WO2020192255A1 - 智能中轴、智能魔方及智能魔方的监测方法 - Google Patents

智能中轴、智能魔方及智能魔方的监测方法 Download PDF

Info

Publication number
WO2020192255A1
WO2020192255A1 PCT/CN2020/072275 CN2020072275W WO2020192255A1 WO 2020192255 A1 WO2020192255 A1 WO 2020192255A1 CN 2020072275 W CN2020072275 W CN 2020072275W WO 2020192255 A1 WO2020192255 A1 WO 2020192255A1
Authority
WO
WIPO (PCT)
Prior art keywords
cube
rubik
layer
rotor
main control
Prior art date
Application number
PCT/CN2020/072275
Other languages
English (en)
French (fr)
Inventor
苏梓铭
Original Assignee
佛山市计客创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市计客创新科技有限公司 filed Critical 佛山市计客创新科技有限公司
Publication of WO2020192255A1 publication Critical patent/WO2020192255A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/08Puzzles provided with elements movable in relation, i.e. movably connected, to each other
    • A63F9/0826Three-dimensional puzzles with slidable or rotatable elements or groups of elements, the main configuration remaining unchanged, e.g. Rubik's cube

Definitions

  • the invention relates to the technical field of Rubik's Cube, in particular to a monitoring method of an intelligent central axis, an intelligent Rubik's Cube and an intelligent Rubik's Cube.
  • Smart Rubik's Cube is a new type of electronic Rubik's Cube that senses the status and rotation position of the Rubik's cube in real time through sensors, and processes, stores and sends information such as the real-time status and rotation to external devices.
  • the intelligent central axis of the Rubik's Cube is the core part of the Rubik's Cube, which can detect the rotation information of each Rubik's Cube, obtain the real-time status of the Rubik's Cube as a whole, and communicate with electronic devices outside the Rubik's Cube in real time.
  • the current intelligent axis is mainly used for low-level cubes (second order, third order), but for high-order cubes (positive fourth order, positive fifth order, and positive fifth order above) or special-shaped cubes (such as third order and above Pyramid Rubik's Cube, etc.), there is no corresponding intelligent central axis structure to realize the state detection of Rubik's Cube. Therefore, the traditional high-end Rubik's Cube or some special-shaped Rubik's Cube cannot perceive the status and rotation position of the Rubik's Cube, and cannot realize intelligence.
  • a kind of smart middle axis, applied to smart cube including:
  • a core the core includes a connecting rod and a housing with a cavity, one end of the connecting rod is fixedly connected to the housing;
  • a first sensor the first sensor includes a first stator and a first rotor, the first stator is fixedly mounted on the housing, and the first rotor is configured to rotate the magic cube with the inner layer of the smart cube The layers rotate synchronously, so that the first rotor can rotate with the inner layer and the Rubik's cube layer rotates relative to the first stator;
  • the second sensor includes a second stator and a second rotor, the second stator is fixedly mounted on the connecting rod, and the second rotor is configured to rotate the magic cube with the outer layer of the smart cube The layers rotate synchronously, so that the second rotor can rotate with the outer layer and the Rubik's cube layer rotates relative to the second stator; and
  • the main control module is installed in the cavity; the main control module is directly or indirectly electrically connected to the first sensor, and the main control module is electrically connected to the first rotor according to the The relative rotation between the first stators obtains the rotation signal of the inner layer of the Rubik’s cube layer; the main control module is directly or indirectly electrically connected with the second sensor, and the main control module is electrically connected according to the first The relative rotation between the second rotor and the second stator obtains the rotation signal of the outer layer rotating Rubik's cube layer.
  • the main control module obtains the rotation signal of the inner rotating Rubik's Cube layer according to the relative rotation between the first rotor and the first stator. Rotate relative to obtain the rotation signal of the outer layer of the Rubik's Cube.
  • the main control module can obtain the status signal of the high-level Rubik's Cube or the special-shaped Rubik's Cube according to the rotation signal of the inner layer and the outer layer of the Rubik's Cube, making the Rubik's Cube intelligent.
  • the smart cube can further realize the online Rubik's cube competition.
  • the first sensor further includes a first mounting seat rotatably mounted on the connecting rod, and the first mounting seat is configured to be able to rotate synchronously with the inner rotating cube layer, so The first rotor is fixed to the first mounting seat.
  • one of the peripheral edge of the first mounting seat and the outer surface of the housing is provided with a flange, and the other is provided with a first sliding groove slidably fitted with the flange.
  • the first stator is fixed to the outer surface of the housing, and the first rotor is rotatably sleeved on the connecting rod; wherein, the first rotor is provided with The first accommodating cavity of the first stator, or the first stator is provided with a second accommodating cavity for accommodating the first rotor.
  • the first stator is fixed to the outer surface of the housing, the housing is provided with wiring holes, the first stator is connected with a first connecting wire, and the first stator is The connecting wire is electrically connected to the main control module in the housing after passing through the wiring hole.
  • the second sensor further includes a second mounting seat rotatably sleeved on the connecting rod, the second rotor is fixed on the inner side of the second mounting seat, and the second The stator is fixedly installed on the connecting rod and located in the second mounting seat.
  • the second mounting seat can drive the second rotor to rotate around the connecting rod along with the outer layer rotation of the Rubik's Cube layer without fluttering.
  • the second rotor and the second stator are both located in the second mounting seat, so that the second sensor is well integrated and relatively independent, and prevents the second sensor from being interfered by the environment or other components, especially when the internal space is small, there are many components, and when it is used In the Rubik's Cube where the parts are constantly rotating.
  • the connecting rod is a hollow rod
  • the inside of the hollow rod is communicated with the inside of the housing
  • the second stator is connected with a second connecting wire
  • the second connecting wire passes through
  • the hollow rod is electrically connected with the main control module in the casing, which is easy to wire.
  • the second sensor is electrically connected to the first sensor, so that the first sensor acquires the rotation signal of the outer layer rotating Rubik's cube layer relative to the inner layer rotating Rubik's cube layer, so
  • the first sensor is electrically connected to the main control module, so that the main control module obtains the absolute rotation signal of the inner layer rotating the Rubik's Cube layer, and obtains the absolute rotation signal of the outer layer rotating the Rubik's Cube layer.
  • the main control module includes a processing unit, a control unit, and a communication unit
  • the processing unit is used to convert the rotation signals of the inner rotating cube layer and the outer rotating cube layer into For the state signal of the smart cube
  • the control unit is electrically connected to the processing unit and the communication unit
  • the communication unit is used for data transmission between the control unit and the peripheral device.
  • At least one of the following is also installed in the housing:
  • a power supply module the power supply module is electrically connected to the main control module, and the power supply module is used to provide electrical energy for the main control module;
  • the output module is electrically connected to the main control module, and the main control module drives the output module to generate a corresponding output mode according to the state signal of the smart cube;
  • a mobile sensing module the mobile sensing module is electrically connected to the main control module, the mobile sensing module is used to turn on or off the main control module, and to sense the overall movement and overall flip of the smart cube angle.
  • An intelligent Rubik's Cube comprising: a plurality of Rubik's Cubes and the above-mentioned intelligent central axis.
  • a plurality of the Rubik's Cubes are installed on the intelligent central axis.
  • the Rubik's Cube layer and the outer layer rotate the Rubik's Cube layer, the first rotor is configured to rotate synchronously with the inner rotating Rubik's Cube layer, and the second rotor is configured to rotate synchronously with the outer rotating Rubik's Cube layer.
  • the inner rotating Rubik's cube layer composed of magic cubes can drive the first rotor to rotate synchronously, and the main control module can obtain the inner rotating Rubik's cube layer according to the relative rotation between the first rotor and the first stator. Turn signal.
  • the outer rotating Rubik's cube layer composed of magic cubes can drive the second rotor to rotate synchronously, and the main control module obtains the rotation signal of the outer rotating Rubik's cube layer according to the relative rotation between the second rotor and the second stator.
  • the main control module can obtain the status signal of the Rubik's Cube according to the rotation signals of the inner and outer layers of the Rubik's Cube, so that the high-end Rubik's Cube can be intelligent.
  • the smart cube can further realize the online Rubik's cube competition.
  • the smart cube is a fourth-order cube
  • the cube includes a corner block, an edge block, and a center block
  • the connecting rods are six
  • the top of each connecting rod is installed with one Two sensors
  • the center block is clamped on four sides of the second rotor and drives the second rotor to rotate synchronously
  • the fourth-order magic cube includes a first slider and a second slider, the first slider Is arranged between two adjacent first rotors, and can drive the first rotor to rotate synchronously
  • the first sliding block is provided with a second sliding groove for the second sliding block to be slidably mounted
  • the The edge blocks are clamped on both sides of the second slider
  • the corner blocks are clamped between the three adjacent edge blocks and can drive the second slider to rotate synchronously.
  • the smart Rubik’s cube is a fifth-order Rubik’s cube
  • the fifth-order Rubik’s cube includes a third slider
  • a plurality of third sliders are provided in the circumferential direction of the first rotor, and the number of The three third sliders rotate synchronously, there are six connecting rods
  • the second sensor corresponds to the connecting rods one-to-one
  • the magic cube includes corner blocks, edge blocks and a center block
  • the center block includes A fixed center block and a rotating center block
  • the second rotor is connected to the fixed center block in a one-to-one correspondence
  • eight rotating center blocks are provided in the circumferential direction of the second rotor and can follow the eight rotating center blocks Synchronous rotation
  • the rotation center block abuts against the third sliding block
  • the edge block is clamped between two adjacent rotation center blocks
  • the corner block is clamped on the three adjacent edges Between blocks.
  • a method for monitoring smart cubes includes the following steps:
  • the first rotor rotates synchronously with the inner layer rotating Rubik's cube layer, so that the main control module obtains the rotation signal of the inner layer rotating Rubik's cube layer according to the relative rotation between the first rotor and the first stator;
  • the second rotor rotates synchronously with the outer layer rotating the Rubik's Cube layer, so that the main control module obtains the rotation signal of the outer layer rotating Rubik's Cube layer according to the relative rotation between the second rotor and the second stator;
  • the main control module obtains the rotation signal of the inner rotating Rubik's cube layer and the rotation signal of the outer rotating Rubik's cube layer, and calculates the real-time state of the smart Rubik's cube.
  • the inner rotating Rubik’s cube layer composed of magic cubes can drive the first rotor to rotate synchronously, and the main control module obtains the inner layer according to the relative rotation between the first rotor and the first stator. Rotate the rotation signal of the Rubik's Cube layer.
  • the outer rotating Rubik's cube layer composed of magic cubes can drive the second rotor to rotate synchronously, and the main control module obtains the rotation signal of the outer rotating Rubik's cube layer according to the relative rotation between the second rotor and the second stator.
  • the main control module calculates the real-time state of the smart cube according to the rotation signal of the inner rotating Rubik's cube layer and the rotation signal of the outer rotating Rubik's cube layer, so that the Rubik's cube is intelligent.
  • FIG. 1 is a schematic diagram of the structure when the smart cube is a fourth-order cube in an embodiment of the present invention
  • Figure 2 is a sectional view of Figure 1;
  • FIG. 3 is a schematic diagram of the structure of the smart center shaft of the smart cube described in FIG. 2;
  • Figure 4 is a cross-sectional view of Figure 3;
  • Figure 5 is an enlarged view of A in Figure 4.
  • Fig. 6 is an exploded view of the connection between the core of the smart central axis and the first sensor and the second sensor in Fig. 3;
  • FIG. 7 is a schematic diagram of the structure of the smart bottom bracket shown in FIG. 3 after being assembled with a first slider and a second slider;
  • FIG. 8 is a schematic diagram of the structure of the first slider in FIG. 7;
  • FIG. 9 is a schematic structural diagram of the second slider in FIG. 7;
  • FIG. 10 is a schematic diagram of the structure of the intelligent bottom bracket shown in FIG. 3 after all the first sliders and all the second sliders are assembled;
  • Figure 11 is an exploded view of Figure 1;
  • Fig. 12 is a schematic diagram of the structure of the central block component of the smart Rubik’s cube described in Fig. 11;
  • FIG. 13 is a schematic structural diagram of a contact sensor used in the smart cube in an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of the structure when the smart cube is a fifth-order cube in an embodiment of the present invention.
  • Figure 15 is a cross-sectional view of Figure 14;
  • Fig. 16 is a schematic flow chart of the method for monitoring the smart cube in an embodiment of the present invention.
  • Smart bottom bracket 11, core, 110, connecting rod, 120, shell, 121, cavity, 122, first chute, 123, wiring hole, 12, first sensor, 210, first stator , 211, first connecting wire, 220, first rotor, 230, first mounting seat, 231, flange, 232, first non-rotating surface, 13, second sensor, 310, second stator, 311, second Connecting wire, 320, second rotor, 330, second mounting seat, 331, open, 332, second non-rotating surface, 333, jack, 340, fixing part, 341, limit block, 350, cover plate, 351, post, 14, main control module, 410, power supply module, 420, movement sensing module, 510, contact sensor stator, 511, common signal ring, 512, angle signal ring, 520, contact sensor rotor, 521.
  • the Rubik's Cube includes a central axis and a plurality of magic cubes installed on the central axis.
  • the magic cube includes corner blocks, edge blocks and center blocks (there is no center block in low-level cubes).
  • the corner block is located at the top corner of the Rubik's Cube.
  • the edge block is set in the middle of the ridge line of the Rubik's cube, and the center block is set in the middle of the Rubik's cube and is surrounded by corner blocks and edge blocks.
  • Multiple magic cubes are spliced to form a number of magic cube layers and a number of magic aspects.
  • the Rubik's cube layer includes a middle Rubik's cube layer and an outer rotating Rubik's cube layer.
  • the Rubik's Cube layer near the axis is the middle Rubik's Cube layer
  • the Rubik's Cube layer excluding the middle Rubik's Cube layer is called the outer rotating Rubik's Cube layer.
  • the rotatable cube layer in the middle cube layer is called the inner rotating cube layer.
  • the two cube layers in the middle are both inner rotating cube layers.
  • FIG. 1 shows the structure of a positive fourth-order Rubik's Cube 18. Please combine Figure 2 and Figure 11 together.
  • the fourth-order cube 18 includes 8 corner blocks 1610, 24 edge blocks 1620, and 24 center blocks 1630. These magic cubes are spliced to form 12 magic cube layers and 6 magic aspects.
  • the Rubik's Cube layer of the positive fourth-order Rubik's Cube 18 has an upper Rubik's Cube layer 1801, an upper second Rubik's Cube layer 1802, a lower second Rubik's Cube layer 1804, and a lower Rubik's Cube layer 1803 sequentially from top to bottom.
  • the upper Rubik's cube layer 1801 and the lower Rubik's cube layer 1803 are the outer rotating Rubik's cube layer 1502
  • the upper second Rubik's cube layer 1802 and the lower second Rubik's cube layer 1804 are the inner rotating Rubik's cube layer 1501.
  • a positive fifth-order Rubik's Cube includes 8 corner blocks 1610, 36 edge blocks 1620 and 54 center blocks 1630. These magic cubes are spliced to form 15 magic cube layers and 6 magic aspects.
  • the Rubik's Cube layer of the fifth-order Rubik's Cube is divided in the vertical direction.
  • the first Rubik's Cube layer and the fifth Rubik's Cube layer are the outer rotating Rubik's Cube layer
  • the second Rubik's Cube layer and the fourth Rubik's Cube layer are the inner rotating Rubik's Cube layer.
  • the Rubik's Cube layer is the middle Rubik's Cube layer and cannot be rotated.
  • the cube layers are divided in the vertical direction
  • the first cube layer, the second cube layer, the fifth cube layer and the sixth cube layer are the outer rotating cube layer
  • the four Rubik's Cube layer is the inner rotating Rubik's Cube layer.
  • the connecting rod extends outward from the axis, passing through an inner rotating cube layer and an outer rotating cube layer in turn.
  • the smart center shaft 10 is applied to a smart Rubik's cube, and includes a core 11, a first sensor 12, a second sensor 13, and a main control module 14.
  • the core 11 includes a connecting rod 110 and a housing 120 with a cavity 121.
  • One end of the connecting rod 110 is fixedly connected to the housing 120.
  • the number of connecting rods 110 is consistent with the number of magic aspects of the smart cube.
  • the first sensor 12 includes a first stator 210 and a first rotor 220, and the first stator 210 is fixedly installed on the housing 120.
  • the first stator 210 is optionally provided on the outer surface, middle or inner wall of the housing 120.
  • the first rotor 220 is configured to rotate synchronously with the inner rotating Rubik's cube layer 1501 of the smart Rubik's cube, so that the first rotor 220 can rotate with the inner rotating Rubik's cube layer 1501 relative to the first stator 210.
  • the second sensor 13 includes a second stator 310 and a second rotor 320.
  • the second stator 310 is fixedly mounted on the connecting rod 110.
  • the second rotor 320 is configured to rotate synchronously with the outer rotating Rubik’s cube layer 1502 of the smart Rubik’s cube, so that the The second rotor 320 can rotate with the outer layer of the Rubik's Cube layer 1502 relative to the second stator 310.
  • the number of the second sensor 13 is equal to the number of the outer rotating cube layer through which the connecting rod 110 passes.
  • each connecting rod 110 of the fourth-order cube 18 is equipped with a second sensor 13; the connecting rod 110 of the fifth-order cube is equipped with a second sensor 13; and the connecting rod 110 of the sixth-order cube is equipped with two sensors.
  • the second sensor 13, two second sensors 13 are installed on the connecting rod 110 of the Rubik's Cube, and so on.
  • the main control module 14 is installed in the cavity 121.
  • the main control module 14 is electrically connected to the first sensor 12, and the main control module 14 obtains the rotation signal of the inner rotating cube layer 1501 according to the relative rotation between the first rotor 220 and the first stator 210.
  • the main control module 14 is electrically connected to the second sensor 13, and the main control module 14 obtains the rotation signal of the outer rotating cube layer 1502 according to the relative rotation between the second rotor 320 and the second stator 310.
  • the main control module 14 obtains the rotation signal of the inner rotating Rubik’s Cube layer 1501 according to the relative rotation between the first rotor 220 and the first stator 210.
  • the relative rotation between the second stators 310 obtains the rotation signal of the outer rotating Rubik's cube layer 1502.
  • the main control module 14 calculates the state signal of the Rubik’s cube according to the rotation signals of the inner rotating Rubik’s cube layer 1501 and the outer rotating Rubik’s cube layer 1502.
  • the status signal is used to characterize the relative positional relationship between the cubes in the Rubik’s cube, that is, the Rubik’s cube realizes intelligence. ⁇ .
  • the Smart Cube can further realize online Rubik’s Cube competitions.
  • the state of the Smart Cube can be synchronized to the user’s electronic device in real time, and other interactive functions can be realized through peripherals, such as making teaching videos of the Rubik’s Cube, synchronized racing in different places, etc. .
  • the main control module 14 includes a processing unit, a control unit, and a communication unit.
  • the processing unit is used to convert the rotation signals of the inner rotating Rubik's cube layer 1501 (see FIG. 1) and the outer rotating Rubik's cube layer 1502 (see FIG. 1) into state signals of the smart Rubik's cube.
  • the processing unit can obtain the rotated state of each Rubik's cube layer according to the rotation signals of the inner rotating Rubik's Cube layer 1501 and the outer rotating Rubik's Cube layer 1502, and then can obtain the status signal of the entire Smart Rubik's Cube.
  • the control unit is electrically connected with the processing unit and the communication unit respectively.
  • the communication unit may be a wireless communication unit, such as a Bluetooth unit, a WiFi unit, a 2.4G unit or an NFC unit.
  • the communication unit is used for data transmission between the control unit and peripheral equipment, so as to realize networked communication, networked teaching, networked training or networked competitions. Specifically, it can realize the real-time synchronous control of the virtual Rubik's cube, electronic blind twist, timing, restoration of the steps, the shortest Restore route prompts and statistics functions.
  • the main control module 14 can convert the rotation signals of the inner rotating cube layer 1501 and the outer rotating cube layer 1502 into the state signal of the smart cube by means of a peripheral processing device. The processing device then transmits the status signal of the smart cube to the main control module 14, thereby reducing the volume of the main control module 14 and reducing the space occupied by the cavity 121 by the main control module 14.
  • At least one of a power supply module 410, an output module 420, and a movement sensing module is also installed in the housing 120.
  • the power supply module 410 is electrically connected to the main control module 14, and the power supply module 410 is used to provide power to the main control module 14.
  • the power module 410 can also provide electrical energy for other electrical components, such as the first sensor 12, the second sensor 13, and the movement sensing module.
  • the output module 420 is electrically connected to the main control module 14.
  • the main control module 14 drives the output module 420 to generate a corresponding output mode according to the state signal of the smart cube to increase the interaction between the cube and the player.
  • the main control module 14 obtains the situational mode of the smart cube according to the state signal of the smart cube, such as the start-up mode, the recovery completion mode, or the alarm mode with insufficient remaining time.
  • the output module 420 may be a light-emitting element, a sound element or a vibration element.
  • the light-emitting element uses light to express a specific situational mode.
  • the vibrating element can be an electromechanical drive element, and the electromechanical drive element uses vibration to express a specific situational mode.
  • the movement sensing module is electrically connected to the main control module 14.
  • the movement sensing module is used to turn the main control module 14 on or off, and to sense the overall movement amount and overall flip angle of the smart cube.
  • the movement sensing module is an acceleration sensor, a vibration switch or a touch switch.
  • the movement sensing module turns on the main control module 14 so that the main control module 14 starts to work.
  • the movement sensing module closes the main control module 14 so that the main control module 14 enters a sleep state.
  • the movement sensing module when the movement sensing module is an acceleration sensor, a geomagnetic sensor, or a gyroscope, the movement sensing module can sense the overall movement and overall flip angle of the smart cube, and then sense the real-time spatial posture of the smart cube, so that the player can watch from the same perspective on the display Real-time space attitude to the smart cube.
  • the first sensor 12 further includes a first mounting seat 230 rotatably mounted on the connecting rod 110.
  • the first mounting seat 230 is configured to rotate synchronously with the inner rotating Rubik's cube layer 1501.
  • the rotor 220 is fixed to the first mounting seat 230.
  • the first mounting seat 230 is sleeved on the connecting rod 110, so that during the synchronous rotation of the Rubik’s cube layer 1501 as the inner layer rotates, there will be no throwing away, ensuring the stable cooperation of the first rotor 220 and the first stator 210, and improving the first The use stability and detection accuracy of the sensor 12.
  • the first rotor 220 and the first mounting seat 230 are fixedly connected by clamping, bonding or integral molding.
  • one of the periphery of the first mounting seat 230 and the outer surface of the housing 120 is provided with a flange 231, and the other is provided with a first sliding member slidably engaged with the flange 231 ⁇ 122.
  • the first sliding groove 122 can limit the first mounting seat 230 to prevent the first mounting seat 230 from moving along the rod direction of the connecting rod 110 , To maintain a stable interval between the first rotor 220 and the first stator 210, to ensure the stable rotation of the first mounting seat 230 and the first rotor 220, and to improve the detection stability and accuracy of the first sensor 12.
  • the inner rotating Rubik's Cube layer 1501 is configured to be connected with the first mounting base 230 to realize synchronous rotation.
  • the connection here includes an interference connection to facilitate quick assembly and disassembly between the inner rotating Rubik's cube layer 1501 and the first mounting seat 230.
  • the outer surface of the first mounting seat 230 is provided with a first non-rotating surface 232.
  • the first mounting seat 230 is pushed to rotate to realize the first rotor 220 and the inner The layer rotation cube layer 1501 rotates synchronously.
  • the first non-rotating surface 232 can optionally be an elliptical surface, a polygonal surface or an irregularly shaped surface.
  • the first stator 210 is fixed to the outer surface of the housing 120.
  • the first stator 210 is fixedly connected to the housing 120 by snapping, bonding, plugging or fasteners.
  • the first stator 210 is fixed on the outer surface of the housing 120, and the first rotor 220 is rotatably sleeved on the connecting rod 110; wherein, the first rotor 220 is provided with a first accommodating cavity for accommodating the first stator 210 Or, the first stator 210 is provided with a second accommodating cavity for accommodating the first rotor 220.
  • the first rotor 220 and the first stator 210 are sleeved together, so that the first sensor 12 is integrated and relatively independent, and prevents the first sensor 12 from being interfered by the environment or other components, especially when the internal space is small and the components are many. , In the Rubik's Cube where the parts keep rotating during use.
  • the first rotor 220 is connected with a first mounting seat 230, the first mounting seat 230 is provided with the first accommodating cavity, and the first mounting seat 230 covers the housing 120 so that the first fixed The sub 210 is located in the first containing cavity.
  • the housing 120 is provided with a wiring hole 123, the first stator 210 is connected with a first connecting wire 211,
  • the connecting wire 211 passes through the wiring hole 123 and is electrically connected to the main control module 14 in the housing 120.
  • the use of the first connecting wire 211 for signal transmission between the first sensor 12 and the main control module 14 has good anti-interference, low cost, and small footprint.
  • the distance between the first stator 210 and the main control module 14 in the housing 120 is short, and the opening of the wiring hole 123 is beneficial to shorten the wiring distance And optimize the wiring.
  • the second sensor 13 further includes a second mounting seat 330 rotatably sleeved on the connecting rod 110, and the second rotor 320 is fixed on the inner side of the second mounting seat 330.
  • the second stator 310 is fixedly mounted on the connecting rod 110 and located in the second mounting seat 330.
  • the second stator 310 is fixedly connected to the connecting rod 110 by buckling, bonding, plugging or fasteners.
  • the second mounting seat 330 can drive the second rotor 320 to rotate around the connecting rod 110 along with the outer layer rotation of the Rubik's cube layer 1502, without fluttering.
  • the second rotor 320 and the second stator 310 are both located in the second mounting seat 330, so that the second sensor 13 is integrated and relatively independent, and prevents the second sensor 13 from being interfered by the environment or other components, especially if the internal space is small, In a Rubik's Cube where there are many parts and the parts keep rotating during use.
  • the second rotor 320 and the second mounting base 330 can be fixedly connected by clamping, bonding or integral molding.
  • the upper opening 331 of the second mounting seat 330 is open.
  • a detachable cover 350 is installed at the opening 331.
  • the cover 350 is provided with a plug 351
  • the second mounting seat 330 is provided with a socket 333 for the plug 351 to be inserted into.
  • the design of the cover 350 can protect the second sensor 13 located in the second mounting seat 330 and also facilitate the maintenance of the second sensor 13.
  • the outer surface of the cover 350 is an arc-shaped surface, so that the magic cube can rotate along the outer surface of the cover 350.
  • the outer rotating Rubik's Cube layer 1502 is connected to the first mounting base 230.
  • the connection here includes the interference connection, so as to facilitate the quick assembly and disassembly of the outer rotating Rubik's cube layer 1502 and the first mounting seat 230.
  • the outer surface of the second mounting seat 330 is provided with a second non-rotating surface 332.
  • the layer rotation cube layer 1502 rotates synchronously.
  • the second non-rotating surface 332 may optionally be an elliptical surface, a polygonal surface or an irregularly shaped surface.
  • the second sensor 13 further includes a fixing member 340 mounted on the connecting rod 110.
  • the fixing member 340 is detachably installed on the top of the connecting rod 110, for example, the fixing member 340 and the connecting rod 110 are detachably installed in a lock-lock hole cooperation manner.
  • the top of the fixing member 340 is provided with a limiting block 341, the second stator 310 and the second rotor 320 are arranged up and down, the second stator 310 is fixedly sleeved on the fixing member 340, and the upper surface of the second stator 310 abuts the limiting block 341 to avoid the first
  • the second stator 310 moves upward to maintain the separation distance between the second stator 310 and the second rotor 320 unchanged, so as to improve the stability and detection accuracy of the second sensor 13.
  • the second stator 310 there are many ways for the second stator 310 to be fixedly sleeved on the fixing member 340.
  • the outer surface of the fixing member 340 is provided with a third non-rotating surface, and the second stator 310 is sleeved on the fixing member 340, so that it cannot rotate relative to the fixing member 340, and the installation is convenient.
  • the third non-rotating surface may be an elliptical surface, a polygonal surface or an irregularly shaped surface.
  • the connecting rod 110 is a hollow rod, and the inside of the hollow rod is communicated with the inside of the housing 120.
  • the second stator 310 is connected with a second connecting wire 311.
  • the second connecting wire 311 passes through the hollow rod and is connected to the inside of the housing 120.
  • the main control module 14 is electrically connected for easy wiring.
  • the second sensor 13 is directly electrically connected to the main control module 14. It can be understood that in other embodiments, the first sensor 12 may be directly electrically connected to the second sensor 13, one of the first sensor 12 and the second sensor 13 is directly electrically connected to the main control module 14, and the other It is not directly electrically connected to the main control module 14, that is, the other is indirectly electrically connected to the main control module 14. In this way, the main control module 14 can directly obtain the absolute rotation signal of the Rubik's cube layer detected by one of the first sensor 12 and the second sensor 13, and according to the relative rotation relationship between the first sensor 12 and the second sensor 13, The absolute rotation signal of the Rubik's Cube layer detected by another sensor is calculated.
  • the first sensor 12 and/or the second sensor 13 may be selected as one of a contact sensor, an electromagnetic sensor, and a photoelectric sensor.
  • the stator 510 of the contact sensor includes a common signal ring 511 and an angle signal ring 512 that is coaxial and insulated from the common signal ring 511.
  • the rotor 520 of the contact sensor is a conductive member, and the conductive member includes a first contact pin 521 and the second electric contact foot 522, the first electric contact foot 521 is used to contact the public signal ring 511, and the second electric contact foot 522 is used to contact different positions of the angle signal ring 512 when the Rubik’s cube layer of the smart Rubik’s cube is rotated, thereby obtaining the Rubik’s cube Rotation signal of the layer.
  • the first electric contact foot 521 is always pressed against the common signal ring 511 and kept in relative sliding contact.
  • the second electric contact foot 522 is always pressed against the angle signal ring 512 and maintains relative sliding contact.
  • the rotor 520 of the contact sensor will rotate with the Rubik's Cube layer, and the position of the conductive member on the rotor 520 of the contact sensor will change, so that the connection relationship between the common signal ring 511 and the angle signal ring 512 of the contact sensor will change. Different signals can be generated, so that the main control module 14 can sense the rotation signal of the Rubik's Cube layer.
  • the rotor of the electromagnetic sensor is composed of multiple magnets, and the magnetic field strength of each magnet is different from each other, and the stator of the electromagnetic sensor is a magnetic sensitive sensor device.
  • Magneto-sensitive sensor components can be selected as Hall sensors, magneto-sensitive diodes, magneto-sensitive pole tubes, magneto-sensitive resistors or application specific integrated circuits.
  • the rotor of the photoelectric sensor includes a light source and a baffle installed under the light source.
  • the baffle is provided with a notch.
  • the stator of the photoelectric sensor is a plurality of light receivers.
  • the difference between the second embodiment and the first embodiment is that the main control module 14 and the second sensor 13 are electrically connected indirectly.
  • the second sensor 13 is electrically connected to the first sensor 12, so that the first sensor 12 obtains the rotation signal of the outer rotating Rubik’s cube layer 1502 relative to the inner rotating Rubik’s cube layer 1501.
  • the first sensor 12 and the main control module 14 are electrically connected.
  • the main control module 14 obtains the absolute rotation signal of the inner rotation cube layer 1501.
  • the absolute rotation signal of the inner rotating cube layer 1501 refers to the rotation signal of the inner rotating cube layer 1501 relative to the core.
  • the main control module 14 can calculate the absolute rotation signal of the outer rotating Rubik’s cube layer 1502 according to the absolute rotation signal of the inner rotating Rubik’s cube layer 1501 and the rotation signal of the outer rotating Rubik’s cube layer 1502 relative to the inner rotating Rubik’s cube layer 1501. .
  • the absolute rotation signal of the outer rotating cube layer 1502 refers to the rotation signal of the outer rotating cube layer 1502 relative to the core.
  • the signal transmission between the two is inconvenient, and the first sensor 12 is used to obtain the rotation signal of the outer rotating cube layer 1502 relative to the inner rotating cube layer 1501. Then the rotation signal and the rotation signal of the inner rotation cube layer 1501 are transmitted to the main control module 14, and the main control module 14 can obtain the rotation signal of the outer rotation cube layer 1502, so that the wiring is more flexible.
  • the smart cube includes a plurality of cubes and the above-mentioned smart central axis 10.
  • a plurality of magic cubes are installed on the intelligent central axis 10, and the plurality of magic cubes form a number of magic cube layers.
  • the magic cube is mounted to the intelligent central shaft 10 through a mechanical structure, so that the magic cube will not fall off during the rotation.
  • the Rubik’s cube layer includes an inner rotating Rubik’s cube layer 1501 and an outer rotating Rubik’s cube layer 1502.
  • the first rotor 220 is configured to rotate synchronously with the inner rotating Rubik’s cube layer 1501
  • the second rotor 320 is configured to rotate with the outer Rubik’s cube layer 1502. Synchronous rotation.
  • the inner rotating Rubik’s cube layer 1501 composed of magic cubes rotates, which can drive the first rotor 220 to rotate synchronously, and the main control module 14 obtains the inner rotation according to the relative rotation between the first rotor 220 and the first stator 210.
  • Rotation signal of layer 1501 of the Rubik's Cube The outer rotating Rubik’s cube layer 1502 composed of magic cubes can rotate to drive the second rotor 320 to rotate synchronously, and the main control module 14 obtains the outer rotating Rubik’s cube layer 1502 according to the relative rotation between the second rotor 320 and the second stator 310. Rotation signal.
  • the main control module 14 can obtain the state signal of the high-level Rubik's cube according to the rotation signals of the inner rotating Rubik's Cube layer 1501 and the outer rotating Rubik's Cube layer 1502, so that the high-end Rubik's Cube is intelligent.
  • the smart cube can further realize the online Rubik's cube competition.
  • the smart Rubik's Cube is a fourth-order Rubik's Cube 18.
  • the fourth-order Rubik's Cube 18 includes a first slider 1710 (see FIG. 8) and a second slider 1720 (see FIG. 9).
  • the center block 1630 is clamped on the four sides of the second rotor 320 of the second sensor 13 and drives the second rotor 320 to rotate synchronously.
  • the magic cube includes a corner block 1610, an edge block 1620 and a center block 1630.
  • the first sliding block 1710 is arranged between two adjacent first rotors 220 and can drive the first rotor 220 to rotate synchronously.
  • the first sliding block 1710 is provided with a second sliding groove 1711 for the second sliding block 1720 to be slidably mounted.
  • Both sides of the second sliding block 1720 are provided with edge blocks 1620.
  • both sides of the second sliding block 1720 are provided with clamping slots 1721 for clamping the edge blocks 1620.
  • the corner block 1610 is clamped between the three adjacent edge blocks 1620 and can drive the second slider 1720 to rotate synchronously.
  • the four sides of the first rotor 220 are provided with first sliding blocks 1710, and the central block 1630 abuts against the first sliding blocks 1710.
  • the central block 1630 drives the first slider 1710 to rotate synchronously, and the four first sliders 1710 drive the first rotor 220 to rotate synchronously, so that the first sensor 12 can detect the inner rotating cube layer 1501 Rotation signal.
  • the four center blocks 1630 form a center block assembly (see FIG. 12) and are arranged around the second rotor 320. Specifically, if the central block assembly is clamped against the second mounting base 330, when the outer rotating Rubik’s cube layer 1502 rotates, the central block assembly rotates synchronously, that is, the interference pushes the second mounting base 330 and the second rotor 320 to rotate synchronously, so that the second The sensor 13 can detect the rotation signal of the outer layer of the Rubik's Cube 1502.
  • the smart cube is a five-step cube.
  • the fifth-order Rubik’s Cube includes a third slider 1730.
  • a plurality of third sliders 1730 are provided in the circumferential direction of the first rotor 220 and can rotate synchronously with the plurality of third sliders 1730.
  • the magic cube includes a corner block 1610, an edge block 1620 and a center block 1630.
  • the center block 1630 includes a fixed center block 1631 and a rotating center block 1632.
  • the second rotor 320 is connected to a fixed center block 1631 in a one-to-one correspondence.
  • the second rotor 320 is provided with eight rotation center blocks 1632 in the circumferential direction and can rotate synchronously with the eight rotation center blocks 1632.
  • the rotation center blocks 1632 abut against the third sliding block 1730, and the edge blocks 1620 are clamped at two adjacent rotation centers. Between the blocks 1632, the corner block 1610 is clamped between three adjacent edge blocks 1620.
  • the rotation center block 1632 resists and pushes the third slider 1730 to rotate synchronously, and then drives the first rotor 220 to rotate synchronously, so that the first sensor 12 can detect the rotation of the inner rotating Rubik’s cube layer 1501 signal.
  • the eight rotating central blocks 1632 drive the second rotor 320 located in the center to rotate synchronously, so that the second sensor 13 can detect the rotation signal of the outer rotating cube layer 1502.
  • the invention also provides a technical solution for the monitoring method of the above-mentioned smart Rubik's cube.
  • the monitoring method includes the following steps:
  • the first rotor 220 rotates synchronously with the inner rotating Rubik's cube layer 1501, so the main control module 14 obtains the rotation signal of the inner rotating Rubik's cube layer 1501 according to the relative rotation between the first rotor 220 and the first stator 210.
  • the second rotor 320 rotates synchronously with the outer rotating Rubik's cube layer 1502, so that the main control module 14 obtains the rotation signal of the outer rotating Rubik's cube layer 1502 according to the relative rotation between the second rotor 320 and the second stator 310.
  • the main control module 14 obtains the rotation signal of the inner rotating cube layer 1501 and the rotation signal of the outer rotating cube layer 1502, and calculates the state signal of the smart cube.
  • the inner rotating Rubik’s cube layer composed of magic cubes can drive the first rotor to rotate synchronously, and the main control module obtains the inner layer according to the relative rotation between the first rotor and the first stator. Rotate the rotation signal of the Rubik's Cube layer.
  • the outer rotating Rubik's cube layer composed of magic cubes can drive the second rotor to rotate synchronously, and the main control module obtains the rotation signal of the outer rotating Rubik's cube layer according to the relative rotation between the second rotor and the second stator.
  • the main control module calculates the state signal of the smart cube according to the rotation signal of the inner rotating Rubik's cube layer and the rotation signal of the outer rotating Rubik's cube layer, so that the Rubik's cube is intelligent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Toys (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种智能中轴(10)、智能魔方及智能魔方的监测方法。该智能中轴(10)包括核心(11)、第一传感器(12)、第二传感器(13)和主控模块(14),所述核心(11)包括连杆(110)和具有空腔(121)的壳体(120),所述第一传感器(12)包括第一定子(210)和第一转子(220),所述第一转子(220)被配置为能与智能魔方的内层转动魔方层(1501)同步转动;所述第二传感器(13)包括第二定子(310)和第二转子(320),所述第二转子(320)被配置为能与所述智能魔方的外层转动魔方层(1502)同步转动。上述智能中轴(10)应用于高阶魔方后,主控模块(14)根据第一转子(220)与第一定子(210)之间的相对转动,获取内层转动魔方层(1501)的转动信号,根据第二转子(320)与第二定子(310)之间的相对转动,获取外层转动魔方层(1502)的转动信号,进而计算出高阶魔方的状态信号,使得高阶魔方实现智能化。

Description

智能中轴、智能魔方及智能魔方的监测方法 技术领域
本发明涉及魔方技术领域,特别是涉及一种智能中轴、智能魔方及智能魔方的监测方法。
背景技术
智能魔方是一种通过传感器实时感知魔方状态及旋转位置,并将实时状态和转动等信息处理、存储与发送到外部设备的一种新型电子魔方。其中,魔方的智能中轴是一个智能魔方最核心的部分,其能够检测魔方每个魔方面的旋转信息的检测,获取魔方整体的实时状态,以及和魔方外部的电子设备实时通信。
目前出现的智能中轴主要是应用于低阶魔方(二阶、三阶),但是对于高阶魔方(正四阶、正五阶及正五阶以上)或异形魔方(如三阶及三阶以上金字塔魔方等),并没有相应的智能中轴结构来实现对魔方的状态检测。因此,传统的高阶魔方或部分异形魔方无法感知魔方状态及旋转位置,不能实现智能化。
发明内容
基于此,有必要针对高阶魔方或部分异形魔方不能智能化的问题,提供一种智能中轴、智能魔方及智能魔方的监测方法,该智能中轴能够获知智能魔方的内层转动魔方层的转动信号以及外层转动魔方层的转动信号,进而得到魔方的状态信号,使得高阶魔方或异形魔方实现智能化。
一种智能中轴,应用于智能魔方,包括:
核心,所述核心包括连杆和具有空腔的壳体,所述连杆的一端固定连接于所述壳体;
第一传感器,所述第一传感器包括第一定子和第一转子,所述第一定子固定安装于所述壳体,所述第一转子被配置为能与智能魔方的内层转动魔方层同步转动,从而使得所述第一转子能够随所述内层转动魔方层相对于所述第一定子转动;
第二传感器,所述第二传感器包括第二定子和第二转子,所述第二定子固定安装于所述连杆,所述第二转子被配置为能与所述智能魔方的外层转动魔方层同步转动,从而使得所述第二转子能够随所述外层转动魔方层相对于所述第二定子转动;及
主控模块,所述主控模块安装于所述空腔内;所述主控模块与所述第一传感器直接或间接地电性连接,所述主控模块根据所述第一转子与所述第一定子之间的相对转动,获取所述内层转动魔方层的转动信号;所述主控模块与所述第二传感器直接或间接地电性连接,所述主控模块根据所述第二转子与所述第二定子之间的相对转动,获取所述外层转动魔方层的转动信号。
上述智能中轴应用于高阶魔方后,主控模块根据第一转子与第一定子之间的相对转动,获取内层转动魔方层的转动信号,根据第二转子与第二定子之间的相对转动,获取外层转动魔方层的转动信号。主控模块依据内层转动魔方层及外层转动魔方层的转动信号,能够得到 高阶魔方或异形魔方的状态信号,使得魔方实现智能化。该智能魔方进一步能够实现联网在线的魔方比赛。
在其中一个实施例中,所述第一传感器还包括可转动安装于所述连杆的第一安装座,所述第一安装座被配置为能与所述内层转动魔方层同步转动,所述第一转子固定于所述第一安装座。
在其中一个实施例中,所述第一安装座的周缘和所述壳体的外表面中的一个设有凸缘,另一个设有与所述凸缘可滑动配合的第一滑槽。
在其中一个实施例中,所述第一定子固定于所述壳体的外表面,所述第一转子可转动地套接所述连杆;其中,所述第一转子设有用于容纳所述第一定子的第一容纳腔,或者,所述第一定子设有用于容纳所述第一转子的第二容纳腔。
在其中一个实施例中,所述第一定子固定于所述壳体的外表面,所述壳体设有走线孔,所述第一定子连接有第一连接导线,所述第一连接导线穿过所述走线孔后与所述壳体内的所述主控模块电性连接。
在其中一个实施例中,所述第二传感器还包括可转动地套接于所述连杆的第二安装座,所述第二转子固定于所述第二安装座的内侧,所述第二定子固定安装于所述连杆且位于所述第二安装座内。第二安装座能够带动第二转子随着外层转动魔方层绕连杆转动,不会发生甩飞。第二转子和第二定子均位于第二安装座内,使得第二传感器整体性好,相对独立,避免第二传感器受到环境或者其他部件的干扰,尤其是在内部空间狭小、部件多、使用时部件不断转动的魔方中。
在其中一个实施例中,所述连杆为空心杆,所述空心杆的内部与所述壳体的内部连通,所述第二定子连接有第二连接导线,所述第二连接导线穿过所述空心杆后与所述壳体内的主控模块电性连接,易于布线。
在其中一个实施例中,所述第二传感器与所述第一传感器电性连接,从而所述第一传感器获取所述外层转动魔方层相对于所述内层转动魔方层的转动信号,所述第一传感器与所述主控模块电性连接,从而所述主控模块获取所述内层转动魔方层的绝对转动信号,以及获取所述外层转动魔方层的绝对转动信号。
在其中一个实施例中,所述主控模块包括处理单元、控制单元和通信单元,所述处理单元用于将所述内层转动魔方层及所述外层转动魔方层的转动信号转换成所述智能魔方的状态信号,所述控制单元分别与所述处理单元和所述通信单元电性连接,所述通信单元用于所述控制单元与外设设备进行数据传输。
在其中一个实施例中,所述壳体内还安装有以下中的至少一种:
电源模块,所述电源模块与所述主控模块电性连接,所述电源模块用于为所述主控模块提供电能;
输出模块,所述输出模块与所述主控模块电性连接,所述主控模块根据所述智能魔方的状态信号驱动所述输出模块产生对应的输出模式;及
移动感知模块,所述移动感知模块与所述主控模块电性连接,所述移动感知模块用于开 启或关闭所述主控模块,以及用于感知所述智能魔方的整体移动量和整体翻转角度。
一种智能魔方,包括:多个魔方块和上述智能中轴,多个所述魔方块安装于所述智能中轴,多个所述魔方块组成若干魔方层,所述魔方层包括内层转动魔方层和外层转动魔方层,所述第一转子被配置为能与所述内层转动魔方层同步转动,所述第二转子被配置为能与所述外层转动魔方层同步转动。
上述智能魔方,由魔方块组成的内层转动魔方层转动,能够带动第一转子同步转动,进而主控模块根据第一转子与第一定子之间的相对转动,获取内层转动魔方层的转动信号。由魔方块组成的外层转动魔方层转动,能够带动第二转子同步转动,进而主控模块根据第二转子与第二定子之间的相对转动,获取外层转动魔方层的转动信号。如此,主控模块依据内层转动魔方层及外层转动魔方层的转动信号,能够得到魔方的状态信号,使得高阶魔方实现智能化。该智能魔方进一步能够实现联网在线的魔方比赛。
在其中一个实施例中,所述智能魔方为四阶魔方,所述魔方块包括角块、棱块和中心块,所述连杆为六根,每根所述连杆的顶部安装一个所述第二传感器,所述中心块卡设于所述第二转子的四侧且驱动所述第二转子同步转动,所述四阶魔方包括第一滑块和第二滑块,所述第一滑块设置于相邻两个所述第一转子之间,且可驱动所述第一转子同步转动,所述第一滑块设有供所述第二滑块滑动安装的第二滑槽,所述第二滑块的两侧均卡设有所述棱块,所述角块卡设于相邻的三个所述棱块之间且可驱动所述第二滑块同步转动。
在其中一个实施例中,所述智能魔方为五阶魔方,所述五阶魔方包括第三滑块,所述第一转子的周向设置有多个所述第三滑块、且可随多个所述第三滑块同步转动,所述连杆为六根,所述第二传感器与所述连杆一一对应,所述魔方块包括角块、棱块和中心块,所述中心块包括固定中心块和转动中心块,所述第二转子一一对应连接有所述固定中心块,所述第二转子的周向设置八个所述转动中心块且可随八个所述转动中心块同步转动,所述转动中心块抵触所述第三滑块,所述棱块卡设于相邻两个所述转动中心块之间,所述角块卡设于相邻的三个所述棱块之间。
一种智能魔方的监测方法,包括以下步骤:
第一转子随内层转动魔方层同步转动,从而主控模块根据所述第一转子与第一定子之间的相对转动,获取所述内层转动魔方层的转动信号;
第二转子随外层转动魔方层同步转动,从而所述主控模块根据所述第二转子与第二定子之间的相对转动,获取所述外层转动魔方层的转动信号;
所述主控模块获取所述内层转动魔方层的转动信号和所述外层转动魔方层的转动信号,计算出智能魔方的实时状态。
上述智能魔方的监测方法中,由魔方块组成的内层转动魔方层转动,能够带动第一转子同步转动,进而主控模块根据第一转子与第一定子之间的相对转动,获取内层转动魔方层的转动信号。由魔方块组成的外层转动魔方层转动,能够带动第二转子同步转动,进而主控模块根据第二转子与第二定子之间的相对转动,获取外层转动魔方层的转动信号。最后,主控模块根据所述内层转动魔方层的转动信号和所述外层转动魔方层的转动信号,计算出智能魔 方的实时状态,使得魔方实现智能化。
附图说明
图1为本发明一实施例中所述智能魔方为四阶魔方时的结构示意图;
图2为图1的剖视图;
图3为图2中所述智能魔方的智能中轴的结构示意图;
图4为图3的剖视图;
图5为图4的A处放大图;
图6为图3中所述智能中轴的核心与第一传感器及第二传感器的连接爆炸图;
图7为图3中所述智能中轴装配有1个第一滑块和1个第二滑块后的结构示意图;
图8为图7中所述第一滑块的结构示意图;
图9为图7中所述第二滑块的结构示意图;
图10为图3中所述智能中轴装配完所有第一滑块和所有第二滑块后的结构示意图;
图11为图1的爆炸图;
图12为图11中所述智能魔方的中心块组件的结构示意图;
图13为本发明一实施例中所述智能魔方所用的接触式传感器的结构示意图;
图14为本发明一实施例中所述智能魔方为五阶魔方时的结构示意图;
图15为图14的剖视图;
图16为本发明一实施例中所述智能魔方的监测方法的流程示意图。
10、智能中轴,11、核心,110、连杆,120、壳体,121、空腔,122、第一滑槽,123、走线孔,12、第一传感器,210、第一定子,211、第一连接导线,220、第一转子,230、第一安装座,231、凸缘,232、第一非旋转面,13、第二传感器,310、第二定子,311、第二连接导线,320、第二转子,330、第二安装座,331、敞口,332、第二非旋转面,333、插孔,340、固定件,341、限位块,350、盖板,351、插柱,14、主控模块,410、电源模块,420、移动感知模块,510、接触式传感器的定子,511、公共信号圈,512、角度信号圈,520、接触式传感器的转子,521、第一触电脚,522、第二触电脚,1501、内层转动魔方层,1502、外层转动魔方层,1610、角块,1620、棱块,1630、中心块,1631、固定中心块,1632、转动中心块,1710、第一滑块,1711、第二滑槽,1720、第二滑块,1721、卡槽,1730、第三滑块,18、四阶魔方,1801、上魔方层,1802、上数第二魔方层,1803、下魔方层,1804、下数第二魔方层。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。本发明中所述“第一”、“第二”、“第三”、“第四”、“第五”和“第六”不代表具体的数量及顺序,仅仅是用于名称的区分。
魔方包括中轴和安装于中轴的多个魔方块。一般地,魔方块包括角块、棱块和中心块(低阶魔方中没有中心块)。其中,角块位于魔方的顶角处。棱块设于魔方棱线的中部,中心块设于魔方的中部、且被角块和棱块包围。多个魔方块拼接形成若干魔方层和若干魔方面。对于高阶魔方或诸如三阶金字塔、四阶金字塔等的异形魔方而言,魔方层包括中间魔方层和外层转动魔方层。靠近轴心的魔方层为中间魔方层,除去中间魔方层外的魔方层称之为外层转动魔方层。其中,中间魔方层中可转动的魔方层称为内层转动魔方层。对于偶数高阶魔方而言,位于中间的两个魔方层均为内层转动魔方层。对于奇数高阶魔方层而言,最中间的中间魔方层不能转动,与之相邻的两个中间魔方层可转动,为内层转动魔方层。比如,图1显示一种正四阶魔方18的结构。请一并结合图2和图11,正四阶魔方18包括8个角块1610、24个棱块1620和24个中心块1630。这些魔方块拼接形成12个魔方层和6个魔方面。正四阶魔方18的魔方层自上而下依次上魔方层1801、上数第二魔方层1802、下数第二魔方层1804和下魔方层1803。其中,上魔方层1801和下魔方层1803为外层转动魔方层1502,上数第二魔方层1802和下数第二魔方层1804为内层转动魔方层1501。类似地,参见图14和图15,正五阶魔方包括8个角块1610、36个棱块1620和54个中心块1630。这些魔方块拼接形成15个魔方层和6个魔方面。其中,正五阶魔方的魔方层按竖直方向进行划分,第一魔方层和第五魔方层为外层转动魔方层,第二魔方层和第四魔方层为内层转动魔方层,第三魔方层为中间魔方层且不可转动。以此类推,正六阶魔方中,按竖直方向进行划分魔方层,第一魔方层、第二魔方层、第五魔方层和第六魔方层为外层转动魔方层,第三魔方层和第四魔方层为内层转动魔方层。三阶金字塔魔方中,连杆自轴心向外延伸,依次经过一个内层转动魔方层和一个外层转动魔方层。
实施例一
本发明提出一种智能中轴10的技术方案。结合图2至图5,该智能中轴10应用于智能魔方,包括核心11、第一传感器12、第二传感器13和主控模块14。核心11包括连杆110和具有空腔121的壳体120,连杆110的一端固定连接于壳体120。连杆110的数量与智能魔方的魔方面的数量一致。
其中,第一传感器12包括第一定子210和第一转子220,第一定子210固定安装于壳体120。第一定子210可选地设置在壳体120的外表面、中部或内壁。第一转子220被配置为能与智能魔方的内层转动魔方层1501同步转动,从而使得第一转子220能够随内层转动魔方层1501相对于第一定子210转动。
第二传感器13包括第二定子310和第二转子320,第二定子310固定安装于连杆110, 第二转子320被配置为能与智能魔方的外层转动魔方层1502同步转动,从而使得第二转子320能够随外层转动魔方层1502相对于第二定子310转动。第二传感器13的个数与其所在的连杆110穿过的外层转动魔方层的个数相等。比如,正四阶魔方18的每个连杆110上安装有一个第二传感器13,正五阶魔方的连杆110上安装有一个第二传感器13,正六阶魔方的连杆110上安装有两个第二传感器13,正七阶魔方的连杆110上安装有两个第二传感器13,以此类推。
主控模块14安装于空腔121内。主控模块14与第一传感器12电性连接,主控模块14根据第一转子220与第一定子210之间的相对转动,获取内层转动魔方层1501的转动信号。主控模块14与第二传感器13电性连接,主控模块14根据第二转子320与第二定子310之间的相对转动,获取外层转动魔方层1502的转动信号。
上述智能中轴10应用于高阶魔方后,主控模块14根据第一转子220与第一定子210之间的相对转动,获取内层转动魔方层1501的转动信号,根据第二转子320与第二定子310之间的相对转动,获取外层转动魔方层1502的转动信号。主控模块14依据内层转动魔方层1501及外层转动魔方层1502的转动信号,计算出魔方的状态信号,状态信号用于表征魔方中各个魔方块之间的相对位置关系,即魔方实现智能化。
此外,该智能魔方进一步能够实现联网在线的魔方比赛,智能魔方的状态能够实时同步到用户的电子设备上,进而通过外设实现其他互动功能,比如制作魔方的教学视频,异地同步竞速等等。
本实施例中,主控模块14包括处理单元、控制单元和通信单元。处理单元用于将内层转动魔方层1501(参见图1)及外层转动魔方层1502(参见图1)的转动信号转换成智能魔方的状态信号。具体地,处理单元根据内层转动魔方层1501及外层转动魔方层1502的转动信号,可以得到各个魔方层转动后的状态,进而可以得到整个智能魔方的状态信号。控制单元分别与处理单元和通信单元电性连接。通信单元可选为无线通信单元,比如蓝牙单元、WiFi单元、2.4G单元或NFC单元。通信单元用于控制单元与外设设备进行数据传输,从而实现联网交流、联网教学、联网训练或联网竞技,具体可以实现虚拟魔方的实时同步控制、电子盲拧、计时、复原步骤重现、最短还原路线提示、统计功能。可以理解,在其他实施例中,主控模块14可以借助于外设的处理装置实现将内层转动魔方层1501及外层转动魔方层1502的转动信号转换成智能魔方的状态信号,外设的处理装置再把智能魔方的状态信号回传给主控模块14,从而减少主控模块14的体积,减少主控模块14对空腔121的占用空间。
进一步地,参见图4,壳体120内还安装有电源模块410、输出模块420和移动感知模块中的至少一种。
其中,电源模块410与主控模块14电性连接,电源模块410用于为主控模块14提供电能。电源模块410还能为其他的电气元件——比如第一传感器12、第二传感器13和移动感知模块——提供电能。
输出模块420与主控模块14电性连接,主控模块14根据智能魔方的状态信号驱动输出模块420产生对应的输出模式,增加魔方与玩家之间的互动。比如,主控模块14根据智能魔 方的状态信号,获取智能魔方处于何种情境模式——比如属于开始启动模式、复原完成模式或剩余时间不足的告警模式。输出模块420可选为发光元件、发声元件或振动元件。该发光元件以灯光来表达具体的情境模式。振动元件可选为机电驱动元件,机电驱动元件以振动来表达具体的情境模式。
移动感知模块与主控模块14电性连接,移动感知模块用于开启或关闭主控模块14,以及用于感知智能魔方的整体移动量和整体翻转角度。可选地,移动感知模块为加速度传感器、震动开关或触摸开关。当智能魔方被玩家拾起时,移动感知模块开启主控模块14,使得主控模块14开始工作。当智能魔方被玩家放下后,移动感知模块关闭主控模块14,使得主控模块14进入休眠状态。
此外,移动感知模块为加速度传感器、地磁传感器或陀螺仪时,移动感知模块可感知智能魔方的整体移动量和整体翻转角度,进而感知智能魔方的实时空间姿态,便于玩家通过显示器用同一个视角观看到智能魔方的实时空间姿态。
本实施例中,参见图5,第一传感器12还包括可转动安装于连杆110的第一安装座230,第一安装座230被配置为能与内层转动魔方层1501同步转动,第一转子220固定于第一安装座230。第一安装座230套接在连杆110上,从而在随内层转动魔方层1501同步转动过程中,不会发生甩飞,保证第一转子220与第一定子210稳定配合,提高第一传感器12的使用稳定性和检测准确性。可选地,第一转子220和第一安装座230之间采用卡接、粘接或一体成型方式实现固定连接。
进一步地,请继续参见图4和图5,第一安装座230的周缘和壳体120的外表面中的一个设有凸缘231,另一个设有与凸缘231可滑动配合的第一滑槽122。如此,第一安装座230及第一转子220在转动过程中,第一滑槽122能对第一安装座230起到限位作用,避免第一安装座230沿连杆110的杆向发生移动,维持第一转子220与第一定子210之间的间隔稳定,保证第一安装座230及第一转子220转动平稳,提高第一传感器12的检测稳定性和准确性。
进一步地,内层转动魔方层1501被配置为能与第一安装座230连接以实现同步转动。此处的连接包括了抵触连接,以便于内层转动魔方层1501与第一安装座230之间快速装配及拆卸。比如,第一安装座230的外表面设有第一非旋转面232。当内层转动魔方层1501转动时,魔方块或者魔方内部的中间结构件抵触第一非旋转面232,二者无法发生相对转动,则推动第一安装座230转动,实现第一转子220与内层转动魔方层1501同步转动。可以理解,第一非旋转面232可选为是椭圆形面、多边形面或不规则形状面。
具体地,参见图4和图5,第一定子210固定于壳体120的外表面。比如,第一定子210通过卡扣、粘接、插接或紧固件与壳体120固定连接。
具体地,第一定子210固定于壳体120的外表面,第一转子220可转动地套接连杆110;其中,第一转子220设有用于容纳第一定子210的第一容纳腔,或者,第一定子210设有用于容纳第一转子220的第二容纳腔。如此,第一转子220和第一定子210套在一起,使得第一传感器12整体性好,相对独立,避免第一传感器12受到环境或者其他部件的干扰,尤其是在内部空间狭小、部件多、使用时部件不断转动的魔方中。
比如,参见图4和图5,第一转子220连接有第一安装座230,第一安装座230设有该第一容纳腔,第一安装座230盖在壳体120上,使得第一定子210位于该第一容纳腔内。
进一步地,参见图5和图6,当第一定子210固定在壳体的外表面时,壳体120设有走线孔123,第一定子210连接有第一连接导线211,第一连接导线211穿过走线孔123后与壳体120内的主控模块14电性连接。相比无线传输方式,采用第一连接导线211进行第一传感器12与主控模块14之间的信号传输,抗干扰性好、成本低、且占用体积小。其中,由于第一定子210固定在壳体120的外表面,所以第一定子210与壳体120内的主控模块14之间距离短,走线孔123的开设有利于缩短走线距离和优化布线。
本实施例中,参见图5和图6,第二传感器13还包括可转动地套接于连杆110的第二安装座330,第二转子320固定于第二安装座330的内侧。第二定子310固定安装于连杆110且位于第二安装座330内。比如,第二定子310通过卡扣、粘接、插接或紧固件与连杆110固定连接。如此,第二安装座330能够带动第二转子320随着外层转动魔方层1502绕连杆110转动,不会发生甩飞。第二转子320和第二定子310均位于第二安装座330内,使得第二传感器13整体性好,相对独立,避免第二传感器13受到环境或者其他部件的干扰,尤其是在内部空间狭小、部件多、使用时部件不断转动的魔方中。其中,第二转子320与第二安装座330之间可选用卡接、粘接或一体成型方式实现固定连接。
进一步地,参见图5和图6,第二安装座330的上部敞口331。敞口331处安装有可拆卸的盖板350。具体地,盖板350设有插柱351,第二安装座330设有供插柱351插接的插孔333。盖板350的设计能够保护位于第二安装座330内的第二传感器13,也便于对第二传感器13进行维护。可选地,盖板350的外表面为弧形表面,便于魔方块沿盖板350的外表面发生转动。
进一步地,参见图5和图6,外层转动魔方层1502与第一安装座230连接。此处的连接包括了抵触连接情况,以便于外层转动魔方层1502与第一安装座230快速装配及拆卸。比如,第二安装座330的外表面设有第二非旋转面332。当外层转动魔方层1502转动时,魔方块或者魔方内部的中间结构件抵触第二非旋转面332,二者无法发生相对转动,则推动第二安装座330转动,实现第二转子320与外层转动魔方层1502同步转动。可以理解,第二非旋转面332可选为是椭圆形面、多边形面或不规则形状面。
具体地,参见图5和图6,第二传感器13还包括安装于连杆110的固定件340。可选地,固定件340可拆卸地安装到连杆110的顶部,比如,固定件340与连杆110之间采用锁扣锁孔配合的方式实现可拆卸式安装。固定件340的顶部设有限位块341,第二定子310和第二转子320上下设置,第二定子310固定套接于固定件340,第二定子310的上表面抵触限位块341,避免第二定子310上移,维持第二定子310与第二转子320之间的间隔距离不变,以提高第二传感器13的稳定性和检测准确性。
其中,第二定子310固定套接于固定件340的方式很多。比如,固定件340的外表面设有第三非旋转面,第二定子310套在固定件340上,便不能相对于固定件340发生相对转动,安装方便。可以理解,第三非旋转面可选为是椭圆形面、多边形面或不规则形状面。
进一步地,连杆110为空心杆,空心杆的内部与壳体120的内部连通,第二定子310连接有第二连接导线311,第二连接导线311穿过空心杆后与壳体120内的主控模块14电性连接,易于布线。
此处,第二传感器13与主控模块14直接电性连接。可以理解,在其他实施例中,第一传感器12可选为与第二传感器13直接电性连接,第一传感器12和第二传感器13中的一个与主控模块14直接电性连接,另一个与主控模块14不直接电性连接,即另一个与主控模块14间接电性连接。如此,主控模块14可直接获取第一传感器12和第二传感器13中的一个传感器检测到的魔方层的绝对转动信号,并根据第一传感器12和第二传感器13之间的相对转动关系,计算得到另一个传感器检测到的魔方层的绝对转动信号。
具体地,第一传感器12和/或第二传感器13可选为接触式传感器、电磁传感器和光电传感器中的一种。
其中,参见图13,接触式传感器的定子510包括公共信号圈511和与公共信号圈511同轴且绝缘的角度信号圈512,接触式传感器的转子520为导电件,导电件包括第一触电脚521和第二触电脚522,第一触电脚521用于与公共信号圈511接触,第二触电脚522用于在智能魔方的魔方层转动时与角度信号圈512的不同位置接触,从而获取魔方层的转动信号。当内层转动魔方层1501或外层转动魔方层1502发生转动时,第一触电脚521始终与公共信号圈511压合且保持相对滑动接触。第二触电脚522始终与角度信号圈512压合且保持相对滑动接触。接触式传感器的转子520将随魔方层一起转动,接触式传感器的转子520上导电件的位置发生变化,使得接触式传感器的公共信号圈511和角度信号圈512之间的连接关系发生变化,从而可生成不同的信号,实现主控模块14感知魔方层的转动信号。
对于电磁传感器而言,电磁传感器的转子为多个磁铁,各个磁铁的磁场强度互不相同,电磁传感器的定子为磁敏传感器件。磁敏传感器件可选为霍尔感应器、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等。当内层转动魔方层或外层转动魔方层转动时,磁敏传感器件经过不同磁铁时,产生不同的电压,根据电压的不同,获取魔方层的转动信号。
对于光电传感器而言,光电传感器的转子包括光源和安装在光源下方的挡板,挡板设有一缺口,光电传感器的定子为多个光线接收器。当挡板随着内层转动魔方层或外层转动魔方层转动时,缺口转动至对准不同的光线接收器,则光线接收器能接收光源的光线,获取魔方层的转动信号。
实施例二
实施例二与实施例一的区别在于,主控模块14与第二传感器13间接地电性连接。
具体地,第二传感器13与第一传感器12电性连接,从而第一传感器12获取外层转动魔方层1502相对于内层转动魔方层1501的转动信号,第一传感器12与主控模块14电性连接,从而主控模块14获取内层转动魔方层1501的绝对转动信号。内层转动魔方层1501的绝对转动信号是指内层转动魔方层1501相对于核心的转动信号。并且,主控模块14根据内层转动魔方层1501的绝对转动信号以及外层转动魔方层1502相对于内层转动魔方层1501的转动信号,进而能够计算得到外层转动魔方层1502的绝对转动信号。外层转动魔方层1502的绝对 转动信号是指外层转动魔方层1502相对于核心的转动信号。
当第二传感器13离主控模块14的距离较远时,二者之间进行信号传输不便,则利用第一传感器12获取外层转动魔方层1502相对于内层转动魔方层1501的转动信号,再将该转动信号和内层转动魔方层1501的转动信号传输给主控模块14,主控模块14便能获取得到外层转动魔方层1502的转动信号,从而布线更加灵活。
实施例三
本发明还提供一种智能魔方的技术方案。结合图2和图11,该智能魔方包括多个魔方块和上述智能中轴10。多个魔方块安装于智能中轴10,多个魔方块组成若干魔方层。具体地,魔方块通过机械结构安装到智能中轴10,从而魔方块在转动过程中不会脱落。魔方层包括内层转动魔方层1501和外层转动魔方层1502,第一转子220被配置为能与内层转动魔方层1501同步转动,第二转子320被配置为能与外层转动魔方层1502同步转动。
上述智能魔方,由魔方块组成的内层转动魔方层1501转动,能够带动第一转子220同步转动,进而主控模块14根据第一转子220与第一定子210之间的相对转动,获取内层转动魔方层1501的转动信号。由魔方块组成的外层转动魔方层1502转动,能够带动第二转子320同步转动,进而主控模块14根据第二转子320与第二定子310之间的相对转动,获取外层转动魔方层1502的转动信号。如此,主控模块14依据内层转动魔方层1501及外层转动魔方层1502的转动信号,能够得到高阶魔方的状态信号,使得高阶魔方实现智能化。该智能魔方进一步能够实现联网在线的魔方比赛。
具体地,结合图7、图10和图11,智能魔方为四阶魔方18。四阶魔方18包括第一滑块1710(可参见图8)和第二滑块1720(可参见图9)。连杆110为六根,每根连杆110的顶部安装有一个第二传感器13。中心块1630卡设于第二传感器13的第二转子320的四侧,且驱动第二转子320同步转动。魔方块包括角块1610、棱块1620和中心块1630,第一滑块1710设置于相邻两个第一转子220之间,且可驱动第一转子220同步转动。第一滑块1710设有供第二滑块1720滑动安装的第二滑槽1711,第二滑块1720的两侧均卡设有棱块1620。具体地,第二滑块1720的两侧均设有供棱块1620卡设的卡槽1721。角块1610卡设于相邻的三个棱块1620之间且可驱动第二滑块1720同步转动。
其中,第一转子220的四侧均设置有第一滑块1710,中心块1630抵触该第一滑块1710。内层转动魔方层1501转动时,中心块1630带动第一滑块1710同步转动,四个第一滑块1710带动第一转子220同步转动,使得第一传感器12能够检测到内层转动魔方层1501的转动信号。
四个中心块1630组成中心块组件(可参见图12),环绕第二转子320设置。具体地,中心块组件卡设抵触第二安装座330,则外层转动魔方层1502转动时,中心块组件同步转动,即抵触推动第二安装座330及第二转子320同步转动,使得第二传感器13能够检测到外层转动魔方层1502的转动信号。
具体地,结合图14和图15,智能魔方为五阶魔方。五阶魔方包括第三滑块1730,第一转子220的周向设置有多个第三滑块1730、且可随多个第三滑块1730同步转动,连杆110 为六根,第二传感器13与连杆110一一对应,魔方块包括角块1610、棱块1620和中心块1630,中心块1630包括固定中心块1631和转动中心块1632,第二转子320一一对应连接有固定中心块1631,第二转子320的周向设置八个转动中心块1632且可随八个转动中心块1632同步转动,转动中心块1632抵触第三滑块1730,棱块1620卡设于相邻两个转动中心块1632之间,角块1610卡设于相邻的三个棱块1620之间。
其中,内层转动魔方层1501转动时,转动中心块1632抵触推动第三滑块1730同步转动,进而驱动第一转子220同步转动,使得第一传感器12能够检测到内层转动魔方层1501的转动信号。外层转动魔方层1502转动时,八个转动中心块1632驱动位于其中心的第二转子320同步转动,使得第二传感器13能够检测到外层转动魔方层1502的转动信号。
实施例四
本发明还提供一种上述智能魔方的监测方法的技术方案。结合图16,该监测方法包括以下步骤:
S100:第一转子220随内层转动魔方层1501同步转动,从而主控模块14根据第一转子220与第一定子210之间的相对转动,获取内层转动魔方层1501的转动信号。
S200:第二转子320随外层转动魔方层1502同步转动,从而主控模块14根据第二转子320与第二定子310之间的相对转动,获取外层转动魔方层1502的转动信号。
S300:主控模块14获取内层转动魔方层1501的转动信号和外层转动魔方层1502的转动信号,计算出智能魔方的状态信号。
上述智能魔方的监测方法中,由魔方块组成的内层转动魔方层转动,能够带动第一转子同步转动,进而主控模块根据第一转子与第一定子之间的相对转动,获取内层转动魔方层的转动信号。由魔方块组成的外层转动魔方层转动,能够带动第二转子同步转动,进而主控模块根据第二转子与第二定子之间的相对转动,获取外层转动魔方层的转动信号。最后,主控模块根据内层转动魔方层的转动信号和外层转动魔方层的转动信号,计算出智能魔方的状态信号,使得魔方实现智能化。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种智能中轴,应用于智能魔方,其特征在于,所述的智能中轴包括:
    核心,所述核心包括连杆和具有空腔的壳体,所述连杆的一端固定连接于所述壳体;
    第一传感器,所述第一传感器包括第一定子和第一转子,所述第一定子固定安装于所述壳体,所述第一转子被配置为能与智能魔方的内层转动魔方层同步转动,从而使得所述第一转子能够随所述内层转动魔方层相对于所述第一定子转动;
    第二传感器,所述第二传感器包括第二定子和第二转子,所述第二定子固定安装于所述连杆,所述第二转子被配置为能与所述智能魔方的外层转动魔方层同步转动,从而使得所述第二转子能够随所述外层转动魔方层相对于所述第二定子转动;及
    主控模块,所述主控模块安装于所述空腔内;所述主控模块与所述第一传感器直接或间接地电性连接,所述主控模块根据所述第一转子与所述第一定子之间的相对转动,获取所述内层转动魔方层的转动信号;所述主控模块与所述第二传感器直接或间接地电性连接,所述主控模块根据所述第二转子与所述第二定子之间的相对转动,获取所述外层转动魔方层的转动信号。
  2. 根据权利要求1所述的智能中轴,其特征在于,所述第一传感器还包括可转动安装于所述连杆的第一安装座,所述第一安装座被配置为能与所述内层转动魔方层同步转动,所述第一转子固定于所述第一安装座。
  3. 根据权利要求2所述的智能中轴,其特征在于,所述第一安装座的周缘和所述壳体的外表面中的一个设有凸缘,另一个设有与所述凸缘可滑动配合的第一滑槽。
  4. 根据权利要求1所述的智能中轴,其特征在于,所述第一定子固定于所述壳体的外表面,所述第一转子可转动地套接所述连杆;
    其中,所述第一转子设有用于容纳所述第一定子的第一容纳腔,或者,所述第一定子设有用于容纳所述第一转子的第二容纳腔。
  5. 根据权利要求1所述的智能中轴,其特征在于,所述第一定子固定于所述壳体的外表面,所述壳体设有走线孔,所述第一定子连接有第一连接导线,所述第一连接导线穿过所述走线孔后与所述壳体内的所述主控模块电性连接。
  6. 根据权利要求1所述的智能中轴,其特征在于,所述第二传感器还包括可转动地套接于所述连杆的第二安装座,所述第二转子固定于所述第二安装座的内侧,所述第二定子固定安装于所述连杆且位于所述第二安装座内。
  7. 根据权利要求6所述的智能中轴,其特征在于,所述连杆为空心杆,所述空心杆的内部与所述壳体的内部连通,所述第二定子连接有第二连接导线,所述第二连接导线穿过所述空心杆后与所述壳体内的所述主控模块电性连接。
  8. 根据权利要求1所述的智能中轴,其特征在于,所述第二传感器与所述第一传感器电性连接,从而所述第一传感器获取所述外层转动魔方层相对于所述内层转动魔方层的转动信 号,所述第一传感器与所述主控模块电性连接,从而所述主控模块获取所述内层转动魔方层的绝对转动信号,以及获取所述外层转动魔方层的绝对转动信号。
  9. 根据权利要求1至8任意一项所述的智能中轴,其特征在于,所述主控模块包括处理单元、控制单元和通信单元,所述处理单元用于将所述内层转动魔方层及所述外层转动魔方层的转动信号转换成所述智能魔方的状态信号,所述控制单元分别与所述处理单元和所述通信单元电性连接,所述通信单元用于所述控制单元与外设设备进行数据传输。
  10. 根据权利要求1至8任意一项所述的智能中轴,其特征在于,所述壳体内还安装有以下中的至少一种:
    电源模块,所述电源模块与所述主控模块电性连接,所述电源模块用于为所述主控模块提供电能;
    输出模块,所述输出模块与所述主控模块电性连接,所述主控模块根据所述智能魔方的状态信号驱动所述输出模块产生对应的输出模式;及
    移动感知模块,所述移动感知模块与所述主控模块电性连接,所述移动感知模块用于开启或关闭所述主控模块,以及用于感知所述智能魔方的整体移动量和整体翻转角度。
  11. 一种智能魔方,其特征在于,包括:多个魔方块和如权利要求1至10中任意一项所述的智能中轴,多个所述魔方块安装于所述智能中轴,多个所述魔方块组成若干魔方层,所述魔方层包括内层转动魔方层和外层转动魔方层,所述第一转子被配置为能与所述内层转动魔方层同步转动,所述第二转子被配置为能与所述外层转动魔方层同步转动。
  12. 根据权利要求11所述的智能魔方,其特征在于,所述智能魔方为四阶魔方,所述魔方块包括角块、棱块和中心块,所述连杆为六根,每根所述连杆的顶部安装一个所述第二传感器,所述中心块卡设于所述第二转子的四侧且可驱动所述第二转子同步转动,所述四阶魔方包括第一滑块和第二滑块,所述第一滑块设置于相邻两个所述第一转子之间,且可驱动所述第一转子同步转动,所述第一滑块设有供所述第二滑块滑动安装的第二滑槽,所述第二滑块的两侧均卡设有所述棱块,所述角块卡设于相邻的三个所述棱块之间且可驱动所述第二滑块同步转动。
  13. 根据权利要求11所述的智能魔方,其特征在于,所述智能魔方为五阶魔方,所述五阶魔方包括第三滑块,所述第一转子的周向设置有多个所述第三滑块、且可随多个所述第三滑块同步转动,所述连杆为六根,所述第二传感器与所述连杆一一对应,所述魔方块包括角块、棱块和中心块,所述中心块包括固定中心块和转动中心块,所述第二转子一一对应连接有所述固定中心块,所述第二转子的周向设置八个所述转动中心块且可随八个所述转动中心块同步转动,所述转动中心块抵触所述第三滑块,所述棱块卡设于相邻两个所述转动中心块之间,所述角块卡设于相邻的三个所述棱块之间。
  14. 一种如权利要求11至13任意一项所述的智能魔方的监测方法,其特征在于,包括以下步骤:
    第一转子随内层转动魔方层同步转动,从而主控模块根据所述第一转子与第一定子之间 的相对转动,获取所述内层转动魔方层的转动信号;
    第二转子随外层转动魔方层同步转动,从而所述主控模块根据所述第二转子与第二定子之间的相对转动,获取所述外层转动魔方层的转动信号;
    所述主控模块获取所述内层转动魔方层的转动信号和所述外层转动魔方层的转动信号,计算出智能魔方的实时状态。
PCT/CN2020/072275 2019-03-27 2020-01-15 智能中轴、智能魔方及智能魔方的监测方法 WO2020192255A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910239089.X 2019-03-27
CN201910239089.XA CN110180165B (zh) 2019-03-27 2019-03-27 智能中轴、智能魔方及智能魔方的监测方法

Publications (1)

Publication Number Publication Date
WO2020192255A1 true WO2020192255A1 (zh) 2020-10-01

Family

ID=67713737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072275 WO2020192255A1 (zh) 2019-03-27 2020-01-15 智能中轴、智能魔方及智能魔方的监测方法

Country Status (2)

Country Link
CN (1) CN110180165B (zh)
WO (1) WO2020192255A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623602A (en) * 2022-10-18 2024-04-24 Guangzhou Ganyuan Intelligent Tech Co Ltd Smart magic cube with ball shaft

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675297A (zh) * 2019-01-18 2019-04-26 佛山市计客创新科技有限公司 智能中轴、智能魔方及其计时方法
CN110180165B (zh) * 2019-03-27 2024-09-27 佛山市计客创新科技有限公司 智能中轴、智能魔方及智能魔方的监测方法
CN110368669B (zh) * 2019-07-03 2024-02-23 佛山市计客创新科技有限公司 智能魔方及其使用的传感器、智能中轴和监测方法
CN110327617A (zh) * 2019-07-03 2019-10-15 佛山市计客创新科技有限公司 三阶金字塔魔方和智能中轴
CN111311971B (zh) * 2020-03-31 2021-11-26 齐鲁工业大学 能够运动状态自调节的益智教具及控制方法
CN116850572B (zh) * 2023-09-05 2023-11-28 汕头市澄海区魔域文化有限公司 一种魔方的中心组件及魔方

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817952A (en) * 1985-03-04 1989-04-04 Rubik Studio Electronic spatial logical toy containing movable and/or rotatable elements
CN106110651A (zh) * 2016-08-12 2016-11-16 佛山市顺德区立方智德设计有限公司 智能魔方及其使用的感应轴心结构、计时方法
CN108479055A (zh) * 2018-05-07 2018-09-04 南月(广州)机器人科技有限公司 一种可监测转动状态的魔方
CN108525283A (zh) * 2018-06-05 2018-09-14 佛山市计客创新科技有限公司 智能魔方及其传感器和轴心结构
CN110180165A (zh) * 2019-03-27 2019-08-30 佛山市计客创新科技有限公司 智能中轴、智能魔方及智能魔方的监测方法
CN210096886U (zh) * 2019-03-27 2020-02-21 佛山市计客创新科技有限公司 智能中轴和智能魔方

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130102139A (ko) * 2012-03-07 2013-09-17 윤성춘 지능 개발용 큐브
CN204637531U (zh) * 2015-04-27 2015-09-16 上海点画数字科技有限公司 带有步骤提示的智能魔方
CN105413156B (zh) * 2015-12-29 2017-11-14 江淦源 一种魔方
WO2018119719A1 (zh) * 2016-12-28 2018-07-05 陈德杰 一种非接触检测旋转的电子魔方
CN107670268B (zh) * 2017-11-06 2020-03-03 腾讯科技(深圳)有限公司 魔方、魔方控制方法以及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817952A (en) * 1985-03-04 1989-04-04 Rubik Studio Electronic spatial logical toy containing movable and/or rotatable elements
CN106110651A (zh) * 2016-08-12 2016-11-16 佛山市顺德区立方智德设计有限公司 智能魔方及其使用的感应轴心结构、计时方法
CN108479055A (zh) * 2018-05-07 2018-09-04 南月(广州)机器人科技有限公司 一种可监测转动状态的魔方
CN108525283A (zh) * 2018-06-05 2018-09-14 佛山市计客创新科技有限公司 智能魔方及其传感器和轴心结构
CN110180165A (zh) * 2019-03-27 2019-08-30 佛山市计客创新科技有限公司 智能中轴、智能魔方及智能魔方的监测方法
CN210096886U (zh) * 2019-03-27 2020-02-21 佛山市计客创新科技有限公司 智能中轴和智能魔方

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623602A (en) * 2022-10-18 2024-04-24 Guangzhou Ganyuan Intelligent Tech Co Ltd Smart magic cube with ball shaft

Also Published As

Publication number Publication date
CN110180165B (zh) 2024-09-27
CN110180165A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020192255A1 (zh) 智能中轴、智能魔方及智能魔方的监测方法
WO2020147757A1 (zh) 智能中轴、智能魔方及其计时方法
CN110368669B (zh) 智能魔方及其使用的传感器、智能中轴和监测方法
WO2021000579A1 (zh) 三阶金字塔魔方和智能中轴
JP6154524B1 (ja) モジュール型玩具
CN108614583A (zh) 智能终端及智能终端的控制方法
CN210448058U (zh) 智能魔方及其使用的传感器和智能中轴
CN209564579U (zh) 腕力球及其测量装置
CN109395330B (zh) 腕力球及其测量装置
CN210096886U (zh) 智能中轴和智能魔方
CN211316586U (zh) 一种磁性旋钮组件及热水器
CN210631659U (zh) 智能中轴和智能魔方
CN210448059U (zh) 三阶金字塔魔方和智能中轴
CN112717431A (zh) 玩具系统、控制装置及终端设备
CN109426278B (zh) 物联网控制装置
CN214019208U (zh) 玩具控制装置
CN215351981U (zh) 玩具控制装置
CN216536900U (zh) 玩具控制装置
CN112717433B (zh) 玩具控制装置
CN214019205U (zh) 玩具系统及玩具控制装置
JP3244202U (ja) Memsセンサを備える電子ターゲット構造
CN112717432A (zh) 玩具系统及玩具控制装置
CN217794280U (zh) 一种具有心率监测功能的智能跳绳器
CN206400278U (zh) 一种新型便携式投影时钟
CN105987686B (zh) 激光测距设备、无线通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777408

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 22/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20777408

Country of ref document: EP

Kind code of ref document: A1