer surface 12 of the insulating blocks 11. These first positioning lines 16 and these second positioning lines 17 correspond to lines along which said insulating blocks 11 are anchored to the transverse bearing wall 2, for example by means of anchoring members, not shown, such as studs. The mesh 15 thus makes it possible to determine the positions of the insulating blocks 11 on the transverse supporting wall 2.
Selon un mode de réalisation, il est calculé un axe central longitudinal (non illustré), un axe central transversal 13 (voir figure 2) et un axe central de hauteur 14 (voir figure 2) de la cuve. Ces axes centraux sont déterminés en fonction de la mesure tridimensionnelle de l’espace interne 9. Ces axes centraux sont éventuellement ajustés en fonction de la position du dôme liquide 6 dans la structure porteuse 1 et permettent de déterminer l’agencement du maillage 15. Par exemple, comme illustré sur la figure 2, le maillage 15 déterminé pour l’ancrage des blocs isolants 11 sur une paroi porteuse 2 transversale peut être symétrique de part et d’autre de l’axe central de hauteur 14. En outre, l’axe central transversal 13 peut déterminer une première ligne de positionnement 16. According to one embodiment, a longitudinal central axis (not illustrated), a transverse central axis 13 (see FIG. 2) and a central height axis 14 (see FIG. 2) of the tank are calculated. These central axes are determined according to the three-dimensional measurement of the internal space 9. These central axes are possibly adjusted according to the position of the liquid dome 6 in the supporting structure 1 and make it possible to determine the arrangement of the mesh 15. By example, as illustrated in FIG. 2, the mesh 15 determined for anchoring the insulating blocks 11 on a transverse load-bearing wall 2 can be symmetrical on either side of the central axis of height 14. In addition, the transverse central axis 13 can determine a first positioning line 16.
Dans le cadre d’une cuve étanche et thermiquement isolante présentant au moins une membrane étanche ondulée, par exemple telle que décrite dans le document FR-A-2691520, les maillages 15 sur les différentes parois porteuses 2, 3, 4, 5 sont préférablement déterminés de manière à assurer une continuité dans les ondulations entre les différentes parois de cuve. Typiquement, le positionnement des blocs isolants 11 sur deux parois porteuses 2, 3, 4, 5 adjacentes sont modulés de façon à former des surfaces de supports permettant une installation de la membrane étanche de telle sorte que les ondulations puissent être continues entre les parois de cuves.In the context of a sealed and thermally insulating tank having at least one corrugated waterproof membrane, for example as described in document FR-A-2691520, the meshes 15 on the various bearing walls 2, 3, 4, 5 are preferably determined so as to ensure continuity in the corrugations between the different walls of the tank. Typically, the positioning of the insulating blocks 11 on two adjacent bearing walls 2, 3, 4, 5 are modulated so as to form support surfaces allowing installation of the waterproof membrane so that the corrugations can be continuous between the walls of tanks.
Cependant, la surface interne 10 formée par les parois porteuses 2, 3, 4, 5 peut présenter une planéité imparfaite du fait par exemple des tolérances de construction ou encore de l’assemblage des différents éléments formant lesdites parois porteuses 2, 3, 4 5. Ainsi par exemple, les soudures réalisées entre deux portions de double coque assemblées entre elles peuvent constituer des zones d’irrégularité dans la planéité de la surface interne 10. De même, les zones comportant des raidisseurs agencés entre les deux parois formant la double coque d’un navire peuvent également former des zones d’irrégularité dans la planéité de la surface interne 10.However, the internal surface 10 formed by the supporting walls 2, 3, 4, 5 may have imperfect flatness due, for example, to construction tolerances or even to the assembly of the various elements forming said supporting walls 2, 3, 4 5 Thus, for example, the welds made between two portions of a double shell assembled together can constitute zones of irregularity in the flatness of the internal surface 10. Likewise, the zones comprising stiffeners arranged between the two walls forming the double shell. of a ship can also form areas of irregularity in the flatness of the internal surface 10.
Ces défauts de planéité de la surface interne 10 doivent être rattrapés lors de la mise en place des blocs isolants 11. En effet, les parois de cuve sont sujettes à des contraintes importantes à l’usage, par exemple sous l’effet des déformations de la structure porteuse 1 liées à la navigation, sous l’effet des contraintes thermiques ou encore sous l’effet des mouvements de liquide dans la cuve. Pour éviter une dégradation de l’étanchéité de la cuve, les membranes étanches sont agencées de la façon la plus plane possible. Il est donc important que les barrières thermiquement isolantes primaires et secondaires forment des surfaces de support planes et continues pour les membranes étanches. Les défauts de planéité dans la surface interne 10 doivent donc être rattrapés afin de fournir une surface de support satisfaisante pour les blocs isolants 11 sur lesquels reposent les membranes étanches de la cuve. These defects in the flatness of the internal surface 10 must be remedied during the installation of the insulating blocks 11. In fact, the vessel walls are subject to significant stresses in use, for example under the effect of deformations of the supporting structure 1 linked to navigation, under the effect of thermal stresses or even under the effect of movements of liquid in the tank. To avoid degradation of the seal of the tank, the waterproof membranes are arranged as flat as possible. It is therefore important that the primary and secondary thermally insulating barriers form flat and continuous support surfaces for the waterproof membranes. The flatness defects in the internal surface 10 must therefore be remedied in order to provide a satisfactory support surface for the insulating blocks 11 on which the waterproof membranes of the tank rest.
La figure 3 illustre une paroi porteuse transversale 2 présentant de tels défauts de planéité. Ces défauts de planéité engendrent des écarts 20 plus ou moins importants entre les points de la surface interne 10 et une ligne moyenne plane de la paroi porteuse.FIG. 3 illustrates a transverse load-bearing wall 2 exhibiting such flatness defects. These flatness defects generate more or less significant differences between the points of the internal surface 10 and a flat mean line of the bearing wall.
Afin de rattraper ces écarts 20, un plan de référence 21 est déterminé correspondant à une position idéale de la membrane étanche, c’est-à-dire une position idéale de la surface interne 22 des blocs isolants 11. Ce plan de référence 21 illustré sur la figure 4 est sensiblement parallèle à un plan moyen de la paroi porteuse transversale 2, c’est-à-dire qu’il correspond à un plan parallèle à la paroi porteuse transversale 2 abstraction faite des défauts de planéité précités. Sur cette figure 4 sont également illustrées les premières lignes de positionnement 16. In order to make up for these deviations 20, a reference plane 21 is determined corresponding to an ideal position of the waterproof membrane, that is to say an ideal position of the internal surface 22 of the insulating blocks 11. This reference plane 21 illustrated in FIG. 4 is substantially parallel to a mean plane of the transverse load-bearing wall 2, that is to say it corresponds to a plane parallel to the transverse load-bearing wall 2, apart from the aforementioned flatness defects. In this figure 4 are also illustrated the first positioning lines 16.
Le plan de référence 21 est un plan théorique optimal. Il peut être toléré que les blocs isolants 11 présentent une surface interne 22, c’est-à-dire une surface de support pour une membrane étanche primaire ou secondaire, présentant une légère inclinaison par rapport à ce plan de référence 21. Chaque bloc isolant 11 présente une surface interne 22 présentant avec le plan de référence 21 optimal un angle inférieur à Arctan(10-2), et de préférence inférieur à Arctan(6.10-3). En outre, la surface interne 22 de deux blocs isolants 11 adjacents ne doit pas non plus former un angle trop important et de préférence inférieur à Arctan(10-2), et de préférence inférieur à Arctan(6.10-3). Ces angles correspondent à une limite au-delà de laquelle la surface de support de la membrane étanche présenterait une planéité insuffisante et susceptible de générer à l’usage une ou des zones de concentration des contraintes sur la membrane étanche. The reference plane 21 is an optimal theoretical plane. It can be tolerated that the insulating blocks 11 have an internal surface 22, that is to say a support surface for a primary or secondary waterproof membrane, exhibiting a slight inclination with respect to this reference plane 21. Each insulating block 11 has an internal surface 22 exhibiting with the optimum reference plane 21 an angle less than Arctan (10 -2 ), and preferably less than Arctan (6.10 -3 ). In addition, the internal surface 22 of two adjacent insulating blocks 11 must not form an angle that is too large and preferably less than Arctan (10 -2 ), and preferably less than Arctan (6.10 -3 ). These angles correspond to a limit beyond which the support surface of the waterproof membrane would have insufficient flatness and likely to generate in use one or more areas of stress concentration on the waterproof membrane.
Comme illustré sur la figure 5 illustrant une vue en coupe perpendiculaire aux premières lignes de positionnement 16, une ligne de référence 23 est interpolée par portions linéaires 24 à partir du plan de référence 21 pour chaque deuxième ligne de positionnement 17. Chaque portion linéaire 24 présente une dimension correspondant au premier pas d’écartement, autrement dit, chaque portion linéaire correspond à la dimension de côté d’un bloc isolant 11. Cette interpolation est réalisée de façon analogue pour chaque première ligne de positionnement avec des portions linéaires correspondant au deuxième pas d’écartement. As illustrated in FIG. 5 showing a sectional view perpendicular to the first positioning lines 16, a reference line 23 is interpolated by linear portions 24 from the reference plane 21 for each second positioning line 17. Each linear portion 24 has a dimension corresponding to the first spacing step, in other words, each linear portion corresponds to the side dimension of an insulating block 11. This interpolation is carried out in a similar manner for each first positioning line with linear portions corresponding to the second step spacing.
Afin d’assurer l’ancrage des blocs isolants 11 selon une position correspondant à la portion linéaire 24 correspondante de la ligne de référence 23, des cales d’épaisseur 25 sont agencées sur les ou à proximité des organes d’ancrage destinés à coopérer avec les blocs isolants 11. Ces cales 25 sont dimensionnées de manière à présenter un écart constant, égal à l’épaisseur d’un bloc isolant 21, entre la surface interne desdites cales 25 et la ligne de référence 23.In order to ensure the anchoring of the insulating blocks 11 in a position corresponding to the corresponding linear portion 24 of the reference line 23, shims 25 are arranged on or near the anchoring members intended to cooperate with the insulating blocks 11. These wedges 25 are dimensioned so as to have a constant gap, equal to the thickness of an insulating block 21, between the internal surface of said wedges 25 and the reference line 23.
En outre, comme illustré sur la figure 6, des cordons de mastic 26 sont intercalés entre la surface externe 12 des blocs isolants 11 et la surface interne 10. Ces cordons de mastic 26 sont fabriqués par mélange d’une résine polymérisable et d’un durcisseur sur le site de fabrication de la cuve afin d’être appliqués immédiatement, avant durcissement par polymérisation, sur les blocs isolants 11. Cette fabrication sur site est nécessaire si le temps de polymérisation du mastic est relativement court, par exemple environ 1 heure ou moins. In addition, as illustrated in Figure 6, beads of mastic 26 are interposed between the outer surface 12 of the insulating blocks 11 and the inner surface 10. These cords of mastic 26 are made by mixing a polymerizable resin and a hardener on the site of manufacture of the tank in order to be applied immediately, before curing by polymerization, on the insulating blocks 11. This manufacture on site is necessary if the curing time of the mastic is relatively short, for example about 1 hour or less.
Ces cordons de mastic 26 permettent de rattraper les défauts de planéité de la surface interne 10 et de fournir un support pour les blocs isolants 11 entre les cales d’épaisseur 25. Pour cela, les cordons de mastics 26 sont dimensionnés pour combler des écarts 27 entre la surface externe 12 des blocs isolants 11 et la surface interne 10 tout en présentant une surface de coopération avec d’une part les blocs isolants 11 sur lesquels ils sont appliqués et, d’autre part, la surface interne 10 de la structure porteuse suffisante pour supporter lesdits blocs isolants 11 et transmettre les efforts entre les blocs isolants 11 et la structure porteuse 1. Autrement dit, ces cordons de mastic 26 sont dimensionnés en fonction d’écarts 27 mesurés entre la surface externe 12 des blocs isolants 11 et la surface interne 10 et en fonction d’une largeur prédéfinie de ladite surface de coopération. These beads of mastic 26 make it possible to make up for the defects of flatness of the internal surface 10 and to provide a support for the insulating blocks 11 between the shims 25. For this, the cords of mastic 26 are dimensioned to fill the gaps 27 between the external surface 12 of the insulating blocks 11 and the internal surface 10 while having a surface of cooperation with, on the one hand, the insulating blocks 11 on which they are applied and, on the other hand, the internal surface 10 of the supporting structure sufficient to support said insulating blocks 11 and transmit the forces between the insulating blocks 11 and the supporting structure 1. In other words, these beads of mastic 26 are dimensioned according to the distances 27 measured between the outer surface 12 of the insulating blocks 11 and the internal surface 10 and as a function of a predefined width of said cooperation surface.
Ainsi, la quantité de mastic déposée dans un état malléable pour former un cordon de mastics 26 est donc dimensionnée avec une section transversale suffisante pour que, à l’état final , après écrasement dudit cordon de mastic 26 entre la surface externe 12 du bloc isolant 11 et la surface interne 10 lors de la pose dudit bloc isolant 11 sur la structure porteuse 1, une surface d’application dudit cordon de mastic 26 sur le bloc isolant 11 et sur la surface interne 10 présente une largeur supérieure ou égale à une largeur minimale prédéfinie. Thus, the quantity of mastic deposited in a malleable state to form a bead of mastics 26 is therefore dimensioned with a sufficient cross section so that, in the final state, after crushing of said bead of mastic 26 between the outer surface 12 of the insulating block 11 and the internal surface 10 when placing said insulating block 11 on the supporting structure 1, an application surface of said bead of mastic 26 on the insulating block 11 and on the internal surface 10 has a width greater than or equal to a width minimum predefined.
Le dimensionnement de la section transversale des cordons de mastic est donc déterminé à partir de la largeur minimale prédéfinie et des positions des cordons de mastic, puisque la dimension d’épaisseur d’un cordon dépend de l’écart 27 à combler à son emplacement précis. Ces positions (et donc le nombre de cordons de mastic 26 à poser) ainsi que cette largeur prédéfinie résultent d’un calcul préalable tenant compte de la résistance mécanique en flexion des blocs isolants 11. The dimensioning of the cross section of the mastic beads is therefore determined from the predefined minimum width and the positions of the mastic beads, since the thickness dimension of a bead depends on the gap 27 to be filled at its precise location. . These positions (and therefore the number of mastic beads 26 to be laid) as well as this predefined width result from a preliminary calculation taking into account the mechanical bending strength of the insulating blocks 11.
Les écarts 27 sont mesurés en fonction d’une part des lignes de référence 23 et d’autre part de la mesure tridimensionnelle de la surface interne 10 réalisée préalablement. Plus particulièrement, pour la position d’ancrage de chaque blocs isolants 11 déterminée par le maillage 15, une pluralité d’écarts 27 entre la surface externe 12 dudit bloc isolant 11 et la surface interne 10 de la structure porteuse 1. Dans l’exemple illustré sur la figure 6, trois cordons de mastic 26 sont intercalés entre chaque bloc isolant 11 et la surface interne 10 de la structure porteuse 1, ces cordons de mastics se développant sur toute la longueur du bloc isolant 11. Ainsi, un ou plusieurs écarts 27 sont mesurés le long de chaque ligne de la surface externe 12 des blocs isolants au niveau desquelles doivent être appliqués les cordons de mastics 26. En outre, ces écarts 27 sont mesurés selon une direction d’épaisseur de la paroi de cuve correspondante. En d’autres termes, l’écart est mesuré en un ou plusieurs points de mesure, par exemple trois points de mesure, pour chaque cordon de mastic. Si plusieurs points de mesure sont associés à un même cordon de mastic, le dimensionnement du cordon de mastic peut être réalisé de manière variable dans la longueur du cordon de mastic, ou de manière uniforme sur toute la longueur du cordon de mastic à une valeur moyenne des écarts obtenus en ces points de mesure.The deviations 27 are measured on the one hand on the reference lines 23 and on the other hand on the three-dimensional measurement of the internal surface 10 carried out previously. More particularly, for the anchoring position of each insulating block 11 determined by the mesh 15, a plurality of gaps 27 between the outer surface 12 of said insulating block 11 and the inner surface 10 of the supporting structure 1. In the example illustrated in Figure 6, three cords of mastic 26 are interposed between each insulating block 11 and the internal surface 10 of the supporting structure 1, these cords of mastic developing over the entire length of the insulating block 11. Thus, one or more gaps 27 are measured along each line of the outer surface 12 of the insulating blocks at which the sealant beads 26 are to be applied. Furthermore, these deviations 27 are measured in a direction of thickness of the corresponding tank wall. In other words, the deviation is measured at one or more measuring points, for example three measuring points, for each bead of sealant. If several measurement points are associated with the same bead of mastic, the sizing of the bead of mastic can be carried out variably in the length of the bead of mastic, or uniformly over the entire length of the bead of mastic at an average value. of the deviations obtained at these measurement points.
Selon un mode de réalisation, de tels cordons de mastics 26 sont fabriqués de façon continue au moyen d’une extrudeuse à mastic. Différentes techniques sont utilisables pour régler la section transversale des cordons de mastics 26 lors de la fabrication. According to one embodiment, such cords of mastic 26 are produced continuously by means of a mastic extruder. Various techniques can be used to adjust the cross section of the sealant beads 26 during manufacture.
Le réglage de la section transversale peut être obtenu en réglant le débit de mastic à travers la tête de distribution de l’extrudeuse. Ce réglage de débit peut être optionnellement accompagné d’un réglage de la section de sortie de la tête de distribution de l’extrudeuse. Ce réglage de la section de sortie peut être effectué de différentes manières, par exemple au moyen d’une tête de distribution à section réglable ou au moyen de têtes de distribution interchangeables, présentant des sections fixes différentes. Adjustment of the cross section can be achieved by adjusting the flow rate of sealant through the dispensing head of the extruder. This flow rate adjustment can optionally be accompanied by an adjustment of the outlet section of the extruder dispensing head. This adjustment of the outlet section can be carried out in different ways, for example by means of an adjustable section distribution head or by means of interchangeable distribution heads, having different fixed sections.
Une autre manière de régler la section transversale du cordon de mastic, notamment si le mastic est suffisamment thixotrope, est de régler une vitesse d’avance relative entre la tête de distribution de l’extrudeuse et la surface sur laquelle le cordon de mastic est déposé, c’est-à-dire par exemple en réglant la vitesse de défilement des blocs isolants dans la technique décrite par la publication FR-A-2259008. Another way to adjust the cross section of the bead of mastic, especially if the mastic is sufficiently thixotropic, is to adjust a relative feed rate between the dispensing head of the extruder and the surface on which the bead of mastic is deposited. , that is to say for example by adjusting the travel speed of the insulating blocks in the technique described by the publication FR-A-2259008.
Une première méthode de dimensionnement des cordons de mastics consiste à dimensionner la section transversale de chaque cordon de mastic 26 sur mesure, en fonction de l’écart 27 mesuré à l’emplacement que doit occuper le cordon de mastic sur la structure porteuse 1. Cependant, une telle méthode de dimensionnement présente l’inconvénient de devoir modifier en permanence le réglage de l’outil de production. Ainsi, les cordons de mastic ne peuvent pas être fabriqués de façon uniformisée. A first method of dimensioning the sealant beads consists in dimensioning the cross section of each bead of mastic 26 to measure, as a function of the distance 27 measured at the location that the bead of mastic must occupy on the supporting structure 1. However, , such a sizing method has the drawback of having to permanently modify the setting of the production tool. Thus, the sealant beads cannot be made uniformly.
Pour remédier à cet inconvénient, une autre méthode de dimensionnement des cordons de mastics consiste à prévoir un nombre t déterminé de tailles discrètes. Ce mode de réalisation, bien qu’il entraîne une consommation de mastic plus importante que le mode de réalisation décrit ci-dessus dans lequel chaque cordon de mastic 26 est fabriqué individuellement en fonction de sa localisation dans la cuve, permet de simplifier la fabrication des cordons de mastics 26 en définissant des tailles uniformisées ne nécessitant ainsi pas une adaptation de l’outil de production pour chaque cordon de mastic 26 fabriqué. Pour cela, plusieurs méthodes vont être décrites en référence à la figure 7.To remedy this drawback, another method of dimensioning the sealant beads consists in providing a determined number t of discrete sizes. This embodiment, although it results in a greater consumption of mastic than the embodiment described above in which each bead of mastic 26 is manufactured individually according to its location in the tank, makes it possible to simplify the manufacture of the mastic. bead of sealants 26 by defining uniform sizes thus not requiring an adaptation of the production tool for each bead of sealant 26 manufactured. For this, several methods will be described with reference to Figure 7.
La figure 7 illustre une distribution 28 des écarts 27 mesurés comme décrit plus haut. L’ordonnée représente la dimension de l’écart 27 dans la direction d’épaisseur de la paroi de cuve. Cette dimension peut être multipliée par la largeur prédéfinie pour obtenir l’aire de section transversale idéale du cordon de mastic. L’abscisse représente la population des points de mesure, ramenée à un pourcentage. La distribution a été ordonnée par ordre croissant des écarts 27 et fournit ainsi la fréquence d’apparition de chaque écart dans la distribution. Plus un écart est fréquent, plus il occupe une place large dans la distribution 28.FIG. 7 illustrates a distribution 28 of the deviations 27 measured as described above. The ordinate represents the dimension of the gap 27 in the direction of thickness of the vessel wall. This dimension can be multiplied by the predefined width to obtain the ideal cross-sectional area of the bead of sealant. The abscissa represents the population of the measurement points, reduced to a percentage. The distribution has been ordered in ascending order of deviations 27 and thus provides the frequency of occurrence of each deviation in the distribution. The more frequent a deviation, the more it occupies a large place in the distribution 28.
Selon ce mode de réalisation, des cordons de mastics 26 sont réalisés selon t différentes tailles pour l’ensemble des écarts 27 mesurés entre la surface interne 10 et la surface externe de la cuve, typiquement la surface externe 12 des blocs isolants 11. Cette distribution des écarts pourrait cependant être déterminée à l’échelle d’une unité de construction autre qu’une cuve entière, par exemple une paroi plane de la cuve.According to this embodiment, cords of sealants 26 are produced in different sizes for all of the distances 27 measured between the internal surface 10 and the external surface of the tank, typically the external surface 12 of the insulating blocks 11. This distribution deviations could however be determined at the scale of a building unit other than a whole tank, for example a flat wall of the tank.
Sur cette figure, la distribution 28 des écarts peut être majorée par un certain coefficient de sécurité, par exemple majorée d’environ 8%, par rapport à la valeur réelle mesurée. Cette majoration permet de légèrement surdimensionner les sections des cordons de mastics 26 pour garantir une surface de coopération satisfaisante, c’est-à-dire notamment obtenir par fluage une largeur finale supérieur ou égale à la largeur prédéfinie. Une deuxième courbe 29 correspond à une interpolation polynomiale de la distribution 28 des écarts. In this figure, the distribution 28 of the deviations can be increased by a certain safety coefficient, for example increased by approximately 8%, relative to the actual measured value. This increase makes it possible to slightly oversize the sections of the sealant beads 26 to guarantee a satisfactory cooperation surface, that is to say in particular to obtain by creep a final width greater than or equal to the predefined width. A second curve 29 corresponds to a polynomial interpolation of the distribution 28 of the deviations.
Dans une première variante de ce mode de réalisation, les tailles de cordons de mastics 26 sont déterminées de façon équirépartie. Dans l’exemple illustré sur la figure 7, cinq tailles (i.e. t=5) de cordons de mastics 26, désignées par les chiffres 31 à 35, sont déterminées de manière à ce que chaque taille de cordons de mastic permette de couvrir 20% de la distribution 28 des écarts. Une courbe de tailles équiréparties 30 illustre en pointillés les différentes tailles 31 à 35. Ainsi, sur cette courbe 30, une première taille équirépartie 31 présente une épaisseur de 5.7mm, une deuxième taille équirépartie 32 présente une épaisseur de 8.4mm, une troisième taille équirépartie 33 présente une épaisseur de 10.3mm, une quatrième taille équirépartie 34 présente une épaisseur de 12.9mm et une cinquième taille équirépartie 35 présente une épaisseur de 23mm. Des sections transversales correspondantes peuvent être obtenues en multipliant ces épaisseurs par la largeur prédéfinie.In a first variant of this embodiment, the sizes of the sealant beads 26 are determined equally. In the example illustrated in figure 7, five sizes (ie t = 5) of sealant beads 26, designated by the numbers 31 to 35, are determined so that each size of the sealant beads allows to cover 20% of the distribution 28 of the deviations. A curve of equally distributed sizes 30 illustrates in dotted lines the different sizes 31 to 35. Thus, on this curve 30, a first evenly distributed size 31 has a thickness of 5.7mm, a second equally distributed size 32 has a thickness of 8.4mm, a third size evenly distributed 33 has a thickness of 10.3mm, a fourth evenly distributed size 34 has a thickness of 12.9mm and a fifth evenly distributed size 35 has a thickness of 23mm. Corresponding cross sections can be obtained by multiplying these thicknesses by the predefined width.
En conséquence, dans l’exemple des tailles équiréparties illustré en pointillés sur la figure 7, un nombre égal de cordons de mastic est utilisé dans chacune des tailles 31 à 35. Aux emplacements où les écarts 27sont inférieurs à 5.7mm, c’est-à-dire les 20% écarts mesurés les plus petits, des cordons de mastics 26 de la première taille équirépartie 31 sont utilisés. Aux emplacements où les écarts 27 sont compris entre 5.7mm et 8.4mm, c’est-à-dire aussi 20% des écarts mesurés, des cordons de mastics 26 selon la deuxième taille équirépartie 32 sont utilisés, etc.Accordingly, in the example of evenly distributed sizes shown in dotted lines in Figure 7, an equal number of beads of sealant is used in each of sizes 31 to 35. At locations where the gaps 27 are less than 5.7mm, that is. i.e. the smallest 20% measured deviations, sealant beads 26 of the first evenly distributed size 31 are used. At locations where the gaps 27 are between 5.7mm and 8.4mm, i.e. also 20% of the measured gaps, sealant beads 26 according to the second size evenly distributed 32 are used, etc.
De telles tailles équiréparties 31, 32, 33, 34 et 35 facilitent la fabrication des cordons de mastics 26 et permettent de rattraper l’ensemble des écarts 27 mesurés de façon simple, rapide et fiable. Such evenly distributed sizes 31, 32, 33, 34 and 35 facilitate the manufacture of the sealant beads 26 and make it possible to make up all of the measured deviations 27 simply, quickly and reliably.
Cependant, ces tailles équiréparties ne sont pas adaptées à la fabrication de toutes les cuves. Les défauts de planéité de la surface interne 10 étant différents d’une cuve à l’autre, ces tailles équiréparties peuvent engendrer une consommation de mastic excessive lorsque les écarts 27 sont majoritairement éloignés des dimensions des tailles équiréparties 31, 32, 33, 34 et 35. Par exemple, en regard de la courbe 30, la cinquième taille équirépartie 35 de cordons de mastics 26 est très sensiblement supérieure à l’écart 27 mesuré pour une grande partie des points de mesure qui seront associés à ladite cinquième taille 35 de cordons de mastic 26, engendrant une surconsommation importante de mastic, c’est-à-dire notamment une surlargeur due à un fluage excessif du cordon de mastic. Dans un cas extrême, la surlargeur résultante pourrait complètement combler l’interstice entre le cordon de mastic 26 et un cordon de mastic adjacent, et ainsi créer une poche d’air piégée dans le mastic. Dans le cas où la cuve doit contenir des matières inflammables, une telle poche d’air peut être interdite par la réglementation.However, these evenly distributed sizes are not suitable for the manufacture of all tanks. The flatness defects of the internal surface 10 being different from one tank to another, these evenly distributed sizes can generate an excessive consumption of mastic when the deviations 27 are mainly far from the dimensions of the equally distributed sizes 31, 32, 33, 34 and 35. For example, with respect to curve 30, the fifth evenly distributed size 35 of sealant beads 26 is very significantly greater than the difference 27 measured for a large part of the measurement points which will be associated with said fifth size 35 of beads. of mastic 26, causing a significant excess consumption of mastic, that is to say in particular an excess width due to excessive creep of the bead of mastic. In an extreme case, the resulting excess width could completely fill the gap between the bead of mastic 26 and an adjacent bead of mastic, and thus create an air pocket trapped in the mastic. In the event that the tank must contain flammable materials, such an air pocket may be prohibited by regulations.
Selon une deuxième variante de ce mode de réalisation, les tailles discrètes des cordons de mastics sont déterminées en fonction des fréquences d’apparition des écarts 27 mesurés, de manière à limiter une différence cumulée entre les écarts 27 et lesdites tailles associées. According to a second variant of this embodiment, the discrete sizes of the sealant beads are determined as a function of the frequency of occurrence of the measured deviations 27, so as to limit an accumulated difference between the deviations 27 and said associated sizes.
On entend par "limiter une différence cumulée" le fait d'obtenir un meilleur dimensionnement des cordons de mastic par comparaison avec les tailles équiréparties. Pour cela, il faut minimiser la surface 37 située entre la distribution 28 des écarts et la courbe en créneaux 36 représentant les tailles discrètes des cordons, c’est-à-dire la valeur intégrale de la différence entre les deux courbes. Ce problème peut être résolu avec des méthodes numériques d’optimisation. .The term “limiting a cumulative difference” is understood to mean the fact of obtaining a better dimensioning of the beads of mastic compared with the evenly distributed sizes. For this, it is necessary to minimize the area 37 located between the distribution 28 of the deviations and the notched curve 36 representing the discrete sizes of the beads, that is to say the integral value of the difference between the two curves. This problem can be solved with numerical optimization methods. .
Il est possible d’augmenter le nombre t de tailles de cordons de manière à limiter les pertes de mastic lors de la fabrication des cordons de mastic 26. De même il est possible de sortir certains points de mesure pour tronquer la distribution 38, et ainsi traiter des écarts exceptionnels de façon manuelle. Par exemple des cordons de mastics sur mesure peuvent être utilisés pour une portion allant jusqu’à 2% des écarts mesurés (les plus gros cordons de mastic). Dans ce cas, les t tailles de cordons de mastic déterminées comme ci-dessus sont employés pour le restant des écarts mesurés. It is possible to increase the number t of sizes of beads so as to limit the losses of mastic during the manufacture of the beads of mastic 26. Likewise, it is possible to take out certain measuring points in order to truncate the distribution 38, and thus handle exceptional deviations manually. For example, custom sealant beads can be used for a portion of up to 2% of the measured deviations (larger sealant beads). In this case, the t sizes of mastic beads determined as above are used for the remainder of the measured deviations.
La technique décrite ci-dessus pour réaliser une cuve étanche et thermiquement isolante peut être utilisée dans différents types de réservoirs, par exemple pour constituer un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.The technique described above for producing a sealed and thermally insulating tank can be used in various types of tanks, for example to constitute an LNG tank in an onshore installation or in a floating structure such as an LNG or other vessel.
En référence à la figure 8, une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.Referring to Figure 8, a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship. The wall of the vessel 71 comprises a primary waterproof barrier intended to be in contact with the LNG contained in the vessel, a secondary waterproof barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the vessel. primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double shell 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71. In a manner known per se, loading / unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
La figure 8 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement. FIG. 8 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77. The loading and unloading station 75 is a fixed off-shore installation comprising an arm. mobile 74 and a tower 78 which supports the mobile arm 74. The mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73. The mobile swivel arm 74 adapts to all sizes of LNG carriers . A connecting pipe, not shown, extends inside the tower 78. The loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77. The latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75. The underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.In order to generate the pressure necessary for the transfer of the liquefied gas, pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with several particular embodiments, it is obvious that it is in no way limited thereto and that it includes all the technical equivalents of the means described as well as their combinations if these come within the scope of the invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication. L’usage de l’article indéfini « un » ou « une » pour un élément ou une étape n’exclut pas, sauf mention contraire, la présence d’une pluralité de tels éléments ou étapes. The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or other steps than those stated in a claim. The use of the indefinite article "a" or "a" for an element or a stage does not exclude, unless otherwise indicated, the presence of a plurality of such elements or stages.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.In the claims, any reference sign in parentheses cannot be interpreted as a limitation of the claim.

Claims (15)

  1. Procédé de fabrication de cordons de mastics (26) destinés à installer une cuve étanche et thermiquement isolante dans une structure porteuse (1), la structure porteuse (1) comportant une surface interne (10) délimitant un espace interne (9),
    le procédé comportant les étapes de :
    - déterminer une pluralité d’écarts (27) entre une pluralité de points de mesure distribués sur une surface externe de la cuve et la surface interne (10) de la structure porteuse (1), lesdits écarts (27) étant déterminés parallèlement à une direction d’épaisseur de la cuve au niveau desdits points de mesure, lesdits écarts (27) étant déterminés en fonction d’une position d’implantation de la cuve dans l’espace interne (9) de la structure porteuse (1) et de dimensions tridimensionnelles de ladite cuve et dudit espace interne (9) de la structure porteuse (1),
    - fournir une pluralité de tailles (31, 32, 33, 34, 35, 36) de section transversale, ladite pluralité de tailles (31, 32, 33, 34, 35, 36) comportant un nombre entier t de tailles (31, 32, 33, 34, 35, 36), le nombre entier t étant inférieur à un nombre total desdits écarts de la pluralité d’écarts (27), la pluralité de tailles (31, 32, 33, 34, 35, 36) présentant une borne supérieure, ladite borne supérieure étant plus grande qu’une section rectangulaire associée à l’écart maximal de la pluralité d’écarts (27), la section rectangulaire associée présentant une largeur prédéfinie et une hauteur égale à l’écart maximal de la pluralité d’écarts (27),
    - fabriquer des cordons de mastic (26) destinés à être appliqués entre la surface interne (10) de la structure porteuse (1) et la surface externe de la cuve, lesdits cordons présentant des dimensions de section transversale définies en fonction desdits écarts (27) déterminés, les cordons de mastics (26) étant fabriqués avec des dimensions de section transversale choisies parmi ladite pluralité de tailles (31, 32, 33, 34, 35, 36).
    Method of manufacturing cords of mastics (26) intended to install a sealed and thermally insulating tank in a supporting structure (1), the supporting structure (1) comprising an internal surface (10) defining an internal space (9),
    the process comprising the steps of:
    - determining a plurality of gaps (27) between a plurality of measurement points distributed over an external surface of the tank and the internal surface (10) of the supporting structure (1), said gaps (27) being determined parallel to a direction of thickness of the tank at the level of said measuring points, said distances (27) being determined as a function of an implantation position of the tank in the internal space (9) of the supporting structure (1) and of three-dimensional dimensions of said tank and said internal space (9) of the supporting structure (1),
    - providing a plurality of sizes (31, 32, 33, 34, 35, 36) of cross section, said plurality of sizes (31, 32, 33, 34, 35, 36) comprising an integer t of sizes (31, 32, 33, 34, 35, 36), the integer t being less than a total number of said gaps of the plurality of gaps (27), the plurality of sizes (31, 32, 33, 34, 35, 36) having an upper bound, said upper bound being greater than a rectangular section associated with the maximum deviation of the plurality of deviations (27), the associated rectangular section having a predefined width and a height equal to the maximum deviation of the plurality of deviations (27),
    - manufacturing beads of mastic (26) intended to be applied between the internal surface (10) of the supporting structure (1) and the external surface of the tank, said beads having dimensions of cross section defined as a function of said gaps (27 ) determined, the cords of sealants (26) being fabricated with cross-sectional dimensions selected from said plurality of sizes (31, 32, 33, 34, 35, 36).
  2. Procédé de fabrication selon la revendication 1, dans lequel, pour un écart de la pluralité d’écarts (27), on fabrique un cordon de mastic (26) dont la dimension de section transversale est égale à une taille minimale parmi les tailles (31, 32, 33, 34, 35, 36) qui est supérieure ou égale à une section rectangulaire associée audit écart, la section rectangulaire associée présentant ladite largeur prédéfinie et une hauteur égale audit écart.A manufacturing method according to claim 1, wherein for one deviation of the plurality of deviations (27), a bead of mastic (26) is produced having a cross-sectional dimension equal to a minimum size among the sizes (31). , 32, 33, 34, 35, 36) which is greater than or equal to a rectangular section associated with said gap, the associated rectangular section having said predefined width and a height equal to said gap.
  3. Procédé de fabrication selon la revendication 1 ou 2, dans lequel l’étape de fournir la pluralité de tailles (36) de section transversale comporte :
    - calculer une fréquence d’apparition des écarts de la pluralité d’écarts (27),
    - calculer la pluralité de tailles (36) de cordons de mastics en fonction de la fréquence d’apparition des écarts et des écarts (27) déterminés de manière à ce que chaque écart de la pluralité d’écarts (27) puisse être associé à une taille de la pluralité de tailles (36) qui est immédiatement supérieure à la section rectangulaire associée audit écart, et de manière à limiter une différence cumulée entre les sections rectangulaires associées auxdits écarts de la pluralité d’écarts (27) et lesdites tailles (36) auxquels lesdits écarts sont associés.
    The manufacturing method according to claim 1 or 2, wherein the step of providing the plurality of cross-sectional sizes (36) comprises:
    - calculating a frequency of occurrence of the deviations of the plurality of deviations (27),
    - calculating the plurality of sizes (36) of sealant beads as a function of the frequency of occurrence of the deviations and the deviations (27) determined so that each deviation of the plurality of deviations (27) can be associated with a size of the plurality of sizes (36) which is immediately greater than the rectangular section associated with said gap, and so as to limit an accumulated difference between the rectangular sections associated with said gaps of the plurality of gaps (27) and said sizes ( 36) to which said deviations are associated.
  4. Procédé de fabrication selon l’une des revendications 1 à 3, dans lequel la fixation du nombre entier t et/ou le calcul de la pluralité de tailles est effectué pour une unité de construction choisie parmi une pluralité de cuves, une seule cuve, une paroi plane d’une cuve polyédrique, et une portion d’une paroi plane.Manufacturing process according to one of claims 1 to 3, wherein the fixing of the integer t and / or the calculation of the plurality of sizes is carried out for a construction unit chosen from a plurality of tanks, a single tank, a flat wall of a polyhedral tank, and a portion of a flat wall.
  5. Procédé de fabrication selon l’une des revendications 1 à 4, dans lequel le nombre entier t de tailles est inférieur ou égal à 10, de préférence inférieur ou égal à 5. Manufacturing process according to one of claims 1 to 4, wherein the whole number t of sizes is less than or equal to 10, preferably less than or equal to 5.
  6. Procédé de fabrication selon l’une des revendications 1 à 5, comportant en outre :
    - réaliser une mesure tridimensionnelle de l’espace interne (9) de la structure porteuse (1),
    - définir des dimensions et une forme de la cuve en fonction de ladite mesure tridimensionnelle de manière à permettre l’insertion de ladite cuve dans l’espace interne (9) de la structure porteuse (1),
    - définir la position d’implantation de la cuve dans l’espace interne (9) de la structure porteuse (1) en fonction de la mesure tridimensionnelle de l’espace interne (9) de la structure porteuse (1) et des dimensions et de la forme de la cuve définies.
    Manufacturing process according to one of claims 1 to 5, further comprising:
    - carry out a three-dimensional measurement of the internal space (9) of the supporting structure (1),
    - defining dimensions and a shape of the tank as a function of said three-dimensional measurement so as to allow the insertion of said tank into the internal space (9) of the supporting structure (1),
    - define the installation position of the tank in the internal space (9) of the supporting structure (1) according to the three-dimensional measurement of the internal space (9) of the supporting structure (1) and the dimensions and the shape of the tank defined.
  7. Procédé de fabrication selon la revendication 6, dans lequel la cuve comporte une pluralité de blocs isolants (11) comportant des panneaux de fond définissant ladite surface externe de la cuve, et dans lequel définir une position d’implantation de la cuve comporte définir une position d’ancrage de la pluralité de blocs isolants (11) sur la surface interne (10) de la structure porteuse (1).The manufacturing method according to claim 6, wherein the vessel comprises a plurality of insulating blocks (11) comprising bottom panels defining said outer surface of the vessel, and wherein defining an implantation position of the vessel comprises defining a position anchoring of the plurality of insulating blocks (11) on the internal surface (10) of the supporting structure (1).
  8. Procédé de fabrication selon la revendication 6, dans lequel les points de mesure comportent, pour chaque bloc isolant (11), un point d’un panneau de fond dudit bloc isolant (11) lorsque ledit bloc isolant (11) est dans la position d’ancrage.Manufacturing method according to claim 6, wherein the measuring points comprise, for each insulating block (11), a point of a bottom panel of said insulating block (11) when said insulating block (11) is in position d 'anchoring.
  9. Procédé de fabrication selon la revendication 8, dans lequel la structure porteuse comporte au moins une paroi porteuse plane (2, 3, 4, 5), la cuve comportant une paroi de cuve comportant une pluralité de blocs isolants (11) destinés à être ancrés sur la paroi porteuse (2, 3, 4, 5), lesdits blocs isolants (11) présentant une surface interne (22) parallèle au panneau de fond, ladite surface interne (22) formant une surface de support pour une membrane étanche de la paroi de cuve, le procédé comportant en outre :
    - déterminer pour la paroi porteuse un plan de référence (21),
    et dans lequel la position d’ancrage des blocs isolants (11) est définie de manière que la surface interne (22) dudit bloc isolant (11) présente, lorsque ledit bloc isolant (11) est dans la position d’ancrage, une inclinaison inférieure à un angle seuil par rapport au plan de référence (21).
    Manufacturing process according to claim 8, wherein the supporting structure comprises at least one flat supporting wall (2, 3, 4, 5), the vessel comprising a vessel wall comprising a plurality of insulating blocks (11) intended to be anchored on the supporting wall (2, 3, 4, 5), said insulating blocks (11) having an inner surface (22) parallel to the bottom panel, said inner surface (22) forming a support surface for a waterproof membrane of the vessel wall, the method further comprising:
    - determine for the load-bearing wall a reference plane (21),
    and wherein the anchoring position of the insulating blocks (11) is defined such that the inner surface (22) of said insulating block (11) has, when said insulating block (11) is in the anchoring position, an inclination less than a threshold angle with respect to the reference plane (21).
  10. Procédé de fabrication selon la revendication 9, dans lequel l’angle seuil est inférieur à Arctan(10-²), de préférence inférieur à Arctan(6.10-3). Manufacturing process according to claim 9, in which the threshold angle is less than Arctan (10 - ²), preferably less than Arctan (6.10 -3 ).
  11. Procédé de fabrication selon l’une des revendications 7 à 10, dans lequel les cordons de mastics (26) sont fabriqués avec une longueur inférieure ou égale une dimension du panneau de fond d’un bloc isolant (11).Manufacturing process according to one of claims 7 to 10, wherein the sealant beads (26) are produced with a length less than or equal to a dimension of the bottom panel of an insulating block (11).
  12. Installation de stockage comportant une structure porteuse et une cuve étanche et thermiquement isolante installée dans un espace interne de la structure porteuse, ladite installation de stockage comportant des cordons de mastics (26) fabriqués selon l’une des revendications 1 à 11 appliqués entre une surface interne de l’espace interne de la structure porteuse et une surface externe de la cuve.Storage installation comprising a supporting structure and a sealed and thermally insulating tank installed in an internal space of the supporting structure, said storage installation comprising cords of sealants (26) manufactured according to one of claims 1 to 11 applied between a surface internal space of the supporting structure and an external surface of the vessel.
  13. Installation de stockage selon la revendication 12, sous la forme d’un navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque formant ladite structure porteuse.Storage facility according to claim 12, in the form of a vessel (70) for transporting a cold liquid product, the vessel comprising a double hull forming said supporting structure.
  14. Système de transfert pour un produit liquide froid, le système comportant une installation de stockage selon la revendication 13, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.Transfer system for a cold liquid product, the system comprising a storage installation according to claim 13, insulated pipes (73, 79, 76, 81) arranged so as to connect the tank (71) installed in the hull of the ship to a floating or terrestrial storage facility (77) and a pump for driving a flow of cold liquid product through insulated pipelines from or to the floating or terrestrial storage facility to or from the vessel's tank.
  15. Procédé de chargement ou déchargement d’une installation de stockage selon la revendication 34, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71).A method of loading or unloading a storage facility according to claim 34, wherein a cold liquid product is conveyed through insulated pipelines (73, 79, 76, 81) from or to a floating or land storage facility (77 ) to or from the vessel's tank (71).
PCT/EP2020/058234 2019-03-25 2020-03-24 Method for manufacturing mastic beads WO2020193584A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217030355A KR20210154144A (en) 2019-03-25 2020-03-24 How to make mastic beads
CN202080028882.6A CN113710950B (en) 2019-03-25 2020-03-24 Method for producing adhesive tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1903105A FR3094477B1 (en) 2019-03-25 2019-03-25 Mastic bead manufacturing process
FRFR1903105 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020193584A1 true WO2020193584A1 (en) 2020-10-01

Family

ID=67185451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/058234 WO2020193584A1 (en) 2019-03-25 2020-03-24 Method for manufacturing mastic beads

Country Status (4)

Country Link
KR (1) KR20210154144A (en)
CN (1) CN113710950B (en)
FR (1) FR3094477B1 (en)
WO (1) WO2020193584A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023073201A1 (en) 2021-10-29 2023-05-04 Gaztransport Et Technigaz Calculation method for calculating dimensions of spacer elements for the construction of a liquid-product storage facility
FR3129704A1 (en) * 2021-11-30 2023-06-02 Gaztransport Et Technigaz Method for assembling a watertight and thermally insulating tank integrated into a load-bearing structure
WO2024068998A1 (en) * 2022-09-30 2024-04-04 Gaztransport Et Technigaz Computer-implemented geometry monitoring method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2259008A1 (en) 1974-01-28 1975-08-22 Gaz Transport Method of insulating liquified gas tank of ship - uses bars holding panels until mastic under panels is set
FR2286305A1 (en) * 1974-09-27 1976-04-23 Technigaz METHOD FOR ASSEMBLING A COMPOSITE WALL STRUCTURE AND CORRESPONDING COMPOSITE WALL STRUCTURE
FR2413260A1 (en) * 1977-12-29 1979-07-27 Gaz Transport Sealed thermally insulated vessel forming part of ship - has insulating components of cellular material with solid plates on inside
EP0543686A1 (en) * 1991-11-20 1993-05-26 Gaz-Transport Fluid-tight and heat-insulating tank integrated in a ship's hull structure
FR2691520A1 (en) 1992-05-20 1993-11-26 Technigaz Ste Nle Prefabricated structure for forming watertight and thermally insulating walls for containment of a fluid at very low temperature.
FR2877638A1 (en) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa THERMALLY INSULATED AND THERMALLY INSULATED TANK WITH COMPRESSION-RESISTANT CALORIFYING ELEMENTS
FR2909356A1 (en) 2006-11-30 2008-06-06 Gaztransp Et Technigaz Soc Par BONDED FIXING OF INSULATION BLOCKS FOR TRANSPORT TANKS OF LIQUEFIED GAS USING CORRUGATED CORDS
WO2014057221A2 (en) 2012-10-09 2014-04-17 Gaztransport Et Technigaz Fluidtight and thermally insulated tank comprising a metal membrane that is corrugated in orthogonal folds

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2911576B1 (en) * 2007-01-23 2009-03-06 Alstom Sa METHOD FOR PRODUCING AN INSULATING WALL AND SEALING A TANK
CN101668677B (en) * 2007-04-26 2013-11-06 埃克森美孚上游研究公司 Independent corrugated LNG tank
CN104968584B (en) * 2013-09-12 2018-02-13 松下知识产权经营株式会社 Heat-insulated container with vacuum heat-insulation component
US9631773B2 (en) * 2014-08-26 2017-04-25 Nochar, Inc. Shipping container having a flame retardant layer and a thermal blocking layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2259008A1 (en) 1974-01-28 1975-08-22 Gaz Transport Method of insulating liquified gas tank of ship - uses bars holding panels until mastic under panels is set
FR2286305A1 (en) * 1974-09-27 1976-04-23 Technigaz METHOD FOR ASSEMBLING A COMPOSITE WALL STRUCTURE AND CORRESPONDING COMPOSITE WALL STRUCTURE
FR2413260A1 (en) * 1977-12-29 1979-07-27 Gaz Transport Sealed thermally insulated vessel forming part of ship - has insulating components of cellular material with solid plates on inside
EP0543686A1 (en) * 1991-11-20 1993-05-26 Gaz-Transport Fluid-tight and heat-insulating tank integrated in a ship's hull structure
FR2691520A1 (en) 1992-05-20 1993-11-26 Technigaz Ste Nle Prefabricated structure for forming watertight and thermally insulating walls for containment of a fluid at very low temperature.
FR2877638A1 (en) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa THERMALLY INSULATED AND THERMALLY INSULATED TANK WITH COMPRESSION-RESISTANT CALORIFYING ELEMENTS
FR2909356A1 (en) 2006-11-30 2008-06-06 Gaztransp Et Technigaz Soc Par BONDED FIXING OF INSULATION BLOCKS FOR TRANSPORT TANKS OF LIQUEFIED GAS USING CORRUGATED CORDS
WO2014057221A2 (en) 2012-10-09 2014-04-17 Gaztransport Et Technigaz Fluidtight and thermally insulated tank comprising a metal membrane that is corrugated in orthogonal folds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023073201A1 (en) 2021-10-29 2023-05-04 Gaztransport Et Technigaz Calculation method for calculating dimensions of spacer elements for the construction of a liquid-product storage facility
FR3128764A1 (en) 2021-10-29 2023-05-05 Gaztransport Et Technigaz Calculation method for calculating the dimensions of spacers intended for the construction of a storage installation for a liquid product
FR3129704A1 (en) * 2021-11-30 2023-06-02 Gaztransport Et Technigaz Method for assembling a watertight and thermally insulating tank integrated into a load-bearing structure
WO2024068998A1 (en) * 2022-09-30 2024-04-04 Gaztransport Et Technigaz Computer-implemented geometry monitoring method
FR3140434A1 (en) * 2022-09-30 2024-04-05 Gaztransport Et Technigaz Computer-implemented geometry control method

Also Published As

Publication number Publication date
FR3094477A1 (en) 2020-10-02
CN113710950B (en) 2023-05-05
FR3094477B1 (en) 2021-09-24
KR20210154144A (en) 2021-12-20
CN113710950A (en) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2020193584A1 (en) Method for manufacturing mastic beads
EP3320256B1 (en) Sealed and thermally insulated tank having a secondary sealing membrane equipped with a corner arrangement with corrugated metal sheets
EP3362732B1 (en) Sealed and thermally insulating tank
FR3058498B1 (en) ANGLE STRUCTURE OF A SEALED AND THERMALLY INSULATING TANK AND METHOD FOR ASSEMBLING THE SAME
EP3283813A2 (en) Tank equipped with a wall having a specific zone through which a through-element passes
WO2021074435A1 (en) Sealed and thermally insulating tank
FR3084347A1 (en) WATERPROOF WALL WITH REINFORCED CORRUGATED MEMBRANE
WO2017068303A1 (en) Vessel including insulating corner blocks provided with stress relief slots
WO2019239071A1 (en) Sealed and thermally insulating vessel having continuous corrugations in the liquid dome
FR3078136A1 (en) WATERPROOF TANK COMPRISING A SEALING MEMBRANE COMPRISING A REINFORCED ZONE
WO2021186049A1 (en) Sealed and thermally insulating tank
EP4003685A1 (en) Method for manufacturing a wall for a sealed and thermally insulating tank
FR3116100A1 (en) Process for manufacturing a thermally insulating barrier for a tank
WO2021233712A1 (en) Storage facility for liquefied gas
WO2021245091A1 (en) Thermally insulating sealed tank built into a load-bearing structure
WO2021058824A1 (en) Sealed and thermally insulating tank
WO2021037483A1 (en) Sealed and thermally insulating tank with insulating anti-convective seals
WO2022074226A1 (en) Sealed and thermally insulating tank
WO2024104916A1 (en) Wall for a sealed and thermally insulating tank
WO2023094330A9 (en) Sealed and thermally insulating vessel
WO2023186866A1 (en) Sealed and thermally insulating tank
WO2022069751A1 (en) Assembly method and storage tank facility for liquefied gas
WO2021078981A1 (en) Tank for storing natural gas in a liquid state aboard a vessel
WO2020058600A1 (en) Storage facility for liquefied gas
FR3135773A1 (en) WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED INTO A SUPPORT STRUCTURE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20712587

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021127345

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 20712587

Country of ref document: EP

Kind code of ref document: A1