WO2020192541A1 - 热管理组件以及热管理系统 - Google Patents

热管理组件以及热管理系统 Download PDF

Info

Publication number
WO2020192541A1
WO2020192541A1 PCT/CN2020/080137 CN2020080137W WO2020192541A1 WO 2020192541 A1 WO2020192541 A1 WO 2020192541A1 CN 2020080137 W CN2020080137 W CN 2020080137W WO 2020192541 A1 WO2020192541 A1 WO 2020192541A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
positioning portion
heat exchange
flow channel
valve
Prior art date
Application number
PCT/CN2020/080137
Other languages
English (en)
French (fr)
Inventor
臧晨强
花志国
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to US17/432,604 priority Critical patent/US20220069379A1/en
Priority to EP20779686.3A priority patent/EP3952006A4/en
Priority to JP2021552219A priority patent/JP7361129B2/ja
Publication of WO2020192541A1 publication Critical patent/WO2020192541A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/04Means for preventing wrong assembling of parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of vehicles, in particular to a thermal management component and a thermal management system.
  • the batteries of electric vehicles or hybrid vehicles generate heat when they work.
  • the battery needs to be cooled. Cooling by coolant is a common The way.
  • the usual battery cooling system includes a heat exchanger and an expansion valve.
  • the liquid refrigerant enters the heat exchanger through the throttling effect of the expansion valve.
  • the heat exchanger can generally be a dual-channel heat exchanger with two fluids and two fluids flowing inside. They are refrigerant and cooling liquid. The two are isolated from each other in the heat exchanger and the two exchange heat in the heat exchanger, so that the cooling liquid is cooled, and the battery is cooled through the circulation of the cooling liquid.
  • the heat exchanger and the expansion valve are separate parts, and both are connected by pipes, etc.
  • This way of connecting through pipes will make the weight of the entire assembly heavier, which is not conducive to the vibration resistance of the entire assembly , And the connecting pipe is prone to breakage.
  • a sensor is usually installed on the outlet pipe of the heat exchanger to collect the relevant parameters of the working medium at the outlet of the heat exchanger, and then the sensor expands through the wire
  • the control unit of the valve is connected, and the control unit adjusts the opening of the electronic expansion valve according to the corresponding control program after obtaining the relevant parameters. This will involve the mechanical and electrical connections of the sensors, resulting in a relatively complicated structure of the entire system.
  • the purpose of this application is to provide a thermal management component and a thermal management system, which is beneficial to simplify the structure.
  • a heat management assembly comprising a heat exchange core and a valve assembly, with the heat exchange core as a reference, the valve assembly is located above the heat exchange core, and the heat exchange core and the valve assembly Fixed connection by welding;
  • the valve assembly includes a valve body, a valve core, a valve port and a circuit board, the valve core can move relative to the valve port to adjust the opening of the valve port;
  • the valve body includes a first A flow channel and a second flow channel, the first flow channel and the second flow channel can communicate, the first flow channel and the second flow channel are located on both sides of the valve port, at least part of the first flow Is located above the valve port, and at least part of the second flow channel is located below the valve port;
  • the valve body further includes a third flow channel, on the valve body, the third flow channel and The first flow channel and the second flow channel are not connected,
  • the valve assembly further includes a sensor, the sensor is fixedly connected to the valve body, the sensor is electrically connected to the circuit board, and at least part of the sensor
  • the heat exchange core and the valve assembly are fixedly connected by welding.
  • the valve assembly also includes a sensor.
  • the sensor is electrically connected to the circuit board. At least part of the sensor extends into the third flow channel.
  • the sensor can detect the working medium in the third flow channel.
  • the heat exchange core includes at least one positioning part
  • the valve body includes at least one matching part
  • the positioning part and the matching part are correspondingly arranged to define at least part of the relative position of the heat exchange core and the valve body.
  • the positioning part and the mating part are correspondingly arranged to be able to restrict any one of the heat exchange core and the valve body to move along the contact surface between the two.
  • the positioning part and the mating part are correspondingly arranged to be able to limit the relative rotation between the heat exchange core and the valve body and limit any one of the heat exchange core and the valve body along the line between the two
  • the contact surface moves; the sensor, the electronic expansion valve, and the heat exchange core are integrated and assembled through the above structure, which can help to relatively reduce the connection between the pipeline and the sensor circuit, and thereby facilitate the simplification of the structure.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of the first embodiment of the thermal management component of the present application
  • Fig. 2 is an exploded structural diagram of the thermal management component in Fig. 1, and the flow path of the refrigerant is marked in the figure;
  • FIG 3 is a schematic front view of the thermal management component in Figure 1;
  • FIG. 4 is a schematic cross-sectional structure diagram of the thermal management component in FIG. 3 along the A-A direction;
  • Fig. 5 is a schematic cross-sectional structure diagram of the thermal management component in Fig. 3 along the B-B direction;
  • Fig. 6 is a schematic cross-sectional structure view of the thermal management component in Fig. 3 along the C-C direction;
  • Fig. 7 is a schematic diagram of a three-dimensional structure of the heat exchange core in Fig. 1 or Fig. 2, and the flow paths of refrigerant and cooling liquid are marked in the figure;
  • Figure 8 is a three-dimensional structural diagram of the valve body in one direction in Figure 1 or Figure 2;
  • Figure 9 is a schematic front view of the structure of the valve body in Figure 8.
  • Figure 10 is a three-dimensional schematic view of the valve body in Figure 1 or Figure 2 in another direction;
  • FIG. 11 is a schematic diagram of a three-dimensional structure of the second embodiment of the thermal management component of the present application.
  • Fig. 12 is an exploded schematic diagram of an exploded structure of the thermal management component in Fig. 11;
  • FIG. 13 is a three-dimensional structural diagram of the mounting board in FIG. 11 in one direction;
  • Fig. 14 is a three-dimensional structural diagram of the mounting plate in Fig. 11 in another direction;
  • Fig. 15 is a three-dimensional structural diagram of the valve body in Fig. 11;
  • Figure 16 is a schematic front view of the structure of the valve body in Figure 15;
  • Figure 17 is a cross-sectional structural diagram of the valve body in Figure 16 along the E-E direction;
  • Figure 18 is a schematic cross-sectional structural view of the valve body in Figure 16 along the F-F direction;
  • FIG. 19 is a schematic diagram of a three-dimensional structure of the third embodiment of the thermal management component of the present application.
  • Figure 20 is an exploded schematic diagram of an exploded structure of the thermal management component in Figure 19;
  • Figure 21 is a three-dimensional schematic diagram of the first plate in Figure 19 or Figure 20;
  • Fig. 22 is a schematic diagram of a three-dimensional structure of the second plate in Fig. 19 or Fig. 20;
  • FIG. 23 is a schematic diagram of a three-dimensional structure of a fourth embodiment of the thermal management component of the present application.
  • Figure 24 is an exploded schematic diagram of an exploded structure of the thermal management component in Figure 23, and the flow path of the refrigerant is marked in the figure;
  • FIG. 25 is a schematic diagram of a three-dimensional structure of the first plate in FIG. 23 or FIG. 24;
  • Fig. 26 is a schematic diagram of a three-dimensional structure of the second plate in Fig. 23 or Fig. 24;
  • FIG. 27 is a schematic diagram of a three-dimensional structure of a fifth embodiment of the thermal management component of the present application.
  • Figure 28 is an exploded schematic diagram of the thermal management component in Figure 27;
  • FIG. 29 is a schematic diagram of a three-dimensional structure of a sixth embodiment of the novel thermal management component of the present application.
  • FIG. 30 is an exploded schematic diagram of an exploded structure of the thermal management component in FIG. 29;
  • FIG. 31 is a schematic connection diagram of an embodiment of the thermal management system of the present application.
  • the thermal management assembly 100 includes a heat exchange core 2 and a valve assembly 1. Based on the heat exchange core 2, the valve assembly 1 is located above the heat exchange core 2.
  • the component 1 is directly fixedly connected or indirectly fixedly connected; in this embodiment, the valve component 1 is a throttling device, which can achieve throttling and pressure reduction of the high-pressure refrigerant, and the inside of the heat exchange core 2 can flow two fluids, two fluids They are the refrigerant and the cooling liquid, which are isolated from each other in the heat exchange core and the two exchange heat in the heat exchange core 2, so that the cooling liquid is cooled or heated.
  • the valve assembly 1 includes a valve body 11, a valve core 13, a rotor assembly 14, a stator assembly 15 and a circuit board 16.
  • the stator assembly 15 is sleeved on the outer circumference of the rotor assembly 14.
  • the stator assembly A sleeve 19 is provided between 15 and the rotor assembly 14 to isolate the stator assembly 15 and the rotor assembly 14.
  • the stator assembly 15 is electrically connected to the circuit board 16; the valve assembly 1 also has a valve port 120 that can communicate with the valve The flow passages on both sides of the port 120; in this embodiment, the valve assembly 1 further includes a valve seat 12, the valve seat 12 is arranged on the outer periphery of the valve core 13 and is set in a position limit, the valve port 120 is formed on the valve seat 12, the valve core 13 By approaching and away from the valve port 120, the flow cross-sectional area of the working medium at the valve port 120 is changed, thereby forming a throttling at the valve port 120.
  • valve assembly 1 works, by controlling the current in the windings passing through the stator assembly 15 to change according to a predetermined rule, the stator assembly 15 is controlled to generate a changing excitation magnetic field.
  • the rotor assembly 14 rotates under the action of the excitation magnetic field, and the rotor assembly 14 can drive
  • the valve core 13 moves relative to the valve port 120 and adjusts the opening of the valve port 120; in this way, the rotor assembly can drive the valve core to move relative to the valve port.
  • the degree of control is helpful to improve the accuracy of flow control.
  • the valve body 1 includes a first flow channel 17 and a second flow channel 18, the first flow channel 17 and the second flow channel 18 are located on both sides of the valve port 120, at least part of the first flow channel 17 is located at the valve port 120 Above, at least part of the second flow passage 18 is located below the valve port 120, so that the refrigerant can form a throttling at the valve port 120; the valve body 11 also includes a third flow passage 10; see Figures 2, 5 and 6.
  • the valve assembly 1 also includes a sensor 9, which is electrically connected to the circuit board 16, and at least part of the sensor 9 extends into the third flow passage 10. The sensor 9 can detect the temperature and/or pressure of the working medium in the third flow passage 10. In this way, the sensor is integrated and assembled in the valve assembly, which can help to relatively reduce the electrical connection of the sensor circuit.
  • the heat exchange core 2 includes a first fluid channel 21 and a second fluid channel 22.
  • the first fluid channel 21 and the second fluid channel 22 respectively circulate two different fluids.
  • the first fluid channel 21 is used for For the circulation of refrigerant
  • the second fluid passage 22 is used for the circulation of cooling liquid
  • the first fluid passage and the second fluid passage are not connected; in order to facilitate the distinction, the path formed by the dashed line is the flow of refrigerant in the heat exchange core.
  • the path, the path formed by the solid line is the flow path of the cooling liquid;
  • the heat exchange core 2 includes a bottom plate 24, an end plate 23, and a circulation plate 25.
  • the bottom plate 24 and the end plate 23 are located at both ends of the heat exchange core.
  • the circulation plate 25 is located between the bottom plate 24 and the end plate 23; the circulation plate 25 includes a plurality of first circulation plates (not marked) and a plurality of second circulation plates (not marked), the first circulation plate (not marked) and the second
  • the circulation plates (not marked) are stacked and arranged at intervals, and a flow channel is formed between the adjacent first circulation plate (not marked) and the second circulation plate (not marked), so that the fluid can flow in the adjacent first circulation plate (not marked). (Labeled) and the second circulation plate (not labeled) flow in the flow channel formed between the cooling liquid and the refrigerant to achieve heat exchange in the heat exchange core.
  • the first fluid channel 21 includes a first channel 211 and a second channel 212, and the first channel 211 and the second channel 212 pass through adjacent first flow plates (not labeled) and second flow plates (not labeled). The passage formed between them communicates.
  • the heat exchange core body 2 and the valve assembly 1 are fixedly connected by welding, the sensor 9 is electrically connected to the circuit board 16, the sensor 9 is positioned and fixedly connected to the valve body 11, and at least part of the sensor 9 extends into the third flow channel 10.
  • the sensor 9 can detect the temperature and/or pressure of the working medium in the third flow channel 10.
  • the heat exchange core 2 includes at least one positioning part, the valve body includes at least one matching part, and the positioning part and the matching part are correspondingly arranged in cooperation to limit the exchange
  • the relative position of at least part of the thermal core body 2 and the valve body 1, specifically, when the valve body 1 includes only one matching part, the positioning part and the matching part are correspondingly arranged in cooperation to define any of the heat exchange core body and the valve body.
  • the positioning part and the mating part are correspondingly arranged to be able to limit the relative rotation between the heat exchange core and the valve body and limit the exchange Either one of the hot core body and the valve body moves along the contact surface between the two; through the above structure, the sensor, the electronic expansion valve and the heat exchange core body are integrated and assembled together, which can help to relatively reduce the pipeline and The connection of the sensor circuit is further conducive to simplifying the structure and facilitating installation.
  • the thermal management component of the present application has four implementation manners, and the structure of the four implementation manners of the thermal management component in the present application will be described in detail below.
  • the thermal management component of the first embodiment is marked as thermal management component 100, and other labels are not suffixed;
  • the thermal management component of the second embodiment is marked as thermal management component 100a, other labels are all marked with a as a suffix;
  • the thermal management component of the third embodiment is marked as thermal management component 100b, and other labels are all marked with b as a suffix;
  • the thermal management component of the fourth embodiment is marked as thermal management component 100c, All other labels are suffixed with c.
  • FIG. 10 are schematic structural diagrams of the first embodiment of the thermal management component in this application; the structure of the first embodiment of the thermal management component in this application will be described in detail below.
  • the heat exchange core body 2 is directly fixedly connected to the valve assembly 1.
  • the valve body 11 in the valve assembly 1 and the end plate 23 in the heat exchange core body 2 are fixed by welding In this way, the fixed connection between the two can be achieved without setting an adapter, which is beneficial to relatively reducing the overall height of the thermal management component, thereby facilitating the lightweight of the thermal management component.
  • the valve body 11 includes a first wall surface 111 and a second wall surface 112, the first wall surface 111 and the second wall surface 112 are located on both sides of the valve body, the first wall surface 111 and the second wall surface 112 are arranged in parallel, the first flow channel 17
  • the inlet hole (not marked) of the second flow channel 18 is formed on the first wall surface 111
  • the outlet hole (not marked) of the second flow channel 18 is formed on the second wall surface 112;
  • the valve body 11 includes two mating parts, one of which is defined
  • the mating part is the first mating part 113
  • the other mating part is the second mating part 114.
  • the first mating part 113 and the second mating part 114 are in the shape of holes.
  • the first mating part 113 and the second mating part 114 extend from the second wall surface 112 extends in the direction of the first wall 111, and the first matching portion 113 and the second matching portion 114 are arranged between the second flow passage 18 and the third flow passage 10; referring to FIG. 7, the heat exchange core 2 includes two positioning Part, one of the positioning parts is defined as the first positioning part 26, and the other positioning part is the second positioning part 27.
  • the first positioning part 26 and the second positioning part 27 protrude from the upper surface of the heat exchange core 2.
  • a positioning portion 26 and a second positioning portion 27 are provided between the first channel 211 and the second channel 212; with reference to FIGS.
  • the first positioning portion 26 and the first matching portion 113 are provided in clearance fit
  • the second positioning The portion 27 and the second matching portion 114 are provided in clearance fit.
  • the height of the protrusion of the first positioning portion 26 is smaller than the depth of the first matching portion 113
  • the height of the protrusion of the second positioning portion 27 is smaller than that of the second matching portion.
  • the depth of 114 where "the height of the protrusions of the first positioning portion 26 and the second positioning portion 27" is the thickness of the first positioning portion 26 and the second positioning portion 27, "the first matching portion 113 and the second matching portion 114
  • the “depth” is the thickness of the first matching portion 113 and the second matching portion 114; this is equivalent to taking the second wall surface 112 of the valve body as a positioning reference, so that the valve body and the heat exchange core can be installed in place.
  • the valve body 11 further includes a first groove 3 and a second groove 4, the first groove 3 and the second groove 4 are recessed from the second wall surface 112 to the first wall surface 111, the first groove The groove 3 and the second groove 4 do not penetrate the first wall 111, the first groove 3 is in communication with the second flow passage 18, the second groove 4 is in communication with the third flow passage 10, and the first mating portion 113 and the second mating
  • the portion 114 is located between the first groove 3 and the second groove 4; referring to FIGS. 1 to 10, the first groove 3 and the second groove 4 are arranged obliquely with respect to the center line L1 of the valve core 13, as shown in FIG.
  • the first groove 3 and the groove 4 are arranged roughly in a figure eight shape.
  • the first groove 3 communicates with the second flow passage 18 of the valve body and the first passage 211 of the heat exchange core
  • the second groove 4 communicates with the first hole of the valve body.
  • the three flow passages 10 and the second hole 212 of the heat exchange core body realize the communication of the flow passage between the valve assembly 1 and the heat exchange core body 2 so that the valve assembly 1 and the heat exchange core body 2 can be integrated as a whole .
  • the depth of the first groove 3 and the depth of the second groove 4 are greater than or equal to 5 mm and less than or equal to 6 mm, so that communication between the valve assembly 1 and the heat exchange core 2 can be ensured. , It is beneficial to relatively reduce the pressure drop of the fluid in the first groove 3 and the second groove 4, and thereby is beneficial to relatively reduce the flow resistance of the fluid in the first groove 3 and the second groove 4.
  • the first groove 3 includes a first side 31 and a second side 32.
  • the first side 31 and the second side 32 are planar, and one end of the first side 31 and one end of the second side 32 pass
  • the first curved surface 33 is connected, where "one end of the first side surface 31 and one end of the second side surface 32" are located on the same side, and the other end of the first side surface 31 and the other end of the second side surface 32 are connected by the second curved surface 34,
  • the other end of the first side surface 31 and the other end of the second side surface 32" are on the same side, and the above two sides are different sides; in conjunction with Figure 1, Figure 2, Figure 7 and Figure 8, in this embodiment, the first arc The surface 33 is closer to the outlet hole 181 of the second flow passage 18 of the valve body than the second arc surface 34.
  • the radius of the second arc surface 34 is larger than the radius of the first arc surface 33, and the radius of the first arc surface 33 is larger than that of the valve body.
  • the radius of the outlet hole 181 of the second flow passage 18, of course, the radius of the first arc 33 can also be equal to the radius of the outlet hole 181 of the second flow passage 18 of the valve body, and the radius of the second arc 34 is larger than that of the heat exchange core.
  • the radius of the inlet hole 2111 of the first channel 211 can also be equal to the radius of the inlet hole 2111 of the first channel 211 of the heat exchange core, which is conducive to the flow of refrigerant;
  • the exit hole 181 of the 18 and the entrance hole 2111 of the first channel 211 are projected to the first groove 3, and the projection of the exit hole 181 of the second flow channel 18 and the projection of the entrance hole 2111 of the first channel 211 are located in the first groove 3.
  • the first groove 3 can communicate with the second flow passage 18 and the first hole 211;
  • the second groove 4 includes a third side 41 and a fourth side 42, and one end of the third side 41 and one end of the fourth side 42 pass through
  • the third arc surface 43 is connected, where "one end of the third side surface 41 and one end of the fourth side surface 44" are located on the same side, and the other end of the third side surface 41 and the other end of the fourth side surface 42 are connected by the fourth arc surface 44,
  • the radius of the third curved surface 43 is equal to the radius of the fourth curved surface 44
  • the radius of the third arc surface 33 can also be smaller than the radius of the fourth arc surface 44, the radius of the third arc surface 43 is larger than the radius of the inlet hole 101 of the third flow channel 10, and the radius of the fourth arc surface 44 is larger than
  • the valve assembly 1 is relatively disposed along the length of the heat exchange core.
  • the first flow passage 17 of the valve body 11 and the third flow passage 10 of the valve body are relatively along
  • the length direction of the heat exchange core is set; in addition, part of the valve assembly 1 extends out of the heat exchange core 2.
  • the shell fixedly connected to the valve body 11 in the valve assembly 1 extends oppositely along the width direction of the heat exchange core 2.
  • the heat exchange core 2 is removed, which can make the structure of the heat management assembly relatively compact; in addition, in this embodiment, the connecting pipe of the heat exchange core 2 and the valve assembly 1 are located on the same side of the main body of the heat exchange core 1.
  • the connecting pipe of the thermal core 2 and the valve assembly 1 can also be located on different sides of the main body of the thermal core 1.
  • FIGS. 11 to 18 are schematic diagrams of the structure of the second embodiment of the thermal management component in this application; the structure of the second embodiment of the thermal management component in this application will be described in detail below.
  • the heat exchange core 2a includes a heat exchange body 8a and a mounting plate 5a.
  • the mounting plate 5a is arranged between the heat exchange body 8a and the valve assembly 1a; the heat exchange body 8a and the mounting plate 5a are positioned and arranged to pass Welding and fixed connection; specifically, the mounting plate 5a includes a top surface 51a and a bottom surface 52a, the top surface 51a and the bottom surface 52a are located on both sides of the mounting plate 5a, the top surface 51a and the bottom surface 52a are opposed to each other, in this embodiment, the valve body 11a and The top surface 51a of the mounting plate is fixedly connected by welding, and the heat exchange core body 2a and the bottom surface 52a of the mounting plate are fixedly connected by welding.
  • the mounting plate 5a includes two protrusions 58a.
  • the protrusions 58a protrude from the bottom surface 52a of the mounting plate.
  • holes are formed on the upper surface of the heat exchange body 8a.
  • the holes on the surface are matched with the protrusions 58a, so that the mounting plate 5a and the heat exchange body 8a can be positioned and arranged; in this embodiment, the valve body 11a and the heat exchange core body 2a are indirectly fixedly connected by setting the mounting plate 5a.
  • a whole which in turn enables the valve assembly 1a to be integrated with the heat exchange core 2a as a whole, which can help to relatively reduce the arrangement of pipelines in the system, thereby simplifying the structure and facilitating installation.
  • the heat exchange core 2a includes two positioning parts.
  • One of the positioning parts is defined as the first positioning part 55a, and the other positioning part is the second positioning part 56a.
  • the first positioning portion 55a and the second positioning portion 56a are formed on the mounting plate 5a, the first positioning portion 55a and the second positioning portion 56a are in the shape of holes, and the first positioning portion 55a and the second positioning portion 56a are self-installing plates.
  • the top surface 51a of 5a extends in the direction of the bottom surface 52a of the mounting plate; referring to Figure 15, the valve body 11a includes two mating parts, one of which is defined as a first mating part 113a, and the other as a second mating part 114a ,
  • the first matching portion 113a and the second matching portion 114a protrude from the second wall surface 112a in a direction away from the second wall surface 112a, the first matching portion 113a and the second matching portion 114a are annular, and the first matching portion 113a It is connected to the second flow passage 18a, and the second matching portion 114a is connected to the third flow passage 10a; in this embodiment, at least part of the first matching portion 113a is inserted into the first positioning portion 55a and arranged in clearance fit with the first positioning portion 55a At least part of the second matching portion 114a is inserted into the second positioning portion 56a and arranged in clearance fit with the second positioning portion 56a.
  • the protrusion height of the first matching portion 113a is smaller than the depth of the first positioning portion 55a.
  • the height of the protrusion is smaller than the depth of the second positioning portion 56a, where "the height of the protrusion of the first matching portion 113a and the second matching portion 114a” is the thickness of the first matching portion 113a and the second matching portion 114a, "the first positioning The depth of the “part 56a and the second positioning part 57a” is the thickness of the first positioning part 56a and the second positioning part 57a, which is equivalent to taking the second wall surface 112a of the valve body as the positioning reference, so that the valve body and the heat exchange core 2a can be installed in place.
  • the mounting plate 5a includes a first groove 3a and a second groove 4a.
  • the first groove 3a and the second groove 4a are recessed from the bottom surface 52a to the top surface 51a.
  • the first groove 3a and the second groove 4a The second groove 4a does not penetrate the top surface 51a, and defines that the first positioning portion 55a is located above the first groove 3a, the second positioning portion 56a is located above the second groove 4a, the first positioning portion 55a and the first groove 3a Connected, the second positioning portion 56a communicates with the second groove 4a; this can ensure that the second flow passage 18a communicates with the first groove 3a, and the third flow passage 10a communicates with the second groove 4a, thereby making the second flow passage 18a communicates with the first channel 211 of the heat exchange core, and the third flow channel 10a communicates with the second channel 212 of the heat exchange core 2a.
  • the mounting plate 5a includes a first outer wall 53a and a second outer wall 54a.
  • the first outer wall 53a and the second outer wall 54a are located on both sides of the mounting plate.
  • the first outer wall 53a and the second outer wall 54a are arranged opposite to each other.
  • An outer wall 53a and a second outer wall 54a are located in the length direction of the mounting plate 5a.
  • the valve assembly 1a is relatively close to the first outer wall 53a of the mounting plate 5a and is arranged along the width of the heat exchange core 2a. In the direction, part of the valve assembly 1a protrudes from the first outer wall 53a of the mounting plate 5a; referring to Figs.
  • the first groove 3a and the second groove 4a are arranged obliquely with respect to the first outer wall 53a or the second outer wall 54a, Specifically, the first groove 3a and the second groove 4a are arranged roughly in a figure eight shape, and the depth of the first groove 3a and the depth of the second groove 4a are greater than or equal to 5 mm and less than or equal to 6 mm, which ensures that the valve assembly 1a and the replacement
  • the depth of the first positioning portion 55a and the second positioning portion 56a is smaller than the depth of the first groove 3a and the second groove 4a, of course, the first positioning portion 55a and the second The depth of the second positioning portion 56a may also be greater than or equal to the depth of the first groove 3a and the second groove 4a.
  • the first positioning portion 55a is closer to the first arc surface 33a than the second arc surface 34a, and the second positioning portion 56a is closer to the fourth arc surface 44a than the third arc surface 43a;
  • the radius of the first arc surface 33a and the second arc surface 34a of the first groove 3a are equal, and the radius of the third arc surface 43a and the fourth arc surface 44a of the second groove 4a are equal.
  • the radius of the second arc surface 33a can also be greater than the radius of the first arc surface 33a, and the radius of the fourth arc surface 44a can also be greater than the radius of the third arc surface 43a, which is beneficial to the smoothness of fluid flow;
  • the other shape features of the groove 3a and the second groove 4a can refer to the first embodiment, which will not be repeated here.
  • the first groove 3a communicates with the second flow passage 18a of the valve body 11a and the first passage 211 of the heat exchange core 2a
  • the second groove 4a communicates with the third flow passage of the valve body 11a.
  • the passage 10a and the second hole 212 of the heat exchange core 2a realize the communication of the flow passage between the valve assembly 1a and the heat exchange core 2a, so that the valve assembly 1a and the heat exchange core 2a can be integrated as a whole;
  • the valve assembly 1 further includes a sensor 9a which is electrically connected to the circuit board 16a. At least part of the sensor 9a extends into the third flow passage 10a of the valve body 11a.
  • the sensor 9a can detect the temperature and/or the working medium in the third flow passage 10a. Pressure, so that the sensor is integrated and assembled in the valve assembly 1a, which can help to relatively reduce the electrical connection of the sensor circuit.
  • the mounting plate 5a also includes a mounting hole 57a, the mounting hole 57a penetrates the top surface 51a and the bottom surface 52a of the mounting plate 5a, the mounting hole 57a is used for the installation of the thermal management component and the external system, so that the thermal management component The installation with external systems is more convenient.
  • both ends of the length direction of the mounting plate 5a protrude from the lugs relative to the heat exchange core 2a, and the mounting holes 57a are provided at the lugs.
  • the thermal management assembly includes a mounting plate 5a.
  • the valve body 11a and the heat exchange core 2a are fixedly connected by the mounting plate 5a.
  • the first positioning portion 55a and the second The two positioning portions 56a are formed on the mounting plate 5a, the first positioning portion 55a and the second positioning portion 56a are in the shape of holes, and the first matching portion 113a and the second matching portion 114a are in a convex ring shape; others in this embodiment
  • the features please refer to the first embodiment, which will not be repeated here.
  • the mounting plate 5b also includes a first plate 6b and a second plate 7b.
  • the first plate 6b and the second plate 7b are arranged between the valve body 1b and the heat exchange body 8b.
  • the plate 6b is fixedly connected to the second plate 7b.
  • the first plate 6b and the second plate 7b are positioned and connected by welding.
  • first plate 6b and the second plate 7b can also be connected by screws or bolts, etc., where the positioning of the first plate 6b and the second plate 7b can be matched with the through hole 71b of the second plate 7b through the protrusion 63b of the first plate 6b Setting; see Figures 19 to 22, the valve body 11b and the first plate 6b are fixedly connected by welding, the heat exchange body 8b and the second plate 7b are fixedly connected by welding, so that the valve body 11b and the heat exchange body 8b are indirectly fixed
  • the valve assembly 1b can be integrated with the heat exchange main body 8b as a whole, which is beneficial to relatively reducing the installation of pipelines in the system, thereby simplifying the structure and facilitating installation.
  • the first positioning portion 61b and the second positioning portion 62b are formed on the first plate 6b, the first positioning portion 61b and the second positioning portion 62b along the first plate 6b Distributed in the length direction, the first positioning portion 61b and the second positioning portion 62b penetrate the upper and lower surfaces of the first plate 6b;
  • the second plate 7b includes a first groove 3b and a second groove 4b, and the first groove 3b and the first groove 3b
  • the two grooves 4b penetrate the upper and lower surfaces of the second plate 7b, the first positioning portion 61b communicates with the first groove 3b, and the second positioning portion 62b communicates with the second groove 4b;
  • the thermal management assembly 100b is only It includes a first plate 6b and a second plate 7b.
  • first plates 6b can also include two or more first plates 6b and two or even more second plates 7b, and then form the first recess by stacking.
  • the thermal management assembly 100b includes a first plate 6b and a second plate 7b.
  • the first plate 6b and the second plate 7b are fixedly connected.
  • a positioning portion 61b and a second positioning portion 62b are formed on the first plate 6b, and the first groove 3b and the second groove 4b are formed on the second plate 7b; the first plate 6b and the second plate 7b are fixed.
  • the latter is equivalent to the mounting board 5c in the second embodiment.
  • Figs. 23 to 26 are schematic structural diagrams of the fourth embodiment of the thermal management component in this application; the structure of the fourth embodiment of the thermal management component in this application will be described in detail below.
  • the thermal management assembly 100c further includes a mounting plate 5c.
  • the mounting plate 5c is arranged between the valve body 1c and the heat exchange body 8c.
  • the valve body 11 and the top surface of the mounting plate 5c are welded
  • the heat exchange core 2c and the bottom surface of the mounting plate 5c are fixedly connected by welding;
  • the mounting plate 5c includes a first outer wall 51c and a second outer wall 52c.
  • the first outer wall 51c and the second outer wall 52c are located on both sides of the mounting plate.
  • An outer wall 51c and a second outer wall 52c are opposed to each other.
  • the first outer wall 51c and the second outer wall 52c are located in the length direction of the mounting plate.
  • the first groove 3c and the second groove 4c are formed on the mounting plate 5c.
  • the first groove 3c is parallel to the first outer wall 51c or the second outer wall 52c
  • the second groove 4c is arranged obliquely with respect to the first outer wall 51c or the second outer wall 52c; specifically, referring to FIGS. 23 to 26, the mounting plate 5c It includes a first plate 6c and a second plate 7c.
  • the first plate 6c and the second plate 7c are fixedly connected by welding, the valve body 11c and the first plate 6c are fixedly connected by welding, and the heat exchange body 8c and the second plate
  • the plates 7c are fixedly connected by welding, so that the valve body 11c and the heat exchange main body 8c are indirectly fixedly connected as a whole, so that the valve assembly 1c can be integrated with the heat exchange main body 8c as a whole, which is beneficial to relatively reducing the number of pipes in the system.
  • the arrangement of the road further helps simplify the structure and facilitate installation.
  • the first groove 3c and the second groove 4c are formed on the second plate 7c, and the first groove 3c and the second groove 4c penetrate the upper and lower surfaces of the second plate 7c.
  • a groove 3c is parallel to the first outer wall 71c of the second plate 7c or the second outer wall 72c of the second plate 7c, and the second groove 4c is opposite to the first outer wall 71c or the second plate 7c of the second plate 7c.
  • the second outer wall 72c is arranged obliquely, and the thickness of the first groove 3c and the thickness of the second groove 4c are greater than or equal to 5mm and less than or equal to 6mm, so that under the premise that the valve assembly 1c and the heat exchange core 2c can be connected, there is It is beneficial to relatively reduce the pressure drop of the fluid in the first groove 3c and the second groove 4c, and thus to relatively reduce the flow resistance of the fluid in the first groove 3c and the second groove 4c;
  • the shape characteristics of the groove and the second groove can be referred
  • the first plate 6c includes a first positioning portion 61c and a second positioning portion 62c.
  • the first positioning portion 61c and the second positioning portion 62c penetrate the upper and lower surfaces of the first plate 6c.
  • the first positioning portion 61c and the second positioning portion 62c The two positioning portions 62c are distributed along the width direction of the first plate 6c, projecting the first positioning portion 61c and the second positioning portion 62c to the second plate 7c, and the projection of the first positioning portion 61c is located in the first groove 3c
  • the projection of the second positioning portion 62c is located in the second groove 4c, which is beneficial to the smoothness of fluid flow; in this embodiment, the mounting plate 5c only includes a first plate 6c and a second plate 7c, of course It can also include two or more first plates 6c and two or more second plates 7c, and then form the first groove 3c, the second groove 4c, the first positioning portion 61c and the The second positioning portion 62c, of course, the mounting plate 5c can
  • the thermal management assembly 100c includes a mounting plate 5c.
  • the valve body 11a and the heat exchange core 2a are fixedly connected through the mounting plate 5c.
  • the mounting plate 5c includes a first The plate 6c and the second plate 7c, the first plate 6c and the second plate 7c are fixedly connected, the first positioning portion 61c and the second positioning portion 62c are formed on the first plate 6c, the first groove 3c and the second plate The two grooves 4c are formed on the second plate 7c; in addition, in this embodiment, the installation orientation of the valve assembly 1c is also different.
  • the first flow passage 17c and the third flow passage 10c of the valve body are along the heat exchange core
  • the first groove 3c is on one side of the second plate 7c and extends along the length direction
  • the second groove 4c is arranged obliquely, and one end is roughly located in the first groove.
  • the other end is inclined to the other side of the second plate 7c so as to establish a communication relationship with the third flow channel 10c in the installation position; other features in this embodiment can refer to the first implementation Ways, I won’t repeat them here.
  • Figs. 27-28 are schematic structural diagrams of the fifth embodiment of the thermal management component in this application; the structure of the fifth embodiment of the thermal management component in this application will be described in detail below.
  • the thermal management assembly 100d includes a heat exchange core 2d and a valve assembly 1d.
  • the heat exchange core 2d includes two positioning parts. One of the positioning parts is defined as the first positioning part 26d, and the other positioning part is defined as The second positioning portion 27d, the first positioning portion 26d and the second positioning portion 27d are protrudingly provided from the upper surface of the heat exchange core 2d.
  • the first positioning portion 26d and the second positioning portion 27d are provided in the first channel 211d and the second channel 211d.
  • the first positioning portion 26d and the first matching portion of the valve body 11d are arranged in clearance fit, and the second positioning portion 27d is arranged in clearance fit with the second matching portion of the valve body 11d, so that the valve body 11d and the exchange
  • the thermal core body 2d can be positioned and installed; for the first matching portion of the valve body and the second matching portion of the valve body, reference may be made to the first embodiment of the thermal management component in this application, which will not be repeated here.
  • valve assembly 1d is arranged along the width direction of the heat exchange core 2d, and the drive side of the valve assembly 1d faces the heat exchange core 2d. It is compact and occupies a small space; other features in this embodiment can be referred to the first embodiment, which will not be repeated here.
  • FIGS. 29 to 30 are schematic diagrams of the structure of the sixth embodiment of the thermal management component in this application; the structure of the sixth embodiment of the thermal management component in this application will be described in detail below.
  • the thermal management assembly 100e includes a heat exchange core 2e and a valve assembly 1e.
  • the heat exchange core 2e includes two positioning parts. One of the positioning parts is defined as the first positioning part 26e, and the other positioning part is defined as The second positioning portion 27e, the first positioning portion 26e and the second positioning portion 27e are protrudingly provided from the upper surface of the heat exchange core 2e.
  • the first positioning portion 26e and the second positioning portion 27e are provided in the first channel 211e and the second Between the orifices 212e, the first positioning portion 26e and the first matching portion of the valve body 11e are arranged in clearance fit, and the second positioning portion 27e is arranged in clearance fit with the second matching portion of the valve body 11e, so that the valve body 11e and the exchange
  • the thermal core body 2e can be positioned and installed; for the first matching portion of the valve body and the second matching portion of the valve body, reference may be made to the first embodiment of the thermal management component in this application, which will not be repeated here.
  • valve assembly 1e is arranged along the width direction of the heat exchange core 2e, and the drive side of the valve assembly 1d faces away from the takeover of the heat exchange core 2d;
  • first implementation manner which will not be repeated here.
  • the present invention also discloses a thermal management system;
  • the thermal management system includes an air conditioning system and a battery cooling system;
  • the air conditioning system includes a compressor 102, a condenser 101, a first electronic expansion valve 104 and an evaporator 103, and an air conditioning system
  • the refrigerant is compressed into a high temperature and high pressure refrigerant by the compressor 102.
  • the high temperature and high pressure refrigerant passes through the condenser 101 and becomes a normal temperature and high pressure refrigerant.
  • the normal temperature and high pressure refrigerant passes through the first electronic expansion valve 104 and enters the evaporation ⁇ 103; As the pressure of the normal temperature and high pressure refrigerant decreases after passing through the first electronic expansion valve 104, the refrigerant will vaporize and become a low-temperature refrigerant.
  • the low-temperature refrigerant absorbs a large amount of heat through the evaporator 103 and becomes a refrigerant And back to the compressor 102; the battery cooling system includes the compressor 102, the condenser 101, the second electronic expansion valve 104, the heat exchanger 106 and the battery pack.
  • the refrigerant When the battery cooling system works, the refrigerant is compressed to a high temperature by the compressor 102 The high-pressure refrigerant, the high-temperature and high-pressure refrigerant passes through the condenser 101 and becomes a normal temperature and high pressure refrigerant. The normal temperature and high pressure refrigerant passes through the second electronic expansion valve 105, enters the heat exchanger 106 and exchanges heat in the heat exchanger 106 After the heat exchange by the heat exchanger 106, the refrigerant flows into the battery pack to cool the batteries in the battery pack.
  • the first electronic expansion valve 104 and the evaporator 103 can be separately installed in the system pipeline as two independent components, or the first electronic expansion valve 104 and the evaporator 103 can be integrated and assembled together before installation
  • the second electronic expansion valve 105 and the heat exchanger 106 can also be separately installed in the system pipeline as two independent components.
  • the second electronic expansion valve 105 and the heat exchanger 106 can also be installed separately. After they are integrated and assembled together, they are installed on the system pipeline; for ease of description, the components in which the second electronic expansion valve 105 and the heat exchanger 106 are integrated and assembled together are collectively referred to as thermal management components, and this thermal management component refers to the present invention The described thermal management components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Valve Housings (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种热管理组件,包括阀组件和换热芯体,换热芯体与阀组件通过焊接固定连接,阀组件还包括传感器,传感器与电路板电连接,至少部分传感器伸入第三流道,传感器能够检测第三流道内工作介质的温度和/或压力,换热芯体至少包括一个定位部,阀体至少包括一个配合部,定位部与配合部对应配合设置;通过以上结构将传感器、阀组件以及换热芯体集成组装在一起,这样能够有利于相对减少管路和传感器线路的连接,进而有利于简化结构,便于安装。

Description

热管理组件以及热管理系统
本申请要求于2019年03月27日提交中国专利局、申请号为201920396182.7、发明名称为“热管理组件以及热管理系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及车辆技术领域,具体涉及一种热管理组件以及热管理系统。
背景技术
在电动汽车或者混合动力汽车的电池热管理系统中,电动汽车或者混合动力汽车的电池工作时会产生热量,为保证电池的正常工作,需要对电池进行冷却,利用冷却液冷却是一种较常用的方式。通常的电池冷却系统包括换热器和膨胀阀,液态制冷剂通过膨胀阀的节流作用后进入换热器,换热器一般可采用双流道换热器,内部流动两种流体,两种流体分别为制冷剂和冷却液,两者在换热器中互相隔离并且两者在换热器内进行热交换,使得冷却液冷却,并通过冷却液的循环,对电池进行冷却。
通常,换热器和膨胀阀都是单独的零部件,两者都是通过管路等方式连接,这种通过管路连接的方式会使得整个组件重量变重,不利于整个组件的抗振性,进而容易出现连接管断裂等现象;另外,为了系统便于控制,通常还会在换热器的出口管路上会设置传感器以采集换热器出口工作介质的相关参数,然后传感器通过线束与电子膨胀阀的控制单元连接,控制单元获取相关参数后根据相应的控制程序来调节电子膨胀阀的开度,这样就会涉及传感器的机械连接和电连接,进而导致整个系统结构相对复杂。
发明内容
本申请的目的在于提供一种热管理组件以及热管理系统,有利于简化 结构。
为实现上述目的,本申请的一种实施方式采用如下技术方案:
一种热管理组件,包括换热芯体和阀组件,以所述换热芯体为基准,所述阀组件位于所述换热芯体的上方,所述换热芯体与所述阀组件通过焊接固定连接;所述阀组件包括阀体、阀芯、阀口以及电路板,所述阀芯能够相对所述阀口运动进而能够调节所述阀口的开度;所述阀体包括第一流道和第二流道,所述第一流道与所述第二流道能够连通,所述第一流道和所述第二流道位于所述阀口的两侧,至少部分所述第一流道位于所述阀口的上方,至少部分所述第二流道位于所述阀口的下方;所述阀体还包括第三流道,在所述阀体上,所述第三流道与所述第一流道、所述第二流道不连通,所述阀组件还包括传感器,所述传感器与所述阀体固定连接,所述传感器与所述电路板电连接,至少部分所述传感器伸入所述第三流道,所述传感器能够检测所述第三流道内工作介质的温度和/或压力;所述换热芯体至少包括一个定位部,所述阀体至少包括一个配合部,所述定位部与所述配合部对应配合设置从而限定所述换热芯体和所述阀体的至少部分相对位置。
本技术方案中,换热芯体与阀组件通过焊接固定连接,阀组件还包括传感器,传感器与电路板电连接,至少部分传感器伸入第三流道,传感器能够检测第三流道内工作介质的温度和/或压力,换热芯体至少包括一个定位部,阀体至少包括一个配合部,定位部与配合部对应配合设置从而限定换热芯体和阀体的至少部分相对位置,具体地,当阀体只包括一个配合部时,定位部与配合部对应配合设置从而能够限定换热芯体和阀体两者中任意一个沿着两者之间的接触面移动,当阀体包括两个以上的配合部时,定位部与配合部对应配合设置从而能够限定换热芯体与阀体之间的相对转动以及限定换热芯体和阀体两者中任意一个沿着两者之间的接触面移动;通过以上结构将传感器、电子膨胀阀以及换热芯体集成组装在一起,这样能够有利于相对减少管路和传感器线路的连接,进而有利于简化结构。
附图说明
图1是本申请热管理组件的第一种实施方式的一个立体结构示意图;
图2是图1中热管理组件的一个分解结构示意图,同时图中标出了制冷剂的流动路径;
图3是图1中热管理组件的一个正视结构示意图;
图4是图3中热管理组件沿A-A方向截面的一个剖面结构示意图;
图5是图3中热管理组件沿B-B方向截面的一个剖面结构示意图;
图6是图3中热管理组件沿C-C方向截面的一个剖面结构示意图;
图7是图1或图2中换热芯体的一个立体结构示意图,同时图中标出了制冷剂和冷却液的流动路径;
图8是图1或图2中阀体在一个方向上的一个立体结构示意图;
图9是图8中阀体的一个正视结构示意图;
图10是图1或图2中阀体在另一个方向上的一个立体结构示意图;
图11是本申请热管理组件的第二种实施方式的一个立体结构示意图;
图12是图11中热管理组件的一个爆炸结构分解示意图;
图13是图11中安装板在一个方向上的一个立体结构示意图;
图14是图11中安装板在另一个方向上的一个立体结构示意图;
图15是图11中阀体的一个立体结构示意图;
图16是图15中阀体的一个正视结构示意图;
图17是图16中阀体沿E-E方向截面的一个剖面结构示意图;
图18是图16中阀体沿F-F方向截面的一个剖面结构示意图;
图19是本申请热管理组件的第三种实施方式的一个立体结构示意图;
图20是图19中热管理组件的一个爆炸结构分解示意图;
图21是图19或图20中第一板片的一个立体结构示意图;
图22是图19或图20中第二板片的一个立体结构示意图;
图23是本申请热管理组件的第四种实施方式的一个立体结构示意图;
图24是图23中热管理组件的一个爆炸结构分解示意图,同时图中标出了制冷剂的流动路径;
图25是图23或图24中第一板片的一个立体结构示意图;
图26是图23或图24中第二板片的一个立体结构示意图;
图27是本申请热管理组件的第五种实施方式的一个立体结构示意图;
图28是图27中热管理组件的一个爆炸结构分解示意图;
图29是本申请新型热管理组件的第六种实施方式的一个立体结构示意图;
图30是图29中热管理组件的一个爆炸结构分解示意图;
图31是本申请热管理系统的一种实施方式的连接示意图。
具体实施方式
下面结合附图和具体实施方式对本申请作进一步说明:
参见图1和图2,热管理组件100包括换热芯体2和阀组件1,以换热芯体2为基准,阀组件1位于换热芯体2的上方,换热芯体2与阀组件1直接固定连接或间接固定连接;本实施例中,阀组件1为一节流装置,可以实现高压冷媒的节流降压,换热芯体2的内部可以流动两种流体,两种流体分别为制冷剂和冷却液,两者在换热芯体中互相隔离并且两者在换热芯体2内进行热交换,使得冷却液冷却或者加热。参见图1至图6,阀组件1包括阀体11、阀芯13、转子组件14、定子组件15以及电路板16,定子组件15套于转子组件14的外周,本实施例中,在定子组件15和转子组件14之间设置了一套管19用以隔离定子组件15和转子组件14,定子组件15与电路板16电连接;阀组件1还具有阀口120,阀口120能够连通位于阀口120两侧的流通通道;本实施例中,阀组件1还包括阀座12,阀座12设置于阀芯13的外周并限位设置,阀口120成形于阀座12上,阀芯13通过靠近和远离阀口120改变工作介质在阀口120处的流通截面积,进而能够在阀口120处形成节流。阀组件1工作时,通过控制通过定子组件15的绕组中的电流按照预定的规律变化,从而控制定子组件15产生变化的激励磁场,转子组件14在激励磁场的作用下转动,转子组件14能够带动阀芯13相对阀口120运动,并调节阀口120的开度;这样转子组件能够带动阀芯相对阀口运动,这种采用控制通过定子组件的电流的方式控制阀芯相对于阀口的开度的方式,有利于提高对流量的控制精度。
参见图1至图10,阀体1包括第一流道17和第二流道18,第一流道 17和第二流道18位于阀口120的两侧,至少部分第一流道17位于阀口120的上方,至少部分第二流道18位于阀口120的下方,这样使得制冷剂能够在阀口120处形成节流;阀体11还包括第三流道10;参见图2、图5和图6,阀组件1还包括传感器9,传感器9与电路板16电连接,至少部分传感器9伸入第三流道10,传感器9能够检测第三流道10内工作介质的温度和/或压力,这样将传感器集成组装在阀组件中,能够有利于相对减少传感器线路的电连接。
参见图7,换热芯体2包括第一流体通道21和第二流体通道22,第一流体通道21和第二流体通道22分别流通两种不同的流体,具体地,第一流体通道21用于制冷剂的流通,第二流体通道22用于冷却液的流通,第一流体通道和第二流体通道不相通;为了便于区分,其中,虚线构成的路径为制冷剂在换热芯体的流动路径,实线构成的路径为冷却液的流动路径;参见图7,换热芯体2包括底板24和端板23以及流通板25,底板24和端板23位于换热芯体的两端,流通板25位于底板24和端板23之间;流通板25包括若干个第一流通板(未标示)和若干个第二流通板(未标示),第一流通板(未标示)和第二流通板(未标示)相互间隔层叠设置,相邻的第一流通板(未标示)和第二流通板(未标示)之间形成流道,使得流体能够在相邻的第一流通板(未标示)和第二流通板(未标示)之间形成的流道内流动,进而使得冷却液和制冷剂能够在换热芯体内实现换热。参见图7,第一流体通道21包括第一孔道211和第二孔道212,第一孔道211和第二孔道212通过相邻的第一流通板(未标示)和第二流通板(未标示)之间形成的通道连通。
本申请中,换热芯体2与阀组件1通过焊接固定连接,传感器9与电路板16电连接,传感器9与阀体11定位设置并固定连接,至少部分传感器9伸入第三流道10,传感器9能够检测第三流道10内工作介质的温度和/或压力,换热芯体2至少包括一个定位部,阀体至少包括一个配合部,定位部与配合部对应配合设置从而限定换热芯体2和阀体1的至少部分相对位置,具体地,当阀体1只包括一个配合部时,定位部与配合部对应配合设置从而能够限定换热芯体和阀体两者中任意一个沿着两者之间的接触 面移动,当阀体包括两个以上的配合部时,定位部与配合部对应配合设置从而能够限定换热芯体与阀体之间的相对转动以及限定换热芯体和阀体两者中任意一个沿着两者之间的接触面移动;通过以上结构将传感器、电子膨胀阀以及换热芯体集成组装在一起,这样能够有利于相对减少管路和传感器线路的连接,进而有利于简化结构,便于安装。
针对上述描述内容,本申请的热管理组件有四种实施方式,以下将对本申请中热管理组件四种实施方式的结构进行详细阐述。
为了方便描述以下四种实施方式的热管理组件,第一种实施方式的热管理组件标记为热管理组件100,其他标号均不加后缀;第二种实施方式的热管理组件标记为热管理组件100a,其他标号均加a作为后缀;第三种实施方式的热管理组件标记为热管理组件100b,其他标号均加b作为后缀;第四种实施方式的热管理组件标记为热管理组件100c,其他标号均加c作为后缀。
参见图1至图10,图1至图10为本申请中热管理组件的第一种实施方式的结构示意图;以下将对本申请中热管理组件的第一种实施方式的结构进行详细介绍。
参见图1至图10,本实施例中,换热芯体2与阀组件1直接固定连接,具体地,阀组件1中的阀体11与换热芯体2中的端板23通过焊接固定连接,这样可以不用通过设置转接件来实现两者的固定连接,这样有利于相对降低热管理组件的整体高度,从而有利于热管理组件的轻量化。
参见图8,阀体11包括第一壁面111和第二壁面112,第一壁面111与第二壁面112位于阀体的两侧,第一壁面111与第二壁面112平行设置,第一流道17的进口孔(未标示)成形于第一壁面111,第二流道18的出口孔(未标示)成形于第二壁面112;本实施例中,阀体11包括两个配合部,定义其中一个配合部为第一配合部113,另一个配合部为第二配合部114,第一配合部113和第二配合部114呈孔状,第一配合部113和第二配合部114自第二壁面112向第一壁面111的方向延伸,第一配合部113与第二配合部114设置于第二流道18和第三流道10之间;参见图7,换热芯体2包括两个定位部,定义其中一个定位部为第一定位部26,另一个定 位部为第二定位部27,第一定位部26和第二定位部27自换热芯体2的上表面凸起设置,第一定位部26和第二定位部27设置于第一孔道211和第二孔道212之间;结合图1和图2,第一定位部26与第一配合部113对应间隙配合设置,第二定位部27与第二配合部114对应间隙配合设置,本实施例中,第一定位部26的凸起高度小于第一配合部113的深度,第二定位部27的凸起高度小于第二配合部114的深度,这里“第一定位部26和第二定位部27的凸起高度”即为第一定位部26和第二定位部27的厚度,“第一配合部113和第二配合部114的深度”即为第一配合部113和第二配合部114的厚度;这样相当于以阀体的第二壁面112为定位基准,使得阀体与换热芯体能够安装到位。
参见图8,阀体11还包括第一凹槽3和第二凹槽4,第一凹槽3和第二凹槽4自第二壁面112向第一壁面111的方向凹陷设置,第一凹槽3和第二凹槽4未贯穿第一壁面111,第一凹槽3与第二流道18连通,第二凹槽4与第三流道10连通,第一配合部113和第二配合部114位于第一凹槽3和第二凹槽4之间;参见图1至图10,第一凹槽3和第二凹槽4相对阀芯13的中心线L1呈倾斜设置,图8中第一凹槽3和凹槽4大致呈八字形布置,第一凹槽3连通阀体的第二流道18和换热芯体的第一孔道211,第二凹槽4连通阀体的第三流道10和换热芯体的第二孔道212,这样实现了阀组件1与换热芯体2之间流道的连通,从而使得阀组件1和换热芯体2能够集成为一个整体。
参见图8,本实施例中,第一凹槽3的深度和第二凹槽4的深度大于等于5mm小于等于6mm,这样在保证阀组件1和换热芯体2之间能够连通的前提下,有利于相对降低流体在第一凹槽3和第二凹槽4内的压降,进而有利于相对减小流体在第一凹槽3和第二凹槽4内的流阻。
参见图8和图9,第一凹槽3包括第一侧面31和第二侧面32,第一侧面31和第二侧面32呈平面状,第一侧面31的一端和第二侧面32的一端通过第一弧面33连接,这里“第一侧面31的一端和第二侧面32的一端”位于同一侧,第一侧面31的另一端与第二侧面32的另一端通过第二弧面34连接,这里“第一侧面31的另一端和第二侧面32的另一端”位于同一 侧,以上两侧为不同侧;结合图1、图2、图7和图8,本实施例中,第一弧面33比第二弧面34更靠近阀体的第二流道18的出口孔181,第二弧面34的半径大于第一弧面33的半径,第一弧面33的半径大于阀体的第二流道18出口孔181的半径,当然,第一弧面33的半径也可以等于阀体的第二流道18出口孔181的半径,第二弧面34的半径大于换热芯体的第一孔道211进口孔2111的半径,当然,第二弧面34的半径也可以等于换热芯体的第一孔道211进口孔2111的半径,这样有利于制冷剂的流动;将第二流道18的出口孔181和第一孔道211的进口孔2111向第一凹槽3投影,第二流道18出口孔181的投影和第一孔道211进口孔2111的投影位于第一凹槽3内,这样使得第一凹槽3能够连通第二流道18和第一孔道211;第二凹槽4包括第三侧面41和第四侧面42,第三侧面41的一端和第四侧面42的一端通过第三弧面43连接,这里“第三侧面41的一端和第四侧面44的一端”位于同一侧,第三侧面41的另一端与第四侧面42的另一端通过第四弧面44连接,这里“第三侧面41的另一端和第四侧面42的另一端”位于同一侧,以上两侧为不同侧;本实施例中,第三弧面43的半径等于第四弧面44的半径,当然,第三弧面33的半径也可以小于第四弧面44的半径,第三弧面43的半径大于第三流道10的进口孔101的半径,第四弧面44的半径大于换热芯体的第二孔道212出口孔2111的半径,第三弧面43比第四弧面44更靠近阀体的第三流道10的进口孔101,将第三流道10的进口孔101和第二孔道212的出口孔2121向第二凹槽4投影,第三流道10的进口孔101的投影和第二孔道212的出口孔2121的投影位于第二凹槽4内,这样使得第二凹槽4能够连通第三流道10和第二孔道212。
参见图1和图2,本实施例中,阀组件1相对沿着换热芯体的长度方向设置,具体地,阀体11的第一流道17和阀体的第三流道10相对沿着换热芯体的长度方向设置;另外,部分阀组件1伸出换热芯体2,具体地,阀组件1中与阀体11固定连接的壳体沿换热芯体2的宽度方向相对伸出换热芯体2,这样能够使得热管理组件的结构相对紧凑;另外,本实施例中,换热芯体2的接管和阀组件1位于换热芯体1主体的同一侧,当然,换热芯体2的接管和阀组件1也可以位于换热芯体1主体的不同侧。
参见图11至图18,图11至图18为本申请中热管理组件的第二种实施方式的结构示意图;以下将对本申请中热管理组件的第二种实施方式的结构进行详细介绍。
参见图11至图18,换热芯体2a包括换热主体8a和安装板5a,安装板5a设置于换热主体8a和阀组件1a之间;换热主体8a与安装板5a定位设置并通过焊接固定连接;具体地,安装板5a包括顶面51a和底面52a,顶面51a与底面52a位于安装板5a的两侧,顶面51a和底面52a相对设置,本实施例中,阀体11a与安装板的顶面51a通过焊接固定连接,换热芯体2a与安装板的底面52a通过焊接固定连接,当然阀体11a与安装板5a也可以通过螺钉或螺栓等其他连接方式;参见图13,安装板5a包括两个凸起部58a,凸起部58a自安装板的底面52a凸起设置,与凸起部58a相对应的是在换热主体8a的上表面形成孔,换热主体8a上表面的孔与凸起部58a对应配合设置,从而使得安装板5a与换热主体8a能够定位设置;本实施例中,通过设置安装板5a使得阀体11a与换热芯体2a间接固定连接成一个整体,进而使得阀组件1a能够与换热芯体2a集成为一个整体,这样能够有利于相对减少系统中管路的设置,进而有利于简化结构,便于安装。
参见图11至图18,换热芯体2a包括两个定位部,定义其中一个定位部为第一定位部55a,另一个定位部为第二定位部56a,参见图13和图14,本实施例中,第一定位部55a和第二定位部56a成形于安装板5a上,第一定位部55a和第二定位部56a呈孔状,第一定位部55a和第二定位部56a自安装板5a的顶面51a向安装板的底面52a的方向延伸;参见图15,阀体11a包括两个配合部,定义其中一个配合部为第一配合部113a,另一个配合部为第二配合部114a,第一配合部113a和第二配合部114a自第二壁面112a向远离第二壁面112a的方向凸起设置,第一配合部113a和第二配合部114a呈圆环状,第一配合部113a与第二流道18a连通,第二配合部114a与第三流道连通10a;本实施例中,至少部分第一配合部113a插入第一定位部55a并与第一定位部55a对应间隙配合设置,至少部分第二配合部114a插入第二定位部56a并与第二定位部56a对应间隙配合设置,第一配合部113a的凸起高度小于第一定位部55a的深度,第二配合部114a的 凸起高度小于第二定位部56a的深度,这里“第一配合部113a和第二配合部114a的凸起高度”即为第一配合部113a和第二配合部114a的厚度,“第一定位部56a和第二定位部57a的深度”即为第一定位部56a和第二定位部57a的厚度,这样相当于以阀体的第二壁面112a为定位基准,使得阀体与换热芯体2a能够安装到位。
参见图13,安装板5a包括第一凹槽3a和第二凹槽4a,第一凹槽3a和第二凹槽4a自底面52a向顶面51a的方向凹陷设置,第一凹槽3a和第二凹槽4a未贯穿顶面51a,定义第一定位部55a位于第一凹槽3a的上方,第二定位部56a位于第二凹槽4a的上方,第一定位部55a与第一凹槽3a连通,第二定位部56a与第二凹槽4a连通;这样能够保证第二流道18a与第一凹槽3a连通,第三流道10a与第二凹槽4a连通,进而使得第二流道18a与换热芯体的第一孔道211、第三流道10a与换热芯体2a的第二孔道212实现连通。
参见图11至图13,安装板5a包括第一外壁53a和第二外壁54a,第一外壁53a和第二外壁54a位于安装板的两侧,第一外壁53a和第二外壁54a相对设置,第一外壁53a与第二外壁54a位于安装板5a的长度方向上,结合图11,本实施例中,阀组件1a相对靠近安装板5a的第一外壁53a设置,沿着换热芯体2a的宽度方向上,部分阀组件1a伸出安装板5a的第一外壁53a;参见图13和图14,第一凹槽3a和第二凹槽4a相对第一外壁53a或第二外壁54a呈倾斜设置,具体地,第一凹槽3a和第二凹槽4a大致呈八字形布置,第一凹槽3a的深度和第二凹槽4a的深度大于等于5mm小于等于6mm,这样在保证阀组件1a和换热芯体2a能够连通的前提下,有利于相对降低流体在第一凹槽3a和第二凹槽4a内的压降,进而有利于相对减小流体在第一凹槽3a和第二凹槽4a内的流阻;另外,本实施例中,第一定位部55a和第二定位部56a的深度小于第一凹槽3a和第二凹槽4a的深度,当然,第一定位部55a和第二定位部56a的深度也可以大于等于第一凹槽3a和第二凹槽4a的深度。
参见图11至图15,本实施例中,第一定位部55a相对第二弧面34a更靠近第一弧面33a,第二定位部56a相对第三弧面43a更靠近第四弧面 44a;另外,本实施例中,第一凹槽3a的第一弧面33a和第二弧面34a的半径相等,第二凹槽4a的第三弧面43a和第四弧面44a的半径相等,当然第二弧面33a的半径也可以大于第一弧面33a的半径,第四弧面44a的半径也可以大于第三弧面43a的半径,这样有利于流体流动的平稳性;这里关于第一凹槽3a和第二凹槽4a的其他形状特征可参考第一种实施方式,在此就不一一赘述了。
参见图7、图11至图18,第一凹槽3a连通阀体11a的第二流道18a和换热芯体2a的第一孔道211,第二凹槽4a连通阀体11a的第三流道10a和换热芯体2a的第二孔道212,这样实现了阀组件1a与换热芯体2a之间流道的连通,从而使得阀组件1a和换热芯体2a能够集成为一个整体;阀组件1还包括传感器9a,传感器9a与电路板16a电连接,至少部分传感器9a伸入阀体11a的第三流道10a,传感器9a能够检测第三流道10a内工作介质的温度和/或压力,这样将传感器集成组装在阀组件1a中,能够有利于相对减少传感器线路的电连接。
参见图13和图14,安装板5a还包括安装孔57a,安装孔57a贯穿安装板5a的顶面51a和底面52a,安装孔57a用于热管理组件与外部系统的安装,这样使得热管理组件与外部系统的安装更加方便。具体在图11中,安装板5a长度方向的两端均相对换热芯体2a伸出凸耳,安装孔57a设于凸耳位置。
与热管理组件的第一种实施方式相比,本实施方式中,热管理组件包括安装板5a,阀体11a与换热芯体2a通过安装板5a实现固定连接,第一定位部55a和第二定位部56a成形于安装板5a上,第一定位部55a和第二定位部56a呈孔状,第一配合部113a和第二配合部114a呈凸起的圆环状;本实施例中其他特征可参考第一种实施方式,在此就不一一赘述了。
参见图19至图22,图19至图22为本申请中热管理组件的第三种实施方式的结构示意图;以下将对本申请中热管理组件的第三种实施方式的结构进行详细介绍。
参见图19至图22,安装板5b还包括第一板片6b和第二板片7b,第一板片6b和第二板片7b设置于阀体1b与换热主体8b之间,第一板片6b 与第二板片7b固定连接,具体地,本实施例中,第一板片6b和第二板片7b定位设置并通过焊接固定连接,当然第一板片6b和第二板片7b也可以通过螺钉或螺栓等其他的连接方式,这里第一板片6b和第二板片7b的定位可以通过第一板片6b的凸起部63b与第二板片7b的通孔71b配合设置;参见图19至图22,阀体11b与第一板片6b通过焊接固定连接,换热主体8b与第二板片7b通过焊接固定连接,这样使得阀体11b与换热主体8b间接固定连接成一个整体,进而使得阀组件1b能够与换热主体8b集成为一个整体,这样能够有利于相对减少系统中管路的设置,进而有利于简化结构,便于安装。
参见图19至图22,本实施例中,第一定位部61b和第二定位部62b成形于第一板片6b,第一定位部61b和第二定位部62b沿着第一板片6b的长度方向分布,第一定位部61b与第二定位部62b贯穿第一板片6b的上下表面;第二板片7b包括第一凹槽3b和第二凹槽4b,第一凹槽3b和第二凹槽4b贯穿第二板片7b的上下表面,第一定位部61b与第一凹槽3b连通,第二定位部62b与第二凹槽4b连通;本实施例中,热管理组件100b只包括一个第一板片6b和一个第二板片7b,当然也可以包括两个甚至多个第一板片6b和两个甚至多个第二板片7b,然后通过堆叠的方式形成第一凹槽3b、第二凹槽4b、第一定位部61b和第二定位部62b。
与热管理组件的第一种实施方式相比,本实施方式中,热管理组件100b包括第一板片6b和第二板片7b,第一板片6b和第二板片7b固定连接,第一定位部61b和第二定位部62b成形于第一板片6b,第一凹槽3b和第二凹槽4b成形于第二板片7b上;第一板片6b和第二板片7b固定后相当于第二实施方式中的安装板5c,本实施例中其他的特征可参考第二种实施方式,在此就不一一赘述了。
参见图23至图26,图23至图26为本申请中热管理组件的第四种实施方式的结构示意图;以下将对本申请中热管理组件的第四种实施方式的结构进行详细介绍。
参见图23至图26,本实施例中,热管理组件100c还包括安装板5c,安装板5c设置于阀体1c与换热主体8c之间,阀体11与安装板5c的顶面 通过焊接固定连接,换热芯体2c与安装板5c的底面通过焊接固定连接;安装板5c包括第一外壁51c和第二外壁52c,第一外壁51c和第二外壁52c位于安装板的两侧,第一外壁51c和第二外壁52c相对设置,第一外壁51c与第二外壁52c位于安装板的长度方向上,本实施例中,第一凹槽3c和第二凹槽4c成形于安装板5c上,第一凹槽3c和第一外壁51c或第二外壁52c平行,第二凹槽4c相对第一外壁51c或第二外壁52c呈倾斜设置;具体地,参见图23至图26,安装板5c包括第一板片6c和第二板片7c,第一板片6c与第二板片7c通过焊接固定连接,阀体11c与第一板片6c通过焊接固定连接,换热主体8c与第二板片7c通过焊接固定连接,这样使得阀体11c与换热主体8c间接固定连接成一个整体,进而使得阀组件1c能够与换热主体8c集成为一个整体,这样能够有利于相对减少系统中管路的设置,进而有利于简化结构,便于安装。
参见图26,本实施例中,第一凹槽3c和第二凹槽4c成形于第二板片7c,第一凹槽3c和第二凹槽4c贯穿第二板片7c的上下表面,第一凹槽3c与第二板片7c的第一外壁71c或第二板片7c的第二外壁72c平行,第二凹槽4c相对第二板片7c的第一外壁71c或第二板片7c的第二外壁72c呈倾斜设置,第一凹槽3c的厚度和第二凹槽4c的厚度大于等于5mm小于等于6mm,这样在保证阀组件1c和换热芯体2c能够连通的前提下,有利于相对降低流体在第一凹槽3c和第二凹槽4c内的压降,进而有利于相对减小流体在第一凹槽3c和第二凹槽4c内的流阻;这里关于第一凹槽和第二凹槽的形状特征可参考第二种实施方式,在此就不一一赘述了。
参见图25,第一板片6c包括第一定位部61c和第二定位部62c,第一定位部61c与第二定位部62c贯穿第一板片6c的上下表面,第一定位部61c和第二定位部62c沿着第一板片6c的宽度方向分布,将第一定位部61c和第二定位部62c向第二板片7c投影,第一定位部61c的投影位于第一凹槽3c内,第二定位部62c的投影位于第二凹槽4c内,这样有利于流体流动的平稳性;本实施例中,安装板5c只包括一个第一板片6c和一个第二板片7c,当然也可以包括两个甚至多个第一板片6c和两个甚至多个第二板片7c,然后通过堆叠的方式形成第一凹槽3c、第二凹槽4c、第一定位部61c 和第二定位部62c,当然也可以安装板5c也可以和第二实施例一样只由一个板片组成。
与热管理组件的第一种实施方式相比,本实施方式中,热管理组件100c包括安装板5c,阀体11a与换热芯体2a通过安装板5c实现固定连接,安装板5c包括第一板片6c和第二板片7c,第一板片6c和第二板片7c固定连接,第一定位部61c和第二定位部62c成形于第一板片6c,第一凹槽3c和第二凹槽4c成形于第二板片7c上;另外,本实施例中,阀组件1c的安装方位也不同,具体地,阀体的第一流道17c和第三流道10c沿着换热芯体2c的宽度方向设置;相应地,如图24所示,第一凹槽3c在第二板片7c的一侧并沿长度方向延伸,第二凹槽4c倾斜设置,一端大致位于第一凹槽3c的延伸方向上,另一端向第二板片7c的另一侧倾斜,以便与该安装方位下的第三流道10c建立连通关系;本实施例中其他的特征可参考第一种实施方式,在此就不一一赘述了。
参见图27至图28,图27至图28为本申请中热管理组件的第五种实施方式的结构示意图;以下将对本申请中热管理组件的第五种实施方式的结构进行详细介绍。
参见图27至图28,热管理组件100d包括换热芯体2d和阀组件1d,换热芯体2d包括两个定位部,定义其中一个定位部为第一定位部26d,另一个定位部为第二定位部27d,第一定位部26d和第二定位部27d自换热芯体2d的上表面凸起设置,第一定位部26d和第二定位部27d设置于第一孔道211d和第二孔道212d之间,第一定位部26d与阀体11d的第一配合部对应间隙配合设置,第二定位部27d与阀体11d的第二配合部对应间隙配合设置,这样使得阀体11d与换热芯体2d能够定位安装;这里关于阀体的第一配合部和阀体的第二配合部可参考本申请中热管理组件的第一种实施方式,在此就不一一赘述了。
与热管理组件的第一种实施方式相比,本实施方式中,阀组件1d沿着换热芯体2d的宽度方向设置,阀组件1d的驱动侧朝向换热芯体2d的接管,结构较为紧凑,占用空间较小;本实施例中其他的特征可参考第一种实施方式,在此就不一一赘述了。
参见图29至图30,图29至图30为本申请中热管理组件的第六种实施方式的结构示意图;以下将对本申请中热管理组件的第六种实施方式的结构进行详细介绍。
参见图29至图30,热管理组件100e包括换热芯体2e和阀组件1e,换热芯体2e包括两个定位部,定义其中一个定位部为第一定位部26e,另一个定位部为第二定位部27e,第一定位部26e和第二定位部27e自换热芯体2e的上表面凸起设置,第一定位部26e和第二定位部27e设置于第一孔道211e和第二孔道212e之间,第一定位部26e与阀体11e的第一配合部对应间隙配合设置,第二定位部27e与阀体11e的第二配合部对应间隙配合设置,这样使得阀体11e与换热芯体2e能够定位安装;这里关于阀体的第一配合部和阀体的第二配合部可参考本申请中热管理组件的第一种实施方式,在此就不一一赘述了。
与热管理组件的第一种实施方式相比,本实施方式中,阀组件1e沿着换热芯体2e的宽度方向设置,阀组件1d的驱动侧背向换热芯体2d的接管;本实施例中其他的特征可参考第一种实施方式,在此就不一一赘述了。
参见图31,本发明还公开了一种热管理系统;热管理系统包括空调系统和电池冷却系统;空调系统包括压缩机102、冷凝器101、第一电子膨胀阀104以及蒸发器103,空调系统工作时,制冷剂通过压缩机102被压缩为高温高压的制冷剂,高温高压的制冷剂通过冷凝器101后成为常温高压的制冷剂,常温高压的制冷剂通过第一电子膨胀阀104,进入蒸发器103;由于常温高压的制冷剂经过第一电子膨胀阀104后压力减小,制冷剂就会汽化,变成低温的制冷剂,低温的制冷剂经过蒸发器103吸收大量的热量变成制冷剂并回到压缩机102;电池冷却系统包括压缩机102、冷凝器101、第二电子膨胀阀104、换热器106以及电池组,电池冷却系统工作时,制冷剂通过压缩机102被压缩为高温高压的制冷剂,高温高压的制冷剂通过冷凝器101后成为常温高压的制冷剂,常温高压的制冷剂通过第二电子膨胀阀105,进入换热器106并在换热器106内进行换热,经过换热器106换热后的制冷剂再流入电池组从而冷却电池组中的电池。本制冷系统中,第一电子膨胀阀104和蒸发器103可以作为两个独立的零部件单独安装在 系统管路中,也可以将第一电子膨胀104和蒸发器103集成组装在一起后再安装在系统管路上,同样地,第二电子膨胀阀105和换热器106也可以作为两个独立的零部件单独安装在系统管路中,当然也可以将第二电子膨胀105和换热器106集成组装在一起后再安装在系统管路上;为了便于描述,这里将第二电子膨胀阀105和换热器106集成组装在一起的组件统称为热管理组件,此热管理组件即为本发明中所描述的热管理组件。
需要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行相互组合、修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (11)

  1. 一种热管理组件,包括换热芯体和阀组件,以所述换热芯体为基准,所述阀组件位于所述换热芯体的上方,所述换热芯体与所述阀组件通过焊接固定连接;所述阀组件包括阀体、阀芯、阀口以及电路板,所述阀芯能够相对所述阀口运动进而能够调节所述阀口的开度;所述阀体包括第一流道和第二流道,所述第一流道与所述第二流道能够连通,所述第一流道和所述第二流道位于所述阀口的两侧,至少部分所述第一流道位于所述阀口的上方,至少部分所述第二流道位于所述阀口的下方;所述阀体还包括第三流道,在所述阀体上,所述三流道与所述第一流道、所述第二流道不连通,所述阀组件还包括传感器,所述传感器与所述阀体固定连接,所述传感器与所述电路板电连接,至少部分所述传感器伸入所述第三流道,所述传感器能够检测所述第三流道内工作介质的温度和/或压力;所述换热芯体至少包括一个定位部,所述阀体至少包括一个配合部,所述定位部与所述配合部对应配合设置从而限定所述换热芯体和所述阀体的至少部分相对位置。
  2. 根据权利要求1所述的热管理组件,其特征在于:所述换热芯体包括两个所述定位部,定义其中一个所述定位部为第一定位部,另一个所述定位部为第二定位部,所述阀体包括两个所述配合部,定义其中一个所述配合部为第一配合部,另一个所述配合部为第二配合部,所述第一定位部与所述第一配合部间隙配合设置,所述第二定位部与所述第二配合部间隙配合设置,所述第一定位部的厚度大于所述第一配合部的厚度,所述第二定位部的厚度大于所述第二配合部的厚度。
  3. 根据权利要求2所述的热管理组件,其特征在于:所述第一定位部和所述第二定位部成形于所述换热芯体的主体部,所述第一定位部和所述第二定位部自所述换热芯体的主体部的上表面凸起设置;所述阀体包括第一壁面和第二壁面,所述第一壁面与所述第二壁面位于所述阀体的两侧,所述第一流道的进口孔成形于所述第一壁面,所述第二流道的出口孔成形于所述第二壁面;所述第一配合部和所述第二配合部呈孔状,所述第一配合部和所述第二配合部自所述第二壁面向所述第一壁面的方向延伸。
  4. 根据权利要求2所述的热管理组件,其特征在于:所述换热芯体包括换热主体和安装板,所述安装板设置于所述换热主体和所述阀组件之间,所述换热主体与所述安装板定位设置并通过焊接固定连接;所述第一定位部和所述第二定位部成形于所述安装板,所述第一定位部和所述第二定位部呈孔状,所述第一定位部和所述第二定位部自所述安装板的顶面向所述安装板的底面的方向延伸;所述阀体包括第一壁面和第二壁面,所述第一壁面与所述第二壁面位于所述阀体的两侧,所述第一流道的进口孔成形于所述第一壁面,所述第二流道的出口孔成形于所述第二壁面,所述第一配合部和所述第二配合部自所述第二壁面向远离所述第二壁面的方向凸起设置,所述第一配合部与所述第二流道连通,所述第二配合部与所述第三流道连通,所述第一配合部围绕所述第二流道的出口孔设置,所述第二配合部围绕所述第三流道的进口孔设置;至少部分所述第一配合部插入所述第一定位部并与所述第一定位部对应间隙配合设置,至少部分所述第二配合部插入所述第二定位部并与所述第二定位部对应间隙配合设置。
  5. 根据权利要求2或3所述的热管理组件,其特征在于:所述换热芯体包括第一流体通道和第二流体通道,所述第一流体通道和所述第二流体通道不相通;所述第一流体通道包括第一孔道和第二孔道,所述第一孔道和所述第二孔道相连通;所述第一定位部和所述第二定位部设置于所述第一孔道和所述第二孔道之间;阀体包括第一凹槽和第二凹槽,所述第一凹槽和所述第二凹槽自所述第二壁面向所述第一壁面的方向凹陷设置,所述第一凹槽和所述第二凹槽未贯穿所述第一壁面,所述第一凹槽与所述第二流道连通,所述第二凹槽与所述第三流道连通,所述第一配合部和所述第二配合部位于所述第一凹槽和所述第二凹槽之间,所述第一凹槽连通所述第二流道和所述第一孔道,所述第二凹槽连通所述第三流道和所述第二孔道。
  6. 根据权利要求4所述的热管理组件,其特征在于:所述安装板包括顶面和底面,所述顶面与所述底面位于所述安装板的两侧,所述阀体与所述顶面通过焊接固定连接,所述换热主体与所述底面通过焊接固定连接;所述安装板包括第一凹槽和第二凹槽,所述第一凹槽和所述第二凹槽自所 述底面向所述顶面的方向凹陷设置,所述第一凹槽和所述第二凹槽未贯穿所述顶面,定义所述第一定位部位于所述第一凹槽的上方,所述第二定位部位于所述第二凹槽的上方,所述第一定位部与所述第一凹槽连通,所述第二定位部与所述第二凹槽连通。
  7. 根据权利要求4所述的热管理组件,其特征在于:所述安装板包括第一板片和第二板片,所述第一板片与所述第二板片定位设置并通过焊接固定连接,所述阀体与所述第一板片通过焊接固定连接,所述换热主体与所述第二板片通过焊接固定连接;所述第一定位部和所述第二定位部成形于所述第一板片,所述第一定位部和所述第二定位部贯穿所述第一板片的上下表面;所述第二板片包括第一凹槽和第二凹槽,所述第一凹槽和所述第二凹槽贯穿所述第二板片的上下表面,所述第一定位部与所述第一凹槽连通,所述第二定位部与所述第二凹槽连通。
  8. 根据权利要求6或7所述的热管理组件,其特征在于:所述换热芯体包括第一流体通道和第二流体通道,所述第一流体通道和所述第二流体通道不相通;所述第一流体通道包括第一孔道和第二孔道,所述第一孔道和所述第二孔道相连通;所述第一凹槽连通所述第二流道和所述第一孔道,所述第二凹槽连通所述第三流道和所述第二孔道;将所述第一定位部向所述第一凹槽投影,所述第一定位部的至少部分投影位于所述第一凹槽内;将所述第二定位部向所述第二凹槽投影,所述第二定位部的至少部分投影位于所述第二凹槽内。
  9. 根据权利要求8所述的热管理组件,其特征在于:所述第一凹槽包括第一侧面和第二侧面,所述第一侧面和所述第二侧面呈平面状,所述第一侧面的一端和所述第二侧面的一端通过第一弧面连接,所述第一弧面的半径大于所述第二流道出口孔的半径,所述第一侧面的另一端与所述第二侧面的另一端通过第二弧面连接,所述第二弧面的半径大于所述第一孔道进口孔的半径,所述第一弧面比所述第二弧面更靠近所述第二流道的出口孔;所述第一定位部相对所述第二弧面更靠近所述第一弧面。
  10. 根据权利要求9所述的热管理组件,其特征在于:所述第二凹槽包括第三侧面和第四侧面,所述第三侧面和所述第四侧面呈平面状,所述 第三侧面的一端和所述第四侧面的一端通过第三弧面连接,所述第三弧面的半径大于所述第三流道进口孔的半径,所述第三侧面的另一端与所述第四侧面的另一端通过第四弧面连接,所述第四弧面的半径大于所述第二孔道出口孔的半径,所述第三弧面比所述第四弧面更靠近所述第三流道的进口孔;所述第二定位部相对所述第三弧面更靠近所述第四弧面。
  11. 一种热管理系统,包括压缩机、冷凝器以及热管理组件,所述热管理组件为权利要求1-10任一项所述的热管理组件,所述压缩机的出口与所述冷凝器的进口连通,所述冷凝器的出口与所述热管理组件的第一流道的进口连通,所述压缩机的进口与所述热管理组件的第三流道的出口连通。
PCT/CN2020/080137 2019-03-27 2020-03-19 热管理组件以及热管理系统 WO2020192541A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/432,604 US20220069379A1 (en) 2019-03-27 2020-03-19 Heat management assembly and heat management system
EP20779686.3A EP3952006A4 (en) 2019-03-27 2020-03-19 ASSEMBLY AND HEAT MANAGEMENT SYSTEM
JP2021552219A JP7361129B2 (ja) 2019-03-27 2020-03-19 熱管理ユニット及び熱管理システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920396182 2019-03-27
CN201920396182.7 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020192541A1 true WO2020192541A1 (zh) 2020-10-01

Family

ID=72610259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080137 WO2020192541A1 (zh) 2019-03-27 2020-03-19 热管理组件以及热管理系统

Country Status (5)

Country Link
US (1) US20220069379A1 (zh)
EP (1) EP3952006A4 (zh)
JP (1) JP7361129B2 (zh)
CN (1) CN212750972U (zh)
WO (1) WO2020192541A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264770A1 (ja) * 2021-06-14 2022-12-22 株式会社デンソー ヒートポンプモジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100243200A1 (en) * 2009-03-26 2010-09-30 Modine Manufacturing Company Suction line heat exchanger module and method of operating the same
CN103712383A (zh) * 2012-09-29 2014-04-09 杭州三花研究院有限公司 换热器与膨胀阀的集成组件及其制造方法
CN205939839U (zh) * 2016-06-23 2017-02-08 盾安环境技术有限公司 一种热力膨胀阀
CN108253159A (zh) * 2016-12-29 2018-07-06 比亚迪股份有限公司 膨胀开关阀
CN108869830A (zh) * 2017-05-09 2018-11-23 浙江三花汽车零部件有限公司 电子膨胀阀、热管理组件、冷却系统以及电子膨胀阀制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428762U (zh) * 1987-08-11 1989-02-20
JPH0882457A (ja) * 1994-09-09 1996-03-26 Zexel Corp 積層型熱交換器
JP5694712B2 (ja) * 2010-09-10 2015-04-01 株式会社マーレ フィルターシステムズ オイルクーラ
JP5529175B2 (ja) 2012-01-11 2014-06-25 千代田空調機器株式会社 バルブ装置及びハルブ装置の製造方法
FR2986315B1 (fr) * 2012-01-30 2014-01-10 Valeo Systemes Thermiques Echangeur de chaleur
FR3010512B1 (fr) 2013-09-09 2017-11-24 Valeo Systemes Thermiques Dispositif de raccordement d'un evaporateur a un detendeur
JP6406897B2 (ja) 2014-04-18 2018-10-17 株式会社ティラド サーモバルブ一体型オイルクーラ
KR101526427B1 (ko) * 2014-06-23 2015-06-05 현대자동차 주식회사 차량용 열교환기
KR101703606B1 (ko) * 2015-06-15 2017-02-08 현대자동차주식회사 차량용 열교환기
EP3327397B1 (en) 2015-07-17 2022-09-07 Zhejiang Sanhua Automotive Components Co., Ltd. Heat exchange device
US11285781B2 (en) * 2016-11-09 2022-03-29 Zhejiang Sanhua Intelligent Controls Co., Ltd Fluid heat exchange assembly, and heat management system of vehicle
WO2018086553A1 (zh) * 2016-11-09 2018-05-17 杭州三花研究院有限公司 流体换热组件及车辆热管理系统
EP3567281B1 (en) * 2017-01-03 2022-03-30 Zhejiang Sanhua Automotive Components Co., Ltd. Temperature control valve and thermal management assembly having same
JP7049367B2 (ja) * 2017-05-09 2022-04-06 ジャージャン サンフア オートモーティヴ コンポーネンツ カンパニー リミテッド 電子膨張弁、熱管理ユニット、冷却システム及び電子膨張弁の製造方法
US11300336B2 (en) * 2017-09-11 2022-04-12 Zhejiang Sanhua Intelligent Controls Co., Ltd. Fluid control assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100243200A1 (en) * 2009-03-26 2010-09-30 Modine Manufacturing Company Suction line heat exchanger module and method of operating the same
CN103712383A (zh) * 2012-09-29 2014-04-09 杭州三花研究院有限公司 换热器与膨胀阀的集成组件及其制造方法
CN205939839U (zh) * 2016-06-23 2017-02-08 盾安环境技术有限公司 一种热力膨胀阀
CN108253159A (zh) * 2016-12-29 2018-07-06 比亚迪股份有限公司 膨胀开关阀
CN108869830A (zh) * 2017-05-09 2018-11-23 浙江三花汽车零部件有限公司 电子膨胀阀、热管理组件、冷却系统以及电子膨胀阀制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952006A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264770A1 (ja) * 2021-06-14 2022-12-22 株式会社デンソー ヒートポンプモジュール

Also Published As

Publication number Publication date
EP3952006A4 (en) 2022-11-30
JP7361129B2 (ja) 2023-10-13
US20220069379A1 (en) 2022-03-03
EP3952006A1 (en) 2022-02-09
CN212750972U (zh) 2021-03-19
JP2022522521A (ja) 2022-04-19

Similar Documents

Publication Publication Date Title
US10408511B2 (en) Heat exchange device
KR100482827B1 (ko) 열교환기
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
WO2020192541A1 (zh) 热管理组件以及热管理系统
JPS6380169A (ja) 膨張弁付積層型エバポレ−タ
JP2002372383A (ja) 炭酸ガス用放熱器
WO2024002201A1 (zh) 直冷板、换热器、动力电池包及车辆
JP7480415B2 (ja) 絞り熱交換ユニット
WO2021238948A1 (zh) 热管理装置及热管理系统
US20220390193A1 (en) Heat exchanging assembly
CN109728379B (zh) 板组件、电池组件和电池换热系统
CN109728376B (zh) 板组件及电池组件
CN114056034A (zh) 一种换热组件及一种车辆热管理系统
CN113363611A (zh) 液冷板和用于新能源车辆的热管理系统
CN109728378B (zh) 板组件、电池组件以及电池换热系统
EP4235075A1 (en) Heat exchanger, heat exchange assembly, and heat management system
CN109728377B (zh) 板组件、电池组件和电池换热系统
JP7433965B2 (ja) 熱交換器
CN218764093U (zh) 流体控制组件及制冷系统
CN113188272B (zh) 换热组件、换热装置及热管理系统
WO2019085868A1 (zh) 换热组件、电池组件和电池换热系统
CN114076530A (zh) 一种换热组件及一种热管理系统
CN113804028A (zh) 热管理装置及热管理系统
CN113804027A (zh) 热管理装置
CN114379310A (zh) 流体管理装置及热管理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020779686

Country of ref document: EP

Effective date: 20211027