WO2020192086A1 - 一种移动式储能系统及其控制方法 - Google Patents

一种移动式储能系统及其控制方法 Download PDF

Info

Publication number
WO2020192086A1
WO2020192086A1 PCT/CN2019/110929 CN2019110929W WO2020192086A1 WO 2020192086 A1 WO2020192086 A1 WO 2020192086A1 CN 2019110929 W CN2019110929 W CN 2019110929W WO 2020192086 A1 WO2020192086 A1 WO 2020192086A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
converter
photovoltaic cell
battery
state
Prior art date
Application number
PCT/CN2019/110929
Other languages
English (en)
French (fr)
Inventor
周晨
陶以彬
吴福保
余豪杰
杨波
李官军
庄俊
刘欢
秦昊
李跃龙
Original Assignee
中国电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2020192086A1 publication Critical patent/WO2020192086A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • This article relates to the field of mobile emergency power supply, specifically to a mobile energy storage system and its control method.
  • the energy storage battery inside the mobile energy storage system also supplies the internal load while supplying power to the external load. Power supply reduces the power supply time of the energy storage system to the load to a certain extent.
  • This article provides a mobile energy storage system and its control method, which can realize: when the mobile energy storage system is out of operation, the internal load is powered by the photovoltaic cell and the storage battery without consuming the energy of the energy storage battery.
  • the mobile energy storage system During operation, the photovoltaic battery can also charge the energy storage battery, extending the power supply time of the mobile energy storage system.
  • the energy storage battery is connected to the energy storage converter, and the energy storage converter is configured to be connected to a load;
  • the reverse switch is connected to the energy storage battery, the uninterruptible power supply and the DC-DC converter, and the DC-DC converter is connected to the photovoltaic cell;
  • This article provides a control method for a mobile energy storage system, the method includes:
  • the state of the mobile energy storage system is operating, and if the energy storage battery is not in discharging mode and not in charging mode, the state of the mobile energy storage system is out of service status.
  • Figure 1 is a schematic diagram of the structure of this mobile energy storage system
  • Figure 2 is a flow chart of the control method of this mobile energy storage system.
  • the mobile energy storage system is a mobile energy storage system powered by optical storage.
  • the mobile energy storage system includes: a mobile container and The photovoltaic cell outside the mobile container and the energy storage battery, the energy storage converter, the energy storage converter control loop, the uninterruptible power supply, the storage battery, the inverted switch, and the DC-DC arranged inside the mobile container Converter (ie DC/DC converter, where DC is the abbreviation of Direct Current) and monitoring system;
  • the energy storage battery is connected to the energy storage converter, and the energy storage converter is configured to be connected to a load;
  • the reverse switch is connected to the energy storage battery, the uninterruptible power supply and the DC/DC converter, and the DC/DC converter is connected to the photovoltaic cell;
  • the uninterruptible power supply includes a DC terminal, an AC input terminal, and an AC output terminal.
  • the DC terminal of the uninterruptible power supply is connected to the inverter switch and the battery, and the AC input terminal of the uninterruptible power supply is connected to the energy storage transformer.
  • the AC output end of the uninterruptible power supply is connected to the control loop and monitoring system of the energy storage converter.
  • the load is the load of the mobile energy storage system, and the load is generated by the mobile energy storage system supplying power to the outside of the mobile energy storage system.
  • the monitoring system is configured to control the reverse switch to turn on the energy storage battery and the DC/DC converter according to the state of the mobile energy storage system, or to turn on the uninterruptible power supply and DC/DC Converter
  • the state of the mobile energy storage system is operating, and if the energy storage battery is not in discharging mode and not in charging mode, the state of the mobile energy storage system is out of service status.
  • the monitoring system includes:
  • the first monitoring unit is configured to control the reverse switch to turn on the DC/DC converter and the energy storage battery when the mobile energy storage system is in the running state, and send a fourth control command to the DC/DC converter; this When the energy storage battery supplies power to the external load, and the photovoltaic battery charges the energy storage battery, the service time of the energy storage system is extended.
  • the second monitoring unit is set to control the reverse switch to turn on the DC/DC converter and the uninterruptible power supply when the mobile energy storage system is in a shutdown state, and compare the output power of the photovoltaic cell with the power of the load As a result, a control command is sent to the DC/DC converter; the load includes an energy storage converter control loop and a monitoring system; at this time, the power supply for the internal load of the energy storage system comes from storage batteries and photovoltaic cells, and does not consume energy storage batteries. Electricity saves the energy of the energy storage battery, and the photovoltaic battery can also charge the battery, prolonging the use time of the internal load.
  • the load is the load of the mobile energy storage system
  • the load is different from the aforementioned load
  • the load is because the battery and the photovoltaic cell are the load of the mobile energy storage system.
  • the load may include the energy storage converter control loop and the monitoring system.
  • the second monitoring unit of the monitoring system includes:
  • the first monitoring subunit is configured to send a second control command to the DC/DC converter when the output power of the photovoltaic cell is greater than the power of the load and the state of charge of the battery is greater than or equal to 60%;
  • the second monitoring subunit is configured to send the first control instruction to the DC/DC converter when the output power of the photovoltaic cell is greater than the power of the load and the state of charge of the battery is less than 60%;
  • the third monitoring subunit is configured to send a fourth control instruction to the DC/DC converter when the output power of the photovoltaic cell is less than the power of the load and the state of charge of the battery is greater than or equal to 10%;
  • the fourth monitoring subunit is configured to send a third control command to the DC/DC converter when the output power of the photovoltaic cell is less than the power of the load and the state of charge of the battery is less than 10%.
  • the DC/DC converter includes:
  • the first adjusting unit is configured to adjust the output power of the photovoltaic cell to the maximum output power when the first control instruction is received, and connect to the storage battery;
  • the second adjusting unit is configured to adjust the output power of the photovoltaic cell to load power when receiving the second control instruction
  • the third adjusting unit is configured to adjust the photovoltaic cell to stop discharging mode when receiving the third control instruction
  • the fourth adjusting unit is configured to adjust the output power of the photovoltaic cell to the maximum output power when the fourth control instruction is received.
  • the DC/DC converter of the mobile energy storage system in the embodiment of the present invention is a DC/DC converter with a maximum power point tracking (Maximum Power Point Tracking, MPPT) function, which can adjust the output power of the photovoltaic cell to the maximum output
  • MPPT Maximum Power Point Tracking
  • This article provides a control method of a mobile energy storage system, the method includes:
  • controlling the reverse switch to turn on the energy storage battery and the DC/DC converter, or turn on the uninterruptible power supply and the DC/DC converter;
  • the state of the mobile energy storage system is the operating state; if the energy storage battery is not in the discharging mode and not in the charging mode, the state of the mobile energy storage system is out of service .
  • the reverse switch is controlled according to the state of the mobile energy storage system to turn on the energy storage battery and the DC/DC converter, or turn on the uninterruptible power supply and the DC/DC converter.
  • the DC converter includes:
  • the monitoring system controls the reverse switch to turn on the DC/DC converter and the energy storage battery, and sends a fourth control command to the DC/DC converter;
  • the monitoring system controls the reverse switch to turn on the DC/DC converter and the uninterruptible power supply, and according to the comparison result of the output power of the photovoltaic cell and the power of the load
  • the converter sends control instructions
  • the load includes an energy storage converter control loop and a monitoring system.
  • the sending a control command to the DC/DC converter according to the comparison result of the output power of the photovoltaic cell and the power of the load includes:
  • the monitoring system sends a second control command to the DC/DC converter
  • the monitoring system sends the first control command to the DC/DC converter
  • the monitoring system sends a fourth control command to the DC/DC converter
  • the monitoring system sends a third control command to the DC/DC converter.
  • the DC/DC converter when the DC/DC converter receives the first control instruction, adjust the output power of the photovoltaic cell to the maximum output power, and turn on the battery;
  • the output power of the photovoltaic cell is adjusted to the maximum output power.
  • this article provides a mobile energy storage system and control method thereof, including a mobile container, photovoltaic cells arranged outside the mobile container, and energy storage batteries and storage batteries arranged inside the mobile container.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本文涉及一种移动式储能系统及其控制方法,所述移动式储能系统包括移动式集装箱、设置在所述移动式集装箱外部的光伏电池和设置在所述移动式集装箱内部的储能电池、储能变流器、储能变流器控制回路、不间断电源、蓄电池、倒切开关、直流-直流变换器和监控系统。

Description

一种移动式储能系统及其控制方法
本公开要求在2019年03月22日提交中国专利局、申请号为201910223525.4的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本文涉及移动应急供电领域,具体涉及一种移动式储能系统及其控制方法。
背景技术
现代社会对电力能源的依赖性日益增强,用电需求的迅猛增长,供电质量要求越来越高,特别是对于一级负荷中特别重要的负荷,一旦中断供电,将会造成重大的政治影响或经济损失;具体地,在电力施工、电力设备改造以及野外作业时通常需要对支路用电负荷或施工设备进行临时性供电。
作为电网应急供电设备的主要力量,移动式储能系统的工作环境无外接市电,现有技术中,移动式储能系统内部的储能电池在给外部负荷供电的同时还要给其内部负载供电,在一定程度上减少了储能系统对负荷的供电时间。
发明内容
本文提供了一种移动式储能系统及其控制方法,可以实现:移动式储能系统停运时,通过光伏电池和蓄电池给内部负载供电,不消耗储能电池的电能,移动式储能系统运行时,光伏电池还可为储能电池充电,延长了移动式储能系统的供电时间。
本文提供了一种移动式储能系统,所述移动式储能系统包括:移动式集装箱、设置在所述移动式集装箱外部的光伏电池和设置在所述移动式集装箱内部的储能电池、储能变流器、储能变流器控制回路、不间断电源、蓄电池、倒切开关、直流-直流变换器和监控系统;
所述储能电池与所述储能变流器连接,所述储能变流器设置为与负荷连接;
所述倒切开关与所述储能电池、不间断电源和直流-直流变换器连接,所述直流-直流变换器与所述光伏电池连接;
所述不间断电源包括直流端、交流输入端和交流输出端,所述不间断电源的直流端分别连接所述倒切开关和蓄电池,所述不间断电源的交流输入端连接所述储能变流器,所述不间断电源的交流输出端连接所述储能变流器控制回路和监控系统。
本文提供了一种移动式储能系统的控制方法,所述方法包括:
根据移动式储能系统的状态控制倒切开关接通所述储能电池和直流-直流变换器,或者接通不间断电源和直流-直流变换器;
其中,若储能电池处于放电模式或充电模式,则移动式储能系统的状态为运行状态,若储能电池不处于放电模式且不处于充电模式,则移动式储能系统的状态为停运状态。
附图说明
图1是本文移动式储能系统的结构示意图;
图2是本文移动式储能系统的控制方法流程图。
具体实施方式
下面结合附图对本文的具体实施方式作进一步的详细说明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本文一部分实施例,而不是全部的实施例。基于本文中的实施例,本领域普通技术人员在没有做出创造性劳动前提下 所获得的所有其它实施例,都属于本文保护的范围。
本文提供一种移动式储能系统,所述移动式储能系统为光储联合供电的移动式储能系统,如图1所示,所述移动式储能系统包括:移动式集装箱、设置在所述移动式集装箱外部的光伏电池和设置在所述移动式集装箱内部的储能电池、储能变流器、储能变流器控制回路、不间断电源、蓄电池、倒切开关、直流-直流变换器(即DC/DC变换器,其中,DC为Direct Current的缩写)和监控系统;
所述储能电池与所述储能变流器连接,所述储能变流器设置为与负荷连接;
所述倒切开关与所述储能电池、不间断电源和DC/DC变换器连接,所述DC/DC变换器与所述光伏电池连接;
所述不间断电源包括直流端、交流输入端和交流输出端,所述不间断电源的直流端分别连接所述倒切开关和蓄电池,所述不间断电源的交流输入端连接所述储能变流器,所述不间断电源的交流输出端连接所述储能变流器控制回路和监控系统。
可理解的是,所述负荷为所述移动式储能系统的负荷,所述负荷为因所述移动式储能系统向所述移动式储能系统的外部供电而产生。
在本文提供的实施例中,所述监控系统设置为根据移动式储能系统的状态控制倒切开关接通所述储能电池和DC/DC变换器,或者接通不间断电源和DC/DC变换器;
其中,若储能电池处于放电模式或充电模式,则移动式储能系统的状态为运行状态,若储能电池不处于放电模式且不处于充电模式,则移动式储能系统的状态为停运状态。
在一些实施例中,为实现上述功能,所述监控系统包括:
第一监控单元,设置为当移动式储能系统的状态为运行状态时,控制倒切开 关接通DC/DC变换器和储能电池,并向DC/DC变换器发送第四控制指令;此时,储能电池为外部负荷供电,光伏电池为储能电池充电,延长了储能系统的使用时间。
第二监控单元,设置为当移动式储能系统的状态为停运状态时,控制倒切开关接通DC/DC变换器和不间断电源,并根据光伏电池的输出功率和负载的功率的比较结果向DC/DC变换器发送控制指令;所述负载包括储能变流器控制回路和监控系统;此时,储能系统内部负载的电力供给来源于蓄电池和光伏电池,不消耗储能电池的电量,节省了储能电池的电量,且光伏电池还可为蓄电池充电,延长了内部负载的使用时间。
可理解的是,所述负载为所述移动式储能系统的负载,所述负载不同于前述的负荷,所述负载为因所述蓄电池和所述光伏电池为所述移动式储能系统的内部供电而产生,所述负载可以包括所述储能变流器控制回路和所述监控系统。
所述监控系统的第二监控单元包括:
第一监控子单元,设置为当光伏电池的输出功率大于负载的功率时,且蓄电池的荷电状态大于等于60%,向DC/DC变换器发送第二控制指令;
第二监控子单元,设置为当光伏电池的输出功率大于负载的功率时,且蓄电池的荷电状态小于60%,向DC/DC变换器发送第一控制指令;
第三监控子单元,设置为当光伏电池的输出功率小于负载的功率时,且蓄电池的荷电状态大于等于10%,向DC/DC变换器发送第四控制指令;
第四监控子单元,设置为当光伏电池的输出功率小于负载的功率时,且蓄电池的荷电状态小于10%,向DC/DC变换器发送第三控制指令。
本文的实施例中,所述DC/DC变换器包括:
第一调节单元,设置为接收到所述第一控制指令时,调节光伏电池的输出功 率为最大输出功率,并连通蓄电池;
第二调节单元,设置为接收到所述第二控制指令时,调节光伏电池的输出功率为负载功率;
第三调节单元,设置为接收到所述第三控制指令时,调节光伏电池为停止放电模式;
第四调节单元,设置为接收到所述第四控制指令时,调节光伏电池的输出功率为最大输出功率。
此外,本发明实施例中移动式储能系统的DC/DC变换器为具有最大功率点跟踪(Maximum Power Point Tracking,MPPT)功能的DC/DC变换器,可以实现调节光伏电池的输出功率为最大输出功率的目的;倒切开关的默认状态为接通所述不间断电源和DC/DC变换器。
本文提供一种移动式储能系统的控制方法,所述方法包括:
根据移动式储能系统的状态控制倒切开关接通所述储能电池和DC/DC变换器,或者接通不间断电源和DC/DC变换器;
其中,若储能电池处于放电模式或充电模式,则移动式储能系统的状态为运行状态,若储能电池不处于放电模式且不处于充电模式,移动式储能系统的状态为停运状态。
在本文的实施例中,如图2所示,所述根据移动式储能系统的状态控制倒切开关接通所述储能电池和DC/DC变换器,或者接通不间断电源和DC/DC变换器包括:
当移动式储能系统的状态为运行状态时,监控系统控制倒切开关接通DC/DC变换器和储能电池,并向DC/DC变换器发送第四控制指令;
当移动式储能系统的状态为停运状态时,监控系统控制倒切开关接通DC/DC变换器和不间断电源,并根据光伏电池的输出功率和负载的功率的比较 结果向DC/DC变换器发送控制指令;
其中,所述负载包括储能变流器控制回路和监控系统。
在一些实施例中,所述根据光伏电池的输出功率和负载的功率的比较结果向DC/DC变换器发送控制指令,包括:
当光伏电池的输出功率大于负载的功率时,且蓄电池的荷电状态大于等于60%,监控系统发送第二控制指令至DC/DC变换器;
当光伏电池的输出功率大于负载的功率时,且蓄电池的荷电状态小于60%,监控系统发送第一控制指令至DC/DC变换器;
当光伏电池的输出功率小于负载的功率时,且蓄电池的荷电状态大于等于10%,监控系统发送第四控制指令至DC/DC变换器;
当光伏电池的输出功率小于负载的功率时,且蓄电池的荷电状态小于10%,监控系统发送第三控制指令至DC/DC变换器。
在一些实施例中,当DC/DC变换器接收到所述第一控制指令时,调节光伏电池的输出功率为最大输出功率,并接通蓄电池;
当DC/DC变换器接收到所述第二控制指令时,调节光伏电池的输出功率为负载功率;
当DC/DC变换器接收到所述第三控制指令时,调节光伏电池为停止放电模式;
当DC/DC变换器接收到所述第四控制指令时,调节光伏电池的输出功率为最大输出功率。
综上所述,本文提供一种移动式储能系统及其控制方法,包括移动式集装箱、设置在所述移动式集装箱外部的光伏电池和设置在所述移动式集装箱内部的储能电池、储能变流器、储能变流器控制回路、不间断电源、蓄电池、倒切开关、 DC/DC变换器和监控系统;本文提供的移动式储能系统在停运时通过内部设置的光伏电池和蓄电池给内部负载供电,不消耗储能电池的电能;移动式储能系统运行时,光伏电池还可为储能电池充电,延长了储能电池的供电时间。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (11)

  1. 一种移动式储能系统,所述移动式储能系统包括:移动式集装箱、设置在所述移动式集装箱外部的光伏电池和设置在所述移动式集装箱内部的储能电池、储能变流器、储能变流器控制回路、不间断电源、蓄电池、倒切开关、直流-直流变换器和监控系统;
    所述储能电池与所述储能变流器连接,所述储能变流器设置为与负荷连接;
    所述倒切开关与所述储能电池、不间断电源和直流-直流变换器连接,所述直流-直流变换器与所述光伏电池连接;
    所述不间断电源包括直流端、交流输入端和交流输出端,所述不间断电源的直流端分别连接所述倒切开关和蓄电池,所述不间断电源的交流输入端连接所述储能变流器,所述不间断电源的交流输出端连接所述储能变流器控制回路和监控系统。
  2. 如权利要求1所述的移动式储能系统,其中,所述监控系统设置为根据移动式储能系统的状态控制倒切开关接通所述储能电池和直流-直流变换器,或者接通不间断电源和直流-直流变换器;
    其中,若储能电池处于放电模式或充电模式,则移动式储能系统的状态为运行状态,若储能电池不处于放电模式且不处于充电模式,则移动式储能系统的状态为停运状态。
  3. 如权利要求2所述的移动式储能系统,其中,所述监控系统包括:
    第一监控单元,设置为当移动式储能系统的状态为运行状态时,控制倒切开关接通直流-直流变换器和储能电池,并向直流-直流变换器发送第四控制指令;
    第二监控单元,设置为当移动式储能系统的状态为停运状态时,控制倒切开关接通直流-直流变换器和不间断电源,并根据光伏电池的输出功率和负载的功率的比较结果向直流-直流变换器发送控制指令;
    其中,所述负载包括储能变流器控制回路和监控系统。
  4. 如权利要求3所述的移动式储能系统,其中,所述第二监控单元包括:
    第一监控子单元,设置为当光伏电池的输出功率大于负载的功率时,且蓄电池的荷电状态大于等于60%,向直流-直流变换器发送第二控制指令;
    第二监控子单元,设置为当光伏电池的输出功率大于负载的功率时,且蓄电池的荷电状态小于60%,向直流-直流变换器发送第一控制指令;
    第三监控子单元,设置为当光伏电池的输出功率小于负载的功率时,且蓄电池的荷电状态大于等于10%,向直流-直流变换器发送第四控制指令;
    第四监控子单元,设置为当光伏电池的输出功率小于负载的功率时,且蓄电池的荷电状态小于10%,向直流-直流变换器发送第三控制指令。
  5. 如权利要求4所述的移动式储能系统,其中,所述直流-直流变换器包括:
    第一调节单元,设置为接收到所述第一控制指令时,调节光伏电池的输出功率为最大输出功率,并连通蓄电池;
    第二调节单元,设置为接收到所述第二控制指令时,调节光伏电池的输出功率为负载功率;
    第三调节单元,设置为接收到所述第三控制指令时,调节光伏电池为停止放电模式;
    第四调节单元,设置为接收到所述第四控制指令时,调节光伏电池的输出功率为最大输出功率。
  6. 如权利要求1所述的移动式储能系统,其中,所述直流-直流变换器为具有最大功率点跟踪功能的直流-直流变换器。
  7. 如权利要求1所述的移动式储能系统,其中,所述倒切开关的默认状态为接通所述不间断电源和直流-直流变换器。
  8. 一种如权利要求1-7任一所述的移动式储能系统的控制方法,所述方法包括:
    根据移动式储能系统的状态控制倒切开关接通所述储能电池和直流-直流变换器,或者接通不间断电源和直流-直流变换器;
    其中,若储能电池处于放电模式或充电模式,则移动式储能系统的状态为运行状态,若储能电池不处于放电模式且不处于充电模式,移动式储能系统的状态为停运状态。
  9. 如权利要求8所述的方法,其中,所述根据移动式储能系统的状态控制倒切开关接通所述储能电池和直流-直流变换器,或者接通不间断电源和直流-直流变换器包括:
    当移动式储能系统的状态为运行状态时,监控系统控制倒切开关接通直流-直流变换器和储能电池,并向直流-直流变换器发送第四控制指令;
    当移动式储能系统的状态为停运状态时,监控系统控制倒切开关接通直流-直流变换器和不间断电源,并根据光伏电池的输出功率和负载的功率的比较结果向直流-直流变换器发送控制指令;
    其中,所述负载包括储能变流器控制回路和监控系统。
  10. 如权利要求9所述的方法,其中,所述根据光伏电池的输出功率和负载的功率的比较结果向直流-直流变换器发送控制指令,包括:
    当光伏电池的输出功率大于负载的功率时,且蓄电池的荷电状态大于等于60%,监控系统发送第二控制指令至直流-直流变换器;
    当光伏电池的输出功率大于负载的功率时,且蓄电池的荷电状态小于60%,监控系统发送第一控制指令至直流-直流变换器;
    当光伏电池的输出功率小于负载的功率时,且蓄电池的荷电状态大于等于 10%,监控系统发送第四控制指令至直流-直流变换器;
    当光伏电池的输出功率小于负载的功率时,且蓄电池的荷电状态小于10%,监控系统发送第三控制指令至直流-直流变换器。
  11. 如权利要求10所述的方法,所述方法还包括:
    当直流-直流变换器接收到所述第一控制指令时,调节光伏电池的输出功率为最大输出功率,并接通蓄电池;
    当直流-直流变换器接收到所述第二控制指令时,调节光伏电池的输出功率为负载功率;
    当直流-直流变换器接收到所述第三控制指令时,调节光伏电池为停止放电模式;
    当直流-直流变换器接收到所述第四控制指令时,调节光伏电池的输出功率为最大输出功率。
PCT/CN2019/110929 2019-03-22 2019-10-14 一种移动式储能系统及其控制方法 WO2020192086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910223525.4 2019-03-22
CN201910223525.4A CN111725879B (zh) 2019-03-22 2019-03-22 一种光储联合供电的移动式储能系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2020192086A1 true WO2020192086A1 (zh) 2020-10-01

Family

ID=72563593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110929 WO2020192086A1 (zh) 2019-03-22 2019-10-14 一种移动式储能系统及其控制方法

Country Status (2)

Country Link
CN (1) CN111725879B (zh)
WO (1) WO2020192086A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688638A (zh) * 2020-12-31 2021-04-20 北京动科瑞利文科技有限公司 安装于箱式发电机组的光伏系统及其运行方法
CN114083956A (zh) * 2021-11-24 2022-02-25 美的集团武汉暖通设备有限公司 一种控制方法、装置、设备及存储介质
CN114977236A (zh) * 2022-06-27 2022-08-30 国网智慧能源交通技术创新中心(苏州)有限公司 一种基于能源路由器的光储充系统、存储介质及光储充电站
CN115296329A (zh) * 2022-06-17 2022-11-04 北京四方继保工程技术有限公司 一种用于微电网的氢能发电系统并网运行控制方法
CN116609680A (zh) * 2022-02-09 2023-08-18 阿特斯储能科技有限公司 储能电池系统的测试方法
CN116819201A (zh) * 2023-06-12 2023-09-29 国网湖北省电力有限公司电力科学研究院 一种分布式新能源中储能变流器复合功能测试装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103962B (zh) * 2020-11-17 2021-04-06 中国电力科学研究院有限公司 一种可移动式光储系统的并网点电压控制方法及系统
CN114914919B (zh) * 2021-02-07 2024-08-06 深圳航羿知识产权服务有限公司 光储一体化供电系统及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702529A (zh) * 2009-11-26 2010-05-05 上海交通大学 光伏移动应急供电系统及其方法
CN201590776U (zh) * 2009-09-24 2010-09-22 王文慧 一种移动式光伏供电系统
CN103208826A (zh) * 2012-01-17 2013-07-17 湖北追日电气股份有限公司 集装箱移动式光伏储能充电站
US20140062192A1 (en) * 2012-09-05 2014-03-06 Axion Power International, Inc. Grid interactive double conversion inverter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052082B (zh) * 2014-06-25 2016-07-06 国家电网公司 一种离网并网运行的光储联合供电系统
CN105515033A (zh) * 2016-02-29 2016-04-20 许昌学院 一种光储微电网系统的功率协调控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201590776U (zh) * 2009-09-24 2010-09-22 王文慧 一种移动式光伏供电系统
CN101702529A (zh) * 2009-11-26 2010-05-05 上海交通大学 光伏移动应急供电系统及其方法
CN103208826A (zh) * 2012-01-17 2013-07-17 湖北追日电气股份有限公司 集装箱移动式光伏储能充电站
US20140062192A1 (en) * 2012-09-05 2014-03-06 Axion Power International, Inc. Grid interactive double conversion inverter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688638A (zh) * 2020-12-31 2021-04-20 北京动科瑞利文科技有限公司 安装于箱式发电机组的光伏系统及其运行方法
CN112688638B (zh) * 2020-12-31 2024-05-24 北京动科瑞利文科技有限公司 安装于箱式发电机组的光伏系统及其运行方法
CN114083956A (zh) * 2021-11-24 2022-02-25 美的集团武汉暖通设备有限公司 一种控制方法、装置、设备及存储介质
CN114083956B (zh) * 2021-11-24 2024-01-30 美的集团武汉暖通设备有限公司 一种控制方法、装置、设备及存储介质
CN116609680A (zh) * 2022-02-09 2023-08-18 阿特斯储能科技有限公司 储能电池系统的测试方法
CN115296329A (zh) * 2022-06-17 2022-11-04 北京四方继保工程技术有限公司 一种用于微电网的氢能发电系统并网运行控制方法
CN115296329B (zh) * 2022-06-17 2024-05-10 北京四方继保工程技术有限公司 一种用于微电网的氢能发电系统并网运行控制方法
CN114977236A (zh) * 2022-06-27 2022-08-30 国网智慧能源交通技术创新中心(苏州)有限公司 一种基于能源路由器的光储充系统、存储介质及光储充电站
CN116819201A (zh) * 2023-06-12 2023-09-29 国网湖北省电力有限公司电力科学研究院 一种分布式新能源中储能变流器复合功能测试装置及方法
CN116819201B (zh) * 2023-06-12 2024-03-26 国网湖北省电力有限公司电力科学研究院 一种分布式新能源中储能变流器复合功能测试装置及方法

Also Published As

Publication number Publication date
CN111725879A (zh) 2020-09-29
CN111725879B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
WO2020192086A1 (zh) 一种移动式储能系统及其控制方法
US10250041B2 (en) Power control system, power control device, and method for controlling power control system
US9787098B2 (en) Energy storage system and method to improve energy efficiency of the system
US20240097616A1 (en) Photovoltaic energy storage control module, photovoltaic energy storage control method, and photovoltaic energy storage system
WO2020077786A1 (zh) 能源控制方法、装置以及能源管理系统和存储介质
CN112383092B (zh) 一种能量调度方法、装置及系统
CN101651355B (zh) 一种不间断电源
US11121554B2 (en) Electrical power control apparatus, electrical power control method and electrical power control system
JP2014060839A (ja) 分散型電源の自立運転システム及びその方法
US20210126464A1 (en) Power conditioner
KR20140075472A (ko) 계통 연계형 오프라인 교류 무정전 전원 장치
JP2014042417A (ja) 直流電源システム
JP2016181976A (ja) 電源装置
JP2016116428A (ja) 分散型電源の自律運転システム
CN115833210B (zh) 一种多机并联储能系统及其充放电控制方法
US20230187966A1 (en) Non-current equalization ups apparatus, current distribution method, and parallel ups system
JP2021158738A (ja) 電力取引支援装置および電力取引方法
JP2009219310A (ja) 電力供給装置
KR101215396B1 (ko) 방전전류제어를 이용한 하이브리드 스마트그리드 무정전전원장치
US9917473B2 (en) Power system, power management method, and program
CN105990849A (zh) 一种光伏并网逆变器的模式切换的控制方法及控制装置
CN112947671B (zh) 电源管理器和电源管理系统
CN103368253B (zh) 智能型后备电源负荷控制方法和系统
CN103677191A (zh) 电子系统、电子装置以及电源管理方法
WO2015154377A1 (zh) 大负载终端的电源控制方法及装置、计算机程序及载体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922038

Country of ref document: EP

Kind code of ref document: A1