WO2020147757A1 - 智能中轴、智能魔方及其计时方法 - Google Patents

智能中轴、智能魔方及其计时方法 Download PDF

Info

Publication number
WO2020147757A1
WO2020147757A1 PCT/CN2020/072284 CN2020072284W WO2020147757A1 WO 2020147757 A1 WO2020147757 A1 WO 2020147757A1 CN 2020072284 W CN2020072284 W CN 2020072284W WO 2020147757 A1 WO2020147757 A1 WO 2020147757A1
Authority
WO
WIPO (PCT)
Prior art keywords
cube
rubik
smart
rotor
stator
Prior art date
Application number
PCT/CN2020/072284
Other languages
English (en)
French (fr)
Inventor
苏梓铭
Original Assignee
佛山市计客创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市计客创新科技有限公司 filed Critical 佛山市计客创新科技有限公司
Priority to US17/423,558 priority Critical patent/US11957988B2/en
Publication of WO2020147757A1 publication Critical patent/WO2020147757A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/08Puzzles provided with elements movable in relation, i.e. movably connected, to each other
    • A63F9/0826Three-dimensional puzzles with slidable or rotatable elements or groups of elements, the main configuration remaining unchanged, e.g. Rubik's cube
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/08Puzzles provided with elements movable in relation, i.e. movably connected, to each other
    • A63F9/0826Three-dimensional puzzles with slidable or rotatable elements or groups of elements, the main configuration remaining unchanged, e.g. Rubik's cube
    • A63F9/0838Three-dimensional puzzles with slidable or rotatable elements or groups of elements, the main configuration remaining unchanged, e.g. Rubik's cube with an element, e.g. invisible core, staying permanently in a central position having the function of central retaining spider and with groups of elements rotatable about at least three axes intersecting in one point
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/06Patience; Other games for self-amusement
    • A63F9/08Puzzles provided with elements movable in relation, i.e. movably connected, to each other
    • A63F9/0826Three-dimensional puzzles with slidable or rotatable elements or groups of elements, the main configuration remaining unchanged, e.g. Rubik's cube
    • A63F9/0838Three-dimensional puzzles with slidable or rotatable elements or groups of elements, the main configuration remaining unchanged, e.g. Rubik's cube with an element, e.g. invisible core, staying permanently in a central position having the function of central retaining spider and with groups of elements rotatable about at least three axes intersecting in one point
    • A63F9/0842Three-dimensional puzzles with slidable or rotatable elements or groups of elements, the main configuration remaining unchanged, e.g. Rubik's cube with an element, e.g. invisible core, staying permanently in a central position having the function of central retaining spider and with groups of elements rotatable about at least three axes intersecting in one point each group consisting of again a central element and a plurality of additional elements rotatable about three orthogonal axes at both ends, the additional elements being rotatable about at least two axes, e.g. Rubik's cube
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3212Monitoring battery levels, e.g. power saving mode being initiated when battery voltage goes below a certain level
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • A63F2009/2401Detail of input, input devices
    • A63F2009/2402Input by manual operation
    • A63F2009/2408Touch-sensitive buttons
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • A63F2009/2401Detail of input, input devices
    • A63F2009/2436Characteristics of the input
    • A63F2009/2442Sensors or detectors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • A63F2009/2401Detail of input, input devices
    • A63F2009/2436Characteristics of the input
    • A63F2009/2442Sensors or detectors
    • A63F2009/2444Light detector
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • A63F2009/2401Detail of input, input devices
    • A63F2009/2436Characteristics of the input
    • A63F2009/2442Sensors or detectors
    • A63F2009/2447Motion detector
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/24Electric games; Games using electronic circuits not otherwise provided for
    • A63F2009/2483Other characteristics
    • A63F2009/2492Power supply
    • A63F2009/2494Battery, e.g. dry cell
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2250/00Miscellaneous game characteristics
    • A63F2250/10Miscellaneous game characteristics with measuring devices
    • A63F2250/1063Timers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2250/00Miscellaneous game characteristics
    • A63F2250/10Miscellaneous game characteristics with measuring devices
    • A63F2250/1063Timers
    • A63F2250/1073Time-out devices

Definitions

  • the invention relates to the technical field of intelligent Rubik's cube, in particular to an intelligent central axis, intelligent Rubik's cube and a timing method thereof.
  • Smart Rubik's Cube is a new type of electronic Rubik's Cube that senses the status and rotation position of the Rubik's Cube in real time through sensors, and processes, stores and sends information such as the real-time status and rotation to external devices.
  • the traditional smart Rubik's cube has the problem of low central axis intelligence.
  • the intelligent central axis can learn the rotation signal of the Rubik’s cube layer, and then obtain the status signal of the Smart Rubik’s cube. ⁇ .
  • An intelligent bottom bracket includes a core, a sensor, and a main control module.
  • the core includes a housing with a cavity; the sensor is installed on the core, the sensor includes a stator and a rotor, and the stator is fixed on the core.
  • the housing, the rotor is configured to be connected to the Rubik’s cube layer of the smart Rubik’s cube and rotate synchronously, so that the rotor can rotate with the Rubik’s cube layer relative to the stator;
  • the main control module is installed in the empty In the cavity, the main control module is electrically connected with the sensor, and the main control module obtains the rotation signal of the Rubik's Cube layer according to the relative rotation between the rotor and the stator.
  • the stator is fixed to the housing, and the sensor and the core form a whole, which is highly integrated, avoiding consideration of the complicated assembly relationship between the stator and the central block or the intermediate connecting block.
  • the main control module obtains the rotation signal of the Rubik's Cube layer according to the relative rotation between the rotor and the stator, and then can obtain the state signal of the Smart Rubik's Cube according to the rotation signal of each Rubik's Cube layer. Therefore, the intelligent central axis has a high degree of intelligence. If the magic cube is assembled, the obtained intelligent cube can realize the online Rubik's Cube competition.
  • the smart bottom bracket further includes a connecting rod for installing a center block or an intermediate connecting block, the rotor is rotatably mounted on the housing, and the connecting rod is fixedly connected to the rotor .
  • the connecting rod is fixedly installed with a center block or an intermediate connecting block, so that the connecting rod will rotate synchronously with the rotation of the Rubik's Cube layer. Therefore, when the connecting rod and the rotor are fixedly connected, the rotor can realize synchronous rotation with the Rubik's Cube layer.
  • the senor is located in the housing, the housing is provided with a through hole, and the connecting rod is connected to the rotor after passing through the through hole.
  • the sensor is located in the shell as a whole, which is beneficial to the protection of the sensor and prevents the sensor from being collided or interfered by the magic cube or other structural parts when the magic cube rotates. At the same time, the sensor and the core form a tighter whole.
  • the intelligent bottom bracket has a higher degree of integration and is easier to be compatible and assembled with the magic cube.
  • the senor further includes a first mounting block fixedly mounted on the housing and a second mounting block rotatably mounted on the housing, and the stator is fixed on the first mounting block.
  • the rotor is fixed to the second mounting block, and an accommodating cavity is formed between the first mounting block and the second mounting block.
  • the stator and the rotor are located in the accommodating cavity, which not only facilitates a good rotation fit between the stator and the rotor, but also the design of the accommodating cavity can avoid the interference of the main control module and other components inside the housing on the sensor to ensure accuracy Obtain the rotation signal of the Rubik's Cube layer.
  • the senor further includes a connecting shell rotatably arranged on the housing, the connecting shell is configured to be fixedly connected to a central block or an intermediate connecting block, and the rotor is fixed to the Connect the shell.
  • the center block or the middle connecting block will rotate synchronously with the Rubik's Cube layer, so that the connecting shell and the rotor can realize synchronous rotation with the Rubik's Cube layer.
  • the rotor is fixed on the inner side of the connecting shell
  • the stator is fixed on the outer surface of the shell
  • the connecting shell covers the stator.
  • the connecting shell can protect the rotor and the stator at the same time, making the sensors independent of each other as a whole, and avoiding the sensor from being interfered by the environment or other components, especially in the Rubik's Cube where the internal space is small, the parts are numerous, and the parts continue to rotate during use.
  • the peripheral edge of the connecting shell is provided with a rotating flange
  • the outer surface of the housing is provided with a convex block
  • the convex block is provided with a sliding groove matched with the rotating flange.
  • the main control module includes a processing unit, a control unit, and a communication unit.
  • the processing unit is used to convert the rotation signal of the Rubik's Cube layer into a state signal of the Smart Rubik's Cube, and the control unit Are respectively electrically connected to the processing unit and the communication unit, and the communication unit is used for data transmission between the control unit and the peripheral device.
  • the stator includes a common signal ring and an angular signal ring that is coaxial and insulated from the common signal ring, the rotor is a conductive element, and the conductive element includes a first contact pin and a second contact pin. Feet, the first electric contact foot is used to contact the public signal ring, and the second electric contact foot is used to contact different positions of the angle signal ring when the Rubik's Cube layer rotates.
  • An intelligent Rubik's Cube comprising a plurality of Rubik's Cubes and the above-mentioned intelligent central axis, the multiple Rubik's Cubes are installed on the Smart Axis, the multiple Rubik's Cubes are spliced with a plurality of Rubik's Cube layers, and the rotor is connected with the Rubik's Cube layer .
  • the smart cube can obtain the status signal of the smart cube with the help of the main control module, realize intelligence, and can realize the online Rubik's cube competition.
  • the smart cube is a second-order cube, a third-order cube, or a high-order cube.
  • An intelligent Rubik's Cube comprising a plurality of Rubik's Cubes and the above-mentioned intelligent central axis, the multiple Rubik's Cubes are installed on the Smart Axis, the multiple Rubik's Cubes are spliced with a plurality of Rubik's Cube layers, and the rotor is connected with the Rubik's Cube layer ,
  • the smart cube further includes an elastic member
  • the smart central shaft also includes a plurality of connecting rods, the plurality of connecting rods are spaced apart on the core, the connecting rods are adjusting screws; wherein the adjusting screw is connected with In the center block of the magic cube, one end of the elastic member abuts against the head of the adjusting screw, and the other end abuts against the center block.
  • the compression amount of the elastic piece can be adjusted to adjust the tightness of the smart cube; or, the adjusting screw is connected with an intermediate connecting block, and one end of the elastic piece is against the head of the adjusting screw, and the other end is against The intermediate connecting block.
  • the compression amount of the elastic piece can be adjusted, and the tightness of the smart cube can be adjusted.
  • a timing method for smart Rubik's cube including the following steps:
  • the main control module obtains the rotation signal of the Rubik's Cube layer and starts timing;
  • the main control module calculates the real-time state of the smart cube according to the rotation signal of each cube layer
  • the main control module terminates timing; otherwise, the main control module continues to calculate the real-time state of the smart cube.
  • the time spent by the player when the player turns the smart cube to the recovery state can be obtained, thereby realizing competition between different players or player self-training.
  • Figure 1 is a cross-sectional view of the smart bottom bracket in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of the smart bottom bracket in another embodiment of the present invention.
  • Figure 3 is a cross-sectional view of Figure 2;
  • FIG. 4 is a diagram of the external structure of the smart cube in the present invention when it is a second-order cube;
  • Fig. 5 is a schematic diagram of the internal structure of the smart cube described in Fig. 4;
  • Figure 6 is a schematic diagram of the installation of sensors in the smart cube described in Figure 4.
  • Figure 7 is a diagram of the internal structure of the smart cube described in Figure 4.
  • Figure 8 is an exploded view of Figure 7;
  • Figure 9 is a schematic diagram of the structure in Figure 7 after three corner blocks are removed;
  • FIG. 10 is a schematic diagram of the internal structure of the smart cube in the present invention when it is a third-order cube;
  • Fig. 11 is a schematic flow chart of the timing method of the smart cube in the present invention.
  • an intelligent central shaft includes a core, a sensor 300 and a main control module 410.
  • the core includes a housing 110 with a cavity 101.
  • the sensor 300 is installed on the core.
  • the sensor 300 includes a stator 310 and a rotor 320, and the stator 310 is fixed to the housing 110.
  • the smart central axis is applied to the smart Rubik’s cube, the Rubik’s cube layer of the smart Rubik’s cube rotates relative to the housing 110, and the rotor 320 is configured to be able to connect with the Rubik’s cube layer and rotate synchronously, so that the rotor 320 can follow the Rubik’s cube layer relative to the stator. 310 rotates.
  • the main control module 410 is installed in the cavity 101, and the main control module 410 is electrically connected to the sensor 300.
  • the main control module 410 obtains the rotation signal of the Rubik's cube layer according to the relative rotation between the rotor 320 and the stator 310.
  • the sensor 300 and the core form a whole, and the integration is high, which avoids considering the complicated assembly relationship between the stator 310 and the central block 210 or the intermediate connecting block 510.
  • the intelligent bottom bracket can exist as an independent module, which facilitates the assembly of the intelligent cube and greatly simplifies the assembly process of the intelligent cube.
  • the sensor 300 is mainly installed in the housing 110.
  • the sensor has relatively small size requirements for the magic cube (such as center block, corner block, and edge block), so that the size and specifications of the magic cube can be designed according to actual needs. The redundancy is large, the fault tolerance performance is improved, and the user feel is effectively improved.
  • the main control module 410 When applied to a smart cube, the main control module 410 obtains the rotation signal of the Rubik's cube layer according to the relative rotation between the rotor 320 and the stator 310, and then obtains the state signal of the smart Rubik's cube according to the rotation signal of each Rubik's cube layer. Therefore, the intelligent central axis is highly intelligent when applied, and can realize online online competitions for users.
  • the magic cube 200 includes one or more of a center block 210, an edge block 220, and a corner block 230.
  • the third-order Rubik's Cube has a center block 210, an edge block 220 and a corner block 230.
  • some Rubik's Cubes do not necessarily have a center block 210 and an edge block 220, such as a second-order Rubik's Cube (see FIG. 7).
  • the rotor 320 can directly or indirectly realize the synchronous rotation with the Rubik's cube layer of the smart Rubik's cube.
  • a plurality of connecting rods 120 are arranged on the core at intervals.
  • the connecting rods 120 rotate synchronously with the Rubik's cube layer, and the rotor 320 and the connecting rods 120 is fixedly connected to realize synchronous rotation of the rotor 320 and the Rubik's Cube layer.
  • the rotor 320 is fixedly connected to the middle connecting block 510 (as shown in FIG. 6) or the central block 210 (as shown in FIG. 10) through the connecting shell 360, so as to realize the synchronous rotation of the rotor 320 and the puzzle layer.
  • the slave link 120 is not required.
  • the internal wiring is convenient for wiring
  • the connecting rod 120 is not necessarily a tubular shaft, and the connecting rod 120 may be a solid rod that is convenient for manufacturing and processing.
  • the stator 310 can be fixed on the side wall of the housing 110 (as shown in FIG. 1), inside the housing 110 (as shown in FIG. 3), or fixed on the outer surface of the housing 110 (as shown in FIG. 10). Show).
  • the main control module 410 includes a processing unit, a control unit, and a communication unit.
  • the processing unit is used to convert the rotation signal of the Rubik's Cube layer into the state signal of the Smart Rubik's Cube. Specifically, according to the rotation signal of each Rubik's Cube layer, the state before and after the rotation of each Rubik's Cube layer can be obtained, and then the state signal of the entire Smart Rubik's Cube can be obtained.
  • the control unit is electrically connected to the processing unit and the communication unit.
  • the communication unit is used for data transmission between the control unit and peripheral equipment, so as to realize networked communication, networked teaching, networked training or networked competitions, and can specifically realize real-time synchronous control of the virtual cube , Electronic blind twist, timing, restoration step reproduction, shortest restoration route prompt, statistics function.
  • the main control module 410 can convert the rotation signal of the Rubik's cube layer into the state signal of the smart Rubik's cube by means of the processing device of the peripheral device, and the processing device of the peripheral device can then return the state signal of the smart Rubik's cube.
  • the volume of the main control module 410 is reduced, and the space occupied by the main control module 410 in the cavity 101 is reduced.
  • a power module 420 and a buzzer 430 electrically connected to the main control module 410 are also installed in the cavity 101.
  • the power module 420 is used to provide power to the main control module 410.
  • the buzzer 430 can increase the interaction between the Rubik's Cube and the player, such as issuing an alarm sound, a prompt sound, or a start sound.
  • the rotor 320 and the stator 310 are rotatably connected.
  • the stator 310 includes a common signal ring 311 and an angle signal ring 312 that is coaxial and insulated from the common signal ring 311
  • the rotor 320 is a conductive element
  • the conductive element includes a first contact pin 321 and a second contact pin 322.
  • the first electric contact pin 321 is used to contact the common signal ring 311
  • the second electric contact pin 322 is used to contact different positions of the angle signal ring 312 when the Rubik's Cube layer rotates, so as to obtain the rotation signal of the Rubik's Cube layer.
  • the rotor 320 will rotate with the Rubik's Cube layer, and the position of the conductive parts on the rotor 320 will change, so that the connection relationship between the common signal ring 311 and the angle signal ring 312 of the sensor 300 will change, so that different signals can be generated to achieve master control.
  • the module 410 senses the rotation signal of the Rubik's Cube layer.
  • the sensor 300 may be a resistive potentiometer, a miniature encoder, a photoelectric sensing structure, or an electromagnetic sensing structure.
  • the rotor is composed of multiple magnets, and the magnetic field strength of each magnet is different from each other.
  • the stator is a Hall sensor. When the Rubik’s Cube layer rotates, when the Hall sensor passes through different magnets, different voltages will be generated.
  • the rotation signal of the Rubik's Cube layer is the light source and the baffle installed under the light source.
  • the baffle is provided with a notch, and the stator is a plurality of light receivers.
  • the notch rotates to align with different light receivers. Then the light receiver can receive the light from the light source and obtain the rotation signal of the Rubik's Cube layer.
  • the second embodiment illustrates a specific scheme for the rotor 320 to realize synchronous rotation with the Rubik's Cube layer through the connecting rod 120.
  • the smart bottom bracket also includes a connecting rod 120.
  • the rotor 320 is rotatably mounted on the housing 110, and the connecting rod 120 is fixedly connected to the rotor 320.
  • the connecting rod 120 is used to fixly install a center block or an intermediate connecting block, so that the connecting rod 120 will rotate synchronously with the rotation of the Rubik's cube layer. Therefore, after the connecting rod 120 and the rotor 320 are fixedly connected, the rotor 320 can be connected to the Rubik's cube. The layers rotate synchronously.
  • the sensor 300 is located in the housing 110, the housing 110 is provided with a through hole, and the connecting rod 120 is connected to the rotor 320 after passing through the through hole.
  • the sensor 300 is integrally located in the housing 110, which is beneficial to the protection of the sensor 300, and prevents the sensor 300 from being impacted or interfered by the magic cube 200 or other structural parts when the magic cube rotates.
  • the sensor 300 and the core form a tighter whole.
  • the intelligent bottom bracket has a higher degree of integration and is easier to be compatible and assembled with the Magic Cube 200.
  • a shaft sleeve 111 may be installed in the through hole of the housing 110, and the shaft sleeve 111 is located between the connecting rod 120 and the side wall of the housing 110.
  • the sleeve 111 can fit the through hole tightly, so that the connecting rod 120 can rotate stably.
  • the connecting rod 120 is a metal rod
  • the shaft sleeve 111 is a metal shaft sleeve. Since the machining accuracy of the metal parts is high and controllable, the friction force between the metal sleeve and the metal rod is controllable and stable, which can ensure that the friction force received by each metal rod is consistent, which is beneficial to improve the player's hand feeling.
  • the sensor 300 further includes a first mounting block 330 fixedly mounted on the housing 110 and a second mounting block 340 rotatably mounted on the housing 110, the stator 310 is fixed to the first mounting block 330, and the rotor 320 is fixed to the second mounting block 340, and a receiving cavity 350 is formed between the first mounting block 330 and the second mounting block 340.
  • the stator 310 and the rotor 320 are located in the accommodating cavity 350, which not only facilitates a good rotational fit between the stator 310 and the rotor 320, but the design of the accommodating cavity 350 can avoid the interference of the main control module 410 and other components inside the housing 110 to the sensor 300 To accurately obtain the rotation signal of the Rubik's Cube layer.
  • the housing 110 may include an upper case and a lower case connected to each other.
  • the upper shell and the lower shell can be detachably connected by screws.
  • the third embodiment illustrates the specific scheme of connecting the rotor 320 to the central block 210 or the intermediate connecting block 510 through the connecting shell 360 to realize synchronous rotation with the Rubik's Cube layer.
  • the sensor 300 also includes a connecting shell 360.
  • the connecting shell 360 is rotatably installed on the housing 110 and is used for fixed connection with the central block 210 (see FIG. 10) or the intermediate connecting block 510 (see FIGS. 4 to 8).
  • a card slot 211 is provided at the bottom of the center block 210, and the connecting shell 360 is clamped into the card slot to achieve a fixed connection with the center block 210.
  • the rotor 320 is fixed to the connecting shell 360. Wherein, the central block 210 or the intermediate connecting block 510 will rotate synchronously with the Rubik's Cube layer, so that the connecting shell 360 and the rotor 320 can realize synchronous rotation with the Rubik's Cube layer.
  • the rotor 320 is fixed on the inner side of the connecting shell 360
  • the stator 310 is fixed on the outer surface of the housing 110
  • the connecting shell 360 covers the setting element 310.
  • the connecting shell 360 can protect the rotor 320 and the stator 310 at the same time to prevent the sensor 300 from being interfered by the environment or other components.
  • the sensor 300 is located between the shaft center and the intermediate connecting block 510, instead of being arranged inside the intermediate connecting block 510 or the shaft, so that the sensor 300 as a whole can remain relatively independent without too much consideration.
  • the assembly relationship with the internal structural parts of the intermediate connecting block 510 or the internal structural parts of the axis realizes the modular assembly of the sensor 300, which is relatively independent and has good compatibility.
  • the peripheral edge of the connecting shell 360 is provided with a rotating flange 361, the outer surface of the housing 110 is provided with a protrusion 112, and the protrusion 112 is provided with a sliding groove 113 that cooperates with the rotating flange 361.
  • the connecting shell 360 can be rotatably arranged on the housing 110.
  • the sliding groove 113 can limit the connecting shell 360, which can ensure the smooth rotation of the connecting shell 360 and the rotor 320.
  • the middle connecting block 510 is provided with a first connecting sleeve 511 rotatably sleeved on the connecting rod 120.
  • the connecting rod 120 in the third embodiment is fixed on the housing 110 or the stator 310 and cannot rotate.
  • the rotor 320 is installed inside the connecting shell 360.
  • the connecting shell 360 is provided with a second connecting sleeve 362 extending toward the first connecting sleeve 511, and the second connecting sleeve 362 is sleeved with the first connecting sleeve 511 to improve the stability of the connection between the connecting shell 360 and the intermediate connecting block 510.
  • the connecting shell 360 adopts a socket connection to realize synchronous rotation with the intermediate connecting block 510, which facilitates quick assembly between the connecting shell 360 and the intermediate connecting block 510.
  • the outer contour of the first connecting sleeve 511 can be elliptical, polygonal or irregular.
  • Figure 4 and Figure 10 can be combined, a smart cube, including a plurality of magic cubes 200 and any one of the above-mentioned intelligent central axis, the plurality of magic cubes 200 are installed on the intelligent central axis, the multiple magic cubes 200 form a number of magic cube layers, rotor 320 is connected to the Rubik's Cube layer.
  • the smart cube can obtain the rotation signal and state signal of the smart cube with the help of the main control module 410, realize intelligence, and can realize the online Rubik's cube competition.
  • the smart cube further includes an elastic member 121.
  • the elastic member 121 may be a spring or an elastic pad.
  • the intelligent bottom shaft also includes a plurality of connecting rods 120, which are distributed on the core at intervals, and the connecting rods 120 are adjusting screws.
  • the housing 110 is provided with a threaded hole 114 for installing an adjusting screw.
  • the adjusting screw is connected to the central block 210 of the magic cube 200.
  • One end of the elastic member 121 abuts against the head of the adjusting screw, and the other end abuts against the center block 210.
  • the compression amount of the elastic member 121 can be adjusted, and the tightness of the smart cube can be adjusted.
  • the adjusting screw is connected to the intermediate connecting block 510.
  • One end of the elastic member 121 abuts against the head of the adjusting screw, and the other end abuts against the middle connecting block 510.
  • the compression amount of the elastic member 121 can be adjusted, and the tightness of the smart cube can be adjusted.
  • the smart cube is a second-order cube (as shown in Figures 4 to 8)), a third-order cube (as shown in Figure 10) or a high-order cube.
  • the third-order cube includes the third-order pyramid cube
  • the high-order cube includes the high-order pyramid cube.
  • the second-order Rubik's Cube includes three middle connecting blocks 510, eight corner blocks 230, nine sliding blocks 520, and seven mounting bases 530.
  • the three middle connecting blocks 510 are respectively installed on the three connecting rods 120, the sliding blocks 520 are clamped on the four sides of the middle connecting block 510, that is, one middle connecting block 510 is adjacent to the four sliding blocks 520, and the mounting base 530 It is clamped between the sliding blocks 520.
  • the shaft center is provided with an arc-shaped shell piece 115.
  • the arc-shaped shell 115, the three intermediate connecting blocks 510, the nine sliding blocks 520 and the seven mounting bases 530 together form a spherical surface.
  • the eight corner blocks 230 include seven moving blocks and one fixed block.
  • the moving blocks are installed on the mounting base 530 in one-to-one correspondence.
  • the mounting base 530 is provided with screws 531 for connecting the moving block.
  • the fixing block is fixedly arranged on the arc-shaped shell piece 115.
  • the fixed block may be bonded to the arc-shaped shell 115, or the fixed block and the arc-shaped shell 115 may be integrally formed.
  • the moving block can slide on the spherical surface. When the player rotates the moving block, the moving block drives the mounting base 530, and then the mounting base 530 pushes the slider 520 and the intermediate connecting block 510 to rotate around the axis of the adjacent connecting rod 120.
  • the traditional second-order Rubik's Cube includes six intermediate connecting blocks 510, twelve sliding blocks 520 and eight mounting bases 530.
  • Six center blocks 210, twelve sliding blocks 520, and eight mounting bases 530 together form the spherical surface.
  • the three intermediate connecting blocks 510, nine sliding blocks 520, seven mounting bases 530 and the arc-shaped shell 115 jointly constitute the spherical surface, so that the outer surface of the arc-shaped shell 115 occupies
  • the positions of the original three middle connecting blocks 510, three sliding blocks 520 and one mounting base 530, that is, the outer surface of the arc-shaped shell piece 115 of the axis occupies three middle connecting blocks 510, three sliding blocks 520 and one mounting base.
  • the area of the base 530 is not limited to the base 530.
  • the number of connecting rods 120, intermediate connecting blocks 510, sliding blocks 520 and mounting bases 530 can be reduced, which can reduce the occupation of the internal space of the smart cube. Accordingly, the space saved is used to increase the size of the axis.
  • the large-sized axis can facilitate processing and assembly, and on the other hand, it can improve the stability of the connection between other structural parts and the axis, thereby improving the stability of the smart cube. For example, when the size of the axis is increased, the contact area between the moving block and the axis can be increased, and the connection will be more stable. During the use of the smart cube, the moving block is not easy to fly away.
  • Another example is the increase in the size of the shaft, which can accommodate a larger main control module 410 or install more components-such as a larger size and larger capacity power supply, geomagnetic sensor, gyroscope, vibration sensor
  • a larger main control module 410 or install more components-such as a larger size and larger capacity power supply, geomagnetic sensor, gyroscope, vibration sensor
  • One or two or more of the damping motor and the damping motor enable the smart cube to achieve more functions and smarter.
  • the smart cube further includes a plug box 116 for installing a power source, and the arc-shaped shell 115 is provided with a slot 117 matching the plug box 116.
  • the plug-in box 116 is detachably mounted on the shaft, which is convenient for subsequent power supply replacement.
  • a timing method for a smart Rubik's cube includes the following steps:
  • the main control module calculates the real-time state of the smart cube according to the rotation signal of each cube layer.
  • S300 Determine whether the real-time state of the smart cube is the recovery state of the smart cube.
  • a wake-up link is also included.
  • the wake-up timing of the smart bottom axis can be when the player first touches the smart cube (for example, a touch sensor electrically connected to the main control module is provided on the surface of the cube), or when the smart cube starts to move (for example, in the smart cube An acceleration sensor, a gyroscope or an electromagnetic field sensor electrically connected to the main control module are installed inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Toys (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种智能中轴、智能魔方及其计时方法。该智能中轴包括核心、传感器(300)和主控模块(410),核心包括具有空腔(101)的壳体(110);传感器(300)安设于核心上,传感器(300)包括定子(310)和转子(320),定子(310)固定于壳体(110),转子(320)被配置为能与智能魔方的魔方层连接且同步转动,从而使得转子(320)能够随魔方层相对于定子(310)转动;主控模块(410)安装于空腔(101)内,主控模块(410)与传感器(300)电性连接,主控模块(410)根据转子(320)与定子(310)之间的相对转动,获取魔方层的转动信号。传感器(300)和核心形成一个整体,集成化高,避免考虑定子(310)与中心块(210)或中间连接块(510)之间复杂的装配关系。

Description

智能中轴、智能魔方及其计时方法 技术领域
本发明涉及智能魔方技术领域,特别是涉及一种智能中轴、智能魔方及其计时方法。
背景技术
智能魔方是一种通过传感器实时感知魔方状态及旋转位置,并将实时状态和转动等信息处理、存储与发送到外部设备的一种新型电子魔方。然而,传统的智能魔方存在着中轴智能化低的问题。
发明内容
基于此,有必要针对魔方中轴智能程度低的问题,提供一种智能中轴、智能魔方及其计时方法,该智能中轴能够获知魔方层的转动信号,进而得到智能魔方的状态信号,智能化高。
一种智能中轴包括核心、传感器和主控模块,所述核心包括具有空腔的壳体;所述传感器安设于所述核心上,所述传感器包括定子和转子,所述定子固定于所述壳体,所述转子被配置为能与智能魔方的魔方层连接且同步转动,从而使得所述转子能够随所述魔方层相对于所述定子转动;所述主控模块安装于所述空腔内,所述主控模块与所述传感器电性连接,所述主控模块根据所述转子与所述定子之间的相对转动,获取所述魔方层的转动信号。
上述智能中轴中,定子固定于壳体,传感器和核心形成一个整体,集成化高,避免考虑定子与中心块或中间连接块之间复杂的装配关系。主控模块根据转子与定子之间的相对转动,获取魔方层的转动信号,进而根据各魔方层的转动信号能够得到智能魔方的状态信号。因此,该智能中轴智能化程度高,若装配上魔方块后,得到的智能魔方可实现联网在线的魔方比赛。
在其中一个实施例中,所述智能中轴还包括用于安装中心块或中间连接块的连杆,所述转子可转动地安装于所述壳体,所述连杆与所述转子固定连接。其中,连杆固定安装有中心块或中间连接块,从而连杆会随着魔方层的转动而同步转动,因此,当连杆和转子固定连接后,转子能够实现与魔方层同步转动。
在其中一个实施例中,所述传感器位于所述壳体内,所述壳体设有通孔,所述连杆穿过所述通孔后与所述转子连接。传感器整体位于壳体内,有利于传感器的保护,避免在魔方转动时传感器受到魔方块或其他结构件的碰撞或干扰。同时,传感器与核心形成一个更加紧密 的整体,该智能中轴的集成程度更高,更容易与魔方块兼容及装配。
在其中一个实施例中,所述传感器还包括固定安装于所述壳体的第一安装块和可转动地安装于所述壳体的第二安装块,所述定子固定于所述第一安装块,所述转子固定于所述第二安装块,所述第一安装块和所述第二安装块之间形成一容纳腔。所述定子和所述转子位于所述容纳腔内,不仅有利于定子与转子之间良好的转动配合,而且容纳腔的设计能够避免壳体内部主控模块及其他部件对传感器的干扰,以准确地获取魔方层的转动信号。
在其中一个实施例中,所述传感器还包括可转动设于所述壳体上的连接壳,所述连接壳被配置为能与中心块或中间连接块固定连接,所述转子固定于所述连接壳。其中,中心块或中间连接块会随着魔方层同步转动,从而连接壳及转子实现与魔方层同步转动。
在其中一个实施例中,所述转子固定于所述连接壳的内侧,所述定子固定于所述壳体的外表面,所述连接壳罩设所述定子。如此,连接壳能够同时保护转子和定子,使得传感器整体相互独立,避免传感器受到环境或者其他部件的干扰,尤其是在内部空间狭小、部件多、使用时部件不断转动的魔方中。
在其中一个实施例中,所述连接壳的周缘设有旋转凸缘,所述壳体的外表面设有凸块,所述凸块开设有与所述旋转凸缘配合的滑槽。如此,连接壳及转子在转动过程中,滑槽能对连接壳起到限位作用,能够保证连接壳及转子平稳地转动。
在其中一个实施例中,所述主控模块包括处理单元、控制单元和通信单元,所述处理单元用于将所述魔方层的转动信号转换成所述智能魔方的状态信号,所述控制单元分别与所述处理单元和所述通信单元电性连接,所述通信单元用于所述控制单元与外设设备进行数据传输。
在其中一个实施例中,所述定子包括公共信号圈和与所述公共信号圈同轴且绝缘的角度信号圈,所述转子为导电件,所述导电件包括第一触电脚和第二触电脚,所述第一触电脚用于与所述公共信号圈接触,所述第二触电脚用于在所述魔方层转动时与所述角度信号圈的不同位置接触。
一种智能魔方,包括多个魔方块和上述智能中轴,所述多个魔方块安装于所述智能中轴,所述多个魔方块拼接若干魔方层,所述转子与所述魔方层连接。
该智能魔方能够借助主控模块获取智能魔方的状态信号,实现智能化,可实现联网在线的魔方比赛。
在其中一个实施例中,所述智能魔方为二阶魔方、三阶魔方或高阶魔方。
一种智能魔方,包括多个魔方块和上述智能中轴,所述多个魔方块安装于所述智能中轴,所述多个魔方块拼接若干魔方层,所述转子与所述魔方层连接,所述智能魔方还包括弹性件,所述智能中轴还包括若干连杆,若干所述连杆间隔分布于所述核心上,所述连杆为调节螺杆;其中,所述调节螺杆连接有所述魔方块的中心块,所述弹性件一端抵触所述调节螺杆的头部,另一端抵触所述中心块。通过旋转调节螺杆,能够调节弹性件的压缩量,实现调节智能魔方的松紧程度;或者,所述调节螺杆连接有中间连接块,所述弹性件一端抵触所述调节螺杆的头部,另一端抵触所述中间连接块。通过旋转调节螺杆,能够调节弹性件的压缩量,实现调节智能魔方的松紧程度。
一种智能魔方的计时方法,包括以下步骤:
当转子相对于定子开始相对转动时,主控模块获取魔方层的转动信号,并启动计时;
所述主控模块根据各所述魔方层的转动信号,计算所述智能魔方的实时状态;
判断所述智能魔方的实时状态是否为所述智能魔方的复原状态;
若是,则所述主控模块终止计时;否则,所述主控模块继续计算所述智能魔方的实时状态。
通过上述智能魔方的计时方法,能够获得玩家将智能魔方转动至复原状态时,玩家所花费的时间,从而实现不同玩家之间竞技或者玩家自我训练。
附图说明
图1为本发明一实施例中所述智能中轴的剖视图;
图2为本发明另一实施例中所述智能中轴的结构示意图;
图3为图2的剖视图;
图4为本发明中所述智能魔方为二阶魔方时的外部结构图;
图5为图4中所述智能魔方的内部结构示意图;
图6为图4中所述智能魔方内传感器的安装示意图;
图7为图4中所述智能魔方的内部结构图;
图8为图7的分解视图;
图9为图7中去掉3个角块后的结构示意图;
图10为本发明中所述智能魔方为三阶魔方时的内部结构示意图;
图11为本发明中所述智能魔方的计时方法的流程示意图。
101、空腔,110、壳体,111、轴套,112、凸块,113、滑槽,114、螺纹孔,115、弧形壳体,116、插盒,117、插槽,120、连杆,121、弹性件,200、魔方块,210、中心块,211、卡槽,220、棱块,230、角块,300、传感器,310、定子,311、公共信号圈,312、角度信号圈,320、转子,321、第一触电脚,322、第二触电脚,330、第一安装块,340、第二安装块,350、容纳腔,360、连接壳,361、旋转凸缘,362、第二连接套,410、主控模块,420、电源模块,430、蜂鸣器,510、中间连接块,511、第一连接套,520、滑块,530、安装底座,531、螺丝。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。本发明中所述“第一”、“第二”不代表具体的数量及顺序,仅仅是用于名称的区分。
实施例一
如图1所示,一种智能中轴包括核心、传感器300和主控模块410。核心包括具有空腔101的壳体110。传感器300安设在核心上,传感器300包括定子310和转子320,定子310固定于壳体110。在智能中轴应用于智能魔方时,智能魔方的魔方层相对于壳体110转动,转子320则配置为能够与智能魔方的魔方层连接且同步转动,从而使得转子320能够随魔方层相对于定子310转动。主控模块410安装于空腔101内,主控模块410与传感器300电性连接,主控模块410根据转子320与定子310之间的相对转动,获取魔方层的转动信号。
上述智能中轴中,传感器300和核心形成一个整体,集成化高,避免考虑定子310与中心块210或中间连接块510之间复杂的装配关系。智能中轴能够作为独立模块存在,方便智能魔方装配,大大简化了智能魔方的组装过程。并且,传感器300主要安装于壳体110,传 感器对魔方块(如中心块、角块和棱块)的尺寸要求较小,使得魔方块可以根据实际需要设计其尺寸和规格,智能魔方的设计空间冗余度较大,提高容错性能,有效地提升用户手感。当应用于智能魔方时,主控模块410根据转子320与定子310之间的相对转动,获取魔方层的转动信号,进而根据各魔方层的转动信号得到智能魔方的状态信号。因此,该智能中轴在应用时,智能化高,能够实现用户联网在线比赛。
需要说明,魔方块200包括中心块210、棱块220和角块230中的一种或多种。比如,可结合图10,三阶魔方具有中心块210、棱块220和角块230。当然,有些魔方不一定具有中心块210和棱块220,比如二阶魔方(可参阅图7)。转子320可直接或间接地与智能魔方的魔方层实现同步转动,比如,如图1所示,核心上间隔设置有若干连杆120,连杆120与魔方层同步转动,而转子320与连杆120固定连接,实现转子320与魔方层同步转动。再比如,转子320通过连接壳360与中间连接块510(如图6所示)或中心块210(如图10所示)固定连接,实现转子320与魔方层同步转动。
此外,传感器300通过线缆与壳体110内的主控模块410电性连接时,由于传感器300直接安装于壳体110上,靠近壳体110内的主控模块410,不需要从连杆120的内部走线,便于布线,且连杆120不一定为管状轴,连杆120可选为方便制造加工的实心杆。其中,定子310可选择固定在壳体110的侧壁上(如图1所示)、壳体110的内部(如图3所示)、或者固定在壳体110的外表面(如图10所示)。
在本实施例中,主控模块410包括处理单元、控制单元和通信单元,处理单元用于将魔方层的转动信号转换成智能魔方的状态信号。具体地,根据各个魔方层的转动信号,可以得到各个魔方层转动前后的状态,进而可以得到整个智能魔方的状态信号。控制单元分别与处理单元和通信单元电性连接,通信单元用于控制单元与外设设备进行数据传输,从而实现联网交流、联网教学、联网训练或联网竞技,具体可以实现虚拟魔方的实时同步控制、电子盲拧、计时、复原步骤重现、最短还原路线提示、统计功能。可以理解,在其他实施例中,主控模块410可以借助于外设的处理装置实现将魔方层的转动信号转换成智能魔方的状态信号,外设的处理装置再把智能魔方的状态信号回传给主控模块410,从而减少主控模块410的体积,减少主控模块410对空腔101的占用空间。
具体地,结合图1,空腔101内还安装有与主控模块410电性连接的电源模块420和蜂鸣器430。电源模块420用于为主控模块410提供电源。蜂鸣器430能够增加魔方与玩家之间的互动,比如发出报警声、提示声或启动声。
在本实施例中,转子320与定子310可转动连接。可结合图6至图8,定子310包括公共信号圈311和与公共信号圈311同轴且绝缘的角度信号圈312,转子320为导电件,导电件包括第一触电脚321和第二触电脚322,第一触电脚321用于与公共信号圈311接触,第二触电脚322用于在魔方层转动时与角度信号圈312的不同位置接触,从而获取魔方层的转动信号。当魔方层发生转动时,第一触电脚321始终与公共信号圈311压合且保持相对滑动接触。第二触电脚322始终与角度信号圈312压合且保持相对滑动接触。转子320将随魔方层一起转动,转子320上导电件的位置发生变化,使得传感器300的公共信号圈311和角度信号圈312之间的连接关系发生变化,从而可生成不同的信号,实现主控模块410感知魔方层的转动信号。
可以理解,传感器300通过转子320与定子310之间的相对转动以获取魔方层的转动信号的方式很多。在其他实施例中,传感器300可为电阻式电位计、微型编码器、光电传感结构或电磁传感结构。比如,转子为多个磁铁,各个磁铁的磁场强度互不相同,定子为霍尔感应器,则魔方层转动时,霍尔感应器经过不同磁铁时,产生不同的电压,根据电压的不同,获取魔方层的转动信号。再比如,转子为光源和安装在光源下方的挡板,挡板设有一缺口,定子为多个光线接收器,当挡板随着魔方层转动时,缺口转动至对准不同的光线接收器,则光线接收器能接收光源的光线,获取魔方层的转动信号。
实施例二
实施例二阐述了转子320通过连杆120实现与魔方层同步转动的具体方案。
如图2和图3所示,智能中轴还包括连杆120。转子320可转动地安装于壳体110,连杆120与转子320固定连接。其中,连杆120用于固定安装有中心块或中间连接块,从而连杆120会随着魔方层的转动而同步转动,因此,连杆120和转子320固定连接后,转子320能够实现与魔方层同步转动。
具体地,结合图3,传感器300位于壳体110内,壳体110设有通孔,连杆120穿过通孔后与转子320连接。传感器300整体位于壳体110内,有利于传感器300的保护,避免在魔方转动时传感器300受到魔方块200或其他结构件的碰撞或干扰。同时,传感器300与核心形成一个更加紧密的整体,该智能中轴的集成程度更高,更容易与魔方块200兼容及装配。
进一步地,结合图3,壳体110的通孔内可安装有轴套111,轴套111位于连杆120和壳体110的侧壁之间。轴套111能够紧配该通孔,使得连杆120能够稳定地转动。其中,连杆120为金属杆,轴套111为金属轴套。由于金属件的加工精度很高,且可控,则金属轴套与 金属杆之间的摩擦力可控且稳定,能保证各个金属杆受到的摩擦力均一致,有利于提高玩家的手感。
具体地,结合图3,传感器300还包括固定安装于壳体110的第一安装块330和可转动地安装于壳体110的第二安装块340,定子310固定于第一安装块330,转子320固定于第二安装块340,第一安装块330和第二安装块340之间形成一容纳腔350。定子310和转子320位于容纳腔350内,不仅有利于定子310与转子320之间良好的转动配合,而且容纳腔350的设计能够避免壳体110内部主控模块410及其他部件对传感器300的干扰,以准确地获取魔方层的转动信号。
具体地,壳体110可包括相互连接的上壳和下壳。上壳和下壳之间可选择通过螺钉实现可拆卸连接。
实施例三
实施例三阐述了转子320通过连接壳360与中心块210或中间连接块510连接,来实现与魔方层同步转动的具体方案。
传感器300还包括连接壳360。连接壳360可转动安设于壳体110,且用于与中心块210(参见图10)或中间连接块510(参阅图4至图8)固定连接。参见图10,中心块210的底部设有卡槽211,连接壳360卡入该卡槽内,实现与中心块210固定连接。转子320固定于连接壳360。其中,中心块210或中间连接块510会随着魔方层同步转动,从而连接壳360及转子320实现与魔方层同步转动。
具体地,结合图6和图7,转子320固定于连接壳360的内侧,定子310固定于壳体110的外表面,连接壳360罩设定子310。如此,连接壳360能够同时保护转子320和定子310,避免传感器300受到环境或者其他部件的干扰,尤其是在内部空间狭小、部件多、使用时部件不断转动的智能魔方中,有利提高传感器300检测的准确性和稳定性。
同时,请一并参阅图5,传感器300位于轴心和中间连接块510之间,而不是设置在中间连接块510内部或者轴心内部,从而传感器300整体能够保持相对独立,无需过多地考虑与中间连接块510内部的结构件、或者与轴心内部的结构件之间的装配关系,实现传感器300模块化装配,相对独立、兼容性好。
具体地,参阅图7和图8,连接壳360的周缘设有旋转凸缘361,壳体110的外表面设有凸块112,凸块112开设有与旋转凸缘361配合的滑槽113,从而实现连接壳360可转动设于壳体110。连接壳360及转子320在转动过程中,滑槽113能对连接壳360起到限位作用, 能够保证连接壳360及转子320平稳地转动。
进一步地,参阅图7和图8,中间连接块510设有可转动地套接于连杆120的第一连接套511。需要说明的是,与实施例二(连杆随魔方层同步转动)相比,实施例三中的连杆120是固定在壳体110或定子310上,不能转动。转子320安装于连接壳360的内侧。连接壳360设有朝第一连接套511延伸的第二连接套362,第二连接套362套接第一连接套511,提高连接壳360与中间连接块510之间连接的稳定性。相比粘接或螺纹连接,连接壳360选用套接实现与中间连接块510同步转动,方便连接壳360与中间连接块510之间快速装配。可以理解,该第一连接套511的外轮廓可以是椭圆形、多边形或不规则形状,则第二连接套362套设到第一连接套511后,能够实现连接壳360与中间连接块510同步转动,不会发生相对旋转。
实施例四
可结合图4和图10,一种智能魔方,包括多个魔方块200和上述任意一种智能中轴,多个魔方块200安装于智能中轴,多个魔方块200形成若干魔方层,转子320与魔方层连接。该智能魔方能够借助主控模块410获取智能魔方的转动信号及状态信号,实现智能化,可实现联网在线的魔方比赛。
具体地,智能魔方还包括弹性件121。弹性件121可选为弹簧或弹性垫。智能中轴还包括若干连杆120,若干连杆120间隔分布于核心上,连杆120为调节螺杆。其中,壳体110设有用于安装调节螺杆的螺纹孔114。
在其中一个实施例中,结合图10,调节螺杆与魔方块200的中心块210连接。弹性件121一端抵触调节螺杆的头部,另一端抵触中心块210。通过旋转调节螺杆,能够调节弹性件121的压缩量,实现调节智能魔方的松紧程度。
在另一个实施例中,结合图6,调节螺杆与中间连接块510连接。弹性件121一端抵触调节螺杆的头部,另一端抵触中间连接块510。通过旋转调节螺杆,能够调节弹性件121的压缩量,实现调节智能魔方的松紧程度。
其中,智能魔方为二阶魔方(如图4至图8所示)、三阶魔方(如图10所示)或高阶魔方。其中,三阶魔方包括了三阶金字塔魔方,高阶魔方包括了高阶金字塔魔方。
同时,如图4至图8所示,二阶魔方包括三个中间连接块510、八个角块230、九个滑块520和七个安装底座530。三个中间连接块510分别对应地安装在三个连杆120上,滑块520卡设在中间连接块510的四侧,即一个中间连接块510与四个滑块520相邻,安装底座530 卡设在滑块520之间。轴心设有弧形壳片115。弧形壳片115、三个中间连接块510、九个滑块520和七个安装底座530共同构成一球状表面。其中,八个角块230包括七个移动块和一个固定块。移动块一一对应地安装在安装底座530上。比如,安装底座530设有用于连接移动块的螺丝531。固定块固定设置在弧形壳片115上。比如,固定块可以是粘接于弧形壳片115,或者,固定块与弧形壳片115一体成型。移动块可以在该球状表面上滑动。当玩家转动移动块时,移动块带动安装底座530,然后安装底座530推动滑块520和中间连接块510绕着相邻连杆120的轴线旋转。
传统的二阶魔方包括了六个中间连接块510、十二个滑块520和八个安装底座530。六个中心块210、十二个滑块520和八个安装底座530共同构成该球状表面。而本实施例中,三个中间连接块510、九个滑块520、七个安装底座530和弧形壳片115共同构成该球状表面,从而得知该弧形壳片115的外表面占据了原来三个中间连接块510、三个滑块520和一个安装底座530的位置,即轴心的弧形壳片115的外表面占据了三个中间连接块510、三个滑块520和一个安装底座530的面积。如此,连杆120、中间连接块510、滑块520和安装底座530的数量减少,能够减少其对智能魔方内部空间的占用,相应地,节省出来的空间用来提升轴心的尺寸。大尺寸的轴心一方面能够方便加工及装配,另一方面能提高其他结构件与轴心之间连接的稳定性,从而提高智能魔方使用的稳定性。比如,轴心的尺寸增大后,则移动块与轴心的接触面积可以增大,连接更稳定,在智能魔方使用过程中,移动块不容易甩飞。再比如,轴心尺寸的增大,其内部能够容纳更大尺寸的主控模块410或安装更多零部件——如更大尺寸更大容量的电源、地磁感应器、陀螺仪、振动感应器和减震电机中的一种或两种以上,使得智能魔方能够实现更多功能,更加智能。
进一步地,参见图9,该智能魔方还包括用于安装电源的插盒116,弧形壳片115上设有与该插盒116相配合的插槽117。如此,插盒116可拆卸地安装到轴心上,便于后续电源的更换。
实施例五
结合图1和图11,一种智能魔方的计时方法,包括以下步骤:
S100:当转子相对于定子开始相对转动时,主控模块获取魔方层的转动信号,并启动计时。
S200:所述主控模块根据各所述魔方层的转动信号,计算所述智能魔方的实时状态。
S300:判断所述智能魔方的实时状态是否为所述智能魔方的复原状态。
S400:若是,则所述主控模块终止计时;否则,所述主控模块继续计算所述智能魔方的实时状态。
通过上述智能魔方的计时方法,能够获得玩家将智能魔方转动至复原状态时,即主控模块从启动计时到终止计时过程中,玩家所花费的时间,可实现不同玩家之间竞技(最短时长)或者玩家自我训练。
其中,在步骤S100之前,还包括唤醒环节。智能中轴的唤醒时机可以是玩家刚开始触摸智能魔方时(比如,在魔方表面设有与主控模块电性连接的触摸感应器),也可以是智能魔方开始运动时(比如,在智能魔方内安装有与主控模块电性连接的加速度感应器、陀螺仪或电磁场感应器)。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种智能魔方使用的智能中轴,其特征在于,所述智能中轴包括:
    核心,所述核心包括具有空腔的壳体;
    传感器,所述传感器安设于所述核心上,所述传感器包括定子和转子,所述定子固定于所述壳体,所述转子被配置为能与智能魔方的魔方层连接且同步转动,从而使得所述转子能够随所述魔方层相对于所述定子转动;及
    主控模块,所述主控模块安装于所述空腔内,所述主控模块与所述传感器电性连接;所述主控模块根据所述转子与所述定子之间的相对转动,获取所述魔方层的转动信号。
  2. 根据权利要求1所述的智能中轴,其特征在于,所述智能中轴还包括用于安装中心块或中间连接块的连杆,所述转子可转动地安装于所述壳体,所述连杆与所述转子固定连接。
  3. 根据权利要求2所述的智能中轴,其特征在于,所述传感器位于所述壳体内,所述壳体设有通孔,所述连杆穿过所述通孔后与所述转子连接。
  4. 根据权利要求2所述的智能中轴,其特征在于,所述传感器还包括固定安装于所述壳体的第一安装块和可转动地安装于所述壳体的第二安装块,所述定子固定于所述第一安装块,所述转子固定于所述第二安装块,所述第一安装块和所述第二安装块之间形成一容纳腔,所述定子和所述转子位于所述容纳腔内。
  5. 根据权利要求1所述的智能中轴,其特征在于,所述传感器还包括可转动设于所述壳体上的连接壳,所述连接壳被配置为能与中心块或中间连接块固定连接,所述转子固定于所述连接壳。
  6. 根据权利要求5所述的智能中轴,其特征在于,所述转子固定于所述连接壳的内侧,所述定子固定于所述壳体的外表面,所述连接壳罩设所述定子。
  7. 根据权利要求6所述的智能中轴,其特征在于,所述连接壳的周缘设有旋转凸缘,所述壳体的外表面设有凸块,所述凸块开设有与所述旋转凸缘配合的滑槽。
  8. 根据权利要求1至7任意一项所述的智能中轴,其特征在于,所述主控模块包括处理单元、控制单元和通信单元,所述处理单元用于将所述魔方层的转动信号转换成所述智能魔方的状态信号,所述控制单元分别与所述处理单元和所述通信单元电性连接,所述通信单元用于所述控制单元与外设设备进行数据传输。
  9. 根据权利要求1至7任意一项所述的智能中轴,其特征在于,所述定子包括公共信号 圈和与所述公共信号圈同轴且绝缘的角度信号圈,所述转子为导电件,所述导电件包括第一触电脚和第二触电脚,所述第一触电脚用于与所述公共信号圈接触,所述第二触电脚用于在所述魔方层转动时与所述角度信号圈的不同位置接触。
  10. 一种智能魔方,其特征在于,包括多个魔方块和如权利要求1至9中任一项所述的智能中轴,所述多个魔方块安装于所述智能中轴,所述多个魔方块形成若干魔方层,所述转子与所述魔方层连接。
  11. 根据权利要求10所述的智能魔方,其特征在于,所述智能魔方为二阶魔方、三阶魔方或高阶魔方。
  12. 一种智能魔方,其特征在于,包括多个魔方块和如权利要求1所述的智能中轴,所述多个魔方块安装于所述智能中轴,所述多个魔方块形成若干魔方层,所述转子与所述魔方层连接,所述智能魔方还包括弹性件,所述智能中轴还包括若干连杆,若干所述连杆间隔分布于所述核心上,所述连杆为调节螺杆;
    其中,所述调节螺杆连接有所述魔方块的中心块,所述弹性件一端抵触所述调节螺杆的头部,另一端抵触所述中心块;
    或者,所述调节螺杆连接有中间连接块,所述弹性件一端抵触所述调节螺杆的头部,另一端抵触所述中间连接块。
  13. 一种如权利要求10至12所述的智能魔方的计时方法,其特征在于,包括以下步骤:
    当转子相对于定子开始相对转动时,主控模块获取魔方层的转动信号,并启动计时;
    所述主控模块根据各所述魔方层的转动信号,计算所述智能魔方的实时状态;
    判断所述智能魔方的实时状态是否为所述智能魔方的复原状态;
    若是,则所述主控模块终止计时;否则,所述主控模块继续计算所述智能魔方的实时状态。
PCT/CN2020/072284 2019-01-18 2020-01-15 智能中轴、智能魔方及其计时方法 WO2020147757A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/423,558 US11957988B2 (en) 2019-01-18 2020-01-15 Smart center shaft, smart rubik's cube, and timing method therfor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910108286.8 2019-01-18
CN201910108286.8A CN109675297A (zh) 2019-01-18 2019-01-18 智能中轴、智能魔方及其计时方法
CN201910676384.1A CN110368670A (zh) 2019-01-18 2019-07-25 智能中轴、智能魔方及其计时方法
CN201910676384.1 2019-07-25

Publications (1)

Publication Number Publication Date
WO2020147757A1 true WO2020147757A1 (zh) 2020-07-23

Family

ID=66194247

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/103768 WO2020147318A1 (zh) 2019-01-18 2019-08-30 可换电池式智能中轴和智能魔方
PCT/CN2020/072284 WO2020147757A1 (zh) 2019-01-18 2020-01-15 智能中轴、智能魔方及其计时方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103768 WO2020147318A1 (zh) 2019-01-18 2019-08-30 可换电池式智能中轴和智能魔方

Country Status (3)

Country Link
US (2) US11957987B2 (zh)
CN (4) CN109675297A (zh)
WO (2) WO2020147318A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675297A (zh) * 2019-01-18 2019-04-26 佛山市计客创新科技有限公司 智能中轴、智能魔方及其计时方法
CN111939553B (zh) * 2019-05-17 2023-08-01 汕头市澄海区魔域文化有限公司 魔方操作监测、训练、盲拧方法及系统、介质和设备
CN110368669B (zh) * 2019-07-03 2024-02-23 佛山市计客创新科技有限公司 智能魔方及其使用的传感器、智能中轴和监测方法
CN110327617A (zh) * 2019-07-03 2019-10-15 佛山市计客创新科技有限公司 三阶金字塔魔方和智能中轴
CN113134226B (zh) * 2020-01-17 2023-04-07 东莞市特斯迈电子科技有限公司 交互式魔方及其操控方法
WO2021144779A1 (en) * 2020-01-19 2021-07-22 Particula Ltd. Puzzle component position determination system
CN111415663B (zh) * 2020-03-26 2023-04-25 齐鲁工业大学 一种具有自恢复功能的语音控制魔方及控制方法
JP1679005S (zh) * 2020-03-27 2021-02-08
CN111437589A (zh) * 2020-03-31 2020-07-24 齐鲁工业大学 基于语音解说的智能旋转终端及控制方法
CN112604265A (zh) * 2020-12-22 2021-04-06 佛山市计客创新科技有限公司 智能魔方及魔方组件
USD982220S1 (en) * 2021-03-23 2023-03-28 Jing Li Projector lamp
USD970646S1 (en) * 2022-03-20 2022-11-22 ShenZhen YiHong E-Commerce Co., LTD Splicing toy
CN115581911B (zh) 2022-10-18 2023-08-11 广州淦源智能科技有限公司 一种含有智能球轴的智能魔方

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106110651A (zh) * 2016-08-12 2016-11-16 佛山市顺德区立方智德设计有限公司 智能魔方及其使用的感应轴心结构、计时方法
CN107670268A (zh) * 2017-11-06 2018-02-09 腾讯科技(深圳)有限公司 魔方、魔方控制方法以及终端
WO2018138586A2 (en) * 2017-01-25 2018-08-02 Particula Ltd. Tracking three-dimensional puzzle components using embedded signature and rotation sensors
CN108525283A (zh) * 2018-06-05 2018-09-14 佛山市计客创新科技有限公司 智能魔方及其传感器和轴心结构
CN109675297A (zh) * 2019-01-18 2019-04-26 佛山市计客创新科技有限公司 智能中轴、智能魔方及其计时方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU194743B (en) * 1985-03-04 1988-03-28 Rubik Studio Electronic logic toy containing movable elements
US4836075A (en) * 1987-10-14 1989-06-06 Stone Rose Limited Musical cube
US5669702A (en) * 1996-06-11 1997-09-23 Wang; Wen-Ching Inflatable article with an illuminating device
US5775800A (en) * 1996-12-06 1998-07-07 Hsieh; Frank Illuminating device having rotary switch
US20010049311A1 (en) * 1999-12-30 2001-12-06 Lewis Edward D. Flashing ball
JP2006020899A (ja) 2004-07-09 2006-01-26 Co-Op Engineering Kk 色面を単純化したル−ビックキュ−ブ
US20070281811A1 (en) * 2006-06-02 2007-12-06 Chi-Hsien Wang Ball with lighting device
US20110136604A1 (en) * 2009-12-07 2011-06-09 I-Pin Hsu Ball body
CN201613008U (zh) * 2010-02-01 2010-10-27 叶青 一种魔方
CN202308119U (zh) * 2011-11-10 2012-07-04 广东步步高电子工业有限公司 一种电子产品的电池安装结构
CN202376734U (zh) 2011-12-02 2012-08-15 蔡炳合 一种新型的闪光魔方
CN203370274U (zh) * 2013-05-16 2014-01-01 陆寅 发光魔方
TWI503148B (zh) * 2013-12-11 2015-10-11 Wei Hung Lin 球體結構
TWM487124U (zh) 2014-06-20 2014-10-01 Hua Sing Tech Co Ltd 智慧型魔術方塊
US9533197B2 (en) * 2015-02-22 2017-01-03 Jeffrey Scott Larson Illuminated ball
US20160354646A1 (en) * 2015-06-02 2016-12-08 Andrew Wang Illuminative ball
CN205182121U (zh) * 2015-11-30 2016-04-27 柴舒 一种可拆卸电池的感知型高尔夫球杆
CN206063737U (zh) 2016-08-30 2017-04-05 吴连锋 一种集发声反光一体的多功能魔方
CN206138725U (zh) * 2016-08-30 2017-05-03 任新年 一种开发儿童智力的魔方
CN206366169U (zh) * 2016-11-29 2017-08-01 温州任和文化创意有限责任公司 一种夜间发光的魔方
KR101876275B1 (ko) * 2016-12-12 2018-07-09 이정호 구구단 학습용 큐브
CN106512386B (zh) * 2016-12-30 2023-05-05 深圳市弗雷德电子有限公司 用于魔方的供电结构及魔方
CN106955488A (zh) * 2017-03-30 2017-07-18 京东方科技集团股份有限公司 魔方
CN107185226B (zh) * 2017-06-24 2023-06-27 周吴尚 一种具有设定和检测状态的智能魔方
CN207203423U (zh) * 2017-07-27 2018-04-10 广州市淦源文化传播有限公司 一种二阶魔方
CN107734195A (zh) * 2017-11-24 2018-02-23 北京点芯动科技发展有限公司 一种可与移动通信设备双向实时同步运动姿态及状态的智能魔方系统
CN108079581A (zh) * 2017-12-15 2018-05-29 北京小米移动软件有限公司 智能魔方、魔方控制方法、设备及存储介质
CN108479055A (zh) * 2018-05-07 2018-09-04 南月(广州)机器人科技有限公司 一种可监测转动状态的魔方
US10744400B2 (en) * 2018-06-07 2020-08-18 Virtual Vectors, Llc. Electronic gaming device
CN210631659U (zh) * 2019-01-18 2020-05-29 佛山市计客创新科技有限公司 智能中轴和智能魔方
CN110180165A (zh) * 2019-03-27 2019-08-30 佛山市计客创新科技有限公司 智能中轴、智能魔方及智能魔方的监测方法
JP7142176B2 (ja) * 2019-06-17 2022-09-26 ディーディースポーツ,インコーポレイテッド 衝撃吸収キャリアに収容された電子装置を有するスポーツボール
CN110368669B (zh) * 2019-07-03 2024-02-23 佛山市计客创新科技有限公司 智能魔方及其使用的传感器、智能中轴和监测方法
US11077359B1 (en) * 2019-08-06 2021-08-03 Bryght Labs, Inc. Apparatus, system and method for sensing a state of a cubic puzzle
CN111643884A (zh) * 2020-07-12 2020-09-11 广州淦源智能科技有限公司 一种面位传感结构及智能魔方

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106110651A (zh) * 2016-08-12 2016-11-16 佛山市顺德区立方智德设计有限公司 智能魔方及其使用的感应轴心结构、计时方法
WO2018138586A2 (en) * 2017-01-25 2018-08-02 Particula Ltd. Tracking three-dimensional puzzle components using embedded signature and rotation sensors
CN107670268A (zh) * 2017-11-06 2018-02-09 腾讯科技(深圳)有限公司 魔方、魔方控制方法以及终端
CN108525283A (zh) * 2018-06-05 2018-09-14 佛山市计客创新科技有限公司 智能魔方及其传感器和轴心结构
CN109675297A (zh) * 2019-01-18 2019-04-26 佛山市计客创新科技有限公司 智能中轴、智能魔方及其计时方法
CN110368670A (zh) * 2019-01-18 2019-10-25 佛山市计客创新科技有限公司 智能中轴、智能魔方及其计时方法

Also Published As

Publication number Publication date
US20220072414A1 (en) 2022-03-10
CN210096888U (zh) 2020-02-21
US20220080297A1 (en) 2022-03-17
CN110368670A (zh) 2019-10-25
CN109966730A (zh) 2019-07-05
WO2020147318A1 (zh) 2020-07-23
US11957988B2 (en) 2024-04-16
US11957987B2 (en) 2024-04-16
CN109675297A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2020147757A1 (zh) 智能中轴、智能魔方及其计时方法
WO2020192255A1 (zh) 智能中轴、智能魔方及智能魔方的监测方法
WO2021000579A1 (zh) 三阶金字塔魔方和智能中轴
US8298084B2 (en) Multi-player game controller system with combinable hand-held game controllers
CN100584042C (zh) 用于生成立体摄像三维图像的方法、设备和系统
US8257157B2 (en) Physical data building blocks system for video game interaction
CN1988675B (zh) 将立体摄像硬件同步到连续彩色呈现装置的方法和装置
CN103933742B (zh) 磁性连接的电子积木块
WO2021000580A1 (zh) 智能魔方及其使用的传感器、智能中轴和监测方法
CN102479638B (zh) 一种调节装置
CN102576257A (zh) 基站移动检测和补偿
CN108614583A (zh) 智能终端及智能终端的控制方法
JP2022016724A (ja) 面方位センシング構造およびスマートルービックキューブ
CN108525283A (zh) 智能魔方及其传感器和轴心结构
KR20190025917A (ko) 평판형 마그네틱 헤드폰
CN203494153U (zh) 一种遥控玩具陀螺
CN210631659U (zh) 智能中轴和智能魔方
CN210448058U (zh) 智能魔方及其使用的传感器和智能中轴
CN219481520U (zh) 一种磁力轴心双定位的魔方
CN208372450U (zh) 智能魔方及其传感器和轴心结构
CN210448059U (zh) 三阶金字塔魔方和智能中轴
CN210096886U (zh) 智能中轴和智能魔方
JP7458577B1 (ja) インテリジェントコア軸を備えるスマートルービックキューブ
CN212490710U (zh) 筋膜枪
US11226494B2 (en) Wearable device and electrical connector with magnetic attraction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741755

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20741755

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20741755

Country of ref document: EP

Kind code of ref document: A1