WO2020192504A1 - 传输控制方法、装置、终端、基站、通信系统及存储介质 - Google Patents

传输控制方法、装置、终端、基站、通信系统及存储介质 Download PDF

Info

Publication number
WO2020192504A1
WO2020192504A1 PCT/CN2020/079815 CN2020079815W WO2020192504A1 WO 2020192504 A1 WO2020192504 A1 WO 2020192504A1 CN 2020079815 W CN2020079815 W CN 2020079815W WO 2020192504 A1 WO2020192504 A1 WO 2020192504A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
type
terminal
information
value
Prior art date
Application number
PCT/CN2020/079815
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
沙秀斌
方惠英
杨维维
边峦剑
胡有军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/599,460 priority Critical patent/US20220201636A1/en
Priority to EP20777140.3A priority patent/EP3952567A4/en
Publication of WO2020192504A1 publication Critical patent/WO2020192504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • This application relates to the field of communications, such as transmission control methods, devices, terminals, base stations, communication systems, and storage media.
  • Wireless data content is no longer limited to traditional text or images, but more and more multimedia services such as high-definition video and mobile TV are appearing, which has led to an explosive growth in wireless communication network traffic.
  • Mobile Internet and Internet of Things services will become the main driving force for the development of mobile communications.
  • the 3GPP The Third Generation Partnership Project, Third Generation Partnership Project
  • MTC Machine Type Communication
  • NB-IoT Narrow Band Internet of Things, Narrow Band Internet of Things
  • 5G 5 Generation
  • NR New Radio
  • the terminal when there is no data to send or receive, the terminal enters an RRC (Radio Resource Control, radio resource control) idle state (referred to as RRC_IDLE), thereby saving power consumption of the terminal.
  • RRC_IDLE Radio Resource Control, radio resource control
  • the terminal Before sending or receiving data, the terminal needs to enter the RRC connected state (referred to as RRC-CONNECT) from the RRC idle state, and then send or receive data.
  • RRC-CONNECT Radio Resource Control, radio resource control
  • the terminal entering the RRC connected state from the RRC idle state will consume the power consumption of the terminal and system resources.
  • the embodiment of the application provides a transmission control method, including:
  • the embodiment of the application provides a transmission control method, including:
  • the designated information is sent to the terminal through a downlink channel.
  • An embodiment of the present application provides a transmission control device, including:
  • Judgment module used to judge the validity of TA
  • the random access module is used to initiate a random access process when the TA is in an invalid state.
  • An embodiment of the present application provides a transmission control device, including:
  • the third receiving module is configured to receive data sent by the terminal in the first type channel in the RRC idle state or inactive state;
  • the first sending module is configured to send designated information to the terminal through a downlink channel when a specific condition is met.
  • An embodiment of the present application provides a terminal, and the terminal includes a processor and a memory;
  • the memory is used to store instructions
  • the processor is configured to read the instruction to execute the method applied to the terminal in the embodiment of the present application.
  • An embodiment of the present application provides a base station, the base station including: a processor and a memory;
  • the memory is used to store instructions
  • the processor is configured to read the instruction to execute the method applied to the base station in the embodiment of the present application.
  • the embodiment of the present application provides a storage medium that stores a computer program, and the computer program implements any of the methods provided in the embodiments of the present application when the computer program is executed by a processor.
  • a random access procedure is initiated to update the TA from an invalid state to a valid state, so that the terminal can use the first type channel for data multiple times in the RRC idle state or inactive state transmission.
  • FIG. 1 is a schematic flowchart of a transmission control method according to an embodiment of the application.
  • FIG. 2 is a schematic flowchart of a transmission control method according to another embodiment of the application.
  • Fig. 3a is a schematic diagram of a random access process of a transmission control method according to another embodiment of the application.
  • Fig. 3b is a schematic diagram of a random access process of a transmission control method according to another embodiment of the application.
  • FIG. 4 is a schematic flowchart of a transmission control method according to another embodiment of the application.
  • FIG. 5 is a schematic flowchart of a transmission control method according to another embodiment of the application.
  • FIG. 6 is a schematic flowchart of a transmission control method according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a transmission control method according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a transmission control device according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a transmission control device according to another embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a transmission control device according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a transmission control device according to an embodiment of the application.
  • FIG. 12 is a schematic flowchart of a transmission control method according to another embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a communication system according to an embodiment of the application.
  • FIG. 1 is a schematic flowchart of a transmission control method according to an embodiment of the application. As shown in Figure 1, the transmission control method can be applied to a terminal, and the method can include:
  • Step S11 Judging the validity of the timing advance (Timing Advanced, TA).
  • Step S12 Initiate a random access process when the TA is in an invalid state.
  • the terminal can update the TA from an invalid state to a valid state by initiating a random access procedure. It should be noted that by initiating a random access process, it is only a way to update the TA from an invalid state to a valid state, and other methods can also be used to update the state of the TA. In addition, when the TA is in an invalid state, the TA may not be updated from an invalid state to a valid state, but instead of using the first type channel for data transmission in the RRC idle state or inactive state.
  • the terminal receives the second message (Msg2) in the random access process.
  • the Msg2 includes TA information of the terminal (assuming the tag is TA1).
  • the advance of the terminal for sending data on the first type channel is TA1-TA2.
  • TA2 can be configured by the base station and sent to the terminal.
  • TA2 can also be determined according to a cyclic prefix (CP).
  • CP cyclic prefix
  • TA2 is determined according to the length of the cyclic prefix (CP), and multiple methods can be used, examples are as follows:
  • the method further includes:
  • Step S13 When the TA is in a valid state, the terminal is allowed to use the first type channel for data transmission in a radio resource control (RRC) idle state or an inactive state (Inactive mode).
  • RRC radio resource control
  • the configuration information of the first type of channel may be sent to the terminal by the base station in the RRC connection state through an RRC message.
  • the terminal on the first type of channel, the terminal can perform uplink data transmission in the RRC idle state or the inactive state.
  • the resources occupied by the first-type channels may be distributed periodically or discretely in the time domain.
  • the first type of channel can be used for data transmission.
  • the terminal can use the first type channel for data transmission multiple times in the RRC idle state or the inactive state.
  • the TA active state data transmission can be performed without establishing an RRC connection, so the power consumption of the terminal can be reduced and system resources can be saved.
  • judging the validity of the TA may include: judging that a specific condition is satisfied at the judgment moment, then judging that the TA is in an invalid state. Otherwise, TA is in a valid state.
  • the judgment time is before the time domain resource of the next channel of the first type. In another example, the judgment time is located after the time domain resource of the previous channel of the first type.
  • the terminal may first determine whether the TA is always valid before judging the validity of the TA at the judgment moment. When TA is not always valid, start to judge the validity of TA. Whether TA is always valid can be notified to the terminal by the base station through signaling.
  • the terminal may first check whether the serving cell or the cell where the terminal resides has changed before judging the validity of the TA at the judgment time. If the serving cell or camping cell of the terminal changes, it means that the TA is in an invalid state. If the serving cell or camping cell of the terminal has not changed, use other methods to determine the validity of the TA.
  • Manner 1 The terminal judges the validity of the TA based on the measured values of certain parameters, such as RSRP (Reference Signal Receiving Power, reference signal received power). In this method, if one of the following conditions is satisfied at the time of judgment, the TA of the terminal is in an invalid state. Otherwise, TA is in a valid state.
  • RSRP Reference Signal Receiving Power
  • the first judgment time set may be configured by the base station and sent to the terminal, or the default configuration may be adopted.
  • the last judgment time in the first judgment time set it is judged that the amount of change in the first measurement value exceeds the threshold; where N2 is an integer greater than or equal to 1. For example, if N2 is equal to 1, it is judged that the change of the first measurement value exceeds the threshold at the last judgment time in the first judgment time set, indicating that TA is in an invalid state.
  • the last judgment time in the first judgment time set may be the judgment time closest to the time domain position of the next first type channel resource in the first judgment time set.
  • the first measurement value may include but is not limited to at least one of the following: Reference Signal Received Power (RSRP); Reference Signal Received Quality (RSRQ); Downlink Signal to Interference and Noise Ratio (Signal to Interference plus Noise Ratio, SINR); Downlink signal to noise ratio (Signal to Noise Ratio, SNR); Uplink signal to noise ratio; Uplink signal to noise ratio; Downlink path loss; Uplink path loss.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal Received Quality
  • SINR Signal Received Quality
  • SINR Signal Received Quality Ratio
  • SINR Signal to Interference plus Noise Ratio
  • SNR Downlink signal to Noise Ratio
  • Uplink signal to noise ratio Uplink signal to noise ratio
  • Uplink signal to noise ratio Uplink signal to noise ratio
  • Downlink path loss Uplink path loss.
  • the threshold of the first measurement value may be configured by the base station or a default value may be adopted.
  • the threshold can include 1 or 2 values.
  • the variation of the first measured value exceeding the threshold may include the following situations:
  • the threshold includes 1 value, and the change of the first measured value satisfies one of the following: [-threshold, +threshold], (-threshold, +threshold), (-threshold, +threshold] or [-threshold, +threshold) When, it means that the change of the first measured value does not exceed the threshold, and TA is in a valid state. Otherwise, it means that the change of the first measured value exceeds the threshold, and TA is in an invalid state.
  • the threshold includes two values, namely threshold 1 and threshold 2.
  • the change of the first measured value satisfies one of the following: [threshold 1, threshold 2]; (threshold 1, threshold 2); (threshold 1, threshold 2] ; [Threshold 1, Threshold 2), it means that the change of the first measured value does not exceed the threshold, and TA is in a valid state. Otherwise, it means that the change of the first measured value exceeds the threshold, and TA is in an invalid state.
  • [] represents a closed interval, and the boundaries of the interval are "-threshold” and “+threshold”; () represents an open interval, and the boundaries of the interval are "-threshold” and "+threshold”.
  • Method 2 The terminal judges the validity of the TA based on a timer (Timer). In this method, if one of the following conditions is satisfied at the time of judgment, the TA of the terminal is in an invalid state. Otherwise, TA is in a valid state.
  • At least M1 judgment time judgment timers in the second judgment time set expire; where M1 is an integer greater than or equal to 1. For example, if M1 is equal to 1, then at least one of the judgment time judgment timers in the second judgment time set has expired, indicating that the TA is in an invalid state.
  • the last M2 judgment time judgment timers in the second judgment time set expire; where M2 is an integer greater than or equal to 1. For example, if M2 is equal to 1, the judgment timer at the last judgment time in the second judgment time set has expired, indicating that the TA is in an invalid state.
  • the last judgment time in the second judgment time set may be the judgment time in the second judgment time set that is closest to the time domain position of the next channel resource of the first type.
  • the first M3 judgment time judgment timers in the second judgment time set expire; where M3 is an integer greater than or equal to 1. For example, if M3 is equal to 1, then the first judgment time judgment timer in the second judgment time set has expired, indicating that the TA is in an invalid state.
  • the first judgment time in the second judgment time set may be the judgment time in the second judgment time set that is farthest from the time domain position of the next channel resource of the first type.
  • the situation that the timer expires may include that the timer expires at the time of the next type 1 channel.
  • the second judgment time set may be configured by the base station and sent to the terminal, or a default configuration may be adopted.
  • the judgment time in the second judgment time set satisfies at least one of the following:
  • the interval from the time domain position of the resource used by the next channel of the first type is greater than or equal to the first duration T1;
  • the interval from the time domain position of the resource used by the next channel of the first type is less than or equal to the second duration T2.
  • the values of T1 and T2 can be configured by the base station or use default values.
  • the role of T1 may include: if it is determined that the TA is in an invalid state, it can be guaranteed to complete the entire process of the terminal's TA transitioning from the invalid state to the effective state within the time period of T1. In this way, the terminal can continue to use the resources of the next type 1 channel to send uplink data.
  • the role of T2 may include: if the judgment time is too early, and assuming that the TA is judged to be in an invalid state in this judgment, the terminal needs to give up using the resources of the next type 1 channel to send uplink data; or the terminal is in the next type 1 Before the channel resource, the TA update operation is performed to change the TA from the invalid state to the TA valid state. However, because the judgment time is too early, the base station may update the TA of the terminal after the judgment time, so that the timer is reset. Then, the timer may not time out at the next channel resource time of the first type. Therefore, configuring T2 can ensure that the judgment time is not too early.
  • Method 3 The terminal judges the validity of the TA based on the measured values of certain parameters and the timer. In this method, if one of the following conditions is satisfied at the time of judgment, the TA of the terminal is in an invalid state. Otherwise, TA is in a valid state.
  • the judgment time judgment timer in the second judgment time set has not expired, and at least K1 times before the judgment time, the change in the first measurement value exceeds the threshold; where K1 is an integer greater than or equal to 1 . For example, if K1 is equal to 1, the judgment timer does not expire at any judgment time in the second judgment time set, and the change of the first measurement value exceeds the threshold at least once before the judgment time, indicating that TA is in an invalid state.
  • the judgment time judgment timer in the second judgment time set does not expire, and the change in the first measurement value of the last K2 times before the judgment time exceeds the threshold; where K2 is greater than or equal to 1 Integer. For example, if K2 is equal to 1, the judgment timer does not expire at any judgment time in the second judgment time set, and the last change in the first measurement value before the judgment time exceeds the threshold, indicating that TA is in an invalid state.
  • a base station sends uplink transmission configuration information to a terminal (User Equipment, UE), where the uplink channel configuration information includes: uplink channel resource configuration information and downlink control channel Search space configuration information.
  • the base station configures the first type of channel resource for the terminal through the configuration information of the uplink channel resource, where the first type of channel resource is configured to support the terminal to perform uplink transmission in the RRC idle state.
  • the downlink control channel configured by the configuration information of the downlink control channel search space corresponds to the first type of channel resource.
  • the downlink control channel carries at least HARQ-ACK information corresponding to the first-type channel.
  • the resources occupied by the first-type channels are periodically distributed in the time domain.
  • the resources occupied by the channel of the first type may be referred to as "Preconfigured Uplink Resource (PUR)", and the uplink transmission using the channel of the first type is referred to as PUR transmission.
  • PUR Preconfigured Uplink Resource
  • the PUR transmission is performed in the RRC idle state. Before PUR transmission, the terminal needs to determine whether the current TA is in a valid state. Only when the TA is in a valid state, the terminal can perform PUR transmission.
  • the TA is in an invalid state when a specific condition is met.
  • the specific conditions include:
  • the judgment time is included in the first judgment time set.
  • D_RSRP RSRP1-RSRP0.
  • D_RSRP is the change of RSRP;
  • RSRP1 is the RSRP value measured at the current moment or the RSRP measurement value saved at the current moment;
  • RSRP0 is the RSRP measurement value saved when the TA value was updated last time;
  • the judgment time is before the PUR transmission, and the number of judgment time is greater than or equal to zero.
  • the base station configures the change range of D_RSRP to be [threshold 1, threshold 2] through signaling.
  • D_RSRP is within [threshold 1, threshold 2]
  • step S12 of the foregoing embodiment initiating a random access procedure (Random Access Procedure, RAP) may include multiple methods.
  • RAP Random Access Procedure
  • initiating a random access procedure may include:
  • the third message Msg3 of the random access procedure is sent to the base station, and the RRC message carried by the third message carries indication information for indicating RRC release.
  • initiating a random access procedure may further include:
  • the RRC message may include at least one of the following:
  • RRC Connection Request RRC Connection Request
  • the indication information used to indicate RRC release may include at least one of the following:
  • TA obtains an indication, which can implicitly indicate to trigger RRC connection release
  • One or more information elements (Information Element, IE), and the IE is configured with a predefined value.
  • a base station sends uplink transmission configuration information to a terminal (UE), where the uplink channel configuration information includes: uplink channel resource configuration information and downlink control channel search space Configuration information.
  • the base station configures the first type of channel resource for the terminal through the configuration information of the uplink channel resource, where the first type of channel resource is configured to support the terminal to perform uplink transmission in the RRC idle state.
  • the downlink control channel configured by the configuration information of the downlink control channel search space corresponds to the first type of channel resource.
  • the downlink control channel carries at least HARQ-ACK information corresponding to the first-type channel.
  • the resources occupied by the first-type channels are periodically distributed in the time domain.
  • the terminal Before the terminal performs uplink transmission on the first type channel, it needs to determine whether the current TA is in a valid state. When the TA is in a valid state, the terminal can use the first type channel for uplink transmission.
  • the terminal When the terminal judges that the TA is in an invalid state, the terminal initiates a random access procedure.
  • the random access procedure may include the delivery of four messages: Msg1, Msg2, Msg3, and Msg4. Among them, the Msg1 sent by the UE to the eNB carries a preamble (Preamble), and the Msg2 returned by the eNB to the UE carries TA information required by the terminal.
  • Preamble preamble
  • the terminal uses the RRC message carried in the Msg3 in the random access process to carry indication information for indicating RRC release.
  • the base station After receiving the Msg3 message sent by the terminal, the base station can send the Msg4 message to the terminal, where the RRC Connection Release message is carried in the Msg4.
  • the terminal completes the TA acquisition through the random access process, and then ends the random access process. In this way, the terminal can continue to use the first type channel for uplink transmission in the RRC idle state.
  • the RRC message carried in Msg3 includes at least one of the following:
  • the indication information used to indicate the RRC release includes at least one of the following:
  • An IE in the RRC message carried in Msg3 implicitly indicates the RRC connection release.
  • IE is the establishment cause (establishmentCause), and the meaning of the value configured by the establishmentCause is set as TA acquisition.
  • establishmentCause implicitly indicates that the RRC connection is released.
  • the validity of TA can be judged in multiple ways.
  • a random access process can be initiated, and the RRC connection is released through Msg3 or Msg4 during the random access process to keep RRC idle. State or inactive state.
  • the RRC idle state or inactive state if the UE has data that needs to be transmitted, it can perform data transmission on the first type of channel.
  • the TA active state data transmission can be performed without entering the RRC connected state from the RRC idle state. Therefore, it is beneficial for the terminal to continue to use the first type channel to transmit data in the RRC idle state, which can reduce the power consumption of the terminal and save system resources.
  • initiating a random access procedure may include:
  • the third message Msg3 of the random access process is sent to the base station, and the third message carries terminal identification information, where the terminal identification information is passed through the Media Access Control (MAC) control element (Control Element, CE). ), that is, MAC CE sent.
  • MAC Media Access Control
  • the terminal identification information includes one of the following:
  • C-RNTI Cell-Radio Network Temporary Identifier
  • Radio Network Temporary Identifier configured for the terminal to use the first type of channel for uplink transmission in the RRC idle state.
  • a base station sends uplink transmission configuration information to a terminal (UE), where the uplink channel configuration information includes: uplink channel resource configuration information and downlink control channel search space Configuration information.
  • the base station configures the first type of channel resource for the terminal through the configuration information of the uplink channel resource, where the first type of channel resource is configured to support the terminal to perform uplink transmission in the RRC idle state.
  • the downlink control channel configured by the configuration information of the downlink control channel search space corresponds to the first type of channel resource.
  • the downlink control channel carries at least HARQ-ACK information corresponding to the first-type channel.
  • the resources occupied by the first type of channels are periodically distributed in the time domain. Before the terminal performs uplink transmission on the first type channel, it needs to determine whether the current TA is in a valid state. When the TA is in a valid state, the terminal can use the first type channel for uplink transmission.
  • the terminal When the terminal judges that the TA is in an invalid state, the terminal initiates a random access procedure.
  • the random access procedure may include the transmission of three messages: Msg1, Msg2, and Msg3.
  • the Msg1 sent by the UE to the eNB carries a preamble (Preamble)
  • the Msg2 returned by the eNB to the UE carries TA information required by the terminal.
  • the terminal completes the TA acquisition through the random access process, then ends the random access process, and continues to use the first type channel for uplink transmission in the RRC idle state.
  • Msg3 carries terminal identification information.
  • the terminal identification information can be represented by C-RNTI, MAC, and C-RNTI carried by CE.
  • C-RNTI can include one of the following:
  • RNTI configured for the terminal to use the first type of channel for uplink transmission in the RRC idle state.
  • FIG. 4 is a schematic flowchart of a transmission control method according to another embodiment of the application. As shown in Figure 4, the transmission control method can be applied to a terminal. On the basis of the foregoing embodiment, the method may further include:
  • Step S41 Receive HARQ-ACK information for the first type of channel transmission data sent by the base station, where the HARQ-ACK information is carried in the downlink control information in the downlink control channel;
  • the HARQ-ACK information includes the first type of ACK indication information or the second type of ACK indication information.
  • the HARQ-ACK information indicates that the data transmitted on the first type channel is received correctly, and the terminal stops detecting the downlink control channel. In this case, the terminal waits until the next type 1 channel, and then continues data transmission.
  • the HARQ-ACK information indicates that the data transmitted on the first type channel is correctly received, and the terminal detects the downlink control channel.
  • This downlink control channel can carry downlink channel scheduling information or uplink channel scheduling information. After receiving the scheduling information, the terminal can perform data transmission or reception on the corresponding channel.
  • the base station can indicate the terminal to find the corresponding operation by default through different ACKs, and there is no need to indicate the specific operation method of the UE through other signaling.
  • FIG. 5 is a schematic flowchart of a transmission control method according to another embodiment of the application. As shown in Figure 5, the transmission control method can be applied to a terminal. On the basis of the foregoing embodiment, the method may further include:
  • Step S51 Receive adjustment information for the first type of channel sent by the base station, where the adjustment information is carried in the downlink control information in the downlink control channel, where the value of the adjustment information is based on the power headroom corresponding to the first type of channel (Power Headroom, PHR) confirmed.
  • the power headroom may refer to the remaining power when the terminal sends the first-type channel to transmit data, and the power headroom may be transmitted to the base station through the first-type channel.
  • determining the value of the adjustment information according to the power headroom corresponding to the first type of channel includes one of the following:
  • the adjustment information includes: a first-type channel power adjustment value
  • the adjustment information includes: a first-type channel power adjustment value and an adjustment value for the number of repetitions;
  • the adjustment information includes: an adjustment value of the number of repetitions.
  • determining the first-type channel power adjustment value according to the size of the power headroom may further include the following manners:
  • the first-type channel power adjustment value is at least one of the following:
  • This embodiment provides a transmission control method, including: receiving data sent by a terminal in a first type channel in an RRC idle state or in an inactive state; when a specific condition is met, sending designated information to the terminal through a downlink channel.
  • This embodiment can be applied to the base station side.
  • the base station can send different types of information to adjust the configuration information of the first type of channel, so that the configuration information of the first type of channel is more suitable for the terminal, so that different types of terminals Data can be sent in the first type of channel in the RRC idle state or inactive state.
  • FIG. 6 is a schematic flowchart of a transmission control method according to another embodiment of the present invention. As shown in Figure 6, this method can be applied to a base station. Assuming that the terminal is a first-type terminal, for example, the control unit is a mode B terminal (CE Mode B UE), the method may include:
  • Step S61 Receive data sent by the first-type terminal on the first-type channel in the RRC idle state or the inactive state.
  • Step S62 If the first condition is met, send the first information to the terminal of the first type through the downlink channel.
  • the downlink channel may be a downlink control channel or a downlink data channel.
  • the resources occupied by the downlink data channel are indicated by the downlink control channel.
  • the downlink grant (DL Grant) carried in the downlink control channel indicates the resources occupied by the downlink data channel.
  • the first information may be carried in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the first type of terminal may be a terminal whose control unit is Mode B (CE Mode B UE).
  • CE Mode B UE only includes repetition number adjustment information and TA adjustment information.
  • the first information may include at least one of the following:
  • the first information may represent complete information or relative information. If the number of repeated transmissions of the first type channel is complete information, it may indicate that the number of repeated transmissions of the first type channel needs to be configured according to this complete information. If the number of repeated transmissions of the first type of channel is relative information, it can indicate that the relative information indicates the amount of change from a reference value. The number of repeated transmissions of the first type channel needs to be determined on the basis of this reference value and according to this relative information.
  • the first condition may include at least one of the following:
  • the Hybrid Automatic Repeat Request Acknowledgement (HARQ-ACK) indication for the data sent on the first type channel is a success indication ACK.
  • HARQ-ACK may include success indication ACK or failure indication NACK.
  • ACK indicates that the corresponding data transmission has been successfully received by the receiving end; NACK indicates that the corresponding data transmission has not been successfully received by the receiving end.
  • the first condition includes that when the HARQ-ACK indication for the data sent on the first type channel is ACK, the ACK may indicate the number of repeated transmissions and/or TA corresponding to the first information.
  • the value of one or more fields in the Downlink Control Information (DCI) is a predefined value.
  • the value of these fields implies an indication: HARQ-ACK indication is ACK.
  • the configuration information of the search space corresponding to the downlink control channel carrying the DCI is configured by the base station.
  • the configuration information of the search space and the configuration information of the first-type channel may be configured by the base station together and sent to the terminal.
  • the configuration information of the search space may indicate at least one of the following:
  • the first condition includes that when the value of one or more fields in the DCI is a predefined value, the predefined value may indicate the number of repeated transmissions and/or TA corresponding to the first information.
  • the number of repeated transmissions of the first-type channel belongs to the first set of repeated transmissions.
  • the number of repeated transmissions of the first-type channel included in the first set of repeated transmissions may be greater than or equal to the first value A.
  • the value of A can be configured by the base station or a default configuration.
  • the coverage enhancement level of the terminal corresponding to the first-type channel belongs to the first coverage enhancement level set.
  • the coverage enhancement level included in the first coverage enhancement level set is greater than or equal to the second value B.
  • the value of B can be configured by the base station or adopt a default configuration.
  • the first information and the HARQ-ACK may be sent in the same downlink control channel; or, when the value of one or more fields in the DCI is a predefined value Value, the first information is carried in the DCI.
  • the power headroom value indicated by the power headroom is greater than or equal to a threshold.
  • FIG. 7 is a schematic flowchart of a transmission control method according to another embodiment of the present invention. As shown in Figure 7, this method can be applied to a base station. Assuming that the terminal is a first-type terminal, for example, the control unit is a mode A terminal (CE Mode A UE), the method may include:
  • Step S71 Receive data sent by the second-type terminal on the first-type channel in the RRC idle state or the inactive state.
  • Step S72 If the second condition is met, send the second information to the second type terminal through the downlink channel.
  • the downlink channel may be a downlink control channel or a downlink data channel.
  • the resources occupied by the downlink data channel are indicated by the downlink control channel.
  • the downlink grant (DL Grant) carried in the downlink control channel indicates the resources occupied by the downlink data channel.
  • the second information may be carried in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the second type of terminal may be a terminal whose control unit is Mode A (CE Mode A UE).
  • CE Mode A UE includes power (Power), repetition number (Repetition number) adjustment information, and TA adjustment information.
  • the second information includes at least one of the following:
  • the second information includes: the number of repeated transmissions of the first type of channel and the transmit power information of the first type of channel; or the second information includes the TA corresponding to the first type of channel; or the second information includes the first type of channel The number of repeated transmissions, the transmit power information of the first type of channel, and the TA corresponding to the first type of channel.
  • the second condition includes at least one of the following:
  • the HARQ-ACK indication for data sent on the first type channel is ACK.
  • the second condition includes that when the HARQ-ACK indicator for data sent on the channel of the first type is ACK, the ACK indicator indicates any of the number of repeated transmissions corresponding to the second information, transmission power information, and TA One or a combination.
  • the value of one or more fields in the DCI is a predefined value.
  • the second condition includes that when the value of one or more fields in the DCI is a predefined value, the predefined value indicates the number of repeated transmissions corresponding to the second information, the transmit power information, and the TA Any one or a combination of.
  • the number of repeated transmissions of the first-type channel belongs to the second set of repeated transmissions. Wherein, the number of repeated transmissions of the first-type channel included in the second set of repeated transmissions is less than or equal to the third value C.
  • the value of C can be configured by the base station or a default configuration.
  • the coverage enhancement level of the terminal corresponding to the first type of channel belongs to the second coverage enhancement level set.
  • the coverage enhancement level included in the second coverage enhancement level set is less than or equal to the fourth value D.
  • the value of D can be configured by the base station or a default configuration.
  • the second information and the HARQ-ACK may be sent in the same downlink control channel; or, when the value of one or more fields in the DCI is a predefined value Value, the second information is carried in the DCI.
  • the power headroom value indicated by the power headroom is greater than or equal to a threshold.
  • a base station sends uplink transmission configuration information to a terminal (UE), where the uplink transmission configuration information includes: uplink channel resource configuration information and downlink control channel search space configuration information.
  • the base station configures the first type of channel resources for the terminal through the configuration information of the uplink channel resources.
  • the first type of downlink control channel configured by the base station through the configuration information of the downlink control channel search space corresponds to the first type of channel resource.
  • the first type of downlink control channel carries at least HARQ-ACK information corresponding to the first type of channel.
  • the resources occupied by the first-type channels are periodically distributed in the time domain.
  • the resources occupied by the channel of the first type may be referred to as "Preconfigured Uplink Resource (PUR)", and the uplink transmission using the channel of the first type is referred to as PUR transmission.
  • PUR Preconfigured Uplink Resource
  • the PUR transmission is performed in the RRC idle state.
  • the terminal Before PUR transmission, the terminal needs to determine whether the current TA is in a valid state. When TA is in a valid state, the terminal can perform PUR transmission.
  • the base station sends the PUR adjustment information in the first type of downlink control channel or the downlink channel scheduled by the first type of downlink control channel.
  • the PUR adjustment information includes at least one of the following:
  • PUR transmission corresponds to the timing advance (Timing Advanced, TA).
  • the PUR adjustment information includes at least one of the following:
  • the wireless communication system is configured with 4 coverage enhancement levels, which are coverage enhancement levels 0, 1, 2, and 3.
  • the first type of downlink control channel must include:
  • HARQ-ACK indication information for PUR transmission and the indication information is ACK.
  • FIG. 8 is a schematic structural diagram of a transmission control device according to an embodiment of the application. As shown in Figure 8, the device may be set in the terminal, and the device may include:
  • the judgment module 81 is used to judge the validity of TA
  • the transmission control module 82 is configured to allow the terminal to use the first type channel for data transmission in the RRC idle state or the inactive state when the TA is in the active state.
  • the judgment module 81 is further configured to judge that a specific condition is satisfied at the judgment moment, and then judge that the TA is in an invalid state.
  • determining that the specific condition is satisfied at the time of determination includes one of the following:
  • At least N1 judgment moments in the first judgment time set judge that the change in the first measurement value exceeds the threshold; where N1 is an integer greater than or equal to 1;
  • N2 is an integer greater than or equal to 1.
  • determining that the specific condition is satisfied at the time of determination includes one of the following:
  • At least M1 judgment time judgment timers in the second judgment time set have expired; wherein, M1 is an integer greater than or equal to 1;
  • the first M3 judgment time judgment timers expired; where M3 is an integer greater than or equal to 1.
  • the judgment that the specific condition is satisfied at the time of judgment includes one of the following:
  • the judgment time judgment timer in the second judgment time set has not expired, and at least K1 times before the judgment time, the change in the first measurement value exceeds the threshold; where K1 is an integer greater than or equal to 1;
  • the judgment time judgment timer in the second judgment time set has not expired, and the change of the first measurement value of the last K2 times before the judgment time exceeds the threshold; where K2 is an integer greater than or equal to 1.
  • the first measurement value includes at least one of the following: reference signal received power; reference signal received quality; downlink signal to interference and noise ratio; downlink signal to noise ratio; uplink signal to interference and noise ratio; uplink signal to noise ratio; Downstream path loss; upstream path loss.
  • the judgment time in the second judgment time set satisfies at least one of the following:
  • the interval from the time domain position of the resource used by the next channel of the first type is greater than or equal to the first duration
  • the interval from the time domain position of the resource used by the next channel of the first type is less than or equal to the second duration.
  • the judgment module is further configured to judge whether the serving cell or the cell where the terminal resides has changed before judging that the specific condition is satisfied at the judgment moment.
  • the device further includes:
  • the random access module 91 is used to initiate a random access process when the TA is in an invalid state.
  • the random access module 91 is further configured to send a third message of the random access process to the base station, and the RRC message carried by the third message carries indication information for indicating RRC release.
  • the random access module 91 is further configured to receive a fourth message of a random access procedure from the base station, and the fourth message includes an RRC connection release message.
  • the RRC message includes at least one of the following:
  • the indication information used to indicate RRC release includes at least one of the following:
  • One or more cell IEs, and the IEs are configured with predefined values.
  • the random access module 91 is further configured to send a third message of the random access process to the base station, and the third message carries terminal identification information, wherein the terminal identification information is accessed through media
  • the controlling unit MAC CE sends.
  • the terminal identification information includes one of the following:
  • RNTI configured for the terminal to use the first type of channel for uplink transmission in the RRC idle state.
  • the device further includes:
  • the first receiving module 92 is configured to receive HARQ-ACK information for the first type of channel transmission data sent by the base station, where the HARQ-ACK information is carried in the downlink control information in the downlink control channel;
  • the HARQ-ACK information includes the first type of ACK indication information or the second type of ACK indication information;
  • the HARQ-ACK information indicates that the data transmitted on the first type channel is received correctly, and the terminal stops detecting the downlink control channel;
  • the HARQ-ACK information indicates that the data transmitted on the first type channel is correctly received, and the terminal detects the downlink control channel.
  • the device further includes:
  • the second receiving module 93 is configured to receive adjustment information for the first type of channel sent by the base station, the adjustment information being carried in the downlink control information in the downlink control channel, wherein the value of the adjustment information is based on the first type of channel The corresponding power headroom is determined.
  • determining the value of the adjustment information according to the power headroom corresponding to the first type of channel includes one of the following:
  • the adjustment information includes: a first-type channel power adjustment value
  • the adjustment information includes: a first-type channel power adjustment value and an adjustment value for the number of repetitions;
  • the adjustment information includes: an adjustment value of the number of repetitions.
  • determining the first-type channel power adjustment value according to the size of the power headroom may further include the following manners:
  • the first-type channel power adjustment value is at least one of the following:
  • FIG. 10 is a schematic structural diagram of a transmission control device according to an embodiment of the application. As shown in Figure 10, the device may be set in a base station, and the device may include:
  • the third receiving module 101 is configured to receive data sent by the terminal in the first type channel in the RRC idle state or the inactive state.
  • the first sending module 102 is configured to send designated information to the terminal through a downlink channel when a specific condition is met.
  • the third receiving module 101 is used to receive data sent by the first type of terminal in the RRC idle state or inactive state on the first type of channel; the first sending module is used to meet the first condition Next, send the first information to the first-type terminal through the downlink channel.
  • the first condition may include at least one of the following:
  • the HARQ-ACK indicator for data sent on the first type channel is ACK
  • the value of one or more fields in DCI is a predefined value
  • the number of repeated transmissions of the first-type channel belongs to the first set of repeated transmissions
  • the coverage enhancement level of the terminal corresponding to the first-type channel belongs to the first coverage enhancement level set;
  • the transmission power of the terminal when sending data on the first type channel reaches full power
  • the power headroom value indicated by the power headroom is less than or equal to a threshold.
  • the first information may include at least one of the following:
  • the first condition includes that when the HARQ-ACK indicator for the data sent on the channel of the first type is ACK, the ACK indicator indicates the number of repeated transmissions and/or TA corresponding to the first information. .
  • the first condition includes that when the value of one or more fields in the DCI is a predefined value, the predefined value indicates the number of repeated transmissions corresponding to the first information and/ Or TA.
  • the number of repeated transmissions of the first-type channel included in the first set of repeated transmissions is greater than or equal to a first value.
  • the coverage enhancement level included in the first coverage enhancement level set is greater than or equal to the second value.
  • FIG. 11 is a schematic structural diagram of a transmission control device according to an embodiment of the application. As shown in Figure 11, the device may be set in a base station, and the device may include:
  • the fourth receiving module 111 is configured to receive data sent by the terminal in the first type channel in the RRC idle state or the inactive state.
  • the second sending module 112 is configured to send designated information to the terminal through a downlink channel when a specific condition is met.
  • the fourth receiving module 111 is used to receive the data sent by the second type of terminal in the RRC idle state or the inactive state on the first type channel; the second sending module 112 is used to In this case, the second information is sent to the second type terminal through the downlink channel.
  • the second condition includes at least one of the following:
  • the HARQ-ACK indicator for data sent on the first type channel is ACK
  • the value of one or more fields in DCI is a predefined value
  • the number of repeated transmissions of the first type of channel belongs to the second set of repeated transmissions
  • the coverage enhancement level of the terminal corresponding to the first type of channel belongs to the second coverage enhancement level set;
  • the transmission power of the terminal when sending data on the first type channel reaches full power
  • the power headroom value indicated by the power headroom is less than or equal to a threshold.
  • the second information includes at least one of the following:
  • the second condition includes that when the HARQ-ACK indicator for the data sent on the channel of the first type is ACK, the ACK indicator indicates the number of repeated transmissions corresponding to the second information and the transmission power information. Any one or combination of and TA.
  • the second condition includes that when the value of one or more fields in the DCI is a predefined value, the predefined value indicates the number of repeated transmissions and transmissions corresponding to the second information. Any one or a combination of power information and TA.
  • the number of repeated transmissions of the first-type channel included in the second set of repeated transmissions is less than or equal to a third value.
  • the coverage enhancement level included in the second coverage enhancement level set is less than or equal to the fourth value.
  • FIG. 12 is a schematic flowchart of a transmission control method according to another embodiment of the application. As shown in Figure 12, the method may include:
  • Step S121 The terminal receives a paging message sent by the base station, where the paging message includes configuration information of the first type of random access channel.
  • the configuration information of the first type random access channel may include at least one type of first type random access channel resource.
  • the configuration information of the first type of random access channel configures the resources of the random access channel used in the non-contention random access procedure.
  • the resources of the random access channel may include at least one of the following:
  • the random access signal sent on the random access channel.
  • a type of random access channel resource corresponds to a coverage enhancement level, a number of repeated transmissions of a random access channel, or a random access signal format.
  • the terminal after the terminal sends a random access signal on the first type of random access channel, the response message sent by the base station is not detected within a time window, and the terminal is The second type of random access channel sends random access signals.
  • the paging message can be sent in the downlink control channel.
  • the DCI carrying the paging message is scrambled by a cyclic redundancy check (Cyclic Redundancy Check, CRC) through P-RNTI (Paging RNTI, Temporary Paging Radio Network Identification).
  • CRC Cyclic Redundancy Check
  • P-RNTI Paging RNTI, Temporary Paging Radio Network Identification
  • the behavior of the terminal may include the following examples:
  • Example 1 When the configuration information of the first-type random access channel includes a resource of the first-type random access channel, and a specific condition is met, the terminal is on the first-type random access channel Send a random access signal.
  • the terminal When the specific condition is not met, the terminal sends a random access signal on the second type of random access channel.
  • the second type of random access channel is used to compete for the resources of the random access channel in the random access process.
  • the specific condition includes at least one of the following:
  • the coverage enhancement level of the terminal is less than or equal to the coverage enhancement level corresponding to the first-type random access channel
  • the number of repeated transmissions of the random access channel is less than or equal to the number of repeated transmissions supported by the first-type random access channel
  • the RSRP value detected by the terminal is greater than or equal to the RSRP value corresponding to the first type of random access channel
  • the terminal has no uplink data.
  • Example 2 The terminal selects a type of random access channel resource from the at least one type of random access channel resource, and sends a random access channel on the resource of the first type random access channel. Into the signal.
  • the terminal selecting one type of first type random access channel resource from the at least one type of first type random access channel resource includes:
  • the coverage enhancement level corresponding to the first-type random access channel selected by the terminal is greater than or equal to the coverage enhancement level of the terminal;
  • the number of repeated transmissions corresponding to the first-type random access channel selected by the terminal is greater than or equal to the number of repeated transmissions of the random access channel when the terminal sends the random access signal.
  • the terminal after successfully receiving the downlink data sent by the base station in the second message, the terminal performs at least one of the following operations:
  • the terminal sends HARQ-ACK information to the base station, and the HARQ-ACK is ACK;
  • the terminal continues to detect the downlink control channel in the search space in the next time window.
  • the second message in this example may be Msg2 in the random access process.
  • the Msg2 returned by the eNB to the UE carries the TA information required by the terminal.
  • the above-mentioned start time of this time window is adjacent to the downlink control channel carrying ACK, or there is a gap.
  • the downlink control channel detected by the terminal carries downlink channel scheduling information or uplink channel scheduling information. After receiving the scheduling information, the terminal transmits or receives data on the corresponding channel.
  • the terminal fails to successfully receive the downlink data sent by the base station in the second message, and after feeding back NACK information, the terminal does not detect the scheduling information for retransmission of the downlink data sent by the base station, then the terminal
  • the random access signal is sent on the second type of random access channel or the random access signal is sent on the first type of random access channel.
  • the second type of random access channel is used to compete for the resources of the random access channel in the random access process.
  • Example 3 When the terminal needs to send uplink data, the terminal performs the following operation: the terminal sends a random access signal on the second type random access channel.
  • the terminal may directly receive the service or data or control information sent by the base station through Msg2 in the random access process after receiving the paging message. Therefore, the signaling overhead for the terminal to enter the RRC connected state from the RRC idle state can be saved. It is also possible for the terminal to directly use the first type channel for uplink data transmission without changing from the RRC connected state to the RRC idle state after receiving the service or data or control information.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal 130 provided in the embodiment of the present application includes a memory 1303 and a processor 1304.
  • the terminal 130 may also include an interface 1301 and a bus 1302.
  • the interface 1301, the memory 1303 and the processor 1304 are connected through a bus 1302.
  • the memory 1303 is used to store instructions.
  • the processor 1304 is configured to read the instructions to execute the technical solutions of the foregoing method embodiments applied to the terminal. The implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the application.
  • the base station 140 provided in the embodiment of the present application includes a memory 1403 and a processor 1404.
  • the base station may further include an interface 1401 and a bus 1402.
  • the interface 1401, the memory 1403 and the processor 1404 are connected through a bus 1402.
  • the memory 1403 is used to store instructions.
  • the processor 1404 is configured to read the instructions to execute the technical solutions of the foregoing method embodiments applied to the base station. The implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of a communication system according to an embodiment of the application.
  • the system includes: a terminal 130 as in the foregoing embodiment and a base station 140 in the foregoing embodiment.
  • the communication systems in the embodiments of this application include but are not limited to: Global System of Mobile Communications (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple) Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system or 5G New Radio (NR, New Wireless) system, etc.
  • GSM Global System of Mobile Communications
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packe
  • user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Computer program instructions can be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or Target code.
  • ISA instruction set architecture
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory, etc.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM can include many forms, such as static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronization Dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synchlink DRAM, SLDRAM) and direct memory bus random access Memory (Direct Rambus RAM, DR RAM).
  • Static RAM, SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronization Dynamic random access memory Double Data Rate SDRAM, DDR SDRAM
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor in the embodiment of the present application may be of any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (Application Specific Integrated Circuits). Integrated Circuit, ASIC), Field-Programmable Gate Array (FGPA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or processors based on multi-core processor architecture.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the foregoing processor may implement or execute the steps of each method disclosed in the embodiments of the present application.
  • the software module may be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供传输控制方法、装置、终端、基站、通信系统及存储介质。其中,该传输控制方法包括:判断定时提前量TA的有效性;在所述TA处于无效状态下,发起随机接入过程。

Description

传输控制方法、装置、终端、基站、通信系统及存储介质
本申请要求在2019年03月28日提交中国专利局、申请号为201910241370.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及传输控制方法、装置、终端、基站、通信系统及存储介质。
背景技术
随着智能终端的发展以及无线数据应用业务的丰富,无线通信网络中的数据用户数大幅增加。无线数据内容不再仅限于传统的文字或者图像,还越来越多的出现高清晰度视频、手机电视等多媒体业务内容,从而导致无线通信网络流量呈现爆炸式增长。移动互联网和物联网业务将成为移动通信发展的主要驱动力。
针对物联网,3GPP(The third Generation Partnership Project,第三代合作伙伴计划)标准组织制定了MTC(Machine Type Communication,机器类型通信)和NB-IoT(Narrow Band Internet of Things,窄带物联网)两个非常具有代表性的通信标准协议。针对移动互联网,3GPP标准组织最新制定了5G(5 Generation,第五代)NR(New Radio,新无线)通信标准协议。
按照上述通信标准协议,终端在没有数据需要发送或者接收时,会进入RRC(Radio Resource Control,无线资源控制)空闲状态(简称RRC_IDLE),进而节省终端的功耗。终端在发送或者接收数据之前需要从RRC空闲状态进入RRC连接状态(简称RRC-CONNECT)状态,然后再进行数据的发送或者接收。终端从RRC空闲状态进入RRC连接状态会消耗终端的功耗以及系统资源。
发明内容
本申请实施例提供了一种传输控制方法,包括:
判断定时提前量TA的有效性;
在所述TA处于无效状态下,发起随机接入过程。
本申请实施例提供了一种传输控制方法,包括:
接收终端在RRC空闲状态或非激活状态在第一类信道发送的数据;
在满足特定条件的情况下,通过下行信道向所述终端发送指定信息。
本申请实施例提供了一种传输控制装置,包括:
判断模块,用于判断TA的有效性;
随机接入模块,用于在所述TA处于无效状态下,发起随机接入过程。
本申请实施例提供了一种传输控制装置,包括:
第三接收模块,用于接收终端在RRC空闲状态或非激活状态在第一类信道发送的数据;
第一发送模块,用于在满足特定条件的情况下,通过下行信道向所述终端发送指定信息。
本申请实施例提供了一种终端,所述终端包括:处理器及存储器;
所述存储器用于存储指令;
所述处理器被配置为读取所述指令以执行本申请实施例应用于终端的方法。
本申请实施例提供了一种基站,所述基站包括:处理器及存储器;
所述存储器用于存储指令;
所述处理器被配置为读取所述指令以执行本申请实施例应用于基站的方法。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的任一项所述的方法。
本申请实施例,在TA无效状态下,发起随机接入过程,能够将TA从无效状态更新为有效状态,使得终端能够在RRC空闲状态或非激活状态下,多次利用第一类信道进行数据传输。
附图说明
图1为本申请一实施例的传输控制方法的流程示意图。
图2为本申请另一实施例的传输控制方法的流程示意图。
图3a为本申请另一实施例的传输控制方法的随机接入过程的示意图。
图3b为本申请另一实施例的传输控制方法的随机接入过程的示意图。
图4为本申请另一实施例的传输控制方法的流程示意图。
图5为本申请另一实施例的传输控制方法的流程示意图。
图6为本发明另一实施例的传输控制方法的流程示意图。
图7为本发明另一实施例的传输控制方法的流程示意图。
图8为本申请一实施例的传输控制装置的结构示意图。
图9为本申请另一实施例的传输控制装置的结构示意图。
图10为本申请一实施例的传输控制装置的结构示意图。
图11为本申请一实施例的传输控制装置的结构示意图。
图12为本申请另一实施例的传输控制方法的流程示意图。
图13为本申请实施例的终端的结构示意图。
图14为本申请实施例的基站的结构示意图。
图15为本申请实施例的通信系统的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本申请一实施例的传输控制方法的流程示意图。如图1所示,该传输控制方法可以应用于终端中,该方法可以包括:
步骤S11、判断定时提前量(Timing Advanced,TA)的有效性。
步骤S12、在所述TA处于无效状态下,发起随机接入过程。
在本申请实施例中,终端发起随机接入过程能够将TA从无效状态更新为有效状态。需要说明的是,通过发起随机接入过程,仅是将TA从无效状态更新为有效状态的一种方式,也可以采用其他的方式更新TA的状态。此外,在TA处于无效状态,也可以不将TA从无效状态更新为有效状态,而是放弃在RRC空闲状态或非激活状态下利用第一类信道进行数据传输。
在一种实施方式中,终端接收到随机接入过程中第二消息(Msg2)。所述Msg2中包括终端的TA信息(假设标记为TA1)。
在一种实施方式中,终端在所述第一类信道上发送数据的提前量为TA1-TA2。其中,TA2可以由基站配置后发送给终端。
此外,也可以根据循环前缀(cyclic prefix,CP)确定TA2。
在一种实施方式中,根据循环前缀(cyclic prefix,CP)的长度确定TA2,可以采用多种方式,示例如下:
示例一:TA2=1/2*CP长度。
示例二:TA2=a*CP长度;其中,a的取值可以由基站配置后发给终端或者在终端中采用默认配置。
在一种实施方式中,如图2所示,该方法还包括:
步骤S13、在所述TA处于有效状态下,允许终端在无线资源控制(RRC)空闲状态或非激活状态(Inactive mode)下利用第一类信道进行数据传输。
在本申请实施例中,第一类信道的配置信息可以由基站在RRC连接状态通过RRC消息发送给终端。其中,在第一类信道上,终端可以在RRC空闲状态或非激活状态进行上行数据传输。此外,第一类信道占用的资源可以在时域上周期分布或者离散分布。
在RRC空闲状态或非激活状态下,如果TA处于有效状态,当终端有需要传输的上行数据时,可以利用第一类信道进行数据传输。通过判断TA有效性,终端能够实现在RRC空闲状态或非激活状态下,多次利用第一类信道进行数据传输。在TA有效状态下,不需要在建立RRC连接,即可进行数据传输,因此可以减少终端的功耗,节约系统资源。
在一种实施方式中,判断TA的有效性可以包括:在判断时刻判断满足特定条件,则判断所述TA处于无效状态。否则,TA处于有效状态。
在一种示例中,判断时刻位于下一个第一类信道的时域资源之前。在另一种示例中,判断时刻位于上一个第一类信道的时域资源之后。
在一种实施方式中,终端在判断时刻判断TA的有效性之前,可以先确定TA是否一直有效。当TA不是一直有效时,再开始判断TA的有效性。TA是否一直有效可以由基站通过信令通知终端。
在一种实施方式中,终端在判断时刻判断TA的有效性之前,可以先检查终端的服务小区或者驻留小区是否发生改变。如果终端的服务小区或者驻留小区发生改变,则表示TA处于无效状态。如果终端的服务小区或者驻留小区没有发生改变,再利用其他方式判断TA的有效性。
在本申请实施例中,判断TA有效性的方式可以包括多种,示例如下。
方式一:终端基于某些参数的测量值例如RSRP(Reference Signal Receiving Power,参考信号接收功率)等判断TA有效性。该方式中,如果判断时刻判断满足以下条件之一,终端的TA处于无效状态。否则,TA处于有效状态。
(1)在第一判断时刻集合中的至少N1个判断时刻判断第一测量值的变化量超过阈值;其中,N1为大于或等于1的整数。例如,如果N1等于1,则在第一判断时刻集合中的至少一个判断时刻判断第一测量值的变化量超过阈值,表示TA处于无效状态。其中,第一判断时刻集合可以由基站配置并且发送给终端,或者采用默认配置。
(2)在第一判断时刻集合中的最后N2个判断时刻判断第一测量值的变化量超过阈值;其中,N2为大于或等于1的整数。例如,如果N2等于1,则在第一判断时刻集合中的最后一个判断时刻判断第一测量值的变化量超过阈值,表示TA处于无效状态。其中,第一判断时刻集合中的最后一个判断时刻可以是第一判断时刻集合中距离下一个第一类信道资源的时域位置最近的判断时刻。
在本申请实施例中,所述第一测量值可以包括但不限于以下至少一个:参考信号接收功率(RSRP);参考信号接收质量(Reference Signal Receiving Quality,RSRQ);下行信干噪比(Signal to Interference plus Noise Ratio,SINR);下行信噪比(Signal to Noise Ratio,SNR);上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
在本申请实施例中,第一测量值的阈值可以由基站配置或者采用默认值。阈值可以包括1个或2个取值。对于不同的取值,第一测量值的变化量超过阈值可以包括以下情况:
阈值包括1个取值,第一测量值的变化量满足以下之一:[-阈值,+阈值]、(-阈值,+阈值)、(-阈值,+阈值]或者[-阈值,+阈值)时,表示第一测量值的变化量没有超过阈值,TA处于有效状态。否则,表示第一测量值的变化量超过阈值,TA处于无效状态。
阈值包括2个取值,分别为阈值1和阈值2,第一测量值的变化量满足以下之一:[阈值1,阈值2];(阈值1,阈值2);(阈值1,阈值2];[阈值1,阈值2)时,表示第一测量值的变化量没有超过阈值,TA处于有效状态。否则,表示第一测量值的变化量超过阈值,TA处于无效状态。
上述示例中,[]表示的是封闭区间,区间的边界分别为“-阈值”和“+阈值”;()表示的是开区间,区间的边界分别为“-阈值”和“+阈值”。
方式二:终端基于定时器(Timer)判断TA有效性。该方式中,如果判断时刻判断满足以下条件之一,终端的TA处于无效状态。否则,TA处于有效状态。
(1)在第二判断时刻集合中至少M1个判断时刻判断定时器超时;其中,M1为大于或等于1的整数。例如,如果M1等于1,则在第二判断时刻集合中 至少一个判断时刻判断定时器超时,表示TA处于无效状态。
(2)在第二判断时刻集合中最后M2个判断时刻判断定时器超时;其中,M2为大于或等于1的整数。例如,如果M2等于1,则在第二判断时刻集合中最后一个判断时刻判断定时器超时,表示TA处于无效状态。其中,第二判断时刻集合中最后一个判断时刻可以为第二判断时刻集合中距离下一个第一类信道资源的时域位置最近的判断时刻。
(3)在第二判断时刻集合中前M3个判断时刻判断定时器超时;其中,M3为大于或等于1的整数。例如,如果M3等于1,则在第二判断时刻集合中第一个判断时刻判断定时器超时,表示TA处于无效状态。其中,第二判断时刻集合中第一个判断时刻可以为第二判断时刻集合中距离下一个第一类信道资源的时域位置最远的判断时刻。
在本申请实施例中,定时器超时的情况可以包括,在下一个第一类信道的时刻定时器超时。所述第二判断时刻集合可以由基站配置并且发送给终端,或者采用默认配置。
在一种示例中,所述第二判断时刻集合中的判断时刻满足以下至少一个:
距离下一个第一类信道使用的资源的时域位置的间隔大于或者等于第一时长T1;
距离下一个第一类信道使用的资源的时域位置的间隔小于或者等于第二时长T2。
在本示例中,T1、T2的取值可以由基站配置或者采用默认取值。
T1的作用可以包括:如果判断为TA处于无效状态,在T1这个时间段内可以保证完成终端的TA从无效状态转变到TA有效状态的整个过程。这样,终端还可以继续使用下一个第一类信道的资源来发送上行数据。
T2的作用可以包括:如果判断时刻过早,并且假设在此次判断中TA被判断为无效状态,终端需要放弃使用下一个第一类信道的资源来发送上行数据;或者终端在下一个第一类信道的资源之前进行TA更新操作,将TA从无效状态转变到TA有效状态。但由于判断时刻过早,基站可能在这个判断时刻之后对终端的TA进行更新,使得定时器重置。那么,在下一个第一类信道资源时刻定时器可能不会超时。因此,通过配置T2可以保证判断时刻不会太早。
方式三:终端基于某些参数的测量值以及定时器判断TA有效性。该方式中,如果判断时刻判断满足以下条件之一,终端的TA处于无效状态。否则,TA处于有效状态。
(1)在第二判断时刻集合中的判断时刻判断定时器没有超时,且在所述判断时刻之前至少有K1次第一测量值的变化量超过阈值;其中,K1为大于或等于1的整数。例如,如果K1等于1,在第二判断时刻集合中的任意一个判断时刻判断定时器没有超时,且在该判断时刻之前至少有一次第一测量值的变化量超过阈值,表示TA处于无效状态。
(2)在第二判断时刻集合中的判断时刻判断定时器没有超时,且在所述判断时刻之前的最后K2次的第一测量值的变化量超过阈值;其中,K2为大于或等于1的整数。例如,如果K2等于1,在第二判断时刻集合中的任意一个判断时刻判断定时器没有超时,且在该判断时刻之前的最后一次第一测量值的变化量超过阈值,表示TA处于无效状态。
在一个应用示例中,在一个无线通信系统中,基站(eNB)发送上行传输配置信息给终端(User Equipment,UE),其中,该上行信道配置信息包括:上行信道资源的配置信息以及下行控制信道搜索空间的配置信息。
基站通过上行信道资源的配置信息为终端配置了第一类信道资源,其中,所述第一类信道资源是为支持终端在RRC空闲状态下进行上行传输而配置的。通过下行控制信道搜索空间的配置信息配置的下行控制信道则是与所述第一类信道资源对应的。所述下行控制信道中至少承载了所述第一类信道对应的HARQ-ACK信息。
本实施例中,第一类信道占用的资源在时域上周期分布。第一类信道占用的资源可以称为“预配置上行资源(Preconfigured Uplink Resource,PUR)”,使用所述第一类信道的上行传输称为PUR传输。
本实施例中,所述PUR传输是在RRC空闲状态下进行的。终端在PUR传输之前,需要判断当前TA是否处于有效状态,只有当TA处于有效状态时,终端才可以进行PUR传输。
如果终端的服务小区(serving cell)或者终端的驻留小区(camping cell)没有发生改变时,当满足特定条件时,TA处于无效状态。其中,所述特定条件包括:
在至少一个判断时刻判断参考信号接收功率(RSRP)的变化量超过阈值。其中,所述判断时刻包含在第一判断时刻集合中。
其中,D_RSRP=RSRP1-RSRP0。其中,D_RSRP为RSRP的变化量;RSRP1为当前时刻测量得到的RSRP值或者当前时刻保存的RSRP测量值;RSRP0为最近一次TA值更新时保存的RSRP测量值;
其中,所述判断时刻在PUR传输之前,判断时刻的数量大于或等于0。
本实施例中,基站通过信令配置D_RSRP的变化范围为[阈值1,阈值2],则当D_RSRP在[阈值1,阈值2]内时,表示D_RSRP没有超过阈值,因此,TA处于有效状态。否则,表示D_RSRP超过阈值,因此,TA处于无效状态。
本申请另一实施例提供一种传输控制方法,在上述实施例的步骤S12中,发起随机接入过程(Random Access Procedure,RAP)可以包括多种方式。
在一种实施方式中,发起随机接入过程,可以包括:
向基站发送随机接入过程的第三消息Msg3,所述第三消息承载的RRC消息中携带用于表示RRC释放的指示信息。
在一种实施方式中,发起随机接入过程,还可以包括:
接收来自基站的随机接入过程的第四消息Msg4,所述第四消息中包括RRC连接释放(RRC Connection Release)消息。
在本申请实施例中,所述RRC消息可以包括以下至少一种:
RRC连接恢复请求(RRC Connection Resume Request);
RRC连接请求(RRC Connection Request);
新定义的RRC消息。
在本申请实施例中,所述用于表示RRC释放的指示信息可以包括以下至少一种:
RRC连接释放指示;
TA获取指示,该指示可以隐含指示触发RRC连接释放;
一个或多个信元(Information Element,IE),并且所述IE配置成预定义取值。
在一个应用示例中,在一个无线通信系统中,基站(eNB)发送上行传输配置信息给终端(UE),其中,该上行信道配置信息包括:上行信道资源的配置信息以及下行控制信道搜索空间的配置信息。
基站通过上行信道资源的配置信息为终端配置了第一类信道资源,其中,所述第一类信道资源是为支持终端在RRC空闲状态下进行上行传输而配置的。通过下行控制信道搜索空间的配置信息配置的下行控制信道则是与所述第一类 信道资源对应的。所述下行控制信道中至少承载了所述第一类信道对应的HARQ-ACK信息。
本实施例中,第一类信道占用的资源在时域上周期分布。
终端在第一类信道上进行上行传输之前,需要判断当前TA是否处于有效状态。当TA处于有效状态时,终端可以用所述第一类信道进行上行传输。
当终端判断TA处于无效状态时,终端发起随机接入过程。如图3a所示,随机接入流程可以包括Msg1、Msg2、Msg3、Msg4这4个消息的传递。其中,UE向eNB发送的Msg1中承载前导(Preamble),eNB向UE返回的Msg2中承载终端需要的TA信息。
终端通过随机接入过程中的Msg3中承载的RRC消息携带用于表示RRC释放的指示信息。基站在接收到终端发送的Msg3消息后,可以发送Msg4消息给终端,其中Msg4中承载RRC Connection Release消息。
终端通过所述随机接入过程完成TA的获取,然后结束随机接入过程。这样,终端可以在RRC空闲状态继续用第一类信道进行上行传输。
其中,Msg3中承载的RRC消息至少包括以下之一:
RRC连接恢复请求;
RRC连接请求。
其中,用于表示RRC释放的指示信息至少包括以下之一:
显式的RRC连接释放指示;
通过显式的TA获取指示信息隐含指示触发RRC连接释放。
通过Msg3中承载的RRC消息中的一个IE隐含指示RRC连接释放。例如IE为建立原因(establishmentCause),并且将establishmentCause配置的取值的含义设为TA获取。此时,establishmentCause隐含指示RRC连接释放。
本申请实施例中,可以采用多种方式判断TA的有效性,在TA无效的情况下,可以发起随机接入过程,并在该随机接入过程中通过Msg3或Msg4释放RRC连接,保持RRC空闲状态或非激活状态。这样,在RRC空闲状态或非激活状态下,如果UE有需要传输的数据,可以在第一类信道进行数据传输。在TA有效状态下,不需要从RRC空闲状态进入RRC连接状态,即可进行数据传输。因此利于终端继续在RRC空闲状态上使用所述第一类信道传输数据,可以减少终端的功耗,节约系统资源。
在一种实施方式中,发起随机接入过程,可以包括:
向基站发送随机接入过程的第三消息Msg3,所述第三消息承载终端识别信息,其中,所述终端识别信息通过媒体接入控制(Media Access Control,MAC)的控制单元(Control Element,CE),即MAC CE发送。
其中,所述终端识别信息包括以下之一:
小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI);
随机接入过程的第二消息Msg2中承载的临时(Temporary)C-RNTI;
为终端在RRC空闲状态用第一类信道进行上行传输配置的无线网络临时标识(Radio Network Temporary Identifier,RNTI)。
在一个应用示例中,在一个无线通信系统中,基站(eNB)发送上行传输配置信息给终端(UE),其中,该上行信道配置信息包括:上行信道资源的配置信息以及下行控制信道搜索空间的配置信息。
基站通过上行信道资源的配置信息为终端配置了第一类信道资源,其中,所述第一类信道资源是为支持终端在RRC空闲状态下进行上行传输而配置的。通过下行控制信道搜索空间的配置信息配置的下行控制信道则是与所述第一类信道资源对应的。所述下行控制信道中至少承载了所述第一类信道对应的HARQ-ACK信息。
第一类信道占用的资源在时域上周期分布。终端在第一类信道上进行上行传输之前,需要判断当前TA是否处于有效状态。当TA处于有效状态时,终端可以用所述第一类信道进行上行传输。
当终端判断TA处于无效状态时,终端发起随机接入过程。如图3b所示,随机接入流程可以包括Msg1、Msg2、Msg3这3个消息的传递。其中,UE向eNB发送的Msg1中承载前导(Preamble),eNB向UE返回的Msg2中承载终端需要的TA信息。
终端通过随机接入过程完成TA的获取,然后结束随机接入过程,并且在RRC空闲状态继续用第一类信道进行上行传输。
其中,Msg3承载终端识别信息。终端识别信息可以通过C-RNTI MAC CE携带的C-RNTI来表示。C-RNTI可以包括以下之一:
C-RNTI;
Msg2中承载的Temporary C-RNTI;
为终端在RRC空闲状态用第一类信道进行上行传输配置的RNTI。
图4为本申请另一实施例的传输控制方法的流程示意图。如图4所示,该传输控制方法可以应用于终端中。在上述实施例的基础上,该方法还可以包括:
步骤S41、接收基站发送的针对第一类信道传输数据的HARQ-ACK信息,所述HARQ-ACK信息承载在下行控制信道中的下行控制信息中;
所述HARQ-ACK信息包括第一种ACK指示信息或第二种ACK指示信息。
其中,当所述ACK的指示信息为第一种ACK指示信息时,该HARQ-ACK信息表示所述第一类信道传输的数据正确接收,且所述终端停止检测下行控制信道。这种情况下,终端等到下一个第一类信道,然后继续进行数据传输。
当所述ACK的指示信息为第二种ACK指示信息时,该HARQ-ACK信息表示所述第一类信道传输的数据正确接收,且所述终端检测下行控制信道。在这个下行控制信道中可以承载下行信道调度信息或者上行信道的调度信息。终端接收到所述调度信息后,可以在相应的信道上进行数据传输或者接收。
本申请实施例中,基站可以通过不同的ACK指示终端默认找到对应的操作,无需再通过其他信令指示UE的具体操作方法。
图5为本申请另一实施例的传输控制方法的流程示意图。如图5所示,该传输控制方法可以应用于终端中。在上述实施例的基础上,该方法还可以包括:
步骤S51、接收基站发送的针对第一类信道的调整信息,所述调整信息承载在下行控制信道中的下行控制信息中,其中,调整信息的取值是根据第一类信道对应的功率余量(Power Headroom,PHR)确定的。其中,所述功率余量可以指终端发送第一类信道传输数据时剩余的功率,所述功率余量可以通过第一类信道传输给基站。
在一种实施方式中,根据第一类信道对应的功率余量确定调整信息的取值包括以下之一:
当所述功率余量大于X1时,所述调整信息包括:第一类信道功率调整值;
当所述功率余量大于X2且小于X1时,所述调整信息包括:第一类信道功率调整值和重复次数调整值;
当所述功率余量小于X2时,所述调整信息包括:重复次数调整值。
在一种实施方式中,根据所述功率余量的大小确定所述第一类信道功率调整值还可以包括以下方式:
当所述功率余量值为PHR1时,所述第一类信道功率调整值为以下至少之一:
1/4*PHR1;2/4*PHR1;3/4*PHR1;PHR1;-1/4*PHR1;-2/4*PHR1;-3/4*PHR1;-PHR1;0。
本实施例提供一种传输控制方法,包括:接收终端在RRC空闲状态或非激活状态在第一类信道发送的数据;在满足特定条件的情况下,通过下行信道向所述终端发送指定信息。
本实施例可以应用于基站侧,对于不同类型的终端,基站可以发送不同类型的信息来调整第一类信道的配置信息,使得第一类信道的配置信息更适合终端,从而使得不同类型的终端可以在RRC空闲状态或非激活状态在第一类信道发送数据。
图6为本发明另一实施例的传输控制方法的流程示意图。如图6所示,该方法可以应用于基站,假设终端为第一类终端例如控制单元为模式B的终端(CE Mode B UE),该方法可以包括:
步骤S61、接收第一类终端在RRC空闲状态或非激活状态在第一类信道发送的数据。
步骤S62、在满足第一条件的情况下,通过下行信道向第一类终端发送第一信息。
在本实施例中,下行信道可以为下行控制信道或下行数据信道。其中,下行数据信道占用的资源由下行控制信道指示。例如,由下行控制信道中承载的下行授权(DL Grant)指示下行数据信道占用的资源。
在本实施例中,第一信息可以承载在下行控制信息(Downlink Contro Informationl,DCI)中。
在本实施例中,第一类终端可以为控制单元为模式B的终端(CE Mode B UE)。CE Mode B UE只包括重复次数(Repetition number)调整信息和TA调整信息。
在本实施例中,所述第一信息可以包括以下至少一个:
第一类信道的重复发送次数;
第一类信道对应的TA。
在一种示例中,第一信息可以表示完整信息或相对信息。如果第一类信道的重复发送次数为完整信息,可以表示第一类信道的重复发送次数需要按照这个完整信息来配置。如果第一类信道的重复发送次数为相对信息,可以表示这个相对信息指示的是相对一个基准值的变化量。所述第一类信道的重复发送次数需要在这个基准值的基础上并且根据这个相对信息来确定。
在本实施例中,所述第一条件可以包括以下至少一个:
(1)针对第一类信道上发送的数据的混合自动重传请求应答(Hybrid Automatic Repeat Request Acknowledgement,HARQ-ACK)指示为成功指示ACK。
例如,HARQ-ACK可以包括成功指示ACK或失败指示NACK。其中,ACK指示其对应的数据传输已经被接收端成功接收;NACK指示其对应的数据传输没有被接收端成功接收。
所述第一条件包括针对第一类信道上发送的数据的HARQ-ACK指示为ACK时,所述ACK可以指示与所述第一信息对应的重复发送次数和/或TA。
(2)下行控制信息(Downlink Control Information,DCI)中一个或多个域的取值为预定义取值。
例如,这些域的取值隐含指示:HARQ-ACK指示为ACK。再如,承载所述DCI的下行控制信道对应的搜索空间的配置信息由基站配置。其中,搜索空间的配置信息与所述第一类信道的配置信息可以一并由基站配置并且发送给终端。
其中,所述搜索空间的配置信息可以指示以下至少之一:
所述下行控制信道占用的时频资源的位置信息;
所述下行控制信道的重复发送次数信息。
所述第一条件包括DCI中一个或多个域的取值为预定义取值时,所述预定义取值可以指示与所述第一信息对应的重复发送次数和/或TA。
(3)所述第一类信道的重复发送次数属于第一重复发送次数集合。其中,所述第一重复发送次数集合中包括的第一类信道的重复发送次数可以大于或者等于第一数值A。A的取值可以由基站配置或者采用默认配置。
(4)所述第一类信道对应的终端的覆盖增强等级属于第一覆盖增强等级集合。其中,所述第一覆盖增强等级集合中包括的覆盖增强等级大于或者等于第二数值B。B的取值可以由基站配置或者采用默认配置。
在一种实施方式中,所述第一信息与所述HARQ-ACK可以在同一个下行控 制信道中发送;或者,当所述DCI中一个或多个域(field)的取值为预定义取值时,所述第一信息承载在所述DCI中。
(5)所述终端在所述第一类信道发送数据时的发射功率没有达到满功率。
(6)功率余量指示的功率余量值大于或等于一个阈值。
图7为本发明另一实施例的传输控制方法的流程示意图。如图7所示,该方法可以应用于基站,假设终端为第一类终端例如控制单元为模式A的终端(CE Mode A UE),该方法可以包括:
步骤S71、接收第二类终端在RRC空闲状态或非激活状态在第一类信道发送的数据。
步骤S72、在满足第二条件的情况下,通过下行信道向第二类终端发送第二信息。
在本实施例中,下行信道可以为下行控制信道或下行数据信道。其中,下行数据信道占用的资源由下行控制信道指示。例如,由下行控制信道中承载的下行授权(DL Grant)指示下行数据信道占用的资源。
在本实施例中,第二信息可以承载在下行控制信息(Downlink Contro Informationl,DCI)中。
在本实施例中,第二类终端可以为控制单元为模式A的终端(CE Mode A UE)。CE Mode A UE包括功率(Power)、重复次数(Repetition number)调整信息和TA调整信息。
在本实施例中,所述第二信息包括以下至少一个:
第一类信道的重复发送次数;
第一类信道的发射功率信息;
第一类信道对应的TA。
例如,第二信息中包括:第一类信道的重复发送次数和第一类信道的发射功率信息;或者第二信息中包括第一类信道对应的TA;或者第二信息中包括第一类信道的重复发送次数、第一类信道的发射功率信息和第一类信道对应的TA。
在本实施例中,所述第二条件包括以下至少一个:
(1)针对第一类信道上发送的数据的HARQ-ACK指示为ACK。其中,所述第二条件包括针对第一类信道上发送的数据的HARQ-ACK指示为ACK时,所述ACK指示与所述第二信息对应的重复发送次数、发射功率信息和TA中的 任意一个或其组合。
(2)DCI中一个或多个域的取值为预定义取值。其中,所述第二条件包括DCI中一个或多个域的取值为预定义取值时,所述预定义取值指示与所述第二信息对应的重复发送次数、发射功率信息和TA中的任意一个或其组合。
(3)所述第一类信道的重复发送次数属于第二重复发送次数集合。其中,所述第二重复发送次数集合中包括的第一类信道的重复发送次数小于或者等于第三数值C。C的取值可以由基站配置或者采用默认配置。
(4)所述第一类信道对应的终端的覆盖增强等级属于第二覆盖增强等级集合。其中,所述第二覆盖增强等级集合中包括的覆盖增强等级小于或者等于第四数值D。D的取值可以由基站配置或者采用默认配置。
在一种实施方式中,所述第二信息与所述HARQ-ACK可以在同一个下行控制信道中发送;或者,当所述DCI中一个或多个域(field)的取值为预定义取值时,所述第二信息承载在所述DCI中。
(5)所述终端在所述第一类信道发送数据时的发射功率没有达到满功率。
(6)功率余量指示的功率余量值大于或等于一个阈值。
在一个应用示例中,一个无线通信系统中,基站(eNB)发送上行传输配置信息给终端(UE),其中,该上行传输配置信息包括:上行信道资源的配置信息以及下行控制信道搜索空间的配置信息。
基站通过上行信道资源的配置信息为终端配置了第一类信道资源。基站通过下行控制信道搜索空间的配置信息配置的第一类下行控制信道则是与所述第一类信道资源对应的。所述第一类下行控制信道中至少承载了所述第一类信道对应的HARQ-ACK信息。
本实施例中,所述第一类信道占用的资源在时域上周期分布。第一类信道占用的资源可以称为“预配置上行资源(Preconfigured Uplink Resource,PUR)”,使用所述第一类信道的上行传输称为PUR传输。
本实施例中,所述PUR传输是在RRC空闲状态下进行的。终端在PUR传输之前,需要判断当前TA是否处于有效状态。当TA处于有效状态时,终端可以进行PUR传输。
基站在所述第一类下行控制信道或者由所述第一类下行控制信道调度的下行信道中发送PUR的调整信息。
例如,当终端的覆盖增强等级为等级2或者3时,所述PUR的调整信息包 括以下至少之一:
PUR传输的重复发送次数;
PUR传输对应的定时提前量(Timing Advanced,TA)。
再如,当终端的覆盖增强等级为等级0或者1时,所述PUR的调整信息包括以下至少之一:
PUR传输的重复发送次数;
PUR传输的发射功率信息;
PUR传输的定时提前量(Timing Advanced,TA);
在一个示例中,所述无线通信系统配置了4个覆盖增强等级,分别为覆盖增强等级0,1,2,3。
本实施例中,所述第一类下行控制信道中必须包括:
针对PUR传输的HARQ-ACK指示信息,且所述指示信息为ACK。
图8为本申请一实施例的传输控制装置的结构示意图。如图8所示,该装置可以设置于终端中,该装置可以包括:
判断模块81,用于判断TA的有效性;
传输控制模块82,用于在所述TA处于有效状态下,允许终端在RRC空闲状态或非激活状态下利用第一类信道进行数据传输。
在一种实施方式中,所述判断模块81还用于在判断时刻判断满足特定条件,则判断所述TA处于无效状态。
在一种实施方式中,在判断时刻判断满足特定条件包括以下之一:
在第一判断时刻集合中的至少N1个判断时刻判断第一测量值的变化量超过阈值;其中,N1为大于或等于1的整数;
在第一判断时刻集合中的最后N2个判断时刻判断第一测量值的变化量超过阈值;其中,N2为大于或等于1的整数。
在一种实施方式中,在判断时刻判断满足特定条件包括以下之一:
在第二判断时刻集合中至少M1个判断时刻判断定时器超时;其中,M1为大于或等于1的整数;
在第二判断时刻集合中最后M2个判断时刻判断定时器超时;其中,M2为大于或等于1的整数;
在第二判断时刻集合中前M3个判断时刻判断定时器超时;其中,M3为大于或等于1的整数。
在一种实施方式中,在判断时刻判断满足特定条件括以下之一:
在第二判断时刻集合中的判断时刻判断定时器没有超时,且在所述判断时刻之前至少有K1次第一测量值的变化量超过阈值;其中,K1为大于或等于1的整数;
在第二判断时刻集合中的判断时刻判断定时器没有超时,且在所述判断时刻之前的最后K2次的第一测量值的变化量超过阈值;其中,K2为大于或等于1的整数。
在一种实施方式中,所述第一测量值包括以下至少一个:参考信号接收功率;参考信号接收质量;下行信干噪比;下行信噪比;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
在一种实施方式中,所述第二判断时刻集合中的判断时刻满足以下至少一个:
距离下一个第一类信道使用的资源的时域位置的间隔大于或者等于第一时长;
距离下一个第一类信道使用的资源的时域位置的间隔小于或者等于第二时长。
在一种实施方式中,所述判断模块还用于在判断时刻判断满足特定条件之前,判断终端的服务小区或者驻留小区是否发生改变。
在一种实施方式中,如图9所示,该装置还包括:
随机接入模块91,用于在所述TA处于无效状态下,发起随机接入过程。
在一种实施方式中,所述随机接入模块91还用于向基站发送随机接入过程的第三消息,所述第三消息承载的RRC消息中携带用于表示RRC释放的指示信息。
在一种实施方式中,所述随机接入模块91还用于接收来自基站的随机接入过程的第四消息,所述第四消息中包括RRC连接释放消息。
在一种实施方式中,所述RRC消息包括以下至少一种:
RRC连接恢复请求;
RRC连接请求。
在一种实施方式中,所述用于表示RRC释放的指示信息包括以下至少一种:
RRC连接释放指示;
TA获取指示;
一个或多个信元IE,并且所述IE配置成预定义取值。
在一种实施方式中,所述随机接入模块91还用于向基站发送随机接入过程的第三消息,所述第三消息承载终端识别信息,其中,所述终端识别信息通过媒体接入控制的控制单元MAC CE发送。
在一种实施方式中,所述终端识别信息包括以下之一:
C-RNTI;
随机接入过程的第二消息中承载的临时C-RNTI;
为终端在RRC空闲状态用第一类信道进行上行传输配置的RNTI。
在一种实施方式中,如图9所示,该装置还包括:
第一接收模块92,用于接收基站发送的针对第一类信道传输数据的HARQ-ACK信息,所述HARQ-ACK信息承载在下行控制信道中的下行控制信息中;
所述HARQ-ACK信息包括第一种ACK指示信息或第二种ACK指示信息;
其中,当所述ACK的指示信息为第一种ACK指示信息时,该HARQ-ACK信息表示所述第一类信道传输的数据正确接收,且所述终端停止检测下行控制信道;
当所述ACK的指示信息为第二种ACK指示信息时,该HARQ-ACK信息表示所述第一类信道传输的数据正确接收,且所述终端检测下行控制信道。
在一种实施方式中,如图9所示,该装置还包括:
第二接收模块93,用于接收基站发送的针对第一类信道的调整信息,所述调整信息承载在下行控制信道中的下行控制信息中,其中,调整信息的取值是根据第一类信道对应的功率余量确定的。
在一种实施方式中,根据第一类信道对应的功率余量确定调整信息的取值包括以下之一:
当所述功率余量大于X1时,所述调整信息包括:第一类信道功率调整值;
当所述功率余量大于X2且小于X1时,所述调整信息包括:第一类信道功率调整值和重复次数调整值;
当所述功率余量小于X2时,所述调整信息包括:重复次数调整值。
在一种实施方式中,根据所述功率余量的大小确定所述第一类信道功率调整值还可以包括以下方式:
当所述功率余量值为PHR1时,所述第一类信道功率调整值为以下至少之一:
1/4*PHR1;2/4*PHR1;3/4*PHR1;PHR1;-1/4*PHR1;-2/4*PHR1;-3/4*PHR1;-PHR1;0。
图10为本申请一实施例的传输控制装置的结构示意图。如图10所示,该装置可以设置于基站中,该装置可以包括:
第三接收模块101,用于接收终端在RRC空闲状态或非激活状态在第一类信道发送的数据。
第一发送模块102,用于在满足特定条件的情况下,通过下行信道向所述终端发送指定信息。
例如,对于第一类终端,第三接收模块101用于接收第一类终端在RRC空闲状态或非激活状态在第一类信道发送的数据;第一发送模块用于在满足第一条件的情况下,通过下行信道向第一类终端发送第一信息。
在一种实施方式中,所述第一条件可以包括以下至少一个:
针对第一类信道上发送的数据的HARQ-ACK指示为ACK;
DCI中一个或多个域的取值为预定义取值;
所述第一类信道的重复发送次数属于第一重复发送次数集合;
所述第一类信道对应的终端的覆盖增强等级属于第一覆盖增强等级集合;
所述终端在所述第一类信道发送数据时的发射功率达到满功率;
功率余量指示的功率余量值小于或等于一个阈值。
在一种实施方式中,所述第一信息可以包括以下至少一个:
第一类信道的重复发送次数;
第一类信道对应的TA。
在一种实施方式中,所述第一条件包括针对第一类信道上发送的数据的HARQ-ACK指示为ACK时,所述ACK指示与所述第一信息对应的重复发送次数和/或TA。
在一种实施方式中,所述第一条件包括DCI中一个或多个域的取值为预定义取值时,所述预定义取值指示与所述第一信息对应的重复发送次数和/或TA。
在一种实施方式中,所述第一重复发送次数集合中包括的第一类信道的重复发送次数大于或者等于第一数值。
在一种实施方式中,所述第一覆盖增强等级集合中包括的覆盖增强等级大于或者等于第二数值。
图11为本申请一实施例的传输控制装置的结构示意图。如图11所示,该装置可以设置于基站中,该装置可以包括:
第四接收模块111,用于接收终端在RRC空闲状态或非激活状态在第一类信道发送的数据。
第二发送模块112,用于在满足特定条件的情况下,通过下行信道向所述终端发送指定信息。
例如,对于第二类终端,第四接收模块111用于接收第二类终端在RRC空闲状态或非激活状态在第一类信道发送的数据;第二发送模块112用于在满足第二条件的情况下,通过下行信道向第二类终端发送第二信息。
在一种实施方式中,所述第二条件包括以下至少一个:
针对第一类信道上发送的数据的HARQ-ACK指示为ACK;
DCI中一个或多个域的取值为预定义取值;
所述第一类信道的重复发送次数属于第二重复发送次数集合;
所述第一类信道对应的终端的覆盖增强等级属于第二覆盖增强等级集合;
所述终端在所述第一类信道发送数据时的发射功率达到满功率;
功率余量指示的功率余量值小于或等于一个阈值。
在一种实施方式中,所述第二信息包括以下至少一个:
第一类信道的重复发送次数;
第一类信道的发射功率信息;
第一类信道对应的TA。
在一种实施方式中,所述第二条件包括针对第一类信道上发送的数据的HARQ-ACK指示为ACK时,所述ACK指示与所述第二信息对应的重复发送次 数、发射功率信息和TA中的任意一个或其组合。
在一种实施方式中,所述第二条件包括DCI中一个或多个域的取值为预定义取值时,所述预定义取值指示与所述第二信息对应的重复发送次数、发射功率信息和TA中的任意一个或其组合。
在一种实施方式中,所述第二重复发送次数集合中包括的第一类信道的重复发送次数小于或者等于第三数值。
在一种实施方式中,所述第二覆盖增强等级集合中包括的覆盖增强等级小于或者等于第四数值。
本申请实施例各装置中的各模块的功能可以参见上述方法实施例中的对应描述,在此不再赘述。
图12为本申请另一实施例的传输控制方法的流程示意图。如图12所示,该方法可以包括:
步骤S121、终端接收基站发送的寻呼消息,其中,所述寻呼消息中包括第一类随机接入信道的配置信息。所述第一类随机接入信道的配置信息中可以包括至少一种第一类随机接入信道的资源。
在本实施例中,第一类随机接入信道的配置信息配置的是用于非竞争随机接入流程的随机接入信道的资源。
随机接入信道的资源可以包括以下至少之一:
随机接入信道占用的时频资源;
随机接入信道上发送的随机接入信号。
在本实施例中,一种第一类随机接入信道的资源对应一个覆盖增强等级、一种随机接入信道的重复发送次数或者一种随机接入信号格式。
在一种实施方式中,所述终端在所述第一类随机接入信道上发送随机接入信号后,在一个时间窗内没有检测到所述基站发送的响应消息,所述终端在所述第二类随机接入信道上发送随机接入信号。
在本实施例中,寻呼消息可以在下行控制信道中发送。承载寻呼消息的DCI通过P-RNTI(Paging RNTI,寻呼无线网络临时标识)进行循环冗余校验(Cyclic Redundancy Check,CRC)加扰。
在一种实施方式中,终端的行为可以包括以下示例:
示例一:当所述第一类随机接入信道的配置信息中包括一种第一类随机接 入信道的资源,并且满足特定条件时,所述终端在所述第一类随机接入信道上发送随机接入信号。
当不满足特定条件时,所述终端在第二类随机接入信道上发送随机接入信号。其中所述第二类随机接入信道是用于竞争随机接入流程的随机接入信道的资源。
在该示例中,所述特定条件包括以下至少之一:
所述终端的覆盖增强等级小于或者等于所述第一类随机接入信道对应的覆盖增强等级;
所述随机接入信道的重复发送次数小于或者等于所述第一类随机接入信道支持的重复发送次数;
所述终端检测的RSRP值大于或者等于所述第一类随机接入信道对应的RSRP值;
所述终端没有上行数据。
示例二:终端从所述至少一种第一类随机接入信道的资源中选择一种第一类随机接入信道的资源,并且在所述第一类随机接入信道的资源上发送随机接入信号。
在该示例中,所述终端从所述至少一种第一类随机接入信道的资源中选择一种第一类随机接入信道的资源,包括:
所述终端选择的第一类随机接入信道对应的覆盖增强等级大于或者等于所述终端的覆盖增强等级;
所述终端选择的第一类随机接入信道对应的重复发送次数大于或者等于所述终端发送所述随机接入信号时的随机接入信道的重复发送次数。
在该示例中,所述终端成功接收基站在第二消息发送的下行数据之后,执行以下操作中至少之一:
所述终端向所述基站发送HARQ-ACK信息,且HARQ-ACK为ACK;
所述终端继续在接下来的一个时间窗内的搜索空间中检测下行控制信道。
该示例中的第二消息可以为随机接入过程中的Msg2。在随机接入过程中,eNB向UE返回的Msg2中承载终端需要的TA信息。上述的这个时间窗起始时刻和承载ACK的下行控制信道相邻,或者存在一个间隔。终端检测的这个下行控制信道中承载下行信道调度信息或者上行信道的调度信息。终端接收到所述调度信息后,在相应的信道上进行数据传输或者接收。
在该示例中,所述终端没有成功接收基站在第二消息发送的下行数据,反馈NACK信息之后,所述终端没有检测到基站发送的所述下行数据的重传的调度信息,则所述终端在第二类随机接入信道上发送随机接入信号或在第一类随机接入信道上发送随机接入信号。其中所述第二类随机接入信道是用于竞争随机接入流程的随机接入信道的资源。
示例三:当所述终端需要发送上行数据时,所述终端执行以下操作:所述终端在所述第二类随机接入信道上发送随机接入信号。
本实施例中,终端可以在接收到寻呼消息之后的随机接入过程中,通过Msg2直接接收基站发送的业务或者数据或者控制信息。因此,可以节省终端从RRC空闲状态进入RRC连接状态的信令开销。也可以让终端在接收到所述业务或者数据或者控制信息之后,无需从RRC连接态转换到RRC空闲状态,可以直接用所述第一类信道进行上行数据传输。
图13为本申请实施例的终端的结构示意图,如图13所示,本申请实施例提供的终端130包括:存储器1303与处理器1304。所述终端130还可以包括接口1301和总线1302。所述接口1301、存储器1303与处理器1304通过总线1302相连接。所述存储器1303用于存储指令。所述处理器1304被配置为读取所述指令以执行上述应用于终端的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图14为本申请实施例的基站的结构示意图,如图14所示,本申请实施例提供的基站140包括:存储器1403与处理器1404。所述基站还可以包括接口1401和总线1402。所述接口1401、存储器1403与处理器1404通过总线1402相连接。所述存储器1403用于存储指令。所述处理器1404被配置为读取所述指令以执行上述应用于基站的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图15为本申请实施例的通信系统的结构示意图,如图15所示,该系统包括:如上述实施例的终端130、以及上述实施例的基站140。本申请实施例的通信系统包括但不限于:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide  Interoperability for Microwave Access,WiMAX)通信系统或5G New Radio(NR,新无线)系统等。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现。本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存等。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。RAM可以包括多种形式,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。本申请描述的系统和方法的存储器包括但不限于这些和任意其它适合类型的存储器。
本申请实施例的处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal  Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程逻辑器件(Field-Programmable Gate Array,FGPA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、或者基于多核处理器架构的处理器。通用处理器可以是微处理器或者也可以是任何常规的处理器等。上述的处理器可以实现或者执行本申请实施例中的公开的各方法的步骤。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。

Claims (38)

  1. 一种传输控制方法,包括:
    判断定时提前量TA的有效性;
    在所述TA处于无效状态的情况下,发起随机接入过程。
  2. 根据权利要求1所述的方法,其中,所述判断TA的有效性,包括:
    在判断时刻判断满足特定条件的情况下,判断所述TA处于所述无效状态。
  3. 根据权利要求2所述的方法,其中,所述在判断时刻判断满足特定条件包括:
    在第一判断时刻集合中的至少N1个判断时刻判断第一测量值的变化量超过阈值;其中,所述N1为大于或等于1的整数。
  4. 根据权利要求2所述的方法,其中,所述在判断时刻判断满足特定条件包括:
    在第二判断时刻集合中至少M1个判断时刻判断定时器超时;其中,所述M1为大于或等于1的整数。
  5. 根据权利要求2所述的方法,其中,所述在判断时刻判断满足特定条件括:
    在第二判断时刻集合中的判断时刻判断定时器没有超时,且在所述第二判断时刻集合中的判断时刻之前至少有K1次第一测量值的变化量超过阈值;其中,所述K1为大于或等于1的整数。
  6. 根据权利要求3或5所述的方法,其中,所述第一测量值包括以下至少一个:参考信号接收功率;参考信号接收质量;下行信干噪比;下行信噪比;上行信干噪比;上行信噪比;下行路径损耗;上行路径损耗。
  7. 根据权利要求4或5所述的方法,其中,所述第二判断时刻集合中的判断时刻满足以下至少一个:
    距离下一个第一类信道使用的资源的时域位置的间隔大于或者等于第一时长;
    距离下一个第一类信道使用的资源的时域位置的间隔小于或者等于第二时长。
  8. 根据权利要求1至5中任一项所述的方法,其中,所述判断TA的有效性,还包括:
    在检测到终端的服务小区或者驻留小区没有发生改变的情况下,判断所述TA的状态有效。
  9. 根据权利要求1至5中任一项所述的方法,其中,所述发起随机接入过程,包括:
    向基站发送所述随机接入过程的第三消息,所述第三消息承载的无线资源控制RRC消息中携带用于表示RRC释放的指示信息。
  10. 根据权利要求1至5中任一项所述的方法,其中,所述发起随机接入过程,包括:
    接收来自基站的所述随机接入过程的第四消息,所述第四消息中包括RRC连接释放消息。
  11. 根据权利要求9所述的方法,其中,所述RRC消息包括以下至少一种:
    RRC连接恢复请求;
    RRC连接请求。
  12. 根据权利要求9所述的方法,其中,所述用于表示RRC释放的指示信息包括以下至少一种:
    RRC连接释放指示;
    TA获取指示;
    一个或多个信元IE,并且所述IE配置成预定义取值。
  13. 根据权利要求1至5中任一项所述的方法,其中,所述发起随机接入过程,包括:
    向基站发送所述随机接入过程的第三消息,所述第三消息承载终端识别信息,其中,所述终端识别信息通过媒体接入控制的控制单元MAC CE发送。
  14. 根据权利要求13所述的方法,其中,所述终端识别信息包括以下之一:
    小区无线网络临时标识C-RNTI;
    随机接入过程的第二消息中承载的临时C-RNTI;
    为终端在RRC空闲状态用第一类信道进行上行传输配置的无线网络临时标识RNTI。
  15. 根据权利要求1至5中任一项所述的方法,还包括:
    接收基站发送的针对第一类信道传输数据的混合自动重传请求应答HARQ-ACK信息,所述HARQ-ACK信息承载在下行控制信道中的下行控制信息中;
    所述HARQ-ACK信息包括第一种ACK指示信息或第二种ACK指示信息;
    其中,在所述HARQ-ACK信息为所述第一种ACK指示信息的情况下,所述HARQ-ACK信息表示所述第一类信道传输的数据正确接收,且终端停止检测下行控制信道;
    在所述HARQ-ACK信息为所述第二种ACK指示信息的情况下,所述HARQ-ACK信息表示所述第一类信道传输的数据正确接收,且终端检测下行控制信道。
  16. 根据权利要求1至5中任一项所述的方法,还包括:
    接收基站发送的针对第一类信道的调整信息,所述调整信息承载在下行控制信道中的下行控制信息中,其中,所述调整信息的取值是根据所述第一类信道对应的功率余量确定的。
  17. 根据权利要求16所述的方法,其中,所述根据所述第一类信道对应的功率余量确定调整信息的取值包括以下之一:
    在所述功率余量大于X1的情况下,所述调整信息包括:所述第一类信道功率调整值;
    在所述功率余量大于X2且小于所述X1的情况下,所述调整信息包括:所述第一类信道功率调整值和重复次数调整值;
    在所述功率余量小于所述X2的情况下,所述调整信息包括:重复次数调整值;
    其中,所述X1大于所述X2。
  18. 根据权利要求1至5中任一项所述的方法,还包括:
    在所述TA处于有效状态的情况下,允许终端在RRC空闲状态或非激活状态下利用第一类信道进行数据传输。
  19. 一种传输控制方法,包括:
    接收终端在无线资源控制RRC空闲状态或非激活状态在第一类信道发送的数据;
    在满足特定条件的情况下,通过下行信道向所述终端发送指定信息。
  20. 根据权利要求19所述的方法,其中,所述接收终端在RRC空闲状态或非激活状态在第一类信道发送的数据,包括:
    接收第一类终端在所述RRC空闲状态或所述非激活状态在所述第一类信道发送的数据;
    所述在满足特定条件的情况下,通过下行信道向所述终端发送指定信息, 包括:
    在满足第一条件的情况下,通过所述下行信道向所述第一类终端发送第一信息。
  21. 根据权利要求20所述的方法,其中,所述第一条件包括以下至少一个:
    针对所述第一类信道上发送的数据的混合自动重传请求应答HARQ-ACK指示为成功指示ACK;
    下行控制信息DCI中一个或多个域的取值为预定义取值;
    所述第一类信道的重复发送次数属于第一重复发送次数集合;
    所述第一类信道对应的终端的覆盖增强等级属于第一覆盖增强等级集合;
    所述终端在在所述第一类信道发送数据的情况下的发射功率达到满功率;
    功率余量指示的功率余量值小于或等于一个阈值。
  22. 根据权利要求20所述的方法,其中,所述第一信息包括以下至少一个:
    所述第一类信道的重复发送次数;
    所述第一类信道对应的TA。
  23. 根据权利要求21所述的方法,所述第一条件包括针对所述第一类信道上发送的数据的HARQ-ACK指示为ACK的情况下,所述ACK指示与所述第一信息对应的以下至少之一:重复发送次数、TA。
  24. 根据权利要求21所述的方法,所述第一条件包括在DCI中一个或多个域的取值为预定义取值的情况下,所述预定义取值指示与所述第一信息对应的以下至少之一:重复发送次数、TA。
  25. 根据权利要求21所述的方法,所述第一重复发送次数集合中包括的第一类信道的重复发送次数大于或者等于第一数值。
  26. 根据权利要求21所述的方法,所述第一覆盖增强等级集合中包括的覆盖增强等级大于或者等于第二数值。
  27. 根据权利要求19所述的方法,其中,所述接收终端在RRC空闲状态或非激活状态在第一类信道发送的数据,包括:
    接收第二类终端在所述RRC空闲状态或所述非激活状态在所述第一类信道发送的数据;
    所述在满足特定条件的情况下,通过下行信道向所述终端发送指定信息,包括:
    在满足第二条件的情况下,通过所述下行信道向所述第二类终端发送第二信息。
  28. 根据权利要求27所述的方法,其中,所述第二条件包括以下至少一个:
    针对所述第一类信道上发送的数据的HARQ-ACK指示为ACK;
    DCI中一个或多个域的取值为预定义取值;
    所述第一类信道的重复发送次数属于第二重复发送次数集合;
    所述第一类信道对应的终端的覆盖增强等级属于第二覆盖增强等级集合;
    所述终端在在所述第一类信道发送数据的情况下的发射功率没有达到满功率;
    功率余量指示的功率余量值大于或等于一个阈值。
  29. 根据权利要求27所述的方法,其中,所述第二信息包括以下至少一个:
    所述第一类信道的重复发送次数;
    所述第一类信道的发射功率信息;
    所述第一类信道对应的TA。
  30. 根据权利要求28所述的方法,其中,所述第二条件包括针对所述第一类信道上发送的数据的HARQ-ACK指示为ACK的情况下,所述ACK指示与所述第二信息对应的以下至少之一:重复发送次数、发射功率信息、TA。
  31. 根据权利要求28所述的方法,其中,所述第二条件包括在DCI中一个或多个域的取值为预定义取值的情况下,所述预定义取值指示与所述第二信息对应的以下至少之一:重复发送次数、发射功率信息、TA。
  32. 根据权利要求28所述的方法,其中,所述第二重复发送次数集合中包括的第一类信道的重复发送次数小于或者等于第三数值。
  33. 根据权利要求28所述的方法,其中,所述第二覆盖增强等级集合中包括的覆盖增强等级小于或者等于第四数值。
  34. 一种传输控制装置,包括:
    判断模块,设置为判断定时提前量TA的有效性;
    随机接入模块,设置为在所述TA处于无效状态的情况下,发起随机接入过程。
  35. 一种传输控制装置,包括:
    第三接收模块,设置为接收终端在无线资源控制RRC空闲状态或非激活状 态在第一类信道发送的数据;
    第一发送模块,设置为在满足第一条件的情况下,通过下行信道向所述终端发送指定信息。
  36. 一种终端,所述终端包括:处理器及存储器;
    所述存储器设置为存储指令;
    所述处理器被配置为读取所述指令以执行如权利要求1至18中任一项所述的传输控制方法。
  37. 一种基站,所述基站包括:处理器及存储器;
    所述存储器设置为存储指令;
    所述处理器被配置为读取所述指令以执行如权利要求19至33中任一项所述的传输控制方法。
  38. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至33任一项所述的传输控制方法。
PCT/CN2020/079815 2019-03-28 2020-03-18 传输控制方法、装置、终端、基站、通信系统及存储介质 WO2020192504A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/599,460 US20220201636A1 (en) 2019-03-28 2020-03-18 Transmission control method and apparatus, terminal, base station, communication system and storage medium
EP20777140.3A EP3952567A4 (en) 2019-03-28 2020-03-18 METHOD AND DEVICE FOR TRANSMISSION CONTROL, TERMINAL, BASE STATION, COMMUNICATION SYSTEM AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910241370.7A CN110536471B (zh) 2019-03-28 2019-03-28 传输控制方法、装置、终端、基站、通信系统及存储介质
CN201910241370.7 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020192504A1 true WO2020192504A1 (zh) 2020-10-01

Family

ID=68659179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079815 WO2020192504A1 (zh) 2019-03-28 2020-03-18 传输控制方法、装置、终端、基站、通信系统及存储介质

Country Status (4)

Country Link
US (1) US20220201636A1 (zh)
EP (1) EP3952567A4 (zh)
CN (1) CN110536471B (zh)
WO (1) WO2020192504A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536470B (zh) * 2019-01-21 2024-05-07 中兴通讯股份有限公司 定时提前量ta处理、指示信息发送方法及装置
EP3925374A4 (en) 2019-02-13 2022-11-09 Sierra Wireless, Inc. METHOD AND APPARATUS FOR ENABLING TIME ADVANCE USING POWER RECEIVED FROM A REFERENCE SIGNAL
CN111565459B (zh) * 2019-02-14 2023-11-10 华为技术有限公司 一种通信方法及装置
CN110536471B (zh) * 2019-03-28 2023-02-17 中兴通讯股份有限公司 传输控制方法、装置、终端、基站、通信系统及存储介质
WO2020258032A1 (zh) * 2019-06-25 2020-12-30 Oppo广东移动通信有限公司 时延补偿方法、设备及存储介质
US11291012B2 (en) 2019-07-30 2022-03-29 Asustek Computer Inc. Method and apparatus for selecting beam for preconfigured uplink resources in a wireless communication system
CN110536385A (zh) * 2019-07-31 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、第一节点及第二节点
CN110958103B (zh) * 2019-12-23 2021-04-27 展讯半导体(南京)有限公司 上行数据传输方法、用户设备及可读存储介质
WO2021159262A1 (zh) * 2020-02-10 2021-08-19 Oppo广东移动通信有限公司 定时提前量的阈值调整方法及装置
KR20220149685A (ko) * 2020-02-28 2022-11-08 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 타이밍 동기화 방법, 단말 장치 및 네트워크 장치
CN111371487B (zh) * 2020-03-10 2021-12-14 展讯通信(上海)有限公司 基于卫星系统的数据传输方法及装置、存储介质、ue、基站
CN113497685A (zh) * 2020-03-18 2021-10-12 深圳传音控股股份有限公司 一种数据传输方法及相关产品
CN113891345B (zh) * 2020-07-03 2024-04-19 大唐移动通信设备有限公司 数据传输方法、指示方法及设备
WO2022016352A1 (en) * 2020-07-21 2022-01-27 Qualcomm Incorporated Uplink data transfer over random access or dedicated uplink resources
US20230180296A1 (en) * 2020-08-06 2023-06-08 Apple Inc. Base station signaling for user equipment direct transmission while inactive
EP4201131A4 (en) * 2020-08-20 2024-05-08 Lenovo (Beijing) Limited TRANSMISSION METHODS AND APPARATUSES USING A PRECONFIGURED UPLINK RESOURCE
CN114285532A (zh) * 2020-09-27 2022-04-05 展讯半导体(南京)有限公司 数据传输方法及装置、存储介质、终端、基站
CN114390545A (zh) * 2020-10-16 2022-04-22 展讯通信(上海)有限公司 数据传输处理方法及相关装置
CN114401418B (zh) * 2021-12-30 2023-09-12 北京北广科技股份有限公司 基于多个arm芯片架构的嵌入式音视频服务器
WO2023236213A1 (zh) * 2022-06-10 2023-12-14 Oppo广东移动通信有限公司 通信方法、终端设备及网络设备
CN118119030A (zh) * 2022-11-25 2024-05-31 展讯半导体(南京)有限公司 随机接入方法及装置、终端、网络设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281626A (zh) * 2011-07-06 2011-12-14 电信科学技术研究院 一种上行定时提前量的确定方法及装置
CN103959842A (zh) * 2013-12-04 2014-07-30 华为技术有限公司 一种进行无线资源控制连接重建的方法和基站
CN104185277A (zh) * 2014-09-17 2014-12-03 武汉邮电科学研究院 一种基于ta和pmi的定位方法及装置
CN107801244A (zh) * 2016-08-31 2018-03-13 北京佰才邦技术有限公司 配置传输间隔的方法、装置及用户设备
US20180152906A1 (en) * 2013-01-24 2018-05-31 Lg Electronics Inc. Method for adding secondary cell in wireless access system supporting carrier aggregation and apparatus for supporting same
CN110536471A (zh) * 2019-03-28 2019-12-03 中兴通讯股份有限公司 传输控制方法、装置、终端、基站、通信系统及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026154A1 (en) * 2018-07-31 2020-02-06 Telefonaktiebolaget Lm Ericsson (Publ) Timing advance change detection
WO2020031043A1 (en) * 2018-08-09 2020-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Maintaining validity of timing advance
EP3804454B1 (en) * 2018-09-28 2022-11-02 LG Electronics, Inc. Method and apparatus for determining whether to perform transmission on a random access or a configured grant in wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281626A (zh) * 2011-07-06 2011-12-14 电信科学技术研究院 一种上行定时提前量的确定方法及装置
US20180152906A1 (en) * 2013-01-24 2018-05-31 Lg Electronics Inc. Method for adding secondary cell in wireless access system supporting carrier aggregation and apparatus for supporting same
CN103959842A (zh) * 2013-12-04 2014-07-30 华为技术有限公司 一种进行无线资源控制连接重建的方法和基站
CN104185277A (zh) * 2014-09-17 2014-12-03 武汉邮电科学研究院 一种基于ta和pmi的定位方法及装置
CN107801244A (zh) * 2016-08-31 2018-03-13 北京佰才邦技术有限公司 配置传输间隔的方法、装置及用户设备
CN110536471A (zh) * 2019-03-28 2019-12-03 中兴通讯股份有限公司 传输控制方法、装置、终端、基站、通信系统及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952567A4 *

Also Published As

Publication number Publication date
CN110536471B (zh) 2023-02-17
EP3952567A4 (en) 2023-03-29
CN110536471A (zh) 2019-12-03
EP3952567A1 (en) 2022-02-09
US20220201636A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2020192504A1 (zh) 传输控制方法、装置、终端、基站、通信系统及存储介质
US10349348B2 (en) Method and mobile terminal for performing random access
EP2826311B1 (en) Method of controlling transmit power of ue in wireless communication system and apparatus for the same
RU2721183C1 (ru) Способ управления активным режимом работы с 2-этапным предоставлением разрешения
EP3414859B1 (en) Apparatus and method for drx mechanisms for single harq process operation in nb-iot
EP2351407B1 (en) Method and apparatus for monitoring downlink control channel in a user equipment
US20180332561A1 (en) Methods and apparatus for managing paging in a wireless communication network
EP4007378A1 (en) Data sending method and apparatus, data receiving method and apparatus, first node, and second node
JP2013017206A (ja) 無線通信システムにおける旧システム情報に基づくランダムアクセスの防止
US11272449B2 (en) Method and mobile terminal for performing random access
WO2021196102A1 (zh) 用户终端的省电方法、装置、通信设备及存储介质
US20230066041A1 (en) Method and apparatus for power saving on sidelink
US20240080699A1 (en) Sdt failure reporting method, terminal device, and network device
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020087476A1 (zh) 传输系统信息的方法和设备
EP4266769A1 (en) Random access method, and electronic device and storage medium
US20220353905A1 (en) Random access method, first communication node and storage medium
WO2021092776A1 (zh) 一种非连续接收处理方法、终端设备
WO2021068173A1 (zh) 一种信号传输方法及装置、终端设备
US20220015153A1 (en) Channel transmission method, electronic device, and storage medium
WO2020118718A1 (zh) 一种配置参数的确定方法及装置、终端
WO2020077600A1 (zh) 一种触发波束失败恢复的方法及装置、终端
WO2022017427A1 (en) Method of transmissions and receptions in half-duplex frequency-division duplexing operation and related device
US20230363007A1 (en) Methods for channel transmission and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020777140

Country of ref document: EP

Effective date: 20211027