WO2020191950A1 - 复合增强缠绕管及其制备方法 - Google Patents

复合增强缠绕管及其制备方法 Download PDF

Info

Publication number
WO2020191950A1
WO2020191950A1 PCT/CN2019/095143 CN2019095143W WO2020191950A1 WO 2020191950 A1 WO2020191950 A1 WO 2020191950A1 CN 2019095143 W CN2019095143 W CN 2019095143W WO 2020191950 A1 WO2020191950 A1 WO 2020191950A1
Authority
WO
WIPO (PCT)
Prior art keywords
hdpe
reinforced
pvc
skeleton
wall
Prior art date
Application number
PCT/CN2019/095143
Other languages
English (en)
French (fr)
Inventor
高林
梁强
Original Assignee
淄博金洋达塑业有限公司
广东坤达管业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淄博金洋达塑业有限公司, 广东坤达管业有限公司 filed Critical 淄博金洋达塑业有限公司
Publication of WO2020191950A1 publication Critical patent/WO2020191950A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/025General arrangement or layout of plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/127Rigid pipes of plastics with or without reinforcement the walls consisting of a single layer
    • F16L9/128Reinforced pipes

Definitions

  • the invention belongs to the technical field of municipal engineering, and specifically relates to a composite reinforced winding pipe and a preparation method thereof.
  • the winding pipe is composited by HDPE and PVC.
  • the utility model patent with the authorized announcement number CN202868109U discloses a double-hole plastic-steel wall drainage pipe, including special-shaped steel. There are three ring holes in the pipe wall. The special-shaped steel is placed in the first ring hole and abuts against the first On the upper part of the ring hole, the outer surface of the pipe wall corresponding to the first ring hole is a smooth plane shape. The second ring hole and the third ring hole are plastic hollow square holes. The plastic steel drainage pipe is used, and the external pressure is removed from the pipe. The special-shaped steel in the wall bears, and the pipe wall where there is no special-shaped steel bears very little pressure.
  • plastic-steel drainage pipe can greatly improve the ring stiffness of the pipe, the steel will slowly corrode during use, which will greatly reduce the ring stiffness of the pipe and cause the installed pipeline to collapse; in addition, the expansion of plastic and steel The coefficients are different. In use, as the climate changes, the internal stress of the pipe is destroyed, which is likely to cause problems such as disconnection of the pipe.
  • the invention patent with publication number CN1869348A discloses a HDPE, PVC plastic-plastic composite winding pipe with a winding pipe body.
  • the pipe wall of the winding pipe body is composed of a spirally wound rectangular tubular hollow strip and HDPE plastic filler.
  • HDPE The plastic filler is bonded and filled in the sidewall gaps between the spirals of the hollow strip.
  • the tube wall of the hollow strip is composed of a PVC plastic layer, a composite adhesive bonding layer and an HDPE plastic layer from the inside to the outside.
  • the winding pipe has the advantages of corrosion resistance and aging resistance, but the structure is complex, the ring stiffness of the pipe is low, and the ring flexibility is poor.
  • the purpose of the present invention is to provide a reinforced winding pipe composed of HDPE material and PVC material, which uses a PVC reinforced skeleton to replace traditional steel materials. It aims to solve the problems of low ring rigidity and poor ring flexibility of the pipeline in the prior art; plastic and steel have different expansion coefficients, and the pipeline is easy to deform; steel is easy to corrode, causing the pipeline to collapse.
  • the present invention provides a composite reinforced winding pipe, comprising a hollow pipe wall and a reinforced skeleton, the reinforced skeleton is arranged in the hollow pipe wall; the outer wall of the hollow pipe wall is arranged Hole, the top of the reinforced frame is flush with the outer wall, and there is a gap between the top of the reinforced frame and the outer walls on both sides; the hollow pipe wall is made of HDPE material, and the reinforced frame is made of PVC material; The outer surface of the hollow tube wall is thermally covered with a layer of HDPE material.
  • a strong PVC support frame is used, embedded in the HDPE hollow pipe wall, and the two are combined to bear the force together.
  • Both of them are made of plastic materials, and the coefficient of thermal expansion and shrinkage are relatively close. When the temperature changes, the deformation of the two is also close. There will be no local stress imbalance, so that the pipe can reach the optimal state of joint stress, which greatly improves The overall practicality of the pipe.
  • two ring holes are provided in the hollow tube wall, the outer wall of at least one of the two ring holes is provided with a through hole, and the reinforcement frame is provided in the ring hole where the through hole is provided; a plurality of hollow tube walls They are connected vertically by HDPE hot melt material.
  • the width, length, and height of the two ring holes are equal, and the wall thicknesses of the two ring holes are equal; the width of the through hole is smaller than the width of the ring hole, and the length of the remaining outer wall on both sides of the through hole is equal.
  • the outer walls of the ring holes on both sides are provided with through holes, and the reinforcement frame is provided in the ring holes on both sides; a plurality of hollow tube walls They are connected vertically by HDPE hot melt material.
  • the width, length, and height of the ring holes on both sides are equal; the width of the middle ring hole is smaller than the width of the ring holes on both sides; the wall thickness of the three ring holes is equal; the width of the through hole is smaller than the width of the ring hole, and there are remaining on both sides of the through hole
  • the length of the outer wall is equal.
  • the reinforced frame includes a horizontal bracket and an inclined bracket, and the inclined bracket is arranged below the horizontal bracket.
  • the reinforced frame further includes a reinforced bracket, and the reinforced bracket is arranged vertically below the horizontal bracket.
  • a bottom bracket is provided at the bottom of the inclined bracket and/or the reinforced bracket.
  • the shape of the reinforcement skeleton is varied. If the inner diameter of the winding pipe does not exceed 500mm, the shape of the PVC skeleton is bench-like, including horizontal brackets and inclined brackets; if the inner diameter of the winding pipe is between 500-800mm, the shape of the PVC skeleton is a bench-like shape with a reinforced bracket.
  • the reinforced bracket is arranged vertically below the horizontal bracket; if the inner diameter of the winding pipe is between 800-1000mm, the shape of the PVC skeleton is a bench shape with a reinforced bracket, including horizontal The bracket, the inclined bracket and two reinforced brackets, the two reinforced brackets are arranged vertically below the horizontal bracket; if the inner diameter of the winding pipe exceeds 1000mm, the shape of the PVC skeleton is M-shaped, including the horizontal bracket and two sets of inclined brackets.
  • the thickness of the HDPE hollow pipe wall and the width of the inner wall of the ring hole in the composite reinforced winding pipe of the present invention ; the thickness of the PVC skeleton, the angle between the horizontal bracket and the inclined bracket, the gap between the horizontal bracket in the through hole of the HDPE hollow pipe wall,
  • Various parameters such as the width of the horizontal support and the thickness of the heat-clad HDPE material layer cooperate with each other and act synergistically. Several important parameters must conform to a certain relationship, and only in this way can the effects recorded in the present invention be achieved.
  • the thickness of the HDPE hollow pipe wall h 1.5-2.0mm;
  • the thickness of the PVC skeleton H (1.5-4)h;
  • the wound pipe of the present invention is an all-plastic composite pipe.
  • the PVC skeleton replaces the traditional steel plate to improve the ring stiffness and ring flexibility of the pipe.
  • the PVC skeleton is extremely corrosion-resistant, thereby solving the problem of the slow corrosion of the steel plate of the traditional plastic-steel composite pipe in actual use. A fatal defect, avoiding the serious decrease in the stiffness of the pipe ring and the collapse of the pipeline.
  • the outer surface of the entire pipeline is in a smooth shape, that is, the place where the PVC reinforced skeleton is placed is a smooth shape, and the place where the PVC reinforced skeleton is not placed is also a smooth shape.
  • the HDPE hollow pipe wall and the PVC reinforced skeleton bear the force together.
  • the PVC reinforced skeleton strengthens the ability of the pipe wall to withstand external pressure. Most of the pressure is borne by the PVC reinforced skeleton in the pipe wall, which greatly improves the ring stiffness and ring flexibility of the pipe.
  • the PVC reinforced frame is placed in the wall of the HDPE hollow pipe, and the bottom of the inclined bracket of the skeleton does not need to be connected to the wall of the hollow pipe or use other components to connect the two together.
  • the bottom of the inclined bracket of the skeleton is in a free state.
  • the PVC reinforced skeleton With changes and changes in the degree of stress, the PVC reinforced skeleton is not easily deformed in the hollow pipe wall, even if it deforms, the deformation can be restored. If the bottom of the PVC skeleton is connected or snapped together with the HDPE hollow pipe wall, when the HDPE hollow pipe wall is deformed, it will drive the deformation of the PVC skeleton. If the deformation of the two is different, the degree of recovery is also different, so that the PVC The skeleton is distorted and cannot return to its original state.
  • the composite reinforced winding pipe of the present invention is composed of HDPE material and PVC material, and the components of the two materials are unique.
  • the formula of the PVC material in the present invention is very important. In addition to the originality of the structure of the winding pipe itself, the formula of the PVC material also plays a great role, whether it is composited with the HDPE material of the application or composited with the HDPE material of the prior art , Can play a great effect.
  • the innovation in the structure of the winding pipe itself has achieved the beneficial effects of the present invention. If the PVC material formula is innovated on this basis, it will far exceed the expected effect of the present invention.
  • the PVC reinforced skeleton includes the following weight components (each material accounts for the percentage of the PVC reinforced skeleton): PVC resin 60-80%, reinforcing agent 4-10%, toughening agent 4-10%, rare earth composite stabilizer 0.5- 1%, graphene 0.5-1%, internal and external lubricant 2-10%, coloring agent 2-10%.
  • PVC resin 60-80% PVC resin 60-80%
  • reinforcing agent 4-10% tylene copolymer
  • toughening agent 4-10% tylene oxide
  • rare earth composite stabilizer 0.5- 1% graphene 0.5-1%
  • internal and external lubricant 2-10% coloring agent 2-10%.
  • coloring agent 2-10% coloring agent 2-10%.
  • rare earth composite stabilizers and graphene are added in trace amounts, and only trace addition can greatly improve the mechanical properties of the PVC reinforced framework.
  • the reinforcing agent is preferably chlorinated polyethylene (CPE); the toughening agent is preferably acrylate copolymer (ACR); the internal and external lubricants are preferably stearic acid and polyethylene wax, respectively; and the coloring agent is preferably carbon black.
  • CPE chlorinated polyethylene
  • ACR acrylate copolymer
  • the internal and external lubricants are preferably stearic acid and polyethylene wax, respectively; and the coloring agent is preferably carbon black.
  • the rare earth composite stabilizer is synthesized with rare earth element carboxylate and fatty acid salt as main components, and contains an appropriate amount of rare earth metal components.
  • the rare earth element is preferably lanthanum and yttrium
  • the carboxylate is preferably rare earth isooctanoate
  • the fatty acid salt is preferably stearate.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer): 40-90% of lanthanum isooctanoate, 10-60% of lanthanum stearate, of which lanthanum only accounts for 5-10%.
  • HDPE hollow pipe wall includes the following weight components (each material accounts for the percentage of HDPE hollow pipe wall): high density polyethylene resin 70-80%, reinforcing agent 10-20%, toughening agent 4-6%, rare earth Composite stabilizer 0.5-1%, graphene 0.5-1%, internal and external lubricant 1-3%, coloring agent 2-5%.
  • high density polyethylene resin 70-80% high density polyethylene resin 70-80%
  • reinforcing agent 10-20% toughening agent 4-6%
  • rare earth Composite stabilizer 0.5-1% graphene 0.5-1%
  • internal and external lubricant 1-3% coloring agent 2-5%.
  • coloring agent 2-5% coloring agent 2-5%.
  • rare earth composite stabilizers and graphene are added in trace amounts, and only trace addition can greatly improve the mechanical properties of the HDPE hollow tube wall.
  • the reinforcing agent is preferably chlorinated polyethylene (CPE); the toughening agent is preferably acrylate copolymer (ACR); the internal and external lubricants are preferably stearic acid and polyethylene wax, respectively; and the coloring agent is preferably carbon black.
  • CPE chlorinated polyethylene
  • ACR acrylate copolymer
  • the internal and external lubricants are preferably stearic acid and polyethylene wax, respectively; and the coloring agent is preferably carbon black.
  • the rare earth composite stabilizer is synthesized with rare earth element carboxylate and fatty acid salt as main components, and contains an appropriate amount of rare earth metal components.
  • the rare earth element is preferably lanthanum and yttrium
  • the carboxylate is preferably rare earth isooctanoate
  • the fatty acid salt is preferably stearate.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer): 40-90% of lanthanum isooctanoate, 10-60% of lanthanum stearate, of which lanthanum only accounts for 5-10%.
  • the present invention also provides a method for preparing a composite reinforced wound tube, which is used to prepare any of the above-mentioned composite reinforced wound tube, which includes the following steps in a sequence:
  • Step 1 Use an extruder to produce PVC reinforced skeleton, after twin-screw extrusion, shaping, cooling, and winding into rolls for use;
  • Step 2 Use an extruder to produce HDPE hollow strips, which are extruded by a single screw, shaped, cooled, and wound into disks for later use;
  • Step 3 Wrap the HDPE hollow sheet and the PVC reinforced frame on a molding machine to form a composite, and heat-coat a layer of HDPE material on the outer surface to form a composite reinforced winding pipe.
  • the preparation process of the PVC reinforced skeleton includes the following steps in sequence:
  • Step 1.1 Put the PVC raw material into the high-speed kneader and stir and gradually increase the temperature at a rate of 5°C/min.
  • the temperature reaches 60°C add the reinforcing agent and toughening agent, keep the temperature at 60°C and continue stirring for 10 minutes, and then keep at 60°C Add the rare earth composite stabilizer and continue stirring for 15 minutes at a temperature of 10°C/min.
  • the temperature rises to 120°C add graphene, internal and external lubricants and colorants. Keep stirring at 120°C for 10 minutes. At this time, continue to heat up to 130°C at a heating rate of 2°C/min, and then transfer to a low-speed kneader for stirring.
  • the mixture is cooled to 50°C, place it in a closed storage container for later use;
  • Step 1.2 The twin-screw extruder of the PVC strip production line is heated in five stages.
  • the temperature from the tail to the die is 170°C, 175°C, 180°C, 185°C and 190°C, and the material is loaded by thread spring.
  • the machine puts the mixture into the hopper of the extruder, and then the feeder adds it to the host; the added mixture is extruded and sheared by the PVC conical twin-screw, and becomes a molten state at a certain temperature.
  • the PVC skeleton embryo is formed by pressing into the die of the machine head, and is extruded by the die of the machine head;
  • Step 1.3 The PVC skeleton embryos extruded by the head die enter the cooling molding room, and form the PVC skeleton after cooling by cooling water and vacuum shaping; after the PVC skeleton is further cooled by the spray water tank, it is pulled by the tractor to form continuous production. After passing the inspection, the PVC skeleton is wound into a roll for use.
  • step 1.1 the placing order of the materials is very critical, which plays a vital role in the mechanical properties of the PVC material.
  • the various process parameters cooperate with each other, chemical reactions occur between several materials, and a small amount of rare earth composite stabilizer is added.
  • graphene changes the internal microstructure of PVC materials and improves the comprehensive mechanical properties of PVC materials.
  • the tensile strength of the final PVC material is increased by 80%, and the ductility of PVC materials is also greatly increased by more than 50%.
  • the preparation process of the HDPE hollow strip includes the following steps in a sequence:
  • Step 2.1 Put the HDPE raw materials into the mixer and stir and gradually increase the temperature at a rate of 5°C/min.
  • the temperature reaches 80°C put in the reinforcing agent and toughening agent, keep the temperature at 80°C and continue to stir for 20min, and then keep at 80°C Put the rare earth composite stabilizer into the temperature and continue to stir for 15 minutes, and then gradually increase the temperature at a heating rate of 2°C/min.
  • the temperature rises to 90°C add graphene, internal and external lubricants and colorants and continue to stir for 10 minutes to form a mixture;
  • Step 2.2 The single-screw extruder of the HDPE strip production line is heated in five stages.
  • the temperature from the tail to the head is 180°C, 190°C, 200°C, 205°C and 210°C.
  • the vacuum feeder is used to The mixture material is sucked into the hopper of the extruder, the mixture material enters the heated screw barrel, is extruded and sheared by the screw, and becomes a molten state at a certain temperature, and is extruded into the die of the die by the screw to form an HDPE strip. Embryos, and extruded by the head die;
  • Step 2.3 The HDPE strip embryos extruded by the head die enter the cooling forming chamber, and are cooled by cooling water and vacuum shaped to form HDPE strips; after the HDPE strips are further cooled by the spray water tank, they are pulled by the tractor to form continuous production. The HDPE strips produced at this time are wound into reels for use after passing the inspection.
  • step 2.1 the placing order of each material is very critical, which plays a vital role in the mechanical properties of the HDPE material.
  • the various process parameters work in synergy with each other, chemical reactions occur between several materials, and a small amount of rare earth composite stabilizer is added
  • graphene change the internal microstructure of HDPE material, improve the comprehensive mechanical properties of HDPE material, and the tensile strength of the final HDPE material is increased by more than 70%, and the ductility of HDPE material has also been greatly increased by more than 60% .
  • the composite molding process of the HDPE hollow sheet and the PVC reinforced skeleton includes the following steps in a sequence:
  • Step 3.1 According to the production specifications, install the forming roller, HDPE strip feeding device and PVC skeleton feeding device on the winding forming machine, and attach the single screw extruder and die head of the HDPE strip to the heat-coated HDPE outer layer
  • the single screw extruder and die are heated to 180-210°C for later use;
  • Step 3.2 Turn on the forming roller and wind the HDPE strip onto the forming roller via the tape feeding device.
  • the extruder that opens the bonding seam squeezes the HDPE hot melt into the gap between the two HDPE strips. Roll extrusion to form the prototype of the tube;
  • Step 3.3 Send the PVC skeleton to the formed pipe strip through the belt conveyor, press the PVC skeleton into the ring hole of the pipe strip with a pressing roller, and at the same time use the outer extruder to heat the HDPE through the die
  • the material covers the outer surface of the pipe and forms an effective lap, and then the lap surface is squeezed by a pressure roller to melt the overlap surface into one body, and the outer surface of the entire pipe is smooth and bright, and the entire composite reinforced winding pipe is formed through continuous production;
  • Step 3.4 Use a cutting saw to cut the entire composite reinforced winding pipe to the required length, and put it into inventory after passing the inspection.
  • the winding pipe improves the shortcomings of low rigidity and poor ring flexibility of the plastic steel pipe in the prior art.
  • a PVC reinforced frame is added to the wall of the HDPE hollow pipe. The combination of the two can improve the ring rigidity and ring flexibility of the pipe.
  • the mechanical properties of the pipe are greatly improved, and it is very suitable for drainage and sewage under various conditions.
  • the wound tube will not rust during use, and will not crack due to uneven thermal expansion and contraction.
  • composite steel pipes such as steel belt reinforced corrugated pipes, double flat-wall composite winding pipes, plastic steel winding pipes, etc.
  • the steel plates composited in the pipe are different in use.
  • a certain degree of rust will corrode after a certain number of years of use, causing pipeline collapse and blockage, road surface collapse, and other serious safety accidents, especially in coastal areas and pipelines that transport chemical wastewater.
  • the winding pipe of the present invention just compensates for the shortcomings of the current pipes. It has high ring stiffness and ring flexibility, and will not crack due to excessive temperature difference and different expansion coefficients, and will not be affected by moisture (water), sea water, and sewage. , Chemical water and other corrosive rust damage.
  • the overall yield strength of the pipe is increased to more than 350MPa, the tensile strength is increased to more than 800MPa, the elongation is increased to more than 40%, and the ring stiffness is increased to more than 20KN/m 2 .
  • the comprehensive mechanical properties of the pipe can be further improved, the yield strength is increased to more than 500MPa, and the tensile strength When it is increased to more than 1200MPa, the elongation is increased to more than 50%, and the ring stiffness is increased to more than 23KN/m 2 .
  • Figure 1 is a schematic structural view of a preferred embodiment of a composite reinforced wound tube according to the present invention
  • FIG. 2 is a structural diagram of the PVC reinforced skeleton in the embodiment shown in FIG. 1 of the composite reinforced winding pipe according to the present invention.
  • the shape of the PVC reinforced skeleton is bench-shaped, including horizontal brackets and inclined brackets;
  • Fig. 3 is a structural diagram of the PVC reinforced skeleton in the embodiment shown in Fig. 1 of the composite reinforced winding pipe according to the present invention.
  • the shape of the PVC reinforced skeleton is a bench shape with reinforced brackets, including a horizontal bracket, an inclined bracket and a reinforced bracket ;
  • FIG. 4 is a structural diagram of the PVC reinforced skeleton in the embodiment shown in FIG. 1 of the composite reinforced winding pipe according to the present invention.
  • the shape of the PVC reinforced skeleton is a bench shape with reinforced brackets, including a horizontal bracket, an inclined bracket and two reinforced brackets ;
  • Fig. 5 is a structural diagram of the PVC reinforced skeleton in the embodiment shown in Fig. 1 of the composite reinforced winding pipe according to the present invention.
  • the shape of the PVC reinforced skeleton is M-shaped and includes a horizontal bracket and two sets of inclined brackets;
  • FIG 6 is a structural schematic diagram of the HDPE hollow pipe wall in the embodiment shown in Figure 1 of the composite reinforced wound pipe according to the present invention.
  • Fig. 7 is a structural schematic diagram of the combined connection of multiple hollow pipe walls in the embodiment shown in Fig. 1 of the composite reinforced wound pipe according to the present invention.
  • the composite reinforced winding pipe 1 of the present invention includes a hollow pipe wall 2 and a reinforced frame 3, the reinforced frame 3 is arranged in the hollow pipe wall 2; the hollow pipe The outer wall 21 of the wall 2 is provided with a through hole 22, the top 31 of the reinforcing frame 3 is flush with the outer wall 21, and there is a gap 4 between the top 31 of the reinforcing frame 3 and the outer walls 21 on both sides; the hollow tube The wall 2 is made of HDPE material, and the reinforced frame 3 is made of PVC material; the outer surface of the hollow pipe wall 2 is thermally covered with a HDPE material layer 5; the multiple hollow pipe walls are vertically connected by HDPE hot melt material 6.
  • the reinforced frame 3 includes a horizontal bracket 32 and an inclined bracket 33, and the inclined bracket 33 is arranged below the horizontal bracket 32.
  • the reinforced frame 3 further includes a reinforced bracket 34 which is vertically arranged below the horizontal bracket 32.
  • a bottom bracket 35 is provided at the bottom of the inclined bracket 33 and/or the reinforced bracket 34.
  • the shape of the PVC skeleton is bench-like, including horizontal brackets and inclined brackets.
  • the shape of the PVC skeleton is a bench shape with a reinforced bracket, including a horizontal bracket, an inclined bracket, and a reinforced bracket.
  • the reinforced bracket is vertically arranged horizontally. Below the bracket.
  • the shape of the PVC skeleton is a bench with reinforced brackets, including a horizontal bracket, an inclined bracket and two reinforced brackets.
  • the two reinforced brackets are arranged vertically Below the horizontal support.
  • the shape of the PVC skeleton is M-shaped, including a horizontal bracket and two sets of inclined brackets.
  • the hollow tube wall 2 is provided with two ring holes 23, at least one of the two ring holes 23 is provided with a through hole 22 in the outer wall 21 of the ring hole 23, and in the ring hole 23 where the through hole 22 is provided
  • the width, length, and height of the two ring holes are equal, and the wall thicknesses of the two ring holes are equal; the width of the through hole is smaller than the width of the ring hole, and the length of the remaining outer wall on both sides of the through hole is equal.
  • the outer walls 21 of the ring holes 23 on both sides are provided with through holes 22, and the ring holes 23 on both sides are provided with the reinforcing frame 3.
  • the width, length, and height of the ring holes on both sides are equal; the width of the middle ring hole is smaller than the width of the ring holes on both sides; the wall thickness of the three ring holes is equal; the width of the through hole is smaller than the width of the ring hole, and there are remaining on both sides of the through hole
  • the length of the outer wall is equal.
  • a plurality of hollow tube walls are connected vertically in turn to form a composite reinforced winding tube, and two adjacent hollow tube walls are bonded and connected by HDPE hot melt.
  • the thickness of the HDPE hollow pipe wall and the width of the inner wall of the annular hole in the composite reinforced winding pipe of this embodiment; the thickness of the PVC skeleton, the angle between the horizontal bracket and the inclined bracket, the gap between the horizontal bracket in the through hole of the HDPE hollow pipe wall , The width of the horizontal support, the thickness of the HDPE material layer and other parameters are coordinated and synergistic. Several important parameters must conform to a certain relationship. Only in this way can the mechanical properties of the PVC skeleton and the HDPE hollow pipe wall be improved, and It can greatly improve the overall mechanical properties of the wound pipe after the PVC skeleton and the HDPE hollow pipe wall are compounded.
  • the thickness of the HDPE hollow pipe wall h 1.5mm
  • the winding pipe in this embodiment is an all-plastic composite pipe.
  • the PVC skeleton replaces the traditional steel plate to improve the ring stiffness and ring flexibility of the pipe.
  • the PVC skeleton is extremely corrosion-resistant, thereby solving the problem that the traditional plastic-steel composite pipe is slowly corroded in actual use. This fatal defect avoids the serious decrease in the stiffness of the pipe ring and the consequent collapse of the pipeline.
  • the outer surface of the entire pipeline is in a smooth shape, that is, the place where the PVC reinforced skeleton is placed is a smooth shape, and the place where the PVC reinforced skeleton is not placed is also a smooth shape.
  • the HDPE hollow pipe wall and the PVC reinforced skeleton bear the force together.
  • the PVC reinforced skeleton strengthens the ability of the pipe wall to withstand external pressure. Most of the pressure is borne by the PVC reinforced skeleton in the pipe wall, which greatly improves the ring stiffness and ring flexibility of the pipe.
  • the PVC reinforced frame is placed in the wall of the HDPE hollow pipe, and the bottom of the inclined bracket of the skeleton does not need to be connected to the hollow pipe wall or use other components to connect the two together.
  • the bottom of the inclined bracket of the skeleton is in a free state. With changes and changes in the degree of stress, the PVC reinforced skeleton is not easily deformed in the hollow tube wall, even if it deforms, the deformation can be restored.
  • the yield strength of the wound pipe after the combination of the two materials reaches 350MPa or more
  • the tensile strength reaches 800MPa or more
  • the elongation reaches 40% or more
  • the ring stiffness reaches Above 30KN/m 2
  • the pipe is smooth, no reverse bending, no breakage.
  • the structure, the positional relationship between the components, the beneficial effects, etc. are the same as those of the first embodiment, the difference is:
  • the thickness of the HDPE hollow pipe wall h 2mm
  • the structure, the positional relationship between the components, the beneficial effects, etc. are the same as those of the first embodiment, the difference is:
  • the thickness of the HDPE hollow pipe wall h 1.7mm
  • the structure, the positional relationship between the components, the beneficial effects, etc. are the same as those of the first embodiment, the difference is:
  • the thickness of the HDPE hollow pipe wall h 1.9mm
  • the structure, the positional relationship between the components, the beneficial effects, etc. are the same as those of the first embodiment, the difference is:
  • the thickness of the HDPE hollow pipe wall h 1.6mm;
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the structure, the positional relationship between the components, the beneficial effects, etc. are the same as those of the first embodiment, the difference is:
  • the thickness of the HDPE hollow pipe wall h 1.8mm
  • the structure, the positional relationship between the components, the beneficial effects, etc. are the same as those of the first embodiment, the difference is:
  • the thickness of the HDPE hollow pipe wall h 1.65mm
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the structure and the positional relationship between the components are the same as any one of the first to seventh embodiments, and the difference is:
  • the formula of the PVC material in this embodiment is very critical. In addition to the originality of the structure of the winding pipe itself, the formula of the PVC material also plays a great role, whether it is compounded with the HDPE material of this embodiment or with the HDPE of the prior art Composite materials have great effects. If the PVC material formula is innovated on the basis of the winding pipe structure of the above seven embodiments, the comprehensive mechanical properties of the pipe will be further improved.
  • the yield strength is increased to more than 500MPa, the tensile strength is increased to more than 1200MPa, the elongation is increased to more than 50%, and the ring stiffness is increased to more than 23KN/m 2 .
  • the PVC reinforced skeleton includes the following weight components (each material accounts for the percentage of the PVC reinforced skeleton): PVC resin 60%, reinforcing agent 4%, toughening agent 4%, rare earth composite stabilizer 0.5%, graphene 0.5%, Internal and external lubricant 2%, coloring agent 2%.
  • the reinforcing agent is chlorinated polyethylene (CPE), the toughening agent is acrylate copolymer (ACR), the internal and external lubricants are stearic acid and polyethylene wax, respectively, and the coloring agent is carbon black.
  • the rare earth composite stabilizer is synthesized from rare earth element carboxylate and fatty acid salt as the main components, and contains an appropriate amount of rare earth metal components.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer ): 40% lanthanum isooctanoate and 60% lanthanum stearate, of which the proportion of lanthanum in each substance is only 5%.
  • HDPE hollow pipe wall includes the following weight components (each material accounts for the percentage of HDPE hollow pipe wall): high-density polyethylene resin 70%, reinforcing agent 10%, toughening agent 4%, rare earth composite stabilizer 0.5%, Graphene 0.5%, internal and external lubricant 1%, coloring agent 2%. Rare earth composite stabilizer and graphene are added in trace amounts, and only trace addition can greatly improve the mechanical properties of the HDPE hollow pipe wall.
  • the reinforcing agent is chlorinated polyethylene (CPE), the toughening agent acrylate copolymer (ACR), the internal and external lubricants are stearic acid and polyethylene wax, respectively, and the coloring agent is carbon black.
  • CPE chlorinated polyethylene
  • ACR toughening agent acrylate copolymer
  • the rare earth composite stabilizer is synthesized from rare earth element carboxylate and fatty acid salt as the main components, and contains an appropriate amount of rare earth metal components.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer ): 40% lanthanum isooctanoate and 60% lanthanum stearate, of which the proportion of lanthanum in each substance is only 5%.
  • This embodiment also provides a method for preparing a composite reinforced wound tube for preparing a composite reinforced wound tube, which includes the following steps in a sequence:
  • Step 1 Use an extruder to produce PVC reinforced skeleton, after twin-screw extrusion, shaping, cooling, and winding into rolls for use;
  • Step 2 Use an extruder to produce HDPE hollow strips, which are extruded by a single screw, shaped, cooled, and wound into disks for later use;
  • Step 3 Wrap the HDPE hollow sheet and the PVC reinforced frame on a molding machine to form a composite, and heat-coat a layer of HDPE material on the outer surface to form a composite reinforced winding pipe.
  • the preparation process of the PVC reinforced skeleton includes the following steps in sequence:
  • Step 1.1 Put the PVC raw material into the high-speed kneader and stir and gradually increase the temperature at a rate of 5°C/min.
  • the temperature reaches 60°C add the reinforcing agent and toughening agent, keep the temperature at 60°C and continue stirring for 10 minutes, and then keep at 60°C Add the rare earth composite stabilizer and continue stirring for 15 minutes at a temperature of 10°C/min.
  • the temperature rises to 120°C add graphene, internal and external lubricants and colorants. Keep stirring at 120°C for 10 minutes. At this time, continue to heat up to 130°C at a heating rate of 2°C/min, and then transfer to a low-speed kneader for stirring.
  • the mixture is cooled to 50°C, place it in a closed storage container for later use;
  • Step 1.2 The twin-screw extruder of the PVC strip production line is heated in five stages. The temperature from the tail to the die is 170°C, 175°C, 180°C, 185°C and 190°C, and the material is loaded by thread spring. The machine puts the mixture into the hopper of the extruder, and then the feeder adds it to the host; the added mixture is extruded and sheared by the PVC conical twin-screw, and becomes a molten state at a certain temperature.
  • Step 1.3 The PVC skeleton embryo extruded from the machine head die enters the cooling molding room, and is cooled by cooling water and vacuum shaped to form a PVC skeleton; After the PVC skeleton is further cooled by the spray water tank, it is pulled by the tractor to form continuous production. At this time, the PVC skeleton produced is wound into a roll after passing the inspection.
  • the preparation process of the HDPE hollow plate strip includes the following steps according to the sequence:
  • Step 2.1 Put the HDPE raw materials into the mixer and stir and gradually increase the temperature at a rate of 5°C/min.
  • the temperature reaches 80°C put in the reinforcing agent and toughening agent, keep the temperature at 80°C and continue to stir for 20min, and then keep at 80°C Put the rare earth composite stabilizer into the temperature and continue to stir for 15 minutes, and then gradually increase the temperature at a heating rate of 2°C/min.
  • the temperature rises to 90°C add graphene, internal and external lubricants and colorants and continue to stir for 10 minutes to form a mixture;
  • Step 2.2 The single-screw extruder of the HDPE strip production line is heated in five stages.
  • the temperature from the tail to the head is 180°C, 190°C, 200°C, 205°C and 210°C.
  • the vacuum feeder is used to The mixture material is sucked into the hopper of the extruder, the mixture material enters the heated screw barrel, is extruded and sheared by the screw, and becomes a molten state at a certain temperature, and is extruded into the die of the die by the screw to form an HDPE strip. Embryos, and extruded by the head die;
  • Step 2.3 The HDPE strip embryos extruded by the head die enter the cooling forming chamber, and are cooled by cooling water and vacuum shaped to form HDPE strips; after the HDPE strips are further cooled by the spray water tank, they are pulled by the tractor to form continuous production. The HDPE strips produced at this time are wound into reels for use after passing the inspection.
  • the composite molding process of the HDPE hollow slab and the PVC reinforced skeleton includes the following steps in sequence:
  • Step 3.1 According to the production specifications, install the forming roller, HDPE strip feeding device and PVC skeleton feeding device on the winding forming machine, and attach the single screw extruder and die head of the HDPE strip to the heat-coated HDPE outer layer
  • the single screw extruder and die are heated to 180-210°C for later use;
  • Step 3.2 Turn on the forming roller and wind the HDPE strip onto the forming roller via the tape feeding device.
  • the extruder that opens the bonding seam squeezes the HDPE hot melt into the gap between the two HDPE strips. Roll extrusion to form the prototype of the tube;
  • Step 3.3 Send the PVC skeleton to the formed pipe strip through the belt conveyor, press the PVC skeleton into the ring hole of the pipe strip with a pressing roller, and at the same time use the outer extruder to heat the HDPE through the die
  • the material covers the outer surface of the pipe and forms an effective lap, and then the lap surface is squeezed by a pressure roller to melt the overlap surface into one body, and the outer surface of the entire pipe is smooth and bright, and the entire composite reinforced winding pipe is formed through continuous production;
  • Step 3.4 Use a cutting saw to cut the entire composite reinforced winding pipe to the required length, and put it into inventory after passing the inspection.
  • the structure, preparation method, principle, and beneficial effects of the wound tube are the same as those in the eighth embodiment, except for:
  • the PVC reinforced skeleton includes the following weight components (each material accounts for the percentage of the PVC reinforced skeleton): PVC resin 80%, reinforcing agent 10%, toughening agent 10%, rare earth composite stabilizer 1%, graphene 1%, internal and external lubricants 10%, coloring agent 10%.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer): 90% lanthanum isooctanoate and 10% lanthanum stearate, of which the proportion of lanthanum in each material is only 10%.
  • HDPE hollow pipe wall includes the following weight components (each material accounts for the percentage of HDPE hollow pipe wall): high-density polyethylene resin 80%, reinforcing agent 20%, toughening agent 6%, rare earth composite stabilizer 1%, graphene 1 %, internal and external lubricant 3%, coloring agent 5%.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer): 90% lanthanum isooctanoate and 10% lanthanum stearate, of which the proportion of lanthanum in each material is only 10%.
  • the structure, preparation method, principle, and beneficial effects of the wound tube are the same as those in the eighth embodiment, except for:
  • the PVC reinforced skeleton includes the following weight components (each material accounts for the percentage of the PVC reinforced skeleton): PVC resin 70%, reinforcing agent 7%, toughening agent 7%, rare earth composite stabilizer 0.7%, graphene 0.7%, internal and external lubricants 6%, coloring agent 6%.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer): 60% lanthanum isooctanoate and 30% lanthanum stearate, of which the proportion of lanthanum in each material is only 8%.
  • HDPE hollow pipe wall includes the following weight components (each material accounts for the percentage of HDPE hollow pipe wall): high density polyethylene resin 75%, reinforcing agent 15%, toughening agent 5%, rare earth composite stabilizer 0.7%, graphene 0.7 %, internal and external lubricant 2%, coloring agent 4%.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer): 60% lanthanum isooctanoate and 30% lanthanum stearate, of which the proportion of lanthanum in each material is only 8%.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the structure, preparation method, principle, and beneficial effects of the wound tube are the same as those in the eighth embodiment, except for:
  • the PVC reinforced skeleton includes the following weight components (each material accounts for the percentage of the PVC reinforced skeleton): PVC resin 65%, reinforcing agent 6%, toughening agent 5%, rare earth composite stabilizer 0.6%, graphene 0.6%, internal and external lubricants 4%, coloring agent 4%.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer): 50% lanthanum isooctanoate and 20% lanthanum stearate, of which the proportion of lanthanum in each material is only 6%.
  • HDPE hollow pipe wall includes the following weight components (each material accounts for the percentage of HDPE hollow pipe wall): high-density polyethylene resin 72%, reinforcing agent 12%, toughening agent 4.5%, rare earth composite stabilizer 0.6%, graphene 0.6 %, 1.5% internal and external lubricant, 3% colorant.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer): 50% lanthanum isooctanoate and 20% lanthanum stearate, of which the proportion of lanthanum in each material is only 6%.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • the structure, preparation method, principle, and beneficial effects of the wound tube are the same as those in the eighth embodiment, except for:
  • the PVC reinforced skeleton includes the following weight components (each material accounts for the percentage of the PVC reinforced skeleton): PVC resin 75%, reinforcing agent 8%, toughening agent 9%, rare earth composite stabilizer 0.8%, graphene 0.9%, internal and external lubricants 8%, coloring agent 8%.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer): 80% lanthanum isooctanoate and 50% lanthanum stearate, of which the proportion of lanthanum in each material is only 9%.
  • HDPE hollow pipe wall includes the following weight components (each material accounts for the percentage of HDPE hollow pipe wall): high density polyethylene resin 78%, reinforcing agent 18%, toughening agent 5.5%, rare earth composite stabilizer 0.8%, graphene 0.9 %, internal and external lubricant 2.5%, coloring agent 4.5%.
  • the rare earth composite stabilizer includes the following weight components (each material accounts for the percentage of the rare earth composite stabilizer): 80% lanthanum isooctanoate and 50% lanthanum stearate, of which the proportion of lanthanum in each material is only 9%.
  • test environment test conditions and other test conditions of the embodiment of the present invention and the comparative test are the same, and the difference is that the formulations of the PCV material and the HDPE material are different. All test materials were purchased from a chemical reagent company in Beijing.
  • the composite reinforced winding pipe of the present invention and the preparation method thereof include any combination of the content of the invention and the specific embodiments of the description of the present invention and the various parts shown in the drawings. The description is concise and does not describe each of these combinations. Any modification, equivalent replacement, improvement, etc., made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

一种复合增强缠绕管(1),包括中空管壁(2)和增强骨架(3),增强骨架(3)设置在中空管壁(2)中,中空管壁(2)的外壁(21)设置通孔(22),增强骨架(3)的顶部(31)与外壁(21)平齐,增强骨架(3)的顶部(31)与其两侧的外壁(21)之间存在间隙(4);中空管壁(2)为HDPE材料,增强骨架(3)为PVC材料,中空管壁(2)的外表面热覆HDPE材料层(5)。该复合增强缠绕管(1)的制备方法包括以下步骤:利用挤出机生产PVC增强骨架(3),经过双螺杆挤出、定型、冷却,缠绕成卷待用;利用挤出机生产HDPE中空板带,经过单螺杆挤出、定型、冷却,缠绕成盘待用;将HDPE中空板带和PVC增强骨架(3)在成型机上缠绕复合成型,并在外表面热敷一层HDPE材料,形成复合增强缠绕管(1)。该复合增强缠绕管同时具有较高的环刚度和环柔性。

Description

复合增强缠绕管及其制备方法 技术领域
本发明属于市政工程技术领域,具体涉及一种复合增强缠绕管及其制备方法,该缠绕管由HDPE和PVC两种材料复合而成。
背景技术
在市政工程基础设施中,排水排污等地下设施所使用的管道多为纯HDPE(高密度聚乙烯)结构壁管,但是纯HDPE结构壁管的环刚度低、单位米重大、生产效率低。另外纯HDPE结构壁管的强度低、环柔性差、存在分层,且非常容易出现结构壁连接处脱开的现象。
为了改善上述现象,出现了一些复合管,该类管道的管壁由塑料和钢材复合缠绕而成,其技术缺陷是钢材容易被腐蚀,特别是沿海地区和输送化工污水的管道,因此该类管道在使用中钢材会慢慢被腐蚀掉,从而使管道的环刚度受到严重破坏,导致安装好的管线发生塌陷。另外由于该类管道中塑料和钢材的膨胀系数不同,在实际使用中随着气候的变化,管材在内部应力作用下被破坏,容易造成管材脱节等问题。现有技术中也存在一些由塑料和塑料复合而成的缠绕管,但是结构复杂,且没有适当的结构参数,环刚度仍然很低,无法满足当前市政工程设施的需求。
授权公告号为CN202868109U的实用新型专利公开了一种双孔塑钢壁排水管,包括异形钢,管道的管壁中有三个环孔,异形钢置于第一环孔中,且抵接于第一环孔的上部,管壁对应于第一环孔处的外表面为光平面形状,第二环孔和第三环孔为塑料空心四方孔,采用该塑钢排水管,来自于外界的压力由管壁中的异形钢承受,没有放置异形钢的管壁地方承受的压力很小。虽然该塑钢排水管能大大提高管道的环刚度,但是在使用过程中,钢材会慢慢腐蚀,从而使管道的环刚度大幅度降低,导致安装好的管线发生塌陷;此外,塑料和钢材的膨胀系数不同,在使用中随着气候的变化,管材内部应力被破坏,容易造成管材脱节等问题。
公开号为CN1869348A的发明专利公开了一种HDPE、PVC塑塑复合缠绕管,具有缠绕管本体,缠绕管本体的管壁由呈螺旋缠绕状的矩形管状空心带材和HDPE塑料填充体构成,HDPE塑料填充体粘结并填充在空心带材的各螺旋之间的侧壁间隙处,空心带材的管壁由内至外分别由PVC塑 料层、复合胶粘结层和HDPE塑料层构成。该缠绕管具有耐腐蚀、耐老化等优点,但是结构复杂,管材的环刚度较低、环柔性较差。
发明内容
本发明的目的在于提供一种HDPE材料和PVC材料复合而成的增强缠绕管,采用PVC增强骨架替代传统的钢材料。旨在解决现有技术中管道的环刚度低、环柔性差;塑料与钢材膨胀系数不同,管道易变形;钢材易腐蚀,导致管道塌陷等问题。
为解决现有技术中存在的问题,本发明提供一种复合增强缠绕管,包括中空管壁和增强骨架,所述增强骨架设置在所述中空管壁中;所述中空管壁的外壁设置通孔,所述增强骨架的顶部与所述外壁平齐,所述增强骨架的顶部与其两侧的外壁之间存在间隙;所述中空管壁为HDPE材料,所述增强骨架为PVC材料;所述中空管壁的外表面热覆HDPE材料层。
采用强度较高的PVC支撑骨架,镶嵌在HDPE中空管壁中,二者结合,共同受力。充分利用PVC材料的高强度、高承载力,达到大大提高环刚度和环柔性的目的。充分利用HDPE材料的柔韧性,很好地保护了PVC增强骨架,大大提高了管材整体的使用安全性。二者都是塑料材质,热膨胀系数和收缩率都比较接近,在温度发生变化时,二者变形也接近,不会产生局部应力不均衡,使管材达到最优共同受力的状态,大大提高了管材整体的实用性。
优选的是,所述中空管壁中设置两个环孔,两个环孔中至少有一个环孔的外壁设置通孔,设置通孔的环孔中设置所述增强骨架;多个中空管壁之间通过HDPE热熔料竖向连接。两个环孔的宽度、长度、高度相等,两个环孔的壁厚相等;通孔的宽度小于环孔的宽度,通孔两侧余留的外壁长度相等。
在上述任一方案中优选的是,所述中空管壁中设置三个环孔,两侧环孔的外壁均设置通孔,两侧环孔中均设置所述增强骨架;多个中空管壁之间通过HDPE热熔料竖向连接。两侧环孔的宽度、长度、高度相等;中间环孔的宽度小于两侧环孔的宽度;三个环孔的壁厚相等;通孔的宽度小于环孔的宽度,通孔两侧余留的外壁长度相等。
在上述任一方案中优选的是,所述增强骨架包括水平支架和斜支架,所述斜支架设置在所述水平支架的下方。
在上述任一方案中优选的是,所述增强骨架还包括加强支架,所述加强支架垂直设置在所述水平支架的下方。
在上述任一方案中优选的是,所述斜支架和/或加强支架的底部设置底部支架。
增强骨架的形状多种多样。若缠绕管的内径不超过500mm,则PVC骨架的形状为板凳状,包括水平支架和斜支架;若缠绕管的内径在500-800mm之间,则PVC骨架的形状为具有加强支架的板凳状,包括水平支架、斜支架和一根加强支架,该加强支架垂直设置在水平支架的下方;若缠绕管的内径在800-1000mm之间,则PVC骨架的形状为具有加强支架的板凳状,包括水平支架、斜支架和两根加强支架,两根加强支架垂直设置在水平支架的下方;若缠绕管的内径超过1000mm,则PVC骨架的形状为M形,包括水平支架和两组斜支架。
本发明的复合增强缠绕管中HDPE中空管壁的厚度、环孔内壁的宽度;PVC骨架的厚度、水平支架与斜支架之间的夹角、水平支架在HDPE中空管壁通孔中的间隙、水平支架的宽度、热覆HDPE材料层的厚度等各个参数之间相互配合,协同作用,几个重要参数必须符合一定关系,只有这样才能达到本发明记载的效果。
HDPE中空管壁的厚度h=1.5-2.0mm;
PVC骨架的厚度H=(1.5-4)h;
PVC骨架中水平支架与斜支架之间的夹角α=20-80°;
水平支架与中空管壁中通孔两侧的外壁之间的间隙C=(0.2-0.8)H;
HDPE中空管壁外表面热覆HDPE材料层的厚度为A,h﹤A﹤H且A=(1.2-2.5)h。
本发明的缠绕管为全塑料复合管,由PVC骨架代替传统钢板来提高管道的环刚度和环柔性,PVC骨架又极耐腐蚀,从而解决了传统塑钢复合管在实际使用中钢板慢慢腐蚀这一致命缺陷,避免了管道环刚度严重下降以及管线因此发生塌陷的问题。整根管道的外表面呈光平形状,即放置有PVC增强骨架的地方呈光平形状,没有放置PVC增强骨架的地方也呈光平形状。当管道埋在地下后,管壁所受的压力集中到管壁的上表面处,HDPE中空管壁和PVC增强骨架二者共同受力,PVC增强骨架加强了管壁承受外部压力的能力,管道的大部分压力由管壁中的PVC增强骨架来承受,这样大大提高了管道的环刚度和环柔性。而且PVC增强骨架放置到HDPE 中空管壁中,骨架的斜支架底部无需与中空管壁连接或使用其他组件将二者卡接在一起,骨架的斜支架底部处于自由状态,随着地下环境温度的变化以及受力程度的变化,PVC增强骨架在中空管壁内不易变形,即使发生变形,该变形也是可以恢复的。如果将PVC骨架的底部与HDPE中空管壁连接或卡接在一起,当HDPE中空管壁发生变形时,会带动PVC骨架变形,如果二者的变形不同,那么恢复的程度也不同,从而使PVC骨架发生扭曲,无法回到原始状态。
本发明的复合增强缠绕管由HDPE材料和PVC材料复合而成,两种材料的组分都具有独特性。本发明中PVC材料的配方非常关键,除了缠绕管本身的结构具有独创性以外,PVC材料的配方也发挥了很大作用,无论是与本申请的HDPE材料复合还是与现有技术的HDPE材料复合,都能发挥极大的效果。缠绕管本身结构的创新已经达到了本发明的有益效果,如果在此基础上对PVC材料的配方进行创新,那么远超过本发明的预期效果。
(1)PVC增强骨架包括以下重量组分(各物质占PVC增强骨架的百分比):PVC树脂60-80%、增强剂4-10%、增韧剂4-10%、稀土复合稳定剂0.5-1%、石墨烯0.5-1%、内外润滑剂2-10%、着色剂2-10%。相比较,稀土复合稳定剂和石墨烯为微量添加,只是微量添加就能够使PVC增强骨架的力学性能大幅度提高。
所述增强剂优选氯化聚乙烯(CPE);所述增韧剂优选丙烯酸酯共聚物(ACR);所述内外润滑剂分别优选硬脂酸和聚乙烯蜡;所述着色剂优选碳黑。
所述稀土复合稳定剂由稀土元素的羧酸盐、脂肪酸盐为主要组分而合成,含有适量的稀土金属成份。稀土元素优选镧、钇,羧酸盐优选异辛酸稀土,脂肪酸盐优选硬脂酸盐。稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧40-90%、硬质酸镧10-60%,其中镧元素在各物质中的占比仅为5-10%。
(2)HDPE中空管壁包括以下重量组分(各物质占HDPE中空管壁的百分比):高密度聚乙烯树脂70-80%、增强剂10-20%、增韧剂4-6%、稀土复合稳定剂0.5-1%、石墨烯0.5-1%、内外润滑剂1-3%、着色剂2-5%。相比较,稀土复合稳定剂和石墨烯为微量添加,只是微量添加就能够使HDPE中空管壁的力学性能大幅度提高。
所述增强剂优选氯化聚乙烯(CPE);所述增韧剂优选丙烯酸酯共聚 物(ACR);所述内外润滑剂分别优选硬脂酸和聚乙烯蜡;所述着色剂优选碳黑。
所述稀土复合稳定剂由稀土元素的羧酸盐、脂肪酸盐为主要组分而合成,含有适量的稀土金属成份。稀土元素优选镧、钇,羧酸盐优选异辛酸稀土,脂肪酸盐优选硬脂酸盐。稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧40-90%、硬质酸镧10-60%,其中镧元素在各物质中的占比仅为5-10%。
本发明还提供一种复合增强缠绕管的制备方法,用于制备上述任一种复合增强缠绕管,其按照先后顺序包括以下步骤:
步骤一:利用挤出机生产PVC增强骨架,经过双螺杆挤出、定型、冷却,缠绕成卷待用;
步骤二:利用挤出机生产HDPE中空板带,经过单螺杆挤出、定型、冷却,缠绕成盘待用;
步骤三:将HDPE中空板带和PVC增强骨架在成型机上缠绕复合成型,并在外表面热敷一层HDPE材料,形成复合增强缠绕管。
优选的是,所述PVC增强骨架的制备工艺按照先后顺序包括以下步骤:
步骤1.1:将PVC原料投入高速捏合机中搅拌逐渐升温,升温速率5℃/min,当温度达到60℃时,投入增强剂和增韧剂,保持60℃的温度继续搅拌10min,然后保持60℃的温度投入稀土复合稳定剂继续搅拌15min,此时以10℃/min的升温速率逐渐升温,当温度升到120℃时,投入石墨烯、内外润滑剂和着色剂,保持120℃继续搅拌10min,此时以2℃/min的升温速率继续升温到130℃时转入低速捏合机中搅拌,当混合物料冷却到50℃时,放置密闭储存容器中备用;
步骤1.2:将PVC板带生产线的双螺杆挤出机分五段加温,从机尾到机头的温度依次为170℃、175℃、180℃、185℃和190℃,采用螺纹簧上料机将混合物料加入挤出机的料斗中,再由喂料机加入主机中;加入的混合物料经过PVC锥形双螺杆的挤压、剪切,在一定温度下变成熔融状态,经过螺杆的压力挤压到机头模具中形成PVC骨架胚胎,并由机头模具挤出;
步骤1.3:由机头模具挤出的PVC骨架胚胎进入冷却成型室,经过冷却水冷却和真空定型形成PVC骨架;PVC骨架经过喷淋水槽进一步降温后,由牵引机牵引形成连续生产,此时生产出的PVC骨架经检验合格后缠绕成 卷待用。
步骤1.1中,各物料的投放顺序非常关键,对PVC材料的力学性能起到至关重要的作用,同时各个工艺参数相互协同作用,几种物料之间发生化学反应,微量添加的稀土复合稳定剂和石墨烯使PVC材料的内部微观结构发生变化,提高了PVC材料的综合力学性能,最终形成的PVC材料的抗拉强度提高80%,同时PVC材料的延展性也大幅度提高了50%以上。
在上述任一方案中优选的是,所述HDPE中空板带的制备工艺按照先后顺序包括以下步骤:
步骤2.1:将HDPE原料投入混料机中搅拌逐渐升温,升温速率5℃/min,当温度达到80℃时,投入增强剂和增韧剂,保持80℃的温度继续搅拌20min,然后保持80℃的温度投入稀土复合稳定剂继续搅拌15min,此时以2℃/min的升温速率逐渐升温,当温度升到90℃时,投入石墨烯、内外润滑剂和着色剂继续搅拌10min,形成混合物料;
步骤2.2:将HDPE板带生产线的单螺杆挤出机分五段加温,从机尾到机头的温度依次为180℃、190℃、200℃、205℃和210℃,采用真空加料机将混合物料吸到挤出机的料斗中,混合物料进入加热的螺筒,经螺杆的挤压、剪切,在一定温度下形成熔融状态,经过螺杆的压力挤到机头模具中形成HDPE板带的胚胎,并由机头模具挤出;
步骤2.3:由机头模具挤出的HDPE板带胚胎进入冷却成型室,经过冷却水冷却和真空定型形成HDPE板带;HDPE板带经过喷淋水槽进一步降温后,由牵引机牵引形成连续生产,此时生产出的HDPE板带经检验合格后缠绕成盘待用。
步骤2.1中,各物料的投放顺序非常关键,对HDPE材料的力学性能起到至关重要的作用,同时各个工艺参数相互协同作用,几种物料之间发生化学反应,微量添加的稀土复合稳定剂和石墨烯使HDPE材料的内部微观结构发生变化,提高了HDPE材料的综合力学性能,最终形成的HDPE材料的抗拉强度提高70%以上,同时HDPE材料的延展性也大幅度提高了60%以上。
在上述任一方案中优选的是,所述HDPE中空板带和所述PVC增强骨架复合成型工艺按照先后顺序包括以下步骤:
步骤3.1:根据生产规格,在缠绕成型机上安装成型转辊、HDPE板带送带装置和PVC骨架送带装置,将粘接HDPE板带的单螺杆挤出机和机头以 及热敷HDPE外层的单螺杆挤出机和机头加温到180-210℃待用;
步骤3.2:开启成型转辊将HDPE板带经送带装置缠绕到成型转辊上,开启粘接缝的挤出机将HDPE热熔料挤到两个HDPE板带相连接的缝隙中,经压辊挤压成型形成管材雏形;
步骤3.3:将PVC骨架经过送带装置送到已成型的管材板带上面,用压辊将PVC骨架压到管材板带的环孔中,同时用外层挤出机通过机头将HDPE热熔料覆盖到管材的外表面并形成有效搭接,然后经过压辊挤压将搭接面熔为一体,并使整根管材的外表面平滑光亮,经过连续生产形成整根复合增强缠绕管;
步骤3.4:采用切割锯将整根复合增强缠绕管切割成需要的长度,并经检验合格后入库存放。
本发明的复合增强缠绕管及其制备方法具有如下有益效果:
(1)该缠绕管改进了现有技术中塑钢管环刚度低、环柔性差的缺点,在HDPE中空管壁中加入PVC增强骨架,二者结合既提高管道的环刚度又提高管道的环柔度,使管材的力学性能大大提高,非常适合各种状态下的排水、排污。
(2)该缠绕管在使用过程中不会生锈、不会因热胀冷缩不均衡而开裂。目前,工程要求环刚度较高的项目大多采用复合钢板的管材(如钢带增强波纹管、双平壁复合缠绕管、塑钢缠绕管等),其复合在管材内的钢板在使用中都存在不同程度的锈蚀,当使用一定年限后就会全部腐蚀掉,使管道垮塌造成堵塞,路面造成塌陷,还可能发生其他严重的安全事故,特别是沿海地区和输送化工污水的管道更是如此。本发明的缠绕管正好弥补了目前管材的缺点,既有较高的环刚度和环柔性,又不会因温差过大、膨胀系数不同而发生开裂,也不会受潮(水)、海水、污水、化工水等腐蚀性生锈损坏。
(3)该缠绕管在制备过程中,在管材的外表面整体敷设了一层HDPE材料,使管材形成整体受力状态,解决了缠绕管缠绕接缝容易脱开的问题,大大提高了管材的质量。
(4)由于PVC增强骨架形状及各个参数的改进,使管材的整体屈服强度提高到350MPa以上,抗拉强度提高到800MPa以上,延伸率提高到40%以上,环刚度提高到20KN/m 2以上。
(5)PVC材料的配方经过创新后,无论与本发明的HDPE材料复合 还是与现有技术的HDPE材料复合,都能够使管材的综合力学性能进一步提高,屈服强度提高到500MPa以上,抗拉强度提高到1200MPa以上,延伸率提高到50%以上,环刚度提高到23KN/m 2以上。
(6)在制备PVC增强骨架和HDPE中空管壁的过程中,各种物料的添加顺序和工艺参数也非常重要,能够使管材的综合力学性能在配方优化的基础上进一步提高5-10%左右。
附图说明
图1为按照本发明的复合增强缠绕管的一优选实施例结构示意图;
图2为按照本发明的复合增强缠绕管的图1所示实施例中PVC增强骨架的结构示意图,PVC增强骨架的形状为板凳状,包括水平支架和斜支架;
图3为按照本发明的复合增强缠绕管的图1所示实施例中PVC增强骨架的结构示意图,PVC增强骨架的形状为具有加强支架的板凳状,包括水平支架、斜支架和一根加强支架;
图4为按照本发明的复合增强缠绕管的图1所示实施例中PVC增强骨架的结构示意图,PVC增强骨架的形状为具有加强支架的板凳状,包括水平支架、斜支架和两根加强支架;
图5为按照本发明的复合增强缠绕管的图1所示实施例中PVC增强骨架的结构示意图,PVC增强骨架的形状为M形,包括水平支架和两组斜支架;
图6为按照本发明的复合增强缠绕管的图1所示实施例中HDPE中空管壁的结构示意图;
图7为按照本发明的复合增强缠绕管的图1所示实施例中多个中空管壁组合连接的结构示意图。
图中标注说明:1-复合增强缠绕管,2-中空管壁,21-外壁,22-通孔,23-环孔,3-增强骨架,31-顶部,32-水平支架,33-斜支架,34-加强支架,35-底部支架,36-水平支架与斜支架之间的夹角,4-间隙,5-HDPE材料层,6-HDPE热熔料。
具体实施方式
为了更进一步了解本发明的发明内容,下面将结合具体实施例详细阐述本发明。
实施例一:
如图1所示,按照本发明的复合增强缠绕管1的一实施例,其包括中空管壁2和增强骨架3,所述增强骨架3设置在所述中空管壁2中;所述中空管壁2的外壁21设置通孔22,所述增强骨架3的顶部31与所述外壁21平齐,所述增强骨架3的顶部31与其两侧的外壁21之间存在间隙4;所述中空管壁2为HDPE材料,所述增强骨架3为PVC材料;所述中空管壁2的外表面热覆HDPE材料层5;多个中空管壁之间通过HDPE热熔料6竖向连接。
如图2-5所示,增强骨架的形状多种多样。所述增强骨架3包括水平支架32和斜支架33,所述斜支架33设置在所述水平支架32的下方。所述增强骨架3还包括加强支架34,所述加强支架34垂直设置在所述水平支架32的下方。所述斜支架33和/或加强支架34的底部设置底部支架35。
如图2所示,若缠绕管的内径不超过500mm,则PVC骨架的形状为板凳状,包括水平支架和斜支架。如图3所示,若缠绕管的内径在500-800mm之间,则PVC骨架的形状为具有加强支架的板凳状,包括水平支架、斜支架和一根加强支架,该加强支架垂直设置在水平支架的下方。如图4所示,若缠绕管的内径在800-1000mm之间,则PVC骨架的形状为具有加强支架的板凳状,包括水平支架、斜支架和两根加强支架,两根加强支架垂直设置在水平支架的下方。如图5所示,若缠绕管的内径超过1000mm,则PVC骨架的形状为M形,包括水平支架和两组斜支架。
如图6所示,所述中空管壁2中设置两个环孔23,两个环孔23中至少有一个环孔23的外壁21设置通孔22,设置通孔22的环孔23中设置所述增强骨架3。两个环孔的宽度、长度、高度相等,两个环孔的壁厚相等;通孔的宽度小于环孔的宽度,通孔两侧余留的外壁长度相等。
还可以在中空管壁2中设置三个环孔23,两侧环孔23的外壁21均设置通孔22,两侧环孔23中均设置所述增强骨架3。两侧环孔的宽度、长度、高度相等;中间环孔的宽度小于两侧环孔的宽度;三个环孔的壁厚相等;通孔的宽度小于环孔的宽度,通孔两侧余留的外壁长度相等。
如图7所示,将多个中空管壁依次竖向连接起来形成复合增强缠绕管,相邻两个中空管壁之间通过HDPE热熔料粘合连接。
本实施例的复合增强缠绕管中HDPE中空管壁的厚度、环孔内壁的宽度;PVC骨架的厚度、水平支架与斜支架之间的夹角、水平支架在HDPE 中空管壁通孔中的间隙、水平支架的宽度、热覆HDPE材料层的厚度等各个参数之间相互配合,协同作用,几个重要参数必须符合一定关系,只有这样才能分别提高PVC骨架和HDPE中空管壁的力学性能,并且能够大幅度提高PVC骨架与HDPE中空管壁复合后的缠绕管的整体力学性能。
HDPE中空管壁的厚度h=1.5mm;
PVC骨架的厚度H=1.5h=2.25mm;
PVC骨架中水平支架与斜支架之间的夹角α=20°;
水平支架与中空管壁中通孔两侧的外壁之间的间隙C=0.2H=0.45mm;
HDPE中空管壁外表面热覆HDPE材料层的厚度为A,1.5mm﹤A﹤2.25mm且A=1.2h=1.8mm。
确定了缠绕管的内径和上述参数后,缠绕管的其他尺寸可以根据实际情况调整。
本实施例的缠绕管为全塑料复合管,由PVC骨架代替传统钢板来提高管道的环刚度和环柔性,PVC骨架又极耐腐蚀,从而解决了传统塑钢复合管在实际使用中钢板慢慢腐蚀这一致命缺陷,避免了管道环刚度严重下降以及管线因此发生塌陷的问题。整根管道的外表面呈光平形状,即放置有PVC增强骨架的地方呈光平形状,没有放置PVC增强骨架的地方也呈光平形状。当管道埋在地下后,管壁所受的压力集中到管壁的上表面处,HDPE中空管壁和PVC增强骨架二者共同受力,PVC增强骨架加强了管壁承受外部压力的能力,管道的大部分压力由管壁中的PVC增强骨架来承受,这样大大提高了管道的环刚度和环柔性。而且PVC增强骨架放置到HDPE中空管壁中,骨架的斜支架底部无需与中空管壁连接或使用其他组件将二者卡接在一起,骨架的斜支架底部处于自由状态,随着地下环境温度的变化以及受力程度的变化,PVC增强骨架在中空管壁内不易变形,即使发生变形,该变形也是可以恢复的。本实施中,无论采用哪种形状的PVC增强骨架和HDPE中空管壁,两种材料复合后缠绕管的屈服强度达到350MPa以上、抗拉强度达到800MPa以上、延伸率到达40%以上、环刚度达到30KN/m 2以上,管材圆滑、无反向弯曲、无破裂。
实施例二:
按照本发明的复合增强缠绕管的另一实施例,其结构、各部件之间的位置关系、有益效果等均与实施例一相同,不同的是:
HDPE中空管壁的厚度h=2mm;
PVC骨架的厚度H=4h=8mm;
PVC骨架中水平支架与斜支架之间的夹角α=30°;
水平支架与中空管壁中通孔两侧的外壁之间的间隙C=0.8H=6.4mm;
HDPE中空管壁外表面热覆HDPE材料层的厚度为A,2mm﹤A﹤8mm且A=2.5h=5mm。
实施例三:
按照本发明的复合增强缠绕管的另一实施例,其结构、各部件之间的位置关系、有益效果等均与实施例一相同,不同的是:
HDPE中空管壁的厚度h=1.7mm;
PVC骨架的厚度H=3.8h=6.46mm;
PVC骨架中水平支架与斜支架之间的夹角α=40°;
水平支架与中空管壁中通孔两侧的外壁之间的间隙C=0.5H=3.23mm;
HDPE中空管壁外表面热覆HDPE材料层的厚度为A,1.7mm﹤A﹤6.46mm且A=2.2h=3.74mm。
实施例四:
按照本发明的复合增强缠绕管的另一实施例,其结构、各部件之间的位置关系、有益效果等均与实施例一相同,不同的是:
HDPE中空管壁的厚度h=1.9mm;
PVC骨架的厚度H=3h=5.7mm;
PVC骨架中水平支架与斜支架之间的夹角α=80°;
水平支架与中空管壁中通孔两侧的外壁之间的间隙C=0.7H=3.99mm;
HDPE中空管壁外表面热覆HDPE材料层的厚度为A,1.9mm﹤A﹤5.7mm且A=2.4h=4.56mm。
实施例五:
按照本发明的复合增强缠绕管的另一实施例,其结构、各部件之间的位置关系、有益效果等均与实施例一相同,不同的是:
HDPE中空管壁的厚度h=1.6mm;
PVC骨架的厚度H=3.5h=5.6mm;
PVC骨架中水平支架与斜支架之间的夹角α=70°;
水平支架与中空管壁中通孔两侧的外壁之间的间隙C=0.3H=1.68mm;
HDPE中空管壁外表面热覆HDPE材料层的厚度为A,1.6mm﹤A﹤5.6mm且A=1.8h=2.88mm。
实施例六:
按照本发明的复合增强缠绕管的另一实施例,其结构、各部件之间的位置关系、有益效果等均与实施例一相同,不同的是:
HDPE中空管壁的厚度h=1.8mm;
PVC骨架的厚度H=2.5h=4.5mm;
PVC骨架中水平支架与斜支架之间的夹角α=50°;
水平支架与中空管壁中通孔两侧的外壁之间的间隙C=0.4H=1.8mm;
HDPE中空管壁外表面热覆HDPE材料层的厚度为A,1.8mm﹤A﹤4.5mm且A=2h=3.6mm。
实施例七:
按照本发明的复合增强缠绕管的另一实施例,其结构、各部件之间的位置关系、有益效果等均与实施例一相同,不同的是:
HDPE中空管壁的厚度h=1.65mm;
PVC骨架的厚度H=2h=3.3mm;
PVC骨架中水平支架与斜支架之间的夹角α=60°;
水平支架与中空管壁中通孔两侧的外壁之间的间隙C=0.6H=1.98mm;
HDPE中空管壁外表面热覆HDPE材料层的厚度为A,1.65mm﹤A﹤3.3mm且A=1.5h=2.475mm。
实施例八:
按照本发明的复合增强缠绕管的另一实施例,其结构、各部件之间的位置关系与实施例一至七中的任一实施例相同,不同的是:
本实施例中PVC材料的配方非常关键,除了缠绕管本身的结构具有独创性以外,PVC材料的配方也发挥了很大作用,无论是与本实施例的HDPE材料复合还是与现有技术的HDPE材料复合,都发挥极大的效果。如果在上述七个实施例的缠绕管结构基础上对PVC材料配方进行创新,管材的综合力学性能得到进一步提高。屈服强度提高到500MPa以上,抗拉强度提高到1200MPa以上,延伸率提高到50%以上,环刚度提高到23KN/m 2以上。
(1)PVC增强骨架包括以下重量组分(各物质占PVC增强骨架的百分比):PVC树脂60%、增强剂4%、增韧剂4%、稀土复合稳定剂0.5%、石墨烯0.5%、内外润滑剂2%、着色剂2%。
所述增强剂为氯化聚乙烯(CPE),所述增韧剂为丙烯酸酯共聚物 (ACR),所述内外润滑剂分别为硬脂酸和聚乙烯蜡,所述着色剂为碳黑。所述稀土复合稳定剂由稀土元素的羧酸盐、脂肪酸盐为主要组分而合成,含有适量的稀土金属成份,稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧40%、硬质酸镧60%,其中镧元素在各物质中的占比仅为5%。
(2)HDPE中空管壁包括以下重量组分(各物质占HDPE中空管壁的百分比):高密度聚乙烯树脂70%、增强剂10%、增韧剂4%、稀土复合稳定剂0.5%、石墨烯0.5%、内外润滑剂1%、着色剂2%。稀土复合稳定剂和石墨烯为微量添加,只是微量添加就能够使HDPE中空管壁的力学性能大幅度提高。
所述增强剂为氯化聚乙烯(CPE),所述增韧剂丙烯酸酯共聚物(ACR),所述内外润滑剂分别为硬脂酸和聚乙烯蜡,所述着色剂为碳黑。所述稀土复合稳定剂由稀土元素的羧酸盐、脂肪酸盐为主要组分而合成,含有适量的稀土金属成份,稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧40%、硬质酸镧60%,其中镧元素在各物质中的占比仅为5%。
本实施例还提供一种复合增强缠绕管的制备方法,用于制备复合增强缠绕管,其按照先后顺序包括以下步骤:
步骤一:利用挤出机生产PVC增强骨架,经过双螺杆挤出、定型、冷却,缠绕成卷待用;
步骤二:利用挤出机生产HDPE中空板带,经过单螺杆挤出、定型、冷却,缠绕成盘待用;
步骤三:将HDPE中空板带和PVC增强骨架在成型机上缠绕复合成型,并在外表面热敷一层HDPE材料,形成复合增强缠绕管。
所述PVC增强骨架的制备工艺按照先后顺序包括以下步骤:
步骤1.1:将PVC原料投入高速捏合机中搅拌逐渐升温,升温速率5℃/min,当温度达到60℃时,投入增强剂和增韧剂,保持60℃的温度继续搅拌10min,然后保持60℃的温度投入稀土复合稳定剂继续搅拌15min,此时以10℃/min的升温速率逐渐升温,当温度升到120℃时,投入石墨烯、内外润滑剂和着色剂,保持120℃继续搅拌10min,此时以2℃/min的升温速率继续升温到130℃时转入低速捏合机中搅拌,当混合物料冷却到50℃时,放置密闭储存容器中备用;
步骤1.2:将PVC板带生产线的双螺杆挤出机分五段加温,从机尾到机头的温度依次为170℃、175℃、180℃、185℃和190℃,采用螺纹簧上料机将混合物料加入挤出机的料斗中,再由喂料机加入主机中;加入的混合物料经过PVC锥形双螺杆的挤压、剪切,在一定温度下变成熔融状态,经过螺杆的压力挤压到机头模具中形成PVC骨架胚胎,并由机头模具挤出;步骤1.3:由机头模具挤出的PVC骨架胚胎进入冷却成型室,经过冷却水冷却和真空定型形成PVC骨架;PVC骨架经过喷淋水槽进一步降温后,由牵引机牵引形成连续生产,此时生产出的PVC骨架经检验合格后缠绕成卷待用。
所述HDPE中空板带的制备工艺按照先后顺序包括以下步骤:
步骤2.1:将HDPE原料投入混料机中搅拌逐渐升温,升温速率5℃/min,当温度达到80℃时,投入增强剂和增韧剂,保持80℃的温度继续搅拌20min,然后保持80℃的温度投入稀土复合稳定剂继续搅拌15min,此时以2℃/min的升温速率逐渐升温,当温度升到90℃时,投入石墨烯、内外润滑剂和着色剂继续搅拌10min,形成混合物料;
步骤2.2:将HDPE板带生产线的单螺杆挤出机分五段加温,从机尾到机头的温度依次为180℃、190℃、200℃、205℃和210℃,采用真空加料机将混合物料吸到挤出机的料斗中,混合物料进入加热的螺筒,经螺杆的挤压、剪切,在一定温度下形成熔融状态,经过螺杆的压力挤到机头模具中形成HDPE板带的胚胎,并由机头模具挤出;
步骤2.3:由机头模具挤出的HDPE板带胚胎进入冷却成型室,经过冷却水冷却和真空定型形成HDPE板带;HDPE板带经过喷淋水槽进一步降温后,由牵引机牵引形成连续生产,此时生产出的HDPE板带经检验合格后缠绕成盘待用。
所述HDPE中空板带和所述PVC增强骨架复合成型工艺按照先后顺序包括以下步骤:
步骤3.1:根据生产规格,在缠绕成型机上安装成型转辊、HDPE板带送带装置和PVC骨架送带装置,将粘接HDPE板带的单螺杆挤出机和机头以及热敷HDPE外层的单螺杆挤出机和机头加温到180-210℃待用;
步骤3.2:开启成型转辊将HDPE板带经送带装置缠绕到成型转辊上,开启粘接缝的挤出机将HDPE热熔料挤到两个HDPE板带相连接的缝隙中,经压辊挤压成型形成管材雏形;
步骤3.3:将PVC骨架经过送带装置送到已成型的管材板带上面,用压辊将PVC骨架压到管材板带的环孔中,同时用外层挤出机通过机头将HDPE热熔料覆盖到管材的外表面并形成有效搭接,然后经过压辊挤压将搭接面熔为一体,并使整根管材的外表面平滑光亮,经过连续生产形成整根复合增强缠绕管;
步骤3.4:采用切割锯将整根复合增强缠绕管切割成需要的长度,并经检验合格后入库存放。
在制备PVC增强骨架和HDPE中空管壁的过程中,各种物料的添加顺序和工艺参数也非常重要,几种物料之间发生化学反应,微量添加的稀土复合稳定剂和石墨烯使材料的内部微观结构发生变化,能够使管材的综合力学性能在配方优化的基础上再进一步提高5-10%左右。
实施例九:
按照本发明的复合增强缠绕管及其制备方法,其缠绕管的结构、制备方法、原理、有益效果等与实施例八相同,不同的是:
PVC增强骨架包括以下重量组分(各物质占PVC增强骨架的百分比):PVC树脂80%、增强剂10%、增韧剂10%、稀土复合稳定剂1%、石墨烯1%、内外润滑剂10%、着色剂10%。稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧90%、硬质酸镧10%,其中镧元素在各物质中的占比仅为10%。
HDPE中空管壁包括以下重量组分(各物质占HDPE中空管壁的百分比):高密度聚乙烯树脂80%、增强剂20%、增韧剂6%、稀土复合稳定剂1%、石墨烯1%、内外润滑剂3%、着色剂5%。稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧90%、硬质酸镧10%,其中镧元素在各物质中的占比仅为10%。
实施例十:
按照本发明的复合增强缠绕管及其制备方法,其缠绕管的结构、制备方法、原理、有益效果等与实施例八相同,不同的是:
PVC增强骨架包括以下重量组分(各物质占PVC增强骨架的百分比):PVC树脂70%、增强剂7%、增韧剂7%、稀土复合稳定剂0.7%、石墨烯0.7%、内外润滑剂6%、着色剂6%。稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧60%、硬质酸镧30%,其中镧元素在各物质中的占比仅为8%。
HDPE中空管壁包括以下重量组分(各物质占HDPE中空管壁的百分比):高密度聚乙烯树脂75%、增强剂15%、增韧剂5%、稀土复合稳定剂0.7%、石墨烯0.7%、内外润滑剂2%、着色剂4%。稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧60%、硬质酸镧30%,其中镧元素在各物质中的占比仅为8%。
实施例十一:
按照本发明的复合增强缠绕管及其制备方法,其缠绕管的结构、制备方法、原理、有益效果等与实施例八相同,不同的是:
PVC增强骨架包括以下重量组分(各物质占PVC增强骨架的百分比):PVC树脂65%、增强剂6%、增韧剂5%、稀土复合稳定剂0.6%、石墨烯0.6%、内外润滑剂4%、着色剂4%。稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧50%、硬质酸镧20%,其中镧元素在各物质中的占比仅为6%。
HDPE中空管壁包括以下重量组分(各物质占HDPE中空管壁的百分比):高密度聚乙烯树脂72%、增强剂12%、增韧剂4.5%、稀土复合稳定剂0.6%、石墨烯0.6%、内外润滑剂1.5%、着色剂3%。稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧50%、硬质酸镧20%,其中镧元素在各物质中的占比仅为6%。
实施例十二:
按照本发明的复合增强缠绕管及其制备方法,其缠绕管的结构、制备方法、原理、有益效果等与实施例八相同,不同的是:
PVC增强骨架包括以下重量组分(各物质占PVC增强骨架的百分比):PVC树脂75%、增强剂8%、增韧剂9%、稀土复合稳定剂0.8%、石墨烯0.9%、内外润滑剂8%、着色剂8%。稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧80%、硬质酸镧50%,其中镧元素在各物质中的占比仅为9%。
HDPE中空管壁包括以下重量组分(各物质占HDPE中空管壁的百分比):高密度聚乙烯树脂78%、增强剂18%、增韧剂5.5%、稀土复合稳定剂0.8%、石墨烯0.9%、内外润滑剂2.5%、着色剂4.5%。稀土复合稳定剂包括以下重量组分(各物质占稀土复合稳定剂的百分比):异辛酸镧80%、硬质酸镧50%,其中镧元素在各物质中的占比仅为9%。
以下是对比试验数据,本发明实施例与对比试验的测试环境、测试条件等试验条件相同,不同的是PCV材料和HDPE材料的配方不同。所有试验原材料均在北京某化学试剂公司购买。
表1:实施例八至十二的配方及力学性能数据
Figure PCTCN2019095143-appb-000001
本发明实施例八至十二中PVC材料和HDPE材料的配方中,若没有添加稀土复合稳定剂和石墨烯,则各项力学性能均下降50-60%。
表2:对比试验数据
Figure PCTCN2019095143-appb-000002
本领域技术人员不难理解,本发明的复合增强缠绕管及其制备方法包括上述本发明说明书的发明内容和具体实施方式部分以及附图所示出的各部分的任意组合,限于篇幅并为使说明书简明而没有将这些组合构成的各方案一一描述。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种复合增强缠绕管,包括中空管壁和增强骨架,所述增强骨架设置在所述中空管壁中,其特征在于:所述中空管壁的外壁设置通孔,所述增强骨架的顶部与所述外壁平齐,所述增强骨架的顶部与其两侧的外壁之间存在间隙;所述中空管壁为HDPE材料,所述增强骨架为PVC材料;所述中空管壁的外表面热覆HDPE材料层。
  2. 如权利要求1所述的复合增强缠绕管,其特征在于:所述中空管壁中设置两个环孔,两个环孔中至少有一个环孔的外壁设置通孔,设置通孔的环孔中设置所述增强骨架;多个中空管壁之间通过HDPE热熔料竖向连接。
  3. 如权利要求1所述的复合增强缠绕管,其特征在于:所述中空管壁中设置三个环孔,两侧环孔的外壁均设置通孔,两侧环孔中均设置所述增强骨架;多个中空管壁之间通过HDPE热熔料竖向连接。
  4. 如权利要求1所述的复合增强缠绕管,其特征在于:所述增强骨架包括水平支架和斜支架,所述斜支架设置在所述水平支架的下方。
  5. 如权利要求4所述的复合增强缠绕管,其特征在于:所述增强骨架还包括加强支架,所述加强支架垂直设置在所述水平支架的下方。
  6. 如权利要求4或5所述的复合增强缠绕管,其特征在于:所述斜支架和/或加强支架的底部设置底部支架。
  7. 一种复合增强缠绕管的制备方法,其按照先后顺序包括以下步骤:
    步骤一:利用挤出机生产PVC增强骨架,经过双螺杆挤出、定型、冷却,缠绕成卷待用;
    步骤二:利用挤出机生产HDPE中空板带,经过单螺杆挤出、定型、冷却,缠绕成盘待用;
    步骤三:将HDPE中空板带和PVC增强骨架在成型机上缠绕复合成型,并在外表面热敷一层HDPE材料,形成复合增强缠绕管。
  8. 如权利要求7所述的复合增强缠绕管的制备方法,其特征在于:所述PVC增强骨架的制备工艺按照先后顺序包括以下步骤:
    步骤1.1:将PVC原料投入高速捏合机中搅拌逐渐升温,升温速率5℃/min,当温度达到60℃时,投入增强剂和增韧剂,保持60℃的温度继续搅拌10min,然后保持60℃的温度投入稀土复合稳定剂继续搅拌15min,此时以10℃/min的升温速率逐渐升温,当温度升到120℃时,投入石墨烯、内外润滑 剂和着色剂,保持120℃继续搅拌10min,此时以2℃/min的升温速率继续升温到130℃时转入低速捏合机中搅拌,当混合物料冷却到50℃时,放置密闭储存容器中备用;
    步骤1.2:将PVC板带生产线的双螺杆挤出机分五段加温,从机尾到机头的温度依次为170℃、175℃、180℃、185℃和190℃,采用螺纹簧上料机将混合物料加入挤出机的料斗中,再由喂料机加入主机中;加入的混合物料经过PVC锥形双螺杆的挤压、剪切,在一定温度下变成熔融状态,经过螺杆的压力挤压到机头模具中形成PVC骨架胚胎,并由机头模具挤出;
    步骤1.3:由机头模具挤出的PVC骨架胚胎进入冷却成型室,经过冷却水冷却和真空定型形成PVC骨架;PVC骨架经过喷淋水槽进一步降温后,由牵引机牵引形成连续生产,此时生产出的PVC骨架经检验合格后缠绕成卷待用。
  9. 如权利要求7所述的复合增强缠绕管的制备方法,其特征在于:所述HDPE中空板带的制备工艺按照先后顺序包括以下步骤:
    步骤2.1:将HDPE原料投入混料机中搅拌逐渐升温,升温速率5℃/min,当温度达到80℃时,投入增强剂和增韧剂,保持80℃的温度继续搅拌20min,然后保持80℃的温度投入稀土复合稳定剂继续搅拌15min,此时以2℃/min的升温速率逐渐升温,当温度升到90℃时,投入石墨烯、内外润滑剂和着色剂继续搅拌10min,形成混合物料;
    步骤2.2:将HDPE板带生产线的单螺杆挤出机分五段加温,从机尾到机头的温度依次为180℃、190℃、200℃、205℃和210℃,采用真空加料机将混合物料吸到挤出机的料斗中,混合物料进入加热的螺筒,经螺杆的挤压、剪切,在一定温度下形成熔融状态,经过螺杆的压力挤到机头模具中形成HDPE板带的胚胎,并由机头模具挤出;
    步骤2.3:由机头模具挤出的HDPE板带胚胎进入冷却成型室,经过冷却水冷却和真空定型形成HDPE板带;HDPE板带经过喷淋水槽进一步降温后,由牵引机牵引形成连续生产,此时生产出的HDPE板带经检验合格后缠绕成盘待用。
  10. 如权利要求7所述的复合增强缠绕管的制备方法,其特征在于:所述HDPE中空板带和所述PVC增强骨架复合成型工艺按照先后顺序包括以下步骤:
    步骤3.1:根据生产规格,在缠绕成型机上安装成型转辊、HDPE板带送带 装置和PVC骨架送带装置,将粘接HDPE板带的单螺杆挤出机和机头以及热敷HDPE外层的单螺杆挤出机和机头加温到180-210℃待用;
    步骤3.2:开启成型转辊将HDPE板带经送带装置缠绕到成型转辊上,开启粘接缝的挤出机将HDPE热熔料挤到两个HDPE板带相连接的缝隙中,经压辊挤压成型形成管材雏形;
    步骤3.3:将PVC骨架经过送带装置送到已成型的管材板带上面,用压辊将PVC骨架压到管材板带的环孔中,同时用外层挤出机通过机头将HDPE热熔料覆盖到管材的外表面并形成有效搭接,然后经过压辊挤压将搭接面熔为一体,并使整根管材的外表面平滑光亮,经过连续生产形成整根复合增强缠绕管;
    步骤3.4:采用切割锯将整根复合增强缠绕管切割成需要的长度,并经检验合格后入库存放。
PCT/CN2019/095143 2019-03-25 2019-07-08 复合增强缠绕管及其制备方法 WO2020191950A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910226533.4A CN109944984B (zh) 2019-03-25 2019-03-25 Hdpe中空壁复合增强缠绕管及其制备方法
CN201910226533.4 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020191950A1 true WO2020191950A1 (zh) 2020-10-01

Family

ID=67011520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095143 WO2020191950A1 (zh) 2019-03-25 2019-07-08 复合增强缠绕管及其制备方法

Country Status (2)

Country Link
CN (1) CN109944984B (zh)
WO (1) WO2020191950A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112917957A (zh) * 2021-01-25 2021-06-08 辽宁中盛工业建筑系统股份有限公司 一种落水管成型机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944984B (zh) * 2019-03-25 2019-12-20 淄博金洋达塑业有限公司 Hdpe中空壁复合增强缠绕管及其制备方法
CN111361123B (zh) * 2020-03-20 2022-03-15 重庆金山洋生管道有限公司 大口径frpp加筋管的缠绕加工方法
CN211624458U (zh) * 2020-04-23 2020-10-02 淄博金洋达塑业有限公司 Hdpe中空壁复合多肋增强缠绕管
CN114658930B (zh) * 2022-04-06 2023-11-07 安庆市悦发管业有限公司 一种双层多点支撑高强度hdpe缠绕管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045634A1 (en) * 1997-04-04 1998-10-15 Exxon Research And Engineering Company Composite pipe structures having high containment and axial strength
KR20100059120A (ko) * 2008-11-26 2010-06-04 공석태 중공형상의 복합소재 다층 파이프및 제조방법
CN102287595A (zh) * 2011-08-23 2011-12-21 深圳金鸿机械制造有限公司 增强热塑复合结构壁管管材、带材及其成套生产装置
CN207777796U (zh) * 2017-12-27 2018-08-28 福建新通源复合材料科技有限公司 一种连续缠绕管用的板带
CN109307110A (zh) * 2018-11-28 2019-02-05 于柱 一种hdpe双肋增强缠绕管
CN208967258U (zh) * 2019-03-25 2019-06-11 淄博金洋达塑业有限公司 复合增强缠绕管
CN109944984A (zh) * 2019-03-25 2019-06-28 淄博金洋达塑业有限公司 复合增强缠绕管及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2699098Y (zh) * 2004-06-04 2005-05-11 新疆日盛管业有限公司 大口径双口多层塑料输水管
CN1869348A (zh) * 2006-06-29 2006-11-29 林云青 一种hdpe、pvc塑塑复合缠绕管
CN2932006Y (zh) * 2006-06-29 2007-08-08 林云青 一种hdpe、pvc塑塑复合缠绕管
CN201462219U (zh) * 2009-06-19 2010-05-12 梅艳 双中空结构壁钢增强型排水管
CN101974936A (zh) * 2010-10-25 2011-02-16 戴晓中 复合平壁聚乙烯钢塑排水管
CN202418943U (zh) * 2012-01-16 2012-09-05 赵炳章 大口径塑钢平壁缠绕管
CN104479244A (zh) * 2014-11-25 2015-04-01 新疆西部节水科技股份有限公司 高性能矿用管材及其制备方法
CN205877456U (zh) * 2016-06-14 2017-01-11 潘小雄 Hdpe中空壁塑钢缠绕管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045634A1 (en) * 1997-04-04 1998-10-15 Exxon Research And Engineering Company Composite pipe structures having high containment and axial strength
KR20100059120A (ko) * 2008-11-26 2010-06-04 공석태 중공형상의 복합소재 다층 파이프및 제조방법
CN102287595A (zh) * 2011-08-23 2011-12-21 深圳金鸿机械制造有限公司 增强热塑复合结构壁管管材、带材及其成套生产装置
CN207777796U (zh) * 2017-12-27 2018-08-28 福建新通源复合材料科技有限公司 一种连续缠绕管用的板带
CN109307110A (zh) * 2018-11-28 2019-02-05 于柱 一种hdpe双肋增强缠绕管
CN208967258U (zh) * 2019-03-25 2019-06-11 淄博金洋达塑业有限公司 复合增强缠绕管
CN109944984A (zh) * 2019-03-25 2019-06-28 淄博金洋达塑业有限公司 复合增强缠绕管及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112917957A (zh) * 2021-01-25 2021-06-08 辽宁中盛工业建筑系统股份有限公司 一种落水管成型机

Also Published As

Publication number Publication date
CN109944984B (zh) 2019-12-20
CN109944984A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
WO2020191950A1 (zh) 复合增强缠绕管及其制备方法
CN107191693B (zh) 螺旋双峰结构波纹管及其制造方法
CN104212046B (zh) 多孔梅花管及其制备方法
CN207229946U (zh) 一种端口增强环内衬塑料管承插式金属管
CN207394144U (zh) 一种立筋式中空壁钢塑复合缠绕管及其制造设备
CN101706022B (zh) 钢塑复合管的制造方法
WO2020191822A1 (zh) 复合增强缠绕管
CN109869540B (zh) 一种frp条带增强热塑性树脂螺旋波纹管
CN104831757A (zh) 挤出成型式钢边止水带及其专用制备设备及制备方法
CN201090848Y (zh) 一种塑料复合抗硫管材
CN202158286U (zh) 一种钢带增强塑料排水管道及其装置
CN205806716U (zh) 一种内筋缩合式钢塑复合管
CN206159716U (zh) 新型电熔管件
CN205207949U (zh) 一种双平壁工字结构塑钢缠绕管件
CN101603615A (zh) 一种预应力塑料波纹管及其制造方法
CN101879791A (zh) 纸质水管的制造方法
CN204083549U (zh) 一种钢塑复合带材及缠绕管
CN210601876U (zh) 一种暖气片装置
CN101463932A (zh) 一种聚乙烯中空缠绕结构壁复合钢管及其加工工艺
CN202001739U (zh) 利用高密度聚乙烯钢带制成的双壁缠绕管
CN101372149B (zh) 塑钢缠绕管带材连续生产的方法
CN107606334A (zh) 一种立筋式中空壁钢塑复合缠绕管及其制造设备
CN215763713U (zh) 一种聚乙烯给水管多层复合结构
CN204828978U (zh) 一种阻氧铝合金衬塑ⅱ型耐热聚乙烯复合管
CN221219631U (zh) 一种镶嵌高性能塑料的铝合金模板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922213

Country of ref document: EP

Kind code of ref document: A1