WO2020192657A1 - 一种上行通信方法及通信装置 - Google Patents

一种上行通信方法及通信装置 Download PDF

Info

Publication number
WO2020192657A1
WO2020192657A1 PCT/CN2020/080916 CN2020080916W WO2020192657A1 WO 2020192657 A1 WO2020192657 A1 WO 2020192657A1 CN 2020080916 W CN2020080916 W CN 2020080916W WO 2020192657 A1 WO2020192657 A1 WO 2020192657A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
terminal device
transmission delay
uplink transmission
network device
Prior art date
Application number
PCT/CN2020/080916
Other languages
English (en)
French (fr)
Inventor
陈拓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020192657A1 publication Critical patent/WO2020192657A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • H04L1/0018Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement based on latency requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to an uplink communication method and communication device.
  • the 5G (5th generation) communication system supports uplink and downlink decoupling technology, which allows terminal devices to access the decoupled cell for uplink transmission when accessing the serving cell.
  • the 5G communication standard currently only supports terminal equipment to maintain one TA (that is, terminal equipment and service), that is, when terminal equipment sends uplink signals on the serving cell and decoupled cell, it can only use the TA of the serving cell to adjust the uplink transmission timing.
  • TA that is, terminal equipment and service
  • the terminal accesses the serving cell A and decoupled cell B, if the channel conditions between cell A, cell B and the terminal equipment are different, the terminal only uses the TA of the serving cell, which may cause the uplink signal sent by the terminal equipment to the decoupled cell to occur Time offset affects uplink transmission performance.
  • the embodiments of the present application provide an uplink communication method and a communication device, which prevent the occurrence of time deviation of the uplink signal sent by the terminal equipment to the decoupled cell, and ensure the performance of uplink transmission.
  • an uplink communication method including: a serving cell determines a first uplink timing advance between a terminal device and a first network device; the first network device provides service for the serving cell where the terminal device is located; or, The first network device provides services for the decoupled cell where the terminal device is located. Further, the serving cell may also send the first uplink timing advance to the terminal device, instructing the terminal device to adjust the transmission timing of the uplink signal according to the first uplink timing advance.
  • the serving cell can flexibly switch the uplink timing advance of the terminal equipment.
  • the serving cell calculates the uplink timing advance of the serving cell, and sends the uplink timing advance of the serving cell to the terminal device, so that the serving cell can receive the uplink signal sent by the terminal device without deviation .
  • the serving cell calculates the uplink timing advance of the decoupled cell and sends the uplink timing advance of the decoupled cell to the terminal device, so that the decoupled cell can receive the terminal device without deviation
  • the transmitted uplink signal avoids the time deviation of the uplink signal sent by the terminal equipment to the decoupled cell, and ensures the performance of uplink transmission.
  • the serving cell always calculates and maintains the uplink timing advance of the terminal device, and the terminal device only takes effect on one uplink timing advance, which does not violate the single TA regulations in the existing standards. Based on the existing protocol, the method provided by the embodiment of the present invention can reduce the influence of the signal time skew between cells on the signal transmission performance as much as possible.
  • determining the first uplink timing advance between the terminal device and the first network device specifically includes: obtaining the relationship between the first network device and the terminal device Calculate the first uplink timing advance according to the uplink transmission delay between the terminal device and the first network device.
  • the serving cell can calculate the first uplink timing advance according to the uplink transmission delay corresponding to the first network device, and then the terminal device adjusts the uplink transmission timing according to the first uplink timing advance, so that the first network device can be lossless Receive the uplink signal sent by the terminal equipment.
  • acquiring the uplink transmission delay between the first network device and the terminal device includes: receiving the first network device The transmitted uplink transmission delay; or, the uplink signal sent by the terminal equipment is measured to obtain the uplink transmission delay.
  • the serving cell can receive the uplink transmission delay sent by the first network device; if the first network device is a network device in the serving cell, the serving cell can measure The uplink transmission information sent by the terminal device determines the uplink transmission delay of the first network device.
  • the method further includes: determining the frequency point at which the terminal device sends the uplink signal as the frequency point of the first network device.
  • the serving cell can determine the frequency point on which the terminal device will transmit the uplink signal according to the uplink service requirements of the terminal device, and then determine whether the first network device is the network device of the serving cell or decoupled according to the determined frequency point.
  • the network equipment of the cell can flexibly switch the uplink timing advance of the terminal equipment according to the business requirements of the terminal equipment, so that the uplink signal of the terminal equipment can be received by the serving cell or the decoupled cell losslessly, ensuring the transmission performance of the communication system.
  • the method for providing services in a coupled cell further includes: the serving cell receives the uplink signal sent by the terminal device; the timing advance of the uplink signal sent by the terminal device is the first uplink timing advance; according to the first uplink transmission delay and the second uplink transmission delay The difference value of the received uplink signal is compensated; wherein, the first uplink transmission delay is the uplink transmission delay between the terminal equipment and the serving cell, and the second uplink transmission delay is between the terminal equipment and the decoupled cell The uplink transmission delay.
  • the terminal device can adjust the uplink transmission timing according to the uplink timing advance of the decoupled cell, and the decoupled cell can receive the terminal device losslessly
  • the serving cell can compensate for the received uplink signal to minimize the loss of transmission performance.
  • the received uplink signal is paired according to the difference between the first uplink transmission delay and the second uplink transmission delay
  • Perform compensation processing including:
  • a communication device including:
  • the processing unit is used to determine the first uplink timing advance between the terminal device and the first network device; the first network device provides services for the serving cell where the terminal device is located; or, the first network device is decoupled from where the terminal device is located The cell provides services; the communication unit is configured to send the first uplink timing advance to the terminal device, and instruct the terminal device to adjust the transmission timing of the uplink signal according to the first uplink timing advance.
  • the processing unit is specifically configured to obtain the uplink transmission delay between the first network device and the terminal device; according to the difference between the terminal device and the first network device Calculate the first uplink timing advance between the uplink transmission time delay.
  • the communication unit is further configured to receive the uplink transmission delay sent by the first network device; or, the processing unit further Used to measure the uplink signal sent by the terminal equipment to obtain the uplink transmission delay.
  • the processing unit determines the first uplink between the terminal device and the first network device Before the timing advance, it is determined that the frequency point at which the terminal device sends the uplink signal is the frequency point of the first network device.
  • the communication unit is also used to receive the uplink signal sent by the terminal device; the timing advance of the uplink signal sent by the terminal device is the first uplink timing advance; the processing unit is also used to, according to the first uplink transmission delay and The difference in the second uplink transmission delay is used to compensate for the received uplink signal; where the first uplink transmission delay is the uplink transmission delay between the terminal device and the serving cell, and the second uplink transmission delay is the terminal device Uplink transmission delay between and decoupled cells.
  • a communication device including at least one processor and a memory, at least one processor is coupled to the memory, and at least one processor is configured to implement the uplink described in the first aspect and any one of the first aspects. Communication method.
  • a computer-readable storage medium including: instructions stored in the computer-readable storage medium; when the computer-readable storage medium is in the communication described in the second aspect and any one of the second aspects When the device is running, the communication device is caused to execute the uplink communication method as described in the first aspect and any one of the implementation manners of the first aspect.
  • a wireless communication device including: instructions stored in the wireless communication device; when the wireless communication device runs on the communication device described in any one of the foregoing second aspect and the second aspect, such that The communication device executes the uplink communication method according to the foregoing first aspect and any one of the implementation manners of the first aspect, and the wireless communication device is a chip.
  • FIG. 1 is an architecture diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of signal reception provided by an embodiment of the application
  • FIG. 3 is a structural block diagram of a communication device provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of an uplink communication method provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of another flow of an uplink communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of signal reception provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another flow of an uplink communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a signal receiving method provided by an embodiment of the application.
  • FIG. 9 is a schematic flowchart of a receiving time adjustment method according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of signal reception according to an embodiment of the application.
  • FIG. 11 is another structural block diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is another structural block diagram of a communication device provided by an embodiment of the application.
  • FIG. 1 shows a schematic diagram of a communication system to which the technical solution provided by this application is applicable.
  • the communication system may include multiple network devices 100, network devices 200, and one or more terminal devices 300.
  • FIG. 1 is only a schematic diagram, and does not constitute a limitation on the application scenarios of the technical solutions provided in this application.
  • the network device 100 may be a transmission reception point (TRP), a base station, a relay station, or an access point.
  • the network device 100 may be a network device in a 5G communication system or a network device in a future evolution network; it may also be a wearable device or a vehicle-mounted device.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • BTS base transceiver station
  • the NB (NodeB) in wideband code division multiple access (WCDMA) may also be the eNB or eNodeB (evolutional NodeB) in long term evolution (LTE).
  • the network device 100 may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario. This application will take a base station as an example below for description.
  • the terminal equipment 300 may be user equipment (UE), access terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication device, UE Agent or UE device, etc.
  • the access terminal equipment can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless Communication function handheld devices, computing devices, or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks, or future evolution public land mobile network (PLMN) networks Terminal equipment, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the coverage cell of the network device 100 is the serving cell A of the terminal device 300
  • the coverage cell of the network device 200 is the decoupling cell B of the terminal device 300.
  • the communication system shown in Figure 1 supports the uplink decoupling technology, that is, after the terminal device 300 accesses the serving cell A, it can communicate with the core network at the frequency of the network device 100. For example, the network device 100 sends a control signal to the terminal device 300. Command, handover between cells, downlink data transmission, etc.
  • the terminal device 300 is allowed to access the decoupled cell B at the same time, but only the decoupled cell B is allowed to receive the uplink signal sent by the terminal device 300, that is, the terminal device can only send uplink signals at the frequency of the network device 200, and cannot communicate with the core The network side communicates.
  • the TA of the cell adjusts the uplink transmission timing.
  • the terminal device 300 accesses the serving cell A, and the network device 100 calculates TA1 according to the uplink transmission delay T1 between the terminal device 300 and the network device 100.
  • the network device 100 may also send TA1 to the terminal device, and the terminal device 300 may adjust the uplink transmission timing according to TA1.
  • the terminal device 300 accesses the decoupling cell B the terminal device 300 also adjusts the uplink transmission timing according to TA1.
  • the signal of the network device 100 is called a serving cell signal, and the signal of the network device 200 decouples the cell signal.
  • the terminal device 300 adjusts the uplink transmission timing according to TA1 and then sends the uplink signal.
  • Both the network device 100 and the network device 200 can receive the uplink signal sent by the terminal device 300.
  • the network device 100 can receive the uplink signal sent by the terminal device 300 without deviation. Since the uplink transmission delay between the network device 200 and the terminal device 300 is T2 ⁇ T1, the time when the uplink signal sent by the terminal device 300 reaches the network device 200 is earlier than the time when the uplink signal sent by the terminal device 300 reaches the network device 100.
  • the terminal device 300 adjusts the uplink transmission timing with TA1, when the network device 200 receives the uplink signal sent by the terminal device 300, the signal of the period (T1-T2) is lost. In other words, the uplink signal received by the network device 200 is time-shifted, which affects the performance of the uplink transmission and causes performance loss.
  • the uplink transmission delay is the time interval between the time when the terminal device sends the uplink signal to the time when the network device receives the uplink signal.
  • the terminal device may adjust the uplink transmission timing according to the TA, determine the starting time of the uplink transmission, and start sending the uplink signal at the starting time.
  • the smaller the uplink transmission delay between the terminal device and the network device the smaller the TA determined according to the uplink transmission delay.
  • the greater the uplink transmission delay between the terminal device and the network device the larger the TA determined according to the uplink transmission delay.
  • TA is a key factor affecting the reception quality of uplink signals. For example, referring to FIG.
  • the terminal device 300 determines that the start time of uplink transmission is time A according to TA1, and the network device 100 starts to receive the uplink signal at time A. Similarly, the network device 200 also starts to receive the uplink signal at time A. Since the uplink transmission delay T2 ⁇ T1 between the network device 200 and the terminal device 300, the uplink signal sent by the terminal device 300 arrives at the network device 200 earlier than the uplink signal reaches the network device
  • the prior art only supports terminal equipment using the TA of the serving cell.
  • the uplink signal sent by the terminal device to the decoupled cell may be time-shifted, affecting Uplink transmission performance.
  • the receiving time of decoupled cell B can be advanced by
  • this reception timing adjustment is at the cell level. If there are multiple decoupled terminal devices in a decoupled cell, some terminal devices may still suffer performance loss due to different uplink transmission delays corresponding to these terminal devices.
  • the embodiment of the present invention provides an uplink communication method, in which a serving cell determines a first uplink timing advance between a terminal device and a first network device.
  • the first network device provides services for the serving cell where the terminal device is located, or the first network device provides services for the decoupled cell where the terminal device is located.
  • the serving cell sends the first uplink timing advance to the terminal device, instructing the terminal device to adjust the transmission timing of the uplink signal according to the first uplink timing advance. It can be seen that in the method provided in the embodiment of the present invention, the serving cell can flexibly switch the uplink timing advance of the terminal device.
  • the serving cell calculates the uplink timing advance of the serving cell, and sends the uplink timing advance of the serving cell to the terminal device, so that the serving cell can receive the uplink signal sent by the terminal device without deviation .
  • the serving cell calculates the uplink timing advance of the decoupled cell and sends the uplink timing advance of the decoupled cell to the terminal device, so that the decoupled cell can receive the terminal device without deviation
  • the transmitted uplink signal avoids the time deviation of the uplink signal sent by the terminal equipment to the decoupled cell, and ensures the performance of uplink transmission.
  • the serving cell always calculates and maintains the uplink timing advance of the terminal device, and the terminal device only takes effect on one uplink timing advance, which does not violate the single TA regulations in the existing standards.
  • the method provided by the embodiment of the present invention can reduce the influence of the signal time skew between cells on the signal transmission performance as much as possible.
  • the communication method provided in the embodiments of the present invention may be applied to the communication device shown in FIG. 3, and the communication device may be a network device of a serving cell of a terminal device, such as a base station of a serving cell. As shown in FIG. 3, the communication device may include at least one processor 301, a memory 302, a transceiver 303, and a communication bus 304.
  • the processor 301 is the control center of the communication device, and may be a processor or a collective name for multiple processing elements.
  • the processor 301 is a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • microprocessors digital signal processor, DSP
  • field programmable gate arrays Field Programmable Gate Array, FPGA
  • the processor 301 can execute various functions of the communication device by running or executing a software program stored in the memory 302 and calling data stored in the memory 302.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 3.
  • the communication device may include multiple processors, such as the processor 301 and the processor 305 shown in FIG. 3. Each of these processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more communication devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 302 may be read-only memory (ROM) or other types of static storage communication devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions.
  • the type of dynamic storage communication device can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disk storage, Optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage media or other magnetic storage communication devices, or can be used to carry or store desired program codes in the form of instructions or data structures. Any other medium that can be accessed by the computer, but not limited to this.
  • the memory 302 may exist independently and is connected to the processor 301 through the communication bus 304.
  • the memory 302 may also be integrated with the processor 301.
  • the memory 302 is used to store a software program for executing the solution of the present invention, and the processor 301 controls the execution.
  • the transceiver 303 is used for communication with the second device.
  • the transceiver 303 can also be used to communicate with communication networks, such as Ethernet, radio access network (RAN), and wireless local area networks (WLAN).
  • the transceiver 303 may include a receiving unit to implement a receiving function, and a sending unit to implement a sending function.
  • the communication bus 304 may be an Industry Standard Architecture (ISA) bus, an external communication device interconnection (Peripheral Component, PCI) bus, or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used in FIG. 3 to represent, but it does not mean that there is only one bus or one type of bus.
  • the structure of the communication device shown in FIG. 3 does not constitute a limitation on the communication device, and may include more or fewer components than shown in the figure, or a combination of certain components, or a different component arrangement.
  • the embodiment of the present invention provides an uplink communication method. As shown in FIG. 4, the method includes the following steps:
  • the first network device may be a network device of a serving cell.
  • the first network device provides services for the serving cell where the terminal device is located, the first network device is used for communication between the terminal device and the core network side, and the terminal device is accessing
  • the first network device communicates with the core network side;
  • the first network device may also be a network device of a decoupled cell, for example, the first network device provides services for the decoupled cell where the terminal device is located, and the first network device It can only receive uplink signals sent by terminal equipment.
  • the terminal device is the terminal device 300 in the communication system shown in FIG. 1
  • the first network device may be the network device 100 in the communication system shown in FIG. 1
  • the first network device may also be the communication system shown in FIG. Network equipment 200 in the system.
  • the serving cell can obtain the uplink transmission delay between the first network device and the terminal device. Further, the serving cell can also obtain the uplink transmission delay between the terminal device and the first network device according to the The time delay calculates the first uplink timing advance.
  • the serving cell can obtain the uplink transmission delay between the first network device and the terminal device in the following two ways:
  • the first method is to measure the uplink signal sent by the terminal device to obtain the uplink transmission delay between the first network device and the terminal device.
  • the serving cell can measure the uplink signal sent by the terminal device to obtain the uplink transmission delay between the terminal device and the first network device.
  • the serving cell can also measure the uplink transmission delay between the terminal device and the first network device.
  • An uplink timing advance is calculated, that is, the first uplink timing advance described in the embodiment of the present invention.
  • the serving cell measures the uplink signal sent by the terminal device to obtain the uplink transmission delay between the terminal device and the first network device, and stores the uplink transmission delay between the terminal device and the first network device in The first network device is local.
  • the serving cell may locally obtain the uplink transmission information between the first network device and the terminal device in the first network device, and calculate it based on the uplink transmission information between the first network device and the terminal device.
  • the second type is to receive the uplink transmission delay between the first network device and the terminal device sent by the first network device.
  • the decoupled cell measures the uplink signal sent by the terminal device to obtain the uplink transmission delay between the first network device and the terminal device, and decouple the cell
  • the uplink transmission delay between the first network device and the terminal device may also be sent to the serving cell. That is, the serving cell may receive the uplink transmission delay sent by the first network device in step 401, and obtain the uplink transmission delay between the first network device and the terminal device.
  • the serving cell sends the first uplink timing advance to the terminal device.
  • the terminal device may adjust the uplink signal transmission timing according to the first uplink timing advance. Domain, to achieve flexible switching of uplink timing advance.
  • the first network device can receive the uplink signal sent by the terminal device without deviation.
  • the serving cell can flexibly switch the uplink timing advance of the terminal device.
  • the terminal device can adjust the uplink transmission timing according to the corresponding uplink timing advance of the serving cell. This enables the serving cell to receive the uplink signal sent by the terminal device without deviation.
  • the terminal device can adjust the uplink transmission timing according to the corresponding uplink timing advance of the decoupled cell, so that the decoupled cell can receive the uplink signal sent by the terminal device without deviation, so that the serving cell Either the decoupled cell can receive the uplink signal sent by the terminal device without deviation, so as to avoid the degradation of the uplink transmission performance after the terminal device accesses the decoupled cell.
  • the method shown in FIG. 4 may further include: the serving cell determines the frequency at which the terminal device sends the uplink signal. Further, if the frequency at which the terminal device sends the uplink signal is the frequency of the first network device, the serving cell determines that the terminal device will send the uplink signal to the first network device. Then the serving cell performs step 401 to determine the first uplink timing advance according to the uplink transmission information between the first network device and the terminal device, so that the terminal device can adjust the uplink transmission timing according to the first uplink timing advance, and the first network device The uplink signal sent by the terminal equipment can be received without deviation.
  • the serving cell may determine the frequency at which the terminal device sends the uplink signal according to the uplink service requirement of the terminal device. For example, if the serving cell determines that the terminal device will send an uplink signal to the serving cell according to the uplink service requirements of the terminal device, the first uplink timing advance is calculated according to the uplink transmission delay between the serving cell and the terminal device, and the calculated The first uplink timing advance of is sent to the terminal device.
  • the serving cell determines that the terminal device will send an uplink signal to the decoupled cell according to the uplink service requirements of the terminal device, and then calculates the first uplink timing advance according to the uplink transmission delay between the decoupled cell and the terminal device, and calculates the result The first uplink timing advance of is sent to the terminal device.
  • the serving cell can flexibly switch the uplink timing advance maintained by the terminal device according to the uplink service requirements of the terminal device, so that the serving cell or the decoupled cell can receive the uplink signal sent by the terminal device without deviation.
  • the terminal device after receiving the first uplink timing advance of the serving cell, the terminal device adjusts the uplink sending timing according to the first uplink timing advance, and may send an uplink signal to the serving cell or the decoupled cell.
  • the first network device provides services for the decoupled cell
  • the first uplink timing advance is determined according to the uplink transmission delay between the decoupled cell and the terminal device.
  • the terminal device sends the uplink signal according to the first uplink timing advance, and the decoupled cell can receive the uplink signal sent by the terminal device without deviation.
  • the serving cell receives the uplink signal sent by the terminal device, a time offset will occur, and a part of the uplink signal will be lost.
  • the serving cell may perform compensation processing on the received uplink signal according to the difference between the first uplink transmission delay and the second uplink transmission delay.
  • the first uplink transmission delay is the uplink transmission delay between the terminal device and the first network device
  • the second uplink transmission delay is the uplink transmission delay between the terminal device and the second network device. Transmission delay.
  • the serving cell performs compensation processing on the received uplink signal according to the difference between the first uplink transmission delay and the second uplink transmission delay, including:
  • the first uplink timing advance is determined according to the uplink transmission delay between the serving cell and the terminal device.
  • the terminal device sends the uplink signal according to the first uplink timing advance, and the serving cell can receive the uplink signal sent by the terminal device without deviation.
  • the reception of the uplink signal sent by the terminal equipment by the decoupled cell will cause a time offset, and part of the uplink signal will be lost.
  • the serving cell may perform compensation processing on the received uplink signal according to the difference between the first uplink transmission delay and the second uplink transmission delay.
  • the decoupled cell performs compensation processing on the received uplink signal according to the difference between the first uplink transmission delay and the second uplink transmission delay, including:
  • the embodiment of the present invention also provides an uplink communication method. As shown in FIG. 5, the method has the following steps:
  • the serving cell After the terminal device accesses the serving cell, the serving cell obtains the uplink transmission delay T1 according to the uplink signal measurement sent by the terminal device on frequency point A.
  • frequency A is the frequency of the serving cell.
  • the terminal device accesses the serving cell, it sends an uplink signal on frequency point A, and the serving cell can determine the uplink transmission delay T1 between the terminal device and the serving cell according to the uplink signal sent by the terminal device.
  • the serving cell calculates the uplink timing advance TA1 according to the uplink transmission delay T1, and sends TA1 to the terminal device through the downlink control information, and the user adjusts the uplink transmission timing based on TA1.
  • the terminal device After the terminal device adjusts the uplink transmission timing according to TA1, the signal receiving effect shown in FIG. 6 can be achieved. That is, the serving cell can synchronously and completely receive the uplink signal sent by the terminal equipment at frequency A.
  • the terminal device is allowed to decouple to frequency B after accessing the serving cell, and there is a cell corresponding to frequency B.
  • the cell corresponding to frequency point B is called a decoupled cell.
  • the uplink transmission delay T2 between the terminal equipment and the decoupled cell is less than the above-mentioned T1 If the terminal device adjusts the uplink transmission timing according to TA1, that is, the time when the decoupled cell receives the uplink signal is the same as the time when the serving cell receives the uplink signal, then when the terminal device transmits the uplink signal at frequency B, the decoupled cell will lose part of the uplink signal.
  • the decoupled cell determines the uplink transmission delay T2 between the decoupled cell and the terminal device by measuring the uplink signal sent by the terminal device, and sends the uplink transmission delay T2 to the serving cell.
  • the uplink transmission delay T2 sent by the decoupled cell can be considered as the uplink transmission information between the first network device and the terminal device in the embodiment of the present invention.
  • the first network device provides services for the decoupled cell, that is, the network device corresponding to frequency point B.
  • the second network device provides services for the serving cell, that is, the network device corresponding to frequency A.
  • the serving cell receives the uplink transmission delay T2 from the decoupled cell, and if T2 ⁇ T1, calculate the uplink timing advance TA2 according to T2.
  • the serving cell can recalculate an uplink timing advance TA2 according to T2.
  • the timing advance adjustment amount ⁇ TA can also be calculated according to the following formula, and the adjustment amount is sent to the terminal device, so that the terminal device adjusts the currently maintained uplink timing advance according to the ⁇ TA. For example, adjust TA1 according to ⁇ TA.
  • the specific formula for calculating ⁇ TA is as follows:
  • represents the sub-carrier spacing coefficient
  • is an integer greater than or equal to 1
  • Tc represents the sampling interval
  • the serving cell sends the uplink timing advance TA2 to the terminal device through the downlink control information.
  • the terminal device After receiving the uplink timing advance TA2 sent by the serving cell, the terminal device adjusts the uplink transmission timing according to the uplink timing advance TA2. After the terminal device adjusts the uplink transmission timing, the signal receiving effect shown in FIG. 6 is achieved. That is, the decoupling cell can receive the uplink signal from the terminal equipment losslessly to obtain the maximum decoupling performance.
  • the serving cell receives the uplink information from the terminal equipment in advance, and the uplink transmission performance is lost.
  • the serving cell performs compensation processing on the received uplink signal.
  • the terminal device adjusts the uplink transmission timing according to the uplink timing advance TA2, the uplink received signal of the serving cell is damaged.
  • the serving cell can compensate and correct the uplink signal received by the serving cell based on the difference between T1 and T2, as follows:
  • the uplink timing adjustment amount between the terminal device and the decoupled cell is calculated according to the uplink transmission delay between the decoupled cell and the terminal device, so that the terminal device is decoupled to the uplink after the decoupled cell
  • the transmission performance is optimal.
  • the serving cell receives the uplink signal sent by the terminal device, based on the uplink transmission delay deviation of the serving cell/decoupled cell, it compensates and corrects the uplink measurement result of the serving cell to minimize the impact on the uplink transmission performance of the serving cell .
  • the method provided by the embodiment of the present invention is suitable for the restriction of the current protocol version single TA, and the influence of the inter-cell signal time offset caused by the decoupling of the terminal device can be reduced without changing the existing protocol.
  • the embodiment of the present invention also provides an uplink communication method. As shown in FIG. 7, the method includes the following steps:
  • the decoupled cell and the serving cell respectively calculate the uplink timing advances TA1 and TA2 with the terminal device.
  • the decoupled cell receives the uplink signal sent by the terminal equipment on the frequency point of the decoupled cell, and obtains the uplink transmission delay between the decoupled cell and the terminal device by measuring the uplink signal.
  • the decoupled cell can also be based on the decoupled cell.
  • the uplink transmission delay between the coupled cell and the terminal device calculates the uplink timing advance TA1 between the decoupled cell and the terminal device.
  • the serving cell receives the uplink signal sent by the terminal equipment on the frequency of the serving cell, and obtains the uplink transmission delay between the serving cell and the terminal device by measuring the uplink signal.
  • the serving cell can also be based on the frequency between the serving cell and the terminal device.
  • the uplink transmission delay calculates the uplink timing advance TA2 between the serving cell and the terminal equipment.
  • the serving cell receives the uplink timing advance TA2 sent by the decoupled cell.
  • the serving cell determines the uplink timing advance of the terminal device according to information such as the uplink service information of the terminal device and the uplink measurement signal sending behavior.
  • the serving cell determines the frequency point at which the terminal device sends the uplink signal; and determines the uplink timing advance of the terminal equipment according to the frequency point at which the terminal device sends the uplink signal.
  • the uplink timing advance of the terminal device determined by the serving cell is the first uplink timing advance described in the embodiment of the present invention, and the uplink timing advance currently maintained by the terminal device is the second uplink timing advance described in the embodiment of the present invention. the amount.
  • the serving cell determines that the terminal device will send an uplink signal at the frequency point of the serving cell (such as frequency point A), then it is determined that TA1 is the uplink timing advance of the terminal device.
  • the serving cell determines that the terminal device will send an uplink signal at the frequency point of the decoupled cell (for example, frequency point B), it is determined that TA2 is the uplink timing advance of the terminal device.
  • the serving cell sends the uplink timing advance of the terminal device determined in step 703 to the terminal device.
  • the terminal device After receiving the uplink timing advance sent by the serving cell, the terminal device adjusts the uplink sending timing according to the uplink timing advance. For example, the terminal device adjusts the uplink transmission timing according to TA1 so that the serving cell losslessly receives the uplink signal sent by the terminal device; or the terminal device adjusts the uplink transmission timing according to TA2 so that the decoupled cell losslessly receives the uplink signal transmitted by the terminal device.
  • the TA value can be adjusted according to the actual uplink demand of the terminal equipment, so that both the serving cell and the decoupled cell can receive the user uplink signal losslessly.
  • the method provided by the embodiment of the present invention is suitable for the constraints of the current protocol version single TA, and the impact of inter-cell signal time skew caused by terminal equipment decoupling can be reduced without changing the existing protocol.
  • some terminal devices are connected to the serving cell, and some terminal devices are connected to the decoupled cell while accessing the serving cell.
  • a terminal device that accesses the cell can be called a terminal device of the cell, and a terminal device that accesses a neighboring decoupled cell is called a neighboring cell decoupled terminal device.
  • a cell may receive uplink signals from the terminal equipment of the cell and the decoupling terminal equipment of the neighboring cell at the same time. For terminal equipment in this cell, by configuring the TA value, the uplink signals of all terminal equipment in this cell can reach the receiving side at the same time.
  • This cell only needs to determine a receiving time according to TA, and at this receiving time, it can receive access to the cell without loss
  • the uplink signal of all terminal equipment since its TA value may be adjusted based on its home neighboring cell, the TA of this cell adjusts their uplink transmission timing, which may make the uplink signal of these terminal equipment reach the current cell time. They are not consistent, resulting in losses when the receiving side receives the uplink signals of these terminal devices.
  • the uplink signal of the neighboring cell decoupling terminal device 1 arrives at the current cell early, while the uplink signal of the neighboring cell decoupling terminal device 2 arrives at the current cell lagging behind, both of these two terminal devices suffer losses in the uplink signal reception of the current cell.
  • the embodiment of the present invention also provides a receiving time adjustment method, which can calculate the best uplink receiving time based on the uplink delay of the terminal equipment of the cell, so that all terminals including the terminal equipment of the cell and the terminal equipment of the neighboring cell The overall loss of the device's uplink signal reception is minimal.
  • the method includes the following steps:
  • terminal devices are connected to the target cell, of which 20 terminal devices are only connected to the target cell and not to the decoupled cell adjacent to the target cell. These 20 terminal devices are called terminal devices of the cell ; The remaining 30 terminal devices also access the decoupling cell, and these 30 terminal devices are called neighboring cell decoupling terminal devices.
  • N is the total number of terminal devices in the cell and decoupling terminal devices in the neighboring cell of the target cell
  • the uplink transmission delays of N terminal devices are T(0), T(1)...T(N-1), respectively .
  • the initial value of T(k) of each terminal device is zero.
  • L(t) is a function of the uplink transmission delay as an independent variable
  • the signal quality loss values of N terminal devices can be L 0 (t), L 1 (t)...L N-1 (t).
  • the Func(%) function represents the accumulated value of the signal quality loss of all terminal devices, which may be linear accumulation or other accumulation methods, and the embodiment of the present invention does not make specific restrictions.
  • the signal quality loss of all terminal devices is obtained as Allloss_default. Then, within a certain deviation range (t1, t2), find the deviation value T min that minimizes Allloss. Among them, the deviation value refers to the deviation of the uplink transmission delay. It should be noted that some parameters of Func(L k (t)) can be adjusted at different times, and as the parameters change, the result of the function will also change. In other words, Func(L k (t)) can have different results at different times. At the first moment, according to Func(L k (t)), the signal quality loss X of all terminal devices can be obtained.
  • T s For each uplink transmission delay in the range (t1, t2), such as T s , update the T(k) value of all terminal devices to T(k)-T s , and recalculate Allloss. After traversing the possible T s , the deviation value T s that minimizes Allloss is taken as the above T min . For example, if the signal quality loss Y of the terminal device is the smallest among all possible signal quality losses obtained by T s , then T min can be determined as the minimum deviation value of the uplink transmission delay.
  • the T(k) value corresponding to all terminal devices is updated according to T min , and the signal quality loss value of all terminal devices is recalculated according to the updated T(k) value of each terminal device, that is, Allloss - final.
  • Allloss - final ⁇ Allloss - default, adjust the uplink signal reception time of the target cell to T min .
  • T min can be a positive value or a negative value. If T min is a positive value, the uplink signal reception time of the target cell is advanced by T min , and if T min is a negative value, the uplink signal reception time of the target cell is delayed by T min .
  • the baseband unit of the network device obtains the uplink transmission delay, and sends the obtained delay to the scheduling unit of the network device.
  • the scheduling unit After obtaining the uplink transmission delay information of all terminal devices, the scheduling unit performs subsequent calculations and obtains the optimal delay adjustment value, that is, the minimum deviation value T min described in the embodiment of the present invention.
  • the scheduling unit may also convert the delay adjustment amount into an adjustment amount that can be recognized by the terminal device, and send it to the terminal device.
  • the method provided by the embodiment of the present invention calculates the best uplink receiving time by calculating the uplink delay of all neighboring cell decoupling terminal equipment, and combining the uplink delay of the terminal equipment accessing in the cell to calculate the best uplink receiving time, so that all terminal equipment can uplink
  • the overall loss of signal reception is minimal.
  • the uplink signal of the serving cell terminal device 1 can be received losslessly, the uplink signal of the neighboring cell decoupling terminal device 1 reaches the current cell early, and the uplink signal of the neighboring cell decoupling terminal device 2 lags behind to reach the current cell. There is a loss in the uplink signal reception of the decoupled terminal equipment in the current cell.
  • the uplink signal of the neighboring cell decoupling terminal device 2 can be received losslessly, although there are some uplink signals sent by the serving cell terminal device 1 and the decoupling cell terminal device 3
  • the overall signal loss of the serving cell terminal device 1, the neighboring cell decoupling terminal device 2, and the decoupling cell terminal device 3 is lower than that of FIG. 8, which ensures the overall performance of the communication system.
  • FIG. 11 shows a possible schematic diagram of the structure of the communication device involved in the foregoing embodiment.
  • the illustrated communication device may be a network device of a serving cell, such as a base station of a serving cell.
  • the communication device includes a processing unit 1101 and a communication unit 1102.
  • the processing unit 1101 is configured to support the communication device to execute step 401, step 501, step 504, step 506, step 701, and step 703 in the foregoing embodiment, and/or other processes used in the technology described herein.
  • the communication unit 1102 is configured to support the communication device to perform step 402, step 502, step 503, step 505, step 702, and step 704 in the above-mentioned embodiment, and/or other processes used in the technology described herein.
  • the communication device includes: a processing module 1201 and a communication module 1202.
  • the processing module 1201 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 1101, and/or to perform other processes of the technology described herein.
  • the communication module 1202 is used to perform the steps performed by the above-mentioned communication unit 1102, and supports the interaction between the communication device and other devices, for example, to support the interaction between the serving cell and the decoupled cell, and the terminal device.
  • the communication device may further include a storage module 1203, and the storage module 1203 is used to store the program code and data of the communication device.
  • the processing module 1201 is a processor
  • the communication module 1202 is a transceiver
  • the storage module 1203 is a memory
  • the communication device is the communication device shown in FIG. 3.
  • the disclosed database access device and method can be implemented in other ways.
  • the embodiments of the database access device described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections through some interfaces, database access devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium It includes several instructions to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请实施例公开了一种上行通信方法及通信装置,涉及通信领域,能够避免终端设备发送给解耦小区的上行信号发生时偏,保证上行传输的性能。该方法包括:确定终端设备与第一网络设备之间的第一上行定时提前量;所述第一网络设备为所述终端设备所处服务小区提供服务;或,所述第一网络设备为所述终端设备所处解耦小区提供服务;向所述终端设备发送所述第一上行定时提前量,指示所述终端设备根据所述第一上行定时提前量调整上行信号的发送时序。

Description

一种上行通信方法及通信装置
本申请要求于2019年3月28日提交国家知识产权局、申请号为201910245790.2、申请名称为“一种上行通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉通信领域,尤其涉及一种上行通信方法及通信装置。
背景技术
5G(5th generation,第五代)通信系统支持上下行解耦技术,即允许终端设备在接入服务小区时,还可以接入解耦小区进行上行传输。
5G通信标准目前仅支持终端设备维护一个TA(即终端设备与服务),即终端设备在服务小区和解耦小区上发送上行信号时,只能采用服务小区的TA调整上行发送时序。当终端接入服务小区A、解耦小区B,如果小区A、小区B与终端设备之间的信道条件不同,终端单一采用服务小区的TA,可能导致终端设备发送给解耦小区的上行信号发生时偏,影响上行传输性能。
发明内容
本申请实施例提供一种上行通信方法及通信装置,避免终端设备发送给解耦小区的上行信号发生时偏,保证上行传输的性能。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,公开了一种上行通信方法,包括:服务小区确定终端设备与第一网络设备之间的第一上行定时提前量;第一网络设备为终端设备所处服务小区提供服务;或,第一网络设备为终端设备所处解耦小区提供服务。进一步,服务小区还可以向终端设备发送第一上行定时提前量,指示终端设备根据第一上行定时提前量调整上行信号的发送时序。
本发明实施例提供的方法中,服务小区可以灵活切换终端设备的上行定时提前量。当终端设备需要向服务小区发送上行信号,服务小区计算服务小区的上行定时提前量,并将服务小区的上行定时提前量发送给终端设备,使得服务小区可以无偏差地接收终端设备发送的上行信号。当终端设备需要向解耦小区发送上行信号,服务小区计算解耦小区的上行定时提前量,并将解耦小区的上行定时提前量发送给终端设备,使得解耦小区可以无偏差地接收终端设备发送的上行信号,避免了终端设备发送给解耦小区的上行信号发生时偏,保证上行传输的性能。另外,始终由服务小区来计算维护终端设备的上行定时提前量,终端设备只生效一个上行定时提前量,并不违背现有标准中的单TA规定。本发明实施例提供的方法在现有协议基础上,能够尽可能降低小区间信号时偏对信号传输性能的影响。
结合第一方面,在第一方面的第一种可能的实现可能中,确定终端设备与第一网络设备之间的第一上行定时提前量,具体包括:获取第一网络设备与终端设备之间的上行传输时延;根据终端设备与第一网络设备之间的上行传输时延计算第一上行定时提前量。
本发明实施例中,服务小区可以根据第一网络设备对应的上行传输时延计算第一上行定时提前量,进而终端设备根据第一上行定时提前量调整上行发送时序,使得第一网络设备可以无损接收终端设备发送的上行信号。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,获取第一网络设备与终端设备之间的上行传输时延,包括:接收第一网络设备发送的上行传输时延;或,测量终端设备发送的上行信号获得上行传输时延。
本发明实施例中,如果第一网络设备是解耦小区的网络设备,服务小区可以接收第一网络设备发送的上行传输时延;如果第一网络设备是服务小区的网络设备,服务小区可以测量终端设备发送的上行传输信息确定第一网络设备的上行传输时延。
结合第一方面或第一方面的第一或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,确定终端设备与第一网络设备之间的第一上行定时提前量之前,方法还包括:确定终端设备发送上行信号的频点为第一网络设备的频点。
本发明实施例中,服务小区可以根据终端设备的上行业务需求确定终端设备将在哪个频点上发送上行信号,进而根据确定的频点确定第一网络设备是服务小区的网络设备,还是解耦小区的网络设备,根据终端设备的业务需求灵活切换终端设备的上行定时提前量,使得终端设备的上行信号能够被服务小区或解耦小区无损接收,保证通信系统的传输性能。
结合第一方面或第一方面的第一至第三种可能的实现方式中的任意一种,在第一方面的第四种可能的实现方式中,若第一网络设备为终端设备所处解耦小区提供服务,方法还包括:服务小区接收终端设备发送的上行信号;终端设备发送上行信号的定时提前量为第一上行定时提前量;根据第一上行传输时延与第二上行传输时延的差值对接收到的上行信号进行补偿处理;其中,第一上行传输时延为终端设备与服务小区之间的上行传输时延,第二上行传输时延为终端设备与解耦小区之间的上行传输时延。
本发明实施例中,若第一网络设备为终端设备所处解耦小区提供服务,也就是说终端设备可以根据解耦小区的上行定时提前量调整上行发送时序,解耦小区可以无损接收终端设备发送的上行信号,服务小区接收到的上行信号由损失。本发明实施例中,服务小区可以对接收到的上行信号进行补偿,尽可能减少传输性能的损失。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,根据第一上行传输时延与第二上行传输时延的差值对接收到的上行信号进行补偿处理,包括:
将时域信号Y(n)转化为频域信号Y(k);其中,n=0,1,…N-1,k=0,1,…P-1;其中,时域信号Y(n)为接收到的上行信号,N为时域信号Y(n)转化为离散数字信号后包括的样本点数,P为频域信号Y(k)包括的样本点数;对将Y(k)进行补偿处理获得Z(k)=Y(k)×W Mk;其中,
Figure PCTCN2020080916-appb-000001
M为时域信号Y(n)在|T1-T2|时长内对应的样本点数,T1为第一上行传输时延,T2为第二上行传输时延。
第二方面,公开了一种通信装置,包括:
处理单元,用于确定终端设备与第一网络设备之间的第一上行定时提前量;第一网络设备为终端设备所处服务小区提供服务;或,第一网络设备为终端设备所处解耦小区提供服务;通信单元,用于向终端设备发送第一上行定时提前量,指示终端设备 根据第一上行定时提前量调整上行信号的发送时序。
结合第二方面,在第二方面的第一种可能的实现方式中,处理单元具体用于,获取第一网络设备与终端设备之间的上行传输时延;根据终端设备与第一网络设备之间的上行传输时延计算第一上行定时提前量。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,通信单元还用于,接收第一网络设备发送的上行传输时延;或,处理单元还用于,测量终端设备发送的上行信号获得上行传输时延。
结合第二方面或第二方面的第一或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,处理单元确定终端设备与第一网络设备之间的第一上行定时提前量之前,确定终端设备发送上行信号的频点为第一网络设备的频点。
结合第二方面或第二方面的第一至第三种可能的实现方式中的任意一种,在第二方面的第四种可能的实现方式中,若第一网络设备为终端设备所处解耦小区提供服务,通信单元还用于,接收终端设备发送的上行信号;终端设备发送上行信号的定时提前量为第一上行定时提前量;处理单元还用于,根据第一上行传输时延与第二上行传输时延的差值对接收到的上行信号进行补偿处理;其中,第一上行传输时延为终端设备与服务小区之间的上行传输时延,第二上行传输时延为终端设备与解耦小区之间的上行传输时延。
结合第二方面的第四种可能的实现方式中的任意一种,在第二方面的第五种可能的实现方式中,处理单元具体用于,将时域信号Y(n)转化为频域信号Y(k);其中,n=0,1,…N-1,k=0,1,…P-1;其中,时域信号Y(n)为接收到的上行信号,N为时域信号Y(n)转化为离散数字信号后包括的样本点数,P为频域信号Y(k)包括的样本点数;
对将Y(k)进行补偿处理获得Z(k)=Y(k)×W Mk;其中,
Figure PCTCN2020080916-appb-000002
M为时域信号Y(n)在|T1-T2|时长内对应的样本点数,T1为第一上行传输时延,T2为第二上行传输时延。
第三方面,公开了一种通信装置,包括至少一个处理器以及存储器,至少一个处理器与存储器耦合,至少一个处理器用于实现上述第一方面以及第一方面任意一种实现方式所述的上行通信方法。
第四方面,公开了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第二方面以及第二方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第一方面以及第一方面任意一种实现方式所述的上行通信方法。
第五方面,公开了一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在上述第二方面以及第二方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第一方面以及第一方面任意一种实现方式所述的上行通信方法,无线通信装置为芯片。
附图说明
图1为本申请实施例提供的通信系统的架构图;
图2为本申请实施例提供的信号接收的示意图;
图3为本申请实施例提供的通信装置的结构框图;
图4为本申请实施例提供的上行通信方法的流程示意图;
图5为本申请实施例提供的上行通信方法的另一流程示意图;
图6为本申请实施例提供的信号接收的示意图;
图7为本申请实施例提供的上行通信方法的另一流程示意图;
图8为本申请实施例提供的信号接收方法的示意图;
图9为本申请实施例提供的接收时刻调整方法的流程示意图;
图10为本申请实施例提供的信号接收示意图;
图11为本申请实施例提供的通信装置的另一结构框图;
图12为本申请实施例提供的通信装置的另一结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1给出了本申请提供的技术方案所适用的一种通信系统的示意图,该通信系统可以包括多个网络设备100、网络设备200以及一个或多个终端设备300。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
网络设备100可以是传输接收节点(transmission reception point,TRP)、基站、中继站或接入点等。网络设备100可以是5G通信系统中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。另外还可以是:全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。本申请下文将以基站为例进行说明。
终端设备300可以是用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信装置、UE代理或UE装置等。接入终端设备可以是蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。
图1所示通信系统中,网络设备100的覆盖小区为终端设备300的服务小区A,网络设备200的覆盖小区为终端设备300的解耦小区B。图1所示通信系统支持上行解耦技术,即终端设备300接入服务小区A后,可以在网络设备100的频点上与核心网进行通信,例如,网络设备100向终端设备300发送控制信令,小区间的切换、下行数据传输等。
另外,允许终端设备300同时接入解耦小区B,但是仅允许解耦小区B接收该终端设备300发送的上行信号,即终端设备在网络设备200的频点仅可以发送上行信号, 不能与核心网侧进行通信。
另外,现有标准规定,终端设备300在服务小区A和解耦小区B上发送上行信号时,终端设备只能采用一个TA调整上行发送时序(以下简称“单TA规定”),例如,采用服务小区的TA来调整上行发送时序。具体地,终端设备300接入服务小区A,网络设备100据终端设备300与网络设备100之间的上行传输时延T1计算TA1。网络设备100还可以将TA1发送给终端设备,终端设备300可以根据TA1调整上行发送时序。当终端设备300接入解耦小区B,终端设备300同样根据TA1调整上行发送时序。
参考图2,网络设备100的信号称为服务小区信号,网络设备200的信号解耦小区信号。终端设备300根据TA1调整上行发送时序后发送上行信号,网络设备100和网络设备200均可以接收终端设备300发送的上行信号。其中,网络设备100可以无偏差接收终端设备300发送的上行信号。由于网络设备200与终端设备300之间的上行传输时延T2<T1,则终端设备300发送的上行信号到达网络设备200的时刻,提前于终端设备300发送的上行信号到达网络设备100的时刻。由于终端设备300以TA1调整上行发送时序,导致网络设备200接收终端设备300发送的上行信号时,损失了(T1-T2)这段时长的信号。也就是说,网络设备200接收的上行信号发生时偏,影响了上行传输的性能,产生了性能损失。
需要说明的是,上行传输时延是终端设备发送上行信号的时刻至网络设备接收上行信号的时刻之间的时间间隔。终端设备可以终端根据TA调整上行发送时序,确定上行传输的起始时刻,并在该起始时刻开始发送上行信号。通常,终端设备与网络设备之间的上行传输时延越小,根据上行传输时延确定的TA越小。同样,终端设备与网络设备之间的上行传输时延越大,根据上行传输时延确定的TA越大。TA是影响上行信号的接收质量的关键因素。示例的,参考图2,终端设备300根据TA1确定上行发送的起始时刻为时刻A,网络设备100则在时刻A开始接收上行信号,同样,网络设备200也在时刻A开始接收上行信号。由于网络设备200与终端设备300之间的上行传输时延T2<T1,终端设备300发送的上行信号到达网络设备200的时刻比上行信号到达网络设备的时刻早|T1-T2|,网络设备200在时刻A开始接收上行信号,就会损失了(T1-T2)这段时长的信号。
可见,现有技术中仅支持终端设备采用服务小区的TA,当终端设备接入服务小区A、解耦小区B进行上行传输,可能导致终端设备发送给解耦小区的上行信号发生时偏,影响上行传输性能。为了避免解耦小区B损失上行信号,可以将解耦小区B的接收时刻提前|T1-T2|。但是,这个接收时刻调整是小区级的,假如解耦小区下存在多个解耦的终端设备,由于这些终端设备对应的上行传输时延不同,则部分终端设备仍可能存在性能损失。
本发明实施例提供一种上行通信方法,服务小区确定终端设备与第一网络设备之间的第一上行定时提前量。其中,第一网络设备为终端设备所处服务小区提供服务,或,第一网络设备为终端设备所处解耦小区提供服务。进一步,服务小区向终端设备发送第一上行定时提前量,指示所述终端设备根据所述第一上行定时提前量调整上行信号的发送时序。可见,本发明实施例提供的方法中,服务小区可以灵活切换终端设 备的上行定时提前量。当终端设备需要向服务小区发送上行信号,服务小区计算服务小区的上行定时提前量,并将服务小区的上行定时提前量发送给终端设备,使得服务小区可以无偏差地接收终端设备发送的上行信号。当终端设备需要向解耦小区发送上行信号,服务小区计算解耦小区的上行定时提前量,并将解耦小区的上行定时提前量发送给终端设备,使得解耦小区可以无偏差地接收终端设备发送的上行信号,避免了终端设备发送给解耦小区的上行信号发生时偏,保证上行传输的性能。另外,始终由服务小区来计算维护终端设备的上行定时提前量,终端设备只生效一个上行定时提前量,并不违背现有标准中的单TA规定。本发明实施例提供的方法在现有协议基础上,能够尽可能降低小区间信号时偏对信号传输性能的影响。
本发明实施例本发明实施例提供的通信方法可应用于是图3中所示的通信装置,该通信装置可以是终端设备的服务小区的网络设备,如服务小区的基站。如图3所示,该通信装置可以包括至少一个处理器301,存储器302、收发器303以及通信总线304。
下面结合图3对该通信装置的各个构成部件进行具体的介绍:
处理器301是通信装置的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器301是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器301可以通过运行或执行存储在存储器302内的软件程序,以及调用存储在存储器302内的数据,执行通信装置的各种功能。
在具体的实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置可以包括多个处理器,例如图3中所示的处理器301和处理器305。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信装置、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信装置,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信装置,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信装置、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过通信总线304与处理器301相连接。存储器302也可以和处理器301集成在一起。
其中,所述存储器302用于存储执行本发明方案的软件程序,并由处理器301来控制执行。
收发器303,用于与第二设备之间的通信。当然,收发器303还可以用于与通信 网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。收发器303可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线304,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部通信装置互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3中示出的通信装置结构并不构成对通信装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本发明实施例提供一种上行通信方法,如图4所示,所述方法包括以下步骤:
401、确定终端设备与第一网络设备之间的第一上行定时提前量;所述第一网络设备为所述终端设备所处服务小区提供服务;或,所述第一网络设备为所述终端设备所处解耦小区提供服务。
需要说明的是,本发明实施例提供的方法适用于图1所示的通信系统。第一网络设备可以是服务小区的网络设备,如,第一网络设备为所述终端设备所处服务小区提供服务,第一网络设备用于终端设备与核心网侧的通信,终端设备在接入所述第一网络设备与核心网侧进行通信;第一网络设备也可以是解耦小区的网络设备,如,第一网络设备为所述终端设备所处解耦小区提供服务,第一网络设备仅可以接收终端设备发送的上行信号。
示例的,所述终端设备为图1所示通信系统中的终端设备300,第一网络设备可以是图1所示通信系统中的网络设备100,第一网络设备也可以是图1所示通信系统中的网络设备200。
具体实现中,服务小区可以获取所述第一网络设备与所述终端设备之间的上行传输时延,进一步,服务小区还可以根据所述终端设备与所述第一网络设备之间的上行传输时延计算所述第一上行定时提前量。
本发明实施例中,服务小区可以通过以下两种方式获取所述第一网络设备与所述终端设备之间的上行传输时延:
第一种、测量所述终端设备发送的上行信号获得所述第一网络设备与所述终端设备之间的上行传输时延。
如果第一网络设备为服务小区的网络设备,例如,第一网络设备为服务小区的基站。服务小区在步骤401中可以测量终端设备发送的上行信号,获得终端设备与第一网络设备之间的上行传输时延,服务小区还可以根据终端设备与第一网络设备之间的上行传输时延计算出一个上行定时提前量,即本发明实施例所述的第一上行定时提前量。
或者,服务小区在步骤401之前,测量终端设备发送的上行信号,获得终端设备与第一网络设备之间的上行传输时延,将终端设备与第一网络设备之间的上行传输时延存储在第一网络设备本地。在步骤401中,服务小区可以在第一网络设备本地获取第一网络设备与终端设备之间的上行传输信息,根据第一网络设备与终端设备之间的 上行传输信息计算。
第二种、接收所述第一网络设备发送的所述第一网络设备与所述终端设备之间的上行传输时延。
如果第一网络设备为终端设备所处解耦小区提供服务,解耦小区测量终端设备发送的上行信号可以获得所述第一网络设备与所述终端设备之间的上行传输时延,解耦小区还可以将所述第一网络设备与所述终端设备之间的上行传输时延发送给服务小区。也就是说,服务小区在步骤401中可以接收第一网络设备发送的上行传输时延,获取第一网络设备与终端设备之间的上行传输时延。
402、向所述终端设备发送所述第一上行定时提前量,指示所述终端设备根据所述第一上行定时提前量调整上行信号的发送时序。
具体实现中,服务小区向所述终端设备发送所述第一上行定时提前量,终端设备接收所述第一上行定时提前量后,可以根据所述第一上行定时提前量调整上行信号的发送时域,实现上行定时提前量的灵活切换。进一步,第一网络设备可以无偏差地接收终端设备发送的上行信号。
本发明实施例提供的方法,服务小区可以灵活切换终端设备的上行定时提前量,当第一网络设备为服务小区的网络设备,终端设备可以根据服务小区相应的上行定时提前量调整上行发送时序,使得服务小区可以无偏差地接收终端设备发送的上行信号。当第一网络设备为解耦小区的网络设备,终端设备可以根据解耦小区相应的上行定时提前量调整上行发送时序,使得解耦小区可以无偏差地接收终端设备发送的上行信号,使得服务小区或解耦小区均可以无偏差地接收终端设备发送的上行信号,避免终端设备接入解耦小区后,造成上行传输性能的下降。
可选的,在步骤401服务小区获取终端设备与第一网络设备之间的上行传输信息之前,图4所示的方法还可以包括:服务小区确定终端设备发送上行信号的频点。进一步,若终端设备发送上行信号的频点为所述第一网络设备的频点,服务小区则确定终端设备将向所述第一网络设备发送上行信号。进而服务小区执行步骤401,以便根据第一网络设备与终端设备之间的上行传输信息确定第一上行定时提前量,使得终端设备可以根据第一上行定时提前量调整上行发送时序,第一网络设备可以无偏差地接收终端设备发送的上行信号。
一种可能的实现方式中,服务小区可以根据终端设备的上行业务需求确定终端设备发送上行信号的频点。例如,服务小区根据终端设备的上行业务需求确定终端设备将向服务小区发送上行信号,则根据服务小区与终端设备之间的上行传输时延计算所述第一上行定时提前量,并将计算所得的第一上行定时提前量发送给终端设备。服务小区根据终端设备的上行业务需求确定终端设备将向解耦小区发送上行信号,则根据解耦小区与终端设备之间的上行传输时延计算所述第一上行定时提前量,并将计算所得的第一上行定时提前量发送给终端设备。
本发明实施例提供的方法中,服务小区可以根据终端设备的上行业务需求灵活切换终端设备维护的上行定时提前量,使得服务小区或解耦小区可以无偏差地接收终端设备发送的上行信号。
可选的,终端设备在接收服务小区第一上行定时提前量之后,根据第一上行定时 提前量调整上行发送时序,可以向服务小区或解耦小区发送上行信号。如果第一网络设备为解耦小区提供服务,第一上行定时提前量是根据解耦小区与终端设备之间的上行传输时延确定的。终端设备根据第一上行定时提前量发送上行信号,解耦小区可以无偏差地接收终端设备发送的上行信号。但是,服务小区接收终端设备发送的上行信号会产生时偏,损失一部分上行信号。
进一步,服务小区可以根据第一上行传输时延与第二上行传输时延的差值对接收到的上行信号进行补偿处理。其中,第一上行传输时延为所述终端设备与所述第一网络设备之间的上行传输时延,第二上行传输时延为所述终端设备与所述第二网络设备之间的上行传输时延。
具体实现中,服务小区根据第一上行传输时延与第二上行传输时延的差值对接收到的上行信号进行补偿处理,包括:
将时域信号Y(n)转化为频域信号Y(k);其中,n=0,1,…N-1,k=0,1,…P-1;其中,时域信号Y(n)为服务小区接收到的上行信号,所述N为所述时域信号Y(n)转化为离散数字信号后包括的样本点数,所述P为所述频域信号Y(k)包括的样本点数;
对将Y(k)进行补偿处理获得Z(k)=Y(k)×W Mk;其中,
Figure PCTCN2020080916-appb-000003
M为所述时域信号Y(n)在|T1-T2|时长内对应的样本点数,T1为所述第一上行传输时延,T2为所述第二上行传输时延。示例的,一段完整的长度为1ms时域信号包含1000个样本点,T1-T2如果是0.5ms,则0.5ms时长的时域信号包含500个样本点,就是这里的M值。
当然,如果第一网络设备为服务小区提供服务,第一上行定时提前量是根据服务小区与终端设备之间的上行传输时延确定的。终端设备根据第一上行定时提前量发送上行信号,服务小区可以无偏差地接收终端设备发送的上行信号。但是,解耦小区接收终端设备发送的上行信号会产生时偏,损失一部分上行信号。
进一步,服务小区可以根据第一上行传输时延与第二上行传输时延的差值对接收到的上行信号进行补偿处理。
具体实现中,解耦小区根据第一上行传输时延与第二上行传输时延的差值对接收到的上行信号进行补偿处理,包括:
将时域信号Y(n)转化为频域信号Y(k);其中,n=0,1,…N-1,k=0,1,…P-1;其中,时域信号Y(n)为解耦小区接收到的上行信号,所述N为所述时域信号Y(n)转化为离散数字信号后包括的样本点数,所述P为所述频域信号Y(k)包括的样本点数;
对将Y(k)进行补偿处理获得Z(k)=Y(k)×W Mk;其中,
Figure PCTCN2020080916-appb-000004
M为所述时域信号Y(n)在|T1-T2|时长内对应的样本点数,T1为所述第一上行传输时延,T2为所述第二上行传输时延。示例的,一段完整的长度为1ms时域信号包含1000个样本点,T1-T2如果是0.5ms,则0.5ms时长的时域信号包含500个样本点,就是这里的M值。
本发明实施例还提供一种上行通信方法,如图5所示,所述方法以下步骤:
501、终端设备接入服务小区后,服务小区根据终端设备在频点A上发送的上行 信号测量获取上行传输时延T1。
其中,频点A是服务小区的频点。终端设备接入服务小区后,在频点A上发送上行信号,服务小区可以根据终端设备发送的上行信号确定终端设备与服务小区之间的上行传输时延T1。
502、服务小区根据上行传输时延T1计算上行定时提前量TA1,并通过下行控制信息将TA1发送给终端设备,用户基于TA1调整上行发送时序。
终端设备根据TA1调整上行发送时序之后,可以达到图6所示的信号接收效果。即服务小区可同步且完整地接收终端设备在频点A发送的上行信号。
另外,允许终端设备接入服务小区之后解耦至频点B,且存在频点B对应的小区。本发明实施例中,将频点B对应的小区称为解耦小区。但是由于终端设备与解耦小区之间的上行传输时延、终端设备与服务小区之间的上行传输时延存在偏差,例如,终端设备与解耦小区之间的上行传输时延T2小于上述T1,如果终端设备按照TA1调整上行发送时序,即解耦小区接收上行信号的时刻与服务小区接收上行信号的时刻一致,则当终端设备在频点B发送上行信号时,解耦小区将损失一部分上行信号。
503、解耦小区通过测量终端设备发送的上行信号确定解耦小区与终端设备之间的上行传输时延T2,并将上行传输时延T2发送至服务小区。
其中,解耦小区发送的上行传输时延T2可以认为是本发明实施例所述的第一网络设备与终端设备之间的上行传输信息。在此场景下,第一网络设备为解耦小区提供服务,即为频点B对应的网络设备。第二网络设备为服务小区提供服务,即为频点A对应的网络设备。
504、服务小区收到来自解耦小区的上行传输时延T2,如果T2≠T1,则根据T2计算上行定时提前量TA2。
具体实现中,服务小区可以根据T2重新计算一个上行定时提前量TA2。
一种可能的实现方式中,也可以根据以下公式计算定时提前量的调整量ΔTA,并将该调整量发送给终端设备,使得终端设备根据ΔTA调整当前维护的上行定时提前量。例如,根据ΔTA调整TA1。计算ΔTA的具体公式参考如下:
Figure PCTCN2020080916-appb-000005
其中,μ表示子载波间隔系数,μ为大于等于1的整数,可以根据协议规定选取具体的取值,Tc表示采样间隔。
505、服务小区通过下行控制信息将上行定时提前量TA2发送至终端设备。
终端设备接收服务小区发送的上行定时提前量TA2之后,根据上行定时提前量TA2调整上行发送时序。终端设备调整上行发送时序之后,达到图6所示的信号接收效果。即解耦小区可以无损接收来自终端设备的上行信号,获取最大的解耦性能。服务小区提前接收来自终端设备的上行信息,上行传输性能有所损失。
506、服务小区对接收到的上行信号进行补偿处理。
具体实现中,由于终端设备根据上行定时提前量TA2调整了上行发送时序,导致服务小区上行接收信号受损。服务小区可以基于T1、T2的差值,对服务小区接收到的上行信号进行补偿修正,具体如下:
首先将时域信号Y(n)转化为频域信号Y(k);其中,n=0,1,…N-1,k=0,1,…P-1;时域信号Y(n)为所述终端设备在所述第二网络设备的频点上发送的上行信号;
另外,对将Y(k)进行补偿处理获得Z(k)=Y(k)×W Mk;其中,
Figure PCTCN2020080916-appb-000006
M为|T1-T2|对应的样本点数,T1为所述第一上行传输时延,T2为所述第二上行传输时延。
本发明实施例提供的方法中,根据解耦小区与终端设备之间的上行传输时延计算终端设备与解耦小区之间的上行定时调整量,使得终端设备解耦至解耦小区之后的上行传输的性能达到最佳。另外,服务小区接收终端设备发送的上行信号后,基于服务小区/解耦小区的上行传输时延偏差,对服务小区的上行测量结果进行补偿修正,最大程度地降低对服务小区上行传输性能的影响。相比于现有技术,本发明实施例提供的方法适用于当前协议版本单TA的约束,无需改变现有协议即可降低终端设备解耦之后造成的小区间信号时偏的影响。
本发明实施例还提供一种上行通信方法,如图7所示,所述方法包括以下步骤:
701、解耦小区、服务小区分别计算与终端设备之间的上行定时提前量TA1、TA2。
示例的,解耦小区接收终端设备在解耦小区的频点上发送的上行信号,通过对上行信号进行测量获得解耦小区与终端设备之间的上行传输时延,解耦小区还可以根据解耦小区与终端设备之间的上行传输时延计算解耦小区与终端设备之间的上行定时提前量TA1。
服务小区接收终端设备在服务小区的频点上发送的上行信号,通过对上行信号进行测量获得服务小区与终端设备之间的上行传输时延,服务小区还可以根据服务小区与终端设备之间的上行传输时延计算服务小区与终端设备之间的上行定时提前量TA2。
702、服务小区接收解耦小区发送的上行定时提前量TA2。
703、服务小区根据终端设备的上行业务信息、上行测量信号发送行为等信息,确定终端设备的上行定时提前量。
具体实现中,服务小区确定所述终端设备发送上行信号的频点;根据终端设备发送上行信号的频点,确定终端设备的上行定时提前量。步骤703服务小区确定的终端设备的上行定时提前量即本发明实施例所述的第一上行定时提前量,终端设备当前维护的上行定时提前量即本发明实施例所述的第二上行定时提前量。
示例的,如果服务小区确定终端设备将在服务小区的频点(如:频点A)发送上行信号,则确定TA1为终端设备的上行定时提前量。
如果服务小区确定终端设备将在解耦小区的频点(如:频点B)发送上行信号,则确定TA2为终端设备的上行定时提前量。
704、服务小区将步骤703确定的终端设备的上行定时提前量发送给终端设备。
终端设备在收到服务小区发送的上行定时提前量之后,根据该上行定时提前量调整上行发送时序。例如,终端设备根据TA1调整上行发送时序,使得服务小区无损接收终端设备发送的上行信号;或者,终端设备根据TA2调整上行发送时序,使得解耦小区无损接收终端设备发送的上行信号。
本发明实施例提供的方法中,可以根据终端设备实际的上行需求调整TA值,使得服务小区、解耦小区均可以无损接收用户上行信号。另外,本发明实施例提供的方 法适用于当前协议版本单TA的约束,无需改变现有协议即可降低终端设备解耦之后造成的小区间信号时偏的影响。
参考图8,有些终端设备接入了服务小区,有些终端设备在接入服务小区的同时,接入了解耦小区。对于同一个小区而言,可以将接入本小区的终端设备称为本小区终端设备,将接入相邻解耦小区的终端设备称为邻区解耦终端设备。一个小区可能同时收到来自本小区终端设备、邻区解耦终端设备的上行信号。对于本小区终端设备而言,通过配置TA值可以使得本小区所有终端设备的上行信号同时到达接收侧,本小区只需要根据TA确定一个接收时刻,在这个接收时刻就可以无损接收本小区接入的所有终端设备的上行信号。但是对于邻区解耦终端设备而言,由于其TA值可能是基于其归属邻区进行调整,因此本小区的TA调整它们的上行发送时序,可能使这些终端设备的上行信号到达当前小区的时刻并不是一致的,导致接收侧接收这些终端设备上行信号时产生损失。示例的,邻区解耦终端设备1上行信号提早到达当前小区,而邻区解耦终端设备2上行信号滞后到达当前小区,这两个终端设备在当前小区的上行信号接收都存在损失。
因此,本发明实施例还提供一种接收时刻调整方法,能够结合本小区终端设备的上行时延,计算最佳的上行接收时刻,使得包括本小区终端设备、邻小区终端设备在内的所有终端设备上行信号接收的整体损失最小。如图9所示,所述方法包括以下步骤:
901、获取目标小区的所有本小区终端设备、邻区解耦终端设备的上行传输时延。
示例的,目标小区下接入了50个终端设备,其中20个终端设备仅接入了目标小区,没有接入与目标小区相邻的解耦小区,这20个终端设备称为本小区终端设备;其余30个终端设备还接入了解耦小区,这30个终端设备称为邻区解耦终端设备。
假设所有本小区终端设备、邻区解耦终端设备信号到达目标小区的上行传输时延为T(k),k=0,1...N-1。其中,N为目标小区的所有本小区终端设备、邻区解耦终端设备的总数目,N个终端设备的上行传输时延分别为T(0)、T(1)…T(N-1)。另外,各个终端设备的T(k)的初始值均为0。
902、确定目标小区的所有本小区终端设备、邻区解耦终端设备的信号质量损失值。
具体地,目标小区接收每个终端设备的上行信号时,上行传输时延与信号质量损失值之间的关系满足L k(t)。其中,L(t)是以上行传输时延为自变量的函数,N个终端设备的信号质量损失值可以是L 0(t)、L 1(t)……L N-1(t)。
进而,所有终端设备的信号质量损失表达式为Allloss=Func(L k(t))。
其中,Func(…)函数表示所有终端设备信号质量损失的累加值,可以是线性累加,也可以是其它累加方式,本发明实施例不作具体约束。
903、计算上行传输时延的最小偏差值T min
具体地,假设第一时刻根据Allloss=Func(L k(t)),得到所有终端设备信号质量损失为Allloss_default。然后在一定的偏差范围(t1,t2)内,寻找使得Allloss最小的偏差值T min。其中,该偏差值指的是上行传输时延的偏差。需要说明的是,可以在不同的时刻对Func(L k(t))的一些参数进行调整,随着参数的改变,函数的结果也会改变。也就是说,在不同时刻,Func(L k(t))可以有不同的结果。在第一时刻,根据 Func(L k(t))可以得到所有终端设备信号质量损失X,当以第一时刻为基准调整时间偏差,根据Func(L k(t))可以得到不同的信号质量损失。示例的,在偏差值为T min,即第二时刻(等于第一时刻±T min)对函数的参数进行调整,得到终端设备信号质量损失Y。
具体地,可以对Func(L k(t))的一些参数进行随时间变化的滤波处理,也可能直接采用最近一次的参数,也可能采用较长时间内不变的参数,本发明实施例对此不做限制。
对于范围(t1,t2)内的每一个上行传输时延,例如T s,将所有终端设备的T(k)值更新为T(k)-T s,并重新计算Allloss。遍历所述可能的T s后,取使得Allloss最小的偏差值T s为上述T min。示例的,如果终端设备信号质量损失Y在所有可能的T s得到的信号质量损失中最小,则可以确定T min为上行传输时延的最小偏差值。
进一步,根据T min更新所有终端设备对应的T(k)值,并根据各个终端设备更新后的T(k)值重新计算所有终端设备信号质量损失值,即为Allloss -final。
904、如果Allloss -final<Allloss -default,则将目标小区的上行信号接收时刻调整T min
需要说明的是,T min可以是正值,也可以是负值。如果T min是正值,则将目标小区的上行信号接收时刻提前T min,如果T min是负值,则将目标小区的上行信号接收时刻推迟T min
需要说明的是,图9所示的方法中,由网络设备(如:基站)的基带单元来获取上行传输时延的获取,并将获取到的时延发送到网络设备的调度单元。调度单元获取到所有终端设备的上行传输时延信息后,执行后续的计算,并得到最佳的时延调整量,即本发明实施例所述的最小偏差值T min。调度单元还可以将时延调整量换算成终端设备可识别的调整量,并下发至终端设备。
参考图10,本发明实施例提供的方法通过计算所有邻区解耦终端设备的上行时延,结合本小区接入终端设备的上行时延,计算最佳的上行接收时刻,使得所有终端设备上行信号接收的整体损失最小。在图8中,服务小区终端设备1的上行信号可以被无损接收,邻区解耦终端设备1上行信号提早到达当前小区,而邻区解耦终端设备2上行信号滞后到达当前小区,这两个解耦终端设备在当前小区的上行信号接收都存在损失。再根据本发明实施例提供的方法调整上行接收时刻之后,邻区解耦终端设备2的上行信号可以被无损接收,虽然服务小区终端设备1、解耦小区终端设备3发送的上行信号还有一些损失,但是服务小区终端设备1、邻区解耦终端设备2、解耦小区终端设备3的整体信号损失相比图8下降了,保证了通信系统的整体性能。
在采用对应各个功能划分各个功能模块的情况下,图11示出上述实施例中所涉及的通信装置的一种可能的结构示意图。所示通信装置可以是服务小区的网络设备,如服务小区的基站。如图11所示,通信装置包括处理单元1101以及通信单元1102。
处理单元1101,用于支持该通信装置执行上述实施例中的步骤401,步骤501、步骤504、步骤506、步骤701、以及步骤703,和/或用于本文所描述的技术的其它过程。
通信单元1102,用于支持该通信装置执行上述实施例中的步骤402、步骤502、步骤503、步骤505、步骤702以及步骤704,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图12所示。在图12中,该通信装置包括:处理模块1201和通信模块1202。处理模块1201用于对通信装置的动作进行控制管理,例如,执行上述处理单元1101执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1202用于执行上述通信单元1102执行的步骤,支持通信装置与其他设备之间的交互,例如,用于支持服务小区与解耦小区、终端设备之间的交互。如图12所示,通信装置还可以包括存储模块1203,存储模块1203用于存储通信装置的程序代码和数据。
当处理模块1201为处理器,通信模块1202为收发器,存储模块1203为存储器时,通信装置为图3所示的通信装置。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将数据库访问装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据库访问装置和方法,可以通过其它的方式实现。例如,以上所描述的数据库访问装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,数据库访问装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种上行通信方法,其特征在于,包括:
    确定终端设备与第一网络设备之间的第一上行定时提前量;所述第一网络设备为所述终端设备所处服务小区提供服务;或,所述第一网络设备为所述终端设备所处解耦小区提供服务;
    向所述终端设备发送所述第一上行定时提前量,指示所述终端设备根据所述第一上行定时提前量调整上行信号的发送时序。
  2. 根据权利要求1所述的方法,其特征在于,所述确定终端设备与第一网络设备之间的第一上行定时提前量,具体包括:
    获取所述第一网络设备与所述终端设备之间的上行传输时延;
    根据所述终端设备与所述第一网络设备之间的上行传输时延计算所述第一上行定时提前量。
  3. 根据权利要求2所述的方法,其特征在于,所述获取所述第一网络设备与所述终端设备之间的上行传输时延,包括:
    接收所述第一网络设备发送的所述上行传输时延;或,
    测量所述终端设备发送的上行信号获得所述上行传输时延。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述确定终端设备与第一网络设备之间的第一上行定时提前量之前,所述方法还包括:
    确定所述终端设备发送上行信号的频点为所述第一网络设备的频点。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,若所述第一网络设备为所述终端设备所处解耦小区提供服务,所述方法还包括:
    服务小区接收所述终端设备发送的上行信号;所述终端设备发送上行信号的定时提前量为所述第一上行定时提前量;
    根据第一上行传输时延与第二上行传输时延的差值对接收到的上行信号进行补偿处理;其中,第一上行传输时延为所述终端设备与所述服务小区之间的上行传输时延,第二上行传输时延为所述终端设备与所述解耦小区之间的上行传输时延。
  6. 根据权利要求5所述的方法,其特征在于,所述根据第一上行传输时延与第二上行传输时延的差值对接收到的上行信号进行补偿处理,包括:
    将时域信号Y(n)转化为频域信号Y(k);其中,n=0,1,…N-1,k=0,1,…P-1;其中,时域信号Y(n)为所述接收到的上行信号,所述N为所述时域信号Y(n)转化为离散数字信号后包括的样本点数,所述P为所述频域信号Y(k)包括的样本点数;
    对将Y(k)进行补偿处理获得Z(k)=Y(k)×W Mk;其中,
    Figure PCTCN2020080916-appb-100001
    M为所述时域信号Y(n)在|T1-T2|时长内对应的样本点数,T1为所述第一上行传输时延,T2为所述第二上行传输时延。
  7. 一种通信装置,其特征在于,包括:
    处理单元,用于确定终端设备与第一网络设备之间的第一上行定时提前量;所述第一网络设备为所述终端设备所处服务小区提供服务;或,所述第一网络设备为所述终端设备所处解耦小区提供服务;
    通信单元,用于向所述终端设备发送所述第一上行定时提前量,指示所述终端设 备根据所述第一上行定时提前量调整上行信号的发送时序。
  8. 根据权利要求7所述的通信装置,其特征在于,所述处理单元具体用于,获取所述第一网络设备与所述终端设备之间的上行传输时延;根据所述终端设备与所述第一网络设备之间的上行传输时延计算所述第一上行定时提前量。
  9. 根据权利要求8所述的通信装置,其特征在于,所述通信单元还用于,接收所述第一网络设备发送的所述上行传输时延;或,
    所述处理单元还用于,测量所述终端设备发送的上行信号获得所述上行传输时延。
  10. 根据权利要求7-9任一项所述的通信装置,其特征在于,所述处理单元确定终端设备与第一网络设备之间的第一上行定时提前量之前,确定所述终端设备发送上行信号的频点为所述第一网络设备的频点。
  11. 根据权利要求7-10任一项所述的通信装置,其特征在于,若所述第一网络设备为所述终端设备所处解耦小区提供服务,所述通信单元还用于,接收所述终端设备发送的上行信号;所述终端设备发送上行信号的定时提前量为所述第一上行定时提前量;
    所述处理单元还用于,根据第一上行传输时延与第二上行传输时延的差值对接收到的上行信号进行补偿处理;其中,第一上行传输时延为所述终端设备与所述服务小区之间的上行传输时延,第二上行传输时延为所述终端设备与所述解耦小区之间的上行传输时延。
  12. 根据权利要求11所述的通信装置,其特征在于,所述处理单元具体用于,
    将时域信号Y(n)转化为频域信号Y(k);其中,n=0,1,…N-1,k=0,1,…P-1;其中,时域信号Y(n)为所述接收到的上行信号,所述N为所述时域信号Y(n)转化为离散数字信号后包括的样本点数,所述P为所述频域信号Y(k)包括的样本点数;
    对将Y(k)进行补偿处理获得Z(k)=Y(k)×W Mk;其中,
    Figure PCTCN2020080916-appb-100002
    M为所述时域信号Y(n)在|T1-T2|时长内对应的样本点数,T1为所述第一上行传输时延,T2为所述第二上行传输时延。
  13. 一种通信装置,其特征在于,用于实现权利要求1-6任一项所述的上行通信方法。
  14. 一种通信装置,其特征在于,包括至少一个处理器以及存储器,所述至少一个处理器与所述存储器耦合,所述至少一个处理器用于实现权利要求1-6任一项所述的上行通信方法。
PCT/CN2020/080916 2019-03-28 2020-03-24 一种上行通信方法及通信装置 WO2020192657A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910245790.2 2019-03-28
CN201910245790.2A CN111756472B (zh) 2019-03-28 2019-03-28 一种上行通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2020192657A1 true WO2020192657A1 (zh) 2020-10-01

Family

ID=72609634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080916 WO2020192657A1 (zh) 2019-03-28 2020-03-24 一种上行通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN111756472B (zh)
WO (1) WO2020192657A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412505B2 (en) * 2019-08-30 2022-08-09 Qualcomm Incorporated Techniques for a scheduled entity to adjust timing in wireless networks

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150931A (zh) * 2021-03-31 2022-10-04 华为技术有限公司 上行同步方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496405A (zh) * 2015-11-30 2018-09-04 瑞典爱立信有限公司 用于配置集群的方法和装置
CN108834211A (zh) * 2018-04-23 2018-11-16 中国科学院自动化研究所 一种基于5g通信网络的定时调整方法及系统
CN109005585A (zh) * 2017-06-06 2018-12-14 华为技术有限公司 发送上行信息的方法和装置
US10219296B2 (en) * 2016-12-07 2019-02-26 Telefonaktiebolaget Lm Ericsson (Publ) Decoupled downlink reception and uplink reception in a mixed licensed carrier and unlicensed carrier wireless communication system
CN109451463A (zh) * 2018-11-22 2019-03-08 中通服咨询设计研究院有限公司 一种基于5g网络的电动自行车防盗系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740447B (zh) * 2011-04-13 2016-05-25 华为技术有限公司 确定定时提前量的方法、终端设备和网络侧设备
CN103517314A (zh) * 2012-06-27 2014-01-15 华为技术有限公司 无线资源管理方法、基站及终端
US20140241272A1 (en) * 2013-02-25 2014-08-28 Qualcomm Incorporated Interface between low power node and macro cell to enable decoupled uplink and downlink communication
US9455772B2 (en) * 2013-06-28 2016-09-27 Huawei Technologies Co., Ltd. System and method for network uplink measurement based operation using UE centric sounding
WO2018029349A1 (en) * 2016-08-11 2018-02-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Latency reduction in tdd systems with carrier aggragation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496405A (zh) * 2015-11-30 2018-09-04 瑞典爱立信有限公司 用于配置集群的方法和装置
US10219296B2 (en) * 2016-12-07 2019-02-26 Telefonaktiebolaget Lm Ericsson (Publ) Decoupled downlink reception and uplink reception in a mixed licensed carrier and unlicensed carrier wireless communication system
CN109005585A (zh) * 2017-06-06 2018-12-14 华为技术有限公司 发送上行信息的方法和装置
CN108834211A (zh) * 2018-04-23 2018-11-16 中国科学院自动化研究所 一种基于5g通信网络的定时调整方法及系统
CN109451463A (zh) * 2018-11-22 2019-03-08 中通服咨询设计研究院有限公司 一种基于5g网络的电动自行车防盗系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412505B2 (en) * 2019-08-30 2022-08-09 Qualcomm Incorporated Techniques for a scheduled entity to adjust timing in wireless networks

Also Published As

Publication number Publication date
CN111756472A (zh) 2020-10-09
CN111756472B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
BR112019011295A2 (pt) método de configuração de recurso e aparelho, equipamento de usuário, dispositivo de rede e armazenamento legível por computador
WO2021027761A1 (en) Method and apparatus for determining transmit power
WO2020192657A1 (zh) 一种上行通信方法及通信装置
CN114026926A (zh) 时延补偿方法、设备及存储介质
WO2020019333A1 (zh) 异频测量时延确定方法、装置及存储介质
WO2022154820A1 (en) Method for delay spread acquisition for ta validation
EP4044716B1 (en) Method and apparatus for determining measurement gap, and terminal device
WO2020029873A1 (zh) 通信方法、装置和通信系统
WO2021072654A1 (zh) 一种参考时钟的确定方法及装置、终端设备、网络设备
KR20220047603A (ko) 타이밍 동기화 방법 및 장치
WO2020073258A1 (zh) 一种同步指示方法、终端设备及网络设备
WO2015017977A1 (zh) 一种umts到lte的网络切换方法、设备及系统
US11425759B2 (en) Method for link reconfiguration and terminal device
EP3618498A1 (en) Method for processing measurement information, terminal and access network node
EP4150364A1 (en) Positioning timing measurement procedure under timing offset change
WO2021097726A1 (zh) 确定时间戳的方法、终端设备、接入网节点、核心网设备
WO2022188437A1 (zh) 信息处理方法、装置及存储介质
WO2022083574A1 (zh) Tsn参考时间的时延补偿方法、装置及设备
US20230105265A1 (en) Rtt measurement procedure based on dl and ul reference signal relations
US20230076690A1 (en) Random access channel (prach) signal transmission method and device
WO2020134897A1 (zh) 随机接入方法、装置、系统及存储介质
WO2016090644A1 (zh) 装置、通信系统及基站协同管理方法
TW202017428A (zh) 一種鏈路恢復過程的處理方法及裝置、終端
EP3912410A1 (en) Network node and method performed therein for handling baseband resources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777605

Country of ref document: EP

Kind code of ref document: A1