WO2020192554A1 - 一种气浮垫结构 - Google Patents

一种气浮垫结构 Download PDF

Info

Publication number
WO2020192554A1
WO2020192554A1 PCT/CN2020/080225 CN2020080225W WO2020192554A1 WO 2020192554 A1 WO2020192554 A1 WO 2020192554A1 CN 2020080225 W CN2020080225 W CN 2020080225W WO 2020192554 A1 WO2020192554 A1 WO 2020192554A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
boss
air outlet
air cushion
pressure equalizing
Prior art date
Application number
PCT/CN2020/080225
Other languages
English (en)
French (fr)
Inventor
刘屈武
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2020192554A1 publication Critical patent/WO2020192554A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0622Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via nozzles, restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings

Definitions

  • the embodiment of the present invention relates to the field of air floating cushion technology, for example, to an air floating cushion structure.
  • Static pressure air flotation technology is the core technology of precision moving parts of lithography equipment. Usually in precision motion, through static pressure air flotation technology, an air film of less than tens of microns will be formed between the moving structure and the bearing surface so that the moving parts will be isolated from the bearing surface during the movement.
  • This non-contact bearing Compared with the mechanical guide rail in the related technology, it has the advantages of extremely low friction and heat insulation and vibration isolation.
  • the pollution control in the semiconductor equipment is extremely strict, which reduces the particle pollution caused by the direct contact friction between the mechanical guide rail and the guide rail surface.
  • Air flotation cushions in the related art generally include small hole throttling air flotation cushions and annular throttling air flotation cushions.
  • the pressure of the orifice throttle air cushion fluctuates, which causes the bearing to vibrate and the dynamic stability is poor; the rigidity and bearing capacity of the toroidal throttle air cushion are small, which cannot meet the requirements of high bearing capacity and high rigidity.
  • the embodiment of the present invention provides an air cushion structure to solve the technical problems of poor dynamic stability or low rigidity and bearing capacity of the air cushion structure in the related art.
  • the embodiment of the present invention provides an air floating cushion structure, including an air floating cushion body, the air floating cushion body includes an air outlet surface, a non-air outlet surface, and a side surface connecting the air outlet surface and the non-air outlet surface;
  • a gas inlet is provided on the side of the air cushion body
  • the air outlet surface is provided with a first air outlet unit;
  • the first air outlet unit includes a first orifice, a first pressure equalization groove, a first boss, and a second pressure equalization groove;
  • the first orifice communicates with the gas inlet
  • the first pressure equalizing groove is arranged around the first orifice
  • the first boss is arranged around the first pressure equalizing groove
  • the second pressure equalizing groove is arranged around the first boss.
  • Figure 1 is a schematic diagram of a small-hole throttling air cushion in the related art
  • Figure 2 is a structural schematic diagram of a toroidal throttling air cushion in the related art
  • FIG. 3 is a schematic structural diagram of an air cushion structure provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an air cushion structure showing an internal air path provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an air outlet surface in an air floating cushion structure provided by an embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of a first air outlet unit provided by an embodiment of the present invention.
  • FIG. 7 is a detailed schematic diagram of a first air outlet unit provided by an embodiment of the present invention.
  • Fig. 8 is a schematic cross-sectional structure diagram of the first air outlet unit provided in Fig. 6 along the section line A-A';
  • FIG. 9 is a schematic diagram of the interface of an air cushion structure related solution tool provided by an embodiment of the present invention.
  • FIG. 10 is a cloud diagram of the pressure distribution of the air film surface based on the air outlet surface shown in FIG. 5 provided by an embodiment of the present invention
  • FIG. 11 is a comparison schematic diagram of the bearing capacity curve, the stiffness curve and the flow curve of the small hole throttling air cushion, the toroidal throttling air cushion and the air cushion structure provided by the embodiment of the present invention;
  • FIG. 12 is a schematic diagram of the comparison of the flow field Mach number of the small hole throttling air cushion, the toroidal throttling air cushion and the air cushion structure provided by the embodiment of the present invention
  • FIG. 13 is a schematic diagram of the pressure fluctuation comparison of the small hole throttle air floatation cushion, the toroidal throttle air floatation cushion and the air floatation cushion structure provided by the embodiment of the present invention
  • FIG. 14 is a schematic diagram of aerodynamic noise comparison between the small hole throttle air floatation cushion, the toroidal throttle air floatation cushion and the air floatation cushion structure provided by the embodiment of the present invention
  • FIG. 15 is a schematic cross-sectional structure diagram of another first air outlet unit provided in FIG. 6 along the section line A-A';
  • Fig. 16 is a schematic cross-sectional structure view of another first air outlet unit provided in Fig. 6 along the section line A-A';
  • FIG. 17 is a schematic cross-sectional structure diagram of another first air outlet unit provided in FIG. 6 along the section line A-A';
  • FIG. 18 is a schematic structural diagram of an air outlet surface of another air cushion structure provided by an embodiment of the present invention.
  • FIG. 19 is a cloud diagram of the pressure distribution of the air film surface based on the air outlet surface shown in FIG. 18 provided by an embodiment of the present invention.
  • 20 is a schematic structural diagram of an air outlet surface of another air cushion structure provided by an embodiment of the present invention.
  • FIG. 21 is a cloud diagram of the pressure distribution of the air film surface based on the air outlet surface shown in FIG. 20 provided by an embodiment of the present invention.
  • FIG 1 is a structural diagram of a small orifice throttle air cushion in the related art.
  • the small orifice throttle air cushion in the related art may include an orifice 10 and a pressure equalizing groove 11.
  • the outlet of the throttle hole 10 will be designed with a circular groove, namely the pressure equalizing groove 11.
  • the structure of the pressure groove 11 increases the rigidity and load-bearing capacity of the air model, the air in the orifice 10 enters the pressure equalizing groove 11 and the space suddenly expands to form turbulence.
  • the airflow in the pressure equalizing groove 11 will form many vortices. This causes the pressure of the air cushion to fluctuate, which in turn causes the bearing to vibrate.
  • increasing the size of the pressure equalizing groove 11 would bring greater vibration to the air cushion.
  • Fig. 2 is a structural schematic diagram of a toroidal throttling air cushion in the related art.
  • the toroidal throttling air cushion in the related art includes an orifice 20. When compressed air enters the orifice 20, it passes through the air cushion The discharge from the gap with the bearing surface will form an air film with certain rigidity and bearing capacity.
  • the toroidal throttling air cushion does not have a pressure equalizing groove and therefore does not form a vortex. Therefore, the air vibration of this air cushion is the weakest, but the stiffness and bearing capacity are also small, which cannot meet the requirements of high bearing capacity and high rigidity.
  • an embodiment of the present invention provides an air floatation cushion structure, including an air floatation mat body, the air floatation mat body includes an air outlet surface, a non-air outlet surface corresponding to the air outlet surface, and a plurality of connecting the air outlet surface and the non-air outlet surface.
  • At least one side surface is provided with a gas inlet; the gas outlet surface is provided with a plurality of first gas outlet units; the first gas outlet unit includes at least a first orifice, a first pressure equalizing groove, a first boss, and a second pressure equalizing groove
  • the first pressure equalizing groove is arranged around the first orifice; the first boss is arranged around the first pressure equalizing groove; the second pressure equalizing groove is arranged around the first boss.
  • the first boss prevents the full development of turbulence of the air flow during the flow process, reduces the vortex, thereby reduces the pressure fluctuation of the air cushion, and improves the air vibration;
  • the second pressure equalization groove is arranged to surround the first boss to ensure that the air cushion structure has greater peak stiffness and greater peak bearing capacity, and enhance the bearing capacity of the air cushion structure.
  • FIG. 3 is a schematic structural diagram of an air cushion structure provided by an embodiment of the present invention
  • FIG. 4 is a structural schematic diagram of an air cushion structure showing an internal air path provided by an embodiment of the present invention
  • FIG. 5 is an embodiment of the present invention
  • a structural schematic diagram of the structure of the air outlet surface in an air cushion structure is provided.
  • FIG. 6 is a schematic structural diagram of a first air outlet unit provided by an embodiment of the present invention
  • FIG. 7 is a first air outlet provided by an embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional structure view of the first air outlet unit provided in FIG.
  • the air cushion provided by the embodiment of the present invention
  • the structure includes an air cushion body 30, which includes an air outlet surface 31, a non-air outlet surface 32 corresponding to the air outlet surface 31, and a plurality of side surfaces 33 connecting the air outlet surface 31 and the non-air outlet surface 32;
  • At least one side 33 is provided with a gas inlet 34;
  • the air outlet surface 31 is provided with a plurality of first air outlet units 311;
  • the first air outlet unit 311 includes at least a first throttle hole 3111, a first pressure equalization groove 3112, a first boss 3113, and a second pressure equalization groove 3114;
  • the first pressure equalizing groove 3112 is arranged around the first throttle hole 3111;
  • the first boss 3113 is arranged around the first pressure equalizing groove 3112;
  • the second pressure equalizing groove 3114 is arranged around the first boss 3113.
  • the air cushion body 30 is generally made of a metal material, and has an air path structure inside, as shown in FIG. 4.
  • At least one gas inlet 34 is provided on the side of the air cushion body 30.
  • compressed air enters the air cushion body 30 from the gas inlet 34, and the compressed air is delivered to the inner air path through the internal air path.
  • the plurality of first air outlet units 311 located on the air outlet surface 31 then flow out of the edge of the air cushion through the gap between the air cushion body 30 and the bearing surface.
  • the flow process of the air flow is schematically shown in FIG. 8. After the gas flows out of the orifice, an air film with a certain pressure distribution is formed to fill the gap between the air cushion and the bearing surface, and the floating cushion generates bearing capacity. At this time, the thickness of the air film can reach several ⁇ m to tens of ⁇ m.
  • the first air outlet unit 311 includes a first throttle hole 3111 located in the middle of the first air outlet unit 311, a first pressure equalizing groove 3112 located on the periphery of the first throttle hole 3111, and
  • the pressure equalizing groove 3112 is arranged around the first orifice 3111
  • the first boss 3113 is located at the periphery of the first pressure equalizing groove 3112
  • the first boss 3113 is arranged around the first pressure equalizing groove 3112
  • the second equalizing groove 3114 and the second equalizing groove 3114 are arranged around the first boss 3113.
  • the compressed gas sequentially passes through the first orifice 3111, the first pressure equalizing groove 3112, the first boss 3113, and the second pressure equalizing groove 3114 to form an air mold with certain rigidity and bearing capacity.
  • the first pressure equalizing groove 3112 is arranged to surround the first orifice 3111, the purpose of which is to increase the stiffness and bearing capacity of the air cushion structure;
  • the first boss 3113 is arranged to surround the first pressure equalizing groove 3112, and the purpose is
  • the high-speed gas flowing out of the throttle hole 3111 enters the first pressure equalization groove 3112 and then passes through the first boss 3113 to block the full development of turbulence during the flow process, reduce vortex, thereby reducing the pressure fluctuation of the air cushion, improving the air vibration situation;
  • the second equalizing groove 3114 surrounds the first boss 3113, and the second equalizing groove 3114 is combined with the first equalizing groove 3112 to ensure that the air cushion structure has a larger equalizing groove, and the air cushion and the mechanism have good Stiffness and
  • each first air outlet unit includes at least a first orifice, a first pressure equalizing groove, a first boss, and a second
  • the first pressure equalizing groove is arranged around the first orifice
  • the first boss is arranged around the first pressure equalizing groove to ensure that the first boss blocks the full development of turbulence during the flow of the airflow and reduces turbulence, Thereby reducing the pressure fluctuation of the air cushion and improving the air vibration
  • the second equalizing groove is arranged around the first boss, and the second equalizing groove is combined with the first equalizing groove to ensure that the air cushion structure has a larger overall
  • the pressure equalization groove ensures that the air cushion structure has greater rigidity and greater bearing capacity, and improves the bearing capacity of the air cushion structure.
  • the shape of the first pressure equalizing groove 3112 may be a circle, an ellipse, a rectangle, or a rounded rectangle; the shape of the first boss 3113 may be a circle, an ellipse, a rectangle, or a rounded rectangle; The shape of the pressing groove 3114 may be a circle, an ellipse, a rectangle, or a rounded rectangle.
  • the shape of the first pressure equalizing groove 3112, the first boss 3113, and the second pressure equalizing groove 3114 can also be other shapes, and it is only necessary to add the first boss 3113 to ensure that the vortex can be reduced, thereby reducing the gas.
  • the floating cushion pressure fluctuates to improve the air vibration.
  • a second pressure equalizing groove 3114 ensures that the air cushion structure has greater rigidity and greater bearing capacity, and the bearing capacity of the air cushion structure can be improved.
  • the shapes of the first pressure equalizing groove 3112, the first boss 3113, and the second pressure equalizing groove 3114 may be the same or different.
  • the multiple first air outlet units 311 may have the same size, that is, the first orifice 3111 in each first air outlet unit 311, the first pressure equalizing groove 3112, and the first boss 3113 and the second pressure equalization groove 3114 have the same size; at the same time, a plurality of first air outlet units 311 can also have different sizes, that is, the first orifice 3111 in each first air outlet unit 311
  • the groove 3112, the first boss 3113 or the second pressure equalization groove 3114 can have different sizes, and only need to set the size of each structure in the first air outlet unit 311 reasonably to ensure that the requirements of rigidity, bearing capacity and dynamic stability are met at the same time. can.
  • the parameters of the air floating cushion structure can be set reasonably to further ensure the excellent performance of the air floating cushion structure.
  • the above equation (6) is combined with the flow rate and pressure drop equation (7) of the orifice. According to the air film boundary pressure conditions, the numerical solution knowledge can be used to obtain the air film pressure solution of the air cushion structure, thereby obtaining the entire air cushion structure The bearing capacity and stiffness.
  • Figure 9 is a schematic diagram of a solution tool interface for an air cushion structure provided by an embodiment of the present invention.
  • the embodiment of the present invention uses a self-developed numerical solution tool software based on air cushion related theories, and the tool is aimed at the air cushion in this application.
  • Mat structure has developed a new related algorithm to solve it. Based on the above solving tool software, the embodiment of the present invention obtains the following relevant parameters of the air cushion structure.
  • the depth of the first pressure equalizing groove 3112 is H1
  • the height of the first boss 3113 is H2
  • the depth of the second pressure equalizing groove 3114 is H3, where H2 ⁇ H1, H2 ⁇ H3.
  • 0.01mm ⁇ H1 ⁇ 0.05mm; 0.01mm ⁇ H3 ⁇ 0.05mm; the distance s between the surface of the first boss 3113 far away from the non-exhausting surface 32 and the outlet surface 31 satisfies 0mm ⁇ s ⁇ 0.02mm.
  • the depths of the first pressure equalizing groove 3112, the first boss 3113, and the second pressure equalizing groove 3114 are set reasonably to ensure the greater rigidity and bearing capacity of the air cushion structure, and the smaller pressure fluctuation of the air cushion. Ensure excellent structural performance of the air cushion.
  • the size of the first orifice 3111 is d
  • the size of the first pressure equalizing groove 3112 is D1
  • the first boss The size of 3113 is D2
  • the size of second equalizing groove 3114 is D3; among them, 0.05mm ⁇ d ⁇ 0.3mm; 1mm ⁇ D3 ⁇ 6mm; d ⁇ D1 ⁇ D2 ⁇ D3.
  • the horizontal extension widths of the first orifice 3111, the first pressure equalizing groove 3112, the first boss 3113, and the second pressure equalizing groove 3114 are reasonably set to ensure the greater rigidity and stiffness of the air cushion structure Bearing capacity and small pressure fluctuations of the air cushion ensure excellent structural performance of the air cushion.
  • FIG. 10 is a cloud diagram of the air film surface pressure distribution of the air cushion structure provided by the embodiment of the present invention. From FIG. 10, it can be known that although the depth of the first pressure equalizing groove 3112 and the second pressure equalizing groove 3114 is only tens of ⁇ m, the gas The pressure drop in the first pressure equalizing tank 3112 and the second pressure equalizing tank 3114 is not obvious, which is the key to increasing the peak bearing capacity and peak stiffness of the air cushion structure.
  • FIG. 11 is a schematic diagram of the comparison of the bearing capacity curve, the stiffness curve and the flow curve of the small hole throttling air cushion, the toroidal throttling air cushion and the air cushion structure provided by the embodiment of the present invention.
  • Orifice throttling air cushion curve 2 represents the toroidal throttling air cushion
  • curve 3 represents the air cushion structure provided by the embodiment of the present invention.
  • the peak load of the air cushion structure provided by the embodiment of the present invention Both the force and peak stiffness are greatest.
  • the rigidity performance of low air film can be evaluated by the following example: for example, the design work load is 300N. At this time, the working rigidity values of the three air cushions are shown in Table 1.
  • the air cushion is subjected to greater wave power during movement, the air cushion is instantaneous
  • the bearing capacity is floating between 300N and 500N. At this time, the thickness of the air film is lower than the thickness of the air film at the designed working bearing position. From the curve in Figure 11, it can be seen that the stiffness of the small hole throttle air cushion is in the bearing capacity range [300N, 500N].
  • the rigidity of the toroidal throttling air cushion is [45N/ ⁇ m, 61N/ ⁇ m]
  • the structural rigidity of the air cushion provided by the embodiment of the present invention is [63.6N/ ⁇ m, 95N/ ⁇ m]
  • the air cushion structure provided by the embodiment of the present invention has higher rigidity when the air film is low, so that the movement is more stable and it is not easy to rub against the bearing surface and wear the air cushion structure.
  • Torus throttling scheme Orifice throttling scheme Floating cushion of this application
  • the air cushion structure provided by the embodiment of the present invention also suppresses the strength of air vibration due to two reasons: (1) A first boss 3113 is designed between the first pressure equalizing groove 3112 and the second pressure equalizing groove 3114, The full development of gas turbulence is suppressed, and the vortex is greatly reduced, which can be seen from the comparison of the results of the large eddy simulation flow field of the air cushion shown in Figure 12. 13 is a schematic diagram of the pressure fluctuation comparison of the small hole throttling air cushion provided by the embodiment of the present invention, the annular throttling air cushion and the air floating cushion structure provided by the embodiment of the present invention.
  • FIG. 14 is the small hole provided by the embodiment of the present invention.
  • the aerodynamic noise comparison diagram of the throttle air cushion, the toroidal throttle air cushion and the air cushion structure provided by the embodiment of the present invention can be seen from the pressure fluctuation comparison diagram shown in FIG. 13 and the aerodynamic disturbance comparison diagram shown in FIG. 14 It is known that the vibration intensity of the orifice throttle air cushion is the largest, and the toroidal throttle air cushion has the weakest vibration.
  • the air floatation structure provided by the embodiment of the present invention is between the orifice throttle air cushion and the toroidal throttle air cushion; (2)
  • the depths of the first pressure equalizing groove 3112 and the second pressure equalizing groove 3114 are extremely shallow, only 0.01mm-0.05mm, so that the air-to-volume ratio is lower, and the probability of hammer vibration is further reduced compared to the orifice throttling.
  • the air cushion structure test provided based on the example of the present invention is also consistent with the simulation data, which shows the effectiveness of the air cushion structure provided by the embodiment of the present invention.
  • Figures 12-14 of the embodiment of the present invention are based on small hole throttling, toroidal throttling and the air cushion structure of the present application using a single Comparison of the results of the throttle air cushion model.
  • the air cushion may self-excited vibration under pressure fluctuations or other interference forces to form air vibration.
  • the air cushion structure provided by the embodiment of the present invention, Through strict control and simulation of the above various dimensional parameters, the probability of air vibration of the air cushion can be greatly reduced, and the rigidity and bearing capacity of the air cushion can be improved compared with the previous conventional structure or it can meet the design requirements without generating Design performance waste.
  • the included angle between the surface of the first boss 3113 on the side away from the non-outer surface 32 and the side surface of the first boss 3113 is ⁇ , where 90° ⁇ 180°.
  • the angle ⁇ between the surface of the first boss 3113 on the side away from the non-air outlet surface 32 and the side surface of the first boss 3113 satisfies 90° ⁇ 180°, and ⁇ is an obtuse angle to ensure that When the side surface of the boss 3113 transitions to the surface of the first boss 3113 away from the side of the non-exhaust surface 32, the angle transition is gentle, to avoid sudden angle changes caused by ⁇ being an acute or right angle, and pressure fluctuations in the airflow at the acute angle to ensure that Reduce the pressure fluctuation of the air cushion and improve the air vibration.
  • FIG. 15 is a schematic cross-sectional structure diagram of another first air outlet unit provided in FIG. 6 along the section line AA'. As shown in FIG. 15, the first boss 3113 is away from the non-air outlet surface 32 The angle between the surface on one side and the side surface of the first boss 3113 is a circular arc angle.
  • the angle between the surface of the first boss 3113 on the side away from the non-venting surface 32 and the side surface of the first boss 3113 is a circular arc angle to ensure that the first boss 3113 is away from the side of the non-venting surface 32
  • the angle between the surface and the side surface of the first boss 3113 changes smoothly, avoiding pressure fluctuations in the air flow at the sharp angles caused by the acute or right angle ⁇ , ensuring that the pressure fluctuation of the air cushion can be reduced, and the air vibration can be improved.
  • FIG. 16 is a cross-sectional structure diagram of another first air outlet unit provided in FIG. 6 along the section line AA'.
  • the first air outlet unit provided by the embodiment of the present invention 311 may further include at least one second boss 3115 and at least one third pressure equalizing groove 3116;
  • the second boss 3115 is arranged around the second pressure equalizing groove 3114;
  • the third pressure equalizing groove 3116 is arranged around the second boss 3115.
  • the second boss 3115 is arranged to surround the second pressure equalization groove 3114.
  • the purpose of the second boss 3115 is to further block the full development of turbulence in the flow process, reduce vortex, and reduce the pressure fluctuation of the air cushion. Air vibration situation; the third pressure equalizing groove 3116 is arranged to surround the second boss 3115, and the first pressure equalizing groove 3112 and the second pressure equalizing groove 3114 are combined through the third pressure equalizing groove 3116 to ensure that the air cushion structure has a greater equalization
  • the pressure groove ensures the air cushion and the mechanism has good rigidity and bearing capacity.
  • FIG. 16 only takes the first air outlet unit 311 including a second boss 3115 and a third pressure equalization groove 3116 as an example for description. It is understandable that in order to set the air cushion structure to meet the actual rigidity and bearing capacity As well as the requirements of dynamic stability, the air cushion structure provided by the embodiment of the present invention may include a plurality of second bosses 3115 and a plurality of third pressure equalizing grooves 3116, a plurality of second bosses 3115 and a plurality of third equalizers.
  • the pressure grooves 3116 are arranged at intervals in a direction away from the first throttle hole 3111 to meet actual requirements.
  • FIG. 17 is a cross-sectional structural diagram of another first air outlet unit provided in FIG. 6 along the section line AA'.
  • the first boss 3113 is away from the non-air outlet surface 32
  • the surface on one side is flush with the air outlet surface 31, so that the channel height (the height s between the first boss 3113 and the bearing surface) of the gas from the first pressure equalization groove 3112 to the second pressure equalization groove 3114 is lower, and this structure increases
  • the dynamic stability of the air cushion structure is improved, but compared to the air cushion structure described in Fig. 8, the peak stiffness is reduced. Therefore, the air cushion structure provided in Fig. 17 is suitable for situations that require higher dynamic stability.
  • FIG. 18 is a schematic structural diagram of the outlet surface of another air cushion structure provided by an embodiment of the present invention.
  • the air cushion structure provided by the embodiment of the present invention may also include
  • the second air outlet unit 312 includes a second throttle hole 3121.
  • the air cushion structure provided by the embodiment of the present invention may further include a second air outlet unit 312 including only the second orifice 3121.
  • the combination of the first air outlet unit 311 and the second air outlet unit 312 can change the air The pressure distribution of the air film of the floating cushion can obtain the best solution to meet the design requirements.
  • the sizes of the first orifice 3111 and the second orifice 3121 only need to ensure that the requirements of rigidity, bearing capacity and dynamic stability are met at the same time.
  • FIG. 19 is a gas film surface pressure distribution cloud diagram based on the air outlet surface shown in FIG. 18 provided by an embodiment of the present invention.
  • Reasonable setting of the parameters of different air outlet units on the air outlet surface 31 can adjust the rigidity and bearing capacity of the air cushion structure.
  • the first air outlet unit 311 and the second air outlet unit 311 and the second air outlet unit included in the air outlet surface 31 can be flexibly set according to actual needs.
  • the number of air outlet units 312 and the distribution position relationship ensure that the air cushion structure design is more reasonable, reduces design performance waste and space waste, and improves design quality.
  • FIG. 20 is a schematic structural diagram of the outlet surface of another air cushion structure provided by an embodiment of the present invention.
  • the outlet surface of the air cushion structure provided by the embodiment of the present invention 31 may also be provided with a plurality of fourth pressure equalizing grooves 35.
  • the air cushion structure provided by the embodiment of the present invention may further include a plurality of fourth pressure equalizing grooves 35 located on the air outlet surface 31.
  • the combination of the first air outlet unit 311 and the fourth pressure equalizing groove 35 can be changed.
  • the air-floating cushion air film pressure distribution can obtain the best solution to meet the design requirements.
  • the size of the fourth pressure equalizing groove 35 only needs to ensure that the requirements of rigidity, bearing capacity and dynamic stability are met at the same time.
  • FIG. 21 is a gas film surface pressure distribution cloud diagram based on the air outlet surface shown in FIG. 20 provided by an embodiment of the present invention, compared with the gas film surface pressure distribution cloud diagram shown in FIG. 21, the gas film surface pressure distribution cloud diagram shown in FIG. 19, and the graph
  • the pressure distribution cloud diagram of the air film surface shown in 10 shows that by setting the parameters of the first air outlet unit 311 and the fourth pressure equalizing groove on the air outlet surface 31 reasonably, the stiffness and bearing capacity of the air cushion structure can be adjusted, and in actual work
  • the number of the first air outlet unit 311 and the fourth pressure equalizing groove 35 included in the air outlet surface 31 and the distribution position relationship can be flexibly set according to actual needs to ensure a more reasonable design of the air cushion structure and reduce design performance waste and space waste. Improve design quality.
  • each first air outlet unit includes at least a first orifice, a first pressure equalizing groove, a first boss, and a second
  • the first pressure equalizing groove is arranged around the first orifice
  • the first boss is arranged around the first pressure equalizing groove to ensure that the first boss blocks the full development of turbulence during the flow of the airflow and reduces turbulence, Thereby reducing the pressure fluctuation of the air cushion and improving the air vibration
  • the second pressure equalization groove is arranged around the first boss to ensure that the air cushion structure has greater rigidity and greater bearing capacity, and improve the air cushion structure Carrying capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Vibration Prevention Devices (AREA)
  • Support Of The Bearing (AREA)

Abstract

一种气浮垫结构,包括气浮垫本体(30),气浮垫本体(30)包括出气面(31)、非出气面(32),以及连接出气面(31)和非出气面(32)的侧面(33);气浮垫本体(30)的侧面(33)设置有气体入口(34);出气面(31)设置有第一出气单元(311);第一出气单元(311)包括第一节流孔(3111)、第一均压槽(3112)、第一凸台(3113)和第二均压槽(3114);第一均压槽(3112)环绕第一节流孔(3111)设置;第一凸台(3113)环绕第一均压槽(3112)设置;第二均压槽(3114)环绕第一凸台(3113)设置。解决了气浮垫结构动态稳定性差或者刚度和承载力小的问题。

Description

一种气浮垫结构
本公开要求在2019年03月22日提交中国专利局、申请号为201910222059.8的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本发明实施例涉及气浮垫技术领域,例如涉及一种气浮垫结构。
背景技术
静压气浮技术是光刻设备精密运动部件的核心技术。通常在精密运动中通过静压气浮技术,运动结构与承载面之间会形成一层几十微米以下的空气薄膜使运动部件在运动过程中会与承载面隔离,这种非接触式承载相比相关技术中的机械导轨具有摩擦力极低,隔热隔振的优势,另外在半导体设备对污染控制异常严格,减少了机械导轨与导轨面直接接触摩擦产生的颗粒污染。
通常这种静压气浮技术是通过气浮垫或者气浮块来实现的。相关技术中的气浮垫一般包括小孔节流气浮垫和环面节流气浮垫。但是小孔节流气浮垫的浮垫压力波动,从而引起轴承微振动,动态稳定性差;环面节流气浮垫刚度和承载力小,不能满足高承载力和高刚度的要求。
发明内容
本发明实施例提供一种气浮垫结构,以解决相关技术中的气浮垫结构动态稳定性差或者刚度和承载力小的技术问题。
本发明实施例提供了一种气浮垫结构,包括气浮垫本体,所述气浮垫本体包括出气面、非出气面,以及连接所述出气面和所述非出气面的侧面;
所述气浮垫本体的侧面设置有气体入口;
所述出气面设置有第一出气单元;所述第一出气单元包括第一节流孔、第一均压槽、第一凸台和第二均压槽;
所述第一节流孔,连通所述气体入口;
所述第一均压槽环绕所述第一节流孔设置;
所述第一凸台环绕所述第一均压槽设置;
所述第二均压槽环绕所述第一凸台设置。
附图说明
图1是相关技术中一种小孔节流气浮垫的结构示意图;
图2是相关技术中一种环面节流气浮垫的结构示意图;
图3是本发明实施例提供的一种气浮垫结构的结构示意图;
图4是本发明实施例提供的一种显示内部气路的气浮垫结构的结构示意图;
图5是本发明实施例提供的一种气浮垫结构中出气面的结构示意图;
图6是本发明实施例提供的一种第一出气单元的结构示意图;
图7是本发明实施例提供的一种第一出气单元的的结构细节示意图;
图8是图6提供的一种第一出气单元沿剖面线A-A’的剖面结构示意图;
图9是本发明实施例提供的一种气浮垫结构相关求解工具的界面示意图;
图10是本发明实施例提供的基于图5所示出气面的气膜表面压力分布云图;
图11是本发明实施例提供的小孔节流气浮垫、环面节流气浮垫以及本发明实施例提供的气浮垫结构的承载力曲线、刚度曲线和流量曲线对比示意图;
图12是本发明实施例提供的小孔节流气浮垫、环面节流气浮垫以及本发明实施例提供的气浮垫结构的流场马赫数比较示意图;
图13是本发明实施例提供的小孔节流气浮垫、环面节流气浮垫以及本发明实施例提供的气浮垫结构的压力波动对比示意图;
图14是本发明实施例提供的小孔节流气浮垫、环面节流气浮垫以及本发明实施例提供的气浮垫结构的气动噪声对比示意图;
图15是图6提供的另一种第一出气单元沿剖面线A-A’的剖面结构示意图;
图16是图6提供的另一种第一出气单元沿剖面线A-A’的剖面结构示意图;
图17是图6提供的另一种第一出气单元沿剖面线A-A’的剖面结构示意图;
图18是本发明实施例提供的另一种气浮垫结构的出气面的结构示意图;
图19是本发明实施例提供的基于图18所示出气面的气膜表面压力分布云图;
图20是本发明实施例提供的另一种气浮垫结构的出气面的结构示意图;
图21是本发明实施例提供的基于图20所示出气面的气膜表面压力分布云图。
具体实施方式
以下将结合本发明实施例中的附图,通过具体实施方式,完整地描述本申请的技术方案。显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。
图1是相关技术中小孔节流气浮垫的结构示意图,如图1所示,相关技术中小孔节流气浮垫可以包括节流孔10和均压槽11,当压缩空气进入节流孔10后通过气浮垫和承载面的间隙排出会形成具有一定刚度和承载力的气膜。这种小孔节流气浮垫为了提高刚度和承载力,保证工作过程节流面积为小孔截面积,节流孔10的出口会设计一个圆形凹槽,即均压槽11,这种均压槽11结构虽然增加了气模刚度和承载,但节流孔10内空气进入均压槽11后空间突然扩大会形成湍流,通过湍流大涡模拟,均压槽11内气流会形成许多涡流,从而引起气浮垫压力波动,进而引起轴承微振动。特别的随着对刚度要求的进一步提高,以往通过增大均压槽11尺寸的方式会给气浮垫带来更大振幅的振动。随着光刻精度越来越高,对静压气浮技术的承载力、刚度及动态稳定性的要求越来越高,这种相关技术中的小孔节流气浮垫结构不足愈加明显。
图2是相关技术中环面节流气浮垫的结构示意图,如图2所示,相关技术中的环面节流气浮垫包括节流孔20,当压缩空气进入节流孔20后通过气浮垫和承载面的间隙排出会形成具有一定刚度和承载力的气膜。环面节流气浮垫由于不存在均压槽,因此,不会形成涡流,因此这种气浮垫气振最弱,但是刚度和承载力也较小,不能满足高承载力和高刚度的要求。
基于上述技术问题,本发明实施例提供一种气浮垫结构,包括气浮垫本体,气浮垫本体包括出气面、与出气面对应的非出气面以及连接出气面和非出气面的多个侧面;至少一个侧面设置有气体入口;出气面设置有多个第一出气单元;第一出气单元至少包括第一节流孔、第一均压槽、第一凸台和第二均压槽;第一均压槽环绕第一节流孔设置;第一凸台环绕第一均压槽设置;第二均压槽环绕第一凸台设置。采用上述技术方案,通过设置第一凸台环绕第一均压槽,通过第一凸台阻挡气流在流动过程中湍流的充分发展,降低涡流,从而减少气浮垫压力波动,改善气振情况;同时,设置第二均压槽环绕第一凸台,保证气浮垫结构具备更大的峰值刚度和更大的峰值承载力,提升气浮垫结构的承载能力。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。图3是本发明实施例提供的一种气浮垫结构的结构示意图,图4是本发明实施例提供的一种显示内部气路的气浮垫结构的结构示意图,图5 是本发明实施例提供的一种气浮垫结构中出气面的结构的结构示意图,图6是本发明实施例提供的一种第一出气单元的结构示意图,图7是本发明实施例提供的一种第一出气单元的的结构细节示意图,图8是图6提供的一种第一出气单元沿剖面线A-A’的剖面结构示意图,结合图3-图8所示,本发明实施例提供的气浮垫结构包括气浮垫本体30,气浮垫本体30包括出气面31、与出气面31对应的非出气面32以及连接出气面31和非出气面32的多个侧面33;
至少一个侧面33设置有气体入口34;
出气面31设置有多个第一出气单元311;第一出气单元311至少包括第一节流孔3111、第一均压槽3112、第一凸台3113和第二均压槽3114;
第一均压槽3112环绕第一节流孔3111设置;
第一凸台3113环绕第一均压槽3112设置;
第二均压槽3114环绕第一凸台3113设置。
在一些实施例中,气浮垫本体30一般由金属材料制成,其内部有气路结构,如图4所示。在气浮垫本体30的侧面设置有至少一个气体入口34,当气浮垫工作时,压缩空气从气体入口34进入气浮垫本体30,通过内部气路把压缩空气输送到与内部气路连通的位于出气面31上的多个第一出气单元311,再通过气浮垫本体30与承载面之间的间隙流出气浮垫边缘,气流的流动过程示意如图8所示。气体在流出节流孔后形成一定压力分布的气膜充满气浮垫和承载面之间的间隙,浮起气浮垫产生承载力,此时气膜厚度可达几μm-几十μm。
继续参考图6-图8所示,第一出气单元311包括位于第一出气单元311最中间的第一节流孔3111,位于第一节流孔3111外围的第一均压槽3112,第一均压槽3112环绕第一节流孔3111设置,位于第一均压槽3112外围的第一凸台3113,第一凸台3113环绕第一均压槽3112设置,位于第一凸台3113外围的第二均压槽3114,第二均压槽3114环绕第一凸台3113设置。压缩气体依次通过第一节流孔3111、第一均压槽3112、第一凸台3113和第二均压槽3114后形成具有一定刚度和承载力的气模。设置第一均压槽3112环绕第一节流孔3111,其目的是可以增加气浮垫结构的刚度和承载力;设置第一凸台3113环绕第一均压槽3112,其目的是让从第一节流孔3111流出的高速气体进入第一均压槽3112后通过第一凸台3113阻挡在流动过程中湍流的充分发展,降低涡流,从而减少气浮垫压力波动改善,气振情况;设置第二均压槽3114环绕第一凸台3113,通过第二均压槽3114结合第一均压槽3112,保证气浮垫结构具备较大的均压槽, 保证气浮垫而机构具备良好的刚度和承载力。
本发明实施例提供的气浮垫结构,通过在出气面设置多个第一出气单元,每个第一出气单元至少包括第一节流孔、第一均压槽、第一凸台和第二均压槽,同时第一均压槽环绕第一节流孔设置,第一凸台环绕第一均压槽设置,保证通过第一凸台阻挡气流在流动过程中湍流的充分发展,降低涡流,从而减少气浮垫压力波动,改善气振情况;同时,第二均压槽环绕第一凸台设置,第二均压槽结合第一均压槽,保证气浮垫结构具备一个整体较大的均压槽,保证气浮垫结构具备更大的刚度和更大的承载力,提升气浮垫结构的承载能力。
可选的,第一均压槽3112的形状可以为圆形、椭圆形、矩形或者圆角矩形;第一凸台3113的形状可以为圆形、椭圆形、矩形或者圆角矩形;第二均压槽3114的形状可以为圆形、椭圆形、矩形或者圆角矩形。本发明实施例中,第一均压槽3112、第一凸台3113和第二均压槽3114的形状还可以为其他形状,只需通过增设第一凸台3113保证可以降低涡流,从而减少气浮垫压力波动,改善气振情况,增设第二均压槽3114保证气浮垫结构具备更大的刚度和更大的承载力,提升气浮垫结构的承载能力即可。在一些实施例中,第一均压槽3112、第一凸台3113和第二均压槽3114的形状可以相同也可以不同。
需要说明的,本发明实施例中,多个第一出气单元311可以具备相同的尺寸,即各个第一出气单元311中的第一节流孔3111、第一均压槽3112、第一凸台3113和第二均压槽3114均具备相同的尺寸;同时,多个第一出气单元311也可以具备不同的尺寸,即各个第一出气单元311中的第一节流孔3111、第一均压槽3112、第一凸台3113或第二均压槽3114可以具备不同的尺寸,只需合理设置第一出气单元311中各个结构的尺寸,保证同时满足刚度、承载力以及动态稳定性的要求即可。
可选的,在上述实施例中气浮垫结构的基础上,合理设置气浮垫结构的参数,可以进一步保证气浮垫结构性能优良。
根据流体动力学知识,压缩气体从气浮垫结构第一节流孔3111流出后,气膜中的极薄层气体满足以下五个方程:
Figure PCTCN2020080225-appb-000001
Figure PCTCN2020080225-appb-000002
Figure PCTCN2020080225-appb-000003
Figure PCTCN2020080225-appb-000004
Figure PCTCN2020080225-appb-000005
联立可导出气体雷诺静压润滑方程:
Figure PCTCN2020080225-appb-000006
Figure PCTCN2020080225-appb-000007
其中:
Figure PCTCN2020080225-appb-000008
上述方程(6)再联立节流孔的流量与压降方程(7),根据气膜边界压力条件利用数值求解知识可以得到气浮垫结构的气膜压力解,从而得到整个气浮垫结构的承载力和刚度。
图9是本发明实施例提供的一种气浮垫结构的求解工具界面示意图,本发明实施例通过自主开发的基于气浮垫相关理论的数值求解工具软件,该工具针对本申请中的气浮垫结构开发了新的相关算法来进行求解。基于上述求解工具软件,本发明实施例得到下述的气浮垫结构的相关参数。
继续参考图8所示,沿垂直出气面31的方向,第一均压槽3112的深度为H1,第一凸台3113的高度为H2,第二均压槽3114的深度为H3,其中,H2≤H1,H2≤H3。其中,0.01mm≤H1≤0.05mm;0.01mm≤H3≤0.05mm;第一凸台3113远离非出气面32一侧的表面与出气面31之间的距离s满足0mm≤s≤0.02mm。
示例性的,合理设置第一均压槽3112、第一凸台3113和第二均压槽3114 的深度,保证气浮垫结构较大的刚度和承载力,较小的气浮垫压力波动,保证气浮垫结构性能优良。
继续参考图8所示,沿第一均压槽3112指向第二均压槽3114的方向,第一节流孔3111的尺寸为d,第一均压槽3112的尺寸为D1,第一凸台3113的尺寸为D2,第二均压槽3114的尺寸为D3;其中,0.05mm≤d≤0.3mm;1mm≤D3≤6mm;d<D1<D2<D3。
示例性的,合理设置第一节流孔3111、第一均压槽3112、第一凸台3113和第二均压槽3114的在水平方向的延伸宽度,保证气浮垫结构较大的刚度和承载力,较小的气浮垫压力波动,保证气浮垫结构性能优良。
图10是本发明实施例提供的气浮垫结构的气膜表面压力分布云图,从图10可以知道,虽然第一均压槽3112和第二均压槽3114的深度只有几十μm,但气体在第一均压槽3112内和第二均压槽3114中的压降并不明显,这是增大气浮垫结构峰值承载力和峰值刚度的关键。
图11是本发明实施例提供的小孔节流气浮垫、环面节流气浮垫以及本发明实施例提供的气浮垫结构的承载力曲线、刚度曲线和流量曲线对比示意图,曲线1表示小孔节流气浮垫,曲线2表示环面节流气浮垫,曲线3表示本发明实施例提供的气浮垫结构,如图11所示,可知本发明实施例提供的气浮垫结构的峰值承载力和峰值刚度都是最大的。并且,低气膜时刚度表现可通过以下例子评价:例如设计工作承载300N,此时三种气浮垫工作刚度值见表1,若在运动中气浮垫受到较大波动力使气浮垫瞬时承载力在300N到500N之间浮动,此时气膜厚度比设计工作承载位气膜厚度变低,从图11的曲线可知在承载力区间[300N,500N]时小孔节流气浮垫刚度在[47N/μm,55N/μm],环面节流气浮垫刚度在[45N/μm,61N/μm],本发明实施例提供的气浮垫结构刚度在[63.6N/μm,95N/μm],显然本发明实施例提供的气浮垫结构在低气膜时刚度更高,这样运动更平稳,也不容易蹭到承载面而磨损气浮垫结构。
表1 小孔节流气浮垫、环面节流气浮垫以及本发明实施例提供的气浮垫结构静态性能参数对比
参数项 环面节流方案 小孔节流方案 本申请的气浮垫
最大承载力 625N 630.2N 850.5N
最大刚度值 61N/μm 58.5N/μm 96.9N/μm
设计承载力 300N 300N 300N
工作刚度 45.1N/μm 47N/um 63.6N/um
工作流量 2.25L/min 6.4L/min 6.58L/min
本发明实施例提供的的气浮垫结构同时使得气振强度得到抑制,原因在于两点:(1)第一均压槽3112和第二均压槽3114之间设计有第一凸台3113,抑制了气体湍流的充分发展,涡流大大降低,这从图12所示的气浮垫的大涡模拟流场结果的对比可以看出。图13是本发明实施例提供的小孔节流气浮垫、环面节流气浮垫以及本发明实施例提供的气浮垫结构的压力波动对比示意图,图14是本发明实施例提供的小孔节流气浮垫、环面节流气浮垫以及本发明实施例提供的气浮垫结构的气动噪声对比示意图,从图13所示的压力波动对比示意图以及图14所示的气动躁动对比示意图中可以知道,小孔节流气浮垫振动强度最大,环面节流气浮垫振动最弱,本发明实施例提供的气浮垫结构介于小孔节流气浮垫和环面节流气浮垫之间;(2)第一均压槽3112和第二均压槽3114深度极浅,只有0.01mm-0.05mm,这样气容比更低,气锤振动的概率相比小孔节流进一步降低。基于本发明实例提供的气浮垫结构测试也与仿真数据一致,表明了本发明实施例提供的气浮垫结构的有效性。
需要说明的是,由于完整的气浮垫大涡模拟的计算量非常大,本发明实施例图12-图14是基于小孔节流、环面节流及本申请的气浮垫结构采用单个节流孔气浮垫模型的结果对比。
另外需要说明的是由于均压槽中气体的可压缩性,气浮垫在压力波动下或者其他干扰力下均可能发生自激振动而形成气振,本发明实施例提供的气浮垫 结构,通过对上文各种尺寸参数的严格控制和仿真能大大降低气浮垫的气振概率,同时使气浮垫的刚度、承载力比以往常规结构得到提高或者是使满足设计需求的同时不产生设计性能浪费。
可选的,在上述实施例的基础上,继续参考图8所示,第一凸台3113远离非出气面32一侧的表面与第一凸台3113的侧面之间的夹角为α,其中90°<α<180°。
示例性的,设置第一凸台3113远离非出气面32一侧的表面与第一凸台3113的侧面之间的夹角α满足90°<α<180°,α为钝角,保证从第一凸台3113的侧面过渡到第一凸台3113远离非出气面32一侧的表面时角度过渡平缓,避免因α为锐角或者直角造成角度骤变,气流在尖锐角位置处发生压力波动,保证可以减少气浮垫压力波动,改善气振情况。
在上述实施例的基础上,图15是图6提供的另一种第一出气单元沿剖面线A-A’的剖面结构示意图,如图15所示,第一凸台3113远离非出气面32一侧的表面与第一凸台3113的侧面之间的夹角为圆弧角。
示例性的,设置第一凸台3113远离非出气面32一侧的表面与第一凸台3113的侧面之间的夹角为圆弧角,保证第一凸台3113远离非出气面32一侧的表面与第一凸台3113的侧面之间的夹角平滑变化,避免因α为锐角或者直角造成气流在尖锐角位置处发生压力波动,保证可以减少气浮垫压力波动,改善气振情况。
在上述实施例的基础上,图16是图6提供的另一种第一出气单元沿剖面线A-A’的剖面结构示意图,如图16所示,本发明实施例提供的第一出气单元311还可以包括至少一个第二凸台3115和至少一个第三均压槽3116;
第二凸台3115环绕第二均压槽3114设置;
第三均压槽3116环绕第二凸台3115设置。
示例性的,设置第二凸台3115环绕第二均压槽3114,其目的是通过第二凸台3115进一步阻挡在流动过程中湍流的充分发展,降低涡流,从而减少气浮垫压力波动改善,气振情况;设置第三均压槽3116环绕第二凸台3115,通过第三均压槽3116结合第一均压槽3112和第二均压槽3114,保证气浮垫结构具备更大的均压槽,保证气浮垫而机构具备良好的刚度和承载力。
需要说明的是,图16仅以第一出气单元311包括一个第二凸台3115和第三均压槽3116为例进行说明,可以理解的是,为了设置气浮垫结构满足实际刚 度、承载力以及动态稳定性的要求,本发明实施例提供的气浮垫结构该可以包括多个第二凸台3115和多个第三均压槽3116,多个第二凸台3115和多个第三均压槽3116依次沿远离第一节流孔3111的方向间隔设置以满足实际需求。
在上述实施例的基础上,图17是图6提供的另一种第一出气单元沿剖面线A-A’的剖面结构示意图,如图17所示,第一凸台3113远离非出气面32一侧的表面与出气面31齐平,这样气体从第一均压槽3112扩散到第二均压槽3114的通道高度(第一凸台3113距承载面高度s)更低,这种结构增加了气浮垫结构的动态稳定性,但相比图8所述的气浮垫结构,峰值刚度有所下降,因此图17提供的气浮垫结构适合对动态稳定性要求更高的情况。
在上述实施例的基础上,图18是本发明实施例提供的另一种气浮垫结构的出气面的结构示意图,如图18所示,本发明实施例提供的气浮垫结构还可以包括第二出气单元312,第二出气单元312包括第二节流孔3121。
示例性的,本发明实施例提供的气浮垫结构还可以包括仅包含第二节流孔3121的第二出气单元312,通过第一出气单元311和第二出气单元312的组合,可以改变气浮垫气膜压力分布从而得到满足设计需求的最佳方案。
需要说明的是,本发明实施例中,第一节流孔3111和第二节流孔3121的尺寸,只需保证同时满足刚度、承载力以及动态稳定性的要求即可。
图19是本发明实施例提供的基于图18所示出气面的气膜表面压力分布云图,对比图19所示的气膜表面压力分布云图以及图10所示的气膜表面压力分布云图可以知道,合理设置出气面31上不同出气单元的参数,可以调整气浮垫结构的刚度和承载力,在实际工作作用中可以根据实际需求,灵活设置出气面31包括的第一出气单元311和第二出气单元312的个数,以及分布位置关系,保证气浮垫结构设计更合理,降低设计性能浪费以及空间浪费,提高设计质量。
在上述实施例的基础上,图20是本发明实施例提供的另一种气浮垫结构的出气面的结构示意图,如图20所示,本发明实施例提供的气浮垫结构的出气面31还可以设置有多个第四均压槽35。
示例性的,本发明实施例提供的气浮垫结构还可以包括位于出气面31上的多个第四均压槽35,通过第一出气单元311和第四均压槽35的组合,可以改变气浮垫气膜压力分布从而得到满足设计需求的最佳方案。
需要说明的是,本发明实施例中,第四均压槽35的尺寸,只需保证同时满足刚度、承载力以及动态稳定性的要求即可。
图21是本发明实施例提供的基于图20所示出气面的气膜表面压力分布云图,对比图21所示的气膜表面压力分布云图、图19所示的气膜表面压力分布云图以及图10所示的气膜表面压力分布云图可以知道,合理设置出气面31上第一出气单元311和第四均压槽的参数,可以调整气浮垫结构的刚度和承载力,在实际工作作用中可以根据实际需求,灵活设置出气面31包括的第一出气单元311和第四均压槽35的个数,以及分布位置关系,保证气浮垫结构设计更合理,降低设计性能浪费以及空间浪费,提高设计质量。
本发明实施例提供的气浮垫结构,通过在出气面设置多个第一出气单元,每个第一出气单元至少包括第一节流孔、第一均压槽、第一凸台和第二均压槽,同时第一均压槽环绕第一节流孔设置,第一凸台环绕第一均压槽设置,保证通过第一凸台阻挡气流在流动过程中湍流的充分发展,降低涡流,从而减少气浮垫压力波动,改善气振情况;同时,第二均压槽环绕第一凸台设置,保证气浮垫结构具备更大的刚度和更大的承载力,提升气浮垫结构的承载能力。

Claims (10)

  1. 一种气浮垫结构,包括气浮垫本体,所述气浮垫本体包括出气面、非出气面,以及连接所述出气面和所述非出气面的侧面;
    所述气浮垫本体的侧面设置有气体入口;
    所述出气面设置有第一出气单元;所述第一出气单元包括第一节流孔、第一均压槽、第一凸台和第二均压槽;
    所述第一节流孔,连通所述气体入口;
    所述第一均压槽环绕所述第一节流孔设置;
    所述第一凸台环绕所述第一均压槽设置;
    所述第二均压槽环绕所述第一凸台设置。
  2. 根据权利要求1所述的气浮垫结构,其中,所述第一凸台远离所述非出气面一侧的表面与所述第一凸台的侧面之间的夹角为α,其中90°<α<180°。
  3. 根据权利要求1所述的气浮垫结构,其中,所述第一凸台远离所述非出气面一侧的表面与所述第一凸台的侧面之间的夹角为圆弧角。
  4. 根据权利要求1所述的气浮垫结构,其中,所述第一出气单元还包括第二凸台和第三均压槽;
    所述第二凸台环绕所述第二均压槽设置;
    所述第三均压槽环绕所述第二凸台设置。
  5. 根据权利要求1所述的气浮垫结构,其中,所述出气面还设置有第二出气单元,所述第二出气单元包括第二节流孔。
  6. 根据权利要求1所述的气浮垫结构,其中,所述出气面还设置有第四均压槽。
  7. 根据权利要求1所述的气浮垫结构,其中,沿垂直所述出气面的方向,所述第一均压槽的深度为H1,所述第一凸台的高度为H2,所述第二均压槽的深度为H3,其中,H2≤H1,H2≤H3。
  8. 根据权利要求7所述的气浮垫结构,其中,0.01mm≤H1≤0.05mm;0.01mm≤H3≤0.05mm;
    所述第一凸台远离所述非出气面一侧的表面与所述出气面之间的距离为s,其中0mm≤s≤0.02mm。
  9. 根据权利要求1所述的气浮垫结构,其中,沿所述第一均压槽指向所述第二均压槽的方向,所述第一节流孔的尺寸为d,所述第一均压槽的尺寸为D1,所述第一凸台的尺寸为D2,所述第二均压槽的尺寸为D3;其中, 0.05mm≤d≤0.3mm;1mm≤D3≤6mm;d<D1<D2<D3。
  10. 根据权利要求1所述的气浮垫结构,其中,所述第一均压槽的形状为圆形、椭圆形、矩形或者圆角矩形;
    所述第一凸台的形状为圆形、椭圆形、矩形或者圆角矩形;
    所述第二均压槽的形状为圆形、椭圆形、矩形或者圆角矩形。
PCT/CN2020/080225 2019-03-22 2020-03-19 一种气浮垫结构 WO2020192554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910222059.8 2019-03-22
CN201910222059.8A CN111720440A (zh) 2019-03-22 2019-03-22 一种气浮垫结构

Publications (1)

Publication Number Publication Date
WO2020192554A1 true WO2020192554A1 (zh) 2020-10-01

Family

ID=72563067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080225 WO2020192554A1 (zh) 2019-03-22 2020-03-19 一种气浮垫结构

Country Status (3)

Country Link
CN (1) CN111720440A (zh)
TW (1) TW202035227A (zh)
WO (1) WO2020192554A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071927A (zh) * 2021-03-04 2021-07-06 湖南大学 一种主动运输气浮平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822181A (en) * 1984-04-02 1989-04-18 Honeywell Inc. Hydrostatic support device and method
JP2002070870A (ja) * 2000-08-28 2002-03-08 Koyo Mach Ind Co Ltd 軸受装置
US20100322540A1 (en) * 2008-01-14 2010-12-23 Frank Peter Wardle Aerostatic bearing
CN102937141A (zh) * 2012-11-06 2013-02-20 中国计量学院 一种低振动静压气体轴承
CN105065453A (zh) * 2015-09-01 2015-11-18 中国计量学院 一种具有复合密封方式的静压气体轴承及其使用方法
CN107269702A (zh) * 2017-07-20 2017-10-20 中国工程物理研究院机械制造工艺研究所 一种静压气体径向轴承

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746242B2 (ja) * 2002-03-08 2006-02-15 ファナック株式会社 層流空気静圧軸受
CN2842057Y (zh) * 2005-09-30 2006-11-29 西安工业学院 高刚度气体静压轴承
CN202628817U (zh) * 2012-06-25 2012-12-26 中国计量学院 一种低振动高精度静压气体轴承
CN104295606A (zh) * 2014-09-23 2015-01-21 哈尔滨工程大学 环带复合节流静压气体止推轴承

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822181A (en) * 1984-04-02 1989-04-18 Honeywell Inc. Hydrostatic support device and method
JP2002070870A (ja) * 2000-08-28 2002-03-08 Koyo Mach Ind Co Ltd 軸受装置
US20100322540A1 (en) * 2008-01-14 2010-12-23 Frank Peter Wardle Aerostatic bearing
CN102937141A (zh) * 2012-11-06 2013-02-20 中国计量学院 一种低振动静压气体轴承
CN105065453A (zh) * 2015-09-01 2015-11-18 中国计量学院 一种具有复合密封方式的静压气体轴承及其使用方法
CN107269702A (zh) * 2017-07-20 2017-10-20 中国工程物理研究院机械制造工艺研究所 一种静压气体径向轴承

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071927A (zh) * 2021-03-04 2021-07-06 湖南大学 一种主动运输气浮平台

Also Published As

Publication number Publication date
CN111720440A (zh) 2020-09-29
TW202035227A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
Cupillard et al. Computational fluid dynamics analysis of a journal bearing with surface texturing
Qiu et al. The effect of texture shape on the load-carrying capacity of gas-lubricated parallel slider bearings
KR101267442B1 (ko) 정압 베어링 장치 및 정압 베어링 장치를 구비한 스테이지
WO2020192554A1 (zh) 一种气浮垫结构
Modesti et al. Dispersive stresses in turbulent flow over riblets
Bai et al. Drag reduction characteristics and flow field analysis of textured surface
US8998169B2 (en) Toothed gate valve seat
Tay et al. Drag reduction with non-axisymmetric dimples
CN108916230A (zh) 一种螺旋节流的静压气体轴承
CN111828478A (zh) 均压槽复合节流气体静压导轨及气模刚度分析方法
EP1970572A1 (en) Gas pressure control actuator, gas bearing mechanism for the gas pressure control actuator, and minute displacement output device using the gas pressure control actuator
CN116717499B (zh) 一种基于被动射流的水翼叶顶泄漏流消涡装置
CN102937141A (zh) 一种低振动静压气体轴承
Borah et al. Flow characterization of bluff bodies: A two-dimensional transformation from square to triangular cylinder
CN211501345U (zh) 一种气体静压气浮垫及气浮导轨
CN202628817U (zh) 一种低振动高精度静压气体轴承
US20220032425A1 (en) Method for surface processing of a component by flow grinding
JPS5913120A (ja) 静圧流体軸受
Zhu et al. Injection angle influence of secondary holes on the enhancement of film cooling effectiveness with horn-shaped or cylindrical primary holes
Pradeep et al. Active flow control in circular and transitioning S-duct diffusers
CN203703346U (zh) 一种迷宫盘片的阻尼降速结构
CN209557366U (zh) 一种抑制空化的节流阀
Chen et al. Modelling and performance improvement of an annular grooved thrust air bearing
Zhang et al. Analysis and simulation of straight-through labyrinth seal in hydrostatic support system
CN107917229A (zh) 一种静音球阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777585

Country of ref document: EP

Kind code of ref document: A1