WO2022017427A1 - Method of transmissions and receptions in half-duplex frequency-division duplexing operation and related device - Google Patents

Method of transmissions and receptions in half-duplex frequency-division duplexing operation and related device Download PDF

Info

Publication number
WO2022017427A1
WO2022017427A1 PCT/CN2021/107697 CN2021107697W WO2022017427A1 WO 2022017427 A1 WO2022017427 A1 WO 2022017427A1 CN 2021107697 W CN2021107697 W CN 2021107697W WO 2022017427 A1 WO2022017427 A1 WO 2022017427A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
procedure
transmission
drx
timer
Prior art date
Application number
PCT/CN2021/107697
Other languages
French (fr)
Inventor
Hengli CHIN
Hsinhsi TSAI
Wanchen LIN
Haihan Wang
Chiahung Wei
Jiahong LIOU
Original Assignee
FG Innovation Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FG Innovation Company Limited filed Critical FG Innovation Company Limited
Publication of WO2022017427A1 publication Critical patent/WO2022017427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure is generally related to wireless communications and more specifically, to a method of transmissions and receptions in a half-duplex frequency-division duplexing (HD-FDD) operation and a related device.
  • HD-FDD half-duplex frequency-division duplexing
  • next-generation wireless communication system such as the fifth-generation (5G) New Radio (NR)
  • 5G fifth-generation
  • NR New Radio
  • the 5G NR system is designed to provide flexibility and configurability for optimizing the network services and types and accommodating various use cases such as enhanced Mobile Broadband (eMBB) , massive Machine-Type Communication (mMTC) , and Ultra-Reliable and Low-Latency Communication (URLLC) .
  • eMBB enhanced Mobile Broadband
  • mMTC massive Machine-Type Communication
  • URLLC Ultra-Reliable and Low-Latency Communication
  • the present disclosure provides a method of transmissions and receptions in a half-duplex frequency-division duplexing (HD-FDD) operation and a related device.
  • HD-FDD half-duplex frequency-division duplexing
  • a method of transmissions and receptions for a user equipment (UE) in a HD-FDD operation includes receiving, from a base station (BS) , an uplink (UL) resource in a first set of symbols and a downlink (DL) resource in a second set of symbols, starting a timer associated with a procedure, not performing an UL transmission on the UL resource when the timer is running, and performing a DL reception for the procedure on the DL resource when the timer is running.
  • BS base station
  • UL uplink
  • DL downlink
  • a UE for performing transmissions and receptions in a HD-FDD operation includes a processor configured to execute a computer-executable program, and a memory coupled to the processor and configured to store the computer-executable program, wherein the computer-executable program instructs the processor to perform the above-described method of transmissions and receptions in a HD-FDD operation.
  • FIG. 1 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while ra-ResponseWindow is running, according to an implementation of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the ra-ContentionResolutionTimer is running, according to an implementation of the present disclosure.
  • FIG. 3 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the msgB-ResponseWindow is running, according to an implementation of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the beamFailureDetectionTimer is running, according to an implementation of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating a condition of starting the drx-HARQ-RTT-TimerDL corresponding to a specific HARQ ID, according to an implementation of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating a condition of starting the drx-HARQ-RTT-TimerDL corresponding to a specific HARQ ID, according to an implementation of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating a condition of starting the drx-HARQ- RTT-TimerUL corresponding to a specific HARQ ID, according to an implementation of the present disclosure.
  • FIG. 8 is a flowchart illustrating a method of transmissions and receptions in a HD-FDD operation, according to an implementation of the present disclosure.
  • FIG. 9 is a block diagram illustrating a node for wireless communication, according to an implementation of the present disclosure.
  • a and/or B may represent that: A exists alone, A and B exist at the same time, and B exists alone.
  • a and/or B and/or C may represent that at least one of A, B, and C exists, A and B exist at the same time, A and C exist at the same time, B and C exist at the same time, and A, B and C exist at the same time.
  • the character “/” used herein generally represents that the former and latter associated objects are in an “or” relationship.
  • any two or more of the following paragraphs, (sub) -bullets, points, actions, behaviors, terms, alternatives, examples, or claims in the present disclosure may be combined logically, reasonably, and properly to form a specific method.
  • Any sentence, paragraph, (sub) -bullet, point, action, behavior, term, or claim in the present disclosure may be implemented independently and separately to form a specific method.
  • Dependency e.g., “based on” , “more specifically” , “preferably” , “In one embodiment” , “In one implementation” , “In one alternative” , in the present disclosure may refer to just one possible example that would not restrict the specific method.
  • any disclosed network function (s) or algorithm (s) may be implemented by hardware, software, or a combination of software and hardware.
  • Disclosed functions may correspond to modules that may be software, hardware, firmware, or any combination thereof.
  • the software implementation may comprise computer-executable instructions stored on a computer-readable medium, such as memory or other types of storage devices.
  • one or more microprocessors or general-purpose computers with communication processing capability may be programmed with corresponding executable instructions and carry out the disclosed network function (s) or algorithm (s) .
  • the microprocessors or general-purpose computers may be formed of Application-Specific Integrated Circuits (ASICs) , programmable logic arrays, and/or using one or more Digital Signal Processors (DSPs) .
  • ASICs Application-Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • the computer-readable medium may include, but may not be limited to, Random Access Memory (RAM) , Read-Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM) , Electrically Erasable Programmable Read-Only Memory (EEPROM) , flash memory, Compact Disc (CD) Read-Only Memory (CD-ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory Compact Disc (CD) Read-Only Memory (CD-ROM)
  • CD-ROM Compact Disc
  • magnetic cassettes magnetic tape
  • magnetic disk storage or any other equivalent medium capable of storing computer-readable instructions.
  • a radio communication network architecture may typically include at least one base station (BS) , at least one UE, and one or more optional network elements that provide connection with a network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • the UE may communicate with the network (e.g., a Core Network (CN) , an Evolved Packet Core (EPC) network, an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) , a Next-Generation Core (NGC) , a 5G Core (5GC) , or an internet) via a Radio Access Network (RAN) established by one or more BSs.
  • CN Core Network
  • EPC Evolved Packet Core
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • NGC Next-Generation Core
  • 5GC 5G Core
  • RAN Radio Access Network
  • a UE may include, but is not limited to, a mobile station, a mobile terminal or device, or a user communication radio terminal.
  • a UE may be a portable radio equipment that includes, but is not limited to, a mobile phone, a tablet, a wearable device, a sensor, or a Personal Digital Assistant (PDA) with wireless communication capability.
  • PDA Personal Digital Assistant
  • the UE may be configured to receive and transmit signals over an air interface to one or more cells in a RAN.
  • a BS may include, but is not limited to, a node B (NB) as in the Universal Mobile Telecommunication System (UMTS) , an evolved node B (eNB) as in the LTE-A, a Radio Network Controller (RNC) as in the UMTS, a Base Station Controller (BSC) as in the Global System for Mobile communications (GSM) /GSM Enhanced Data rates for GSM Evolution (EDGE) RAN (GERAN) , a next-generation eNB (ng-eNB) as in an Evolved Universal Terrestrial Radio Access (E-UTRA) BS in connection with the 5GC, a next-generation Node B (gNB) as in the 5G-RAN (or in the 5G Access Network (5G-AN) ) , and any other apparatus capable of controlling radio communication and managing radio resources within a cell.
  • the BS may connect to serve the one or more UEs via a radio interface to the network.
  • a BS may be configured to provide communication services according to at least one of the following Radio Access Technologies (RATs) : Worldwide Interoperability for Microwave Access (WiMAX) , GSM (often referred to as 2G) , GERAN, General Packet Radio Service (GRPS) , UMTS (often referred to as 3G) according to basic Wideband-Code Division Multiple Access (W-CDMA) , High-Speed Packet Access (HSPA) , LTE, LTE-A, enhanced LTE (eLTE) , NR (often referred to as 5G) , and/or LTE-A Pro.
  • RATs Radio Access Technologies
  • the BS may be operable to provide radio coverage to a specific geographical area using a plurality of cells forming the RAN.
  • the BS may support the operations of the cells.
  • Each cell may be operable to provide services to at least one UE within its radio coverage. More specifically, each cell (often referred to as a serving cell) may provide services to serve one or more UEs within its radio coverage (e.g., each cell schedules the downlink (DL) and optionally UL resources to at least one UE within its radio coverage for DL and optionally UL packet transmissions) .
  • the BS may communicate with one or more UEs in the radio communication system via the plurality of cells.
  • a cell may allocate Sidelink (SL) resources for supporting Proximity Service (ProSe) , LTE SL services, and LTE/NR Vehicle-to-Everything (V2X) services. Each cell may have overlapped coverage areas with other cells.
  • SL Sidelink
  • Proximity Service Proximity Service
  • LTE SL services LTE/NR Vehicle-to-Everything
  • V2X Vehicle-to-Everything
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • SpCell Special Cell
  • a Primary Cell may refer to the SpCell of an MCG.
  • a Primary SCG Cell (PSCell) may refer to the SpCell of an SCG.
  • MCG may refer to a group of serving cells associated with the Master Node (MN) , comprising the SpCell and optionally one or more Secondary Cells (SCells) .
  • SCG may refer to a group of serving cells associated with the Secondary Node (SN) , comprising the SpCell and optionally one or more SCells.
  • the frame structure for NR is to support flexible configurations for accommodating various next-generation (e.g., 5G) communication requirements, such as eMBB, mMTC, and URLLC, while fulfilling high reliability, high data rate, and low latency requirements.
  • 5G next-generation
  • the orthogonal frequency-division multiplexing (OFDM) technology may serve as a baseline for an NR waveform.
  • the scalable OFDM numerology such as the adaptive sub-carrier spacing, the channel bandwidth, and the cyclic prefix (CP) , may also be used.
  • two coding schemes are applied for NR: (1) low-density parity-check (LDPC) code and (2) polar code.
  • the coding scheme adaption may be configured based on the channel conditions and/or the service applications.
  • DL transmission data in a transmission time interval of a single NR frame, at least DL transmission data, a guard period, and UL transmission data should be included.
  • the respective portions of the DL transmission data, the guard period, and the UL transmission data should also be configurable, for example, based on the network dynamics of NR.
  • An SL resource may also be provided via an NR frame to support ProSe services or V2X services.
  • a device in HD-FDD operation cannot perform simultaneous uplink and downlink transmissions.
  • two types of HD-FDD operations are disclosed.
  • a guard period is created by a UE by not receiving the last part of a downlink subframe immediately preceding an uplink subframe from the same UE.
  • guard periods each referred to as a half-duplex guard subframe, are created by the UE by not receiving a downlink subframe immediately preceding an uplink subframe from the same UE, and not receiving a downlink subframe immediately following an uplink subframe from the same UE.
  • a device in HD-FDD operation may follow the rules listed below:
  • PUSCH physical uplink shared channel
  • MTC Machine-Type Communication
  • MPDCCH Machine-Type Communication
  • PDSCH physical downlink shared channel
  • M Machine-Type Communication
  • a PUSCH transmission (including half-duplex guard subframe) collides partially or fully with a PDSCH transmission without a corresponding MPDCCH (e.g., a PDSCH resource that corresponds to a configured downlink assignment)
  • the PUSCH transmission is dropped if the device is configured with ce-pdsch-puschEnhancement-config.
  • a NR device in HD-FDD operation is configured/scheduled (by the network) with a time-domain where UL and DL resources are overlapped.
  • a device in HD-FDD may only perform either UL data transmission on the scheduled/configured UL resource or DL data reception on the scheduled/configured DL resource. Consequently, some of the timers that have been configured in a device in HD-FDD operation may be affected and even loses functionality due to the constraint of HD-FDD operation.
  • timers configured in a device in HD-FDD operation are disclosed. These timers may potentially be impacted by the nature of a device in HD-FDD operation (e.g., incapability to perform simultaneous UL transmission and DL reception) . Methods are proposed to define rules for performing UL transmission or DL reception. Furthermore, some conditions are also defined to start/stop these timers.
  • a device in HD-FDD operation is denoted as a HD-FDD UE in the present disclosure.
  • NR connectivity can serve as catalyst for next wave of industrial transformation/digitalization, which improve flexibility, enhance productivity and efficiency, reduce maintenance cost, and improve operational safety.
  • NR connectivity also serves as catalyst for next wave smart city innovations, which covers data collection and processing to more efficiently monitor and control city resources, and to provide services to city residents.
  • a device in NR industrial environment and NR smart city may be relatively low-end with small device form factors when comparing with a normal communication device (e.g., smartphone) .
  • this type of device may be completely wireless with relatively long battery life (e.g., from a few days up to a few years) when comparing with a normal communication device (e.g., smartphone) .
  • This type of device may include devices such as industrial wireless sensor, surveillance camera, wearable, etc. To reduce device complexity and/or improve battery life, a device of this type may be operated in HD-FDD.
  • the ra-ResponseWindow is a timer window for a UE to monitor a RA response. This timer is (re) started at the first PDCCH occasion from the end of the RA preamble (e.g., contention-free RA preamble or contention-based RA preamble) transmission.
  • RA preamble e.g., contention-free RA preamble or contention-based RA preamble
  • the UE monitors the PDCCH transmission on the search space indicated by recoverySearchSpaceId (e.g., the search space identity for monitoring a response corresponding to the BFR request) of a Special Cell (SpCell) identified by the Cell-Radio Network Temporary Identifier (C-RNTI) if the ra-ResponseWindow is running.
  • recoverySearchSpaceId e.g., the search space identity for monitoring a response corresponding to the BFR request
  • SpCell Special Cell identified by the Cell-Radio Network Temporary Identifier (C-RNTI)
  • the UE considers the random access response (RAR) reception not successful.
  • the UE monitors the PDCCH of a SpCell for the RAR identified by the Random Access Radio Network Temporary Identifier (RA-RNTI) while the ra-ResponseWindow is running. If the UE successfully receives the RAR containing Random Access Preamble identifiers that match the transmitted PREAMBLE_INDEX, the UE may stop ra-ResponseWindow. However, if the ra-ResponseWindow expires and the RAR containing Random Access Preamble identifiers that match the transmitted PREAMBLE_INDEX has not been received, the UE considers the RAR reception not successful.
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • a HD-FDD UE may perform an UL transmission while the ra-ResponseWindow is running.
  • FIG. 1 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while ra-ResponseWindow is running, according to an implementation of the present disclosure.
  • the HD-FDD UE transmits the RA preamble and starts the ra-ResponseWindow.
  • the UE performs the UL transmission while the ra-ResponseWindow is running. Since the HD-FDD UE cannot perform simultaneous UL transmission and DL reception, the HD-FDD UE may miss the RAR from the network after the preamble transmission while the ra-ResponseWindow is running.
  • the RAR from the network after the preamble transmission may be referred to PDCCH transmission associated with C-RNTI or RA-RNTI, depending on the type of preamble transmitted by the HD-FDD UE.
  • the HD-FDD UE may only monitor the PDCCH transmission after the corresponding UL transmission has been completed. This may increase the probability of unsuccessful RAR reception because the actual time to monitor the PDCCH transmission associated with C-RNTI or RA-RNTI while the ra-ResponseWindow is running has been shortened.
  • the ra-ContentionResolutionTimer is a timer for a UE to monitor a RA response (e.g., contention resolution or Msg4) from the network after the Msg3 transmission during RA procedure. This timer is (re) started at the first symbol after the end of the Msg3 (re) transmission. While the ra-ContentionResolutionTimer is running, the UE monitors the PDCCH regardless of the possible occurrence of a measurement gap.
  • a RA response e.g., contention resolution or Msg4
  • the UE may consider the contention resolution successful if the RA procedure was initiated by a BFR, a PDCCH order, or by the UE. In this case, the UE may stop the ra-ContentionResolutionTimer. In contrast, if the ra-ContentionResolutionTimer expires, the UE may consider the contention resolution not successful.
  • the UE may stop the ra-ContentionResolutionTimer.
  • the UE considers the contention resolution successful if the corresponding MAC Protocol Data Unit (PDU) is successfully decoded, and the MAC PDU contains a UE Contention Resolution Identity MAC CE that matches the CCCH SDU transmitted in the Msg3.
  • the UE may consider the contention resolution not successful (and discards the TEMPORARY_C-RNTI) .
  • a HD-FDD UE may perform an UL transmission while the ra- ContentionResolutionTimer is running.
  • FIG. 2 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the ra-ContentionResolutionTimer is running, according to an implementation of the present disclosure.
  • the HD-FDD UE transmits the Msg3, and starts the ra-ContentionResolutionTimer.
  • the UE performs the UL transmission while the ra-ContentionResolutionTimer is running.
  • the HD-FDD UE may miss the contention resolution (e.g., Msg4) from the network after the Msg3 transmission while the ra-ContentionResolutionTimer is running.
  • the contention resolution from the network after the Msg3 transmission may be referred to a PDCCH transmission associated with C-RNTI or TEMPORARY_C-RNTI, depending on the content of the Msg3 as transmitted by the UE.
  • the UE may only monitor the PDCCH transmission after the corresponding UL transmission has been completed. This may increase the probability of unsuccessful contention resolution because the actual time to monitor the PDCCH transmission associated with C-RNTI or TEMPORARY_C-RNTI while the ra-ContentionResolutionTimer is running has been shortened.
  • the msgB-ResponseWindow is a timer window for a UE to monitor a RA response (e.g., MSGB) after MSGA transmission during RA procedure. This timer is (re) started at the first PDCCH occasion from the end of the MSGA transmission. While the msgB-ResponseWindow is running, the UE monitors the PDCCH of the SpCell for MSGB regardless of the possible occurrence of a measurement gap.
  • a RA response e.g., MSGB
  • the UE monitors the PDCCH transmission of the SpCell for the MSGB identified by the MSGB-RNTI while the msgB-ResponseWindow is running.
  • the MSGA that the UE transmitted includes a C-RNTI MAC CE
  • the UE monitors the PDCCH transmission of the SpCell for a MSGB identified by the C-RNTI and MSGB-RNTI while the msgB-ResponseWindow is running.
  • the UE may consider the MSGB reception successful and stop the msgB-ResponseWindow if at least one of the following conditions is satisfied:
  • Condition A-1 RA procedure is initiated for a BFR procedure
  • Condition A-2 The timeAlignmentTimer associated with a Primary Timing Advance Group (PTAG) is running;
  • Condition A-3 If neither condition 1 nor condition 2 is satisfied, and the received PDCCH transmission addressed to C-RNTI is a downlink assignment. Moreover, the corresponding transport block (TB) /MAC PDU (received from the PDSCH scheduled by the downlink assignment) is successfully decoded and the TB/MAC PDU contains the Absolute Timing Advance Command MAC CE subPDU.
  • the UE may consider the MSGB successful and stop the msgB-ResponseWindow if at least one of the following conditions is satisfied:
  • Condition B-1 If the MSGB contains a successRAR MAC subPDU and if the CCCH SDU was included in the MSGA and the UE Contention Resolution Identity in the successRAR MAC subPDU matches the CCCH SDU; and
  • Condition B-2 If the MSGB contains a fallbackRAR MAC subPDU and the Random Access Preamble identifier in the MAC subPDU matches the transmitted PREAMBLE_INDEX (corresponding to the MSGA) .
  • the UE may indicate RA problems to an upper layer (e.g., the RRC layer) .
  • the UE may perform Random Access Resource selection procedure for 4-step RA type Random Access if the number of preamble transmissions has reached a configured threshold, msgA-TransMax (e.g., a value of PREAMBLE_TRANSMISSION_COUNTER is larger than msgA-TransMax) .
  • the UE may perform Random Access Resource selection procedure for 2-step RA type Random Access if the threshold, msgA-TransMax, is not configured or if the number of preamble transmissions has not reached the configured threshold, msgA-TransMax (e.g., either if msgA-TransMax is not configured or if the value of PREAMBLE_TRANSMISSION_COUNTER is not larger than msgA-TransMax) .
  • msgA-TransMax e.g., either if msgA-TransMax is not configured or if the value of PREAMBLE_TRANSMISSION_COUNTER is not larger than msgA-TransMax
  • a HD-FDD UE may be performing an UL transmission while the msgB-ResponseWindow is running.
  • FIG. 3 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the msgB-ResponseWindow is running, according to an implementation of the present disclosure.
  • the HD-FDD UE transmits the MSGA, and starts the msgB-ResponseWindow.
  • the UE performs the UL transmission while the msgB-ResponseWindow is running.
  • the HD-FDD UE may miss the MSGB from the network after the MSGA transmission while the msgB-ResponseWindow is running.
  • the MSGB from the network after the MSGA transmission may be referred to PDCCH transmission associated with C-RNTI or MSGB-RNTI, depending on the content of the MSGA as transmitted by the UE.
  • the UE may only monitor the PDCCH transmission after the corresponding UL transmission has been completed. This may increase the probability of unsuccessful contention resolution because the actual time to monitor the PDCCH transmission associated with C-RNTI or MSGB-RNTI while the ra-ContentionResolutionTimer is running may have been shortened.
  • the UE may perform at least one of the following actions.
  • the UE may be configured with a specific type. That is, the UE may receive configurations associated with a specific type.
  • the specific type of UE may be referred to as a UE in HD-FDD operation.
  • the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, or an NB-IoT UE.
  • the specific type of UE may have a specific UE capability set and/or a specific UE category (e.g., reduced capability UE) .
  • the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions.
  • a UE may be configured with a parameter that indicates whether the UE needs to prioritize the DL resource and/or UL resource for a specific case (e.g., after the MSGA/Msg3/RA preamble is transmitted by a UE and/or while a timer related to RA procedure is running) .
  • Action 1 The UE may monitor/receive any DL resource (s)
  • the UE may monitor/receive any DL resource regardless of (time-domain) overlapping with any UL resource.
  • the DL resource may be a PDSCH that is configured or dynamically scheduled by the network.
  • the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor downlink control information (DCI) that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) , and/or Slot format Indicator (SFI) , and/or to monitor RA response, BFR response.
  • DCI downlink control information
  • scheduling information e.g., scheduling of PDSCH or PUSCH
  • SFI Slot format Indicator
  • the DL resource may be configured by the network for monitoring of broadcast/multicast services (e.g., Physical Multicast Channel (PMCH) ) .
  • broadcast/multicast services e.g., Physical Multicast Channel (PMCH)
  • the UE may prioritize a DL resource over any UL resource when (time-domain) overlapping occurs.
  • the UE may perform DL reception/monitoring on a DL resource when the DL resource overlaps (in the time domain) an UL resource.
  • the UE may drop the corresponding UL resource.
  • an UL resource may be a (configured or dynamically scheduled) PUSCH or Physical Uplink Control Channel (PUCCH) .
  • the UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
  • the timer related to RA procedure e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, msgB-ResponseWindow
  • the UL resource that overlaps any DL resource may be dropped.
  • the timer related to RA procedure e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, msgB-ResponseWindow
  • Action 2 The UE may monitor/receive DL resource (s) with specific characteristics
  • the UE may monitor/receive any DL resource with specific characteristics regardless of (time-domain) overlapping any UL resource.
  • the UE may not monitor/receive a DL resource without specific characteristics. For example, if there is no DL resource with specific characteristics while the previously mentioned timer is running, the UE may stay in the UL transmission without switching to the DL reception.
  • the DL resource with specific characteristics may be referred to as a PDSCH that is configured by the network (e.g., a PDSCH corresponding to a configured DL assignment) .
  • the DL resource with specific characteristics may be referred to as a DL resource that corresponds to Semi-Persistent Scheduling (SPS) .
  • SPS Semi-Persistent Scheduling
  • the DL resource with specific characteristics may be referred to as a DL resource that corresponds to one or more SPS configurations.
  • the DL resource with specific characteristics may be referred to as a PDSCH that is dynamically scheduled by the network (e.g., scheduled by a DCI) .
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
  • scheduling information e.g., scheduling of PDSCH or PUSCH
  • SFI SFI
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes DCI format 2_4.
  • the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more ControlResourceSetId/SearchSpaceID, which is per BWP/cell/CG configured by the gNB.
  • the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more SearchSpaceID, which is configured to monitor one or more specific formats of DCI.
  • the DL resource with specific characteristics may be referred to as a DL resource for monitoring broadcast/multicast services (e.g., PMCH) .
  • PMCH broadcast/multicast services
  • the DL resource with specific characteristics may be referred to as a DL resource configured with a “high priority” or a “higher index” , where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
  • a DL resource configured with a “high priority” or a “higher index” where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
  • the DL resource with specific characteristics may be referred to as a specific search space, indicated by recoverySearchSpaceId (e.g., the search space identity for monitoring the BFR response corresponding to the BFR request) .
  • recoverySearchSpaceId e.g., the search space identity for monitoring the BFR response corresponding to the BFR request
  • a DL resource with specific characteristics may be referred to as a PDCCH/search space (e.g., Type 1 CSS set) for RA procedure.
  • a PDCCH/search space e.g., Type 1 CSS set
  • the UE may (always) monitor PDCCH if the UE needs to monitor for a PDCCH transmission identified by a specific RNTI (e.g., RA-RNTI, MSGB-RNTI, or a Temporary Cell RNTI (TC-RNTI) ) .
  • a specific RNTI e.g., RA-RNTI, MSGB-RNTI, or a Temporary Cell RNTI (TC-RNTI) .
  • TC-RNTI Temporary Cell RNTI
  • the DL resource with specific characteristics may be referred to as a PDSCH that is scheduled by a specific DCI format.
  • the DL resource with specific characteristics may be referred to as a PDSCH/PDCCH/reference signal configured by a dedicated RRC configuration (e.g., configuration for HD-FDD operation or configuration for reduced capability) .
  • a dedicated RRC configuration e.g., configuration for HD-FDD operation or configuration for reduced capability
  • the UE may monitor/receive any DL resource with specific characteristics on PCell/PScell regardless of (time-domain) overlapping any UL resource on other SCells, and the specific characteristics may be the same as mentioned previously.
  • the PDCCH/search space for RA procedure may be used to monitor a RA response.
  • the PDCCH/search space for RA procedure may be indicated by ra-SearchSpace.
  • the PDDC/search space for a specific procedure performed by the MAC entity of the UE.
  • the PDCCH/search space for monitor paging (on specific BWP) and may be configured by RRC IE (e.g., pagingSearchSpace)
  • the PDCCH/search space for monitor one or more specific types of system information e.g., system information block 1 (SIB 1) .
  • SIB 1 system information block 1
  • the PDCCH/search space for RA procedure may be used to monitor DCI/PDCCH candidates with CRC scrambled by RA-RNTI, TEMPORARY_C-RNTI, MSGB-RNTI, C-RNTI.
  • the UE may prioritize the DL resource with specific characteristics over any UL resource when (time-domain) overlapping occurs.
  • the UE may perform DL reception/monitoring on the DL resource with specific characteristics when the DL resource overlaps (in the time domain) an UL resource.
  • the UE may drop the corresponding UL resource.
  • the UL resource may be a (configured or dynamically scheduled) PUSCH or PUCCH.
  • the UE may monitor the PDCCH transmission on the search space indicated by recoverySearchSpaceId (e.g., the search space identity for monitoring the response of the BFR request) regardless of (time-domain) overlapping any UL resource.
  • recoverySearchSpaceId e.g., the search space identity for monitoring the response of the BFR request
  • the UL resource that overlaps the search space indicated by recoverySearchSpaceId may be dropped.
  • the UE may monitor the PDCCH/search space for RA procedure regardless of (time-domain) overlapping any UL resource.
  • the UL resource that overlaps the PDCCH/search space for RA procedure may be dropped.
  • the UE may monitor the PDCCH/search space for RA procedure regardless of (time-domain) overlapping any UL resource.
  • the MSGA is transmitted by the UE and/or while msgB-ResponseWindow is running, the UL resource that overlaps the PDCCH/search space for RA procedure may be dropped.
  • the UE may monitor the PDCCH/search space for RA procedure regardless of (time-domain) overlapping any UL resource.
  • the UL resource that overlaps the PDCCH/search space for RA procedure may be dropped.
  • Action 3 The UE may switch to the DL
  • the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) while a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is running.
  • a DL resource e.g., DL physical channel
  • a timer related to RA procedure e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow
  • the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) after a RA preamble is transmitted and while ra-ResponseWindow is running.
  • a DL resource e.g., DL physical channel
  • the DL resource may be a PDCCH/search space for RA procedure.
  • the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) after the MSGA is transmitted and while msgB-ResponseWindow is running.
  • a DL resource e.g., DL physical channel
  • the DL resource may be a PDCCH/search space for RA procedure.
  • the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) after the Msg3 is transmitted and while ra-ContentionResolutionTimer is running.
  • a DL resource e.g., DL physical channel
  • the DL resource may be a PDCCH/search space for RA procedure.
  • the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) and/or UL resource (e.g., DL physical channel) after the PHY layer of the UE receives a specific indication from the MAC entity of the UE.
  • a DL resource e.g., DL physical channel
  • UL resource e.g., DL physical channel
  • the specific indication may indicate whether the DL resource and/or UL resource should be prioritized if the DL resource and the UL resource are partially or fully overlapped.
  • the PDCCH/search space for RA procedure may be used to monitor a RA response.
  • the PDCCH/search space for RA procedure may be indicated by ra-SearchSpace.
  • the PDCCH/search space for RA procedure may be used to monitor DCI/PDCCH candidates with CRC scrambled by RA-RNTI, TEMPORARY_C-RNTI, MSGB-RNTI, C-RNTI.
  • the UE may switch to the DL reception immediately after the MSGA/Msg3/RA preamble is transmitted and/or immediately after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is (re) started.
  • a timer related to RA procedure e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow
  • the UE may switch to the DL reception at a period after the MSGA/Msg3/RA preamble is transmitted and/or at a period of time after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is (re) started.
  • a timer related to RA procedure e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow
  • the period may be predefined/preconfigured in the UE or may be configured by the network.
  • the predefined period may be determined by the UE capability, or correspond to the subcarrier spacing (SCS) configuration.
  • SCS subcarrier spacing
  • the predefined period (e.g., an offset) may be indicated by a PDCCH order.
  • the UE may switch to the DL reception in a slot after the slot that includes the last symbol of the PRACH resource where the MSGA/Msg3/RA preamble is transmitted.
  • the UE may switch to the DL reception immediately after the PHY layer of the UE receives a specific indication from the MAC entity of the UE. Moreover, the UE may be expected to receive an indication after the MSGA/Msg3/RA preamble is transmitted and/or immediately after a timer related to RA procedure (e.g., ra- ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is (re) started.
  • a timer related to RA procedure e.g., ra- ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow
  • Action 4 The UE may be prohibited from switching to the UL
  • the UE is not expected to transmit an UL resource (e.g., UL physical channel) while a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is running.
  • a timer related to RA procedure e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow
  • the UE is not expected to transmit an UL resource (e.g., UL physical channel) after a preamble is transmitted and while ra-ResponseWindow is running.
  • an UL resource e.g., UL physical channel
  • the UE is not expected to transmit an UL resource (e.g., UL physical channel) after the MSGA is transmitted and while msgB-ResponseWindow is running.
  • an UL resource e.g., UL physical channel
  • the UE is not expected to transmit an UL resource (e.g., UL physical channel) after the Msg3 is transmitted and while ra-ContentionResolutionTimer is running.
  • an UL resource e.g., UL physical channel
  • the UE may switch to the UL transmission immediately after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped.
  • a timer related to RA procedure e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow
  • the UE may switch to the UL transmission immediately after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped.
  • the indication may be a UL grant indicating an UL resource or an SFI indicating an UL symbol.
  • the MAC entity of the UE may switch to the UL transmission immediately after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped.
  • a timer related to RA procedure e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow
  • the MAC entity may switch to the UL transmission immediately after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped.
  • a timer related to RA procedure e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow
  • the UE may not expect to be configured any UL resource (e.g., symbols indicated as ‘uplink’ ) or be scheduled in a guard period (e.g., symbols indicated as ‘flexible’ ) while a timer related to RA procedure (e.g., ra-ResponseWindow, ra- ContentionResolutionTimer, or msgB-ResponseWindow) is running.
  • any UL resource e.g., symbols indicated as ‘uplink’
  • a guard period e.g., symbols indicated as ‘flexible’
  • a timer related to RA procedure e.g., ra-ResponseWindow, ra- ContentionResolutionTimer, or msgB-ResponseWindow
  • the UE may switch to the UL transmission at a period after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped.
  • a timer related to RA procedure e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow
  • the UE may switch to the UL transmission at a period after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped.
  • the indication may be a UL grant indicating an UL resource or an SFI indicating an UL symbol.
  • the period may be predefined/preconfigured in the UE or may be configured by the network.
  • the predefined period may be determined by the UE capability, or correspond to the SCS configuration.
  • the predefined period (e.g., an offset) may be indicated by a PDCCH order.
  • the UE may start the ra-ResponseWindow at the first valid PDCCH occasion/search space for RA procedure from the end of the preamble transmission.
  • the UE may start the msgB-ResponseWindow at the first valid PDCCH occasion/search space for RA procedure from the end of the MSGA transmission.
  • the UE may start the ra-ContentionResolutionTimer at the first valid PDCCH occasion/search space for RA procedure from the end of the Msg3 transmission.
  • the valid PDCCH occasion/search space for RA procedure may be used to monitor a RA response.
  • the valid PDCCH occasion/search space for RA procedure may be indicated by ra-SearchSpace.
  • the valid PDCCH occasion/search space for RA procedure may be used to monitor DCI/PDCCH candidates with CRC scrambled by RA-RNTI, TEMPORARY_C-RNTI, MSGB-RNTI, C-RNTI.
  • the valid PDCCH occasion/search space for RA procedure may not overlap any other UL resource in the time domain.
  • a PDCCH/search space for RA procedure that overlaps an UL resource or the corresponding switching time in the time domain may be considered invalid.
  • the PDCCH/search space for RA procedure is considered valid only if the PDCCH/search space is prioritized over the UL resource.
  • the valid PDCCH/search space for RA procedure is selected (for monitoring/reception) instead of (UL transmission on) the UL resource.
  • the PDCCH occasion/search space for RA procedure may be considered valid only if the UE is currently at DL (e.g., the UE has switched from UL transmission to DL reception) .
  • the UE may count how many PDCCH opportunities are invalid and/or failed to monitor (while ra-ResponseWindow and/or msgB-ResponseWindow is running) , by a counter. If the number of invalid PDCCH opportunities and/or the number of PDCCH opportunities that the UE fails to monitor have reached a (preconfigured) value, the UE may perform at least one of the following behaviors (even if there is an overlapping UL resource) :
  • the beamFailureDetectionTimer and beamFailureInstanceMaxCount are configured by the network for beam failure detection.
  • the BFI_COUNTER maintained at a serving cell is used to count the number of beam failure instance indications on the corresponding serving cell.
  • a UE may be configured, by the network, at least a DL Beam Failure Detection (BFD) reference signal (RS) (e.g., Synchronization Signal Block (SSB) and/or channel state information (CSI) RS (CSI-RS) ) for detecting beam failures of a serving cell.
  • BFD Beam Failure Detection
  • RS DL Beam Failure Detection
  • SSB Synchronization Signal Block
  • CSI-RS channel state information
  • the PHY layer of the UE monitors the DL BFD RS (e.g., SSB and/or CSI-RS) for detection of beam failures of a serving cell, and provides a beam failure instance indication to the MAC layer of the UE for the serving cell when the detected radio link quality is worse than a threshold for a time period.
  • a BFR report e.g., a BFR MAC CE
  • a BFR report may be a (truncated) BFR MAC CE.
  • the (truncated) BFR MAC CE may indicate the cell (e.g., SpCell or SCell) where beeam failure has been detected.
  • the (truncated) BFR MAC CE may indicate whether a candidate beam (e.g., SSB and/or CSI-RS) , is available at the cell. If at least one candidate beam is available at a cell, the (truncated) BFR MAC CE may include the identity of one of the candidate beams at the cell.
  • a candidate beam e.g., SSB and/or CSI-RS
  • the UE may consider an SSB as a candidate beam if the measured SS-RSRP from the SSB is above a configured threshold (e.g., rsrp-ThresholdBFR) .
  • a configured threshold e.g., rsrp-ThresholdBFR
  • the UE may consider a CSI-RS as a candidate beam if the measured CSI-RS is above a configured threshold (e.g., rsrp-ThresholdBFR) .
  • the beamFailureDetectionTimer is (re) started when a beam failure instance indication has been received for a serving cell. Furthermore, upon expiry of beamFailureDetectionTimer, the UE resets the BFI_COUNTER for the corresponding serving cell.
  • the purpose of beamFailureDetectionTimer is to enable the UE reset BFI_COUNTER of a serving cell if no beam failure instance has been received at the serving cell for a period defined by beamFailureDetectionTimer. As such, the UE can be prevented from continuously incrementing BFI_COUNTER even if the radio link quality may have become better for a long time between two beam failure instance indications.
  • FIG. 4 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the beamFailureDetectionTimer is running, according to an implementation of the present disclosure.
  • the physical layer of the HD-FDD UE transmits the beam failure instance to the MAC entity of the HD-FDD UE, and starts the beamFailureDetectionTimer.
  • the UE performs the UL transmission while the beamFailureDetectionTimer is running.
  • the HD-FDD UE may not monitor the DL BFD RS (e.g., SSB (s) and/or CSI-RS (s) ) for the detection of beam failures (of a serving cell) during the UL transmission. This implies that no beam failure instances can be received, and consequently a running beamFailureDetectionTimer may not be (re) started.
  • the BFI_COUNTER of a serving cell may be reset upon expiration of a beamFailureDetectionTimer, which delays the initiation of (SpCell/SCell) BFR procedure even if beam failure (s) may potentially be detected.
  • the UE may perform at least one of the following actions. Furthermore, the UE may be configured with a specific type. The UE may receive configurations associated with a specific type. In some implementations, the specific type of UE may be referred to as a UE in HD-FDD operation. In some implementations, the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, or an NB-IoT UE. In some implementations, the specific type of UE may have a specific UE capability set and/or a specific UE category (e.g., reduced capability UE) .
  • a specific UE capability set and/or a specific UE category e.g., reduced capability UE
  • the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions.
  • a UE may be configured with a parameter that indicates whether the UE needs to prioritize the DL resource and/or UL resource for a specific case (e.g., while a timer related to BFR procedure is running) .
  • Action 1 The UE may monitor/receive any DL resource (s)
  • the UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
  • the DL resource may be a PDSCH that is configured or dynamically scheduled by the network.
  • the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI, and/or to monitor RA response, BFR response.
  • scheduling information e.g., scheduling of PDSCH or PUSCH
  • SFI scheduling information
  • BFR response RA response, BFR response.
  • the DL resource may be configured by the network for monitoring of broadcast/multicast services (e.g., PMCH) .
  • PMCH broadcast/multicast services
  • the DL resource may be configured by the network for monitoring of interruption from other UEs (e.g., DCI with format 2-1 or 2-4) .
  • the UE may prioritize a DL resource over any UL resource when (time-domain) overlapping occurs (e.g., the DL resource partially or fully collides the UL resource) .
  • the UE may perform DL reception/monitoring on a DL resource when the DL resource overlaps (in the time domain) an UL resource.
  • the UE may drop the corresponding UL resource.
  • an UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH.
  • the network may configure a prioritization between UL transmission and DL reception to a UE.
  • a UE may be configured with a parameter that indicates whether the UE needs to prioritize the DL resource and/or UL resource for a specific case (e.g., while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running) .
  • a timer related to BFR procedure e.g., beamFailureDetectionTimer
  • a UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
  • a timer related to BFR procedure e.g., beamFailureDetectionTimer
  • the UL resource that overlaps any DL resource may be dropped.
  • Action 2 The UE may monitor/receive DL resource (s) with specific characteristics
  • the UE may monitor/receive any DL resource with specific characteristics regardless of (time-domain) overlapping any UL resource.
  • the UE may not monitor/receive a DL resource without specific characteristics. For example, if there is no DL resource with specific characteristics while the previously mentioned timer is running, the UE may stay in the UL transmission without switching to the DL reception.
  • the DL resource with specific characteristics may be referred to as a PDSCH that is configured by the network (e.g., a PDSCH corresponding to a configured downlink assignment)
  • the DL resource with specific characteristics may be referred to as a PDSCH that is dynamically scheduled by the network (e.g., scheduled by a DCI) .
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
  • scheduling information e.g., scheduling of PDSCH or PUSCH
  • SFI SFI
  • the DL resource with specific characteristics may be referred to as a DL resource for monitoring broadcast/multicast services (e.g., PMCH) .
  • PMCH broadcast/multicast services
  • the DL resource with specific characteristics may be referred to as a DL resource configured with a “high priority” or a “higher index” , where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
  • a DL resource configured with a “high priority” or a “higher index” where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
  • the DL resource with specific characteristics may be referred to as a specific search space indicated by recoverySearchSpaceId (e.g., the search space identity for monitoring the BFR response corresponding to the BFR request) .
  • recoverySearchSpaceId e.g., the search space identity for monitoring the BFR response corresponding to the BFR request
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes DCI format 2_4.
  • the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more ControlResourceSetId/SearchSpaceID, which is per BWP/cell/CG configured by the gNB.
  • the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more SearchSpaceID, which is configured to monitor one or more specific formats of DCI.
  • the DL resource with specific characteristics may be referred to as a PDSCH that is scheduled by a specific DCI format.
  • the DL resource with specific characteristics may be referred to as a PDSCH/PDCCH/reference signal configured by a dedicated RRC configuration (e.g., configuration for HD-FDD operation or configuration for reduced capability) .
  • a dedicated RRC configuration e.g., configuration for HD-FDD operation or configuration for reduced capability
  • the UE may monitor/receive any DL resource with specific characteristics on PCell/PScell regardless of (time-domain) overlapping any UL resource on other SCells, and the specific characteristics may be the same as mentioned previously.
  • the DL resource with specific characteristics may be referred to as a BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures of a serving cell.
  • the BFD RS may be configured in RadioLinkMonitoringRS IE (with the purpose IE set to the value “beamFailure” ) .
  • the UE may prioritize the DL resource with specific characteristics over any UL resource when (time-domain) overlapping occurs.
  • the UE may perform DL reception/monitoring on the DL resource with specific characteristics when the DL resource overlaps (in the time domain) with an UL resource.
  • the UE may drop the corresponding UL resource.
  • an UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH.
  • the UE may monitor BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures regardless of (time-domain) overlapping any UL resource while the timer is running.
  • BFD RS e.g., SSB and/or CSI-RS
  • the UL resource may be dropped if the UL resource overlaps the BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures.
  • the UL resource may be dropped if the UL resource overlaps the BFD RS (e.g., SSBand/or CSI-RS) for the detection of beam failures on the serving cell where beam failure instance indication has been received.
  • the BFD RS e.g., SSBand/or CSI-RS
  • the UL resource may be dropped if the UL resource overlaps the BFD RS (e.g., SSBand/or CSI-RS) for the detection of beam failures on the serving cell where the corresponding BFI_COUNTER is not zero.
  • the BFD RS e.g., SSBand/or CSI-RS
  • Action 3 The UE may stay in DL
  • the UE when beam failure instance indication has been received for a serving cell, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running.
  • a DL resource e.g., DL physical channel
  • a timer related to BFR procedure e.g., beamFailureDetectionTimer
  • the DL resource may be a BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures.
  • the UE when beam failure instance indication has been received for a serving cell, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) for at least a period T1.
  • a DL resource e.g., DL physical channel
  • the DL resource may be a BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures.
  • BFD RS e.g., SSB and/or CSI-RS
  • the DL resource may be a BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures on the serving cell where beam failure instance indication has been received.
  • BFD RS e.g., SSB and/or CSI-RS
  • the DL resource may be a BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures on the serving cell where the corresponding BFI_COUNTER is not zero.
  • BFD RS e.g., SSB and/or CSI-RS
  • the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) and/or UL resource (e.g., DL physical channel) after the PHY layer of the UE receives a specific indication from the MAC entity of the UE.
  • a DL resource e.g., DL physical channel
  • UL resource e.g., DL physical channel
  • the specific indication may indicate whether the DL resource and/or UL resource should be prioritized if the DL resource and the UL resource are partially or fully overlapped.
  • the period T1 may be predefined/preconfigured in the UE or may be configured by the network.
  • the BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures may be configured in RadioLinkMonitoringRS IE (with the purpose IE set to the value “beamFailure” ) .
  • Action 4 The UE may be prohibited from switching to the UL
  • the UE is not expected to transmit an UL resource (e.g., UL physical channel) while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running.
  • UL resource e.g., UL physical channel
  • timer related to BFR procedure e.g., beamFailureDetectionTimer
  • the UE may switch to the UL transmission immediately after at least a timer related to BFR procedure (e.g., beamFailureDetectionTimer of at least a cell) is expired or stopped.
  • a timer related to BFR procedure e.g., beamFailureDetectionTimer of at least a cell
  • the UE may switch to the UL transmission immediately after at least a timer related to BFR procedure (e.g., beamFailureDetectionTimer of at least a cell) is expired or stopped.
  • the indication may be a UL grant indicating an UL resource, or an SFI indicating an UL symbol.
  • the UE may switch to the UL transmission at a period after at least a timer related to BFR procedure (e.g., beamFailureDetectionTimer of at least a cell) is expired or stopped.
  • a timer related to BFR procedure e.g., beamFailureDetectionTimer of at least a cell
  • the UE may switch to the UL transmission at a period after at least a timer related to BFR procedure (e.g., beamFailureDetectionTimer of at least a cell) is expired or stopped.
  • the indication may be a UL grant indicating an UL resource, or an SFI indicating an UL symbol.
  • the MAC entity of the UE may switch to the UL transmission immediately after a timer related to BFR procedure is expired or stopped.
  • the MAC entity of the UE may switch to the UL transmission immediately after a timer related to BFR procedure is expired or stopped.
  • the period may be predefined/preconfigured in the UE or may be configured by the network.
  • the predefined period may be determined by the UE capability, or correspond to the SCS configuration.
  • the predefined period (e.g., an offset) may be indicated by a PDCCH order.
  • the UE may stop or (re) start the timer when at least one of the following conditions have been satisfied. Moreover, the UE may set the corresponding BFI_COUNTER to zero if at least one of the following conditions has been satisfied.
  • the UE may be configured with a specific type. In some implementations, the specific type of UE may be referred to as a UE in HD-FDD operation. In some s implementations, the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, or an NB-IoT UE.
  • the specific type of UE may have a specific UE capability set and/or a specific UE category.
  • the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions.
  • the UE may set the corresponding BFI_COUNTER to zero.
  • Condition 1 When the UE has a valid UL resource for transmission
  • the UL resource may be a PUSCH resource indicated/scheduled by a dynamic UL grant, a configured UL grant Type 1/Type 2, RAR, MSGB.
  • the UL resource may be a PUCCH resource configured by the network for the UE to transmit uplink control information (UCI) .
  • UCI uplink control information
  • the UL resource may be a PRACH resource for the preamble transmission and/or the MSGA transmission.
  • the UE may consider the UL resource as valid if the UL resource is prioritized.
  • the UE may prioritize the PUSCH resource if the PUSCH resource is used for transmission of a BFR MAC CE. Moreover, this PUSCH resource may be considered as a valid UL resource.
  • the UL resource may be considered valid if the UL resource does not overlap (in the time domain) another DL resource.
  • a DL resource may be a PDSCH, PDCCH, PMCH.
  • the UE may stop the timer if the UE has a valid UL resource.
  • a timer related to BFR procedure e.g., beamFailureDetectionTimer
  • the UL resource may be indicated/scheduled by a dynamic UL grant, a configured UL grant Type 1/Type 2, RAR, MSGB.
  • the UE may perform UL transmission on a valid UL resource.
  • Definition of a valid UL resource is as mentioned previously.
  • the UE stops the timer when an UL transmission is performed. Moreover, the timer may be stopped at the beginning/end of the UL resource where the UL transmission is performed.
  • a timer related to BFR procedure e.g., beamFailureDetectionTimer
  • the UE may perform switching from DL reception to UL transmission upon receiving an indication from the network.
  • the indication may be an SFI, a message that schedules/configures an UL resource (e.g., a DCI/RRC message that schedules/configures PUSCH resource, a DCI/RRC signaling that indicates/configures PUCCH resource)
  • the UE may perform switching from DL reception to UL transmission upon determining that UL transmission needs to be performed on a valid UL resource.
  • Definition of a valid UL resource is as mentioned previously.
  • the UE may stop the timer when the UE performs switching from DL reception to UL transmission. Moreover, the timer may be stopped before the UE performs switching (e.g., before the guard period) or after the UE performs switching (e.g., after the guard period) .
  • a timer related to BFR procedure e.g., beamFailureDetectionTimer
  • the UE may not set the BFI_COUNTER to zero if the following condition has been satisfied.
  • the UE may correspond to a specific type.
  • the specific type of UE may be referred to as a UE in HD-FDD operation.
  • the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, or an NB-IoT UE.
  • the specific type of UE may have a specific UE capability set and/or a specific UE category.
  • the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions.
  • the UE may be in UL if the UE has a valid UL resource for transmission.
  • valid UL resource is as mentioned previously.
  • the UE may be in UL if the UE is currently performing an UL transmission.
  • the UL transmission may be performed on a PUSCH resource, PUCCH resource, as scheduled/configured by the network.
  • the UE may not set the BFI_COUNTER to zero if the UE is currently performing an UL transmission.
  • a timer related to BFR procedure e.g., beamFailureDetectionTimer
  • the UE may always monitor the CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of a PUSCH) until the UE receives a response from the network.
  • the response may correspond to the transmitted MAC PDU.
  • the response may be a PDCCH that schedules a PUSCH resource (other than the PUSCH resource for transmitting the BFR MAC CE) that also corresponds to the first HARQ process ID.
  • the drx-HARQ-RTT-TimerDL is defined as the minimum duration until a DL retransmission is received (e.g., a dynamic DL assignment that schedules a DL resource for retransmission of a TB/MAC PDU on the DL resource) .
  • drx-RetransmissionTimerDL is defined as the maximum duration until a DL retransmission is received.
  • each HARQ process (except for the broadcast process) has its corresponding drx-HARQ-RTT-TimerDL and drx-RetransmissionTimerDL.
  • drx-HARQ-RTT-TimerDL 1 and drx-RetransmissionTimerDL 1 correspond to the HARQ process 1 (e.g., HARQ ID set to ‘1’ )
  • drx-HARQ-RTT-TimerDL 2 and drx-RetransmissionTimerDL 2 correspond to the HARQ process 2 (e.g., HARQ ID set to ‘2’ )
  • drx-HARQ-RTT-TimerDL 1 and drx-HARQ-RTT-TimerDL 2 may be (re) started/stopped independently.
  • drx-RetransmissionTimerDL 1 and drx- RetransmissionTimerDL 2 may also be (re) started/stopped independently.
  • FIG. 5 is a schematic diagram illustrating a condition of starting the drx-HARQ-RTT-TimerDL corresponding to a specific HARQ ID, according to an implementation of the present disclosure.
  • a DL transmission for a HARQ process e.g., a MAC PDU
  • a PDSCH that corresponds to a configured DL assignment (e.g., SPS)
  • the UE may transmit a HARQ feedback (e.g., transmits an ACK/NACK to indicate whether the configured DL assignment has been successfully received/decoded) to the network for the corresponding HARQ process.
  • a HARQ feedback e.g., transmits an ACK/NACK to indicate whether the configured DL assignment has been successfully received/decoded
  • the UE may start drx-HARQ-RTT-TimerDL for the corresponding HARQ process in the first symbol after the ending of the transmission carrying the DL HARQ feedback.
  • the HD-FDD UE transmits the UL feedback of HARQ ID set to ‘1’ corresponding to the DL transmission with HARQ ID set to ‘1’ , and starts the drx-HARQ-RTT-TimerDL with HARQ ID set to ‘1’ .
  • FIG. 6 is a schematic diagram illustrating a condition of starting the drx-HARQ-RTT-TimerDL corresponding to a specific HARQ ID, according to an implementation of the present disclosure.
  • a dynamic DL assignment e.g., a DCI on PDCCH
  • the UE may transmit a DL HARQ feedback (e.g., transmits an ACK/NACK to indicate whether the configured DL assignment has been successfully received/decoded) to the network for the corresponding HARQ process.
  • a DL HARQ feedback e.g., transmits an ACK/NACK to indicate whether the configured DL assignment has been successfully received/decoded
  • the UE may start drx-HARQ-RTT-TimerDL for the corresponding HARQ process in the first symbol after the ending of the transmission carrying the DL HARQ feedback.
  • the HD-FDD UE transmits the UL feedback of HARQ ID set to ‘1’ corresponding to the DL transmission with HARQ ID set to ‘1’ , and starts the drx-HARQ-RTT-TimerDL with HARQ ID set to ‘1’ .
  • the UE may start the drx-RetransmissionTimerDL corresponding to this HARQ process in the first symbol after the expiry of this drx-HARQ-RTT-TimerDL. Subsequently, while drx-RetransmissionTimerDL for this HARQ process is running, the UE may be considered as in DRX Active Time.
  • the UE may monitor for possibly occurring dynamic DL scheduling (e.g., monitors DCI of dynamic DL scheduling on PDCCH) that indicates/schedules a DL resource (e.g., PDSCH resource) for retransmission for the corresponding HARQ process.
  • dynamic DL scheduling e.g., monitors DCI of dynamic DL scheduling on PDCCH
  • a DL resource e.g., PDSCH resource
  • a HD-FDD UE may be performing an UL transmission while the drx-RetransmissionTimerDL of a HARQ process is running.
  • the UE may miss the dynamic DL scheduling (e.g., DCI on PDCCH) that indicates/schedules a DL resource (e.g., PDSCH resource) for retransmission for the corresponding HARQ process while the drx-RetransmissionTimerDL is running.
  • DCI on PDCCH dynamic DL scheduling
  • a DL resource e.g., PDSCH resource
  • the drx-HARQ-RTT-TimerUL is defined as the minimum duration until a UL retransmission (e.g., a dynamic UL grant that schedules an UL resource for retransmission of a TB/MAC PDU on the UL) is received.
  • drx-RetransmissionTimerUL is defined as the maximum duration until a UL retransmission is received.
  • each HARQ process (except for the broadcast process) has its corresponding drx-HARQ-RTT-TimerUL and drx-RetransmissionTimerUL.
  • drx-HARQ-RTT-TimerUL 1 and drx-RetransmissionTimerUL 1 correspond to HARQ process 1 (e.g., HARQ ID set to ‘1’ )
  • drx-HARQ-RTT-TimerUL 2 and drx-RetransmissionTimerUL 2 correspond to HARQ process 2 (e.g., HARQ ID set to ‘2’ )
  • drx-HARQ-RTT-TimerUL 1 and drx-HARQ-RTT-TimerUL 2 may be (re) started/stopped independently.
  • drx-RetransmissionTimerUL 1 and drx-RetransmissionTimerUL 2 may also be (re) started/stopped independently.
  • FIG. 7 is a schematic diagram illustrating a condition of starting the drx-HARQ-RTT-TimerUL corresponding to a specific HARQ ID, according to an implementation of the present disclosure.
  • the UE may start drx-HARQ-RTT-TimerUL for the corresponding HARQ process in the first symbol after the ending of the first repetition of the corresponding UL transmission (e.g., PUSCH transmission) .
  • the UL resource where the UL transmission is performed may correspond to a configured UL grant.
  • the UL resource where the UL transmission is performed may be scheduled by a dynamic UL grant (e.g., a PDCCH indicating a UL transmission) .
  • a dynamic UL grant e.g., a PDCCH indicating a UL transmission
  • the HD-FDD UE transmits the UL transmission with HARQ ID set to ‘1’ , and starts the drx-HARQ-RTT-TimerUL with HARQ ID set to ‘1’ .
  • the UE may start the drx-RetransmissionTimerUL corresponding to this HARQ process in the first symbol after the expiry of this drx-HARQ-RTT-TimerUL. Subsequently, while drx-RetransmissionTimerUL for this HARQ process is running, the UE may be considered as in DRX Active Time. As such, the UE may monitor for possibly occurring dynamic UL grant (e.g., monitors DCI of dynamic UL grant on PDCCH) that indicates/schedules a UL resource (e.g., PUSCH resource) for retransmission for the corresponding HARQ process.
  • dynamic UL grant e.g., monitors DCI of dynamic UL grant on PDCCH
  • a UL resource e.g., PUSCH resource
  • a HD-FDD UE may be performing an UL transmission while the drx-RetransmissionTimerUL of a HARQ process is running.
  • the HD-FDD UE may miss the dynamic UL grant (e.g., DCI on PDCCH) that indicates/schedules a UL resource (e.g., PUSCH resource) for retransmission for the corresponding HARQ process while the drx-RetransmissionTimerUL is running.
  • the dynamic UL grant e.g., DCI on PDCCH
  • a UL resource e.g., PUSCH resource
  • the drx-InactivityTimer is defined as the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission for the MAC entity of the UE.
  • the drx-InactivityTimer may be (re) started in the first symbol after the end of the PDCCH transmission indicating a new UL or DL transmission. While drx-InactivityTimer is running, the UE may be considered as in DRX Active Time. As such, the UE may monitor possible PDCCH transmission indicating UL or DL retransmissions.
  • the drx-onDurationTimer defines the duration at the beginning of a DRX Cycle.
  • the drx-onDurationTimer may be started after drx-SlotOffset from the beginning of a subframe if one of the following conditions has been satisfied:
  • the UE While drx-onDurationTimer is running, the UE may be considered as in DRX Active Time. As such, the UE may monitor possible PDCCH transmission.
  • a HD-FDD UE may be performing an UL transmission while the drx-InactivityTimer or drx-onDurationTimer is running.
  • the HD-FDD UE may miss the PDCCH transmission while drx-InactivityTimer or drx-onDurationTimer is running.
  • the UE may perform at least one of the following actions. Furthermore, the UE may be configured with a specific type. The UE may receive configurations associated with a specific type. In some implementations, the specific type of UE may be referred to as a UE in HD-FDD operation. In some implementations, the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, or an NB-IoT UE.
  • a timer related to DRX procedure e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer
  • the UE may perform at least one of the following actions.
  • the UE may be configured with a specific type.
  • the UE may receive configurations associated with a specific type.
  • the specific type of UE may be referred to as a UE in HD-FDD operation.
  • the specific type of UE may
  • the specific type of UE may have a specific UE capability set and/or a specific UE category (e.g., reduced capability UE) .
  • the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions.
  • a UE may be configured with a parameter that indicates whether the UE needs to prioritize the DL resource and/or UL resource for a specific case (e.g., while a timer related to DRX procedure is running) .
  • Action 1 The UE may monitor/receive any DL resource (s)
  • the UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
  • the DL resource may be a PDSCH that is configured or dynamically scheduled by the network.
  • the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
  • scheduling information e.g., scheduling of PDSCH or PUSCH
  • SFI SFI
  • the DL resource may be configured by the network for monitoring of broadcast/multicast services (e.g., PMCH) .
  • PMCH broadcast/multicast services
  • the UE may prioritize a DL resource over any UL resource when (time-domain) overlapping occurs.
  • the UE may perform DL reception/monitoring on the DL resource when the DL resource overlaps (in the time domain) an UL resource.
  • the UE may drop the corresponding UL resource.
  • the UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH, reference signal.
  • the UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
  • a timer related to DRX procedure e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer
  • the UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
  • the UL resource that overlaps any DL resource may be dropped.
  • Action 2 The UE may monitor/receive DL resource (s) with specific characteristics
  • the UE may monitor/receive any DL resource with specific characteristics regardless of (time-domain) overlapping any UL resource.
  • the UE may not monitor/receive a DL resource without specific characteristics. For example, if there is no DL resource with specific characteristics while the previously mentioned timer is running, the UE may stay in the UL transmission without switching to the DL reception.
  • the DL resource with specific characteristics may be referred to as a PDSCH that is configured by the network (e.g., a PDSCH corresponding to a configured downlink assignment)
  • the DL resource with specific characteristics may be referred to as a PDSCH that is dynamically scheduled by the network (e.g., scheduled by a DCI) .
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
  • scheduling information e.g., scheduling of PDSCH or PUSCH
  • SFI SFI
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, Cancellation Indication RNTI (CI-RNTI) , Configured Scheduling RNTI (CS-RNTI) , Interruption RNTI (INT-RNTI) , Power Saving RNTI (PS-RNTI) , SFI-RNTI, Semi-Persistent CSI RNTI (SP-CSI-RNTI) ) .
  • C-RNTI C-RNTI
  • Cancellation Indication RNTI CI-RNTI
  • CS-RNTI Configured Scheduling RNTI
  • INT-RNTI Interruption RNTI
  • PS-RNTI Power Saving RNTI
  • SP-CSI-RNTI Semi-Persistent CSI RNTI
  • the DL resource with specific characteristics may be referred to as a DL resource for monitoring broadcast/multicast services (e.g., PMCH) .
  • PMCH broadcast/multicast services
  • the DL resource with specific characteristics may be referred to as a DL resource configured with a “high priority” or a “higher index” , where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
  • a DL resource configured with a “high priority” or a “higher index” where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes DCI format 2_4.
  • the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or multiple ControlResourceSetId/SearchSpaceID, which is per BWP/cell/CG configured by the gNB.
  • the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or multiple SearchSpaceID, which is configured to monitor one or more specific formats of DCI.
  • the DL resource with specific characteristics may be referred to as a PDSCH that is scheduled by a specific DCI format.
  • the DL resource with specific characteristics may be referred to as a PDSCH/PDCCH/reference signal configured by a dedicated RRC configuration (e.g., configuration for HD-FDD operation or configuration for reduced capability) .
  • a dedicated RRC configuration e.g., configuration for HD-FDD operation or configuration for reduced capability
  • the UE may monitor/receive any DL resource with specific characteristics on PCell/PScell regardless of (time-domain) overlapping any UL resource on other SCells, and the specific characteristics may be the same as mentioned previously.
  • the UE may prioritize the DL resource with specific characteristics over any UL resource when (time-domain) overlapping occurs.
  • the UE may perform DL reception/monitoring on the DL resource with specific characteristics when the DL resource overlaps (in the time domain) an UL resource.
  • the UE may drop the corresponding UL resource.
  • the UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH.
  • Action 3 The UE may stay in DL
  • the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) while a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running.
  • a DL resource e.g., DL physical channel
  • a timer related to DRX procedure e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer
  • the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI) .
  • a specific RNTI e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI
  • the UE when a timer related to DRX procedure (drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) for at least a period T1.
  • a DL resource e.g., DL physical channel
  • the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI) .
  • a specific RNTI e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI
  • the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) and/or UL resource (e.g., DL physical channel) after the PHY layer of the UE receives a specific indication from the MAC entity of the UE.
  • a DL resource e.g., DL physical channel
  • UL resource e.g., DL physical channel
  • the specific indication may indicate whether the DL resource and/or UL resource should be prioritized if the DL resource and the UL resource are partially or fully overlapped.
  • the period T1 may be predefined/preconfigured in the UE or may be configured by the network.
  • Action 4 The UE may be prohibited from switching to the UL transmission
  • the UE is not expected to transmit an UL resource (e.g., UL physical channel) while a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running.
  • a timer related to DRX procedure e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer
  • the UE may switch to the UL transmission immediately after at least a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is expired or stopped.
  • a timer related to DRX procedure e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer
  • the UE may switch to the UL transmission immediately after at least a timer related to DRX (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is expired or stopped.
  • the indication may be a UL grant indicating an UL resource or an SFI indicating an UL symbol.
  • the UE may switch to the UL transmission at a period after at least a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is expired or stopped.
  • a timer related to DRX procedure e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer
  • the UE may switch to the UL transmission at a period after at least a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is expired or stopped.
  • the indication may be a UL grant indicating an UL resource, or an SFI indicating an UL symbol.
  • the MAC entity of the UE may switch to the UL transmission immediately after a timer related to DRX procedure is expired or stopped.
  • the MAC entity of the UE may switch to the UL transmission immediately after the timer related to DRX procedure is expired or stopped.
  • the period may be predefined/preconfigured in the UE or may be configured by the network.
  • the predefined period may be determined by the UE capability, or correspond to the SCS configuration.
  • the predefined period (e.g., an offset) may be indicated by a PDCCH order.
  • the UE may neither be expected to transmit an UL resource nor be configured with a guard period (e.g., a period in which a UE may perform UL to DL switching and vice versa) during a first period where DCI format 2-6 (e.g., DCI associated with PS-RNTI) may occur.
  • the guard/first period may be configured by the network via RRC signaling.
  • the guard/first period may have a unit of symbol, slot, subframe, radio frame.
  • the beginning of the first period may be ‘X’ slots prior to the beginning of a slot where the drx-onDurationTimer starts.
  • the UE may neither be expected to transmit an UL resource nor be configured with a guard period during the first period when the UE is not in DRX Active time. In some implementations, the UE may be indicated, by the network, whether or not to transmit an UL resource during the first period.
  • the UE may prioritize the PUSCH resource and/or the PDSCH resource based on the resource is used for a new transmission or retransmission. For example, if the PUSCH resource is used for a new transmission and the PDSCH resource is used for retransmission, the UE may prioritize the PUSCH resource for a new transmission. For another example, if the PDSCH resource is used for a new transmission and the PUSCH resource is used for retransmission, the UE may prioritize the PDSCH resource for a new transmission.
  • the previously mentioned retransmission may include repetitions.
  • the UE may prioritize the PUSCH resource and/or the PDSCH resource based on an indicator indicated by the network.
  • the indicator may be preconfigured by RRC signaling.
  • the indicator may be dynamically indicated by the DCI where the DCI is used to indicate the PUSCH resource and/or the PDSCH resource. For example, the indicator may indicate a priority for the DL resource and UL resource.
  • the configuredGrantTimer is configured per HARQ process. Each HARQ process has its corresponding configuredGrantTimer.
  • configuredGrantTimer 1 corresponds to HARQ process 1 (e.g., HARQ ID set to ‘1’ )
  • configuredGrantTimer 2 corresponds to HARQ process 2 (e.g., HARQ ID set to ‘2’ )
  • configuredGrantTimer 1 and configuredGrantTimer 2 may be (re) started/stopped independently.
  • the configuredGrantTimer of a HARQ process is (re) started when a dynamic UL grant (e.g., DCI on PDCCH) with CS-RNTI/C-RNTI for this HARQ process is received.
  • a dynamic UL grant e.g., DCI on PDCCH
  • the configuredGrantTimer for a HARQ process is (re) started when a transmission is performed on a PUSCH resource of the HARQ process. While the configuredGrantTimer for a HARQ process is running, a new transmission on the PUSCH resource of a configured UL grant for the HARQ process is prohibited, and the UE is expected to receive a possible dynamic UL grant for retransmission for the HARQ process. If configuredGrantTimer for a HARQ process expires and no dynamic UL grant for retransmission for the HARQ process has been received while configuredGrantTimer is running, the UE may assume ACK for the HARQ process.
  • a HD-FDD UE may be performing an UL transmission while the configuredGrantTimer for a HARQ process is running.
  • the UE may miss the dynamic UL grant (e.g., DCI on PDCCH) that indicates/schedules a UL resource (e.g., PUSCH resource) for retransmission for the corresponding HARQ process while the configuredGrantTimer is running.
  • the dynamic UL grant e.g., DCI on PDCCH
  • a UL resource e.g., PUSCH resource
  • the UE may perform at least one of the following actions. Furthermore, the UE may be configured with a specific type. The UE may receive configurations associated with a specific type. In some implementations, the specific type of UE may be referred to as a UE in HD-FDD operation. In some implementations, the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, an NB-IoT UE or a RedCap UE. In some implementations, the specific type of UE may have a specific UE capability set and/or a specific UE category (e.g., reduced capability UE) .
  • a specific UE category e.g., reduced capability UE
  • the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions.
  • the UE may be configured with a parameter that indicates whether the UE needs to prioritize the DL resource and/or UL resource for a specific case (e.g., while configuredGrantTimer is running) .
  • Action 1 The UE may monitor/receive any DL resource (s)
  • the UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
  • the DL resource may be a PDSCH that is configured or dynamically scheduled by the network.
  • the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
  • scheduling information e.g., scheduling of PDSCH or PUSCH
  • SFI SFI
  • the DL resource may be configured by the network for monitoring of broadcast/multicast services (e.g., PMCH) .
  • PMCH broadcast/multicast services
  • the UE may prioritize a DL resource over any UL resource when (time-domain) overlapping occurs.
  • the UE may perform DL reception/monitoring on the DL resource when the DL resource overlaps (in the time domain) an UL resource.
  • the UE may drop the corresponding UL resource.
  • the UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH.
  • a UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
  • the UL resource that overlaps any DL resource may be dropped.
  • Action 2 The UE may monitor/receive DL resource (s) with specific characteristics
  • the UE may monitor/receive any DL resource with specific characteristics regardless of (time-domain) overlapping any UL resource with specific characteristics.
  • the UE may not monitor/receive a DL resource without specific characteristics. For example, if there is no DL resource with specific characteristics while the previously mentioned timer is running, the UE may stay in the UL transmission without switching to the DL reception.
  • the DL resource with specific characteristics may be referred to as a PDSCH that is configured by the network (e.g., a PDSCH corresponding to a configured downlink assignment)
  • the DL resource with specific characteristics may be referred to as a PDSCH that is dynamically scheduled by the network (e.g., scheduled by a DCI) .
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
  • scheduling information e.g., scheduling of PDSCH or PUSCH
  • SFI SFI
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI) .
  • a specific RNTI e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI
  • the DL resource with specific characteristics may be referred to as a DL resource for monitoring broadcast/multicast services (e.g., PMCH) .
  • PMCH broadcast/multicast services
  • the DL resource with specific characteristics may be referred to as a DL resource configured with a “high priority” or a “higher index” , where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
  • a DL resource configured with a “high priority” or a “higher index” where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes DCI format 2_4.
  • the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more ControlResourceSetId/SearchSpaceID, which is per BWP/cell/CG configured by the gNB.
  • the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more SearchSpaceID, which is configured to monitor one or more specific formats of DCI.
  • the DL resource with specific characteristics may be referred to as a PDSCH/PDCCH/reference signal configured by a dedicated RRC configuration (e.g., configuration for HD-FDD operation or configuration for reduced capability) .
  • a dedicated RRC configuration e.g., configuration for HD-FDD operation or configuration for reduced capability
  • the UE may monitor/receive any DL resource with specific characteristics on PCell/PScell regardless of (time-domain) overlapping any UL resource on other SCells, and the specific characteristics may be the same as mentioned previously.
  • the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCIs of a specific DCI format.
  • the UL resource with specific characteristics may be referred to as a configured PUSCH with specific HARQ process IDs or harq-ProcID-Offset.
  • the specific HARQ process IDs or harq-ProcID-Offset may be determined based on the HARQ processes with the corresponding configuredGrantTimer that are running.
  • the UL resource with specific characteristics may be referred to as a configured PUSCH with specific phy-PriorityIndex.
  • the UL resource with specific characteristics may be referred to as a configured PUSCH with specific configuredGrantConfigIndex.
  • the UL resource with specific characteristics may be referred to as a PUSCH or PUCCH scheduled by DCI format with a specific priority indication.
  • the UE may prioritize the DL resource with specific characteristics over the UL resource with specific characteristics when (time-domain) overlapping occurs.
  • the UE may perform DL reception/monitoring on the DL resource with specific characteristics when the DL resource overlaps (in the time domain) the UL resource.
  • the UE may drop the corresponding UL resource.
  • the UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH.
  • the UL resource may be a configured PUSCH with harq-ProcID-Offset larger than the HARQ process IDs corresponding to the configuredGrantTimer that are running.
  • Action 3 The UE may stay in DL
  • the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) while configuredGrantTimer is running.
  • the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI) .
  • a specific RNTI e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI
  • the UE when configuredGrantTimer is running, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) for at least a period T1.
  • a DL resource e.g., DL physical channel
  • the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI) .
  • a specific RNTI e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI
  • the period T1 may be predefined/preconfigured in the UE or may be configured by the network.
  • the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) and/or UL resource (e.g., DL physical channel) after the PHY layer of the UE receives a specific indication from the MAC entity of the UE.
  • a DL resource e.g., DL physical channel
  • UL resource e.g., DL physical channel
  • the specific indication may indicate whether the DL resource and/or UL resource should be prioritized if the DL resource and the UL resource are partially or fully overlapped.
  • Action 4 The UE may be prohibited from switching to the UL transmission
  • the UE is not expected to transmit an UL resource (e.g., UL physical channel) while configuredGrantTimer is running.
  • an UL resource e.g., UL physical channel
  • the UE may switch to the UL transmission immediately after configuredGrantTimer is expired or stopped.
  • the UE may switch to the UL transmission immediately after configuredGrantTimer is expired or stopped.
  • the indication may be a UL grant indicating an UL resource, or an SFI indicating an UL symbol.
  • the UE may switch to the UL transmission at a period after configuredGrantTimer is expired or stopped.
  • the indication may be a UL grant indicating an UL resource, or an SFI indicating an UL symbol.
  • the MAC entity of the UE may switch to the UL transmission immediately after configuredGrantTimer is expired or stopped.
  • the MAC entity of the UE may switch to the UL transmission immediately after configuredGrantTimer is expired or stopped.
  • the period may be predefined/preconfigured in the UE or may be configured by the network.
  • the predefined period may be determined by the UE capability, or correspond to the SCS configuration.
  • the predefined period (e.g., an offset) may be indicated by a PDCCH order.
  • the methods for a UE in the HD-FDD operation to perform transmissions and receptions in the present disclosure may also be performed by a UE in a full duplex operation.
  • the UE in a full duplex operation may have a specific UE capability set and/or a specific UE category.
  • the methods for a UE in the HD-FDD operation to perform transmissions and receptions in the present disclosure may also be performed when the UE starts another timer that is associated with a DL transmission or DL resource.
  • FIG. 8 is a flowchart illustrating a method 800 for a UE in the HD-FDD operation to perform transmissions and receptions.
  • the UE receives, from a BS, an UL resource in a first set of symbols and a DL resource in a second set of symbols.
  • the UE starts a previously mentioned timer (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, msgB-ResponseWindow, beamFailureDetectionTimer, drx-HARQ-RTT-TimerDL, drx-RetransmissionTimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerUL, drx-InactivityTimer and drx-onDurationTimer, configuredGrantTimer) associated with a previously mentioned procedure (e.g., RA procedure, BFR procedure, DRX procedure and HARQ procedure/process) .
  • a previously mentioned procedure e.g., RA procedure, BFR procedure, DRX procedure and HARQ procedure/process
  • the UE does not perform an UL transmission on the UL resource when the timer is running.
  • the UE performs a DL reception for the procedure on the
  • the UE may be prohibited from switching from a DL reception to an UL transmission when the timer is running, so that the UE does not perform an UL transmission on the UL resource when the timer is running.
  • the UE may not perform the UL transmission on the UL resource when the first set of symbols partially or fully overlap the second set of symbols in a time domain.
  • the UE may switch from the UL transmission to the DL reception, or stay in the DL reception.
  • the UL resource includes at least one of a PUSCH, a PUCCH, and a PRACH.
  • the DL resource includes at least one of a PDSCH, a PDCCH, a CORESET, a CSI-RS, a synchronization signals (SS) and a SSB, a SPS PDSCH, a PDSCH scheduled by DCI, a PDCCH configured with ControlResourceSetId/SearchSpaceID, a downlink physical channel with a higher priority than the UL resource, a search space indicated by recoverySearchSpaceId, a DL resource configured by a dedicated RRC configuration, a PDCCH identified by a specific RNTI, and a PMCH.
  • a PDSCH includes at least one of a PDSCH, a PDCCH, a CORESET, a CSI-RS, a synchronization signals (SS) and a SSB, a SPS PDSCH, a PDSCH scheduled by DCI, a PDCCH configured with ControlResourceSetId/SearchSpaceID, a downlink physical channel with a higher priority than the UL resource
  • FIG. 9 is a block diagram illustrating a node 900 for wireless communication, according to an implementation of the present disclosure.
  • the node 900 may include a transceiver 920, a processor 926, a memory 928, one or more presentation components 934, and at least one antenna 936.
  • the node 900 may also include a Radio Frequency (RF) spectrum band module, a BS communications module, a network communications module, a system communications management module, input/output (I/O) ports, I/O components, and a power supply (not illustrated in FIG. 9) .
  • RF Radio Frequency
  • the node 900 may be a UE or a BS that performs various disclosed functions illustrated in FIG. 8 and examples in this disclosure.
  • the transceiver 920 may include a transmitter 922 (with transmitting circuitry) and a receiver 924 (with receiving circuitry) and may be configured to transmit and/or receive time and/or frequency resource partitioning information.
  • the transceiver 920 may be configured to transmit in different types of subframes and slots including, but not limited to, usable, non-usable and flexibly usable subframes and slot formats.
  • the transceiver 920 may be configured to receive data and control channels.
  • the node 900 may include a variety of computer-readable media.
  • Computer-readable media may be any media that can be accessed by the node 900 and include both volatile (and non-volatile) media and removable (and non-removable) media.
  • Computer-readable media may include computer storage media and communication media.
  • Computer storage media may include both volatile (and/or non-volatile) , as well as removable (and/or non-removable) , media implemented according to any method or technology for storage of information such as computer-readable media.
  • Computer storage media may include RAM, ROM, EPROM, EEPROM, flash memory (or other memory technology) , CD-ROM, Digital Versatile Disk (DVD) (or other optical disk storage) , magnetic cassettes, magnetic tape, magnetic disk storage (or other magnetic storage devices) , etc. Computer storage media do not include a propagated data signal.
  • Communication media may typically embody computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanisms and include any information delivery media.
  • modulated data signal may mean a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • Communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the disclosed media should be included within the scope of computer-readable media.
  • the memory 928 may include computer-storage media in the form of volatile and/or non-volatile memory.
  • the memory 928 may be removable, non-removable, or a combination thereof.
  • the memory 928 may include solid-state memory, hard drives, optical-disc drives, etc.
  • the memory 928 may store computer-readable and/or computer-executable instructions 932 (e.g., software codes) that are configured to, when executed, cause the processor 926 (e.g., processing circuitry) to perform various disclosed functions.
  • the instructions 932 may not be directly executable by the processor 926 but may be configured to cause the node 900 (e.g., when compiled and executed) to perform various disclosed functions.
  • the processor 926 may include an intelligent hardware device, a central processing unit (CPU) , a microcontroller, an ASIC, etc.
  • the processor 926 may include memory.
  • the processor 926 may process the data 930 and the instructions 932 received from the memory 928, and information received through the transceiver 920, the baseband communications module, and/or the network communications module.
  • the processor 926 may also process information to be sent to the transceiver 920 for transmission via the antenna 936, and/or to the network communications module for transmission to a CN.
  • Presentation components 934 may present data to a person or other devices.
  • Presentation components 934 may include a display device, a speaker, a printing component, a vibrating component, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method of transmissions and receptions for a user equipment (UE) in a half-duplex frequency-division duplexing (HD-FDD) operation is provided. The method includes receiving, from a base station (BS), an uplink (UL) resource in a first set of symbols and a downlink (DL) resource in a second set of symbols, starting a timer associated with a procedure, not performing an UL transmission on the UL resource when the timer is running, and performing a DL reception for the procedure on the DL resource when the timer is running.

Description

METHOD OF TRANSMISSIONS AND RECEPTIONS IN HALF-DUPLEX FREQUENCY-DIVISION DUPLEXING OPERATION AND RELATED DEVICE
CROSS-REFERENCE TO RELATED APPLICATION (S)
The present disclosure claims the benefit of and priority to U.S. Provisional Patent Application Serial No. 63/054747 filed on 7/21/2020, entitled “METHOD AND APPARATUS TO SUPPORT HALF DUPLEX FREQUENCY DIVISION DUPLEX COMMUNICATION, ” (hereinafter referred to as “the ‘747 provisional” ) . The disclosure of the ‘747 provisional is hereby incorporated fully by reference into the present disclosure.
FIELD
The present disclosure is generally related to wireless communications and more specifically, to a method of transmissions and receptions in a half-duplex frequency-division duplexing (HD-FDD) operation and a related device.
BACKGROUND
With the tremendous growth in the number of connected devices and the rapid increase in user/network traffic volume, various efforts have been made to improve different aspects of wireless communication for the next-generation wireless communication system, such as the fifth-generation (5G) New Radio (NR) , by improving data rate, latency, reliability, and mobility.
The 5G NR system is designed to provide flexibility and configurability for optimizing the network services and types and accommodating various use cases such as enhanced Mobile Broadband (eMBB) , massive Machine-Type Communication (mMTC) , and Ultra-Reliable and Low-Latency Communication (URLLC) .
However, as the demand for radio access continues to increase, there is a need for further improvements in wireless communication for the next-generation wireless communication system.
SUMMARY
The present disclosure provides a method of transmissions and receptions in a half-duplex frequency-division duplexing (HD-FDD) operation and a related device.
According to an aspect of the present disclosure, a method of transmissions and receptions for a user equipment (UE) in a HD-FDD operation is provided. The method includes  receiving, from a base station (BS) , an uplink (UL) resource in a first set of symbols and a downlink (DL) resource in a second set of symbols, starting a timer associated with a procedure, not performing an UL transmission on the UL resource when the timer is running, and performing a DL reception for the procedure on the DL resource when the timer is running.
According to another aspect of the present disclosure, a UE for performing transmissions and receptions in a HD-FDD operation is provided. The UE includes a processor configured to execute a computer-executable program, and a memory coupled to the processor and configured to store the computer-executable program, wherein the computer-executable program instructs the processor to perform the above-described method of transmissions and receptions in a HD-FDD operation.
BRIEF DESCRIPTION OF THE DRAWINGS
Aspects of the present disclosure are best understood from the following detailed disclosure when read with the accompanying drawings. Various features are not drawn to scale. Dimensions of various features may be arbitrarily increased or reduced for clarity of discussion.
FIG. 1 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while ra-ResponseWindow is running, according to an implementation of the present disclosure.
FIG. 2 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the ra-ContentionResolutionTimer is running, according to an implementation of the present disclosure.
FIG. 3 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the msgB-ResponseWindow is running, according to an implementation of the present disclosure.
FIG. 4 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the beamFailureDetectionTimer is running, according to an implementation of the present disclosure.
FIG. 5 is a schematic diagram illustrating a condition of starting the drx-HARQ-RTT-TimerDL corresponding to a specific HARQ ID, according to an implementation of the present disclosure.
FIG. 6 is a schematic diagram illustrating a condition of starting the drx-HARQ-RTT-TimerDL corresponding to a specific HARQ ID, according to an implementation of the present disclosure.
FIG. 7 is a schematic diagram illustrating a condition of starting the drx-HARQ- RTT-TimerUL corresponding to a specific HARQ ID, according to an implementation of the present disclosure.
FIG. 8 is a flowchart illustrating a method of transmissions and receptions in a HD-FDD operation, according to an implementation of the present disclosure.
FIG. 9 is a block diagram illustrating a node for wireless communication, according to an implementation of the present disclosure.
DESCRIPTION
The following disclosure contains specific information pertaining to exemplary implementations in the present disclosure. The drawings and their accompanying detailed disclosure are directed to exemplary implementations. However, the present disclosure is not limited to these exemplary implementations. Other variations and implementations of the present disclosure will occur to those skilled in the art. Unless noted otherwise, like or corresponding elements in the drawings may be indicated by like or corresponding reference numerals. Moreover, the drawings and illustrations are generally not to scale and are not intended to correspond to actual relative dimensions.
For consistency and ease of understanding, like features are identified (although, in some examples, not shown) by reference designators in the exemplary drawings. However, the features in different implementations may be different in other respects, and therefore shall not be narrowly confined to what is shown in the drawings.
The phrases “in one implementation, ” and “in some implementations, ” may each refer to one or more of the same or different implementations. The term “coupled” is defined as connected, whether directly or indirectly via intervening components, and is not necessarily limited to physical connections. The term “comprising” may mean “including, but not necessarily limited to” and specifically indicate open-ended inclusion or membership in the disclosed combination, group, series, and equivalents.
The term “and/or” herein is only an association relationship for describing associated objects and represents that three relationships may exist, for example, A and/or B may represent that: A exists alone, A and B exist at the same time, and B exists alone. “A and/or B and/or C” may represent that at least one of A, B, and C exists, A and B exist at the same time, A and C exist at the same time, B and C exist at the same time, and A, B and C exist at the same time. Besides, the character “/” used herein generally represents that the former and latter associated objects are in an “or” relationship.
Additionally, any two or more of the following paragraphs, (sub) -bullets, points,  actions, behaviors, terms, alternatives, examples, or claims in the present disclosure may be combined logically, reasonably, and properly to form a specific method. Any sentence, paragraph, (sub) -bullet, point, action, behavior, term, or claim in the present disclosure may be implemented independently and separately to form a specific method. Dependency, e.g., “based on” , “more specifically” , “preferably” , “In one embodiment” , “In one implementation” , “In one alternative” , in the present disclosure may refer to just one possible example that would not restrict the specific method.
For a non-limiting explanation, specific details, such as functional entities, techniques, protocols, standards, and the like, are set forth for providing an understanding of the disclosed technology. In other examples, detailed disclosure of well-known methods, technologies, systems, and architectures are omitted so as not to obscure the present disclosure with unnecessary details.
Persons skilled in the art will recognize that any disclosed network function (s) or algorithm (s) may be implemented by hardware, software, or a combination of software and hardware. Disclosed functions may correspond to modules that may be software, hardware, firmware, or any combination thereof. The software implementation may comprise computer-executable instructions stored on a computer-readable medium, such as memory or other types of storage devices. For example, one or more microprocessors or general-purpose computers with communication processing capability may be programmed with corresponding executable instructions and carry out the disclosed network function (s) or algorithm (s) . The microprocessors or general-purpose computers may be formed of Application-Specific Integrated Circuits (ASICs) , programmable logic arrays, and/or using one or more Digital Signal Processors (DSPs) . Although some of the disclosed implementations are directed to software installed and executing on computer hardware, nevertheless, alternative implementations as firmware or as hardware or combination of hardware and software are well within the scope of the present disclosure.
The computer-readable medium may include, but may not be limited to, Random Access Memory (RAM) , Read-Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM) , Electrically Erasable Programmable Read-Only Memory (EEPROM) , flash memory, Compact Disc (CD) Read-Only Memory (CD-ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
A radio communication network architecture (e.g., a Long Term Evolution (LTE) system, an LTE-Advanced (LTE-A) system, an LTE-Advanced Pro system, or a New Radio  (NR) system) may typically include at least one base station (BS) , at least one UE, and one or more optional network elements that provide connection with a network. The UE may communicate with the network (e.g., a Core Network (CN) , an Evolved Packet Core (EPC) network, an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) , a Next-Generation Core (NGC) , a 5G Core (5GC) , or an internet) via a Radio Access Network (RAN) established by one or more BSs.
A UE according to the present disclosure may include, but is not limited to, a mobile station, a mobile terminal or device, or a user communication radio terminal. For example, a UE may be a portable radio equipment that includes, but is not limited to, a mobile phone, a tablet, a wearable device, a sensor, or a Personal Digital Assistant (PDA) with wireless communication capability. The UE may be configured to receive and transmit signals over an air interface to one or more cells in a RAN.
A BS may include, but is not limited to, a node B (NB) as in the Universal Mobile Telecommunication System (UMTS) , an evolved node B (eNB) as in the LTE-A, a Radio Network Controller (RNC) as in the UMTS, a Base Station Controller (BSC) as in the Global System for Mobile communications (GSM) /GSM Enhanced Data rates for GSM Evolution (EDGE) RAN (GERAN) , a next-generation eNB (ng-eNB) as in an Evolved Universal Terrestrial Radio Access (E-UTRA) BS in connection with the 5GC, a next-generation Node B (gNB) as in the 5G-RAN (or in the 5G Access Network (5G-AN) ) , and any other apparatus capable of controlling radio communication and managing radio resources within a cell. The BS may connect to serve the one or more UEs via a radio interface to the network.
A BS may be configured to provide communication services according to at least one of the following Radio Access Technologies (RATs) : Worldwide Interoperability for Microwave Access (WiMAX) , GSM (often referred to as 2G) , GERAN, General Packet Radio Service (GRPS) , UMTS (often referred to as 3G) according to basic Wideband-Code Division Multiple Access (W-CDMA) , High-Speed Packet Access (HSPA) , LTE, LTE-A, enhanced LTE (eLTE) , NR (often referred to as 5G) , and/or LTE-A Pro. However, the scope of the present disclosure is not limited to these protocols.
The BS may be operable to provide radio coverage to a specific geographical area using a plurality of cells forming the RAN. The BS may support the operations of the cells. Each cell may be operable to provide services to at least one UE within its radio coverage. More specifically, each cell (often referred to as a serving cell) may provide services to serve one or more UEs within its radio coverage (e.g., each cell schedules the downlink (DL) and optionally UL resources to at least one UE within its radio coverage for DL and optionally UL  packet transmissions) . The BS may communicate with one or more UEs in the radio communication system via the plurality of cells.
A cell may allocate Sidelink (SL) resources for supporting Proximity Service (ProSe) , LTE SL services, and LTE/NR Vehicle-to-Everything (V2X) services. Each cell may have overlapped coverage areas with other cells. In Multi-RAT Dual Connectivity (MR-DC) cases, the primary cell of a Master Cell Group (MCG) or a Secondary Cell Group (SCG) may be called as a Special Cell (SpCell) . A Primary Cell (PCell) may refer to the SpCell of an MCG. A Primary SCG Cell (PSCell) may refer to the SpCell of an SCG. MCG may refer to a group of serving cells associated with the Master Node (MN) , comprising the SpCell and optionally one or more Secondary Cells (SCells) . An SCG may refer to a group of serving cells associated with the Secondary Node (SN) , comprising the SpCell and optionally one or more SCells.
As disclosed previously, the frame structure for NR is to support flexible configurations for accommodating various next-generation (e.g., 5G) communication requirements, such as eMBB, mMTC, and URLLC, while fulfilling high reliability, high data rate, and low latency requirements. The orthogonal frequency-division multiplexing (OFDM) technology, as agreed in the 3rd Generation Partnership Project (3GPP) , may serve as a baseline for an NR waveform. The scalable OFDM numerology, such as the adaptive sub-carrier spacing, the channel bandwidth, and the cyclic prefix (CP) , may also be used. Additionally, two coding schemes are applied for NR: (1) low-density parity-check (LDPC) code and (2) polar code. The coding scheme adaption may be configured based on the channel conditions and/or the service applications.
Moreover, in a transmission time interval of a single NR frame, at least DL transmission data, a guard period, and UL transmission data should be included. The respective portions of the DL transmission data, the guard period, and the UL transmission data should also be configurable, for example, based on the network dynamics of NR. An SL resource may also be provided via an NR frame to support ProSe services or V2X services.
In LTE, a device in HD-FDD operation cannot perform simultaneous uplink and downlink transmissions. Moreover, two types of HD-FDD operations are disclosed. For type A HD-FDD operation, a guard period is created by a UE by not receiving the last part of a downlink subframe immediately preceding an uplink subframe from the same UE. For type B HD-FDD operation, guard periods, each referred to as a half-duplex guard subframe, are created by the UE by not receiving a downlink subframe immediately preceding an uplink subframe from the same UE, and not receiving a downlink subframe immediately following an uplink subframe from the same UE.
A device in HD-FDD operation may follow the rules listed below:
In case a physical uplink shared channel (PUSCH) transmission (including half-duplex guard subframe) without a corresponding physical downlink control channel or Machine-Type Communication (MTC) PDCCH (MPDCCH) (e.g., a PUSCH resource that corresponds to a configured UL grant) collides partially or fully with a physical downlink shared channel (PDSCH) transmission with a corresponding (M) PDCCH (e.g., a downlink assignment received on a PDCCH) , the PUSCH transmission without a corresponding (M)PDCCH (e.g., a PUSCH resource that corresponds to a configured UL grant) is dropped.
In case a PUSCH transmission (including half-duplex guard subframe) collides partially or fully with a PDSCH transmission without a corresponding MPDCCH (e.g., a PDSCH resource that corresponds to a configured downlink assignment) , the PUSCH transmission is dropped if the device is configured with ce-pdsch-puschEnhancement-config.
A NR device in HD-FDD operation is configured/scheduled (by the network) with a time-domain where UL and DL resources are overlapped. As a result, a device in HD-FDD may only perform either UL data transmission on the scheduled/configured UL resource or DL data reception on the scheduled/configured DL resource. Consequently, some of the timers that have been configured in a device in HD-FDD operation may be affected and even loses functionality due to the constraint of HD-FDD operation.
Several timers configured in a device in HD-FDD operation are disclosed. These timers may potentially be impacted by the nature of a device in HD-FDD operation (e.g., incapability to perform simultaneous UL transmission and DL reception) . Methods are proposed to define rules for performing UL transmission or DL reception. Furthermore, some conditions are also defined to start/stop these timers. In some examples, a device in HD-FDD operation is denoted as a HD-FDD UE in the present disclosure.
Some objectives of NR include enabling connected industries and providing smart city innovations. NR connectivity can serve as catalyst for next wave of industrial transformation/digitalization, which improve flexibility, enhance productivity and efficiency, reduce maintenance cost, and improve operational safety. NR connectivity also serves as catalyst for next wave smart city innovations, which covers data collection and processing to more efficiently monitor and control city resources, and to provide services to city residents.
A device in NR industrial environment and NR smart city may be relatively low-end with small device form factors when comparing with a normal communication device (e.g., smartphone) . Moreover, this type of device may be completely wireless with relatively long battery life (e.g., from a few days up to a few years) when comparing with a normal  communication device (e.g., smartphone) . This type of device may include devices such as industrial wireless sensor, surveillance camera, wearable, etc. To reduce device complexity and/or improve battery life, a device of this type may be operated in HD-FDD.
I. Timers related to random access (RA) procedure
Operation of ra-ResponseWindow
The ra-ResponseWindow is a timer window for a UE to monitor a RA response. This timer is (re) started at the first PDCCH occasion from the end of the RA preamble (e.g., contention-free RA preamble or contention-based RA preamble) transmission.
If the contention-free RA preamble for a beam failure recovery (BFR) request is transmitted by the Medium Access Control (MAC) entity of the UE, the UE monitors the PDCCH transmission on the search space indicated by recoverySearchSpaceId (e.g., the search space identity for monitoring a response corresponding to the BFR request) of a Special Cell (SpCell) identified by the Cell-Radio Network Temporary Identifier (C-RNTI) if the ra-ResponseWindow is running. However, if the ra-ResponseWindow expires and if the PDCCH transmission on the search space indicated by recoverySearchSpaceId addressed to the C-RNTI has not been received on a serving cell where the RA preamble is transmitted, the UE considers the random access response (RAR) reception not successful.
If a RA preamble other than the contention-free RA preamble for a BFR request is transmitted by the MAC entity of the UE, the UE monitors the PDCCH of a SpCell for the RAR identified by the Random Access Radio Network Temporary Identifier (RA-RNTI) while the ra-ResponseWindow is running. If the UE successfully receives the RAR containing Random Access Preamble identifiers that match the transmitted PREAMBLE_INDEX, the UE may stop ra-ResponseWindow. However, if the ra-ResponseWindow expires and the RAR containing Random Access Preamble identifiers that match the transmitted PREAMBLE_INDEX has not been received, the UE considers the RAR reception not successful.
Potential impacts to a HD-FDD UE while ra-ResponseWindow is running
In one scenario, a HD-FDD UE may perform an UL transmission while the ra-ResponseWindow is running. FIG. 1 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while ra-ResponseWindow is running, according to an implementation of the present disclosure. The HD-FDD UE transmits the RA preamble and starts the ra-ResponseWindow. The UE performs the UL transmission while the ra-ResponseWindow is running. Since the HD-FDD UE cannot perform simultaneous UL transmission and DL reception, the HD-FDD UE may miss the RAR from the network after  the preamble transmission while the ra-ResponseWindow is running. The RAR from the network after the preamble transmission may be referred to PDCCH transmission associated with C-RNTI or RA-RNTI, depending on the type of preamble transmitted by the HD-FDD UE.Hence, the HD-FDD UE may only monitor the PDCCH transmission after the corresponding UL transmission has been completed. This may increase the probability of unsuccessful RAR reception because the actual time to monitor the PDCCH transmission associated with C-RNTI or RA-RNTI while the ra-ResponseWindow is running has been shortened.
Operation of ra-ContentionResolutionTimer
The ra-ContentionResolutionTimer is a timer for a UE to monitor a RA response (e.g., contention resolution or Msg4) from the network after the Msg3 transmission during RA procedure. This timer is (re) started at the first symbol after the end of the Msg3 (re) transmission. While the ra-ContentionResolutionTimer is running, the UE monitors the PDCCH regardless of the possible occurrence of a measurement gap.
In one case, if the UE that has transmitted the Msg3 including a C-RNTI MAC CE receives a PDCCH transmission (of the SpCell) addressed to the C-RNTI (and the received PDCCH transmission contains an UL grant for a new transmission) while the ra-ContentionResolutionTimer is running, the UE may consider the contention resolution successful if the RA procedure was initiated by a BFR, a PDCCH order, or by the UE. In this case, the UE may stop the ra-ContentionResolutionTimer. In contrast, if the ra-ContentionResolutionTimer expires, the UE may consider the contention resolution not successful.
In one case, if the UE that has transmitted the Msg3 including a Common Control Channel (CCCH) Service Data Unit (SDU) receives a PDCCH transmission (of the SpCell) addressed to TEMPORARY_C-RNTI while the ra-ContentionResolutionTimer is running, the UE may stop the ra-ContentionResolutionTimer. Moreover, the UE considers the contention resolution successful if the corresponding MAC Protocol Data Unit (PDU) is successfully decoded, and the MAC PDU contains a UE Contention Resolution Identity MAC CE that matches the CCCH SDU transmitted in the Msg3. In contrast, if the ra-ContentionResolutionTimer expires, the UE may consider the contention resolution not successful (and discards the TEMPORARY_C-RNTI) .
Potential impacts to a HD-FDD UE while ra-ContentionResolutionTimer is running
In one scenario, a HD-FDD UE may perform an UL transmission while the ra- ContentionResolutionTimer is running. FIG. 2 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the ra-ContentionResolutionTimer is running, according to an implementation of the present disclosure. The HD-FDD UE transmits the Msg3, and starts the ra-ContentionResolutionTimer. The UE performs the UL transmission while the ra-ContentionResolutionTimer is running. Since the HD-FDD UE cannot perform simultaneous UL transmission and DL reception, the HD-FDD UE may miss the contention resolution (e.g., Msg4) from the network after the Msg3 transmission while the ra-ContentionResolutionTimer is running. Here, the contention resolution from the network after the Msg3 transmission may be referred to a PDCCH transmission associated with C-RNTI or TEMPORARY_C-RNTI, depending on the content of the Msg3 as transmitted by the UE. Hence, the UE may only monitor the PDCCH transmission after the corresponding UL transmission has been completed. This may increase the probability of unsuccessful contention resolution because the actual time to monitor the PDCCH transmission associated with C-RNTI or TEMPORARY_C-RNTI while the ra-ContentionResolutionTimer is running has been shortened.
Operation of msgB-ResponseWindow
The msgB-ResponseWindow is a timer window for a UE to monitor a RA response (e.g., MSGB) after MSGA transmission during RA procedure. This timer is (re) started at the first PDCCH occasion from the end of the MSGA transmission. While the msgB-ResponseWindow is running, the UE monitors the PDCCH of the SpCell for MSGB regardless of the possible occurrence of a measurement gap.
If the MSGA that the UE transmitted does not include a C-RNTI MAC CE, the UE monitors the PDCCH transmission of the SpCell for the MSGB identified by the MSGB-RNTI while the msgB-ResponseWindow is running. On the other hand, if the MSGA that the UE transmitted includes a C-RNTI MAC CE, the UE monitors the PDCCH transmission of the SpCell for a MSGB identified by the C-RNTI and MSGB-RNTI while the msgB-ResponseWindow is running.
In one case, if a PDCCH transmission addressed to C-RNTI is received (on the SpCell) while the msgB-ResponseWindow is running and the MSGA that the UE transmitted includes a C-RNTI MAC CE, the UE may consider the MSGB reception successful and stop the msgB-ResponseWindow if at least one of the following conditions is satisfied:
Condition A-1: RA procedure is initiated for a BFR procedure;
Condition A-2: The timeAlignmentTimer associated with a Primary Timing Advance Group (PTAG) is running; and
Condition A-3: If neither condition 1 nor condition 2 is satisfied, and the received PDCCH transmission addressed to C-RNTI is a downlink assignment. Moreover, the corresponding transport block (TB) /MAC PDU (received from the PDSCH scheduled by the downlink assignment) is successfully decoded and the TB/MAC PDU contains the Absolute Timing Advance Command MAC CE subPDU.
In another case, if a PDCCH transmission addressed to MSGB-RNTI is received (on the SpCell) while the msgB-ResponseWindow is running and the PDCCH includes the two LSB bits of a System Frame Number (SFN) corresponding to the PRACH occasion used to transmit the RA preamble of the MSGA and the received TB/MAC PDU/MSGB (from the PDSCH scheduled by the PDCCH) is successfully decoded, the UE may consider the MSGB successful and stop the msgB-ResponseWindow if at least one of the following conditions is satisfied:
Condition B-1: If the MSGB contains a successRAR MAC subPDU and if the CCCH SDU was included in the MSGA and the UE Contention Resolution Identity in the successRAR MAC subPDU matches the CCCH SDU; and
Condition B-2: If the MSGB contains a fallbackRAR MAC subPDU and the Random Access Preamble identifier in the MAC subPDU matches the transmitted PREAMBLE_INDEX (corresponding to the MSGA) .
In one case, if the msgB-ResponseWindow expires (e.g., none of the previously mentioned conditions A-1, A-2, A-3, B-1, and B-2 is satisfied while the msgB-ResponseWindow is running) and the number of preamble transmissions has reached a configured threshold, preambleTransMax (e.g., a value of PREAMBLE_TRANSMISSION_COUNTER is larger than preambleTransMax) , the UE may indicate RA problems to an upper layer (e.g., the RRC layer) .
In one case, if the msgB-ResponseWindow expires (e.g., none of the previously mentioned conditions A-1, A-2, A-3, B-1, and B-2 is satisfied while the msgB-ResponseWindow is running) and the number of preamble transmissions has not reached a configured threshold, preambleTransMax (e.g., a value of PREAMBLE_TRANSMISSION_COUNTER is not larger than preambleTransMax) , the UE may perform Random Access Resource selection procedure for 4-step RA type Random Access if the number of preamble transmissions has reached a configured threshold, msgA-TransMax (e.g., a value of PREAMBLE_TRANSMISSION_COUNTER is larger than msgA-TransMax) . Alternatively, the UE may perform Random Access Resource selection procedure for 2-step RA type Random Access if the threshold, msgA-TransMax, is not configured or if the number  of preamble transmissions has not reached the configured threshold, msgA-TransMax (e.g., either if msgA-TransMax is not configured or if the value of PREAMBLE_TRANSMISSION_COUNTER is not larger than msgA-TransMax) .
Potential impacts to a HD-FDD UE while msgB-ResponseWindow is running
In one scenario, a HD-FDD UE may be performing an UL transmission while the msgB-ResponseWindow is running. FIG. 3 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the msgB-ResponseWindow is running, according to an implementation of the present disclosure. The HD-FDD UE transmits the MSGA, and starts the msgB-ResponseWindow. The UE performs the UL transmission while the msgB-ResponseWindow is running. Since the HD-FDD UE cannot perform simultaneous UL transmission and DL reception, the HD-FDD UE may miss the MSGB from the network after the MSGA transmission while the msgB-ResponseWindow is running. The MSGB from the network after the MSGA transmission may be referred to PDCCH transmission associated with C-RNTI or MSGB-RNTI, depending on the content of the MSGA as transmitted by the UE. Hence, the UE may only monitor the PDCCH transmission after the corresponding UL transmission has been completed. This may increase the probability of unsuccessful contention resolution because the actual time to monitor the PDCCH transmission associated with C-RNTI or MSGB-RNTI while the ra-ContentionResolutionTimer is running may have been shortened.
Methods to reduce the potential impacts to a HD-FDD UE while the previously mentioned timer (s) related to RA procedure is running are disclosed.
After the MSGA/Msg3/RA preamble is transmitted by the UE and/or while a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is running, the UE may perform at least one of the following actions. Furthermore, the UE may be configured with a specific type. That is, the UE may receive configurations associated with a specific type. In some implementations, the specific type of UE may be referred to as a UE in HD-FDD operation. In some implementations, the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, or an NB-IoT UE. In some implementations, the specific type of UE may have a specific UE capability set and/or a specific UE category (e.g., reduced capability UE) . In some implementations, the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions. For example, a UE may be configured with a parameter that indicates whether the UE needs to prioritize the DL resource and/or UL resource for a specific case (e.g., after the MSGA/Msg3/RA preamble is transmitted by a UE and/or while a timer related to RA procedure is running) .
Action 1: The UE may monitor/receive any DL resource (s) 
Specifically, the UE may monitor/receive any DL resource regardless of (time-domain) overlapping with any UL resource.
Specifically, the DL resource may be a PDSCH that is configured or dynamically scheduled by the network.
Specifically, the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor downlink control information (DCI) that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) , and/or Slot format Indicator (SFI) , and/or to monitor RA response, BFR response.
Specifically, the DL resource may be configured by the network for monitoring of broadcast/multicast services (e.g., Physical Multicast Channel (PMCH) ) .
In some implementations, if a prioritization between UL transmission and DL reception is required at the UE (after the MSGA/Msg3/RA preamble is transmitted by the UE and/or while a timer related to RA procedure is running) , the UE may prioritize a DL resource over any UL resource when (time-domain) overlapping occurs. In other words, the UE may perform DL reception/monitoring on a DL resource when the DL resource overlaps (in the time domain) an UL resource. Moreover, the UE may drop the corresponding UL resource. Here, an UL resource may be a (configured or dynamically scheduled) PUSCH or Physical Uplink Control Channel (PUCCH) .
In some implementations, after the MSGA/Msg3/RA preamble is transmitted by the UE and/or while the timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, msgB-ResponseWindow) is running, the UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource. In other words, after the MSGA/Msg3/RA preamble is transmitted by the UE and/or while the timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, msgB-ResponseWindow) is running, the UL resource that overlaps any DL resource may be dropped.
Action 2: The UE may monitor/receive DL resource (s) with specific characteristics
Specifically, the UE may monitor/receive any DL resource with specific characteristics regardless of (time-domain) overlapping any UL resource. On the contrary, the UE may not monitor/receive a DL resource without specific characteristics. For example, if there is no DL resource with specific characteristics while the previously mentioned timer is running, the UE may stay in the UL transmission without switching to the DL reception.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH that is configured by the network (e.g., a PDSCH corresponding to a configured DL  assignment) .
Specifically, the DL resource with specific characteristics may be referred to as a DL resource that corresponds to Semi-Persistent Scheduling (SPS) .
Specifically, the DL resource with specific characteristics may be referred to as a DL resource that corresponds to one or more SPS configurations.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH that is dynamically scheduled by the network (e.g., scheduled by a DCI) .
Specifically, the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
Specifically, the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes DCI format 2_4.
Specifically, the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more ControlResourceSetId/SearchSpaceID, which is per BWP/cell/CG configured by the gNB.
Specifically, the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more SearchSpaceID, which is configured to monitor one or more specific formats of DCI.
Specifically, the DL resource with specific characteristics may be referred to as a DL resource for monitoring broadcast/multicast services (e.g., PMCH) .
Specifically, the DL resource with specific characteristics may be referred to as a DL resource configured with a “high priority” or a “higher index” , where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
Specifically, the DL resource with specific characteristics may be referred to as a specific search space, indicated by recoverySearchSpaceId (e.g., the search space identity for monitoring the BFR response corresponding to the BFR request) .
Specifically, a DL resource with specific characteristics may be referred to as a PDCCH/search space (e.g., Type 1 CSS set) for RA procedure.
Specifically, the UE may (always) monitor PDCCH if the UE needs to monitor for a PDCCH transmission identified by a specific RNTI (e.g., RA-RNTI, MSGB-RNTI, or a Temporary Cell RNTI (TC-RNTI) ) .
Specifically, the DL resource with specific characteristics may be referred to as a  PDSCH that is scheduled by a specific DCI format.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH/PDCCH/reference signal configured by a dedicated RRC configuration (e.g., configuration for HD-FDD operation or configuration for reduced capability) .
Specifically, the UE may monitor/receive any DL resource with specific characteristics on PCell/PScell regardless of (time-domain) overlapping any UL resource on other SCells, and the specific characteristics may be the same as mentioned previously.
In some examples, the PDCCH/search space for RA procedure may be used to monitor a RA response.
In some examples, the PDCCH/search space for RA procedure may be indicated by ra-SearchSpace.
In some examples, the PDDC/search space for a specific procedure performed by the MAC entity of the UE.
In some examples, the PDCCH/search space for monitor paging (on specific BWP) and may be configured by RRC IE (e.g., pagingSearchSpace)
In some examples, the PDCCH/search space for monitor one or more specific types of system information (e.g., system information block 1 (SIB 1) ) .
In some examples, the PDCCH/search space for RA procedure may be used to monitor DCI/PDCCH candidates with CRC scrambled by RA-RNTI, TEMPORARY_C-RNTI, MSGB-RNTI, C-RNTI.
In some examples, the PDCCH/search space for RA procedure may have a common search space type (e.g., searchSpaceType = common) .
In some implementations, if a prioritization between UL transmission and DL reception is required at the UE (after the MSGA/Msg3/RA preamble is transmitted by a UE and/or while a timer related to RA procedure is running) , the UE may prioritize the DL resource with specific characteristics over any UL resource when (time-domain) overlapping occurs. In other words, the UE may perform DL reception/monitoring on the DL resource with specific characteristics when the DL resource overlaps (in the time domain) an UL resource. Moreover, the UE may drop the corresponding UL resource. Here, the UL resource may be a (configured or dynamically scheduled) PUSCH or PUCCH.
In some implementations, after a contention-free RA preamble for BFR request is transmitted by a UE and/or while the ra-ResponseWindow is running, the UE may monitor the PDCCH transmission on the search space indicated by recoverySearchSpaceId (e.g., the search space identity for monitoring the response of the BFR request) regardless of (time-domain)  overlapping any UL resource. In other words, after a contention-free RA preamble for BFR request is transmitted by the UE and/or while ra-ResponseWindow is running, the UL resource that overlaps the search space indicated by recoverySearchSpaceId may be dropped.
In some implementations, after a RA preamble (other than contention-free RA Preamble for BFR request) is transmitted by the UE and/or while ra-ResponseWindow is running, the UE may monitor the PDCCH/search space for RA procedure regardless of (time-domain) overlapping any UL resource. In other words, after a RA preamble (other than contention-free RA preamble for BFR request) is transmitted by the UE and/or while ra-ResponseWindow is running, the UL resource that overlaps the PDCCH/search space for RA procedure may be dropped.
In some implementations, after the MSGA transmission and/or while msgB-ResponseWindow is running, the UE may monitor the PDCCH/search space for RA procedure regardless of (time-domain) overlapping any UL resource. In other words, after the MSGA is transmitted by the UE and/or while msgB-ResponseWindow is running, the UL resource that overlaps the PDCCH/search space for RA procedure may be dropped.
In some implementations, after the Msg3 is transmitted by the UE and/or while ra-ContentionResolutionTimer is running, the UE may monitor the PDCCH/search space for RA procedure regardless of (time-domain) overlapping any UL resource. In other words, after the Msg3 is transmitted by the UE and/or while ra-ContentionResolutionTimer is running, the UL resource that overlaps the PDCCH/search space for RA procedure may be dropped.
Action 3: The UE may switch to the DL
In some implementations, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) while a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is running.
In some implementations, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) after a RA preamble is transmitted and while ra-ResponseWindow is running. Moreover, the DL resource may be a PDCCH/search space for RA procedure.
In some implementations, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) after the MSGA is transmitted and while msgB-ResponseWindow is running. Moreover, the DL resource may be a PDCCH/search space for RA procedure.
In some implementations, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) after the Msg3 is transmitted and while ra-ContentionResolutionTimer is running. Moreover, the DL resource may be a PDCCH/search space for RA procedure.
In some implementations, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) and/or UL resource (e.g., DL physical channel) after the PHY layer of the UE receives a specific indication from the MAC entity of the UE. Preferably, the specific indication may indicate whether the DL resource and/or UL resource should be prioritized if the DL resource and the UL resource are partially or fully overlapped.
Specifically, the PDCCH/search space for RA procedure may be used to monitor a RA response.
Specifically, the PDCCH/search space for RA procedure may be indicated by ra-SearchSpace.
Specifically, the PDCCH/search space for RA procedure may be used to monitor DCI/PDCCH candidates with CRC scrambled by RA-RNTI, TEMPORARY_C-RNTI, MSGB-RNTI, C-RNTI.
Specifically, the PDCCH/search space for RA procedure may have a common search space type (e.g., searchSpaceType = common) .
In some implementations, the UE may switch to the DL reception immediately after the MSGA/Msg3/RA preamble is transmitted and/or immediately after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is (re) started.
In some implementations, the UE may switch to the DL reception at a period after the MSGA/Msg3/RA preamble is transmitted and/or at a period of time after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is (re) started. Moreover, the period may be predefined/preconfigured in the UE or may be configured by the network.
Specifically, the predefined period may be determined by the UE capability, or correspond to the subcarrier spacing (SCS) configuration.
Specifically, the predefined period (e.g., an offset) may be indicated by a PDCCH order.
In some implementations, the UE may switch to the DL reception in a slot after the slot that includes the last symbol of the PRACH resource where the MSGA/Msg3/RA preamble is transmitted.
In some implementations, the UE may switch to the DL reception immediately after the PHY layer of the UE receives a specific indication from the MAC entity of the UE. Moreover, the UE may be expected to receive an indication after the MSGA/Msg3/RA preamble is transmitted and/or immediately after a timer related to RA procedure (e.g., ra- ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is (re) started.
Action 4: The UE may be prohibited from switching to the UL
In some implementations, the UE is not expected to transmit an UL resource (e.g., UL physical channel) while a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is running.
In some implementations, the UE is not expected to transmit an UL resource (e.g., UL physical channel) after a preamble is transmitted and while ra-ResponseWindow is running.
In some implementations, the UE is not expected to transmit an UL resource (e.g., UL physical channel) after the MSGA is transmitted and while msgB-ResponseWindow is running.
In some implementations, the UE is not expected to transmit an UL resource (e.g., UL physical channel) after the Msg3 is transmitted and while ra-ContentionResolutionTimer is running.
In some implementations, the UE may switch to the UL transmission immediately after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped. To be more specific, if the UE receives an indication to switch from DL reception to UL transmission from the network while a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is running, the UE may switch to the UL transmission immediately after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped. Here, the indication may be a UL grant indicating an UL resource or an SFI indicating an UL symbol.
In some implementations, the MAC entity of the UE may switch to the UL transmission immediately after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped. To be more specific, if the MAC entity receives an indication from the PHY layer to switch from DL reception to UL transmission from the network while a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is running, the MAC entity may switch to the UL transmission immediately after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped.
In some implementations, the UE may not expect to be configured any UL resource (e.g., symbols indicated as ‘uplink’ ) or be scheduled in a guard period (e.g., symbols indicated as ‘flexible’ ) while a timer related to RA procedure (e.g., ra-ResponseWindow, ra- ContentionResolutionTimer, or msgB-ResponseWindow) is running..
In some implementations, the UE may switch to the UL transmission at a period after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped. To be more specific, if the UE receives an indication to switch from DL reception to UL transmission while a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is running, the UE may switch to the UL transmission at a period after a timer related to RA procedure (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, or msgB-ResponseWindow) is expired or stopped. Here, the indication may be a UL grant indicating an UL resource or an SFI indicating an UL symbol.
Specifically, the period may be predefined/preconfigured in the UE or may be configured by the network.
Specifically, the predefined period may be determined by the UE capability, or correspond to the SCS configuration.
Specifically, the predefined period (e.g., an offset) may be indicated by a PDCCH order.
After the RA preamble is transmitted by the UE, the UE may start the ra-ResponseWindow at the first valid PDCCH occasion/search space for RA procedure from the end of the preamble transmission.
After the MSGA is transmitted by the UE, the UE may start the msgB-ResponseWindow at the first valid PDCCH occasion/search space for RA procedure from the end of the MSGA transmission.
After the Msg3 is transmitted by the UE, the UE may start the ra-ContentionResolutionTimer at the first valid PDCCH occasion/search space for RA procedure from the end of the Msg3 transmission.
Specifically, the valid PDCCH occasion/search space for RA procedure may be used to monitor a RA response.
Specifically, the valid PDCCH occasion/search space for RA procedure may be indicated by ra-SearchSpace.
Specifically, the valid PDCCH occasion/search space for RA procedure may be used to monitor DCI/PDCCH candidates with CRC scrambled by RA-RNTI, TEMPORARY_C-RNTI, MSGB-RNTI, C-RNTI.
Specifically, the valid PDCCH occasion/search space for RA procedure may have a common search space type (e.g., searchSpaceType = common) .
More specifically, the valid PDCCH occasion/search space for RA procedure may not overlap any other UL resource in the time domain. In other words, a PDCCH/search space for RA procedure that overlaps an UL resource or the corresponding switching time in the time domain may be considered invalid.
Specifically, if a PDCCH occasion/search space for RA procedure overlaps an UL resource in the time domain and prioritization between UL transmission and DL reception is required at the UE, the PDCCH/search space for RA procedure is considered valid only if the PDCCH/search space is prioritized over the UL resource. In this case, the valid PDCCH/search space for RA procedure is selected (for monitoring/reception) instead of (UL transmission on) the UL resource.
Specifically, the PDCCH occasion/search space for RA procedure may be considered valid only if the UE is currently at DL (e.g., the UE has switched from UL transmission to DL reception) .
After the RA preamble is transmitted by the UE, the UE may count how many PDCCH opportunities are invalid and/or failed to monitor (while ra-ResponseWindow and/or msgB-ResponseWindow is running) , by a counter. If the number of invalid PDCCH opportunities and/or the number of PDCCH opportunities that the UE fails to monitor have reached a (preconfigured) value, the UE may perform at least one of the following behaviors (even if there is an overlapping UL resource) :
1. Switching to the DL reception;
2. Being expected to receive/monitor a DL resource;
3. Monitoring the PDCCH; and
4. Being prohibited from switching to the UL transmission.
II. Timers related to BFR procedure
Operation of beamFailureDetectionTimer
The beamFailureDetectionTimer and beamFailureInstanceMaxCount are configured by the network for beam failure detection. On the other hand, the BFI_COUNTER maintained at a serving cell is used to count the number of beam failure instance indications on the corresponding serving cell.
A UE may be configured, by the network, at least a DL Beam Failure Detection (BFD) reference signal (RS) (e.g., Synchronization Signal Block (SSB) and/or channel state information (CSI) RS (CSI-RS) ) for detecting beam failures of a serving cell. To be more specific, the PHY layer of the UE monitors the DL BFD RS (e.g., SSB and/or CSI-RS) for detection of beam failures of a serving cell, and provides a beam failure instance indication to  the MAC layer of the UE for the serving cell when the detected radio link quality is worse than a threshold for a time period. Subsequently, the BFI_COUNTER (initially set to 0) of a serving cell is incremented by ‘1’ whenever a beam failure instance indication has been received for the corresponding serving cell. If beam failure has been detected at a serving cell (e.g., BFI_COUNTER >= beamFailureInstanceMaxCount at the serving cell) , a BFR procedure is initiated for the serving cell. For the BFR procedure in a SpCell, a UE initiates a RA procedure and sends a BFR report (e.g., a BFR MAC CE) if beam failure has been detected at the SpCell (e.g., BFI_COUNTER >= beamFailureInstanceMaxCount at the SpCell) . For BFR procedure in a SCell, the UE sends a BFR report (e.g., a BFR MAC CE) if beam failure has been detected at a SCell (e.g., BFI_COUNTER >= beamFailureInstanceMaxCount at the SCell) .
A BFR report may be a (truncated) BFR MAC CE. Specifically, the (truncated) BFR MAC CE may indicate the cell (e.g., SpCell or SCell) where beeam failure has been detected. Moreover, for a cell where beam failure has been detected, the (truncated) BFR MAC CE may indicate whether a candidate beam (e.g., SSB and/or CSI-RS) , is available at the cell. If at least one candidate beam is available at a cell, the (truncated) BFR MAC CE may include the identity of one of the candidate beams at the cell. The UE may consider an SSB as a candidate beam if the measured SS-RSRP from the SSB is above a configured threshold (e.g., rsrp-ThresholdBFR) . Alternatively, the UE may consider a CSI-RS as a candidate beam if the measured CSI-RS is above a configured threshold (e.g., rsrp-ThresholdBFR) .
The beamFailureDetectionTimer is (re) started when a beam failure instance indication has been received for a serving cell. Furthermore, upon expiry of beamFailureDetectionTimer, the UE resets the BFI_COUNTER for the corresponding serving cell. The purpose of beamFailureDetectionTimer is to enable the UE reset BFI_COUNTER of a serving cell if no beam failure instance has been received at the serving cell for a period defined by beamFailureDetectionTimer. As such, the UE can be prevented from continuously incrementing BFI_COUNTER even if the radio link quality may have become better for a long time between two beam failure instance indications.
Potential impacts to a HD-FDD UE while beamFailureDetectionTimer is running
FIG. 4 is a schematic diagram illustrating a HD-FDD UE performing an UL transmission while the beamFailureDetectionTimer is running, according to an implementation of the present disclosure. The physical layer of the HD-FDD UE transmits the beam failure instance to the MAC entity of the HD-FDD UE, and starts the beamFailureDetectionTimer. The UE performs the UL transmission while the beamFailureDetectionTimer is running. Since  the HD-FDD UE cannot perform simultaneous UL transmission and DL reception, the HD-FDD UE may not monitor the DL BFD RS (e.g., SSB (s) and/or CSI-RS (s) ) for the detection of beam failures (of a serving cell) during the UL transmission. This implies that no beam failure instances can be received, and consequently a running beamFailureDetectionTimer may not be (re) started. In addition, the BFI_COUNTER of a serving cell may be reset upon expiration of a beamFailureDetectionTimer, which delays the initiation of (SpCell/SCell) BFR procedure even if beam failure (s) may potentially be detected.
Methods to reduce the potential impacts to a HD-FDD UE while a timer related to BFR procedure is running are disclosed.
While a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running, the UE may perform at least one of the following actions. Furthermore, the UE may be configured with a specific type. The UE may receive configurations associated with a specific type. In some implementations, the specific type of UE may be referred to as a UE in HD-FDD operation. In some implementations, the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, or an NB-IoT UE. In some implementations, the specific type of UE may have a specific UE capability set and/or a specific UE category (e.g., reduced capability UE) . In some implementations, the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions. For example, a UE may be configured with a parameter that indicates whether the UE needs to prioritize the DL resource and/or UL resource for a specific case (e.g., while a timer related to BFR procedure is running) .
Action 1: The UE may monitor/receive any DL resource (s)
Specifically, the UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
Specifically, the DL resource may be a PDSCH that is configured or dynamically scheduled by the network.
Specifically, the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI, and/or to monitor RA response, BFR response.
Specifically, the DL resource may be configured by the network for monitoring of broadcast/multicast services (e.g., PMCH) .
Specifically, the DL resource may be configured by the network for monitoring of interruption from other UEs (e.g., DCI with format 2-1 or 2-4) .
In some implementations, if a prioritization between UL transmission and DL reception is required at the UE (while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running) , the UE may prioritize a DL resource over any UL resource when (time-domain) overlapping occurs (e.g., the DL resource partially or fully collides the UL resource) . In other words, the UE may perform DL reception/monitoring on a DL resource when the DL resource overlaps (in the time domain) an UL resource. Moreover, the UE may drop the corresponding UL resource. Here, an UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH.
In some implementations, the network may configure a prioritization between UL transmission and DL reception to a UE. For example, a UE may be configured with a parameter that indicates whether the UE needs to prioritize the DL resource and/or UL resource for a specific case (e.g., while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running) .
In some implementations, while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running, a UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource. In other words, while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running, the UL resource that overlaps any DL resource may be dropped.
Action 2: The UE may monitor/receive DL resource (s) with specific characteristics
Specifically, the UE may monitor/receive any DL resource with specific characteristics regardless of (time-domain) overlapping any UL resource. On the contrary, the UE may not monitor/receive a DL resource without specific characteristics. For example, if there is no DL resource with specific characteristics while the previously mentioned timer is running, the UE may stay in the UL transmission without switching to the DL reception.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH that is configured by the network (e.g., a PDSCH corresponding to a configured downlink assignment)
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH that is dynamically scheduled by the network (e.g., scheduled by a DCI) .
Specifically, the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
Specifically, the DL resource with specific characteristics may be referred to as a DL resource for monitoring broadcast/multicast services (e.g., PMCH) .
Specifically, the DL resource with specific characteristics may be referred to as a DL resource configured with a “high priority” or a “higher index” , where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
Specifically, the DL resource with specific characteristics may be referred to as a specific search space indicated by recoverySearchSpaceId (e.g., the search space identity for monitoring the BFR response corresponding to the BFR request) .
Specifically, the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes DCI format 2_4.
Specifically, the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more ControlResourceSetId/SearchSpaceID, which is per BWP/cell/CG configured by the gNB.
Specifically, the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more SearchSpaceID, which is configured to monitor one or more specific formats of DCI.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH that is scheduled by a specific DCI format.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH/PDCCH/reference signal configured by a dedicated RRC configuration (e.g., configuration for HD-FDD operation or configuration for reduced capability) .
Specifically, the UE may monitor/receive any DL resource with specific characteristics on PCell/PScell regardless of (time-domain) overlapping any UL resource on other SCells, and the specific characteristics may be the same as mentioned previously.
Specifically, the DL resource with specific characteristics may be referred to as a BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures of a serving cell. In some examples, the BFD RS may be configured in RadioLinkMonitoringRS IE (with the purpose IE set to the value “beamFailure” ) .
In some implementations, if a prioritization between UL transmission and DL reception is required at the UE (while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running) , the UE may prioritize the DL resource with specific characteristics over any UL resource when (time-domain) overlapping occurs. In other words, the UE may perform DL reception/monitoring on the DL resource with specific characteristics when the DL resource overlaps (in the time domain) with an UL resource. Moreover, the UE  may drop the corresponding UL resource. Here, an UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH.
In some implementations, when beam failure instance indication has been received for a serving cell and subsequently (re) starts a timer related to BFR procedure (e.g., beamFailureDetectionTimer) , the UE may monitor BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures regardless of (time-domain) overlapping any UL resource while the timer is running. In other words, while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running, the UL resource may be dropped if the UL resource overlaps the BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures.
In some implementations, the UL resource may be dropped if the UL resource overlaps the BFD RS (e.g., SSBand/or CSI-RS) for the detection of beam failures on the serving cell where beam failure instance indication has been received.
In some implementations, the UL resource may be dropped if the UL resource overlaps the BFD RS (e.g., SSBand/or CSI-RS) for the detection of beam failures on the serving cell where the corresponding BFI_COUNTER is not zero.
Action 3: The UE may stay in DL
In some implementations, when beam failure instance indication has been received for a serving cell, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running. Moreover, the DL resource may be a BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures.
In some implementations, when beam failure instance indication has been received for a serving cell, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) for at least a period T1.
In some implementations, the DL resource may be a BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures.
In some implementations, the DL resource may be a BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures on the serving cell where beam failure instance indication has been received.
In some implementations, the DL resource may be a BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures on the serving cell where the corresponding BFI_COUNTER is not zero.
In some implementations, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) and/or UL resource (e.g., DL physical channel) after the PHY layer  of the UE receives a specific indication from the MAC entity of the UE. Preferably, the specific indication may indicate whether the DL resource and/or UL resource should be prioritized if the DL resource and the UL resource are partially or fully overlapped.
Specifically, the period T1 may be predefined/preconfigured in the UE or may be configured by the network.
Specifically, the BFD RS (e.g., SSB and/or CSI-RS) for the detection of beam failures may be configured in RadioLinkMonitoringRS IE (with the purpose IE set to the value “beamFailure” ) .
Action 4: The UE may be prohibited from switching to the UL
In some implementations, the UE is not expected to transmit an UL resource (e.g., UL physical channel) while a timer related to BFR procedure (e.g., beamFailureDetectionTimer) is running.
In some implementations, the UE may switch to the UL transmission immediately after at least a timer related to BFR procedure (e.g., beamFailureDetectionTimer of at least a cell) is expired or stopped. To be more specific, if the UE receives an indication to switch from DL reception to UL transmission while at least a timer related to BFR procedure (e.g., beamFailureDetectionTimer of a cell) is running, the UE may switch to the UL transmission immediately after at least a timer related to BFR procedure (e.g., beamFailureDetectionTimer of at least a cell) is expired or stopped. Here, the indication may be a UL grant indicating an UL resource, or an SFI indicating an UL symbol.
In some implementations, the UE may switch to the UL transmission at a period after at least a timer related to BFR procedure (e.g., beamFailureDetectionTimer of at least a cell) is expired or stopped. To be more specific, if the UE receives an indication to switch from DL reception to UL transmission while at least a timer related to BFR procedure (e.g., beamFailureDetectionTimer of a cell) is running, the UE may switch to the UL transmission at a period after at least a timer related to BFR procedure (e.g., beamFailureDetectionTimer of at least a cell) is expired or stopped. Here, the indication may be a UL grant indicating an UL resource, or an SFI indicating an UL symbol.
In some implementations, the MAC entity of the UE may switch to the UL transmission immediately after a timer related to BFR procedure is expired or stopped. To be more specific, if the MAC entity of the UE receives an indication from the PHY layer to switch from DL reception to UL transmission from the network while a timer related to BFR procedure is running, the MAC entity of the UE may switch to the UL transmission immediately after a timer related to BFR procedure is expired or stopped.
Specifically, the period may be predefined/preconfigured in the UE or may be configured by the network.
Specifically, the predefined period may be determined by the UE capability, or correspond to the SCS configuration.
Specifically, the predefined period (e.g., an offset) may be indicated by a PDCCH order.
If the UE has started a timer related to BFR procedure (e.g., beamFailureDetectionTimer) and the timer is still running, the UE may stop or (re) start the timer when at least one of the following conditions have been satisfied. Moreover, the UE may set the corresponding BFI_COUNTER to zero if at least one of the following conditions has been satisfied. Furthermore, the UE may be configured with a specific type. In some implementations, the specific type of UE may be referred to as a UE in HD-FDD operation. In some s implementations, the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, or an NB-IoT UE. In some implementations, the specific type of UE may have a specific UE capability set and/or a specific UE category. In some implementations, the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions. In some implementations, once the beamFailureDetectionTimer is stopped, the UE may set the corresponding BFI_COUNTER to zero.
Condition 1: When the UE has a valid UL resource for transmission
Specifically, the UL resource may be a PUSCH resource indicated/scheduled by a dynamic UL grant, a configured UL grant Type 1/Type 2, RAR, MSGB.
Specifically, the UL resource may be a PUCCH resource configured by the network for the UE to transmit uplink control information (UCI) .
Specifically, the UL resource may be a PRACH resource for the preamble transmission and/or the MSGA transmission.
In some implementations, when overlapping occurs (in the time domain) between an UL resource and a DL resource and prioritization between UL transmission and DL reception is required at the UE, the UE may consider the UL resource as valid if the UL resource is prioritized.
In some implementations, if overlapping occurs (in the time domain) between a PUSCH resource and a DL BFD RS (e.g., SSB and/or CSI-RS) , the UE may prioritize the PUSCH resource if the PUSCH resource is used for transmission of a BFR MAC CE. Moreover, this PUSCH resource may be considered as a valid UL resource.
In some implementations, the UL resource may be considered valid if the UL resource does not overlap (in the time domain) another DL resource. Moreover, a DL resource may be a PDSCH, PDCCH, PMCH.
In some implementations, if the UE has (re) started a timer related to BFR procedure (e.g., beamFailureDetectionTimer) and the timer is still running, the UE may stop the timer if the UE has a valid UL resource.
Condition 2: When an UL transmission is performed
Specifically, the UL resource may be indicated/scheduled by a dynamic UL grant, a configured UL grant Type 1/Type 2, RAR, MSGB.
Specifically, the UE may perform UL transmission on a valid UL resource. Definition of a valid UL resource is as mentioned previously.
If the UE has (re) started a timer related to BFR procedure (e.g., beamFailureDetectionTimer) and the timer is still running, the UE stops the timer when an UL transmission is performed. Moreover, the timer may be stopped at the beginning/end of the UL resource where the UL transmission is performed.
Condition 3: When the UE performs switching from DL reception to UL transmission
Specifically, the UE may perform switching from DL reception to UL transmission upon receiving an indication from the network. The indication may be an SFI, a message that schedules/configures an UL resource (e.g., a DCI/RRC message that schedules/configures PUSCH resource, a DCI/RRC signaling that indicates/configures PUCCH resource) 
Specifically, the UE may perform switching from DL reception to UL transmission upon determining that UL transmission needs to be performed on a valid UL resource. Definition of a valid UL resource is as mentioned previously.
In some implementations, if the UE has (re) started a timer related to BFR procedure (e.g., beamFailureDetectionTimer) and the timer is still running, the UE may stop the timer when the UE performs switching from DL reception to UL transmission. Moreover, the timer may be stopped before the UE performs switching (e.g., before the guard period) or after the UE performs switching (e.g., after the guard period) .
In some implementations, if the UE has started a timer related to BFR procedure (e.g., beamFailureDetectionTimer) and the timer expires, the UE may not set the BFI_COUNTER to zero if the following condition has been satisfied. Furthermore, the UE may correspond to a specific type. In some implementations, the specific type of UE may be referred to as a UE in HD-FDD operation. In some implementations, the specific type of UE  may be referred to as a BL UE, a UE in enhanced coverage, or an NB-IoT UE. In some implementations, the specific type of UE may have a specific UE capability set and/or a specific UE category. In some implementations, the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions.
Condition: When the UE is in UL (e.g., the UE is not in DL)
Specifically, the UE may be in UL if the UE has a valid UL resource for transmission. The definition of valid UL resource is as mentioned previously.
Specifically, the UE may be in UL if the UE is currently performing an UL transmission. The UL transmission may be performed on a PUSCH resource, PUCCH resource, as scheduled/configured by the network.
In some implementations, if the UE has (re) started a timer related to BFR procedure (e.g., beamFailureDetectionTimer) and the timer has expired, the UE may not set the BFI_COUNTER to zero if the UE is currently performing an UL transmission.
After the UE has transmitted a MAC PDU that includes a BFR MAC CE, and a PUSCH resource used for transmitting the MAC PDU corresponds to a first HARQ process ID, the UE may always monitor the CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of a PUSCH) until the UE receives a response from the network. In some implementations, the response may correspond to the transmitted MAC PDU. In some implementations, the response may be a PDCCH that schedules a PUSCH resource (other than the PUSCH resource for transmitting the BFR MAC CE) that also corresponds to the first HARQ process ID.
III. Timers related to DRX procedure
Operation of drx-HARQ-RTT-TimerDL and drx-RetransmissionTimerDL
The drx-HARQ-RTT-TimerDL is defined as the minimum duration until a DL retransmission is received (e.g., a dynamic DL assignment that schedules a DL resource for retransmission of a TB/MAC PDU on the DL resource) . On the other hand, drx-RetransmissionTimerDL is defined as the maximum duration until a DL retransmission is received. Moreover, each HARQ process (except for the broadcast process) has its corresponding drx-HARQ-RTT-TimerDL and drx-RetransmissionTimerDL. In some examples, drx-HARQ-RTT-TimerDL 1 and drx-RetransmissionTimerDL 1 correspond to the HARQ process 1 (e.g., HARQ ID set to ‘1’ ) , whereas drx-HARQ-RTT-TimerDL 2 and drx-RetransmissionTimerDL 2 correspond to the HARQ process 2 (e.g., HARQ ID set to ‘2’ ) . In some examples, drx-HARQ-RTT-TimerDL 1 and drx-HARQ-RTT-TimerDL 2 may be (re) started/stopped independently. Moreover, drx-RetransmissionTimerDL 1 and drx- RetransmissionTimerDL 2 may also be (re) started/stopped independently.
FIG. 5 is a schematic diagram illustrating a condition of starting the drx-HARQ-RTT-TimerDL corresponding to a specific HARQ ID, according to an implementation of the present disclosure. Upon the UE receives, from the network, a DL transmission for a HARQ process (e.g., a MAC PDU) on a PDSCH that corresponds to a configured DL assignment (e.g., SPS) , the UE may transmit a HARQ feedback (e.g., transmits an ACK/NACK to indicate whether the configured DL assignment has been successfully received/decoded) to the network for the corresponding HARQ process. Moreover, the UE may start drx-HARQ-RTT-TimerDL for the corresponding HARQ process in the first symbol after the ending of the transmission carrying the DL HARQ feedback. As illustrated in FIG. 5, the HD-FDD UE transmits the UL feedback of HARQ ID set to ‘1’ corresponding to the DL transmission with HARQ ID set to ‘1’ , and starts the drx-HARQ-RTT-TimerDL with HARQ ID set to ‘1’ .
FIG. 6 is a schematic diagram illustrating a condition of starting the drx-HARQ-RTT-TimerDL corresponding to a specific HARQ ID, according to an implementation of the present disclosure. Upon the UE receives, from the network, a dynamic DL assignment (e.g., a DCI on PDCCH) that indicates a DL transmission for a HARQ process, the UE may transmit a DL HARQ feedback (e.g., transmits an ACK/NACK to indicate whether the configured DL assignment has been successfully received/decoded) to the network for the corresponding HARQ process. Moreover, the UE may start drx-HARQ-RTT-TimerDL for the corresponding HARQ process in the first symbol after the ending of the transmission carrying the DL HARQ feedback. As illustrated in FIG. 6, the HD-FDD UE transmits the UL feedback of HARQ ID set to ‘1’ corresponding to the DL transmission with HARQ ID set to ‘1’ , and starts the drx-HARQ-RTT-TimerDL with HARQ ID set to ‘1’ .
When the drx-HARQ-RTT-TimerDL that corresponds to a HARQ process expires and the corresponding HARQ process was not successfully decoded, the UE may start the drx-RetransmissionTimerDL corresponding to this HARQ process in the first symbol after the expiry of this drx-HARQ-RTT-TimerDL. Subsequently, while drx-RetransmissionTimerDL for this HARQ process is running, the UE may be considered as in DRX Active Time. As such, the UE may monitor for possibly occurring dynamic DL scheduling (e.g., monitors DCI of dynamic DL scheduling on PDCCH) that indicates/schedules a DL resource (e.g., PDSCH resource) for retransmission for the corresponding HARQ process.
Potential impacts to a HD-FDD UE while drx-RetransmissionTimerDL is running
In one scenario, a HD-FDD UE may be performing an UL transmission while the  drx-RetransmissionTimerDL of a HARQ process is running. However, since the HD-FDD UE cannot perform simultaneous UL transmission and DL reception, the UE may miss the dynamic DL scheduling (e.g., DCI on PDCCH) that indicates/schedules a DL resource (e.g., PDSCH resource) for retransmission for the corresponding HARQ process while the drx-RetransmissionTimerDL is running.
Operation of drx-HARQ-RTT-TimerUL and drx-RetransmissionTimerUL
The drx-HARQ-RTT-TimerUL is defined as the minimum duration until a UL retransmission (e.g., a dynamic UL grant that schedules an UL resource for retransmission of a TB/MAC PDU on the UL) is received. On the other hand, drx-RetransmissionTimerUL is defined as the maximum duration until a UL retransmission is received. Moreover, each HARQ process (except for the broadcast process) has its corresponding drx-HARQ-RTT-TimerUL and drx-RetransmissionTimerUL. In some examples, drx-HARQ-RTT-TimerUL 1 and drx-RetransmissionTimerUL 1 correspond to HARQ process 1 (e.g., HARQ ID set to ‘1’ ) , whereas drx-HARQ-RTT-TimerUL 2 and drx-RetransmissionTimerUL 2 correspond to HARQ process 2 (e.g., HARQ ID set to ‘2’ ) . In some examples, drx-HARQ-RTT-TimerUL 1 and drx-HARQ-RTT-TimerUL 2 may be (re) started/stopped independently. Moreover, drx-RetransmissionTimerUL 1 and drx-RetransmissionTimerUL 2 may also be (re) started/stopped independently.
FIG. 7 is a schematic diagram illustrating a condition of starting the drx-HARQ-RTT-TimerUL corresponding to a specific HARQ ID, according to an implementation of the present disclosure. Upon the UE performs an UL transmission (e.g., a PUSCH transmission) on an UL resource (e.g., PUSCH resource) of a HARQ process, the UE may start drx-HARQ-RTT-TimerUL for the corresponding HARQ process in the first symbol after the ending of the first repetition of the corresponding UL transmission (e.g., PUSCH transmission) . In one case, the UL resource where the UL transmission is performed may correspond to a configured UL grant. In another case, the UL resource where the UL transmission is performed may be scheduled by a dynamic UL grant (e.g., a PDCCH indicating a UL transmission) . As illustrated in FIG. 7, the HD-FDD UE transmits the UL transmission with HARQ ID set to ‘1’ , and starts the drx-HARQ-RTT-TimerUL with HARQ ID set to ‘1’ .
When the drx-HARQ-RTT-TimerUL that corresponds to a HARQ process expires, the UE may start the drx-RetransmissionTimerUL corresponding to this HARQ process in the first symbol after the expiry of this drx-HARQ-RTT-TimerUL. Subsequently, while drx-RetransmissionTimerUL for this HARQ process is running, the UE may be considered as in DRX Active Time. As such, the UE may monitor for possibly occurring dynamic UL grant (e.g.,  monitors DCI of dynamic UL grant on PDCCH) that indicates/schedules a UL resource (e.g., PUSCH resource) for retransmission for the corresponding HARQ process.
Potential impacts to a HD-FDD UE while drx-RetransmissionTimerUL is running
In one scenario, a HD-FDD UE may be performing an UL transmission while the drx-RetransmissionTimerUL of a HARQ process is running. However, since the HD-FDD UE cannot perform simultaneous UL transmission and DL reception, the HD-FDD UE may miss the dynamic UL grant (e.g., DCI on PDCCH) that indicates/schedules a UL resource (e.g., PUSCH resource) for retransmission for the corresponding HARQ process while the drx-RetransmissionTimerUL is running.
Operation of drx-InactivityTimer and drx-onDurationTimer
The drx-InactivityTimer is defined as the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission for the MAC entity of the UE. The drx-InactivityTimer may be (re) started in the first symbol after the end of the PDCCH transmission indicating a new UL or DL transmission. While drx-InactivityTimer is running, the UE may be considered as in DRX Active Time. As such, the UE may monitor possible PDCCH transmission indicating UL or DL retransmissions.
The drx-onDurationTimer defines the duration at the beginning of a DRX Cycle. The drx-onDurationTimer may be started after drx-SlotOffset from the beginning of a subframe if one of the following conditions has been satisfied:
1. If Short DRX Cycle is used, and [ (SFN × 10) + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle) ; and
2. If Long DRX Cycle is used, and [ (SFN × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset.
While drx-onDurationTimer is running, the UE may be considered as in DRX Active Time. As such, the UE may monitor possible PDCCH transmission.
Potential impacts to a HD-FDD UE while drx-InactivityTimer and/or drx-onDurationTimer is running
In one scenario, a HD-FDD UE may be performing an UL transmission while the drx-InactivityTimer or drx-onDurationTimer is running. However, since the HD-FDD UE cannot perform simultaneous UL transmission and DL reception, the HD-FDD UE may miss the PDCCH transmission while drx-InactivityTimer or drx-onDurationTimer is running.
Methods to reduce the potential impacts to a HD-FDD UE while the timer (s) related to DRX procedure is running are disclosed.
While a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running, the UE may perform at least one of the following actions. Furthermore, the UE may be configured with a specific type. The UE may receive configurations associated with a specific type. In some implementations, the specific type of UE may be referred to as a UE in HD-FDD operation. In some implementations, the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, or an NB-IoT UE. In some implementations, the specific type of UE may have a specific UE capability set and/or a specific UE category (e.g., reduced capability UE) . In some implementations, the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions. For example, a UE may be configured with a parameter that indicates whether the UE needs to prioritize the DL resource and/or UL resource for a specific case (e.g., while a timer related to DRX procedure is running) .
Action 1: The UE may monitor/receive any DL resource (s)
Specifically, the UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
Specifically, the DL resource may be a PDSCH that is configured or dynamically scheduled by the network.
Specifically, the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
Specifically, the DL resource may be configured by the network for monitoring of broadcast/multicast services (e.g., PMCH) .
In some implementations, if a prioritization between UL transmission and DL reception is required at the UE (while a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running, the UE may prioritize a DL resource over any UL resource when (time-domain) overlapping occurs. In other words, the UE may perform DL reception/monitoring on the DL resource when the DL resource overlaps (in the time domain) an UL resource. Moreover, the UE may drop the corresponding UL resource. Here, the UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH, reference signal.
In some implementations, while a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running, the UE may monitor/receive any DL resource regardless of  (time-domain) overlapping any UL resource. In other words, while a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running, the UL resource that overlaps any DL resource may be dropped.
Action 2: The UE may monitor/receive DL resource (s) with specific characteristics
Specifically, the UE may monitor/receive any DL resource with specific characteristics regardless of (time-domain) overlapping any UL resource. On the contrary, the UE may not monitor/receive a DL resource without specific characteristics. For example, if there is no DL resource with specific characteristics while the previously mentioned timer is running, the UE may stay in the UL transmission without switching to the DL reception.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH that is configured by the network (e.g., a PDSCH corresponding to a configured downlink assignment)
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH that is dynamically scheduled by the network (e.g., scheduled by a DCI) .
Specifically, the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
Specifically, the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, Cancellation Indication RNTI (CI-RNTI) , Configured Scheduling RNTI (CS-RNTI) , Interruption RNTI (INT-RNTI) , Power Saving RNTI (PS-RNTI) , SFI-RNTI, Semi-Persistent CSI RNTI (SP-CSI-RNTI) ) .
Specifically, the DL resource with specific characteristics may be referred to as a DL resource for monitoring broadcast/multicast services (e.g., PMCH) .
Specifically, the DL resource with specific characteristics may be referred to as a DL resource configured with a “high priority” or a “higher index” , where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
Specifically, the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes DCI format 2_4.
Specifically, the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or multiple ControlResourceSetId/SearchSpaceID,  which is per BWP/cell/CG configured by the gNB.
Specifically, the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or multiple SearchSpaceID, which is configured to monitor one or more specific formats of DCI.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH that is scheduled by a specific DCI format.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH/PDCCH/reference signal configured by a dedicated RRC configuration (e.g., configuration for HD-FDD operation or configuration for reduced capability) .
Specifically, the UE may monitor/receive any DL resource with specific characteristics on PCell/PScell regardless of (time-domain) overlapping any UL resource on other SCells, and the specific characteristics may be the same as mentioned previously.
In some implementations, if a prioritization between UL transmission and DL reception is required at the UE (while a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running) , the UE may prioritize the DL resource with specific characteristics over any UL resource when (time-domain) overlapping occurs. In other words, the UE may perform DL reception/monitoring on the DL resource with specific characteristics when the DL resource overlaps (in the time domain) an UL resource. Moreover, the UE may drop the corresponding UL resource. Here, the UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH.
Action 3: The UE may stay in DL
In some implementations, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) while a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running. Moreover, the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI) .
In some implementations, when a timer related to DRX procedure (drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) for at least a period T1. Moreover, the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI  associated with a specific RNTI (e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI) .
In some implementations, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) and/or UL resource (e.g., DL physical channel) after the PHY layer of the UE receives a specific indication from the MAC entity of the UE. Preferably, the specific indication may indicate whether the DL resource and/or UL resource should be prioritized if the DL resource and the UL resource are partially or fully overlapped.
Specifically, the period T1 may be predefined/preconfigured in the UE or may be configured by the network.
Action 4: The UE may be prohibited from switching to the UL transmission
In some implementations, the UE is not expected to transmit an UL resource (e.g., UL physical channel) while a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running.
In some implementation, the UE may switch to the UL transmission immediately after at least a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is expired or stopped. To be more specific, if the UE receives an indication to switch from DL reception to UL transmission while at least a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running, the UE may switch to the UL transmission immediately after at least a timer related to DRX (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is expired or stopped. Here, the indication may be a UL grant indicating an UL resource or an SFI indicating an UL symbol.
In some implementations, the UE may switch to the UL transmission at a period after at least a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is expired or stopped. To be more specific, if the UE receives an indication to switch from DL reception to UL transmission while at least a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is running, the UE may switch to the UL transmission at a period after at least a timer related to DRX procedure (e.g., drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, and drx-onDurationTimer) is expired or stopped. Here, the indication may be a UL grant indicating an UL resource, or an SFI indicating an UL  symbol.
In some implementations, the MAC entity of the UE may switch to the UL transmission immediately after a timer related to DRX procedure is expired or stopped. To be more specific, if the MAC entity of the UE receives an indication from the PHY layer to switch from DL reception to UL transmission from the network while a timer related to DRX procedure is running, the MAC entity of the UE may switch to the UL transmission immediately after the timer related to DRX procedure is expired or stopped.
Specifically, the period may be predefined/preconfigured in the UE or may be configured by the network.
Specifically, the predefined period may be determined by the UE capability, or correspond to the SCS configuration.
Specifically, the predefined period (e.g., an offset) may be indicated by a PDCCH order.
The UE may neither be expected to transmit an UL resource nor be configured with a guard period (e.g., a period in which a UE may perform UL to DL switching and vice versa) during a first period where DCI format 2-6 (e.g., DCI associated with PS-RNTI) may occur. In some implementations, the guard/first period may be configured by the network via RRC signaling. In some implementations, the guard/first period may have a unit of symbol, slot, subframe, radio frame. In some implementations, the beginning of the first period may be ‘X’ slots prior to the beginning of a slot where the drx-onDurationTimer starts. In some implementations, the UE may neither be expected to transmit an UL resource nor be configured with a guard period during the first period when the UE is not in DRX Active time. In some implementations, the UE may be indicated, by the network, whether or not to transmit an UL resource during the first period.
If a PUSCH resource partially or fully collides with a PDSCH resource, the UE may prioritize the PUSCH resource and/or the PDSCH resource based on the resource is used for a new transmission or retransmission. For example, if the PUSCH resource is used for a new transmission and the PDSCH resource is used for retransmission, the UE may prioritize the PUSCH resource for a new transmission. For another example, if the PDSCH resource is used for a new transmission and the PUSCH resource is used for retransmission, the UE may prioritize the PDSCH resource for a new transmission. The previously mentioned retransmission may include repetitions.
If a PUSCH resource partially or fully collides with a PDSCH resource, the UE may prioritize the PUSCH resource and/or the PDSCH resource based on an indicator indicated  by the network. The indicator may be preconfigured by RRC signaling. The indicator may be dynamically indicated by the DCI where the DCI is used to indicate the PUSCH resource and/or the PDSCH resource. For example, the indicator may indicate a priority for the DL resource and UL resource.
IV. Timers related to configured UL grant
Operation of configuredGrantTimer
The configuredGrantTimer is configured per HARQ process. Each HARQ process has its corresponding configuredGrantTimer. In some examples, configuredGrantTimer 1 corresponds to HARQ process 1 (e.g., HARQ ID set to ‘1’ ) , whereas configuredGrantTimer 2 corresponds to HARQ process 2 (e.g., HARQ ID set to ‘2’ ) . Moreover, configuredGrantTimer 1 and configuredGrantTimer 2 may be (re) started/stopped independently. In some examples, the configuredGrantTimer of a HARQ process is (re) started when a dynamic UL grant (e.g., DCI on PDCCH) with CS-RNTI/C-RNTI for this HARQ process is received. Alternatively, the configuredGrantTimer for a HARQ process is (re) started when a transmission is performed on a PUSCH resource of the HARQ process. While the configuredGrantTimer for a HARQ process is running, a new transmission on the PUSCH resource of a configured UL grant for the HARQ process is prohibited, and the UE is expected to receive a possible dynamic UL grant for retransmission for the HARQ process. If configuredGrantTimer for a HARQ process expires and no dynamic UL grant for retransmission for the HARQ process has been received while configuredGrantTimer is running, the UE may assume ACK for the HARQ process.
Potential impacts to a HD-FDD UE while configuredGrantTimer is running
In one scenario, a HD-FDD UE may be performing an UL transmission while the configuredGrantTimer for a HARQ process is running. However, since the HD-FDD UE cannot perform simultaneous UL transmission and DL reception, the UE may miss the dynamic UL grant (e.g., DCI on PDCCH) that indicates/schedules a UL resource (e.g., PUSCH resource) for retransmission for the corresponding HARQ process while the configuredGrantTimer is running.
Methods to reduce potential impacts to a HD-FDD UE while configuredGrantTimer is running are disclosed.
While configuredGrantTimer is running, the UE may perform at least one of the following actions. Furthermore, the UE may be configured with a specific type. The UE may receive configurations associated with a specific type. In some implementations, the specific type of UE may be referred to as a UE in HD-FDD operation. In some implementations, the specific type of UE may be referred to as a BL UE, a UE in enhanced coverage, an NB-IoT UE  or a RedCap UE. In some implementations, the specific type of UE may have a specific UE capability set and/or a specific UE category (e.g., reduced capability UE) . In some implementations, the UE may be configured, by the network, with a specific IE/MAC CE/indication in order to perform at least one of the following actions. For example, the UE may be configured with a parameter that indicates whether the UE needs to prioritize the DL resource and/or UL resource for a specific case (e.g., while configuredGrantTimer is running) .
Action 1: The UE may monitor/receive any DL resource (s)
Specifically, the UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource.
Specifically, the DL resource may be a PDSCH that is configured or dynamically scheduled by the network.
Specifically, the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
Specifically, the DL resource may be configured by the network for monitoring of broadcast/multicast services (e.g., PMCH) .
In some implementations, if prioritization between UL transmission and DL reception is required at the UE (while configuredGrantTimer) is running, the UE may prioritize a DL resource over any UL resource when (time-domain) overlapping occurs. In other words, the UE may perform DL reception/monitoring on the DL resource when the DL resource overlaps (in the time domain) an UL resource. Moreover, the UE may drop the corresponding UL resource. Here, the UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH.
In some implementations, while configuredGrantTimer is running, a UE may monitor/receive any DL resource regardless of (time-domain) overlapping any UL resource. In other words, while configuredGrantTimer is running, the UL resource that overlaps any DL resource may be dropped.
Action 2: The UE may monitor/receive DL resource (s) with specific characteristics
Specifically, the UE may monitor/receive any DL resource with specific characteristics regardless of (time-domain) overlapping any UL resource with specific characteristics. On the contrary, the UE may not monitor/receive a DL resource without specific characteristics. For example, if there is no DL resource with specific characteristics while the previously mentioned timer is running, the UE may stay in the UL transmission without switching to the DL reception.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH that is configured by the network (e.g., a PDSCH corresponding to a configured downlink assignment)
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH that is dynamically scheduled by the network (e.g., scheduled by a DCI) .
Specifically, the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes scheduling information (e.g., scheduling of PDSCH or PUSCH) and/or SFI.
Specifically, the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI) .
Specifically, the DL resource with specific characteristics may be referred to as a DL resource for monitoring broadcast/multicast services (e.g., PMCH) .
Specifically, the DL resource with specific characteristics may be referred to as a DL resource configured with a “high priority” or a “higher index” , where the “high priority” or “higher index” may refer to a specific field (e.g., priority indicator) contained in one or more specific formats of DCI.
Specifically, the DL resource with specific characteristics may be referred to as a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI that includes DCI format 2_4.
Specifically, the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more ControlResourceSetId/SearchSpaceID, which is per BWP/cell/CG configured by the gNB.
Specifically, the DL resource with specific characteristics may be referred to as a PDCCH resource corresponding to one or more SearchSpaceID, which is configured to monitor one or more specific formats of DCI.
Specifically, the DL resource with specific characteristics may be referred to as a PDSCH/PDCCH/reference signal configured by a dedicated RRC configuration (e.g., configuration for HD-FDD operation or configuration for reduced capability) .
Specifically, the UE may monitor/receive any DL resource with specific characteristics on PCell/PScell regardless of (time-domain) overlapping any UL resource on other SCells, and the specific characteristics may be the same as mentioned previously.
Specifically, the DL resource with specific characteristics may be referred to as a  CORESET/search space/PDCCH configured by the network for the UE to monitor DCIs of a specific DCI format.
Specifically, the UL resource with specific characteristics may be referred to as a configured PUSCH with specific HARQ process IDs or harq-ProcID-Offset. The specific HARQ process IDs or harq-ProcID-Offset may be determined based on the HARQ processes with the corresponding configuredGrantTimer that are running.
Specifically, the UL resource with specific characteristics may be referred to as a configured PUSCH with specific phy-PriorityIndex.
Specifically, the UL resource with specific characteristics may be referred to as a configured PUSCH with specific configuredGrantConfigIndex.
Specifically, the UL resource with specific characteristics may be referred to as a PUSCH or PUCCH scheduled by DCI format with a specific priority indication.
In some implementations, if a prioritization between UL transmission and DL reception is required at the UE while configuredGrantTimer is running, the UE may prioritize the DL resource with specific characteristics over the UL resource with specific characteristics when (time-domain) overlapping occurs. In other words, the UE may perform DL reception/monitoring on the DL resource with specific characteristics when the DL resource overlaps (in the time domain) the UL resource. Moreover, the UE may drop the corresponding UL resource. Here, the UL resource may be a (configured or dynamically scheduled) PUSCH, PUCCH. In some examples, the UL resource may be a configured PUSCH with harq-ProcID-Offset larger than the HARQ process IDs corresponding to the configuredGrantTimer that are running.
Action 3: The UE may stay in DL
In some implementations, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) while configuredGrantTimer is running. Moreover, the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI) .
In some implementations, when configuredGrantTimer is running, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) for at least a period T1. Moreover, the DL resource may be a CORESET/search space/PDCCH configured by the network for the UE to monitor DCI associated with a specific RNTI (e.g., C-RNTI, C-RNTI, CI-RNTI, CS-RNTI, INT-RNTI, PS-RNTI, SFI-RNTI, SP-CSI-RNTI) .
Specifically, the period T1 may be predefined/preconfigured in the UE or may be  configured by the network.
In some implementations, the UE is expected to receive/monitor a DL resource (e.g., DL physical channel) and/or UL resource (e.g., DL physical channel) after the PHY layer of the UE receives a specific indication from the MAC entity of the UE. Preferably, the specific indication may indicate whether the DL resource and/or UL resource should be prioritized if the DL resource and the UL resource are partially or fully overlapped.
Action 4: The UE may be prohibited from switching to the UL transmission
In some implementations, the UE is not expected to transmit an UL resource (e.g., UL physical channel) while configuredGrantTimer is running.
In some implementations, the UE may switch to the UL transmission immediately after configuredGrantTimer is expired or stopped. To be more specific, if the UE receives an indication to switch from DL reception to UL transmission while configuredGrantTimer is running, the UE may switch to the UL transmission immediately after configuredGrantTimer is expired or stopped. Here, the indication may be a UL grant indicating an UL resource, or an SFI indicating an UL symbol.
In some implementations, the UE may switch to the UL transmission at a period after configuredGrantTimer is expired or stopped. To be more specific, if the UE receives an indication to switch from DL reception to UL transmission while configuredGrantTimer is running, the UE may switch to the UL transmission at a period after configuredGrantTimer is expired or stopped. Here, the indication may be a UL grant indicating an UL resource, or an SFI indicating an UL symbol.
In some implementations, the MAC entity of the UE may switch to the UL transmission immediately after configuredGrantTimer is expired or stopped. To be more specific, if the MAC entity of the UE receives an indication from the PHY layer of the UE to switch from DL reception to UL transmission from the network while a configuredGrantTimer is running, the MAC entity of the UE may switch to the UL transmission immediately after configuredGrantTimer is expired or stopped.
Specifically, the period may be predefined/preconfigured in the UE or may be configured by the network.
Specifically, the predefined period may be determined by the UE capability, or correspond to the SCS configuration.
Specifically, the predefined period (e.g., an offset) may be indicated by a PDCCH order.
In some implementations, the methods for a UE in the HD-FDD operation to  perform transmissions and receptions in the present disclosure may also be performed by a UE in a full duplex operation. The UE in a full duplex operation may have a specific UE capability set and/or a specific UE category.
In some implementations, the methods for a UE in the HD-FDD operation to perform transmissions and receptions in the present disclosure may also be performed when the UE starts another timer that is associated with a DL transmission or DL resource.
FIG. 8 is a flowchart illustrating a method 800 for a UE in the HD-FDD operation to perform transmissions and receptions. In action 802, the UE receives, from a BS, an UL resource in a first set of symbols and a DL resource in a second set of symbols. In action 804, the UE starts a previously mentioned timer (e.g., ra-ResponseWindow, ra-ContentionResolutionTimer, msgB-ResponseWindow, beamFailureDetectionTimer, drx-HARQ-RTT-TimerDL, drx-RetransmissionTimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerUL, drx-InactivityTimer and drx-onDurationTimer, configuredGrantTimer) associated with a previously mentioned procedure (e.g., RA procedure, BFR procedure, DRX procedure and HARQ procedure/process) . In action 806, the UE does not perform an UL transmission on the UL resource when the timer is running. In action 808, the UE performs a DL reception for the procedure on the DL resource when the timer is running.
In some examples, the UE may be prohibited from switching from a DL reception to an UL transmission when the timer is running, so that the UE does not perform an UL transmission on the UL resource when the timer is running.
In some examples, the UE may not perform the UL transmission on the UL resource when the first set of symbols partially or fully overlap the second set of symbols in a time domain.
In some examples, for the UE performing the DL reception on the DL resource (e.g., action 808) , the UE may switch from the UL transmission to the DL reception, or stay in the DL reception.
In some examples, the UL resource includes at least one of a PUSCH, a PUCCH, and a PRACH.
In some examples, the DL resource includes at least one of a PDSCH, a PDCCH, a CORESET, a CSI-RS, a synchronization signals (SS) and a SSB, a SPS PDSCH, a PDSCH scheduled by DCI, a PDCCH configured with ControlResourceSetId/SearchSpaceID, a downlink physical channel with a higher priority than the UL resource, a search space indicated by recoverySearchSpaceId, a DL resource configured by a dedicated RRC configuration, a PDCCH identified by a specific RNTI, and a PMCH.
FIG. 9 is a block diagram illustrating a node 900 for wireless communication, according to an implementation of the present disclosure.
As illustrated in FIG. 9, the node 900 may include a transceiver 920, a processor 926, a memory 928, one or more presentation components 934, and at least one antenna 936. The node 900 may also include a Radio Frequency (RF) spectrum band module, a BS communications module, a network communications module, a system communications management module, input/output (I/O) ports, I/O components, and a power supply (not illustrated in FIG. 9) .
Each of these components may be in communication with each other, directly or indirectly, over one or more buses 940. The node 900 may be a UE or a BS that performs various disclosed functions illustrated in FIG. 8 and examples in this disclosure.
The transceiver 920 may include a transmitter 922 (with transmitting circuitry) and a receiver 924 (with receiving circuitry) and may be configured to transmit and/or receive time and/or frequency resource partitioning information. The transceiver 920 may be configured to transmit in different types of subframes and slots including, but not limited to, usable, non-usable and flexibly usable subframes and slot formats. The transceiver 920 may be configured to receive data and control channels.
The node 900 may include a variety of computer-readable media. Computer-readable media may be any media that can be accessed by the node 900 and include both volatile (and non-volatile) media and removable (and non-removable) media. Computer-readable media may include computer storage media and communication media. Computer storage media may include both volatile (and/or non-volatile) , as well as removable (and/or non-removable) , media implemented according to any method or technology for storage of information such as computer-readable media.
Computer storage media may include RAM, ROM, EPROM, EEPROM, flash memory (or other memory technology) , CD-ROM, Digital Versatile Disk (DVD) (or other optical disk storage) , magnetic cassettes, magnetic tape, magnetic disk storage (or other magnetic storage devices) , etc. Computer storage media do not include a propagated data signal.
Communication media may typically embody computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanisms and include any information delivery media. The term “modulated data signal” may mean a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. Communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic,  RF, infrared, and other wireless media. Combinations of any of the disclosed media should be included within the scope of computer-readable media.
The memory 928 may include computer-storage media in the form of volatile and/or non-volatile memory. The memory 928 may be removable, non-removable, or a combination thereof. For example, the memory 928 may include solid-state memory, hard drives, optical-disc drives, etc. As illustrated in FIG. 9, the memory 928 may store computer-readable and/or computer-executable instructions 932 (e.g., software codes) that are configured to, when executed, cause the processor 926 (e.g., processing circuitry) to perform various disclosed functions. Alternatively, the instructions 932 may not be directly executable by the processor 926 but may be configured to cause the node 900 (e.g., when compiled and executed) to perform various disclosed functions.
The processor 926 may include an intelligent hardware device, a central processing unit (CPU) , a microcontroller, an ASIC, etc. The processor 926 may include memory. The processor 926 may process the data 930 and the instructions 932 received from the memory 928, and information received through the transceiver 920, the baseband communications module, and/or the network communications module. The processor 926 may also process information to be sent to the transceiver 920 for transmission via the antenna 936, and/or to the network communications module for transmission to a CN.
One or more presentation components 934 may present data to a person or other devices. Presentation components 934 may include a display device, a speaker, a printing component, a vibrating component, etc.
From the present disclosure, it is evident that various techniques can be utilized for implementing the disclosed concepts without departing from the scope of those concepts. Moreover, while the concepts have been disclosed with specific reference to specific implementations, a person of ordinary skill in the art would recognize that changes can be made in form and detail without departing from the scope of those concepts. As such, the present disclosure is to be considered in all respects as illustrative and not restrictive. It should also be understood that the present disclosure is not limited to the specific disclosed implementations, but that many rearrangements, modifications, and substitutions are possible without departing from the scope of the present disclosure.

Claims (20)

  1. A method of transmissions and receptions for a user equipment (UE) in a half-duplex frequency-division duplexing (HD-FDD) operation, the method comprising:
    receiving, from a base station (BS) , an uplink (UL) resource in a first set of symbols and a downlink (DL) resource in a second set of symbols;
    starting a timer associated with a procedure;
    not performing an UL transmission on the UL resource when the timer is running; and
    performing a DL reception for the procedure on the DL resource when the timer is running.
  2. The method of claim 1, wherein the procedure is a random access (RA) procedure, and the timer is ra-ResponseWindow for the UE to monitor a random access response (RAR) of the RA procedure, a ra-ContentionResolutionTimer for the UE to monitor a Msg4 of the RA procedure, or a msgB-ResponseWindow for the UE to monitor a MSGB of the RA procedure.
  3. The method of claim 1, wherein the procedure is a Beam Failure Recovery (BFR) procedure, and the timer is beamFailureDetectionTimer for the UE to monitor a beam failure detection (BFD) reference signal (RS) .
  4. The method of claim 1, wherein the procedure is a Discontinuous Reception (DRX) procedure, and the timer is drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, or drx-onDurationTimer for the UE to monitor a physical downlink control channel (PDCCH) transmission.
  5. The method of claim 1, wherein the procedure is a Hybrid Automatic Repeat Request (HARQ) procedure, and the timer is configuredGrantTimer for the UE to monitor a scheduling of new transmission or retransmission corresponding to a Hybrid Automatic Repeat Request (HARQ) process on a physical downlink control channel (PDCCH) .
  6. The method of claim 1, wherein perform the DL reception for the procedure on the DL resource comprises:
    switching from an UL transmission to the DL reception for the procedure; or
    staying in the DL reception for the procedure.
  7. The method of claim 1, wherein not performing the UL transmission on the UL resource when the timer is running comprises:
    being prohibited from switching from a DL reception to an UL transmission when the timer is running.
  8. The method of claim 1, wherein the UL resource includes at least one of a physical uplink shared channel (PUSCH) , a physical uplink control channel (PUCCH) , and a physical random access channel (PRACH) .
  9. The method of claim 1, wherein the DL resource includes at least one of a physical downlink shard channel (PDSCH) , a physical downlink control channel (PDCCH) , a search space, a control resource set (CORESET) , a channel state information-reference signal (CSI-RS) , a synchronization signals (SS) and a physical broadcast channel (PBCH) block (SSB) , a SPS PDSCH, a PDSCH scheduled by downlink control information (DCI) , a PDCCH configured with ControlResourceSetId/SearchSpaceID, a downlink physical channel with a higher priority than the UL resource, a search space indicated by recoverySearchSpaceId, a DL resource configured by a dedicated radio resource control (RRC) configuration, a PDCCH identified by a specific radio network temporary identifier (RNTI) , and a physical multicast channel (PMCH) .
  10. The method of claim 1, wherein not performing the UL transmission on the UL resource when the timer is running comprises:
    not performing the UL transmission on the UL resource when the first set of symbols partially or fully overlap the second set of symbols in a time domain.
  11. A user equipment (UE) for performing transmissions and receptions in a half-duplex frequency-division duplexing (HD-FDD) operation, the UE comprising:
    a processor, for executing a computer-executable program; and
    a memory, coupled to the processor, for storing the computer-executable program, wherein the computer-executable program instructs the processor to:
    receive, from a base station (BS) , an uplink (UL) resource in a first set of symbols and a downlink (DL) resource in a second set of symbols;
    start a timer associated with a procedure;
    not perform an UL transmission on the UL resource when the timer is running; and
    perform a DL reception for the procedure on the DL resource when the timer is running.
  12. The UE of claim 11, wherein the procedure is a random access (RA) procedure, and the timer is ra-ResponseWindow for the UE to monitor a random access response (RAR) of the RA procedure, a ra-ContentionResolutionTimer for the UE to monitor a Msg4 of the RA procedure, or a msgB-ResponseWindow for the UE to monitor a MSGB of the RA procedure.
  13. The UE of claim 11, wherein the procedure is a Beam Failure Recovery (BFR) procedure, and the timer is beamFailureDetectionTimer for the UE to monitor a beam failure detection (BFD) reference signal (RS) .
  14. The UE of claim 11, wherein the procedure is a Discontinuous Reception (DRX) procedure, and the timer is drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-InactivityTimer, or drx-onDurationTimer for the UE to monitor a physical downlink control channel (PDCCH) transmission.
  15. The UE of claim 11, wherein the procedure is a Hybrid Automatic Repeat Request (HARQ) procedure, and the timer is configuredGrantTimer for the UE to monitor a scheduling of new transmission or retransmission corresponding to a Hybrid Automatic Repeat Request (HARQ) process on a physical downlink control channel (PDCCH) .
  16. The UE of claim 11, wherein the computer-executable program further instructs the processor to:
    switch from an UL transmission to the DL reception for the procedure; or
    stay in the DL reception for the procedure.
  17. The UE of claim 11, wherein the computer-executable program further instructs the processor to:
    be prohibited from switching from a DL reception to an UL transmission when the timer is running.
  18. The UE of claim 11, wherein the UL resource includes at least one of a physical uplink shared channel (PUSCH) , a physical uplink control channel (PUCCH) , and a physical  random access channel (PRACH) .
  19. The UE of claim 11, wherein the DL resource includes at least one of a physical downlink shard channel (PDSCH) , a physical downlink control channel (PDCCH) , a search space, a control resource set (CORESET) , a channel state information-reference signal (CSI-RS) , a synchronization signals (SS) and a physical broadcast channel (PBCH) block (SSB) , a SPS PDSCH, a PDSCH scheduled by downlink control information (DCI) , a PDCCH configured with ControlResourceSetId/SearchSpaceID, a downlink physical channel with a higher priority than the UL resource, a search space indicated by recoverySearchSpaceId, a DL resource configured by a dedicated radio resource control (RRC) configuration, a PDCCH identified by a specific radio network temporary identifier (RNTI) , and a physical multicast channel (PMCH) .
  20. The UE of claim 11, wherein the computer-executable program further instructs the processor to:
    not perform the UL transmission on the UL resource when the first set of symbols partially or fully overlap the second set of symbols in a time domain.
PCT/CN2021/107697 2020-07-21 2021-07-21 Method of transmissions and receptions in half-duplex frequency-division duplexing operation and related device WO2022017427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063054747P 2020-07-21 2020-07-21
US63/054,747 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022017427A1 true WO2022017427A1 (en) 2022-01-27

Family

ID=79728493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107697 WO2022017427A1 (en) 2020-07-21 2021-07-21 Method of transmissions and receptions in half-duplex frequency-division duplexing operation and related device

Country Status (1)

Country Link
WO (1) WO2022017427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160338089A1 (en) * 2015-05-14 2016-11-17 Sierra Wireless, Inc. Method and apparatus for resource allocation for half duplex frequency division duplexing in a wireless communication system
CN109089315A (en) * 2017-06-14 2018-12-25 维沃移动通信有限公司 A kind of data transmission method and device based on multi-beam
US20190132109A1 (en) * 2017-10-26 2019-05-02 Hua Zhou Activation and Deactivation of Bandwidth Part
US20190305840A1 (en) * 2018-03-30 2019-10-03 Ali Cagatay Cirik New Radio Beam Failure Recovery Procedure Timing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160338089A1 (en) * 2015-05-14 2016-11-17 Sierra Wireless, Inc. Method and apparatus for resource allocation for half duplex frequency division duplexing in a wireless communication system
CN109089315A (en) * 2017-06-14 2018-12-25 维沃移动通信有限公司 A kind of data transmission method and device based on multi-beam
US20190132109A1 (en) * 2017-10-26 2019-05-02 Hua Zhou Activation and Deactivation of Bandwidth Part
US20190305840A1 (en) * 2018-03-30 2019-10-03 Ali Cagatay Cirik New Radio Beam Failure Recovery Procedure Timing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "BWP impact to RLM configuration (E396)", 3GPP TSG-RAN WG2 #101 R2-1802780, 2 March 2018 (2018-03-02), XP051400786 *

Similar Documents

Publication Publication Date Title
US11582790B2 (en) User equipment and method for small data transmission
US11129190B2 (en) Method for performing random access procedure and apparatus therefor
WO2021190355A1 (en) Method and user equipment for configured grant configuration
US20220210753A1 (en) Method for small data transmission and related device
CN114503685B (en) Method and apparatus for discontinuous reception operation for beam fault recovery procedure
US20220150946A1 (en) Search space group switching in next generation networks
US11659597B2 (en) User equipment and method for two-step random access procedure
US11696341B2 (en) Methods and apparatuses for random access procedure in medium access control layer
CN115735395A (en) Method and user equipment for wireless communication in wireless communication system
WO2022111542A1 (en) Method of performing small data transmission in radio resource control inactive state and related device
US20240073816A1 (en) User equipment and method for saving power
WO2022017427A1 (en) Method of transmissions and receptions in half-duplex frequency-division duplexing operation and related device
US20220174723A1 (en) User equipment and method for small data transmission
WO2022111584A1 (en) User equipment and method for small data transmission
WO2022233337A1 (en) Method and apparatus for handling random access failures in rrc inactive state
US20230120155A1 (en) Method related to random access and user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845940

Country of ref document: EP

Kind code of ref document: A1