WO2016090644A1 - 装置、通信系统及基站协同管理方法 - Google Patents

装置、通信系统及基站协同管理方法 Download PDF

Info

Publication number
WO2016090644A1
WO2016090644A1 PCT/CN2014/093731 CN2014093731W WO2016090644A1 WO 2016090644 A1 WO2016090644 A1 WO 2016090644A1 CN 2014093731 W CN2014093731 W CN 2014093731W WO 2016090644 A1 WO2016090644 A1 WO 2016090644A1
Authority
WO
WIPO (PCT)
Prior art keywords
capability value
rru
pull
remote
distance
Prior art date
Application number
PCT/CN2014/093731
Other languages
English (en)
French (fr)
Inventor
王珏平
蔡华
李琼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480033990.7A priority Critical patent/CN105900526B/zh
Priority to PCT/CN2014/093731 priority patent/WO2016090644A1/zh
Publication of WO2016090644A1 publication Critical patent/WO2016090644A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a device, a communication system, and a base station collaborative management method.
  • the cloud-radio access network is a new type of radio access network architecture based on the current network conditions and technological advancement. It consists of three parts: the remote radio module (RRU, remote). Radio unit) and antenna, cloud digital unit (Cloud DU, cloud digital unit), and transmission network connecting RRU and Cloud DU.
  • the Cloud DU refers to a collection of multiple digital units (DUs) and data exchange through a switch to achieve centralized use of baseband processing resources.
  • cooperative communication between base stations can be achieved to obtain a better cell edge user experience and increase network capacity.
  • the distributed C-RAN is a type of C-RAN.
  • the DU, the RRU, and the switch can be arranged in different geographical locations, that is, the baseband board in the DU supports the DU to the switch. Pull a certain distance and support RRU to DU to a certain distance.
  • the RRU pull-out capability value and the DU pull-out capability value supported by the baseband board in the DU are static configurations, and the specific value of the configuration is limited by the data processing capability of the baseband board, if the pre-configured RRU pull-out capability value is Too small, when the actual distance of the RRU exceeds the configuration value of the RRU pull-out capability value, the RRU cannot access the corresponding DU, and the DU cannot perform cooperative communication.
  • the embodiment of the invention provides a device and a base station collaborative management method, which can improve the access rate of the RRU accessing the DU in the distributed C-RAN.
  • the embodiment of the invention also provides a communication system.
  • an embodiment of the present invention provides an apparatus, which is applied to a C-RAN, where the C-RAN includes a first DU and a second DU respectively connected to a switch, and the first DU and at least one The RRU is connected, and the device includes: a distance obtaining module, configured to acquire an actual distance between each of the RRUs and the first DU; and a remote capability setting module, configured to: when the RRU is actually extended When the distance is greater than the first pull-out capability value, the pull-out capability value of the RRU that is actually greater than the first pull-out capability value is set to a second pull-out capability value, where the first pull-out capability value refers to And supporting a maximum distance of the first DU to participate in inter-base station cooperative communication to the first DU; a timing adjustment module, configured to adjust a timing of the first DU and the second remote capability The value corresponds to the RRU that the actual extended distance is greater than the first remote capability value, and the second remote capability value is greater than the actual extended
  • the remote capability setting module is further configured to: when the actual distance of the RRU is less than or equal to the first pull capability value, the actual pull The remote capability value of the RRU that is less than or equal to the first remote capability value is set to the first remote capability value, and the timing adjustment module is further configured to adjust the timing of the first DU Corresponding to the first pull capability value, so that the RRU accesses the first DU and the first DU participates in inter-base station cooperative communication.
  • the second possible implementation of the first aspect In the current mode, the first DU participates in inter-base station cooperative communication, and the first DU performs cooperative data exchange with the second DU, and the collaborative data is used in at least one of the following processing modes: uplink coordinated multi-point transmission, Joint scheduling, carrier aggregation.
  • the timing adjustment module is configured to adjust a timing of the first DU to correspond to the first remote capability value, where Adjusting the step of processing baseband data in the baseband of the first DU and delay allocation, so that the coordinated data is sent to the second DU, and processed synchronously with other service data received by the second DU,
  • the collaborative data and the other service data are service data related to the same user equipment.
  • the distance acquiring module is specifically configured to perform a common public radio interface (CPRI) between the RRU and the first DU.
  • CPRI common public radio interface
  • the fifth possible implementation manner of the first aspect further includes: a remote capability value obtaining module, configured to determine, according to the baseband processing resource of the first DU, the first pull The far capability value and the second pull capability value.
  • the remote capability value obtaining module is further configured to: establish the calculated first remote capability value and the A lookup table for the second pull capability value.
  • an embodiment of the present invention provides a communication system, including a first DU and a second DU respectively connected to a switch, where the first DU is connected to at least one RRU, and the communication system further includes a a device, the device being connected to the first DU, or the device being disposed in the first DU,
  • the device is configured to obtain an actual distance between each of the RRUs and the first DU; when the actual distance of the RRU is greater than the first distance, the actual distance is greater than
  • the remote capability value of the RRU of the first remote capability value is set to a second remote capability value, where the first remote capability value refers to an inter-base station that supports the first DU to participate in the C-RAN. Coordinating the maximum distance of the RRU to the first DU; adjusting the timing of the first DU to correspond to the second remote capability value, so that the actual distance is greater than the first distance
  • the RRU of the capability value accesses the first DU, wherein the second pull capability value is greater than the actual zoom distance.
  • the device is further configured to: when the actual distance is less than or equal to the first pull capability value, send the RRU to the first The pull-out capability value of the DU is set to the first pull-out capability value, and the timing of adjusting the first DU corresponds to the first pull-out capability value, so that the RRU accesses the first DU And the first DU participates in inter-base station cooperative communication.
  • an embodiment of the present invention provides a base station collaborative management method, which is applied to In the distributed C-RAN, the C-RAN includes a first DU and a second DU respectively connected to the switch, and the first DU is connected to at least one RRU, and the method includes: acquiring each of the RRUs The actual distance between the first DU and the first DU; when the actual distance of the RRU is greater than the first distance, the distance of the RRU that is actually greater than the first distance capability is The value is set to a second pull capability value, where the first pull capability value refers to the RRU that supports the inter-base station cooperative communication of the first DU to participate in the C-RAN to the first DU The maximum distance of the first DU is adjusted, and the timing of adjusting the first DU corresponds to the second remote capability value, so that the RRU whose actual distance is greater than the first remote capability value is accessed by the first DU.
  • the second distance capability value is greater than the actual distance.
  • the method further includes: when the actual distance is less than or equal to the first pull capability value, sending the RRU to the first DU
  • the pull capability value is set to the first pull capability value, and the timing of adjusting the first DU corresponds to the first pull capability value, so that the RRU accesses the first DU and the The first DU participates in inter-base station cooperative communication.
  • the first DU participating in inter-base station cooperative communication includes: performing, by the first DU, the second DU Cooperative data exchange, the collaborative data is used in at least one of the following processing modes: uplink coordinated multi-point transmission, joint scheduling, carrier aggregation.
  • the adjusting the timing of the first DU corresponds to the first remote capability value, including: adjusting Step of processing baseband data inside the baseband board in the first DU And delaying allocation, so that the collaborative data is sent to the second DU, and is processed in synchronization with other service data received by the second DU, wherein the collaborative data is compared with the other service data.
  • the obtaining an actual distance between the RRU and the first DU includes: The common public radio interface CPRI between the RRU and the first DU performs transmission delay measurement, and the actual extended distance is obtained according to the transmission delay measurement result.
  • the first remote capability value and the second remote capability value are used by the first DU Baseband processing resources are determined.
  • the first remote capability value and the second remote capability value are used by the first DU
  • the method further includes: establishing the calculated first remote capability value and the second A lookup table that pulls the ability value.
  • the technical solution provided by the embodiment of the present invention is applied to the networking scenario of the distributed C-RAN, and the actual distance between the RRU and the corresponding accessed DU is compared with the first remote capability value of the RRU. Adjusting the timing of the DU to correspond to the first pull-out capability value or the second pull-out capability value, to ensure normal access of the RRU, and improve the access rate of the RRU in the networking scenario; When the capability value is extended, the DU can participate in cooperative communication between the base stations to obtain synergistic benefits.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for cooperatively managing a base station according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of obtaining a first remote capability value and a second remote capability value according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a base station cooperative management apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another base station cooperative management apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • the base station described in the embodiment of the present invention includes a DU and an RRU for signal transceiving connected to the DU.
  • a base station can manage at least one cell and interact with other neighboring base stations through the transmission network.
  • the foregoing base station may be an eNodeB (evolved Node B).
  • the site described in the embodiment of the present invention refers to a geographical location where the base station device such as the e-NodeB is located. It can be understood that the DU may be located on the site, and the RRU may be located on the site or disposed in a geographical location away from the site.
  • the DU described in the embodiment of the present invention refers to a device having a baseband processing function, where the baseband processing function includes Layer 1 (L1), Layer 2 (L2), and Layer 3 (Layer 3) for the LTE protocol stack.
  • L3 Data processing of the part, wherein layer 1 refers to the physical layer, which involves data processing such as coding, modulation, and multi-antenna mapping, and layer 2 refers to the medium access control (MAC) layer, which involves uplink and downlink data scheduling. Data processing such as logical channel is provided, and layer 3 refers to a radio link control (RLC) layer, which involves data retransmission and provides data processing such as radio bearer.
  • the above DU can also provide a variety of communication interfaces.
  • the baseband board is included in the DU, and the baseband board of the LTE system is taken as an example, and usually has all of them.
  • the processing function of L1 and the processing function of all L2 or part L2.
  • the DU in the embodiment of the present invention may also be referred to as a baseband unit (BBU).
  • BBU baseband unit
  • FIG. 1 is a schematic diagram of a distributed C-RAN architecture applicable to an embodiment of the present invention.
  • the first DU and the second DU are respectively connected to the switch through the optical fiber; the first DU is connected to the first RRU through the optical fiber, and the second DU is connected to the second RRU through the optical fiber.
  • the first DU is separated from the switch by X kilometers (km), and the second DU is separated from the switch Xkm, that is, the first DU and the second DU are respectively extended by Xkm; the first RRU is separated from the first DU by Ykm, and the second RRU is separated by the second DU.
  • Ykm that is, the first RRU and the second RRU are respectively extended by Ykm.
  • the first RRU may receive a signal of a user equipment (UE) in the first cell (cell1) through the radio link, and the first RRU performs a radio frequency processing on the signal of the UE to obtain a digital signal and sends the signal to the first DU.
  • the second RRU may receive the signal of the UE in the second cell (cell2) through the radio link, and the second RRU performs radio frequency processing on the signal of the UE.
  • the digital signal is obtained and sent to the second DU, and the digital signal is subjected to baseband processing by the second DU to obtain service data, that is, the first DU can manage cell1, and the second DU can manage cell2.
  • first DU, the second DU, the first RRU, the second RRU, and the like appearing in the embodiment of the present invention are only used for the purposes of illustration and differentiation, and there is no order, and does not represent the device in the embodiment of the present invention.
  • the particular limitation of the number does not constitute any limitation to the embodiments of the invention.
  • each DU can manage multiple In the cell
  • each RRU connected to the DU can also send and receive signals of multiple cells, which is not limited in this embodiment of the present invention.
  • the distributed C-RAN networking scenario shown in the embodiment of the present invention may include more than two DUs, and each DU may be connected to two or more RRUs.
  • one DU can be connected to the RRUs of multiple base stations, that is, the DU can serve as a baseband processing device shared by multiple base stations.
  • the interface type between the RRU and the DU is a baseband-radio frequency (BB-RF) interface, for example, a common public radio interface (CPRI), an open base station architecture plan (OBSAI, open base). Station architecture initiative) interface.
  • CPRI common public radio interface
  • OBSAI open base station architecture plan
  • Station architecture initiative The embodiment of the present invention takes CPRI as an example for description.
  • embodiments of the present invention may also be applied to other BB-RF interfaces than CPRI.
  • the data interface between the DU and the switch can be an eX2 interface.
  • the RRU can be The value of the remote capability of the DU and the value of the remote capability of the DU to the switch are set to a fixed value, that is, the maximum distance of the remotely configured RRU or DU in different networking scenarios.
  • the RRU may need to be extended a long distance to ensure the transmission and reception of signals in the edge area of the cell.
  • the first RRU or the second RRU cannot access the corresponding DU, which affects the normal operation of the system.
  • FIG. 2 is a schematic flowchart of a base station collaborative management method according to an embodiment of the present invention.
  • the base station cooperative management method can be applied to the distributed C-RAN networking scenario shown in FIG. 1, and the method can be performed by the DU or by a separate device that directly or indirectly communicates with the DU.
  • the method includes steps S201-S204:
  • S201 Acquire an actual distance between each RRU that accesses the first DU and the first DU.
  • the method for obtaining the actual distance of the RRU may be: measuring a transmission delay between the CPRI between the RRU and the first DU, and acquiring the actual distance according to the transmission delay measurement result.
  • the specific method for measuring the transmission delay is not specifically limited in the embodiment of the present invention.
  • the transmission delay of the CPRI may be obtained by using the time difference between the time of the superframe header of the test DU signal and the superframe header of the RRU receiving the signal. It is understood by those skilled in the art that other methods may be used to measure the transmission delay of the CPRI. The above examples do not constitute any limitation on the embodiments of the present invention.
  • the actual transmission distance of the RRU can be obtained by multiplying the obtained transmission delay by the transmission rate of the signal on the optical fiber between the DU and the RRU.
  • the transmission rate supported by the CPRI includes 2.4576 Gbps, 6.144 Gbps, 9.8304 Gbps, etc., and the actual transmission rate may be determined by the performance and transmission bandwidth of the optical fiber, which is not specifically limited in this embodiment of the present invention.
  • Step S202 Comparing the obtained actual distance and the first distance capability value of the RRU, when the actual distance is less than or equal to the first distance capability value, performing step S203, when the actual When the distance is greater than the first distance capability value, the step is executed. Step S204.
  • the first remote capability value refers to a maximum distance that the DU supports the maximum distance of the RRU supported by the DU in the C-RAN.
  • the first pull-out capability value may be calculated by weighting the weighted sum value of the DU to the switch and the pull-out capability value of the DU when the DU can participate in inter-base station cooperative communication.
  • the weighted sum of the remote capability values refers to the weighted sum of the RRU remote capability value and the DU remote capability value supported by the DU.
  • the remote demand value of the DU to the switch refers to the DU that can participate in the inter-base station cooperative communication. The maximum distance to the switch.
  • the weighted sum value and the extended demand value of the above-mentioned remote capability value can be configured as a fixed value, and the unit is generally kilometers (km). It can be understood that the above fixed value can be pre-configured. of.
  • Inter-base station cooperative communication refers to the transmission of coordinated data between the DUs of each station through the switch, and thus can perform coordinated multi-node transmission (CoMP), joint-scheduling, or carrier aggregation ( CA, carrier aggregation) and other processes.
  • the coordinated data is part of the service data obtained by the DU corresponding to the coordinated cell of the UE to obtain the signal of the UE, and the DU corresponding to the serving cell of the UE performs baseband processing on the coordinated data and other service data of the UE. It can be understood that the above collaborative data and other service data are service data related to the same UE.
  • the signal coverage areas of cell1 and cell2 overlap, and the UE in the edge area of the two cells can use one of the cells as the serving cell and the other cell as the coordinated cell, passing the first DU and the second.
  • Cooperative communication between DUs provides better signal coverage for the UE.
  • the UE can establish uplink and downlink communication links with RRUs of multiple sites, thereby effectively expanding signal coverage, realizing efficient use of spectrum resources, and improving system average. Throughput, optimize the overall performance of the collaborative system, especially to improve the data transmission rate of the cell edge users.
  • S203 Set the pull-out capability value of the RRU to the first DU to the first pull-out capability value, and adjust the timing of the first DU to correspond to the first pull-out capability value, so that the RRU accesses the first The DU and the first DU participate in inter-base station cooperative communication in the C-RAN.
  • the S203 may further include: setting a pull-out capability value of the first DU to the switch to a remote demand value.
  • the first DU and the second DU may be performed.
  • the first DU receives the signal sent by the UE in the cell1, for example, the voice signal, and the first DU is processed as the service data, and then transmitted to the second DU through the switch, where the part of the service data is sent by the second DU. Synchronizing with other service data of the UE received through the second RRU.
  • the sequence of the DU refers to the sequence and delay of the baseband processing of the signal of the received UE by the DU, and specifically includes the steps of stepping and delaying the processing of the baseband data by the functional units or function modules in the baseband board in the DU. Then the timing of the DU can also be used as the timing of the baseband board in the DU. The timing at which the DU begins baseband processing of the signal determines the timing of the DU.
  • the application scenario shown in FIG. 1 is taken as an example to illustrate the relationship between the timing of the DU and the distance traveled by the RRU. It is assumed that cell1 is a coordinated cell of a certain UE, and cell2 is a serving cell of the UE, Generally, the UE is in an edge region of the above two cells.
  • the processing delay of the uplink signal passing through the RRU in the radio frequency processing is recorded as t1, and the uplink digital signal obtained after the processing is obtained.
  • the CPRI of the first RRU reaches the first DU, and the CPRI transmission delay is recorded as t2.
  • the first DU performs baseband processing on the uplink digital signal to obtain service data, and transmits the data to the second DU through the switch, and the service data is sent from the first DU.
  • the delay transmitted to the second DU is t3.
  • This part of the business data is collaborative data.
  • the timing of the baseband board can be changed by adjusting the time point at which the DU starts the baseband processing of the signal to adapt to different scene requirements.
  • the adjusting the timing of the first DU to correspond to the first remote capability value includes: advancing or delaying a time point at which the baseband board in the first DU starts to perform baseband processing on the signal sent by the UE, to compensate the signal.
  • the adjustment amount of the timing of the DU may be determined by a difference between a CPRI transmission delay between the first DU and the RRU measured in S201 and a CPRI transmission delay corresponding to the first remote capability value.
  • the first pull-out capability value corresponds to the maximum distance that the first DU can participate in the RRU of the inter-base station cooperative communication, it can be understood that if the RRU is actually pulled to the first pull-out capability value, the overall collaborative data
  • the processing delay can be matched with the processing delay of other service data. Therefore, the timing of the first DU is adjusted based on the CPRI transmission delay corresponding to the first remote capability value, so that the first DU participates in inter-base station coordination.
  • timing initial values can be configured in the DU.
  • the timing initial value may be continuously used as the timing of the DU, and no adjustment is needed; when the initial value of the timing does not correspond to the first remote capability value, then The timing at which the adjustment DU is performed is the same as the timing value corresponding to the first pull-out capability value.
  • S204 Set a pull capability value of the RRU to the first DU to a second pull capability value, and adjust a timing of the first DU to correspond to the second pull capability value, so that the RRU accesses the first DU. .
  • the second remote capability value refers to a maximum distance that allows the RRU to access the DU and perform normal data transmission in a scenario in which the DUs of the access switch perform inter-base station coordination.
  • the distributed C-RAN is equivalent to a common base station scenario, and the data interface between the DU and the switch does not start in the scenario, that is, the service is not sent or received. data.
  • the DU of each base station in the scene The inter-base station cooperative communication will not be possible, but the RRU can be normally accessed to the corresponding DU for data transmission without affecting the basic functions of the DU.
  • the S204 may further include: setting a pull capability value of the first DU to the switch to be zero. Since the DU does not actually zoom out in the scenario, setting the remote capability value of the DU to zero can save the baseband processing resources of the DU.
  • the embodiment of the present invention further provides a method for obtaining a first pull capability value and a second pull capability value, as shown in FIG. 3 .
  • S301 Set, according to the baseband processing resource of the first DU, a weighted sum of the remote capability values of the first DU, and set a first DU to the switch required for the first DU to participate in inter-base station cooperative communication in the C-RAN. Far demand value.
  • the weighted sum of the remote capability values and the remote demand value may be fixed values that are preset, and do not change according to the network scenario in which the DU is actually applied. Wherein, when the DU is applied to the C-RAN, the actual distance between the first DU and the switch can be designed according to the above-mentioned demand value.
  • z is a weighted sum of the pull-out capability values of the first DU obtained according to the upper limit of the baseband processing resources of the first DU, where k is a weighting coefficient, k>0, optionally, the value of k may be 2; y1 is the first pull-out capability value, and x is the pull-out demand value of the first DU to the switch, z>x>0.
  • y2 is the second pull-out capability value
  • z is the weighted sum of the pull-out capability values of the first DU.
  • steps S302-S303 can be performed in the above-mentioned order.
  • the execution order may be exchanged, or may be performed at the same time, which is not limited in the embodiment of the present invention.
  • S304 Establish a lookup table including the calculated first pull capability value y1 and the second pull capability value y2, as shown in Table 1.
  • y1, y2, and x are actual values, and the values are related to the networking requirements and the baseband processing resources of the DU.
  • Different application scenarios may use different lookup tables or the same. Lookup table. Table 1 is for illustrative purposes only and does not constitute any limitation on the embodiments of the present invention.
  • the first distance capability value and the second distance capability value may also be directly based on
  • the baseband processing resource of the baseband board in the DU is set and configured in the form of the above lookup table.
  • the pull-out capability value of the first RRU to the first DU is the first pull-out capability value y1
  • the pull-out capability value of the first DU to the switch is the above-mentioned remote demand
  • the timing of the DU corresponds to y1 and x, so that the first DU can be sent to the coordinated data of the second DU through the switch, and the other service data of the same UE received by the second DU can be synchronized by the second DU.
  • the cooperative data and other service data have the same transmission delay, so that the first DU can participate in cooperative communication between the base stations.
  • the timing of the baseband board of the DU corresponds to y2. Since y2 is greater than the farthest distance allowed by the DU to participate in cooperative communication between the base stations, that is, y2>y1, the first DU cannot participate in inter-base station cooperative communication, but does not affect the access of the RRU.
  • a lookup table including an adaptation rule of the RRU pull-out capability value and the actual extended distance and a corresponding adaptation conclusion may be established, as shown in Table 2.
  • the lookup table can be applied to access all the RRUs of a certain DU, so that after obtaining the actual distance of the RRU, the RRU's remote capability value and the corresponding baseband board timing can be adjusted in time to save computing resources and improve. Program execution efficiency.
  • the following is an example to illustrate the implementation process of the foregoing base station cooperative management method: in a distributed C-RAN networking scenario, according to the baseband processing resources of the DU and the networking requirements, set the remote capability value supported by the baseband board in the DU.
  • the timing of the baseband board is set to correspond to y1.
  • the RRU normally accesses the DU, and the DU can participate in cooperative communication between the base stations; if Y>10km, the timing of the baseband board of the DU is set to correspond to y2. At this time, the RRU normally accesses the DU, but the distributed C-RAN is equivalent to a common base station scenario, and cooperative communication cannot be performed between the DUs.
  • the base station cooperative management method provided by the embodiment of the present invention is applied to a distributed C-RAN networking scenario, and the actual distance between the RRU and the corresponding accessed DU is compared with the first remote capability value of the RRU.
  • the timing of adjusting the baseband board of the DU corresponds to the first pull-out capability value or the second pull-out capability value to ensure normal access of the RRU; and when the pull-out capability value of the DU is the first pull-out capability value,
  • the DU can participate in inter-base station cooperative communication and obtain synergistic benefits.
  • FIG. 4 is a schematic structural diagram of an apparatus according to an embodiment of the present invention.
  • the apparatus may be applied to the distributed C-RAN networking scenario shown in FIG.
  • the distance obtaining module 401 is configured to obtain an actual distance between each RRU that accesses the first DU and the first DU.
  • the distance obtaining module 401 is specifically configured to perform transmission delay measurement on the common public radio interface CPRI between the RRU and the first DU, and obtain the actual extended distance according to the transmission delay measurement result.
  • CPRI common public radio interface
  • the remote capability setting module 402 is configured to set the remote capability value of the RRU whose actual distance is greater than the first distance capability value to the second distance when the actual distance of the RRU is greater than the first distance capability value.
  • the capability value where the first remote capability value refers to a maximum distance that the RRU that supports the first DU participates in inter-base station cooperative communication to the first DU.
  • the timing adjustment module 403 is configured to adjust the timing of the first DU to correspond to the second remote capability value, so that the RRU whose actual distance is greater than the first remote capability value accesses the first DU Wherein the second pull-out capability value is greater than the actual pull-out distance.
  • the remote capability setting module 402 is further configured to: when the actual distance of the RRU is less than or equal to the first distance capability value, the actual distance is less than or equal to the first The pull-out capability value of the RRU of a pull-out capability value is set to the first And the timing adjustment module 403 is further configured to: adjust a timing of the first DU to correspond to the first remote capability value, so that the RRU accesses the first DU and the The first DU participates in inter-base station cooperative communication.
  • the first DU participates in inter-base station cooperative communication, and the first DU performs cooperative data exchange with the second DU, and the collaborative data is used in at least one of the following processing modes: uplink coordinated multi-point transmission, joint Scheduling, carrier aggregation.
  • the timing adjustment module 403 is configured to adjust a timing of the first DU to correspond to the first remote capability value, and includes: adjusting a step and delay allocation of processing baseband data in the baseband board in the first DU. After the collaborative data is sent to the second DU, and processed by other service data received by the second DU, where the collaborative data and the other service data are related to the same user equipment. Business data.
  • the apparatus may further include a remote capability value obtaining module 404, configured to determine the first remote capability value and the second remote capability value according to the baseband processing resource of the first DU.
  • a remote capability value obtaining module 404 configured to determine the first remote capability value and the second remote capability value according to the baseband processing resource of the first DU.
  • z is a weighted sum of the pull-out capability values of the first DU obtained according to an upper limit of the baseband processing resources of the first DU, where k is a weighting coefficient, and y1 is the first pull-out capability value, k>0
  • x is a remote demand value of the first DU to the switch required by the first DU to participate in inter-base station cooperative communication in the C-RAN, where x>0.
  • the remote capability value obtaining module 404 is further configured to: establish a lookup table including the calculated first remote capability value and the second remote capability value. For details, refer to the description in the embodiment shown in FIG. 3, and the details are not described herein.
  • the remote capability value obtaining module 404 is further configured to establish a lookup table that includes an adaptation rule of the RRU remote capability value and the actual extended distance and a corresponding adaptation conclusion.
  • a lookup table that includes an adaptation rule of the RRU remote capability value and the actual extended distance and a corresponding adaptation conclusion.
  • the apparatus provided by the embodiment of the present invention may be a DU, or may be a module in the DU, or may be independently disposed in the distributed C-RAN and may directly or indirectly interact with the DU. device of.
  • each module can be integrated in one hardware, or can be dispersed in the DU, and executed by existing functional modules in the DU. Or add a function module in the DU to perform the functions of each module described above.
  • the modules in the device can be connected to each other by means of a communication bus.
  • the modules in the device may be directly or indirectly communicated through other possible direct or indirect connection modes, which are not specifically limited in this embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another apparatus according to an embodiment of the present invention, where In the scenario of the distributed C-RAN networking shown in FIG. 1, the device includes:
  • the memory 501 is configured to store instructions for performing a base station cooperative management method, where the method includes: acquiring an actual distance between each RRU that accesses the first DU and the first DU; When the actual distance is greater than the first distance capability value, the value of the remote capability of the RRU that is actually greater than the first distance capability value is set to a second distance capability value, wherein the first distance is The capability value refers to a maximum distance that the RRU that supports the first DU participates in inter-base station cooperative communication to the first DU is extended; and the timing of adjusting the first DU corresponds to the second remote capability value. And the RRU that the actual extended distance is greater than the first remote capability value is accessed by the first DU, where the second remote capability value is greater than the actual extended distance.
  • the processor 502 is configured to execute the foregoing instructions stored by the memory 501.
  • first remote capability value and the second remote capability value reference may be made to the embodiment shown in FIG. 2 and FIG. 3, and details are not described herein.
  • the relationship between the timing of the DU and the distance of the RRU reference may be made to the related content in the embodiment of FIG. 2, and details are not described herein.
  • the memory 501 is further configured to store some instructions, including performing transmission delay measurement on the CPRI between the RRU and the first DU, and acquiring the actual extended distance according to the transmission delay measurement result.
  • the processor 502 is configured to execute the above instructions.
  • the memory 501 is further configured to store some instructions, including, when When the actual distance of the RRU is less than or equal to the first pull-out capability value, the pull-out capability value of the RRU whose actual distance is less than or equal to the first pull-out capability value is set as the first pull-out value.
  • the capability value, and adjusting the timing of the first DU corresponds to the first remote capability value, such that the RRU accesses the first DU and the first DU participates in inter-base station cooperative communication.
  • the processor 502 is configured to execute the above instructions.
  • the first DU participates in inter-base station cooperative communication, and the first DU performs cooperative data exchange with the second DU, and the collaborative data is used in at least one of the following processing modes: uplink coordinated multi-point transmission, joint Scheduling, carrier aggregation.
  • the step of adjusting the timing of the first DU corresponds to the first remote capability value, and includes: adjusting a step of processing baseband data in the baseband of the first DU and delay allocation, so that the collaboration After the data is sent to the second DU, it is processed synchronously with other service data received by the second DU, where the collaborative data and the other service data are service data related to the same user equipment.
  • the memory 501 is further configured to store some instructions, including determining the first pull capability value and the second pull capability value according to the baseband processing resource of the first DU.
  • the processor 502 is configured to execute the above instructions.
  • z is a weighted sum of the pull-out capability values of the first DU obtained according to an upper limit of the baseband processing resources of the first DU, where k is a weighting coefficient, and y1 is the first pull-out capability value, k>0
  • x is a remote demand value of the first DU to the switch required by the first DU to participate in inter-base station cooperative communication in the C-RAN, where x>0.
  • the processor 502 is configured to execute the above instructions.
  • the instructions further include: establishing a lookup table including the calculated first pull capability value and the second pull capability value.
  • the processor 502 is configured to execute the above instructions.
  • the memory 501 is further configured to store some instructions, including: establishing a lookup table that includes an adaptation rule of the RRU pull-out capability value and the actual extended distance and a corresponding adaptation conclusion.
  • the processor 502 is configured to execute the above instructions.
  • the apparatus provided by the embodiment of the present invention may be a DU, or may be a module in the DU, or may be independently disposed in the distributed C-RAN and may directly or indirectly interact with the DU. device of.
  • the device provided by the embodiment of the present invention can be applied to a network scenario of a distributed C-RAN, and the actual distance between the RRU and the corresponding accessed DU is compared with the first remote capability value of the RRU. Adjusting the timing of the baseband board of the DU corresponds to the first pull-out capability value or the second pull-out capability value to ensure normal access of the RRU; and further, when the pull-out capability value of the DU is the first pull-out capability value, the DU can Participate in inter-base station cooperative communication and obtain synergistic benefits.
  • an embodiment of the present invention provides a communication system, which may be a distributed C-RAN.
  • the system includes a first DU 601 and a second DU 602 respectively connected to the switch 600.
  • the first DU 601 is connected to at least one RRU 603.
  • the C-RAN further includes a device 604, and the device 604 is connected to the first DU.
  • the device 604 may also be a module in the first DU (not shown) or the first DU itself.
  • the location of the device 604 and the communication mode with the first DU 601 are not in the embodiment of the present invention. Make any restrictions.
  • the second DU 602 may also be connected to at least one RRU 605.
  • the device 604 is configured to obtain an actual distance between each RRU 603 and the first DU 601.
  • the pull-out capability value of the RRU is set to a second pull-out capability value, where the first pull-out capability value refers to supporting the first DU601 participation
  • the maximum distance of the RRU 603 of the inter-base station cooperative communication of the C-RAN to the first DU 601; the timing of adjusting the first DU 601 is corresponding to the second remote capability value, so that the actual distance is long
  • An RRU greater than the first remote capability value accesses the first DU 601, wherein the second remote capability value is greater than the actual extended distance.
  • the device 604 is further configured to: when the actual distance is less than or equal to the first pull capability value, set a pull capability value of the RRU 603 to the first DU 601 to the first The remote capability value is adjusted, and the timing of the first DU 601 is adjusted to correspond to the first remote capability value, so that the RRU 603 accesses the first DU 601 and the first DU 601 participates in inter-base station cooperative communication.
  • the device in the communication system provided by the embodiment of the present invention may be the device shown in FIG. 4 or FIG. 5.
  • the device in the communication system may be the device shown in FIG. 4 or FIG. 5.
  • the communication system compares the actual pull distance between the RRU and the corresponding accessed DU with the first pull capability value of the RRU, and adjusts the timing of the DU and the first pull capability value.
  • the second pull capability value corresponds to ensure the normal access of the RRU and improve the access rate of the RRU; and when the pull capability value of the DU is the first pull capability value, the DU can participate in inter-base station cooperative communication, and obtain Synergistic benefits.
  • the disclosed systems, devices, and methods may be implemented in other manners without departing from the scope of the present application.
  • the embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined. Or can be integrated into another system, or one These features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. .
  • Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the described systems, devices, and methods, and the schematic diagrams of various embodiments may be combined or integrated with other systems, modules, techniques or methods without departing from the scope of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electronic, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种装置、通信系统及基站协同管理方法,应用于分布式云型无线接入网C-RAN的组网场景中,通过将RRU到对应接入的DU之间的实际拉远距离与该RRU的第一拉远能力值进行比较,调整DU的时序与第一拉远能力值或第二拉远能力值对应,保证RRU的正常接入,提升该组网场景下RRU的接入率;进而在DU的拉远能力值为第一拉远能力值时,该DU能够参与基站间协同通信,获得协同收益。

Description

装置、通信系统及基站协同管理方法 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种装置、通信系统及基站协同管理方法。
背景技术
云无线接入网(C-RAN,cloud-radio access network)是根据现网条件和技术进步的趋势提出的新型无线接入网架构,主要由3个部分组成:远端射频模块(RRU,remote radio unit)及天线、云数字单元(Cloud DU,cloud digital unit)、以及连接RRU和Cloud DU的传输网络。其中,Cloud DU是指将多个数字单元(DU,digital unit)集中在一起,通过交换机(switch)进行数据交换,实现基带处理资源的集中使用。采用C-RAN架构,基站间可以进行协同通信,获取更好的小区边缘用户体验,并提升网络容量。
分布式C-RAN是C-RAN的一种类型,在分布式C-RAN的组网场景中,DU、RRU、及交换机均可以布置在不同地理位置,即DU内的基带板支持DU到交换机拉远一定距离,且支持RRU到DU拉远一定距离。
现有技术中,DU中基带板支持的RRU拉远能力值和DU拉远能力值均是静态配置,且配置的具体数值受基带板的数据处理能力限制,如果预先配置的RRU拉远能力值过小,当RRU的实际拉远距离超过RRU拉远能力值的配置值,RRU无法接入对应的DU,进而DU无法进行协同通信。
发明内容
本发明实施例提供了一种装置及基站协同管理方法,可以提升分布式C-RAN中RRU接入DU的接入率。本发明实施例还提供了一种通信系统。
第一方面,本发明实施例提供了一种装置,应用于C-RAN中,所述C-RAN中包括分别与交换机相连接的第一DU及第二DU,所述第一DU与至少一个RRU相连,所述装置包括:距离获取模块,用于获取每一个所述RRU与所述第一DU之间的实际拉远距离;拉远能力设置模块,用于当所述RRU的实际拉远距离大于第一拉远能力值时,将实际拉远距离大于第一拉远能力值的RRU的拉远能力值设置为第二拉远能力值,其中,所述第一拉远能力值是指,支持所述第一DU参与基站间协同通信的所述RRU到所述第一DU的最大拉远距离;时序调整模块,用于调整所述第一DU的时序与所述第二拉远能力值对应,以使得所述实际拉远距离大于第一拉远能力值的RRU接入所述第一DU,其中,所述第二拉远能力值大于所述实际拉远距离。
在第一方面的第一种可能的实现方式中,所述拉远能力设置模块还用于,当所述RRU的实际拉远距离小于或等于所述第一拉远能力值时,将实际拉远距离小于或等于所述第一拉远能力值的RRU的拉远能力值设置为所述第一拉远能力值,且,所述时序调整模块还用于,调整所述第一DU的时序与所述第一拉远能力值对应,以使得所述RRU接入所述第一DU且所述第一DU参与基站间协同通信。
结合以上任意一种可能的实现方式,第一方面的第二种可能的实 现方式,所述第一DU参与基站间协同通信包括,所述第一DU与所述第二DU进行协同数据交换,所述协同数据用于以下至少一种处理方式:上行协作多点传输,联合调度,载波聚合。
结合以上任意一种可能的实现方式,第一方面的第三种可能的实现方式,所述时序调整模块用于调整所述第一DU的时序与所述第一拉远能力值对应,包括,调整所述第一DU中基带板内部处理基带数据的步骤和时延分配,以使得所述协同数据发送到所述第二DU后,与所述第二DU接收到的其他业务数据同步处理,其中,所述协同数据与所述其他业务数据是和同一个用户设备相关的业务数据。
结合以上任意一种可能的实现方式,第一方面的第四种可能的实现方式,所述距离获取模块具体用于,对所述RRU与所述第一DU之间的通用公共无线接口CPRI进行传输时延测量,根据传输时延测量结果获取所述实际拉远距离。
结合以上任意一种可能的实现方式,第一方面的第五种可能的实现方式,还包括,拉远能力值获取模块,用于根据所述第一DU的基带处理资源确定所述第一拉远能力值和所述第二拉远能力值。
结合以上任意一种可能的实现方式,第一方面的第六种可能的实现方式,所述拉远能力值获取模块具体用于,根据公式y1=z-k*x,计算所述第一拉远能力值,根据y2=z,计算所述第二拉远能力值;其中,z为根据所述第一DU的基带处理资源的上限得到的所述第一DU的拉远能力值加权和;x为所述第一DU参与所述C-RAN中的基站间协同通信所需的所述第一DU到所述交换机的拉远需求值,x>0;k为加权系 数,k>0;y1为所述第一拉远能力值,y2为所述第二拉远能力值。
结合以上任意一种可能的实现方式,第一方面的第七种可能的实现方式,所述拉远能力值获取模块还用于,建立包含计算得到的所述第一拉远能力值及所述第二拉远能力值的查找表。
第二方面,本发明实施例提供了一种通信系统,包括分别与交换机相连接的第一DU及第二DU,所述第一DU与至少一个RRU相连,所述通信系统中还包括一种装置,所述装置与所述第一DU相连接,或者所述装置设置在所述第一DU内,
所述装置用于,获取每一个所述RRU与所述第一DU之间的实际拉远距离;当所述RRU的实际拉远距离大于第一拉远能力值时,将实际拉远距离大于第一拉远能力值的RRU的拉远能力值设置为第二拉远能力值,其中,所述第一拉远能力值是指,支持所述第一DU参与所述C-RAN的基站间协同通信的所述RRU到所述第一DU的最大拉远距离;调整所述第一DU的时序与所述第二拉远能力值对应,以使得所述实际拉远距离大于第一拉远能力值的RRU接入所述第一DU,其中,所述第二拉远能力值大于所述实际拉远距离。
在第二方面的第一种可能的实现方式中,所述装置还用于,当所述实际拉远距离小于或等于所述第一拉远能力值时,将所述RRU到所述第一DU的拉远能力值设置为所述第一拉远能力值,且,调整所述第一DU的时序与所述第一拉远能力值对应,以使得所述RRU接入所述第一DU且所述第一DU参与基站间协同通信。
第三方面,本发明实施例提供了一种基站协同管理方法,应用于 分布式C-RAN中,所述C-RAN中包括分别与交换机相连接的第一DU及第二DU,所述第一DU与至少一个RRU相连,所述方法包括:获取每一个所述RRU与所述第一DU之间的实际拉远距离;当所述RRU的实际拉远距离大于第一拉远能力值时,将实际拉远距离大于第一拉远能力值的RRU的拉远能力值设置为第二拉远能力值,其中,所述第一拉远能力值是指,支持所述第一DU参与所述C-RAN的基站间协同通信的所述RRU到所述第一DU的最大拉远距离;调整所述第一DU的时序与所述第二拉远能力值对应,以使得所述实际拉远距离大于第一拉远能力值的RRU接入所述第一DU,其中,所述第二拉远能力值大于所述实际拉远距离。
在第三发明的第一种可能的实现方式中,所述方法还包括,当所述实际拉远距离小于或等于所述第一拉远能力值时,将所述RRU到所述第一DU的拉远能力值设置为所述第一拉远能力值,调整所述第一DU的时序与所述第一拉远能力值对应,以使得所述RRU接入所述第一DU且所述第一DU参与基站间协同通信。
结合第三方面的以上任意一种可能的实现方式,第三方面的第二种可能的实现方式,所述第一DU参与基站间协同通信包括,所述第一DU与所述第二DU进行协同数据交换,所述协同数据用于以下至少一种处理方式:上行协作多点传输,联合调度,载波聚合。
结合第三方面的以上任意一种可能的实现方式,第三方面的第三种可能的实现方式,所述调整所述第一DU的时序与所述第一拉远能力值对应,包括,调整所述第一DU中基带板内部处理基带数据的步 骤和时延分配,以使得所述协同数据发送到所述第二DU后,与所述第二DU接收到的其他业务数据同步处理,其中,所述协同数据与所述其他业务数据是和同一个用户设备相关的业务数据。
结合第三方面的以上任意一种可能的实现方式,第三方面的第四种可能的实现方式,所述获取所述RRU与所述第一DU之间的实际拉远距离包括,对所述RRU与所述第一DU之间的通用公共无线接口CPRI进行传输时延测量,根据传输时延测量结果获取所述实际拉远距离。
结合第三方面的以上任意一种可能的实现方式,第三方面的第五种可能的实现方式,所述第一拉远能力值及所述第二拉远能力值由所述第一DU的基带处理资源确定。
结合第三方面的以上任意一种可能的实现方式,第三方面的第六种可能的实现方式,所述第一拉远能力值及所述第二拉远能力值由所述第一DU的基带处理资源确定包括,根据公式y1=z-k*x,计算所述第一拉远能力值,根据y2=z,计算所述第二拉远能力值,其中,z为根据所述第一DU的基带处理资源的上限得到的所述第一DU的拉远能力值加权和;x为所述第一DU参与所述C-RAN中的基站间协同通信所需的所述第一DU到所述交换机的拉远需求值,x>0;k为加权系数,k>0;y1为所述第一拉远能力值,y2为所述第二拉远能力值。
结合第三方面的以上任意一种可能的实现方式,第三方面的第七种可能的实现方式,所述方法还包括,建立包含计算得到的所述第一拉远能力值及所述第二拉远能力值的查找表。
本发明实施例提供的技术方案应用于分布式C-RAN的组网场景中,通过将RRU到对应接入的DU之间的实际拉远距离与该RRU的第一拉远能力值进行比较,调整DU的时序与第一拉远能力值或第二拉远能力值对应,保证RRU的正常接入,提升该组网场景下RRU的接入率;进而在DU的拉远能力值为第一拉远能力值时,该DU能够参与基站间协同通信,获得协同收益。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种应用场景示意图;
图2是本发明实施例提供的一种基站协同管理方法的流程示意图;
图3是本发明实施例提供的获取第一拉远能力值及第二拉远能力值的流程示意图;
图4是本发明实施例提供的一种基站协同管理装置的示意图;
图5是本发明实施例提供的另一种基站协同管理装置的示意图;
图6是本发明实施例提供的一种通信系统示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步详细描述。
本发明实施例中描述的各种技术可用于4G或后续演进的通信系统,例如长期演进(LTE,Long Term Evolution)以及LTE的演进系统等。
本发明实施例中描述的基站包括DU以及与DU相连接的用于信号收发的RRU。一个基站可以管理至少一个小区(cell),并与其他相邻的基站通过传输网进行信息交互。例如,在LTE系统以及LTE的演进系统中,上述基站可以是演进型节点B(e-Node B,evolved Node B)。
本发明实施例中描述的站点是指上述e-NodeB等基站设备所在的地理位置,可以理解,上述DU可以位于站点上,RRU可以位于站点上或者布置于远离站点的地理位置上。
本发明实施例中所述的DU是指具有基带处理功能的装置,所述基带处理功能包括对LTE协议栈的层一(Layer1,L1)、层二(Layer2,L2)、层三(Layer3,L3)等部分的数据处理,其中,层一是指物理层,涉及编码、调制、多天线映射等数据处理,层二是指媒体访问控制(MAC,Media Access Control)层,涉及上下行数据调度、提供逻辑信道等数据处理,层三是指无线链路控制(RLC,Radio Link Control)层,涉及数据重传,提供无线承载(radio bearer)等数据处理。上述DU还可以提供多种通信接口。
DU中包括基带板,以LTE制式的基带板为例,通常具备全部的 L1的处理功能,以及全部L2或部分L2的处理功能。
可以理解,本发明实施例中的DU也可以称为基带处理单元(BBU,base band unit)。
图1是本发明实施例适用的一种分布式C-RAN架构示意图。
如图1所示,在该组网场景中,第一DU,第二DU分别通过光纤与交换机相连;第一DU与第一RRU通过光纤相连,第二DU与第二RRU通过光纤相连,其中,第一DU距离交换机X千米(km),第二DU距离交换机Xkm,即第一DU、第二DU分别拉远Xkm;第一RRU距离第一DU为Ykm,第二RRU距离第二DU为Ykm,即第一RRU、第二RRU分别拉远Ykm。第一RRU可以通过无线链路接收第一小区(cell1)内的用户设备(UE,user equipment)的信号,第一RRU对该UE的信号进行中射频处理后得到数字信号并发送至第一DU,由第一DU对该数字信号进行基带处理得到业务数据;第二RRU可以通过无线链路接收第二小区(cell2)内的UE的信号,第二RRU对该UE的信号进行中射频处理后得到数字信号并发送至第二DU,由第二DU对该数字信号进行基带处理得到业务数据,即第一DU可以管理cell1,第二DU可以管理cell2。
可以理解,本发明实施例中出现的第一DU,第二DU,第一RRU,第二RRU等仅作示意与区分之用,没有次序之分,也不表示本发明实施例中对设备个数的特别限定,不能构成对本发明实施例的任何限制。
可以理解,在本发明的其他应用场景中,每个DU可以管理多个 小区,与DU相连的每个RRU也可以收发多个小区的信号,本发明实施例对此不做任何限定。
可选地,本发明实施例所示的分布式C-RAN组网场景中可以包括两个以上的DU,每个DU可以分别与两个以上的RRU相连。例如,一个DU可以分别与多个基站的RRU连接,即DU可以作为多个基站共用的基带处理设备。RRU与DU之间的接口类型为基带-射频(BB-RF,baseband-radio frequency)接口,例如可以是通用公共无线接口(CPRI,common public radio interface)、开放式基站架构计划(OBSAI,open base station architecture initiative)接口等。本发明实施例以CPRI为例进行说明。可选地,本发明实施例也可以应用在除CPRI之外的其他BB-RF接口上。DU到交换机之间的数据接口可以是eX2接口。
由于器件成本和功耗等限制,DU中的基带板的基带处理资源是受限的,因此,根据基带处理资源情况,结合实际组网中RRU和DU的最大拉远距离需求,可以将RRU到DU的拉远能力值及DU到交换机的拉远能力值均设置为固定值,即静态配置RRU或DU在不同组网场景下的最大拉远距离。
在实际组网场景中,RRU可能需要拉远较长的距离,以保证小区边缘区域信号的收发。如图1的场景中,当第一RRU或第二RRU的实际拉远距离大于RRU的拉远能力值时,第一RRU或第二RRU将无法接入对应的DU,影响系统正常工作。
图2是本发明实施例提供的一种基站协同管理方法的流程示意 图,该基站协同管理方法可以应用于图1所示的分布式C-RAN的组网场景中,该方法可以由DU执行或者由与DU进行直接或间接通信的独立装置执行。
该方法包括步骤S201-S204:
S201:获取每一个接入第一DU的RRU与第一DU之间的实际拉远距离。
其中,获取RRU的实际拉远距离的方法可以是:测量该RRU与该第一DU之间的CPRI之间的传输时延,根据传输时延测量结果获取所述实际拉远距离。
本发明实施例对测量传输时延的具体方法不做特别限定。
可选地,可以利用测试DU发出信号的超帧帧头的时刻到RRU收到该信号的超帧帧头的时间差来获取CPRI的传输时延。本领域的技术人员可以理解,还可以采用其他方法测量CPRI的传输时延,以上举例不构成对本发明实施例的任何限定。
将获取到的传输时延与信号在DU及RRU之间的光纤上的传输速率相乘,即可得到RRU的实际拉远距离。现有技术中,CPRI支持的传输速率包括2.4576Gbps、6.144Gbps、9.8304Gbps等,实际的传输速率可以由光纤的性能和传输带宽确定,本发明实施例对此不做特别限定。
S202:将获取的上述实际拉远距离与RRU的第一拉远能力值进行比较,当所述实际拉远距离小于或等于所述第一拉远能力值时,执行步骤S203,当所述实际拉远距离大于所述第一拉远能力值时,执行步 骤S204。
其中,第一拉远能力值是指:DU能够参与所在的C-RAN中的基站间协同通信的前提下,该DU支持的RRU的最大拉远距离。
第一拉远能力值可以由该DU能够参与基站间协同通信时,DU到交换机的拉远需求值以及该DU的拉远能力值加权和计算得到。其中,拉远能力值加权和是指DU支持的RRU拉远能力值和DU拉远能力值的加权和,DU到交换机的拉远需求值是指DU可以参与基站间协同通信的前提下,DU到交换机的最大拉远距离。根据DU具备的基带处理资源大小,上述拉远能力值加权和以及拉远需求值可以配置为一个固定值,单位一般为千米(km),可以理解的是,上述固定值可以是预先配置好的。
基站间协同通信是指分布在各站点的DU之间通过交换机进传输协同数据,进而可以进行协作多点传输(CoMP,coordinated multiple node transmission),或联合调度(joint-scheduling),或载波汇聚(CA,carrier aggregation)等处理过程。其中,协同数据是某UE的协作小区对应的DU处理得到该UE的信号得到的部分业务数据,该UE的服务小区对应的DU将协同数据与该UE的其他业务数据进行基带处理。可以理解,上述协同数据与其他业务数据是和同一个UE相关的业务数据。
例如在图1所示的场景中,cell1和cell2的信号覆盖区域有重叠,处于两小区边缘区域的UE可以将其中一个小区作为服务小区,另一个小区作为协作小区,通过第一DU与第二DU之间的协同通信,为该UE提供更好的信号覆盖。
通过基站间协同通信的方式进行信号收发及处理,UE可以与多个站点的RRU之间建立上下行通信链路,从而能够有效地扩展信号覆盖范围,实现频谱资源的有效利用,提高系统的平均吞吐量,优化协作系统的整体性能,尤其是可以提高小区边缘用户的数据传输速率。
S203:将该RRU到该第一DU的拉远能力值设置为上述第一拉远能力值,调整第一DU的时序与该第一拉远能力值对应,以使得该RRU接入该第一DU且第一DU参与C-RAN中的基站间协同通信。
可选地,S203还可以包括,设置第一DU到交换机的拉远能力值为拉远需求值。
以图1所示的应用场景为例,当第一RRU到第一DU之间的拉远距离小于或等于第一DU具有的第一拉远能力值时,第一DU与第二DU可以进行协同通信,包括,第一DU通过第一RRU接收cell1内UE发送的信号,例如语音信号,第一DU处理为业务数据后,通过交换机传输给第二DU,由第二DU将该部分业务数据与通过第二RRU接收到的该UE的其他业务数据进行同步处理。
其中,DU的时序是指DU对接收到的UE的信号进行基带处理的顺序和时延,具体包括DU中的基带板内部的各功能单元或功能模块处理基带数据的步骤和时延分配情况,则DU的时序也可作为DU内基带板的时序。DU开始对信号进行基带处理的时间点,决定了DU的时序。
以图1所示的应用场景为例说明DU的时序与RRU拉远距离之间的关系。假设cell1为某UE的协作小区,cell2为该UE的服务小区,一 般地,该UE处于上述两小区的边缘区域。在上行通信过程中,以UE发射的上行信号达到的第一RRU的天线口的时刻为基准,将该上行信号经过RRU的中射频处理的处理时延记为t1,处理后得到的上行数字信号通过第一RRU的CPRI到达第一DU,将CPRI传输时延记为t2,第一DU对该上行数字信号进行基带处理得到业务数据并经过交换机传输给第二DU,将业务数据从第一DU传输到第二DU的时延为t3。这部分业务数据即为协同数据。第二DU随后将协同数据与第二DU通过第二RRU获取的该UE的其他业务数据进行同步处理。则协同数据的整体处理时延t=t1+t2+t3,其中,t1是固定值,t2与RRU拉远距离直接相关,t3与第一DU与第二DU之间的距离直接相关。
可以理解,若第一RRU拉远距离较短,则t2较小,第一DU可以提前处理上行数字信号,因此,即使t3较大,协同数据的整体处理时延不变,仍然可以满足站间协同通信的需求。若RRU的拉远距离较长,则t2较大,若t3也较大,协同数据到达第二DU的时刻推迟,第二DU无法将协同数据与已经获取的其他业务数据进行同步处理,即不能完成基站间的协同通信。因此,在RRU的拉远距离已确定的情况下,通过调整DU对信号开始基带处理的时间点,可以改变基带板的时序,以适应不同场景需求。
具体地,调整所述第一DU的时序与该第一拉远能力值对应包括,提前或延后第一DU内基带板开始对UE发送的信号进行基带处理的时间点,以补偿该信号经过RRU实际拉远距离的传输时延与信号经过第一拉远能力值的距离的传输时延之间的差值,使得协同数据能与其 他业务数据同时进行处理,即保证RRU的基本接入,且能获取基站间协同收益。
其中,DU的时序的调整量可以由S201中测量得到的第一DU与RRU之间的CPRI传输时延与第一拉远能力值对应的CPRI传输时延之间的差值确定。具体地,由于第一拉远能力值对应第一DU能够参与基站间协同通信的RRU的最大拉远距离,则可以理解,若RRU实际拉远为第一拉远能力值时,协同数据的整体处理时延能够与其他业务数据的处理时延匹配,因此,以第一拉远能力值对应的CPRI传输时延为基准,调整第一DU的时序,使得第一DU参与基站间协同。
可选地,DU中可以配置时序初始值。当该时序初始值与第一拉远能力值匹配时,则可以继续使用该时序初始值作为DU的时序,无需进行调整;当该时序初始值与第一拉远能力值不对应时,则需要进行调整DU的时序与第一拉远能力值对应的时序值相同。
S204:将该RRU到该第一DU的拉远能力值设置为第二拉远能力值,调整第一DU的时序与该第二拉远能力值对应,以使得该RRU接入该第一DU。
其中,上述第二拉远能力值是指:在不考虑接入交换机的各DU进行基站间协同的场景中,允许RRU接入DU并能进行正常数据传输的最大拉远距离。
当RRU的拉远能力值设置为该第二拉远能力值时,该分布式C-RAN相当于一个普通基站场景,DU到交换机之间的数据接口在该场景下不启动,即不收发业务数据。此时,该场景中的各基站的DU 将不能进行基站间协同通信,但仍然可以保证RRU正常接入对应的DU,进行数据传输,不影响DU的基本功能。
其中,调整该第一DU的时序与该第二拉远能力值对应的具体方式可以参照前文之描述,在此不做赘述。
可选地,S204中还可以包括,设置第一DU到交换机的拉远能力值为零。由于DU在该场景下实际没有拉远,设置DU的拉远能力值为零,可以节约DU的基带处理资源。
需要说明的是,当RRU的实际拉远距离超过第二拉远能力值时,该RRU将无法接入对应的DU。但在实际网络部署中,RRU实际拉远距离超过第二拉远能力值的可能性非常小,因此,可以通过网络规划避免将这部分RRU纳入分布式C-RAN,以免影响网络运行性能以及基站间协同功能的实现。
具体的,本发明实施例还提供了一种获取第一拉远能力值和第二拉远能力值的方法,如图3所示。
S301:根据第一DU的基带处理资源,设置第一DU的拉远能力值加权和,以及设置第一DU参与所述C-RAN中的基站间协同通信所需的第一DU到交换机的拉远需求值。
上述拉远能力值加权和,以及拉远需求值可以是预先设置的固定值,不随DU实际应用的组网场景变化而改变。其中,当DU应用于C-RAN中时,第一DU到交换机之间的实际拉远距离可以按照上述拉远需求值设计。
S302:根据公式y1=z-k*x,计算上述第一拉远能力值。
其中,z为根据所述第一DU的基带处理资源的上限得到的所述第一DU的拉远能力值加权和,k为加权系数,k>0,可选地,k的取值可以为2;y1为第一拉远能力值,x为第一DU到交换机的拉远需求值,z>x>0。
S303:根据公式y2=z,计算上述第二拉远能力值。
其中,y2为上述第二拉远能力值,z为第一DU的拉远能力值加权和。
可以理解,上述步骤S302-S303可以按上述顺序执行,在本发明的其他实施例中,也可以交换执行顺序,或者同时执行,本发明实施例对此不做任何限定。
S304:建立包含计算得到的第一拉远能力值y1及第二拉远能力值y2的查找表,如表一所示。
Figure PCTCN2014093731-appb-000001
表一
可以理解,在实际应用场景中,y1,y2,x均为实际数值,且取值与组网需求以及DU的基带处理资源相关,不同的应用场景下可以使用不同的查找表,也可以使用相同的查找表。表一仅为示意,不构成对本发明实施例的任何限定。
可选地,上述第一拉远能力值及第二拉远能力值也可以直接根据 DU内基带板的基带处理资源设置,并配置为上述查找表的形式。
具体地,以图1的应用场景为例,当第一RRU到第一DU的拉远能力值为第一拉远能力值y1,且第一DU到交换机的拉远能力值为上述拉远需求值x时,DU的时序与y1及x对应,可以使得第一DU通过交换机发送到第二DU的协同数据,能够与第二DU接收到的同一UE的其他业务数据由第二DU进行同步处理,协同数据及其他业务数据具有相同的传输时延,从而,第一DU能够参与基站间协同通信。
当第一RRU到第一DU的拉远能力值为第二拉远能力值y2,且第一DU到交换机的拉远能力值为零时,DU的基带板的时序与y2对应。由于y2大于DU参与基站间协同通信所允许的最远拉远距离,即y2>y1,因此,第一DU不能参与基站间协同通信,但不影响RRU的接入。
可选地,可以建立包含RRU拉远能力值和实际拉远距离的适配规则和对应适配结论的查找表,如表二所示。该查找表可以适用于接入某个DU的所有RRU,便于在获取RRU的实际拉远距离后,及时对RRU的拉远能力值及对应的基带板的时序做出调整,节约计算资源,提升方案执行效率。
Figure PCTCN2014093731-appb-000002
Figure PCTCN2014093731-appb-000003
表二
以下用一个实例说明上述基站协同管理方法的执行过程:在某个分布式C-RAN组网场景下,根据DU的基带处理资源以及组网需求,设置该DU中基带板支持的拉远能力值加权和z=30km,以及设置DU到siwtch的拉远需求值x=10km,即10km为该DU可以参与该分布式C-RAN内的基站间协同通信的最远拉远值;计算得到RRU的第一拉远能力值y1=30-k*10=10km(假设系数k=2),y2=z=30km;测量RRU到DU之间的实际拉远距离Y,若Y≤10km,则将DU的基带板的时序设置为与y1对应,此时,RRU正常接入该DU,且该DU可以参与基站间协作通信;若Y>10km,则将DU的基带板的时序设置为与y2对应,此时,RRU正常接入该DU,但该分布式C-RAN相当于一个普通基站场景,DU之间无法进行协同通信。
本发明实施例提供的基站协同管理方法应用于分布式C-RAN的组网场景中,通过将RRU到对应接入的DU之间的实际拉远距离与该RRU的第一拉远能力值进行比较,调整DU的基带板的时序与第一拉远能力值或第二拉远能力值对应,保证RRU的正常接入;进而在DU的拉远能力值为第一拉远能力值时,该DU能够参与基站间协同通信,获得协同收益。
图4是本发明实施例提供的一种装置的结构示意图,该装置可以应用于图1所示的分布式C-RAN组网场景中,该装置包括:
距离获取模块401,用于获取每一个接入第一DU的RRU与第一DU之间的实际拉远距离。
其中,距离获取模块401可以具体用于,对所述RRU与所述第一DU之间的通用公共无线接口CPRI进行传输时延测量,根据传输时延测量结果获取所述实际拉远距离。具体的测量方法可以参照图2所示实施例中的描述,在此不做赘述。
拉远能力设置模块402,用于当RRU的实际拉远距离大于第一拉远能力值时,将实际拉远距离大于第一拉远能力值的RRU的拉远能力值设置为第二拉远能力值,其中,所述第一拉远能力值是指,支持所述第一DU参与基站间协同通信的所述RRU到所述第一DU的最大拉远距离。
关于第一拉远能力值、第二拉远能力值的详细描述可以参照图2及图3所示实施例,在此不做赘述。
时序调整模块403,用于调整所述第一DU的时序与所述第二拉远能力值对应,以使得所述实际拉远距离大于第一拉远能力值的RRU接入所述第一DU,其中,所述第二拉远能力值大于所述实际拉远距离。
具体地,关于DU的时序与RRU拉远距离之间的关系的详细描述可以参照图2实施例中的相关内容,在此不做赘述。
可选地,所述拉远能力设置模块402还可以用于,当所述RRU的实际拉远距离小于或等于所述第一拉远能力值时,将实际拉远距离小于或等于所述第一拉远能力值的RRU的拉远能力值设置为所述第一 拉远能力值,且,时序调整模块403还可以用于,调整所述第一DU的时序与所述第一拉远能力值对应,以使得所述RRU接入所述第一DU且所述第一DU参与基站间协同通信。
其中,所述第一DU参与基站间协同通信包括,所述第一DU与所述第二DU进行协同数据交换,所述协同数据用于以下至少一种处理方式:上行协作多点传输,联合调度,载波聚合。
其中,所述时序调整模块403用于调整所述第一DU的时序与所述第一拉远能力值对应,包括,调整所述第一DU中基带板内部处理基带数据的步骤和时延分配,以使得所述协同数据发送到所述第二DU后,与所述第二DU接收到的其他业务数据同步处理,其中,所述协同数据与所述其他业务数据是和同一个用户设备相关的业务数据。
关于DU参与基站间协同通信的详细描述可以参照图2实施例中的相关内容,在此不做赘述。
可选地,该装置还可以包括拉远能力值获取模块404,用于根据所述第一DU的基带处理资源确定所述第一拉远能力值和所述第二拉远能力值。
可选地,所述拉远能力值获取模块404可以用于,根据公式y1=z-k*x,计算所述第一拉远能力值。
其中,z为根据所述第一DU的基带处理资源的上限得到的所述第一DU的拉远能力值加权和,k为加权系数,y1为所述第一拉远能力值,k>0,x为所述第一DU参与所述C-RAN中的基站间协同通信所需的所述第一DU到所述交换机的拉远需求值,x>0。
以及,根据y2=z,计算所述第二拉远能力值。
进一步地,拉远能力值获取模块404还可以用于,建立包含计算得到的所述第一拉远能力值及所述第二拉远能力值的查找表。其中,该查找表的具体内容及使用方式可以参照图3所示实施例中的描述,在此不做赘述。
可选地,拉远能力值获取模块404还可以用于建立包含RRU拉远能力值和实际拉远距离的适配规则和对应适配结论的查找表。其中,该查找表的具体内容及使用方式可以参照图3所示实施例中的描述,在此不做赘述。
关于第一拉远能力值及第二拉远能力值的获取方法及过程的详细内容可以参照图3所示实施例中的描述,在此不做赘述。
可以理解,本发明实施例提供的该装置,可以是DU,也可以是DU中的一个模块,或者,也可以是独立设置在分布式C-RAN中,并可以与DU进行直接或间接信息交互的设备。
可以理解,该装置中对模块的划分仅是示意性的,当该装置处于DU内时,各模块可以集成在一个硬件中,或者也可以分散在DU内,由DU中现有的功能模块执行或者在DU中新增功能模块执行上述各模块的功能。
如图4所示,该装置内的各模块可以通过通信总线的方式相互连接。可选地,该装置内的各模块也可以通过其他可能的直接或间接连接方式进行直接或间接通信,本发明实施例对此不做特别限定。
图5是本发明实施例提供的另一种装置的结构示意图,该装置可 以应用于图1所示的分布式C-RAN组网场景中,该装置包括:
存储器501,用于存储一些指令,所述指令用于执行一种基站协同管理方法,该方法包括,获取每一个接入第一DU的RRU与第一DU之间的实际拉远距离;当RRU的实际拉远距离大于第一拉远能力值时,将实际拉远距离大于第一拉远能力值的RRU的拉远能力值设置为第二拉远能力值,其中,所述第一拉远能力值是指,支持所述第一DU参与基站间协同通信的所述RRU到所述第一DU的最大拉远距离;调整所述第一DU的时序与所述第二拉远能力值对应,以使得所述实际拉远距离大于第一拉远能力值的RRU接入所述第一DU,其中,所述第二拉远能力值大于所述实际拉远距离。
处理器502,用于执行存储器501存储的上述指令。
其中,关于第一拉远能力值、第二拉远能力值的详细描述可以参照图2及图3所示实施例,在此不做赘述。关于DU的时序与RRU拉远距离之间的关系的详细描述可以参照图2实施例中的相关内容,在此不做赘述。
可选地,存储器501,还可以用于存储一些指令,包括,对上述RRU与第一DU之间的CPRI进行传输时延测量,根据传输时延测量结果获取上述实际拉远距离。
处理器502用于执行上述指令。
具体的测量方法可以参照图2所示实施例中的描述,在此不做赘述。
可选地,存储器501,还可以用于存储一些指令,包括,当所述 RRU的实际拉远距离小于或等于所述第一拉远能力值时,将实际拉远距离小于或等于所述第一拉远能力值的RRU的拉远能力值设置为所述第一拉远能力值,以及,调整所述第一DU的时序与所述第一拉远能力值对应,以使得所述RRU接入所述第一DU且所述第一DU参与基站间协同通信。
处理器502用于执行上述指令。
其中,所述第一DU参与基站间协同通信包括,所述第一DU与所述第二DU进行协同数据交换,所述协同数据用于以下至少一种处理方式:上行协作多点传输,联合调度,载波聚合。
其中,所述调整所述第一DU的时序与所述第一拉远能力值对应,包括,调整所述第一DU中基带板内部处理基带数据的步骤和时延分配,以使得所述协同数据发送到所述第二DU后,与所述第二DU接收到的其他业务数据同步处理,其中,所述协同数据与所述其他业务数据是和同一个用户设备相关的业务数据。
关于DU参与基站间协同通信的详细描述可以参照图2实施例中的相关内容,在此不做赘述。
可选地,存储器501,还可以用于存储一些指令,包括,根据所述第一DU的基带处理资源确定所述第一拉远能力值和所述第二拉远能力值。
处理器502用于执行上述指令。
进一步地,存储器501,还可以用于存储一些指令,包括,根据公式y1=z-k*x,计算所述第一拉远能力值;以及,根据y2=z,计算所 述第二拉远能力值。
其中,z为根据所述第一DU的基带处理资源的上限得到的所述第一DU的拉远能力值加权和,k为加权系数,y1为所述第一拉远能力值,k>0,x为所述第一DU参与所述C-RAN中的基站间协同通信所需的所述第一DU到所述交换机的拉远需求值,x>0。
处理器502用于执行上述指令。
进一步地,所述指令还包括,建立包含计算得到的所述第一拉远能力值及所述第二拉远能力值的查找表。
处理器502用于执行上述指令。
其中,该查找表的具体内容及使用方式可以参照图3所示实施例中的描述,在此不做赘述。
可选地,存储器501,还可以用于存储一些指令,包括,建立包含RRU拉远能力值和实际拉远距离的适配规则和对应适配结论的查找表。
处理器502用于执行上述指令。
其中,该查找表的具体内容及使用方式可以参照图3所示实施例中的描述,在此不做赘述。
关于第一拉远能力值及第二拉远能力值的获取方法及过程的详细内容可以参照图3所示实施例中的描述,在此不做赘述。
可以理解,本发明实施例提供的该装置,可以是DU,也可以是DU中的一个模块,或者,也可以是独立设置在分布式C-RAN中,并可以与DU进行直接或间接信息交互的设备。
本发明所属领域的技术人员可以清楚地了解到,图4或图5所示实施例中的装置可以执行图2及图3所示实施例中的方法,为描述的方便和简洁,该装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本发明实施例提供的装置可以应用于分布式C-RAN的组网场景中,通过将RRU到对应接入的DU之间的实际拉远距离与该RRU的第一拉远能力值进行比较,调整DU的基带板的时序与第一拉远能力值或第二拉远能力值对应,保证RRU的正常接入;进而在DU的拉远能力值为第一拉远能力值时,该DU能够参与基站间协同通信,获得协同收益。
如图6所示,本发明实施例提供了一种通信系统,该系统可以是一种分布式C-RAN。该系统中包括分别与交换机600相连接的第一DU601及第二DU602,第一DU601与至少一个RRU603相连,所述C-RAN还包括一种装置604,装置604与第一DU相连接。
可选地,装置604也可以是第一DU中的一个模块(图中未示),或者是第一DU本身,本发明实施例对装置604的位置及与第一DU601之间的通信方式不做任何限定。
可选地,第二DU602也可以和至少一个RRU605相连。
装置604用于,获取每一个RRU603与第一DU601之间的实际拉远距离;当RRU603的实际拉远距离大于第一拉远能力值时,将实际拉远距离大于第一拉远能力值的RRU的拉远能力值设置为第二拉远能力值,其中,所述第一拉远能力值是指,支持所述第一DU601参与所 述C-RAN的基站间协同通信的RRU603到所述第一DU601的最大拉远距离;调整所述第一DU601的时序与所述第二拉远能力值对应,以使得所述实际拉远距离大于第一拉远能力值的RRU接入所述第一DU601,其中,所述第二拉远能力值大于所述实际拉远距离。
可选地,装置604还可以用于,当所述实际拉远距离小于或等于所述第一拉远能力值时,将RRU603到所述第一DU601的拉远能力值设置为所述第一拉远能力值,调整所述第一DU601的时序与所述第一拉远能力值对应,以使得RRU603接入所述第一DU601且所述第一DU601参与基站间协同通信。
可以理解,本发明实施例提供的通信系统中的装置可以是图4或图5所示的装置。关于该通信系统中的各设备或装置的详细描述可以参照本发明其他实施例的相关描述,在此不做赘述。
采用本发明实施例提供的通信系统,通过将RRU到对应接入的DU之间的实际拉远距离与该RRU的第一拉远能力值进行比较,调整DU的时序与第一拉远能力值或第二拉远能力值对应,保证RRU的正常接入,提升RRU的接入率;进而在DU的拉远能力值为第一拉远能力值时,该DU能够参与基站间协同通信,获得协同收益。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一 些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
另外,所描述系统、设备和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (18)

  1. 一种装置,其特征在于,应用于分布式云无线接入网C-RAN中,所述C-RAN中包括分别与交换机相连接的第一数字单元DU及第二DU,所述第一DU与至少一个射频拉远单元RRU相连,所述装置包括:
    距离获取模块,用于获取每一个所述RRU与所述第一DU之间的实际拉远距离;
    拉远能力设置模块,用于当所述RRU的实际拉远距离大于第一拉远能力值时,将实际拉远距离大于第一拉远能力值的RRU的拉远能力值设置为第二拉远能力值,其中,所述第一拉远能力值是指,支持所述第一DU参与基站间协同通信的所述RRU到所述第一DU的最大拉远距离;
    时序调整模块,用于调整所述第一DU的时序与所述第二拉远能力值对应,以使得所述实际拉远距离大于第一拉远能力值的RRU接入所述第一DU,其中,所述第二拉远能力值大于所述实际拉远距离。
  2. 根据权利要求1所述的装置,其特征在于,
    所述拉远能力设置模块还用于,当所述RRU的实际拉远距离小于或等于所述第一拉远能力值时,将实际拉远距离小于或等于所述第一拉远能力值的RRU的拉远能力值设置为所述第一拉远能力值,且,
    所述时序调整模块还用于,调整所述第一DU的时序与所述第一拉远能力值对应,以使得所述RRU接入所述第一DU且所述第一DU参与基站间协同通信。
  3. 根据权利要求2所述的装置,其特征在于,所述第一DU参与基站间协同通信包括,
    所述第一DU与所述第二DU进行协同数据交换,所述协同数据用于以下至少一种处理方式:上行协作多点传输,联合调度,载波聚合。
  4. 根据权利要求3所述的装置,其特征在于,所述时序调整模块用于调整所述第一DU的时序与所述第一拉远能力值对应,包括,调整所述第一DU中基带板内部处理基带数据的步骤和时延分配,以使得所述协同数据发送到所述第二DU后,与所述第二DU接收到的其他业务数据同步处理,其中,所述协同数据与所述其他业务数据是和同一个用户设备相关的业务数据。
  5. 根据权利要求1-4任一所述的装置,其特征在于,所述距离获取模块具体用于,对所述RRU与所述第一DU之间的通用公共无线接口CPRI进行传输时延测量,根据传输时延测量结果获取所述实际拉远距离。
  6. 根据权利要求1-5任一所述的装置,其特征在于,还包括,拉远能力值获取模块,用于根据所述第一DU的基带处理资源确定所述第一拉远能力值和所述第二拉远能力值。
  7. 根据权利要求6所述的装置,其特征在于,所述拉远能力值获取模块具体用于,
    根据公式y1=z-k*x,计算所述第一拉远能力值,
    根据y2=z,计算所述第二拉远能力值,
    其中,z为根据所述第一DU的基带处理资源的上限得到的所述第 一DU的拉远能力值加权和;x为所述第一DU参与所述C-RAN中的基站间协同通信所需的所述第一DU到所述交换机的拉远需求值,x>0;k为加权系数,k>0;y1为所述第一拉远能力值,y2为所述第二拉远能力值。
  8. 根据权利要求7所述的装置,其特征在于,所述拉远能力值获取模块还用于,建立包含计算得到的所述第一拉远能力值及所述第二拉远能力值的查找表。
  9. 一种通信系统,其特征在于,包括分别与交换机相连接的第一数字单元DU及第二DU,所述第一DU与至少一个射频拉远单元RRU相连,所述通信系统中还包括一种装置,所述装置与所述第一DU相连接,或者所述装置设置在所述第一DU内,
    所述装置用于,获取每一个所述RRU与所述第一DU之间的实际拉远距离;当所述RRU的实际拉远距离大于第一拉远能力值时,将实际拉远距离大于第一拉远能力值的RRU的拉远能力值设置为第二拉远能力值,其中,所述第一拉远能力值是指,支持所述第一DU参与所述C-RAN的基站间协同通信的所述RRU到所述第一DU的最大拉远距离;调整所述第一DU的时序与所述第二拉远能力值对应,以使得所述实际拉远距离大于第一拉远能力值的RRU接入所述第一DU,其中,所述第二拉远能力值大于所述实际拉远距离。
  10. 根据权利要求9所述的系统,其特征在于,所述装置还用于,
    当所述实际拉远距离小于或等于所述第一拉远能力值时,将所述RRU到所述第一DU的拉远能力值设置为所述第一拉远能力值,且
    调整所述第一DU的时序与所述第一拉远能力值对应,以使得所述RRU接入所述第一DU且所述第一DU参与基站间协同通信。
  11. 一种基站协同管理方法,其特征在于,应用于分布式云无线接入网C-RAN中,所述C-RAN中包括分别与交换机相连接的第一数字单元DU及第二DU,所述第一DU与至少一个射频拉远单元RRU相连,所述方法包括:
    获取每一个所述RRU与所述第一DU之间的实际拉远距离;
    当所述RRU的实际拉远距离大于第一拉远能力值时,将实际拉远距离大于第一拉远能力值的RRU的拉远能力值设置为第二拉远能力值,其中,所述第一拉远能力值是指,支持所述第一DU参与所述C-RAN的基站间协同通信的所述RRU到所述第一DU的最大拉远距离;
    调整所述第一DU的时序与所述第二拉远能力值对应,以使得所述实际拉远距离大于第一拉远能力值的RRU接入所述第一DU,其中,所述第二拉远能力值大于所述实际拉远距离。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括,
    当所述实际拉远距离小于或等于所述第一拉远能力值时,将所述RRU到所述第一DU的拉远能力值设置为所述第一拉远能力值,
    调整所述第一DU的时序与所述第一拉远能力值对应,以使得所述RRU接入所述第一DU且所述第一DU参与基站间协同通信。
  13. 根据权利要求12所述的方法,其特征在于,所述第一DU参与基站间协同通信包括,
    所述第一DU与所述第二DU进行协同数据交换,所述协同数据用于以下至少一种处理方式:上行协作多点传输,联合调度,载波聚合。
  14. 根据权利要求13所述的方法,其特征在于,所述调整所述第一DU的时序与所述第一拉远能力值对应,包括,调整所述第一DU中基带板内部处理基带数据的步骤和时延分配,以使得所述协同数据发送到所述第二DU后,与所述第二DU接收到的其他业务数据同步处理,其中,所述协同数据与所述其他业务数据是和同一个用户设备相关的业务数据。
  15. 根据权利要求11-14任一所述的方法,其特征在于,所述获取所述RRU与所述第一DU之间的实际拉远距离包括,
    对所述RRU与所述第一DU之间的通用公共无线接口CPRI进行传输时延测量,根据传输时延测量结果获取所述实际拉远距离。
  16. 根据权利要求11-15任一所述的方法,其特征在于,
    所述第一拉远能力值及所述第二拉远能力值由所述第一DU的基带处理资源确定。
  17. 根据权利要求16所述的方法,其特征在于,所述第一拉远能力值及所述第二拉远能力值由所述第一DU的基带处理资源确定包括,
    根据公式y1=z-k*x,计算所述第一拉远能力值,
    根据y2=z,计算所述第二拉远能力值,
    其中,z为根据所述第一DU的基带处理资源的上限得到的所述第一DU的拉远能力值加权和;x为所述第一DU参与所述C-RAN中的基 站间协同通信所需的所述第一DU到所述交换机的拉远需求值,x>0;k为加权系数,k>0;y1为所述第一拉远能力值,y2为所述第二拉远能力值。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括,
    建立包含计算得到的所述第一拉远能力值及所述第二拉远能力值的查找表。
PCT/CN2014/093731 2014-12-12 2014-12-12 装置、通信系统及基站协同管理方法 WO2016090644A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480033990.7A CN105900526B (zh) 2014-12-12 2014-12-12 装置、通信系统及基站协同管理方法
PCT/CN2014/093731 WO2016090644A1 (zh) 2014-12-12 2014-12-12 装置、通信系统及基站协同管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093731 WO2016090644A1 (zh) 2014-12-12 2014-12-12 装置、通信系统及基站协同管理方法

Publications (1)

Publication Number Publication Date
WO2016090644A1 true WO2016090644A1 (zh) 2016-06-16

Family

ID=56106510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093731 WO2016090644A1 (zh) 2014-12-12 2014-12-12 装置、通信系统及基站协同管理方法

Country Status (2)

Country Link
CN (1) CN105900526B (zh)
WO (1) WO2016090644A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130582A (zh) * 2018-11-01 2020-05-08 华为技术有限公司 一种相干联合发射jt中计算发射权值的方法及相应装置
WO2021218682A1 (zh) * 2020-04-28 2021-11-04 华为技术有限公司 通信方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325366A (zh) * 2011-05-24 2012-01-18 大唐移动通信设备有限公司 一种数据同步方法、系统及装置
CN102377477A (zh) * 2010-08-27 2012-03-14 华为技术有限公司 基带信号传输方法和装置
CN102546080A (zh) * 2010-12-21 2012-07-04 华为技术有限公司 一种下行基带信号生成方法及相关设备、系统
CN102723994A (zh) * 2012-06-15 2012-10-10 华为技术有限公司 数据传输的方法、装置及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867959B1 (ko) * 2011-01-12 2018-06-15 삼성전자주식회사 이동통신 시스템에서 중앙 집중형 기지국 운영을 위한 장치와 방법
CN102523589A (zh) * 2011-12-23 2012-06-27 电信科学技术研究院 一种基带拉远的处理方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377477A (zh) * 2010-08-27 2012-03-14 华为技术有限公司 基带信号传输方法和装置
CN102546080A (zh) * 2010-12-21 2012-07-04 华为技术有限公司 一种下行基带信号生成方法及相关设备、系统
CN102325366A (zh) * 2011-05-24 2012-01-18 大唐移动通信设备有限公司 一种数据同步方法、系统及装置
CN102723994A (zh) * 2012-06-15 2012-10-10 华为技术有限公司 数据传输的方法、装置及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130582A (zh) * 2018-11-01 2020-05-08 华为技术有限公司 一种相干联合发射jt中计算发射权值的方法及相应装置
WO2021218682A1 (zh) * 2020-04-28 2021-11-04 华为技术有限公司 通信方法、装置及系统

Also Published As

Publication number Publication date
CN105900526B (zh) 2019-05-28
CN105900526A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP7071543B2 (ja) アップリンク同期方法及び装置
JP2020506583A (ja) 信号伝送方法及び装置
US10349399B2 (en) User device and base station
US20210144666A1 (en) Synchronizing tsn master clocks in wireless networks
CN110431914B (zh) 具有用户设备终端能力的远程射频头
US20130044707A1 (en) CONFIGURATION OF CSI-RS FOR CoMP FEEDBACK
CN112314017A (zh) 用于支持基于精度定时协议(ptp)的时间敏感网络(tsn)应用的时间同步无线电承载
EP4181447A1 (en) Qcl indication method and related device
CN108809595A (zh) 一种参考信号通知方法及其装置
CN108886724A (zh) 一种无线通信系统中管理连接的系统和方法
AU2016417262A1 (en) Method, device and computer program for primary cell change
TWI736239B (zh) 在iab節點間之量測中之靜音模式信號
CN107769830B (zh) 协同工作子状态的方法、装置及系统
US20220124652A1 (en) IAB Timing Delta MAC CE Enhancement For Case #6 Timing Support
Manolakis et al. Time synchronization for multi-link D2D/V2X communication
WO2018171783A1 (zh) 信号传输方法、装置及系统
CN108668312A (zh) 一种测量参数发送方法及其装置
WO2015017977A1 (zh) 一种umts到lte的网络切换方法、设备及系统
WO2019233205A1 (zh) 一种配置传输带宽的方法、装置及设备
EP2800429A1 (en) Communication system comprising a plurality of communication nodes
WO2016090644A1 (zh) 装置、通信系统及基站协同管理方法
CN112806078B (zh) 网络节点之间的资源调度
US20210297973A1 (en) Over the air synchronization of network nodes
WO2019157979A1 (zh) 一种上行同步方法及装置
WO2015139269A1 (zh) 一种信息的传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907945

Country of ref document: EP

Kind code of ref document: A1