WO2021233712A1 - Storage facility for liquefied gas - Google Patents

Storage facility for liquefied gas Download PDF

Info

Publication number
WO2021233712A1
WO2021233712A1 PCT/EP2021/062283 EP2021062283W WO2021233712A1 WO 2021233712 A1 WO2021233712 A1 WO 2021233712A1 EP 2021062283 W EP2021062283 W EP 2021062283W WO 2021233712 A1 WO2021233712 A1 WO 2021233712A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
wall
insulating
thermally insulating
connection ring
Prior art date
Application number
PCT/EP2021/062283
Other languages
French (fr)
Inventor
Julien COUTEAU
Edouard DUCLOY
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to KR1020227044174A priority Critical patent/KR20230012570A/en
Priority to CN202180036285.2A priority patent/CN115667783A/en
Publication of WO2021233712A1 publication Critical patent/WO2021233712A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/20Building or assembling prefabricated vessel modules or parts other than hull blocks, e.g. engine rooms, rudders, propellers, superstructures, berths, holds or tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/02Metallic materials
    • B63B2231/04Irons, steels or ferrous alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0311Closure means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of storage installations for liquefied gas comprising a sealed and thermally insulating tank, with membranes.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) exhibiting by example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at approximately -162 ° C at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • Document FR2991430 describes a storage installation for liquefied gas comprising a sealed and thermally insulating tank integrated into a supporting structure formed by the double hull of a ship.
  • Each wall of the tank includes a secondary thermally insulating barrier, a secondary waterproofing membrane, a primary thermally insulating barrier and a primary waterproofing membrane.
  • the tank has a protruding portion in the form of a chimney called a liquid dome.
  • the supporting structure is locally interrupted so as to delimit a loading / unloading opening intended to be crossed by fluid loading / unloading pipes.
  • the load-bearing structure comprises a vertical load-bearing wall called a coaming which rises above the ship's deck and a horizontal wall at the top of the vertical load-bearing wall, which forms a superstructure on the deck of the ship. ship called dome seat.
  • the horizontal wall of the dome seat extends all around the opening and supports a cover.
  • dome implies that the loading / unloading pipes, intended for the inlet / outlet of the liquefied gas contained in the tank, must thus extend high above the deck on the seat of the tank. dome, which results in a cumbersome and difficult to access installation for the maintenance / management of these pipes, as well as an expensive and cumbersome structure on the ship's deck
  • An idea underlying the invention is to simplify the supporting structure of the storage facility to reduce the costs and space requirement of the facility.
  • Another idea underlying the invention is to adapt the lid and the elements of the tank close to the opening to such a simplification of the storage installation
  • certain aspects of the invention start from the observation that when the tank is subjected to a strong variation in temperature, in particular at the level of the loading / unloading pipes passing through the cover, for example during the loading of the tank with liquefied gas, the proximity of insulating elements with a connection ring of a sealing membrane to the supporting structure can generate a thickness differential in the tank wall. Indeed, if the thermally insulating barrier contracts more than the connection ring which supports the waterproofing membrane, the consequence is to move the waterproofing membrane away from the thermally insulating barrier. However, the thermally insulating barrier also has the role of supporting the waterproofing membrane. Such a gap therefore tends to weaken the waterproofing membrane and increase the risk of damage
  • the invention provides a storage installation for liquefied gas comprising a supporting structure and a sealed and thermally insulating tank arranged in the supporting structure, the sealed and thermally insulating tank comprising a main structure formed by a plurality of tank walls connected to each other and fixed to the supporting structure, the main structure defining an internal storage space, the main structure comprising, from the supporting structure towards the internal storage space in a direction of wall thickness, a secondary thermally insulating barrier attached to the supporting structure, a secondary waterproofing membrane supported by the secondary thermally insulating barrier, a primary thermally insulating barrier supported by the membrane d 'secondary waterproofing and comprising a plurality of rows of primary insulating panels, and a primary waterproofing membrane supported by the primary thermally insulating barrier, the supporting structure comprising a substantially planar upper supporting wall, the primary waterproofing membrane and the upper bearing wall being interrupted so as to delimit a loading / unloading opening intended to be crossed by fluid loading / unloading pipes, in which the tank
  • the thermally insulating junction structure makes it possible to limit the contraction gap between the thermal insulation and the connection ring near the connection ring in order to maintain a support for the primary waterproofing membrane. and thus avoid any damage to the primary waterproofing membrane.
  • the storage facility does not include a dome seat and therefore a superstructure protruding from the top load-bearing wall, thereby simplifying the storage facility and reducing the space requirement on the top load-bearing wall.
  • fixing By fixing, connecting, welding “in a sealed manner” is meant a connection between the two elements fixed together which is liquid-tight and gas-tight, for example in the case of welding using a continuous weld bead. .
  • the orientation of the wall thickness direction depends on the orientation of the wall on which the elements in question are located. Indeed, for a vertical wall, the direction of wall thickness will therefore be a direction oriented horizontally while for a horizontal wall the direction of wall thickness will therefore be a direction oriented vertically.
  • such a storage installation may include one or more of the following characteristics.
  • the thermally insulating junction structure comprises a coefficient of thermal expansion in the thickness direction of between 4.10 -6 and 38.10 -6 K -1 .
  • the thermally insulating junction structure is formed from a plurality of different materials
  • the material extending in the thickness direction and contracting the least will mainly induce the thermal expansion coefficient of the thermally insulating structure of junction.
  • the thermally insulating junction structure comprises a plywood plate extending in the direction of thickness and a block of foam
  • only the coefficient of thermal expansion of the material extending in the thickness direction and contracting the least will be considered.
  • the primary connection ring connects the lower cover wall to the upper cover wall, so as to be attached to the supporting structure via the upper cover wall.
  • the secondary connection ring connects the secondary sealing membrane to the upper cover wall, so as to be attached to the supporting structure via the upper cover wall.
  • the thermally insulating junction structures are juxtaposed to each other in a transverse wall direction perpendicular to the wall thickness direction.
  • the lower cover wall is connected in a sealed manner to the primary waterproofing membrane by means of a connecting piece comprising a first wing fixed to the primary waterproofing membrane of the main structure and a second wing connected to the first wing and fixed to the lower cover wall.
  • the upper cover wall is placed in the plane of the upper bearing wall.
  • the secondary connection ring and the primary connection ring extend in the direction of wall thickness.
  • the primary thermally insulating barrier comprises end primary insulating panels forming a row adjacent to the heat insulating ring, the end primary insulating panels being aligned with the secondary connection ring in the direction of wall thickness and the primary insulation boards of the other rows being aligned with secondary insulation boards of the secondary thermally insulating barrier in the direction of wall thickness, the average of the coefficient of thermal expansion of a primary insulation board d 'end and of the secondary connection ring being less than the average coefficient of thermal expansion of a primary insulating panel and a secondary insulating panel.
  • the average of the coefficient of thermal expansion of a primary end insulating panel and of the secondary connection ring is greater than the coefficient of thermal expansion of the thermally insulating junction structure.
  • the end primary insulating panels have a coefficient of thermal expansion in the direction of wall thickness of between 60.10 -6 and 71.10 -6 K -1
  • the primary insulating panels have a coefficient of expansion thermal in the direction of wall thickness between 60.10 -6 and 71.10 -6 K -1 .
  • the thermally insulating junction structure directly supports the primary waterproofing membrane or through the primary insulating end panel.
  • a protruding part of the primary insulating end panel protrudes between the primary connection ring and the secondary connection ring and at a distance from the primary connection ring, the protruding part of the primary insulating panel end being supported by the thermally insulating junction structure.
  • the thermally insulating junction structure has a staircase shape comprising a step, the step being configured to accommodate the protruding part of the primary insulating end panel.
  • the primary connection ring and the lower cover wall are made of an iron and nickel alloy having a thermal expansion coefficient of between 0.5.10 -6 and 2.10 -6 K -1 .
  • the connecting piece is made from an iron and nickel alloy having a thermal expansion coefficient of between 0.5.10 -6 and 2.10 -6 K -1 .
  • the thermally insulating junction structure is made in one piece.
  • the thermally insulating junction structure comprises a first insulating junction panel and a second insulating junction panel juxtaposed with the first insulating panel, the first insulating junction panel and the second insulating junction panel extending into the wall thickness direction.
  • the thermally insulating one-piece junction structure or the first and second insulating junction panels are produced by assembling a layer of insulating foam between two plywood plates, the plywood plates extending parallel to the direction of wall thickness.
  • the insulating foam layer is reinforced with fibers, the fibers being oriented in the direction of wall thickness.
  • the fibers are glass fibers.
  • the thermally insulating one-piece junction structure or the first and second insulating junction panels are made in the form of a plywood box filled with insulating lining.
  • the insulating lining is made of glass wool, perlite, airgel, polymer foam or a combination of two or more of these materials.
  • the upper bearing wall is an upper internal bearing wall, the bearing structure comprising an internal bearing structure comprising the substantially planar internal upper bearing wall and an external bearing structure comprising a substantially planar outer upper bearing wall disposed above of the upper internal supporting wall, the main structure of the tank being arranged in the internal supporting structure.
  • the upper bearing wall is an upper outer bearing wall
  • the bearing structure comprising an internal bearing structure comprising a substantially planar internal upper bearing wall and an external bearing structure comprising the substantially planar outer upper bearing wall disposed above of the upper internal supporting wall, the main structure of the tank being arranged in the internal supporting structure.
  • the cover comprises stiffeners arranged on the upper cover wall in order to increase the rigidity and the resistance of the cover, for example during the deformation of the supporting structure.
  • the opening has a rectangular outline.
  • the coefficient of thermal expansion of the material of the connecting piece is equal to the coefficient of thermal expansion of the material of the lower cover wall.
  • the storage installation comprises a loading / unloading tower comprising a plurality of loading / unloading conduits, the loading / unloading conduits sealingly passing through the cover through orifices formed in the cover.
  • the primary waterproofing membrane comprises a plurality of corrugated metal sheets, the corrugated metal sheets being juxtaposed in a repeated pattern and welded together in a sealed manner.
  • the metal sheets are made of stainless steel.
  • the lower cover wall comprises a plurality of flat metal plates, the flat metal plates being assembled together.
  • Such a storage installation can be an onshore storage installation, for example for storing LNG or be installed in a floating, coastal or deep water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU), a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • Such a storage installation can also serve as a fuel tank in any type of vessel.
  • a ship for transporting a cold liquid product comprises a double hull and a above-mentioned storage installation arranged in the double hull.
  • the ship comprises an above-mentioned storage installation and a deck, the upper supporting wall of the supporting structure being formed by the deck.
  • the ship comprises an aforementioned storage installation, an internal deck and an external deck, the upper internal load-bearing wall of the load-bearing structure being formed by the internal bridge and the upper external load-bearing wall being formed by the external bridge.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to an external storage installation. floating or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipes from or towards the external floating or terrestrial storage installation towards or from the vessel of the vessel.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through insulated pipes from or to an external floating or terrestrial storage installation to or from the vessel's tank.
  • The represents a schematic sectional view of a storage installation according to a first embodiment.
  • a storage installation 1 comprising a double supporting structure composed of an internal supporting structure 2 and an external supporting structure 3 surrounding the internal supporting structure 2.
  • the storage installation 1 comprises a sealed and thermally insulating tank 71 which will be described below.
  • the internal load-bearing structure 2 and the external load-bearing structure 3 comprise a plurality of walls connected to each other and in particular an internal upper load-bearing wall 4 and an external upper load-bearing wall 5 respectively, which are located, as can be seen in the figure. , at the top of the storage facility 1.
  • the supporting structure 2, 3 is formed by the double hull of the ship.
  • the inner upper load-bearing wall 4 is thus called the inner deck 4 of the ship while the outer top load-bearing wall 5 is called the outer deck 5 of the ship.
  • the tank 71 comprises a main structure 6 formed of a bottom wall (not shown), a ceiling wall 7, two cofferdam walls 8 connecting the bottom wall to the ceiling wall 7 and located at the front and at the rear when the storage facility 1 is located on a ship, two side walls (not shown) and optionally two to four chamfer walls (not shown) connecting the side walls to the bottom wall or to the ceiling wall 7.
  • the walls of the tank 71 are thus connected to each other so as to form a polyhedral structure and to define an internal storage space 9.
  • the storage installation 1 comprises a loading / unloading opening 10 locally interrupting the upper external bearing wall 5, the upper internal bearing wall 4 and the ceiling wall 7 of the tank. 71 so as to allow the loading / unloading pipes 11 to reach the bottom of the tank 71 by passing through this opening 10.
  • the storage installation 1 also comprises a loading / unloading tower 13 located in line with the opening 10 and inside the tank 71 forming a support structure for the loading / unloading pipes 11 over the entire height of the storage facility. the tank 71 as well as for the pumps (not shown).
  • the storage installation 1 comprises a cover 12 arranged in the loading / unloading opening 10 in order to enclose the internal storage space 9 at the level of said opening 10.
  • the cover 12 comprises orifices 14 allowing the conduits loading / unloading 11 to pass through the cover 12.
  • the tank 71 also includes a chimney 15 located on the main structure 6 at the opening and allowing the tank walls to extend continuously from the internal bridge 4 towards the bottom. external bridge 5 at the level where these are interrupted by the loading / unloading opening 10.
  • a chimney 15 provided with said cover 12 is called: the liquid dome.
  • the present invention is illustrated here with reference to the area of the liquid dome but one could also consider the application of this invention to another chimney of a tank 71, such as conventionally the gas dome.
  • the loading / unloading opening 10 as well as the chimney 15 has a rectangular outline.
  • the chimney 15 thus comprises four walls, one being the extension of the rear cofferdam wall 8, as visible on the figure. , while the other three are connected to the ceiling wall 7 and form an angle of 90 ° therewith.
  • the tank 71 is a membrane tank 71 for storing liquefied gas.
  • the main structure 6 of the tank 71 comprises a multilayer structure comprising, from the outside to the inside in a direction of wall thickness, a secondary thermally insulating barrier 16 comprising insulating elements, resting against the supporting structure, a membrane secondary sealing 17 resting against the secondary thermally insulating barrier 16, a primary thermally insulating barrier 18 comprising primary insulating panels 39, resting against the secondary waterproofing membrane 17 and a primary waterproofing membrane 19 intended to be in contact with the liquefied gas contained in the tank 71.
  • the main structure 6 of the tank 71 is produced using Mark III® technology which is described in particular in document FR-A-2691520.
  • the secondary thermally insulating barrier 16, the primary thermally insulating barrier and the secondary waterproofing membrane 17 essentially consist of panels juxtaposed on the supporting structure, which can be the internal supporting structure 2 or the connecting structure.
  • the secondary waterproofing membrane 17 is formed of a composite material comprising an aluminum foil sandwiched between two sheets of fabric in fiberglass.
  • the primary waterproofing membrane 19 is in turn obtained by assembling a plurality of metal plates, welded to each other along their edges, and comprising corrugations extending in two perpendicular directions.
  • the metal plates are, for example, made of stainless steel or aluminum sheets, shaped by bending or by stamping.
  • the primary waterproofing membrane 19 is particularly illustrated in Figures 2 and 4.
  • the secondary waterproofing membrane 17 is interrupted at an interruption 40 and is fixed at the level of said interruption 40 to the supporting structure by means of a secondary connection ring 21 projecting, in the direction of wall thickness, of the internal surface of the supporting wall of the chimney being in this zone a wall connecting the internal bridge 4 to the external bridge 5.
  • the secondary connection ring 21 is made of stainless steel.
  • the cover 12 also comprises a multilayer structure comprising, from the outside inwards, an upper cover wall 22, a lower cover wall 23 and a thermal insulation structure 24 located between the lower cover wall 23 and the cover. top cover wall 22. Cover 12 also includes stiffeners 25 located on top cover wall 22.
  • the cover 12 is disposed in the loading / unloading opening 10 so that the upper cover wall 22 is placed in the plane of the upper external bearing wall 5 or external bridge 5.
  • the storage installation 1 does not has no dome seat and the cover 12 does not protrude above the outer deck 5.
  • the top wall of the cover 22 is sealed to the outer bridge 5 all around the opening 10 so that at the level of the cover 12, it is the top wall of the cover 22 which acts as a sealing membrane.
  • the upper cover wall 22 is produced using a metallic material, for example stainless steel.
  • the lower cover wall 23 is sealed to the primary waterproofing membrane 19 of the main structure 6, here the chimney 15, using a connecting piece 26.
  • the lower cover wall 23 is also sealed to the loading / unloading pipes 11.
  • the lower cover wall 23 is directly welded to the primary waterproofing membrane 18 without connecting part 26.
  • the thermal insulation structure 24 of the cover 12 comprises a plurality of insulating elements juxtaposed to each other which may be of similar or different constitution.
  • the insulating elements located in line with the lower cover wall 23 and the connecting piece 26 are structural insulating elements while the insulating elements located on the periphery of the thermal insulation structure 24 are elements.
  • non-structural insulators the so-called “structural” insulating elements essentially having properties or characteristics of mechanical strength which are superior, or even much superior, to the so-called “non-structural” insulating elements.
  • the structural insulating elements can be high density polymer foam blocks optionally reinforced with fibers or plywood or composite boxes filled with insulating padding such as glass wool, polymer foam or perlite.
  • the non-structural insulating elements can be low density polymer foam blocks or glass wool.
  • the connecting piece 26 comprises a first wing 27 welded in a sealed manner to the waterproofing membrane of the main structure 6 and a second wing 28 connected to the first wing 27 and welded in a sealed manner to the lower wall of the cover 23, all around the lower cover wall 23.
  • This connecting piece 26 is designed differently depending on the design of the lower cover wall 23.
  • the lower cover wall 23 is formed by an assembly of flat metal plates welded to each other by overlapping.
  • These flat metal plates are here flat metal plates with a low coefficient of thermal expansion, in the present case between 0.5.10 -6 and 2.10 -6 K -1 , so as to contract very little during the passage of the liquefied gas in the loading / unloading pipes 11.
  • the flat metal plates are made for example from an alloy of iron and nickel called Invar.
  • the secondary sealing membrane 17 of the main structure 6 can also be made in the same way as the lower cover wall 23, namely by means of flat metal plates welded to each other by overlapping.
  • the secondary sealing membrane 17 also has flat end metal plates located at the level of the interruption 40 which are welded to the secondary connection ring 21.
  • the connecting piece 26 is made of a material having the same coefficient of thermal expansion as the material of the lower cover wall 23 so as to contract and expand homogeneously with the lower cover wall 23.
  • the connecting piece 26 is also made of an iron and nickel alloy having a thermal expansion coefficient of between 0.5.10 -6 and 2.10 -6 K -1 .
  • the connecting piece 26 is thus formed of a continuous strip formed all around the lower cover wall 23. This strip is produced using one or more connecting elements forming the first wing 27 and the second wing 28. .
  • the connecting piece 26 is fixed to a primary connecting ring 41 all around the lower cover wall 23 and at the junction between the first wing 27 and the second wing 28.
  • the primary connecting ring 41 protrudes, according to the figure. direction of wall thickness, from the inner surface of the chimney bearing wall.
  • the primary connection ring 41 is made of stainless steel.
  • the primary connection ring 41 makes it possible to connect the lower cover wall 23 to the supporting structure.
  • the primary connecting ring 41 can also be made from an alloy of iron and nickel having a coefficient of thermal expansion of between 0.5.10 -6 and 2.10 -6 K -1 .
  • the connecting piece 26 comprises a third wing located in the same plane as the first wing 27 and connected to the first wing 27 and to the second wing 28 so as to form a connecting piece 26 to T-section.
  • the third wing is fixed to the primary connection ring 41 so as to form an anchoring of the primary waterproofing membrane 19 and of the lower cover wall 23 at the level of the connecting piece 26.
  • the first wing 27 and the third wing can be formed integrally.
  • the first wing 27 and the second wing 28 can be formed from the same plate which has been bent.
  • the tank 71 comprises a thermal insulation ring 42 which comprises a plurality of thermally insulating junction structures 43 juxtaposed to one another fixed to the supporting structure, and formed between the primary connection ring 41 and the connection ring secondary 21.
  • the thermal insulation ring 42 makes it possible to position and support the primary connection ring 41 and the connecting piece 26. It also makes it possible to complete the primary thermally insulating barrier in this zone and finally makes it possible to limit the gap linked to the thermal contraction between the primary connection ring 41 and the thermal insulation, so as to maintain a support for the primary waterproofing membrane in this zone.
  • the primary connection ring is described in more detail with reference to FIGS. 5 to 12 relating to a plurality of variant embodiments.
  • the thermally insulating junction structures 43 have a coefficient of thermal expansion in the direction of wall thickness which is lower than that of the other primary insulating panels 39 so as to be closer to the coefficient of thermal expansion of the ring. primary connection 41 and thus limit this contraction difference.
  • the coefficient of thermal expansion in the direction of wall thickness of the thermally insulating junction structure 43 is between 4.10 -6 and 38.10 -6 K -1 .
  • the primary thermally insulating barrier 18 has primary insulating end panels 44 forming a row adjacent to the heat insulating ring 42.
  • the primary insulating end panels 44 may have a different composition than the primary insulating panels 39 of the rest. of the primary thermally insulating barrier 18.
  • the end primary insulation panels 44 are aligned with the secondary connection ring 21 in the direction of wall thickness while the primary insulation panels 39 of the other rows are aligned with secondary insulation panels of the secondary thermal insulation barrier 16. in the thickness direction.
  • the average of the coefficient of thermal expansion of a primary insulating end panel 44 and of the secondary connection ring 21 is greater than the coefficient of thermal expansion of the thermally insulating junction structure 43.
  • the average of the coefficient thermal expansion of a primary insulating end panel 44 and of the secondary connection ring 21 is less than the average coefficient of thermal expansion of a primary insulating panel 39 and a secondary insulating panel.
  • FIGS. 3 and 4 represent a second embodiment of the storage installation 1.
  • the upper cover wall 22 is here placed in the plane of the upper internal bearing wall 4 or internal bridge 4.
  • the main structure 6 of the tank 71 does not include a chimney 15 and stops in its upper portion at the ceiling wall 7.
  • the cover 12 is therefore the extension of the ceiling wall 7 allowing the passage of the loading / unloading pipes 11 and the loading / unloading tower 13 without protruding from the internal bridge 4 and a fortiori from the external bridge 5, as visible on the .
  • the cover 12 makes it possible to connect the ceiling wall 7 to the rear cofferdam wall 8 to the right of the opening.
  • the external bridge 5 can be provided with a closing element which is positioned in line with the opening in order to close the external bridge 5 after insertion of the loading / unloading pipes 11 and of the cover 12.
  • connection element 26 therefore comprises, at the level of the three edges connected to the primary roof waterproofing membrane 19, connecting elements for which the first wing 27 and the second wing 28 are formed in the same plane.
  • FIGS 5 to 12 illustrate more specifically the thermal insulation ring 42 and in particular one of the thermally insulating junction structures 43 according to several variant embodiments.
  • a protruding part 45 of the primary insulating end panel 44 protrudes between the primary connection ring 41 and the secondary connection ring 21 and at a distance from the primary connection ring 41.
  • the thermally insulating junction structure 43 has a staircase shape comprising a step 46 so as to accommodate the projecting part 45 of the primary insulating end panel 44 at the level of said step 46.
  • the thermally insulating junction structure 43 thus has a shape with an L-section. The projecting part 45 of the primary insulating end panel 44 is thus supported by the thermally insulating junction structure 43.
  • the thermally insulating structure of junction 43 thus has a portion between the primary connection ring 41 and the projecting part 45 which directly supports the primary waterproofing membrane 19 and the connecting piece 26.
  • the thermally insulating junction structure 43 is formed integrally.
  • Each thermally insulating one-piece junction structure 43 is produced in the form of a plywood box 51 filled with insulating lining, such as, for example, glass wool or perlite.
  • This variant is similar to the first variant and differs from it only by the materials used for the thermally insulating junction structure 43.
  • the thermally insulating junction structure 43 is produced by assembling a layer of insulating foam 50 between two plywood plates 49.
  • the plywood plates extend parallel to the direction of wall thickness.
  • the insulating foam layer 50 is reinforced with fibers, the fibers being oriented in the direction of wall thickness.
  • This variant is similar to the first variant and is not distinguished from the latter by a structure that is not one-piece but in two parts.
  • the thermally insulating junction structure 43 comprises a first insulating junction panel 47 and a second insulating junction panel 48 juxtaposed to the first insulating panel 47, the first insulating junction panel 47 and the second insulating panel junction 48 extending parallel to the direction of wall thickness.
  • the step 46 is formed by a dimensional deviation between the dimension of the first insulating junction panel 47 and the dimension of the second insulating junction panel 48 in the direction of wall thickness.
  • the second insulating junction panel 48 here supports the projecting part 45 of the primary insulating end panel 44 while the first insulating junction panel 47 directly supports the primary waterproofing membrane 19 and / or the connecting piece 26 .
  • This variant is similar to the third variant and differs from it only by the materials used for the insulating junction panels 47, 48.
  • the junction insulating panels 47, 48 are produced by assembling a layer of insulating foam 50 between two plywood plates 49.
  • the plywood plates extend parallel to the direction of wall thickness.
  • the insulating foam layer 50 is reinforced with fibers, the fibers being oriented in the direction of wall thickness.
  • This variant is similar to the first variant and is distinguished from it by a protruding part 45 more pronounced and an absence of step 46 for the thermally insulating structure of junction 43.
  • the projecting part 45 of the primary insulating end panel 44 protrudes between the primary connection ring 41 and the secondary connection ring 21 until it is directly adjacent to the primary connection ring 41.
  • the thermally insulating structure junction 43 is thus of rectangular parallelepiped shape and supports the projecting part 45 so as to indirectly support the primary waterproofing membrane 19.
  • This variant is similar to the fifth variant and differs from it only by the materials used for the insulating junction panels 47, 48.
  • each insulating junction panel 47, 48 is produced using a plywood box 51 while in the sixth variant, the insulating junction panels 47, 48 are produced by assembling a insulating foam layer 50 between two plywood sheets 49.
  • the plywood sheets extend parallel to the wall thickness direction.
  • the insulating foam layer 50 is reinforced with fibers, the fibers being oriented in the direction of wall thickness.
  • This variant is similar to the first variant and is distinguished from the latter by an absence of projecting part 45 and an absence of step 46 for the thermally insulating structure of junction 43.
  • the end primary insulating panel 44 is located at a distance from the primary connection ring 41 and has a wall aligned with the secondary connection ring 21 so as not to protrude between the primary connection ring 41 and the secondary connection ring 21.
  • the thermally insulating junction structure 43 is thus of rectangular parallelepiped shape and directly supports the primary waterproofing membrane 19 and the connecting piece 26.
  • This variant is similar to the seventh variant and differs from it only by the materials used for the thermally insulating junction structure 43 in one piece.
  • the thermally insulating junction structure 43 is produced using a plywood box 51 while in the eighth variant, the thermally insulating junction structure 43 are produced by the assembly of a layer of insulating foam 50 between two plywood sheets 49.
  • the plywood sheets extend parallel to the direction of wall thickness.
  • the insulating foam layer 50 is reinforced with fibers, the fibers being oriented in the direction of wall thickness.
  • the liquefied gas intended to be stored in the tank 71 can in particular be a liquefied natural gas (LNG), that is to say a gas mixture mainly comprising methane as well as one or more other hydrocarbons.
  • Liquefied gas can also be ethane or liquefied petroleum gas (LPG), that is to say a mixture of hydrocarbons obtained from the refining of petroleum comprising mainly propane and butane.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the vessel 71 comprises a primary watertight barrier intended to be in contact with the LNG contained in the vessel, a secondary watertight barrier arranged between the primary watertight barrier and the double hull 72 of the vessel, and two insulating barriers arranged respectively between the vessel. primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double shell 72.
  • loading / unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
  • the shows an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the movable arm 74 can be swiveled and adapts to all sizes of LNG carriers.
  • a connecting pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the installation on land 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The invention relates to a storage facility (1) for liquefied gas, comprising a supporting structure (2, 3) and a vessel (71), the vessel (71) comprising a cover (12) arranged in the loading/unloading opening (10), the secondary sealing membrane being attached at the break in the supporting structure by means of a secondary connection ring (21), the bottom wall of the cover (23) being sealingly connected to the primary sealing membrane and being attached by means of a primary connection ring (41), and the vessel comprising a heat-insulating ring which comprises a plurality of heat-insulating structures and is formed between the primary connection ring (41) and the secondary connection ring (21), the heat-insulating joining structures filling a space, between the primary connection ring (41) and the secondary connection ring (21), created by the primary heat-insulating barrier and being arranged to withstand a load exerted by the primary sealing membrane.

Description

Installation de stockage pour gaz liquéfiéStorage facility for liquefied gas
L’invention se rapporte au domaine des installations de stockage pour gaz liquéfié comprenant une cuve étanche et thermiquement isolante, à membranes. En particulier, l’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.The invention relates to the field of storage installations for liquefied gas comprising a sealed and thermally insulating tank, with membranes. In particular, the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) exhibiting by example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at approximately -162 ° C at atmospheric pressure. These tanks can be installed on land or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied gas or to receive liquefied gas serving as fuel for the propulsion of the floating structure.
Arrière-plan technologiqueTechnological background
Le document FR2991430 décrit une installation de stockage pour gaz liquéfié comprenant une cuve étanche et thermiquement isolante intégrée à une structure porteuse constituée par la double coque d’un navire. Chaque paroi de la cuve comprend une barrière thermiquement isolante secondaire, une membrane d’étanchéité secondaire, une barrière thermiquement isolante primaire et une membrane d’étanchéité primaire.Document FR2991430 describes a storage installation for liquefied gas comprising a sealed and thermally insulating tank integrated into a supporting structure formed by the double hull of a ship. Each wall of the tank includes a secondary thermally insulating barrier, a secondary waterproofing membrane, a primary thermally insulating barrier and a primary waterproofing membrane.
Dans une zone située au sommet de la cuve, la cuve comporte une portion saillante en forme de cheminée appelée dôme liquide. Dans cette zone, la structure porteuse est interrompue localement de manière à délimiter une ouverture de chargement/déchargement destinée à être traversée par des conduites de chargement/déchargement en fluide. De plus, toujours dans cette zone, la structure porteuse comporte une paroi porteuse verticale appelée surbau qui s’élève au-dessus du pont du navire et une paroi horizontale au sommet de la paroi porteuse verticale, ce qui forme une superstructure sur le pont du navire appelée siège de dôme. La paroi horizontale du siège de dôme s’étend tout autour de l’ouverture et supporte un couvercle.In a zone located at the top of the tank, the tank has a protruding portion in the form of a chimney called a liquid dome. In this zone, the supporting structure is locally interrupted so as to delimit a loading / unloading opening intended to be crossed by fluid loading / unloading pipes. In addition, still in this area, the load-bearing structure comprises a vertical load-bearing wall called a coaming which rises above the ship's deck and a horizontal wall at the top of the vertical load-bearing wall, which forms a superstructure on the deck of the ship. ship called dome seat. The horizontal wall of the dome seat extends all around the opening and supports a cover.
Toutefois, une telle installation avec un siège de dôme implique que les conduites de chargement/déchargement, destinées à l’entrée/sortie du gaz liquéfié contenu dans la cuve, doivent ainsi s’étendre en hauteur au-dessus du pont sur le siège de dôme, ce qui a pour conséquence une installation encombrante et difficile d’accès pour la maintenance/gestion de ces conduites, ainsi qu’une structure couteuse et encombrante sur le pont du navireHowever, such an installation with a dome seat implies that the loading / unloading pipes, intended for the inlet / outlet of the liquefied gas contained in the tank, must thus extend high above the deck on the seat of the tank. dome, which results in a cumbersome and difficult to access installation for the maintenance / management of these pipes, as well as an expensive and cumbersome structure on the ship's deck
RésuméAbstract
Une idée à la base de l’invention est de simplifier la structure porteuse de l’installation de stockage pour diminuer les coûts et l’encombrement de l’installation.An idea underlying the invention is to simplify the supporting structure of the storage facility to reduce the costs and space requirement of the facility.
Une autre idée à la base de l’invention est d’adapter le couvercle et les éléments de la cuve proche de l’ouverture à une telle simplification de l’installation de stockage Another idea underlying the invention is to adapt the lid and the elements of the tank close to the opening to such a simplification of the storage installation
De plus, certains aspects de l’invention partent du constat que lorsque la cuve est soumise à une forte variation de température, notamment au niveau des conduites de chargement/déchargement traversant le couvercle, par exemple lors du chargement de la cuve en gaz liquéfié, la proximité d’éléments isolants avec un anneau de raccordement d’une membrane d’étanchéité à la structure porteuse peuvent générer un différentiel d’épaisseur dans la paroi de cuve. En effet, si la barrière thermiquement isolante se contracte plus que l’anneau de raccordement qui soutient la membrane d’étanchéité, la conséquence est d’éloigner la membrane d’étanchéité de la barrière thermiquement isolante. Or, la barrière thermiquement isolante a également le rôle de soutien de la membrane d’étanchéité. Un tel écart a donc tendance à fragiliser la membrane d’étanchéité et augmenter les risques d’endommagementIn addition, certain aspects of the invention start from the observation that when the tank is subjected to a strong variation in temperature, in particular at the level of the loading / unloading pipes passing through the cover, for example during the loading of the tank with liquefied gas, the proximity of insulating elements with a connection ring of a sealing membrane to the supporting structure can generate a thickness differential in the tank wall. Indeed, if the thermally insulating barrier contracts more than the connection ring which supports the waterproofing membrane, the consequence is to move the waterproofing membrane away from the thermally insulating barrier. However, the thermally insulating barrier also has the role of supporting the waterproofing membrane. Such a gap therefore tends to weaken the waterproofing membrane and increase the risk of damage
Une idée à la base de l’invention est ainsi de limiter cet écart.An idea underlying the invention is thus to limit this gap.
Selon un mode de réalisation, l’invention fournit une installation de stockage pour gaz liquéfié comprenant une structure porteuse et une cuve étanche et thermiquement isolante agencée dans la structure porteuse,
la cuve étanche et thermiquement isolante comportant une structure principale formée par une pluralité de parois de cuve reliées les unes aux autres et fixées à la structure porteuse, la structure principale définissant un espace interne de stockage, la structure principale comprenant, de la structure porteuse vers l’espace interne de stockage dans une direction d’épaisseur de paroi, une barrière thermiquement isolante secondaire fixée à la structure porteuse, une membrane d’étanchéité secondaire supportée par la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire supportée par la membrane d’étanchéité secondaire et comportant une pluralité de rangées de panneaux isolants primaires, et une membrane d’étanchéité primaire supportée par la barrière thermiquement isolante primaire,
la structure porteuse comportant une paroi porteuse supérieure sensiblement plane,
la membrane d’étanchéité primaire et la paroi porteuse supérieure étant interrompues de manière à délimiter une ouverture de chargement/déchargement destinée à être traversée par des conduites de chargement/déchargement en fluide,
dans laquelle la cuve comporte un couvercle disposé dans l’ouverture de chargement/déchargement,
la membrane d’étanchéité secondaire et la barrière thermiquement isolante secondaire étant interrompues au niveau d’une interruption tout autour du couvercle,
la membrane d’étanchéité secondaire étant fixée au niveau de ladite interruption à la structure porteuse à l’aide d’un anneau de raccordement secondaire s’étendant dans la direction d’épaisseur de paroi,
dans laquelle le couvercle comprend une paroi supérieure de couvercle, une paroi inférieure de couvercle et une structure d’isolation thermique située entre la paroi inférieure de couvercle et la paroi supérieure de couvercle, la paroi supérieure de couvercle étant fixée à la paroi porteuse supérieure, et la paroi inférieure de couvercle étant raccordée de manière étanche à la membrane d’étanchéité primaire et étant fixée tout autour de celle-ci à la structure porteuse à l’aide d’un anneau de raccordement primaire,
et dans laquelle la cuve comporte un anneau d’isolation thermique comprenant une pluralité de structures thermiquement isolantes de jonction juxtaposées les unes aux autres fixées à la structure porteuse, et formé entre l’anneau de raccordement primaire et l’anneau de raccordement secondaire,
les structures thermiquement isolantes de jonction remplissant un espace, entre l’anneau de raccordement primaire et l’anneau de raccordement secondaire, laissé libre par la barrière thermiquement isolante primaire et étant agencés pour reprendre une charge exercé par la membrane d’étanchéité primaire selon la direction d’épaisseur de paroi.
According to one embodiment, the invention provides a storage installation for liquefied gas comprising a supporting structure and a sealed and thermally insulating tank arranged in the supporting structure,
the sealed and thermally insulating tank comprising a main structure formed by a plurality of tank walls connected to each other and fixed to the supporting structure, the main structure defining an internal storage space, the main structure comprising, from the supporting structure towards the internal storage space in a direction of wall thickness, a secondary thermally insulating barrier attached to the supporting structure, a secondary waterproofing membrane supported by the secondary thermally insulating barrier, a primary thermally insulating barrier supported by the membrane d 'secondary waterproofing and comprising a plurality of rows of primary insulating panels, and a primary waterproofing membrane supported by the primary thermally insulating barrier,
the supporting structure comprising a substantially planar upper supporting wall,
the primary waterproofing membrane and the upper bearing wall being interrupted so as to delimit a loading / unloading opening intended to be crossed by fluid loading / unloading pipes,
in which the tank has a cover arranged in the loading / unloading opening,
the secondary waterproofing membrane and the secondary thermally insulating barrier being interrupted at an interruption all around the cover,
the secondary waterproofing membrane being fixed at said interruption to the supporting structure by means of a secondary connecting ring extending in the direction of wall thickness,
wherein the cover comprises a cover top wall, a cover bottom wall and a thermal insulation structure located between the cover bottom wall and the cover top wall, the cover top wall being attached to the top load-bearing wall, and the lower cover wall being connected in a sealed manner to the primary sealing membrane and being fixed all around the latter to the supporting structure by means of a primary connection ring,
and in which the tank comprises a thermal insulation ring comprising a plurality of thermally insulating junction structures juxtaposed to one another fixed to the supporting structure, and formed between the primary connection ring and the secondary connection ring,
the thermally insulating junction structures filling a space, between the primary connecting ring and the secondary connecting ring, left free by the primary thermally insulating barrier and being arranged to take up a load exerted by the primary waterproofing membrane according to the wall thickness direction.
Grâce à ces caractéristiques, la structure thermiquement isolante de jonction permet de limiter à proximité de l’anneau de raccordement l’écart de contraction entre l’isolation thermique et l’anneau de raccordement afin de conserver un support de la membrane d’étanchéité primaire et ainsi éviter tout endommagement de la membrane d’étanchéité primaire.Thanks to these characteristics, the thermally insulating junction structure makes it possible to limit the contraction gap between the thermal insulation and the connection ring near the connection ring in order to maintain a support for the primary waterproofing membrane. and thus avoid any damage to the primary waterproofing membrane.
De plus, l’installation de stockage ne comprend pas de siège de dôme et donc de superstructure dépassant de la paroi porteuse supérieure, permettant ainsi de simplifier l’installation de stockage et diminuer l’encombrement sur la paroi porteuse supérieure.In addition, the storage facility does not include a dome seat and therefore a superstructure protruding from the top load-bearing wall, thereby simplifying the storage facility and reducing the space requirement on the top load-bearing wall.
On entend par fixer, raccorder, souder « de manière étanche » une liaison entre les deux éléments fixés ensemble qui soit étanche aux liquides et au gaz, par exemple dans le cas d’une soudure à l’aide d’un cordon de soudure continu.By fixing, connecting, welding "in a sealed manner" is meant a connection between the two elements fixed together which is liquid-tight and gas-tight, for example in the case of welding using a continuous weld bead. .
L’orientation de la direction d’épaisseur de paroi dépend de l’orientation de la paroi sur laquelle se situent les éléments en question. En effet, pour une paroi verticale, la direction d’épaisseur de paroi sera donc une direction orientée horizontalement tandis que pour une paroi horizontale la direction d’épaisseur de paroi sera donc une direction orienté verticalement.The orientation of the wall thickness direction depends on the orientation of the wall on which the elements in question are located. Indeed, for a vertical wall, the direction of wall thickness will therefore be a direction oriented horizontally while for a horizontal wall the direction of wall thickness will therefore be a direction oriented vertically.
Selon des modes de réalisation, une telle installation de stockage peut comporter une ou plusieurs des caractéristiques suivantes.According to embodiments, such a storage installation may include one or more of the following characteristics.
Selon un mode de réalisation, la structure thermiquement isolante de jonction comporte un coefficient de dilatation thermique dans la direction d’épaisseur compris entre 4.10-6 et 38.10-6 K-1.According to one embodiment, the thermally insulating junction structure comprises a coefficient of thermal expansion in the thickness direction of between 4.10 -6 and 38.10 -6 K -1 .
Dans le cas où la structure thermiquement isolante de jonction est formée d’une pluralité de matériaux différents, le matériau s’étendant dans la direction d’épaisseur et se contractant le moins va induire majoritairement le coefficient de dilatation thermique de la structure thermiquement isolante de jonction. Par exemple, dans le cas où la structure thermiquement isolante de jonction comporterait une plaque de contreplaqué s’étendant dans la direction d’épaisseur et un bloc de mousse, c'est le contreplaqué qui donnera majoritairement le coefficient de dilatation thermique de la structure thermiquement isolante de jonction. En d’autres termes, pour une telle structure, on ne considérera que le coefficient de dilatation thermique du matériau s’étendant dans la direction d’épaisseur et se contractant le moins. In the case where the thermally insulating junction structure is formed from a plurality of different materials, the material extending in the thickness direction and contracting the least will mainly induce the thermal expansion coefficient of the thermally insulating structure of junction. For example, in the case where the thermally insulating junction structure comprises a plywood plate extending in the direction of thickness and a block of foam, it is the plywood which will mainly give the coefficient of thermal expansion of the thermally junction insulation. In other words, for such a structure, only the coefficient of thermal expansion of the material extending in the thickness direction and contracting the least will be considered.
Selon un mode de réalisation, l’anneau de raccordement primaire relie la paroi inférieure de couvercle à la paroi supérieure de couvercle, de sorte à être fixé à la structure porteuse par l’intermédiaire de la paroi supérieure de couvercle.According to one embodiment, the primary connection ring connects the lower cover wall to the upper cover wall, so as to be attached to the supporting structure via the upper cover wall.
Selon un mode de réalisation, l’anneau de raccordement secondaire relie la membrane d’étanchéité secondaire à la paroi supérieure de couvercle, de sorte à être fixé à la structure porteuse par l’intermédiaire de la paroi supérieure de couvercle.According to one embodiment, the secondary connection ring connects the secondary sealing membrane to the upper cover wall, so as to be attached to the supporting structure via the upper cover wall.
Selon un mode de réalisation, les structures thermiquement isolantes de jonction sont juxtaposées les unes aux autres dans une direction transversale de paroi perpendiculaire à la direction d’épaisseur de paroi.According to one embodiment, the thermally insulating junction structures are juxtaposed to each other in a transverse wall direction perpendicular to the wall thickness direction.
Selon un mode de réalisation, la paroi inférieure de couvercle est raccordée de manière étanche à la membrane d’étanchéité primaire à l’aide d’une pièce de liaison comportant une première aile fixée à la membrane d’étanchéité primaire de la structure principale et une deuxième aile reliée à la première aile et fixée à la paroi inférieure de couvercle.According to one embodiment, the lower cover wall is connected in a sealed manner to the primary waterproofing membrane by means of a connecting piece comprising a first wing fixed to the primary waterproofing membrane of the main structure and a second wing connected to the first wing and fixed to the lower cover wall.
Selon un mode de réalisation, la paroi supérieure de couvercle est placée dans le plan de la paroi porteuse supérieure.According to one embodiment, the upper cover wall is placed in the plane of the upper bearing wall.
Selon un mode de réalisation, l’anneau de raccordement secondaire et l’anneau de raccordement primaire s’étendent dans la direction d’épaisseur de paroi.In one embodiment, the secondary connection ring and the primary connection ring extend in the direction of wall thickness.
Selon un mode de réalisation, la barrière thermiquement isolante primaire comporte des panneaux isolants primaires d’extrémité formant une rangée adjacente à l’anneau d’isolation thermique, les panneaux isolants primaires d’extrémité étant alignés avec l’anneau de raccordement secondaire dans la direction d’épaisseur de paroi et les panneaux isolants primaires des autres rangées étant alignés avec des panneaux isolants secondaires de la barrière thermiquement isolante secondaire dans la direction d’épaisseur de paroi, la moyenne du coefficient de dilatation thermique d’un panneau isolant primaire d’extrémité et de l’anneau de raccordement secondaire étant inférieure à la moyenne du coefficient de dilatation thermique d’un panneau isolant primaire et d’un panneau isolant secondaire.According to one embodiment, the primary thermally insulating barrier comprises end primary insulating panels forming a row adjacent to the heat insulating ring, the end primary insulating panels being aligned with the secondary connection ring in the direction of wall thickness and the primary insulation boards of the other rows being aligned with secondary insulation boards of the secondary thermally insulating barrier in the direction of wall thickness, the average of the coefficient of thermal expansion of a primary insulation board d 'end and of the secondary connection ring being less than the average coefficient of thermal expansion of a primary insulating panel and a secondary insulating panel.
Selon un mode de réalisation, la moyenne du coefficient de dilatation thermique d’un panneau isolant primaire d’extrémité et de l’anneau de raccordement secondaire est supérieure au coefficient de dilatation thermique de la structure thermiquement isolante de jonction.According to one embodiment, the average of the coefficient of thermal expansion of a primary end insulating panel and of the secondary connection ring is greater than the coefficient of thermal expansion of the thermally insulating junction structure.
Selon un mode de réalisation, les panneaux isolants primaires d’extrémité comportent un coefficient de dilatation thermique dans la direction d’épaisseur de paroi compris entre 60.10-6 et 71.10-6 K-1, et les panneaux isolants primaires comportent un coefficient de dilatation thermique dans la direction d’épaisseur de paroi compris entre 60.10-6 et 71.10-6 K-1.According to one embodiment, the end primary insulating panels have a coefficient of thermal expansion in the direction of wall thickness of between 60.10 -6 and 71.10 -6 K -1 , and the primary insulating panels have a coefficient of expansion thermal in the direction of wall thickness between 60.10 -6 and 71.10 -6 K -1 .
Selon un mode de réalisation, la structure thermiquement isolante de jonction supporte directement la membrane d’étanchéité primaire ou par l’intermédiaire du panneau isolant primaire d’extrémité.According to one embodiment, the thermally insulating junction structure directly supports the primary waterproofing membrane or through the primary insulating end panel.
Selon un mode de réalisation, une partie saillante du panneau isolant primaire d’extrémité fait saillie entre l’anneau de raccordement primaire et l’anneau de raccordement secondaire et à distance de l’anneau de raccordement primaire, la partie saillante du panneau isolant primaire d’extrémité étant supporté par la structure thermiquement isolante de jonction.According to one embodiment, a protruding part of the primary insulating end panel protrudes between the primary connection ring and the secondary connection ring and at a distance from the primary connection ring, the protruding part of the primary insulating panel end being supported by the thermally insulating junction structure.
Selon un mode de réalisation, la structure thermiquement isolante de jonction présente une forme en escalier comportant une marche, la marche étant configurée pour accueillir la partie saillante du panneau isolant primaire d’extrémité.According to one embodiment, the thermally insulating junction structure has a staircase shape comprising a step, the step being configured to accommodate the protruding part of the primary insulating end panel.
Selon un mode de réalisation, l’anneau de raccordement primaire et la paroi inférieure de couvercle sont réalisées dans un alliage de fer et de nickel présentant un coefficient de dilatation thermique compris entre 0,5.10-6 et 2.10-6 K-1.According to one embodiment, the primary connection ring and the lower cover wall are made of an iron and nickel alloy having a thermal expansion coefficient of between 0.5.10 -6 and 2.10 -6 K -1 .
Selon un mode de réalisation, la pièce de liaison est réalisée dans un alliage de fer et de nickel présentant un coefficient de dilatation thermique compris entre 0,5.10-6 et 2.10-6 K-1.According to one embodiment, the connecting piece is made from an iron and nickel alloy having a thermal expansion coefficient of between 0.5.10 -6 and 2.10 -6 K -1 .
Selon un mode de réalisation, la structure thermiquement isolante de jonction est réalisée de façon monobloc.According to one embodiment, the thermally insulating junction structure is made in one piece.
Le terme "monobloc" est ici employé pour désigner un élément fait d'un seul bloc isolant ou d'un seul tenant, à la différence d'une structure en deux parties qui ne sont pas solidaires l'une de l'autre.The term "monobloc" is used here to denote an element made of a single insulating block or of a single piece, unlike a structure in two parts which are not integral with one another.
Selon un mode de réalisation, la structure thermiquement isolante de jonction comporte un premier panneau isolant de jonction et un deuxième panneau isolant de jonction juxtaposé au premier panneau isolant, le premier panneau isolant de jonction et le deuxième panneau isolant de jonction s’étendant dans la direction d’épaisseur de paroi.According to one embodiment, the thermally insulating junction structure comprises a first insulating junction panel and a second insulating junction panel juxtaposed with the first insulating panel, the first insulating junction panel and the second insulating junction panel extending into the wall thickness direction.
Selon un mode de réalisation, la structure thermiquement isolante de jonction monobloc ou les premier et deuxième panneaux isolant de jonction sont réalisés par l’assemblage d’une couche de mousse isolante entre deux plaques de contreplaqué, les plaques de contreplaqué s’étendant parallèlement à la direction d’épaisseur de paroi.According to one embodiment, the thermally insulating one-piece junction structure or the first and second insulating junction panels are produced by assembling a layer of insulating foam between two plywood plates, the plywood plates extending parallel to the direction of wall thickness.
Selon un mode de réalisation, la couche de mousse isolante est renforcée de fibres, les fibres étant orientées dans la direction d’épaisseur de paroi. Par exemple, les fibres sont des fibres de verre.According to one embodiment, the insulating foam layer is reinforced with fibers, the fibers being oriented in the direction of wall thickness. For example, the fibers are glass fibers.
Selon un mode de réalisation, la structure thermiquement isolante de jonction monobloc ou les premier et deuxième panneaux isolant de jonction sont réalisés sous forme d’une boîte en contreplaqué remplie de garniture isolante.According to one embodiment, the thermally insulating one-piece junction structure or the first and second insulating junction panels are made in the form of a plywood box filled with insulating lining.
Selon un mode de réalisation, la garniture isolante est réalisée en laine de verre, en perlite, en aérogel, en mousse polymère ou en la combinaison de deux ou plus de ces matériaux.According to one embodiment, the insulating lining is made of glass wool, perlite, airgel, polymer foam or a combination of two or more of these materials.
Selon un mode de réalisation, la paroi porteuse supérieure est une paroi porteuse supérieure interne, la structure porteuse comportant une structure porteuse interne comprenant la paroi porteuse supérieure interne sensiblement plane et une structure porteuse externe comprenant une paroi porteuse supérieure externe sensiblement plane disposée au-dessus de la paroi porteuse supérieure interne, la structure principale de la cuve étant agencée dans la structure porteuse interne.According to one embodiment, the upper bearing wall is an upper internal bearing wall, the bearing structure comprising an internal bearing structure comprising the substantially planar internal upper bearing wall and an external bearing structure comprising a substantially planar outer upper bearing wall disposed above of the upper internal supporting wall, the main structure of the tank being arranged in the internal supporting structure.
Selon un mode de réalisation, la paroi porteuse supérieure est une paroi porteuse supérieure externe, la structure porteuse comportant une structure porteuse interne comprenant une paroi porteuse supérieure interne sensiblement plane et une structure porteuse externe comprenant la paroi porteuse supérieure externe sensiblement plane disposée au-dessus de la paroi porteuse supérieure interne, la structure principale de la cuve étant agencée dans la structure porteuse interne.According to one embodiment, the upper bearing wall is an upper outer bearing wall, the bearing structure comprising an internal bearing structure comprising a substantially planar internal upper bearing wall and an external bearing structure comprising the substantially planar outer upper bearing wall disposed above of the upper internal supporting wall, the main structure of the tank being arranged in the internal supporting structure.
Selon un mode de réalisation, le couvercle comporte des raidisseurs disposés sur la paroi supérieure de couvercle afin d’augmenter la rigidité et la résistance du couvercle par exemple lors de la déformation de la structure porteuse.According to one embodiment, the cover comprises stiffeners arranged on the upper cover wall in order to increase the rigidity and the resistance of the cover, for example during the deformation of the supporting structure.
Selon un mode de réalisation, l’ouverture présente un contour rectangulaire.According to one embodiment, the opening has a rectangular outline.
Selon un mode de réalisation, le coefficient de dilatation thermique du matériau de la pièce de liaison est égal au coefficient de dilatation thermique du matériau de la paroi inférieure de couvercle.According to one embodiment, the coefficient of thermal expansion of the material of the connecting piece is equal to the coefficient of thermal expansion of the material of the lower cover wall.
Selon un mode de réalisation, l’installation de stockage comprend une tour de chargement/déchargement comportant une pluralité de conduites de chargement/déchargement, les conduites de chargement/déchargement traversant de manière étanche le couvercle par des orifices ménagés dans le couvercle.According to one embodiment, the storage installation comprises a loading / unloading tower comprising a plurality of loading / unloading conduits, the loading / unloading conduits sealingly passing through the cover through orifices formed in the cover.
Selon un mode de réalisation, la membrane d’étanchéité primaire comporte une pluralité de tôles métalliques ondulées, les tôles métalliques ondulées étant juxtaposées selon un motif répété et soudées ensemble de manière étanche.According to one embodiment, the primary waterproofing membrane comprises a plurality of corrugated metal sheets, the corrugated metal sheets being juxtaposed in a repeated pattern and welded together in a sealed manner.
Selon un mode de réalisation, les tôles métalliques sont réalisées en acier inoxydable.According to one embodiment, the metal sheets are made of stainless steel.
Selon un mode de réalisation, la paroi inférieure de couvercle comporte une pluralité de plaques métalliques planes, les plaques métalliques planes étant assemblées les unes aux autres.According to one embodiment, the lower cover wall comprises a plurality of flat metal plates, the flat metal plates being assembled together.
Une telle installation de stockage peut être une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Une telle installation de stockage peut aussi servir de réservoir de carburant dans tout type de navire.Such a storage installation can be an onshore storage installation, for example for storing LNG or be installed in a floating, coastal or deep water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU), a floating production and remote storage unit (FPSO) and others. Such a storage installation can also serve as a fuel tank in any type of vessel.
Selon un mode de réalisation, un navire pour le transport d’un produit liquide froid comporte une double coque et une installation de stockage précitée disposée dans la double coque.According to one embodiment, a ship for transporting a cold liquid product comprises a double hull and a above-mentioned storage installation arranged in the double hull.
Selon un mode de réalisation, le navire comporte une installation de stockage précitée et un pont, la paroi porteuse supérieure de la structure porteuse étant formée par le pont.According to one embodiment, the ship comprises an above-mentioned storage installation and a deck, the upper supporting wall of the supporting structure being formed by the deck.
Selon un mode de réalisation, le navire comporte une installation de stockage précitée, un pont interne et un pont externe, la paroi porteuse supérieure interne de la structure porteuse étant formée par le pont interne et la paroi porteuse supérieure externe étant formée par le pont externe.According to one embodiment, the ship comprises an aforementioned storage installation, an internal deck and an external deck, the upper internal load-bearing wall of the load-bearing structure being formed by the internal bridge and the upper external load-bearing wall being formed by the external bridge. .
Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation externe de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation externe de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to an external storage installation. floating or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipes from or towards the external floating or terrestrial storage installation towards or from the vessel of the vessel.
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation externe de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through insulated pipes from or to an external floating or terrestrial storage installation to or from the vessel's tank.
Brève description des figuresBrief description of the figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.The invention will be better understood, and other aims, details, characteristics and advantages thereof will emerge more clearly during the following description of several particular embodiments of the invention, given solely by way of illustration and not by way of limitation. , with reference to the accompanying drawings.
La représente une vue schématique en coupe d’une installation de stockage selon un premier mode de réalisation. The represents a schematic sectional view of a storage installation according to a first embodiment.
La est une vue schématique en coupe d’une installation de stockage selon le premier mode de réalisation représentant plus particulièrement la cuve au niveau de l’ouverture. The is a schematic sectional view of a storage installation according to the first embodiment more particularly showing the tank at the opening.
La est une vue schématique en coupe d’une installation de stockage selon un deuxième mode de réalisation. The is a schematic sectional view of a storage installation according to a second embodiment.
La est une vue schématique en coupe d’une installation de stockage selon le deuxième mode de réalisation représentant plus particulièrement la cuve au niveau de l’ouverture. The is a schematic sectional view of a storage installation according to the second embodiment more particularly showing the tank at the opening.
La est une vue schématique du détail V de la illustrant une structure thermiquement isolante de jonction selon une première variante. The is a schematic view of detail V of the illustrating a thermally insulating junction structure according to a first variant.
La est une vue schématique du détail V de la illustrant une structure thermiquement isolante de jonction selon une deuxième variante. The is a schematic view of detail V of the illustrating a thermally insulating junction structure according to a second variant.
La est une vue schématique du détail V de la illustrant une structure thermiquement isolante de jonction selon une troisième variante. The is a schematic view of detail V of the illustrating a thermally insulating junction structure according to a third variant.
La est une vue schématique du détail V de la illustrant une structure thermiquement isolante de jonction selon une quatrième variante. The is a schematic view of detail V of the illustrating a thermally insulating junction structure according to a fourth variant.
La est une vue schématique du détail V de la illustrant une structure thermiquement isolante de jonction selon une cinquième variante. The is a schematic view of detail V of the illustrating a thermally insulating junction structure according to a fifth variant.
La est une vue schématique du détail V de la illustrant une structure thermiquement isolante de jonction selon une sixième variante. The is a schematic view of detail V of the illustrating a thermally insulating junction structure according to a sixth variant.
La est une vue schématique du détail V de la illustrant une structure thermiquement isolante de jonction selon une septième variante. The is a schematic view of detail V of the illustrating a thermally insulating junction structure according to a seventh variant.
La est une vue schématique du détail V de la illustrant une structure thermiquement isolante de jonction selon une huitième variante. The is a schematic view of detail V of the illustrating a thermally insulating junction structure according to an eighth variant.
La est une représentation schématique écorchée d’une installation de stockage de navire méthanier et d’un terminal de chargement/déchargement de cette cuve. The is a cut-away schematic representation of an LNG tanker storage facility and a loading / unloading terminal for this tank.
Sur la , on a représenté de manière schématique une installation de stockage 1 comprenant une structure porteuse double composée d’une structure porteuse interne 2 et d’une structure porteuse externe 3 encadrant la structure porteuse interne 2. A l’intérieur de la structure porteuse interne 2, l’installation de stockage 1 comprend une cuve 71 étanche et thermiquement isolante qui sera décrite par la suite.On the , there is shown schematically a storage installation 1 comprising a double supporting structure composed of an internal supporting structure 2 and an external supporting structure 3 surrounding the internal supporting structure 2. Inside the internal supporting structure 2 , the storage installation 1 comprises a sealed and thermally insulating tank 71 which will be described below.
La structure porteuse interne 2 et la structure porteuse externe 3 comporte une pluralité de parois reliées les unes aux autres et notamment une paroi porteuse supérieure interne 4 et une paroi porteuse supérieure externe 5 respectivement, qui sont situées, comme on peut le voir sur la , en haut de l’installation de stockage 1.The internal load-bearing structure 2 and the external load-bearing structure 3 comprise a plurality of walls connected to each other and in particular an internal upper load-bearing wall 4 and an external upper load-bearing wall 5 respectively, which are located, as can be seen in the figure. , at the top of the storage facility 1.
Lorsque l’installation de stockage 1 est positionnée sur un navire tel qu’un méthanier, la structure porteuse 2, 3 est formée par la double coque du navire. La paroi porteuse supérieure interne 4 est ainsi appelée le pont interne 4 du navire tandis que la paroi porteuse supérieure externe 5 est appelée le pont externe 5 du navire.When the storage facility 1 is positioned on a ship such as an LNG carrier, the supporting structure 2, 3 is formed by the double hull of the ship. The inner upper load-bearing wall 4 is thus called the inner deck 4 of the ship while the outer top load-bearing wall 5 is called the outer deck 5 of the ship.
La cuve 71 comporte une structure principale 6 formée d’une paroi de fond (non représentée), une paroi de plafond 7, deux parois de cofferdam 8 reliant la paroi de fond à la paroi de plafond 7 et situées à l’avant et à l’arrière lorsque l’installation de stockage 1 est située sur un navire, deux parois latérales (non représentées) et optionnellement deux à quatre parois de chanfrein (non représentées) reliant les parois latérales à la paroi de fond ou à la paroi de plafond 7. Les parois de la cuve 71 sont ainsi reliées les unes aux autres de façon à former une structure polyédrique et à délimiter un espace interne de stockage 9.The tank 71 comprises a main structure 6 formed of a bottom wall (not shown), a ceiling wall 7, two cofferdam walls 8 connecting the bottom wall to the ceiling wall 7 and located at the front and at the rear when the storage facility 1 is located on a ship, two side walls (not shown) and optionally two to four chamfer walls (not shown) connecting the side walls to the bottom wall or to the ceiling wall 7. The walls of the tank 71 are thus connected to each other so as to form a polyhedral structure and to define an internal storage space 9.
Afin de charger et décharger la cuve 71 en gaz liquéfié, l’installation de stockage 1 comporte une ouverture de chargement/déchargement 10 interrompant localement la paroi porteuse supérieure externe 5, la paroi porteuse supérieure interne 4 et la paroi de plafond 7 de la cuve 71 de sorte à permettre à des conduites de chargement/déchargement 11 d’atteindre le fond de la cuve 71 en traversant cette ouverture 10.In order to load and unload the tank 71 with liquefied gas, the storage installation 1 comprises a loading / unloading opening 10 locally interrupting the upper external bearing wall 5, the upper internal bearing wall 4 and the ceiling wall 7 of the tank. 71 so as to allow the loading / unloading pipes 11 to reach the bottom of the tank 71 by passing through this opening 10.
L’installation de stockage 1 comprend également une tour de chargement/déchargement 13 situé au droit de l’ouverture 10 et à l’intérieur de la cuve 71 formant une structure de support pour les conduites de chargement/déchargement 11 sur toute la hauteur de la cuve 71 ainsi que pour les pompes (non représentées). The storage installation 1 also comprises a loading / unloading tower 13 located in line with the opening 10 and inside the tank 71 forming a support structure for the loading / unloading pipes 11 over the entire height of the storage facility. the tank 71 as well as for the pumps (not shown).
De plus, l’installation de stockage 1 comporte un couvercle 12 disposé dans l’ouverture de chargement/déchargement 10 afin de clôturer l’espace interne de stockage 9 au niveau de ladite ouverture 10. Le couvercle 12 comprend des orifices 14 permettant aux conduites de chargement/déchargement 11 de traverser le couvercle 12.In addition, the storage installation 1 comprises a cover 12 arranged in the loading / unloading opening 10 in order to enclose the internal storage space 9 at the level of said opening 10. The cover 12 comprises orifices 14 allowing the conduits loading / unloading 11 to pass through the cover 12.
Dans le premier mode de réalisation représenté en figures 1 et 2, la cuve 71 comporte également une cheminée 15 située sur la structure principale 6 au niveau de l’ouverture et permettant aux parois de cuve de s’étendre continument du pont interne 4 vers le pont externe 5 au niveau où ceux-ci sont interrompus par l’ouverture de chargement/déchargement 10. On appelle pour des cuves de stockage de gaz liquéfié une telle cheminée 15 munie dudit couvercle 12 : le dôme liquide.In the first embodiment shown in Figures 1 and 2, the tank 71 also includes a chimney 15 located on the main structure 6 at the opening and allowing the tank walls to extend continuously from the internal bridge 4 towards the bottom. external bridge 5 at the level where these are interrupted by the loading / unloading opening 10. For liquefied gas storage tanks, such a chimney 15 provided with said cover 12 is called: the liquid dome.
La présente invention est illustrée ici en référence à la zone du dôme liquide mais on pourrait également envisager l’application de cette invention à une autre cheminée d’une cuve 71, telle que classiquement le dôme gaz.The present invention is illustrated here with reference to the area of the liquid dome but one could also consider the application of this invention to another chimney of a tank 71, such as conventionally the gas dome.
L’ouverture de chargement/déchargement 10 ainsi que la cheminée 15 possède un contour rectangulaire. La cheminée 15 comprend ainsi quatre parois, l’une étant le prolongement de la paroi de cofferdam arrière 8, comme visible sur la , tandis que les trois autres sont reliées à la paroi de plafond 7 et forment un angle de 90° avec celle-ci.The loading / unloading opening 10 as well as the chimney 15 has a rectangular outline. The chimney 15 thus comprises four walls, one being the extension of the rear cofferdam wall 8, as visible on the figure. , while the other three are connected to the ceiling wall 7 and form an angle of 90 ° therewith.
Une autre particularité de ce premier mode de réalisation illustré en figures 1 et 2 est que le couvercle 12 est situé au niveau du pont externe 5, c’est-à-dire pour clôturer la cheminée 15.Another feature of this first embodiment illustrated in Figures 1 and 2 is that the cover 12 is located at the level of the external bridge 5, that is to say to enclose the chimney 15.
La représente de manière plus détaillée et de façon schématique la zone de l’ouverture de l’installation de stockage 1 dans le premier mode de réalisation.The shows in more detail and schematically the area of the opening of the storage installation 1 in the first embodiment.
La cuve 71 est une cuve 71 à membranes permettant de stocker du gaz liquéfié. La structure principale 6 de la cuve 71 comprend une structure multicouche comportant, depuis l’extérieur vers l’intérieur dans une direction d’épaisseur de paroi, une barrière thermiquement isolante secondaire 16 comportant des éléments isolants, reposant contre la structure porteuse, une membrane d’étanchéité secondaire 17 reposant contre la barrière thermiquement isolante secondaire 16, une barrière thermiquement isolante primaire 18 comportant des panneaux isolants primaires 39, reposant contre la membrane d’étanchéité secondaire 17 et une membrane d’étanchéité primaire 19 destinée à être en contact avec le gaz liquéfié contenu dans la cuve 71.The tank 71 is a membrane tank 71 for storing liquefied gas. The main structure 6 of the tank 71 comprises a multilayer structure comprising, from the outside to the inside in a direction of wall thickness, a secondary thermally insulating barrier 16 comprising insulating elements, resting against the supporting structure, a membrane secondary sealing 17 resting against the secondary thermally insulating barrier 16, a primary thermally insulating barrier 18 comprising primary insulating panels 39, resting against the secondary waterproofing membrane 17 and a primary waterproofing membrane 19 intended to be in contact with the liquefied gas contained in the tank 71.
Selon un mode de réalisation, la structure principale 6 de la cuve 71 est réalisée selon la technologie Mark III ® qui est notamment décrite dans le document FR-A-2691520.According to one embodiment, the main structure 6 of the tank 71 is produced using Mark III® technology which is described in particular in document FR-A-2691520.
Dans une telle structure principale 6, la barrière thermiquement isolante secondaire 16, la barrière thermiquement isolante primaire et la membrane d’étanchéité secondaire 17 sont essentiellement constituées de panneaux juxtaposés sur la structure porteuse, qui peut être la structure porteuse interne 2 ou la structure reliant la paroi porteuse supérieure interne 4 à la paroi porteuse supérieure externe 5 au niveau de l’ouverture 10. La membrane d’étanchéité secondaire 17 est formée d’un matériau composite comportant une feuille d’aluminium prise en sandwich entre deux feuilles de tissu en fibres de verre. La membrane d’étanchéité primaire 19 est quant à elle obtenue par assemblage d’une pluralité de plaques métalliques, soudées les unes aux autres le long de leurs bords, et comportant des ondulations s’étendant selon deux directions perpendiculaires. Les plaques métalliques sont, par exemple, réalisées de tôles d'acier inoxydable ou d'aluminium, mises en forme par pliage ou par emboutissage. La membrane d’étanchéité primaire 19 est notamment illustrée en figures 2 et 4.In such a main structure 6, the secondary thermally insulating barrier 16, the primary thermally insulating barrier and the secondary waterproofing membrane 17 essentially consist of panels juxtaposed on the supporting structure, which can be the internal supporting structure 2 or the connecting structure. the upper internal load-bearing wall 4 to the upper external load-bearing wall 5 at the level of the opening 10. The secondary waterproofing membrane 17 is formed of a composite material comprising an aluminum foil sandwiched between two sheets of fabric in fiberglass. The primary waterproofing membrane 19 is in turn obtained by assembling a plurality of metal plates, welded to each other along their edges, and comprising corrugations extending in two perpendicular directions. The metal plates are, for example, made of stainless steel or aluminum sheets, shaped by bending or by stamping. The primary waterproofing membrane 19 is particularly illustrated in Figures 2 and 4.
D’autres détails d’une telle membrane métallique ondulée sont notamment décrits dans FR-A-2861060.Other details of such a corrugated metal membrane are described in particular in FR-A-2861060.
Dans la cheminée 15, comme visible en , la membrane d’étanchéité secondaire 17 est interrompue au niveau d’une interruption 40 et est fixée au niveau de ladite interruption 40 à la structure porteuse à l’aide d’un anneau de raccordement secondaire 21 faisant saillie, selon la direction d’épaisseur de paroi, de la surface interne de la paroi porteuse de cheminée étant dans cette zone une paroi reliant le pont interne 4 au pont externe 5. L’anneau de raccordement secondaire 21 est réalisé en acier inoxydable.In the chimney 15, as visible in , the secondary waterproofing membrane 17 is interrupted at an interruption 40 and is fixed at the level of said interruption 40 to the supporting structure by means of a secondary connection ring 21 projecting, in the direction of wall thickness, of the internal surface of the supporting wall of the chimney being in this zone a wall connecting the internal bridge 4 to the external bridge 5. The secondary connection ring 21 is made of stainless steel.
Le couvercle 12 comprend également une structure multicouche comportant, depuis l’extérieur vers l’intérieur, une paroi supérieure de couvercle 22, une paroi inférieure de couvercle 23 et une structure d’isolation thermique 24 située entre la paroi inférieure de couvercle 23 et la paroi supérieure de couvercle 22. Le couvercle 12 comporte aussi des raidisseurs 25 situés sur la paroi supérieure de couvercle 22.The cover 12 also comprises a multilayer structure comprising, from the outside inwards, an upper cover wall 22, a lower cover wall 23 and a thermal insulation structure 24 located between the lower cover wall 23 and the cover. top cover wall 22. Cover 12 also includes stiffeners 25 located on top cover wall 22.
Comme visible sur la , le couvercle 12 est disposé dans l’ouverture de chargement/déchargement 10 de sorte que la paroi supérieure de couvercle 22 soit placée dans le plan de la paroi porteuse supérieure externe 5 ou pont externe 5. Ainsi, l’installation de stockage 1 ne possède pas de siège de dôme et le couvercle 12 ne fait pas sailli au-dessus du pont externe 5.As visible on the , the cover 12 is disposed in the loading / unloading opening 10 so that the upper cover wall 22 is placed in the plane of the upper external bearing wall 5 or external bridge 5. Thus, the storage installation 1 does not has no dome seat and the cover 12 does not protrude above the outer deck 5.
La paroi supérieure de couvercle 22 est fixée de manière étanche au pont externe 5 tout autour de l’ouverture 10 de sorte qu’au niveau du couvercle 12, c’est la paroi supérieure de couvercle 22 qui joue le rôle de membrane d’étanchéité secondaire 17. La paroi supérieure de couvercle 22 est réalisée à l’aide d’un matériau métallique, par exemple de l’acier inoxydable.The top wall of the cover 22 is sealed to the outer bridge 5 all around the opening 10 so that at the level of the cover 12, it is the top wall of the cover 22 which acts as a sealing membrane. secondary 17. The upper cover wall 22 is produced using a metallic material, for example stainless steel.
La paroi inférieure de couvercle 23 est soudée de manière étanche à la membrane d’étanchéité primaire 19 de la structure principale 6, ici la cheminée 15, à l’aide d’une pièce de liaison 26. La paroi inférieure de couvercle 23 est également soudée de manière étanche aux conduites de chargement/déchargement 11. Dans un autre mode de réalisation non représenté, la paroi inférieure de couvercle 23 est directement soudée à la membrane d’étanchéité primaire 18 sans pièce de liaison 26.The lower cover wall 23 is sealed to the primary waterproofing membrane 19 of the main structure 6, here the chimney 15, using a connecting piece 26. The lower cover wall 23 is also sealed to the loading / unloading pipes 11. In another embodiment not shown, the lower cover wall 23 is directly welded to the primary waterproofing membrane 18 without connecting part 26.
La structure d’isolation thermique 24 du couvercle 12 comprend une pluralité d’éléments isolants juxtaposés les uns aux autres pouvant être de constitution similaire ou différente. Dans un mode préféré, les éléments isolants situés au droit de la paroi inférieure de couvercle 23 et de la pièce de liaison 26 sont des éléments isolants structurels tandis que les éléments isolants situés sur la périphérie de la structure d’isolation thermique 24 sont des éléments isolants non structurels ; les éléments isolants dits « structurels » présentant essentiellement des propriétés ou caractéristiques de tenue mécanique supérieures, voire bien supérieures, aux éléments isolants dits « non structurels ». Les éléments isolants structurels peuvent être des blocs de mousse polymère à haute densité optionnellement renforcés de fibres ou des boites en contreplaqué ou composite remplies de garniture isolante tel que de la laine de verre, de la mousse polymère ou de la perlite. Les éléments isolants non structurels peuvent être des blocs de mousse polymère à faible densité ou encore de la laine de verre.The thermal insulation structure 24 of the cover 12 comprises a plurality of insulating elements juxtaposed to each other which may be of similar or different constitution. In a preferred embodiment, the insulating elements located in line with the lower cover wall 23 and the connecting piece 26 are structural insulating elements while the insulating elements located on the periphery of the thermal insulation structure 24 are elements. non-structural insulators; the so-called “structural” insulating elements essentially having properties or characteristics of mechanical strength which are superior, or even much superior, to the so-called “non-structural” insulating elements. The structural insulating elements can be high density polymer foam blocks optionally reinforced with fibers or plywood or composite boxes filled with insulating padding such as glass wool, polymer foam or perlite. The non-structural insulating elements can be low density polymer foam blocks or glass wool.
La pièce de liaison 26 comprend une première aile 27 soudée de manière étanche à la membrane d’étanchéité de la structure principale 6 et une deuxième aile 28 reliée à la première aile 27 et soudée de manière étanche à la paroi inférieure de couvercle 23, tout autour de la paroi inférieure de couvercle 23. Cette pièce de liaison 26 est conçue de manière différente selon la conception de la paroi inférieure de couvercle 23.The connecting piece 26 comprises a first wing 27 welded in a sealed manner to the waterproofing membrane of the main structure 6 and a second wing 28 connected to the first wing 27 and welded in a sealed manner to the lower wall of the cover 23, all around the lower cover wall 23. This connecting piece 26 is designed differently depending on the design of the lower cover wall 23.
Ainsi dans un mode de réalisation, la paroi inférieure de couvercle 23 est formée d’un assemblage de plaques métalliques planes soudées les unes aux autres par chevauchement. Ces plaques métalliques planes sont ici des plaques métalliques planes à faible coefficient de dilatation thermique, dans le cas présent compris entre 0,5.10-6 et 2.10-6 K-1, de sorte à très peu se contracter lors du passage du gaz liquéfié dans les conduites de chargement/déchargement 11. Les plaques métalliques planes sont réalisées par exemple dans un alliage de fer et de nickel appelé Invar.Thus in one embodiment, the lower cover wall 23 is formed by an assembly of flat metal plates welded to each other by overlapping. These flat metal plates are here flat metal plates with a low coefficient of thermal expansion, in the present case between 0.5.10 -6 and 2.10 -6 K -1 , so as to contract very little during the passage of the liquefied gas in the loading / unloading pipes 11. The flat metal plates are made for example from an alloy of iron and nickel called Invar.
De plus, la membrane d’étanchéité secondaire 17 de la structure principale 6 peut également être réalisée de la même manière que la paroi inférieure de couvercle 23, à savoir à l’aide de plaques métalliques planes soudées les unes aux autres par chevauchement. Dans ce cas, la membrane d’étanchéité secondaire 17 comporte également des plaques métalliques planes d’extrémité situées au niveau de l’interruption 40 qui sont soudées à l’anneau de raccordement secondaire 21.In addition, the secondary sealing membrane 17 of the main structure 6 can also be made in the same way as the lower cover wall 23, namely by means of flat metal plates welded to each other by overlapping. In this case, the secondary sealing membrane 17 also has flat end metal plates located at the level of the interruption 40 which are welded to the secondary connection ring 21.
La pièce de liaison 26 est réalisée dans un matériau ayant le même coefficient de dilatation thermique que le matériau de la paroi inférieure de couvercle 23 de sorte à se contracter et se dilater de manière homogène avec la paroi inférieure de couvercle 23. Ainsi, dans ce mode de réalisation, la pièce de liaison 26 est également réalisée dans un alliage de fer et de nickel ayant un coefficient de dilatation thermique compris entre 0,5.10-6 et 2.10-6 K-1. La pièce de liaison 26 est ainsi formée d’un bandeau continu formée tout autour de la paroi inférieure de couvercle 23. Ce bandeau est réalisé à l’aide d’un ou plusieurs éléments de liaison formant la première aile 27 et la deuxième aile 28.The connecting piece 26 is made of a material having the same coefficient of thermal expansion as the material of the lower cover wall 23 so as to contract and expand homogeneously with the lower cover wall 23. Thus, in this embodiment, the connecting piece 26 is also made of an iron and nickel alloy having a thermal expansion coefficient of between 0.5.10 -6 and 2.10 -6 K -1 . The connecting piece 26 is thus formed of a continuous strip formed all around the lower cover wall 23. This strip is produced using one or more connecting elements forming the first wing 27 and the second wing 28. .
La pièce de liaison 26 est fixée à un anneau de raccordement primaire 41 tout autour de la paroi inférieure de couvercle 23 et à la jonction entre la première aile 27 et la deuxième aile 28. L’anneau de raccordement primaire 41 fait saillie, selon la direction d’épaisseur de paroi, de la surface interne de la paroi porteuse de cheminée. L’anneau de raccordement primaire 41 est réalisé en acier inoxydable. Ainsi, l’anneau de raccordement primaire 41 permet de raccorder la paroi inférieure de couvercle 23 à la structure porteuse. Dans un autre mode de réalisation, l’anneau de raccordement primaire 41 peut également être réalisé dans un alliage de fer et de nickel ayant un coefficient de dilatation thermique compris entre 0,5.10-6 et 2.10-6 K-1.The connecting piece 26 is fixed to a primary connecting ring 41 all around the lower cover wall 23 and at the junction between the first wing 27 and the second wing 28. The primary connecting ring 41 protrudes, according to the figure. direction of wall thickness, from the inner surface of the chimney bearing wall. The primary connection ring 41 is made of stainless steel. Thus, the primary connection ring 41 makes it possible to connect the lower cover wall 23 to the supporting structure. In another embodiment, the primary connecting ring 41 can also be made from an alloy of iron and nickel having a coefficient of thermal expansion of between 0.5.10 -6 and 2.10 -6 K -1 .
Dans un mode de réalisation non représenté, la pièce de liaison 26 comprend une troisième aile située dans le même plan que la première aile 27 et reliée à la première aile 27 et à la deuxième aile 28 de sorte à former une pièce de liaison 26 à section en T. La troisième aile est fixée à l’anneau de raccordement primaire 41 de sorte à former un ancrage de la membrane d’étanchéité primaire 19 et de la paroi inférieure de couvercle 23 au niveau de la pièce de liaison 26. La première aile 27 et la troisième aile peuvent être formées d’un seul tenant. D’une autre façon, la première aile 27 et la deuxième aile 28 peuvent être formées à partir d’une même plaque qui a été courbée.In an embodiment not shown, the connecting piece 26 comprises a third wing located in the same plane as the first wing 27 and connected to the first wing 27 and to the second wing 28 so as to form a connecting piece 26 to T-section. The third wing is fixed to the primary connection ring 41 so as to form an anchoring of the primary waterproofing membrane 19 and of the lower cover wall 23 at the level of the connecting piece 26. The first wing 27 and the third wing can be formed integrally. Alternatively, the first wing 27 and the second wing 28 can be formed from the same plate which has been bent.
Comme visible en , la cuve 71 comporte un anneau d’isolation thermique 42 qui comprend une pluralité de structures thermiquement isolantes de jonction 43 juxtaposées les unes aux autres fixées à la structure porteuse, et formé entre l’anneau de raccordement primaire 41 et l’anneau de raccordement secondaire 21. L’anneau d’isolation thermique 42 permet de positionner et supporter l’anneau de raccordement primaire 41 et la pièce de liaison 26. Il permet également de compléter la barrière thermiquement isolante primaire dans cette zone et permet enfin de limiter l’écart lié à la contraction thermique entre l’anneau de raccordement primaire 41 et l’isolation thermique, de sorte à conserver un support de la membrane d’étanchéité primaire dans cette zone. L’anneau de raccordement primaire est décrit plus en détails en rapport avec les figures 5 à 12 concernant une pluralité de variantes de réalisation.As visible in , the tank 71 comprises a thermal insulation ring 42 which comprises a plurality of thermally insulating junction structures 43 juxtaposed to one another fixed to the supporting structure, and formed between the primary connection ring 41 and the connection ring secondary 21. The thermal insulation ring 42 makes it possible to position and support the primary connection ring 41 and the connecting piece 26. It also makes it possible to complete the primary thermally insulating barrier in this zone and finally makes it possible to limit the gap linked to the thermal contraction between the primary connection ring 41 and the thermal insulation, so as to maintain a support for the primary waterproofing membrane in this zone. The primary connection ring is described in more detail with reference to FIGS. 5 to 12 relating to a plurality of variant embodiments.
Pour cela, les structures thermiquement isolantes de jonction 43 comporte un coefficient de dilatation thermique dans la direction d’épaisseur de paroi qui est inférieur à celui des autres panneaux isolants primaires 39 de sorte à être plus proche du coefficient de dilatation thermique de l’anneau de raccordement primaire 41 et ainsi limiter cet écart de contraction. Ainsi, le coefficient de dilatation thermique dans la direction d’épaisseur de paroi de la structure thermiquement isolante de jonction 43 est compris entre 4.10-6 et 38.10-6 K-1. La barrière thermiquement isolante primaire 18 comporte des panneaux isolants primaires d’extrémité 44 formant une rangée adjacente à l’anneau d’isolation thermique 42. Les panneaux isolants primaires d’extrémité 44 peuvent avoir une composition différente que les panneaux isolants primaires 39 du reste de la barrière thermiquement isolante primaire 18. For this, the thermally insulating junction structures 43 have a coefficient of thermal expansion in the direction of wall thickness which is lower than that of the other primary insulating panels 39 so as to be closer to the coefficient of thermal expansion of the ring. primary connection 41 and thus limit this contraction difference. Thus, the coefficient of thermal expansion in the direction of wall thickness of the thermally insulating junction structure 43 is between 4.10 -6 and 38.10 -6 K -1 . The primary thermally insulating barrier 18 has primary insulating end panels 44 forming a row adjacent to the heat insulating ring 42. The primary insulating end panels 44 may have a different composition than the primary insulating panels 39 of the rest. of the primary thermally insulating barrier 18.
Les panneaux isolants primaires d’extrémité 44 sont alignés avec l’anneau de raccordement secondaire 21 dans la direction d’épaisseur de paroi tandis que les panneaux isolants primaires 39 des autres rangées sont alignés avec des panneaux isolants secondaires de la barrière thermiquement isolante secondaire 16 dans la direction d’épaisseur. Ainsi, la moyenne du coefficient de dilatation thermique d’un panneau isolant primaire d’extrémité 44 et de l’anneau de raccordement secondaire 21 est supérieure au coefficient de dilatation thermique de la structure thermiquement isolante de jonction 43. Et, la moyenne du coefficient de dilatation thermique d’un panneau isolant primaire d’extrémité 44 et de l’anneau de raccordement secondaire 21 est inférieure à la moyenne du coefficient de dilatation thermique d’un panneau isolant primaire 39 et d’un panneau isolant secondaire. Cela permet d’éviter tout phénomène de marche pour la membrane d’étanchéité primaire 19 lors de la contraction thermique de la barrière thermiquement isolante primaire 18 et de la barrière thermiquement isolante secondaire 16 en augmentant progressivement le coefficient de dilatation thermique de la paroi de cuve dans la direction d’épaisseur de paroi lorsque l’on s’éloigne de l’anneau de raccordement primaire 41.The end primary insulation panels 44 are aligned with the secondary connection ring 21 in the direction of wall thickness while the primary insulation panels 39 of the other rows are aligned with secondary insulation panels of the secondary thermal insulation barrier 16. in the thickness direction. Thus, the average of the coefficient of thermal expansion of a primary insulating end panel 44 and of the secondary connection ring 21 is greater than the coefficient of thermal expansion of the thermally insulating junction structure 43. And, the average of the coefficient thermal expansion of a primary insulating end panel 44 and of the secondary connection ring 21 is less than the average coefficient of thermal expansion of a primary insulating panel 39 and a secondary insulating panel. This makes it possible to avoid any walking phenomenon for the primary waterproofing membrane 19 during the thermal contraction of the primary thermally insulating barrier 18 and of the secondary thermally insulating barrier 16 by gradually increasing the thermal expansion coefficient of the tank wall. in the direction of wall thickness when moving away from the primary connecting ring 41.
Les figures 3 et 4 représentent un deuxième mode de réalisation de l’installation de stockage 1. Contrairement au premier mode de réalisation, la paroi supérieure de couvercle 22 est ici placée dans le plan de paroi porteuse supérieure interne 4 ou pont interne 4. Ainsi, dans ce mode de réalisation, la structure principale 6 de la cuve 71 ne comporte pas de cheminée 15 et s’arrête dans sa portion supérieure à la paroi de plafond 7. Le couvercle 12 est donc le prolongement de la paroi de plafond 7 permettant le passage des conduites de chargement/déchargement 11 et de la tour de chargement/déchargement 13 sans faire saillie du pont interne 4 et a fortiori du pont externe 5, comme visible sur la . Le couvercle 12 permet de relier la paroi de plafond 7 à la paroi de cofferdam arrière 8 au droit de l’ouverture. Le pont externe 5 peut être muni d’un élément de fermeture venant se positionner au droit de l’ouverture afin de clôturer le pont externe 5 après insertion des conduites de chargement/déchargement 11 et du couvercle 12.FIGS. 3 and 4 represent a second embodiment of the storage installation 1. Unlike the first embodiment, the upper cover wall 22 is here placed in the plane of the upper internal bearing wall 4 or internal bridge 4. Thus , in this embodiment, the main structure 6 of the tank 71 does not include a chimney 15 and stops in its upper portion at the ceiling wall 7. The cover 12 is therefore the extension of the ceiling wall 7 allowing the passage of the loading / unloading pipes 11 and the loading / unloading tower 13 without protruding from the internal bridge 4 and a fortiori from the external bridge 5, as visible on the . The cover 12 makes it possible to connect the ceiling wall 7 to the rear cofferdam wall 8 to the right of the opening. The external bridge 5 can be provided with a closing element which is positioned in line with the opening in order to close the external bridge 5 after insertion of the loading / unloading pipes 11 and of the cover 12.
La illustre de manière plus détaillée et de façon schématique la zone de l’ouverture de l’installation de stockage 1 dans le deuxième mode de réalisation. La conception du couvercle 12 dans ce mode de réalisation est très similaire au premier mode de réalisation. Toutefois, la paroi inférieure de couvercle 23 est ici dans le même plan que la membrane d’étanchéité primaire 19 de la paroi de plafond 7 et est raccordée de manière étanche à celle-ci sur trois des bords de la paroi inférieure de couvercle 23, le quatrième bord étant raccordé comme dans le premier mode de réalisation à la membrane d’étanchéité primaire 19 de la paroi de cofferdam arrière 8 à l’aide d’éléments de la pièce de liaison 26 à section en L ou en T. La pièce de liaison 26 comporte donc au niveau des trois bords raccordés à la membrane d’étanchéité primaire 19 de plafond des éléments de liaison pour lesquels la première aile 27 et la deuxième aile 28 sont formées dans un même plan.The illustrates in more detail and schematically the area of the opening of the storage installation 1 in the second embodiment. The design of the cover 12 in this embodiment is very similar to the first embodiment. However, the lower cover wall 23 is here in the same plane as the primary sealing membrane 19 of the ceiling wall 7 and is sealingly connected thereto on three of the edges of the lower cover wall 23, the fourth edge being connected as in the first embodiment to the primary waterproofing membrane 19 of the rear cofferdam wall 8 by means of elements of the connecting piece 26 with L or T section. connecting element 26 therefore comprises, at the level of the three edges connected to the primary roof waterproofing membrane 19, connecting elements for which the first wing 27 and the second wing 28 are formed in the same plane.
Les figures 5 à 12 illustrent plus spécifiquement l’anneau d’isolation thermique 42 et notamment l’une des structures thermiquement isolante de jonction 43 selon plusieurs variantes de réalisation.Figures 5 to 12 illustrate more specifically the thermal insulation ring 42 and in particular one of the thermally insulating junction structures 43 according to several variant embodiments.
La représente ainsi une première variante de réalisation d’une structure thermiquement isolante de jonction 43. Dans cette variante, une partie saillante 45 du panneau isolant primaire d’extrémité 44 fait saillie entre l’anneau de raccordement primaire 41 et l’anneau de raccordement secondaire 21 et à distance de l’anneau de raccordement primaire 41. De plus, la structure thermiquement isolante de jonction 43 présente une forme en escalier comportant une marche 46 de sorte à accueillir la partie saillante 45 du panneau isolant primaire d’extrémité 44 au niveau de ladite marche 46. La structure thermiquement isolante de jonction 43 présente ainsi une forme à section en L. La partie saillante 45 du panneau isolant primaire d’extrémité 44 est ainsi supportée par la structure thermiquement isolante de jonction 43. La structure thermiquement isolante de jonction 43 présente ainsi une portion entre l’anneau de raccordement primaire 41 et la partie saillante 45 qui vient directement supporter la membrane d’étanchéité primaire 19 et la pièce de liaison 26. De plus dans cette variante, la structure thermiquement isolante de jonction 43 est formée de manière monobloc. Chaque structure thermiquement isolante de jonction 43 monobloc est réalisé sous forme d’une boîte en contreplaqué 51 remplie de garniture isolante, telle que par exemple de la laine de verre ou de la perlite.The thus represents a first variant embodiment of a thermally insulating junction structure 43. In this variant, a protruding part 45 of the primary insulating end panel 44 protrudes between the primary connection ring 41 and the secondary connection ring 21 and at a distance from the primary connection ring 41. In addition, the thermally insulating junction structure 43 has a staircase shape comprising a step 46 so as to accommodate the projecting part 45 of the primary insulating end panel 44 at the level of said step 46. The thermally insulating junction structure 43 thus has a shape with an L-section. The projecting part 45 of the primary insulating end panel 44 is thus supported by the thermally insulating junction structure 43. The thermally insulating structure of junction 43 thus has a portion between the primary connection ring 41 and the projecting part 45 which directly supports the primary waterproofing membrane 19 and the connecting piece 26. In addition, in this variant, the thermally insulating junction structure 43 is formed integrally. Each thermally insulating one-piece junction structure 43 is produced in the form of a plywood box 51 filled with insulating lining, such as, for example, glass wool or perlite.
La représente une deuxième variante de réalisation d’une structure thermiquement isolante de jonction 43. Cette variante est similaire à la première variante et ne se distingue de celle-ci que par les matériaux utilisés pour la structure thermiquement isolante de jonction 43. En effet, dans cette variante, la structure thermiquement isolante de jonction 43 est réalisée par l’assemblage d’une couche de mousse isolante 50 entre deux plaques de contreplaqué 49. Les plaques de contreplaqué s’étendent parallèlement à la direction d’épaisseur de paroi. De plus, la couche de mousse isolante 50 est renforcée de fibres, les fibres étant orientées dans la direction d’épaisseur de paroi.The shows a second variant embodiment of a thermally insulating junction structure 43. This variant is similar to the first variant and differs from it only by the materials used for the thermally insulating junction structure 43. Indeed, in this variant, the thermally insulating junction structure 43 is produced by assembling a layer of insulating foam 50 between two plywood plates 49. The plywood plates extend parallel to the direction of wall thickness. In addition, the insulating foam layer 50 is reinforced with fibers, the fibers being oriented in the direction of wall thickness.
La représente une troisième variante de réalisation d’une structure thermiquement isolante de jonction 43. Cette variante est similaire à la première variante et ne se distingue de celle-ci par une structure non pas monobloc mais en deux parties. En effet, dans cette troisième variante, la structure thermiquement isolante de jonction 43 comporte un premier panneau isolant de jonction 47 et un deuxième panneau isolant de jonction 48 juxtaposé au premier panneau isolant 47, le premier panneau isolant de jonction 47 et le deuxième panneau isolant de jonction 48 s’étendant parallèlement à la direction d’épaisseur de paroi. Ainsi, la marche 46 est formée par un écart dimensionnel entre la dimension du premier panneau isolant de jonction 47 et la dimension du deuxième panneau isolant de jonction 48 dans la direction d’épaisseur de paroi. En effet, le deuxième panneau isolant de jonction 48 supporte ici la partie saillante 45 du panneau isolant primaire d’extrémité 44 tandis que le premier panneau isolant de jonction 47 supporte directement la membrane d’étanchéité primaire 19 et/ou la pièce de liaison 26.The shows a third variant embodiment of a thermally insulating junction structure 43. This variant is similar to the first variant and is not distinguished from the latter by a structure that is not one-piece but in two parts. Indeed, in this third variant, the thermally insulating junction structure 43 comprises a first insulating junction panel 47 and a second insulating junction panel 48 juxtaposed to the first insulating panel 47, the first insulating junction panel 47 and the second insulating panel junction 48 extending parallel to the direction of wall thickness. Thus, the step 46 is formed by a dimensional deviation between the dimension of the first insulating junction panel 47 and the dimension of the second insulating junction panel 48 in the direction of wall thickness. Indeed, the second insulating junction panel 48 here supports the projecting part 45 of the primary insulating end panel 44 while the first insulating junction panel 47 directly supports the primary waterproofing membrane 19 and / or the connecting piece 26 .
La représente une quatrième variante de réalisation d’une structure thermiquement isolante de jonction 43. Cette variante est similaire à la troisième variante et ne se distingue de celle-ci que par les matériaux utilisés pour les panneaux isolants de jonction 47, 48. En effet, dans cette variante, les panneaux isolants de jonction 47, 48 sont réalisés par l’assemblage d’une couche de mousse isolante 50 entre deux plaques de contreplaqué 49. Les plaques de contreplaqué s’étendent parallèlement à la direction d’épaisseur de paroi. De plus, la couche de mousse isolante 50 est renforcée de fibres, les fibres étant orientées dans la direction d’épaisseur de paroi.The shows a fourth variant embodiment of a thermally insulating junction structure 43. This variant is similar to the third variant and differs from it only by the materials used for the insulating junction panels 47, 48. Indeed, in this variant, the junction insulating panels 47, 48 are produced by assembling a layer of insulating foam 50 between two plywood plates 49. The plywood plates extend parallel to the direction of wall thickness. In addition, the insulating foam layer 50 is reinforced with fibers, the fibers being oriented in the direction of wall thickness.
La représente une cinquième variante de réalisation d’une structure thermiquement isolante de jonction 43. Cette variante est similaire à la première variante et se distingue de celle-ci par une partie saillante 45 plus prononcée et une absence de marche 46 pour la structure thermiquement isolante de jonction 43. En effet, contrairement à la première variante, et comme illustré en , la partie saillante 45 du panneau isolant primaire d’extrémité 44 fait saillie entre l’anneau de raccordement primaire 41 et l’anneau de raccordement secondaire 21 jusqu’à être directement adjacent de l’anneau de raccordement primaire 41. La structure thermiquement isolante de jonction 43 est ainsi de forme parallélépipédique rectangle et supporte la partie saillante 45 de sorte à supporter indirectement la membrane d’étanchéité primaire 19.The shows a fifth variant embodiment of a thermally insulating junction structure 43. This variant is similar to the first variant and is distinguished from it by a protruding part 45 more pronounced and an absence of step 46 for the thermally insulating structure of junction 43. Indeed, unlike the first variant, and as illustrated in , the projecting part 45 of the primary insulating end panel 44 protrudes between the primary connection ring 41 and the secondary connection ring 21 until it is directly adjacent to the primary connection ring 41. The thermally insulating structure junction 43 is thus of rectangular parallelepiped shape and supports the projecting part 45 so as to indirectly support the primary waterproofing membrane 19.
La représente une sixième variante de réalisation d’une structure thermiquement isolante de jonction 43. Cette variante est similaire à la cinquième variante et ne se distingue de celle-ci que par les matériaux utilisés pour les panneaux isolants de jonction 47, 48. En effet, dans la cinquième variante, chaque panneau isolant de jonction 47, 48 est réalisé à l’aide d’une boite en contreplaqué 51 alors que dans la sixième variante, les panneaux isolants de jonction 47, 48 sont réalisés par l’assemblage d’une couche de mousse isolante 50 entre deux plaques de contreplaqué 49. Les plaques de contreplaqué s’étendent parallèlement à la direction d’épaisseur de paroi. De plus, la couche de mousse isolante 50 est renforcée de fibres, les fibres étant orientées dans la direction d’épaisseur de paroi.The shows a sixth variant embodiment of a thermally insulating junction structure 43. This variant is similar to the fifth variant and differs from it only by the materials used for the insulating junction panels 47, 48. Indeed, in the fifth variant, each insulating junction panel 47, 48 is produced using a plywood box 51 while in the sixth variant, the insulating junction panels 47, 48 are produced by assembling a insulating foam layer 50 between two plywood sheets 49. The plywood sheets extend parallel to the wall thickness direction. In addition, the insulating foam layer 50 is reinforced with fibers, the fibers being oriented in the direction of wall thickness.
La représente une septième variante de réalisation d’une structure thermiquement isolante de jonction 43. Cette variante est similaire à la première variante et se distingue de celle-ci par une absence de partie saillante 45 et une absence de marche 46 pour la structure thermiquement isolante de jonction 43. En effet, contrairement à la première variante, et comme illustré en , le panneau isolant primaire d’extrémité 44 est situé à distance de l’anneau de raccordement primaire 41 et comporte une paroi alignée à l’anneau de raccordement secondaire 21 de sorte à ne pas faire sailli entre l’anneau de raccordement primaire 41 et l’anneau de raccordement secondaire 21. La structure thermiquement isolante de jonction 43 est ainsi de forme parallélépipédique rectangle et supporte directement la membrane d’étanchéité primaire 19 et la pièce de liaison 26.The shows a seventh variant embodiment of a thermally insulating junction structure 43. This variant is similar to the first variant and is distinguished from the latter by an absence of projecting part 45 and an absence of step 46 for the thermally insulating structure of junction 43. Indeed, unlike the first variant, and as illustrated in , the end primary insulating panel 44 is located at a distance from the primary connection ring 41 and has a wall aligned with the secondary connection ring 21 so as not to protrude between the primary connection ring 41 and the secondary connection ring 21. The thermally insulating junction structure 43 is thus of rectangular parallelepiped shape and directly supports the primary waterproofing membrane 19 and the connecting piece 26.
La représente une huitième variante de réalisation d’une structure thermiquement isolante de jonction 43. Cette variante est similaire à la septième variante et ne se distingue de celle-ci que par les matériaux utilisés pour la structure thermiquement isolante de jonction 43 monobloc. En effet, dans la septième variante, la structure thermiquement isolante de jonction 43 est réalisé à l’aide d’une boite en contreplaqué 51 alors que dans la huitième variante, la structure thermiquement isolante de jonction 43 sont réalisés par l’assemblage d’une couche de mousse isolante 50 entre deux plaques de contreplaqué 49. Les plaques de contreplaqué s’étendent parallèlement à la direction d’épaisseur de paroi. De plus, la couche de mousse isolante 50 est renforcée de fibres, les fibres étant orientées dans la direction d’épaisseur de paroi.The shows an eighth variant embodiment of a thermally insulating junction structure 43. This variant is similar to the seventh variant and differs from it only by the materials used for the thermally insulating junction structure 43 in one piece. Indeed, in the seventh variant, the thermally insulating junction structure 43 is produced using a plywood box 51 while in the eighth variant, the thermally insulating junction structure 43 are produced by the assembly of a layer of insulating foam 50 between two plywood sheets 49. The plywood sheets extend parallel to the direction of wall thickness. In addition, the insulating foam layer 50 is reinforced with fibers, the fibers being oriented in the direction of wall thickness.
Le gaz liquéfié destiné à être stocké dans la cuve 71 peut notamment être un gaz naturel liquéfié (GNL), c’est-à-dire un mélange gazeux comportant majoritairement du méthane ainsi qu’un ou plusieurs autres hydrocarbures. Le gaz liquéfié peut également être de l’éthane ou un gaz de pétrole liquéfié (GPL), c’est-à-dire un mélange d’hydrocarbures issu du raffinage du pétrole comportant essentiellement du propane et du butane.The liquefied gas intended to be stored in the tank 71 can in particular be a liquefied natural gas (LNG), that is to say a gas mixture mainly comprising methane as well as one or more other hydrocarbons. Liquefied gas can also be ethane or liquefied petroleum gas (LPG), that is to say a mixture of hydrocarbons obtained from the refining of petroleum comprising mainly propane and butane.
En référence à la , une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.With reference to the , a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship. The wall of the vessel 71 comprises a primary watertight barrier intended to be in contact with the LNG contained in the vessel, a secondary watertight barrier arranged between the primary watertight barrier and the double hull 72 of the vessel, and two insulating barriers arranged respectively between the vessel. primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double shell 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71. In a manner known per se, loading / unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
La représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement. The shows an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77. The loading and unloading station 75 is a fixed off-shore installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74. The movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73. The movable arm 74 can be swiveled and adapts to all sizes of LNG carriers. A connecting pipe (not shown) extends inside the tower 78. The loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77. The latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75. The underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the installation on land 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.To generate the pressure necessary for the transfer of the liquefied gas, pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with several particular embodiments, it is obvious that it is in no way limited thereto and that it comprises all the technical equivalents of the means described as well as their combinations if these come within the scope of the invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication. The use of the verb "to comprise", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or other steps than those set out in a claim.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.In the claims, any reference sign in parentheses cannot be interpreted as a limitation of the claim.

Claims (21)

  1. Installation de stockage (1) pour gaz liquéfié comprenant une structure porteuse (2, 3) et une cuve (71) étanche et thermiquement isolante agencée dans la structure porteuse (2, 3),
    la cuve (71) étanche et thermiquement isolante comportant une structure principale (6) formée par une pluralité de parois de cuve reliées les unes aux autres et fixées à la structure porteuse (2, 3), la structure principale (6) définissant un espace interne de stockage (9), la structure principale (6) comprenant, de la structure porteuse vers l’espace interne de stockage dans une direction d’épaisseur de paroi, une barrière thermiquement isolante secondaire (16) fixée à la structure porteuse (2, 3), une membrane d’étanchéité secondaire (17) supportée par la barrière thermiquement isolante secondaire (16), une barrière thermiquement isolante primaire (18) supportée par la membrane d’étanchéité secondaire (17) et comportant une pluralité de rangées de panneaux isolants primaires (39), et une membrane d’étanchéité primaire (19) supportée par la barrière thermiquement isolante primaire (18),
    la structure porteuse (2, 3) comportant une paroi porteuse supérieure (4, 5) sensiblement plane,
    la membrane d’étanchéité primaire (19) et la paroi porteuse supérieure (4, 5) étant interrompues de manière à délimiter une ouverture de chargement/déchargement (10) destinée à être traversée par des conduites de chargement/déchargement (11) en fluide,
    dans laquelle la cuve (71) comporte un couvercle (12) disposé dans l’ouverture de chargement/déchargement (10),
    la membrane d’étanchéité secondaire (17) et la barrière thermiquement isolante secondaire (16) étant interrompues au niveau d’une interruption (40) tout autour du couvercle,
    la membrane d’étanchéité secondaire (17) étant fixée au niveau de ladite interruption à la structure porteuse à l’aide d’un anneau de raccordement secondaire (21) s’étendant dans la direction d’épaisseur de paroi,
    dans laquelle le couvercle (12) comprend une paroi supérieure de couvercle (22), une paroi inférieure de couvercle (23) et une structure d’isolation thermique (24) située entre la paroi inférieure de couvercle (23) et la paroi supérieure de couvercle (22), la paroi supérieure de couvercle (22) étant fixée à la paroi porteuse supérieure (4, 5), et la paroi inférieure de couvercle (23) étant raccordée de manière étanche à la membrane d’étanchéité primaire (19) et étant fixée tout autour de celle-ci à la structure porteuse à l’aide d’un anneau de raccordement primaire (41),
    et dans laquelle la cuve comporte un anneau d’isolation thermique (42) comprenant une pluralité de structures thermiquement isolantes de jonction (43) juxtaposées les unes aux autres fixées à la structure porteuse, et formé entre l’anneau de raccordement primaire (41) et l’anneau de raccordement secondaire (21),
    les structures thermiquement isolantes de jonction (43) remplissant un espace, entre l’anneau de raccordement primaire (41) et l’anneau de raccordement secondaire (21), laissé libre par la barrière thermiquement isolante primaire (18) et étant agencés pour reprendre une charge exercé par la membrane d’étanchéité primaire (19) selon la direction d’épaisseur de paroi.
    Storage installation (1) for liquefied gas comprising a supporting structure (2, 3) and a sealed and thermally insulating tank (71) arranged in the supporting structure (2, 3),
    the sealed and thermally insulating tank (71) comprising a main structure (6) formed by a plurality of tank walls connected to each other and fixed to the supporting structure (2, 3), the main structure (6) defining a space internal storage (9), the main structure (6) comprising, from the supporting structure towards the internal storage space in a direction of wall thickness, a secondary thermally insulating barrier (16) fixed to the supporting structure (2) , 3), a secondary waterproofing membrane (17) supported by the secondary thermally insulating barrier (16), a primary thermally insulating barrier (18) supported by the secondary waterproofing membrane (17) and comprising a plurality of rows of primary insulating panels (39), and a primary waterproofing membrane (19) supported by the primary thermally insulating barrier (18),
    the supporting structure (2, 3) comprising a substantially planar upper supporting wall (4, 5),
    the primary waterproofing membrane (19) and the upper load-bearing wall (4, 5) being interrupted so as to delimit a loading / unloading opening (10) intended to be crossed by loading / unloading pipes (11) in fluid ,
    in which the tank (71) comprises a cover (12) arranged in the loading / unloading opening (10),
    the secondary waterproofing membrane (17) and the secondary thermally insulating barrier (16) being interrupted at an interruption (40) all around the cover,
    the secondary waterproofing membrane (17) being fixed at said interruption to the supporting structure by means of a secondary connection ring (21) extending in the direction of wall thickness,
    wherein the cover (12) comprises an upper cover wall (22), a lower cover wall (23), and a thermal insulation structure (24) located between the lower cover wall (23) and the upper wall of the cover (23). cover (22), the upper cover wall (22) being fixed to the upper load-bearing wall (4, 5), and the lower cover wall (23) being sealingly connected to the primary waterproofing membrane (19) and being fixed all around the latter to the supporting structure by means of a primary connection ring (41),
    and wherein the vessel comprises a heat insulating ring (42) comprising a plurality of thermally insulating junction structures (43) juxtaposed to each other fixed to the supporting structure, and formed between the primary connection ring (41) and the secondary connection ring (21),
    the thermally insulating junction structures (43) filling a space, between the primary connection ring (41) and the secondary connection ring (21), left free by the primary thermally insulating barrier (18) and being arranged to resume a load exerted by the primary waterproofing membrane (19) in the direction of wall thickness.
  2. Installation de stockage selon la revendication 1, dans laquelle la paroi inférieure de couvercle (23) est raccordée de manière étanche à la membrane d’étanchéité primaire (19) à l’aide d’une pièce de liaison (26) comportant une première aile (27) fixée à la membrane d’étanchéité primaire (19) de la structure principale (6) et une deuxième aile (28) reliée à la première aile (27) et fixée à la paroi inférieure de couvercle (23).Storage installation according to Claim 1, in which the lower cover wall (23) is sealingly connected to the primary waterproofing membrane (19) by means of a connecting piece (26) comprising a first wing (27) attached to the primary waterproofing membrane (19) of the main structure (6) and a second wing (28) connected to the first wing (27) and attached to the bottom cover wall (23).
  3. Installation de stockage selon la revendication 1 ou la revendication 2, dans laquelle la paroi supérieure de couvercle (22) est placée dans le plan de la paroi porteuse supérieure (4, 5).Storage installation according to claim 1 or claim 2, wherein the top cover wall (22) is placed in the plane of the top load-bearing wall (4, 5).
  4. Installation de stockage selon l’une des revendications 1 à 3, dans laquelle l’anneau de raccordement secondaire (21) et l’anneau de raccordement primaire (41) s’étendent dans la direction d’épaisseur de paroi.Storage facility according to one of claims 1 to 3, wherein the secondary connection ring (21) and the primary connection ring (41) extend in the direction of wall thickness.
  5. Installation de stockage selon l’une des revendications 1 à 4, dans laquelle la barrière thermiquement isolante primaire (18) comporte des panneaux isolants primaires d’extrémité (44) formant une rangée adjacente à l’anneau d’isolation thermique (42), les panneaux isolants primaires d’extrémité (44) étant alignés avec l’anneau de raccordement secondaire (21) dans la direction d’épaisseur de paroi et les panneaux isolants primaires (39) des autres rangées étant alignés avec des panneaux isolants secondaires de la barrière thermiquement isolante secondaire (16) dans la direction d’épaisseur de paroi, la moyenne du coefficient de dilatation thermique d’un panneau isolant primaire d’extrémité (44) et de l’anneau de raccordement secondaire (21) étant inférieure à la moyenne du coefficient de dilatation thermique d’un panneau isolant primaire (39) et d’un panneau isolant secondaire.Storage installation according to one of claims 1 to 4, in which the primary thermally insulating barrier (18) comprises end primary insulating panels (44) forming a row adjacent to the heat insulating ring (42), the end primary insulation boards (44) being aligned with the secondary connection ring (21) in the direction of wall thickness and the primary insulation boards (39) of the other rows being aligned with the secondary insulation boards of the secondary thermal insulating barrier (16) in the direction of wall thickness, the average coefficient of thermal expansion of an end primary insulating panel (44) and secondary connection ring (21) being less than the average of the coefficient of thermal expansion of a primary insulating panel (39) and a secondary insulating panel.
  6. Installation de stockage selon la revendication 5, dans laquelle les panneaux isolants primaires d’extrémité (44) comportent un coefficient de dilatation thermique dans la direction d’épaisseur de paroi compris entre 60.10-6 et 71.10-6 K-1, et les panneaux isolants primaires (39) comportent un coefficient de dilatation thermique dans la direction d’épaisseur de paroi compris entre 60.10-6 et 71.10-6 K-1.A storage facility according to claim 5, wherein the primary end insulating panels (44) have a coefficient of thermal expansion in the wall thickness direction of between 60.10 -6 and 71.10 -6 K -1 , and the panels Primary insulators (39) have a coefficient of thermal expansion in the direction of wall thickness between 60.10 -6 and 71.10 -6 K -1 .
  7. Installation de stockage selon la revendication 5 ou la revendication 6, dans laquelle la structure thermiquement isolante de jonction (43) supporte directement la membrane d’étanchéité primaire (19) ou par l’intermédiaire du panneau isolant primaire d’extrémité (44).A storage facility according to claim 5 or claim 6, wherein the thermally insulating junction structure (43) directly supports the primary waterproofing membrane (19) or through the primary insulating end panel (44).
  8. Installation de stockage selon l’une des revendications 5 à 7, dans laquelle une partie saillante (45) du panneau isolant primaire d’extrémité (44) fait saillie entre l’anneau de raccordement primaire (41) et l’anneau de raccordement secondaire (21) et à distance de l’anneau de raccordement primaire (41), la partie saillante (45) du panneau isolant primaire d’extrémité étant supporté par la structure thermiquement isolante de jonction (43).Storage installation according to one of claims 5 to 7, in which a protruding part (45) of the primary insulating end panel (44) protrudes between the primary connection ring (41) and the secondary connection ring (21) and away from the primary connection ring (41), the protrusion (45) of the primary insulating end panel being supported by the thermally insulating junction structure (43).
  9. Installation de stockage selon la revendication 8, dans laquelle la structure thermiquement isolante de jonction (43) présente une forme en escalier comportant une marche (46), la marche (46) étant configurée pour accueillir la partie saillante (45) du panneau isolant primaire d’extrémité.Storage installation according to Claim 8, in which the thermally insulating junction structure (43) has a staircase shape comprising a step (46), the step (46) being configured to receive the protruding part (45) of the primary insulating panel. end.
  10. Installation de stockage selon l’une des revendications 1 à 9, dans laquelle l’anneau de raccordement primaire (41) et la paroi inférieure de couvercle (23) sont réalisées dans un alliage de fer et de nickel présentant un coefficient de dilatation thermique compris entre 0,5.10-6 et 2.10-6 K-1.Storage installation according to one of claims 1 to 9, in which the primary connection ring (41) and the lower cover wall (23) are made of an iron and nickel alloy having a coefficient of thermal expansion included between 0.5.10 -6 and 2.10 -6 K -1 .
  11. Installation de stockage selon l’une des revendications 1 à 10, dans laquelle la structure thermiquement isolante de jonction (43) est réalisée de façon monobloc.Storage installation according to one of claims 1 to 10, in which the thermally insulating junction structure (43) is made in one piece.
  12. Installation de stockage selon l’une des revendications 1 à 10, dans laquelle la structure thermiquement isolante de jonction (43) comporte un premier panneau isolant de jonction (47) et un deuxième panneau isolant de jonction (48) juxtaposé au premier panneau isolant, le premier panneau isolant de jonction et le deuxième panneau isolant de jonction s’étendant dans la direction d’épaisseur de paroi.Storage installation according to one of claims 1 to 10, in which the thermally insulating junction structure (43) comprises a first insulating junction panel (47) and a second insulating junction panel (48) juxtaposed to the first insulating panel, the first junction insulation panel and the second junction insulation panel extending in the direction of wall thickness.
  13. Installation de stockage selon la revendication 11 ou la revendication 12, dans laquelle la structure thermiquement isolante de jonction (43) monobloc ou les premier et deuxième panneaux isolant de jonction (47, 48) sont réalisés par l’assemblage d’une couche de mousse isolante (50) entre deux plaques de contreplaqué (49), les plaques de contreplaqué s’étendant parallèlement à la direction d’épaisseur de paroi.Storage installation according to claim 11 or claim 12, in which the thermally insulating junction structure (43) or the first and second insulating junction panels (47, 48) are produced by assembling a layer of foam insulation (50) between two plywood sheets (49), the plywood sheets extending parallel to the wall thickness direction.
  14. Installation de stockage selon la revendication 13, dans laquelle la couche de mousse isolante (50) est renforcée de fibres, les fibres étant orientées dans la direction d’épaisseur de paroi.A storage facility according to claim 13, wherein the insulating foam layer (50) is reinforced with fibers, the fibers being oriented in the direction of wall thickness.
  15. Installation de stockage selon la revendication 11 ou la revendication 12, dans laquelle la structure thermiquement isolante de jonction (43) monobloc ou les premier et deuxième panneaux isolant de jonction (47, 48) sont réalisés sous forme d’une boîte en contreplaqué (51) remplie de garniture isolante.A storage facility according to claim 11 or claim 12, wherein the one-piece thermally insulating junction structure (43) or the first and second insulating junction panels (47, 48) are made in the form of a plywood box (51 ) filled with insulating pad.
  16. Installation de stockage (1) selon l’une des revendications 1 à 15, dans laquelle la paroi porteuse supérieure est une paroi porteuse supérieure interne (4), la structure porteuse comportant une structure porteuse interne (2) comprenant la paroi porteuse supérieure interne (4) sensiblement plane et une structure porteuse externe (3) comprenant une paroi porteuse supérieure externe (5) sensiblement plane disposée au-dessus de la paroi porteuse supérieure interne (4), la structure principale (6) de la cuve (71) étant agencée dans la structure porteuse interne (2).Storage installation (1) according to one of claims 1 to 15, in which the upper supporting wall is an internal upper supporting wall (4), the supporting structure comprising an internal supporting structure (2) comprising the internal upper supporting wall ( 4) substantially planar and an outer bearing structure (3) comprising a substantially planar outer upper bearing wall (5) disposed above the inner upper bearing wall (4), the main structure (6) of the vessel (71) being arranged in the internal supporting structure (2).
  17. Installation de stockage (1) selon l’une des revendications 1 à 15, dans laquelle la paroi porteuse supérieure est une paroi porteuse supérieure externe (5), la structure porteuse comportant une structure porteuse interne (2) comprenant une paroi porteuse supérieure interne (4) sensiblement plane et une structure porteuse externe (3) comprenant la paroi porteuse supérieure externe (5) sensiblement plane disposée au-dessus de la paroi porteuse supérieure interne (4), la structure principale (6) de la cuve (71) étant agencée dans la structure porteuse interne (2).Storage installation (1) according to one of claims 1 to 15, in which the upper supporting wall is an upper external supporting wall (5), the supporting structure comprising an internal supporting structure (2) comprising an internal upper supporting wall ( 4) substantially planar and an outer bearing structure (3) comprising the outer upper bearing wall (5) substantially planar disposed above the upper inner bearing wall (4), the main structure (6) of the vessel (71) being arranged in the internal supporting structure (2).
  18. Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une installation de stockage (1) selon l’une des revendications 1 à 17 disposée dans la double coque.Ship (70) for the transport of a cold liquid product, the ship comprising a double hull (72) and a storage facility (1) according to one of claims 1 to 17 arranged in the double hull.
  19. Navire (70) selon la revendication 18, dans lequel le navire (70) comporte une installation de stockage (1) selon la revendication 16 ou la revendication 17, un pont interne (4) et un pont externe (5), la paroi porteuse supérieure interne (4) de la structure porteuse étant formée par le pont interne (4) et la paroi porteuse supérieure externe (5) étant formée par le pont externe (5).A vessel (70) according to claim 18, wherein the vessel (70) comprises a storage facility (1) according to claim 16 or claim 17, an inner deck (4) and an outer deck (5), the load-bearing wall upper inner (4) of the supporting structure being formed by the inner bridge (4) and the upper outer bearing wall (5) being formed by the outer bridge (5).
  20. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 18 ou la revendication 19, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation externe de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation externe de stockage flottante ou terrestre vers ou depuis la cuve du navire.A transfer system for a cold liquid product, the system comprising a vessel (70) according to claim 18 or claim 19, insulated pipes (73, 79, 76, 81) arranged so as to connect the vessel (71) installed in the hull of the ship to an external floating or onshore storage facility (77) and a pump for driving a flow of cold liquid product through insulated pipelines from or to the external floating or onshore storage facility to or from the vessel of the vessel. ship.
  21. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 18 ou la revendication 19, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation externe de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71).A method of loading or unloading a ship (70) according to claim 18 or claim 19, in which a cold liquid product is conveyed through insulated pipes (73, 79, 76, 81) from or to an external installation of floating or terrestrial storage (77) to or from the vessel of the vessel (71).
PCT/EP2021/062283 2020-05-20 2021-05-10 Storage facility for liquefied gas WO2021233712A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227044174A KR20230012570A (en) 2020-05-20 2021-05-10 Liquefied gas storage facility
CN202180036285.2A CN115667783A (en) 2020-05-20 2021-05-10 Storage facility for liquefied gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2005277 2020-05-20
FR2005277A FR3110669A1 (en) 2020-05-20 2020-05-20 Storage facility for liquefied gas

Publications (1)

Publication Number Publication Date
WO2021233712A1 true WO2021233712A1 (en) 2021-11-25

Family

ID=72560716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/062283 WO2021233712A1 (en) 2020-05-20 2021-05-10 Storage facility for liquefied gas

Country Status (4)

Country Link
KR (1) KR20230012570A (en)
CN (1) CN115667783A (en)
FR (1) FR3110669A1 (en)
WO (1) WO2021233712A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130931B1 (en) * 2021-12-17 2023-12-22 Gaztransport Et Technigaz Liquefied gas storage installation comprising a tank and a dome structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691520A1 (en) 1992-05-20 1993-11-26 Technigaz Ste Nle Prefabricated structure for forming watertight and thermally insulating walls for containment of a fluid at very low temperature.
FR2861060A1 (en) 2003-10-16 2005-04-22 Gaz Transport & Technigaz Sealed wall structure for internal lining of sealed and thermally insulating tank, has reinforcing convex ridge protruding on side of internal face or external face and made locally on at least one lateral face of corrugation
FR2991430A1 (en) 2012-05-31 2013-12-06 Gaztransp Et Technigaz Method for sealing secondary sealing barrier of fluidtight and thermally insulated tank of methane tanker ship utilized to transport liquefied natural gas, involves injecting polymerizable fluid until area of interior surface of stopper
EP2792590A1 (en) * 2011-12-16 2014-10-22 Samsung Heavy Ind. Co., Ltd. Structure for mounting pump tower of lng storage tank and manufacturing method thereof
WO2020002812A1 (en) * 2018-06-25 2020-01-02 Gaztransport Et Technigaz Method for assembling a liquid dome
KR102082501B1 (en) * 2018-08-29 2020-02-28 현대중공업 주식회사 Liquid cargo storage tank and marine structure including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691520A1 (en) 1992-05-20 1993-11-26 Technigaz Ste Nle Prefabricated structure for forming watertight and thermally insulating walls for containment of a fluid at very low temperature.
FR2861060A1 (en) 2003-10-16 2005-04-22 Gaz Transport & Technigaz Sealed wall structure for internal lining of sealed and thermally insulating tank, has reinforcing convex ridge protruding on side of internal face or external face and made locally on at least one lateral face of corrugation
EP2792590A1 (en) * 2011-12-16 2014-10-22 Samsung Heavy Ind. Co., Ltd. Structure for mounting pump tower of lng storage tank and manufacturing method thereof
FR2991430A1 (en) 2012-05-31 2013-12-06 Gaztransp Et Technigaz Method for sealing secondary sealing barrier of fluidtight and thermally insulated tank of methane tanker ship utilized to transport liquefied natural gas, involves injecting polymerizable fluid until area of interior surface of stopper
WO2020002812A1 (en) * 2018-06-25 2020-01-02 Gaztransport Et Technigaz Method for assembling a liquid dome
KR102082501B1 (en) * 2018-08-29 2020-02-28 현대중공업 주식회사 Liquid cargo storage tank and marine structure including the same

Also Published As

Publication number Publication date
FR3110669A1 (en) 2021-11-26
CN115667783A (en) 2023-01-31
KR20230012570A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
EP3473915B1 (en) Sealed and thermally insulating vessel
FR2973098A1 (en) Fluid-tight tank for conveying liquefied natural gas (LNG), has secondary insulation barrier whose heat insulation element is maintained with respect to resistance structure
WO2019155154A1 (en) Facility for storing and transporting a liquefied gas
WO2020193665A1 (en) Thermally insulating sealed tank
WO2021140218A1 (en) Storage facility for liquefied gas
FR3078136A1 (en) WATERPROOF TANK COMPRISING A SEALING MEMBRANE COMPRISING A REINFORCED ZONE
WO2019239071A1 (en) Sealed and thermally insulating vessel having continuous corrugations in the liquid dome
WO2021233712A1 (en) Storage facility for liquefied gas
FR3080905A1 (en) SEALED TANK WALL COMPRISING A SEALING MEMBRANE
FR3061260A1 (en) SEALED AND THERMALLY INSULATING TANK FOR STORAGE OF A FLUID
EP4269863A1 (en) Vessel wall having a through-duct
WO2021228751A1 (en) Liquid dome of a storage tank for liquefied gas comprising an opening provided with an additional hatch
FR3111411A1 (en) Liquid dome of a storage tank for liquefied gas
EP3827195A1 (en) Sealed and thermally insulating tank
WO2019239053A1 (en) Fluid-tight vessel provided with an undulating joint element
WO2023036769A1 (en) Storage facility for liquefied gas
WO2023025501A1 (en) Storage facility for liquefied gas
FR3078135A1 (en) STORAGE AND TRANSPORTATION INSTALLATION OF A CRYOGENIC FLUID EMBEDDED ON A SHIP
WO2023001678A1 (en) Storage installation for liquefied gas
FR3069043A1 (en) SEALED AND THERMALLY INSULATING TANK WITH CURVED SUPPORT BAND
WO2022069751A1 (en) Assembly method and storage tank facility for liquefied gas
WO2022106692A1 (en) Liquid dome of a storage tank for liquefied gas
FR3118796A1 (en) Storage facility for liquefied gas
WO2021074413A1 (en) Connection beam for a fluid-tight and thermally insulating vessel for storing liquified gas
WO2021233986A1 (en) Liquid dome of a storage tank for liquefied gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21725469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227044174

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022129309

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21725469

Country of ref document: EP

Kind code of ref document: A1