WO2020191835A1 - 光配向装置及光配向方法 - Google Patents

光配向装置及光配向方法 Download PDF

Info

Publication number
WO2020191835A1
WO2020191835A1 PCT/CN2019/083115 CN2019083115W WO2020191835A1 WO 2020191835 A1 WO2020191835 A1 WO 2020191835A1 CN 2019083115 W CN2019083115 W CN 2019083115W WO 2020191835 A1 WO2020191835 A1 WO 2020191835A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
unit
substrate
reactive monomers
light
Prior art date
Application number
PCT/CN2019/083115
Other languages
English (en)
French (fr)
Inventor
赵仁堂
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020191835A1 publication Critical patent/WO2020191835A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to the field of display technology, in particular to an optical alignment device and an optical alignment method.
  • TFT Thin Film Transistor
  • LCD Liquid Crystal Display
  • AMOLED Active Matrix Organic Light-Emitting Diode
  • liquid crystal displays which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is based on the thin film transistor array substrate (Thin Film Transistor Array Substrate, TFT Array Substrate) and the color filter (Color Filter, CF)
  • the liquid crystal molecules are filled between the substrates, and the pixel voltage and the common voltage are applied to the two substrates.
  • the electric field formed between the pixel voltage and the common voltage controls the rotation direction of the liquid crystal molecules to reduce the backlight module
  • the light is transmitted out to produce a picture.
  • the liquid crystal display panel molding process generally includes: the front-end array (film, yellow light, etching and stripping), the middle-stage cell process (the TFT substrate is bonded to the CF substrate), and the back-end module assembly process (The driver IC is pressed against the printed circuit board).
  • the front Array process is mainly to form TFT substrates to control the movement of liquid crystal molecules
  • the middle cell process is mainly to add liquid crystal between the TFT substrate and the CF substrate
  • the back module assembly process is mainly to drive IC pressing and printed circuits
  • the integration of the panel drives the rotation of the liquid crystal molecules to display images.
  • Polymer stabilized vertical alignment is a technology of TFT-LCD.
  • the liquid crystal contains reactive monomers (RM).
  • the substrate is irradiated with ultraviolet light to make the liquid crystal
  • the reactive monomer reacts, and the liquid crystal forms a pretilt angle under the synergistic effect of the applied voltage. This process is called the first ultraviolet light alignment.
  • RM a second UV light irradiation is required to complete the reaction (no voltage is applied to this process). This process is called the second UV alignment.
  • the RM concentration decreases after the first UV alignment the RM reaction speed during the second UV alignment will be greatly reduced, and the second UV alignment needs to ensure that the residual RM reaction is complete, so the second UV alignment time is Very long, usually up to tens of minutes to two hours.
  • the RGB color resist is made on the TFT array substrate, and the color resist has a strong attenuation of ultraviolet light, so the first ultraviolet light alignment and the second ultraviolet light alignment both irradiate the ultraviolet light through the CF substrate Liquid crystal, avoid the influence of color resistance.
  • BM black matrix
  • the residual RM under the BM begins to diffuse into the display area, resulting in color gradation around the panel, forming a peripheral display defect (mura), and the residual RM will react during the continuous lighting process. Increase the surrounding mura and affect the product yield.
  • the purpose of the present invention is to provide a photo-alignment device, which can completely react the reactive monomers, avoid the formation of peripheral display defects on the liquid crystal panel, and improve the product yield.
  • the purpose of the present invention is also to provide a photo-alignment method, which can completely react the reactive monomers, avoid the formation of peripheral display defects on the liquid crystal panel, and improve the product yield.
  • the present invention provides a light alignment device, including: a support unit, a first light unit arranged above the support unit, and a second light unit arranged below the support unit;
  • the supporting unit is used to carry the liquid crystal panel;
  • the liquid crystal panel includes a TFT array substrate and a counter substrate arranged oppositely, a plastic frame disposed between the TFT array substrate and the counter substrate, and a TFT array substrate A liquid crystal layer between the opposite substrate and surrounded by the plastic frame;
  • the liquid crystal layer includes a plurality of liquid crystal molecules and a plurality of reactive monomers distributed at intervals;
  • the first lighting unit is used to irradiate the liquid crystal panel to cause some of the reactive monomers in the plurality of reactive monomers to react so that the liquid crystal molecules form a pretilt angle;
  • the second illuminating unit is used to illuminate the liquid crystal panel at the same time as the first illuminating unit to cause the remaining unreacted reactive monomers in the plurality of reactive monomers to react.
  • the TFT array substrate faces the second illumination unit, and the opposite substrate faces the first illumination unit.
  • the TFT array substrate includes a first base substrate, a TFT layer provided on the first base substrate, and a color resist layer provided on the TFT layer; the counter substrate includes a second base substrate, and A black matrix arranged on the second base substrate.
  • the TFT layer includes a first metal layer and a second metal layer that are insulated from each other; areas of the first metal layer and the second metal layer close to the plastic frame are provided with a plurality of spaced apart openings.
  • the first lighting unit and the second lighting unit both include a plurality of lamp tubes arranged in parallel; the lamp tubes are fluorescent lamps or LED lamps; the distance between the lamp tubes and the liquid crystal panel is 10-100 cm.
  • the present invention also provides an optical alignment method, including the following steps:
  • Step S1 Provide a photo-alignment device;
  • the photo-alignment device includes: a support unit, a first light unit arranged above the support unit, and a second light unit located below the support unit;
  • the supporting unit carries the liquid crystal panel;
  • the liquid crystal panel includes a TFT array substrate and a counter substrate arranged oppositely, a plastic frame disposed between the TFT array substrate and the counter substrate, and a plastic frame disposed on the TFT array A liquid crystal layer between the substrate and the opposite substrate and surrounded by the plastic frame;
  • the liquid crystal layer includes a plurality of liquid crystal molecules and a plurality of reactive monomers distributed at intervals;
  • Step S3 The first lighting unit irradiates the liquid crystal panel to cause some of the reactive monomers in the plurality of reactive monomers to react so that the liquid crystal molecules form a pretilt angle;
  • Step S4 The second lighting unit and the first lighting unit simultaneously irradiate the liquid crystal panel to cause the remaining unreacted reactive monomers among the multiple reactive monomers to react.
  • the TFT array substrate faces the second illumination unit, and the opposite substrate faces the first illumination unit.
  • the TFT array substrate includes a first base substrate, a TFT layer provided on the first base substrate, and a color resist layer provided on the TFT layer; the counter substrate includes a second base substrate, and A black matrix arranged on the second base substrate.
  • the TFT layer includes a first metal layer and a second metal layer that are insulated from each other; areas of the first metal layer and the second metal layer close to the plastic frame are provided with a plurality of spaced apart openings.
  • the first lighting unit and the second lighting unit both include a plurality of lamp tubes arranged in parallel; the lamp tubes are fluorescent lamps or LED lamps; the distance between the lamp tubes and the liquid crystal panel is 10-100 cm.
  • the optical alignment device of the present invention includes a supporting unit, a first lighting unit disposed above the supporting unit, and a second lighting unit disposed below the supporting unit; the supporting unit is used to carry liquid crystals Panel; the liquid crystal panel includes a TFT array substrate and a counter substrate that are arranged oppositely, and a plastic frame and a liquid crystal layer disposed between the TFT array substrate and the counter substrate; the liquid crystal layer includes a plurality of liquid crystal molecules distributed at intervals And a plurality of reactive monomers, through the first photo-alignment, the first illumination unit irradiates the liquid crystal panel to cause some of the reactive monomers in the plurality of reactive monomers to react to make the liquid crystal molecules form a pre- In the second optical alignment, the liquid crystal panel is illuminated on both sides by the first light unit and the second light unit to completely react the unreacted reactive monomers in the first light alignment and prevent the liquid crystal panel from forming a periphery Display defects and improve product yield.
  • the optical alignment method of the present invention is used to carry liquid
  • Figure 1 is a schematic diagram of the optical alignment device of the present invention
  • FIG. 2 is a schematic diagram of a liquid crystal panel in the optical alignment device of the present invention.
  • FIG. 3 is a schematic diagram of openings of the first metal layer and the second metal layer in the optical alignment device of the present invention
  • Figure 4 is a flowchart of the optical alignment method of the present invention.
  • the present invention provides a light alignment device including: a support unit 10, a first light unit 20 arranged above the support unit 10, and a second light unit 30 arranged below the support unit 10;
  • the supporting unit 10 is used to carry the liquid crystal panel 40;
  • the liquid crystal panel 40 includes a TFT array substrate 41 and a counter substrate 42 arranged oppositely, and a plastic frame 43 disposed between the TFT array substrate 41 and the counter substrate 42 And a liquid crystal layer 44 arranged between the TFT array substrate 41 and the counter substrate 42 and surrounded by the plastic frame 43;
  • the liquid crystal layer 44 includes a plurality of liquid crystal molecules 441 and a plurality of reactive monomers distributed at intervals 442;
  • the first illuminating unit 20 is used to illuminate the liquid crystal panel 40 to cause some of the reactive monomers 442 of the plurality of reactive monomers 442 to react so that the liquid crystal molecules 441 form a pretilt angle;
  • the second illuminating unit 30 is used to simultaneously illuminate the liquid crystal panel 40 with the first illuminating unit 20 to cause the remaining unreacted reactive monomers 442 among the plurality of reactive monomers 442 to react.
  • the first lighting unit 20 and the second lighting unit 30 are respectively arranged above and below the supporting unit 10, and in the first light alignment, the first lighting unit 20 performs the operation on the liquid crystal panel 40. Illumination causes some of the reactive monomers 442 of the plurality of reactive monomers 442 to react so that the liquid crystal molecules 441 form a pretilt angle.
  • the first illumination unit 20 and the second illumination unit 30 pair the liquid crystal The panel 40 performs double-sided illumination to completely react the unreacted reactive monomers 442 in the first optical alignment.
  • the liquid crystal panel 40 is subsequently lit, all the reactive monomers 442 are completely reacted and will not diffuse to the display area.
  • the time for the second optical alignment can be shortened, and the production efficiency can be improved.
  • the liquid crystal panel 40 is a panel assembled into a cell.
  • the TFT array substrate 41 includes a first base substrate 411, a TFT layer 412 provided on the first base substrate 411, and a color resist layer provided on the TFT layer 412 413;
  • the opposite substrate 42 includes a second base substrate 421 and a black matrix 422 arranged on the second base substrate 421; that is, the liquid crystal panel 40 of the present invention is a COA liquid crystal panel.
  • the optical alignment device of the present invention can also perform optical alignment on the liquid crystal motherboard.
  • the TFT array substrate 41 faces the second lighting unit 30, and the opposite substrate 42 faces the first lighting unit 20. That is, the light of the first lighting unit 20 illuminates the liquid crystal layer 44 through the counter substrate 42, and the light of the second lighting unit 30 illuminates the liquid crystal layer 44 through the array substrate 41.
  • the liquid crystal layer 43 is continuously illuminated through the counter substrate 42, but the unreacted reactive monomer 442 that is blocked by the black matrix 422 cannot be illuminated, but only Irradiate other unreacted reactive monomers 442, and the present invention additionally provides a second light unit 30 to irradiate the liquid crystal layer 43 through the TFT array substrate 41, so as to irradiate the unreacted reactive monomers that are blocked by the black matrix 422
  • the monomer 442 is then matched with the first lighting unit 20 to perform lighting at the same time, so that all unreacted reactive monomers 442 react completely.
  • the TFT layer 412 in the TFT array substrate 41 of the present invention includes a first metal layer 4121 and a second metal layer 4122 that are insulated from each other;
  • the regions of the first metal layer 4121 and the second metal layer 4122 close to the plastic frame 43 are each provided with a plurality of openings 4123 spaced apart.
  • the plurality of openings 4123 are distributed in an array.
  • the light generated by the first lighting unit 20 and the second lighting unit 30 are both ultraviolet light.
  • both the first lighting unit 20 and the second lighting unit 30 include a plurality of light tubes 201 arranged in parallel.
  • the lamp tube 201 is a fluorescent lamp or an LED lamp.
  • the distance between the lamp tube 201 and the liquid crystal panel 40 is 10-100 cm.
  • the liquid crystal panel 40 further includes an alignment film 45 disposed on the color resist layer 413 on the side facing the liquid crystal layer 44 and on the black matrix 422 on the side facing the liquid crystal layer 44; the reactive monomer 442 After the reaction occurs, it is polymerized on the alignment film 45.
  • the supporting unit 10 may be a plurality of supporting legs distributed at intervals to reduce the shielding of light.
  • the present invention also provides an optical alignment method, including the following steps:
  • Step S1 Provide a photo-alignment device;
  • the photo-alignment device includes: a supporting unit 10, a first lighting unit 20 disposed above the supporting unit 10, and a second lighting unit 30 disposed below the supporting unit 10;
  • the supporting unit 10 carries the liquid crystal panel 40;
  • the liquid crystal panel 40 includes a TFT array substrate 41 and a counter substrate 42 arranged oppositely, and a plastic frame disposed between the TFT array substrate 41 and the counter substrate 42 43 and a liquid crystal layer 44 disposed between the TFT array substrate 41 and the counter substrate 42 and surrounded by the plastic frame 43;
  • the liquid crystal layer 44 includes a plurality of liquid crystal molecules 441 and a plurality of reactive monomers distributed at intervals Body 442;
  • Step S3 The first lighting unit 20 irradiates the liquid crystal panel 40 to cause some of the reactive monomers 442 of the plurality of reactive monomers 442 to react so that the liquid crystal molecules 441 form a pretilt angle;
  • Step S4 the second lighting unit 30 and the first lighting unit 20 simultaneously irradiate the liquid crystal panel 40 to cause the remaining unreacted reactive monomers 442 among the plurality of reactive monomers 442 to react.
  • the first lighting unit 20 and the second lighting unit 30 are respectively arranged above and below the supporting unit 10, and in the first light alignment, the first lighting unit 20 performs the operation on the liquid crystal panel 40. Illumination causes some of the reactive monomers 442 of the plurality of reactive monomers 442 to react so that the liquid crystal molecules 441 form a pretilt angle.
  • the first illumination unit 20 and the second illumination unit 30 pair the liquid crystal The panel 40 performs double-sided illumination to completely react the unreacted reactive monomers 442 in the first optical alignment.
  • the liquid crystal panel 40 is subsequently lit, all the reactive monomers 442 are completely reacted and will not diffuse to the display area.
  • the time for the second optical alignment can be shortened, and the production efficiency can be improved.
  • the liquid crystal panel 40 is a panel assembled into a cell.
  • the TFT array substrate 41 includes a first base substrate 411, a TFT layer 412 provided on the first base substrate 411, and a color resist layer 413 provided on the TFT layer 412;
  • the substrate 42 includes a second substrate 421 and a black matrix 422 disposed on the second substrate 421; that is, the liquid crystal panel 40 of the present invention is a COA liquid crystal panel.
  • the optical alignment device of the present invention can also perform optical alignment on the liquid crystal motherboard.
  • the TFT array substrate 41 faces the second lighting unit 30, and the opposite substrate 42 faces the first lighting unit 20. That is, the light of the first lighting unit 20 illuminates the liquid crystal layer 44 through the counter substrate 42, and the light of the second lighting unit 30 illuminates the liquid crystal layer 44 through the array substrate 41.
  • the liquid crystal layer 43 is continuously illuminated through the counter substrate 42, but the unreacted reactive monomer 442 that is blocked by the black matrix 422 cannot be illuminated, but only Irradiate other unreacted reactive monomers 442, and the present invention additionally provides a second light unit 30 to irradiate the liquid crystal layer 43 through the TFT array substrate 41, so as to irradiate the unreacted reactive monomers that are blocked by the black matrix 422
  • the monomer 442 is then matched with the first lighting unit 20 to perform lighting at the same time, so that all unreacted reactive monomers 442 react completely.
  • the TFT layer 412 in the TFT array substrate 41 of the present invention includes a first metal layer 4121 and a second metal layer 4122 that are insulated from each other; the first metal layer 4121 The area of the second metal layer 4122 close to the plastic frame 43 is provided with a plurality of openings 4123 spaced apart.
  • the plurality of openings 4123 are distributed in an array.
  • the light generated by the first lighting unit 20 and the second lighting unit 30 are both ultraviolet light.
  • both the first lighting unit 20 and the second lighting unit 30 include a plurality of light tubes 201 arranged in parallel.
  • the lamp tube 201 is a fluorescent lamp or an LED lamp.
  • the distance between the lamp tube 201 and the liquid crystal panel 40 is 10-100 cm.
  • the liquid crystal panel 40 further includes an alignment film 45 disposed on the color resist layer 413 on the side facing the liquid crystal layer 44 and on the black matrix 422 on the side facing the liquid crystal layer 44; the reactive monomer 442 After the reaction occurs, it is polymerized on the alignment film 45.
  • the supporting unit 10 may be a plurality of supporting legs distributed at intervals to reduce the shielding of light.
  • the optical alignment device of the present invention includes a supporting unit, a first lighting unit arranged above the supporting unit, and a second lighting unit arranged below the supporting unit; the supporting unit is used to carry the liquid crystal panel
  • the liquid crystal panel includes a TFT array substrate and a counter substrate arranged oppositely, and a plastic frame and a liquid crystal layer disposed between the TFT array substrate and the counter substrate; the liquid crystal layer includes a plurality of liquid crystal molecules distributed at intervals and A plurality of reactive monomers, in the first photo-alignment, the first illuminating unit irradiates the liquid crystal panel to cause some of the reactive monomers in the plurality of reactive monomers to react so that the liquid crystal molecules form a pretilt angle
  • the liquid crystal panel is illuminated on both sides by the first light unit and the second light unit to completely react the unreacted reactive monomers in the first light alignment, so as to prevent the liquid crystal panel from forming a peripheral display Defects, improve product yield.
  • the optical alignment method of the present invention can be used to

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光配向装置及光配向方法。光配向装置包括支撑单元(10)、设于支撑单元(10)上方的第一光照单元(20)以及设于支撑单元(10)下方的第二光照单元(30);支撑单元(10)用于承载液晶面板(40);液晶面板(40)包括相对设置的TFT阵列基板(41)和对置基板(42)以及设于TFT阵列基板(41)和对置基板(42)之间的胶框(43)和液晶层(44);液晶层(44)包括间隔分布的多个液晶分子(441)以及多个反应型单体(442),通过在第一次光配向中,第一光照单元(20)对液晶面板(40)进行光照使多个反应型单体(442)中的部分反应型单体(442)产生反应以使液晶分子(441)形成预倾角,在第二次光配向中,通过第一光照单元(20)和第二光照单元(30)对液晶面板(40)进行双面光照,将第一次光配向中未反应的反应型单体(442)反应完全,避免液晶面板(40)形成周边显示缺陷,提高产品良率。

Description

光配向装置及光配向方法 技术领域
本发明涉及显示技术领域,尤其涉及一种光配向装置及光配向方法。
背景技术
薄膜晶体管(Thin Film Transistor,TFT)是目前液晶显示装置(Liquid Crystal Display,LCD)和有源矩阵驱动式有机电致发光显示装置(Active Matrix Organic Light-Emitting Diode,AMOLED)中的主要驱动元件,直接关系平板显示装置的显示性能。
现有市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)与彩色滤光片(Color Filter,CF)基板之间灌入液晶分子,并在两片基板上分别施加像素电压和公共电压,通过像素电压和公共电压之间形成的电场控制液晶分子的旋转方向,以将背光模组的光线透射出来产生画面。液晶显示面板成型工艺一般包括:前段阵列(Array)制程(薄膜、黄光、刻蚀及剥膜)、中段成盒(Cell)制程(TFT基板与CF基板贴合)及后段模组组装制程(驱动IC与印刷电路板压合)。其中,前段Array制程主要是形成TFT基板,以便于控制液晶分子的运动;中段Cell制程主要是在TFT基板与CF基板之间添加液晶;后段模组组装制程主要是驱动IC压合与印刷电路板的整合,进而驱动液晶分子转动,显示图像。
聚合物稳定垂直排列 (polymer stabilized vertical alignment,PSVA)是TFT-LCD的一种技术,在PSVA的cell制程中,液晶里包含有反应型单体(RM),通过对基板照射紫外光使液晶中的反应型单体发生反应,在加电压的协同作用下使液晶形成预倾角,这一制程称为第一次紫外光配向,第一次紫外光配向后,液晶盒中还残留有未反应完全的RM,需要第二次紫外光照射使其反应完全(此道制程不加电压),这一制程称为第二次紫外光配向。由于第一次紫外光配向后RM浓度降低,第二次紫外光配向时RM反应速度会大大降低,且第二次紫外光配向需保证残留的RM反应完全,因此第二次紫外光配向时间都很长,一般达数十分钟至两小时左右。
对于COA(Color Filter On Array)产品,RGB色阻做在了TFT阵列基板上,色阻对紫外光的衰减很强,因此第一次紫外光配向和第二次紫外光配向时均是将紫外光透过CF基板照射液晶,避开色阻的影响。但是CF基板的周边有很宽的黑色矩阵(BM),BM会遮挡住紫外光,导致在BM下方LC中的RM无法反应,从而聚集在面板周边。当面板点亮时,由于在BM下方残留的RM开始往显示区扩散,导致在面板周边出现颜色渐变,形成周边显示缺陷(mura),且在持续点亮过程中,残留的RM会发生反应,加重周边mura,影响产品良率。
技术问题
本发明的目的在于提供一种光配向装置,可以使反应型单体反应完全,避免液晶面板形成周边显示缺陷,提高产品良率。
本发明的目的还在于提供一种光配向方法,可以使反应型单体反应完全,避免液晶面板形成周边显示缺陷,提高产品良率。
技术解决方案
为实现上述目的,本发明提供了一种光配向装置,包括:支撑单元、设于所述支撑单元上方的第一光照单元以及设于所述支撑单元下方的第二光照单元;
所述支撑单元用于承载液晶面板;所述液晶面板包括相对设置的TFT阵列基板和对置基板、设于所述TFT阵列基板和对置基板之间的胶框以及设于所述TFT阵列基板和对置基板之间并被所述胶框包围的液晶层;所述液晶层包括间隔分布的多个液晶分子以及多个反应型单体;
所述第一光照单元用于对液晶面板进行光照使多个反应型单体中的部分反应型单体产生反应以使液晶分子形成预倾角;
所述第二光照单元用于和第一光照单元同时对液晶面板进行光照以使多个反应型单体中剩余的未反应的反应型单体产生反应。
所述TFT阵列基板面向于第二光照单元,所述对置基板面向于第一光照单元。
所述TFT阵列基板包括第一衬底基板、设于所述第一衬底基板上的TFT层以及设于所述TFT层上的色阻层;所述对置基板包括第二衬底基板以及设于所述第二衬底基板上的黑色矩阵。
所述TFT层包括相互绝缘的第一金属层和第二金属层;所述第一金属层和第二金属层靠近胶框的区域均设有多个间隔分布的开孔。
所述第一光照单元与第二光照单元均包括平行设置的多个灯管;所述灯管为荧光灯或LED灯;所述灯管与液晶面板之间的距离为10-100cm。
本发明还提供一种光配向方法,包括如下步骤:
步骤S1、提供光配向装置;所述光配向装置包括:支撑单元、设于所述支撑单元上方的第一光照单元以及设于所述支撑单元下方的第二光照单元;
步骤S2、所述支撑单元承载液晶面板;所述液晶面板包括相对设置的TFT阵列基板和对置基板、设于所述TFT阵列基板和对置基板之间的胶框以及设于所述TFT阵列基板和对置基板之间并被所述胶框包围的液晶层;所述液晶层包括间隔分布的多个液晶分子以及多个反应型单体;
步骤S3、所述第一光照单元对液晶面板进行光照使多个反应型单体中的部分反应型单体产生反应以使液晶分子形成预倾角;
步骤S4、所述第二光照单元和第一光照单元同时对液晶面板进行光照以使多个反应型单体中剩余的未反应的反应型单体产生反应。
所述TFT阵列基板面向于第二光照单元,所述对置基板面向于第一光照单元。
所述TFT阵列基板包括第一衬底基板、设于所述第一衬底基板上的TFT层以及设于所述TFT层上的色阻层;所述对置基板包括第二衬底基板以及设于所述第二衬底基板上的黑色矩阵。
所述TFT层包括相互绝缘的第一金属层和第二金属层;所述第一金属层和第二金属层靠近胶框的区域均设有多个间隔分布的开孔。
所述第一光照单元与第二光照单元均包括平行设置的多个灯管;所述灯管为荧光灯或LED灯;所述灯管与液晶面板之间的距离为10-100cm。
有益效果
本发明的有益效果:本发明的光配向装置包括支撑单元、设于所述支撑单元上方的第一光照单元以及设于所述支撑单元下方的第二光照单元;所述支撑单元用于承载液晶面板;所述液晶面板包括相对设置的TFT阵列基板和对置基板以及设于所述TFT阵列基板和对置基板之间的胶框和液晶层;所述液晶层包括间隔分布的多个液晶分子以及多个反应型单体,通过在第一次光配向中,所述第一光照单元对液晶面板进行光照使多个反应型单体中的部分反应型单体产生反应以使液晶分子形成预倾角,在第二次光配向中,通过第一光照单元和第二光照单元对液晶面板进行双面光照,将第一次光配向中未反应的反应型单体反应完全,避免液晶面板形成周边显示缺陷,提高产品良率。本发明的光配向方法,可以使反应型单体反应完全,避免液晶面板形成周边显示缺陷,提高产品良率。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的光配向装置的示意图;
图2为本发明的光配向装置中的液晶面板示意图;
图3为本发明的光配向装置中的第一金属层和第二金属层的开孔示意图;
图4为本发明的光配向方法的流程图。
本发明的实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种光配向装置,包括:支撑单元10、设于所述支撑单元10上方的第一光照单元20以及设于所述支撑单元10下方的第二光照单元30;
所述支撑单元10用于承载液晶面板40;所述液晶面板40包括相对设置的TFT阵列基板41和对置基板42、设于所述TFT阵列基板41和对置基板42之间的胶框43以及设于所述TFT阵列基板41和对置基板42之间并被所述胶框43包围的液晶层44;所述液晶层44包括间隔分布的多个液晶分子441以及多个反应型单体442;
所述第一光照单元20用于对液晶面板40进行光照使多个反应型单体442中的部分反应型单体442产生反应以使液晶分子441形成预倾角;
所述第二光照单元30用于和第一光照单元20同时对液晶面板40进行光照以使多个反应型单体442中剩余的未反应的反应型单体442产生反应。
需要说明的是,本发明通过在支撑单元10的上方及下方分别设置第一光照单元20和第二光照单元30,在第一次光配向中,所述第一光照单元20对液晶面板40进行光照使多个反应型单体442中的部分反应型单体442产生反应以使液晶分子441形成预倾角,在第二次光配向中,通过第一光照单元20和第二光照单元30对液晶面板40进行双面光照,将第一次光配向中未反应的反应型单体442反应完全,后续点亮液晶面板40时,由于所有的反应型单体442反应完全而不会扩散至显示区,避免液晶面板40周边出现颜色渐变,从而避免液晶面板40形成周边显示缺陷,提高产品良率。此外,还能缩短第二次光配向的时间,提高生产效率。
具体的,所述液晶面板40为对组成盒后的面板。
具体的,请参阅图2,所述TFT阵列基板41包括第一衬底基板411、设于所述第一衬底基板411上的TFT层412以及设于所述TFT层412上的色阻层413;所述对置基板42包括第二衬底基板421以及设于所述第二衬底基板421上的黑色矩阵422;即本发明的液晶面板40为COA型液晶面板。当然,基于同一发明理念,本发明的光配向装置也可以对液晶母板进行光配向。
进一步的,所述TFT阵列基板41面向于第二光照单元30,所述对置基板42面向于第一光照单元20。即第一光照单元20的光线透过对置基板42照射液晶层44,第二光照单元30的光线透过阵列基板41照射液晶层44。
由于在第一次光配向中,多个反应型单体442的数量较多和反应率的影响以及靠近胶框43的部分反应型单体442会被黑色矩阵422遮挡住导致无法被光照到,因此第一次光配向后还会残留一些未反应的反应型单体442,这些未反应的反应型单体442主要集中靠近胶框43且被黑色矩阵422遮挡住的区域,也就是液晶面板40的周边,现有技术中在第二光配向中,继续透过对置基板42对液晶层43进行光照,还是无法照射到被黑色矩阵422遮挡住未反应的反应型单体442,而只能照射到其他的未反应的反应型单体442,而本发明额外设置第二光照单元30透过TFT阵列基板41对液晶层43进行光照,从而照射到被黑色矩阵422遮挡住未反应的反应型单体442,再与第一光照单元20配合同时进行光照,使所有的未反应的反应型单体442反应完全。
请参阅图3,为了保证第二光照单元30能透过TFT阵列基板41,本发明的TFT阵列基板41中的TFT层412包括相互绝缘的第一金属层4121和第二金属层4122;所述第一金属层4121和第二金属层4122靠近胶框43的区域均设有多个间隔分布的开孔4123。
进一步的,所述多个开孔4123呈阵列式分布。
进一步的,所述第一光照单元20与第二光照单元30产生的光线均为紫外光。
具体的,所述第一光照单元20与第二光照单元30均包括平行设置的多个灯管201。
具体的,所述灯管201为荧光灯或LED灯。
具体的,所述灯管201与液晶面板40之间的距离为10-100cm。
具体的,所述液晶面板40还包括设于所述色阻层413上面向液晶层44一侧以及所述黑色矩阵422上面向液晶层44一侧的配向膜45;所述反应型单体442产生反应后聚合在该配向膜45上。
具体的,所述支撑单元10可以为多个间隔分布的支撑脚,以减少对光线的遮挡。
请参阅图4,基于上述光配向装置,本发明还提供一种光配向方法,包括如下步骤:
步骤S1、提供光配向装置;所述光配向装置包括:支撑单元10、设于所述支撑单元10上方的第一光照单元20以及设于所述支撑单元10下方的第二光照单元30;
步骤S2、所述支撑单元10承载液晶面板40;所述液晶面板40包括相对设置的TFT阵列基板41和对置基板42、设于所述TFT阵列基板41和对置基板42之间的胶框43以及设于所述TFT阵列基板41和对置基板42之间并被所述胶框43包围的液晶层44;所述液晶层44包括间隔分布的多个液晶分子441以及多个反应型单体442;
步骤S3、所述第一光照单元20对液晶面板40进行光照使多个反应型单体442中的部分反应型单体442产生反应以使液晶分子441形成预倾角;
步骤S4、所述第二光照单元30和第一光照单元20同时对液晶面板40进行光照以使多个反应型单体442中剩余的未反应的反应型单体442产生反应。
需要说明的是,本发明通过在支撑单元10的上方及下方分别设置第一光照单元20和第二光照单元30,在第一次光配向中,所述第一光照单元20对液晶面板40进行光照使多个反应型单体442中的部分反应型单体442产生反应以使液晶分子441形成预倾角,在第二次光配向中,通过第一光照单元20和第二光照单元30对液晶面板40进行双面光照,将第一次光配向中未反应的反应型单体442反应完全,后续点亮液晶面板40时,由于所有的反应型单体442反应完全而不会扩散至显示区,避免液晶面板40周边出现颜色渐变,从而避免液晶面板40形成周边显示缺陷,提高产品良率。此外,还能缩短第二次光配向的时间,提高生产效率。
具体的,所述液晶面板40为对组成盒后的面板。
具体的,所述TFT阵列基板41包括第一衬底基板411、设于所述第一衬底基板411上的TFT层412以及设于所述TFT层412上的色阻层413;所述对置基板42包括第二衬底基板421以及设于所述第二衬底基板421上的黑色矩阵422;即本发明的液晶面板40为COA型液晶面板。当然,基于同一发明理念,本发明的光配向装置也可以对液晶母板进行光配向。
进一步的,所述TFT阵列基板41面向于第二光照单元30,所述对置基板42面向于第一光照单元20。即第一光照单元20的光线透过对置基板42照射液晶层44,第二光照单元30的光线透过阵列基板41照射液晶层44。
由于在第一次光配向中,多个反应型单体442的数量较多和反应率的影响以及靠近胶框43的部分反应型单体442会被黑色矩阵422遮挡住导致无法被光照到,因此第一次光配向后还会残留一些未反应的反应型单体442,这些未反应的反应型单体442主要集中靠近胶框43且被黑色矩阵422遮挡住的区域,也就是液晶面板40的周边,现有技术中在第二光配向中,继续透过对置基板42对液晶层43进行光照,还是无法照射到被黑色矩阵422遮挡住未反应的反应型单体442,而只能照射到其他的未反应的反应型单体442,而本发明额外设置第二光照单元30透过TFT阵列基板41对液晶层43进行光照,从而照射到被黑色矩阵422遮挡住未反应的反应型单体442,再与第一光照单元20配合同时进行光照,使所有的未反应的反应型单体442反应完全。
为了保证第二光照单元30能透过TFT阵列基板41,本发明的TFT阵列基板41中的TFT层412包括相互绝缘的第一金属层4121和第二金属层4122;所述第一金属层4121和第二金属层4122靠近胶框43的区域均设有多个间隔分布的开孔4123。
进一步的,所述多个开孔4123呈阵列式分布。
进一步的,所述第一光照单元20与第二光照单元30产生的光线均为紫外光。
具体的,所述第一光照单元20与第二光照单元30均包括平行设置的多个灯管201。
具体的,所述灯管201为荧光灯或LED灯。
具体的,所述灯管201与液晶面板40之间的距离为10-100cm。
具体的,所述液晶面板40还包括设于所述色阻层413上面向液晶层44一侧以及所述黑色矩阵422上面向液晶层44一侧的配向膜45;所述反应型单体442产生反应后聚合在该配向膜45上。
具体的,所述支撑单元10可以为多个间隔分布的支撑脚,以减少对光线的遮挡。
综上所述,本发明的光配向装置包括支撑单元、设于所述支撑单元上方的第一光照单元以及设于所述支撑单元下方的第二光照单元;所述支撑单元用于承载液晶面板;所述液晶面板包括相对设置的TFT阵列基板和对置基板以及设于所述TFT阵列基板和对置基板之间的胶框和液晶层;所述液晶层包括间隔分布的多个液晶分子以及多个反应型单体,通过在第一次光配向中,所述第一光照单元对液晶面板进行光照使多个反应型单体中的部分反应型单体产生反应以使液晶分子形成预倾角,在第二次光配向中,通过第一光照单元和第二光照单元对液晶面板进行双面光照,将第一次光配向中未反应的反应型单体反应完全,避免液晶面板形成周边显示缺陷,提高产品良率。本发明的光配向方法,可以使反应型单体反应完全,避免液晶面板形成周边显示缺陷,提高产品良率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种光配向装置,包括:支撑单元、设于所述支撑单元上方的第一光照单元以及设于所述支撑单元下方的第二光照单元;
    所述支撑单元用于承载液晶面板;所述液晶面板包括相对设置的TFT阵列基板和对置基板、设于所述TFT阵列基板和对置基板之间的胶框以及设于所述TFT阵列基板和对置基板之间并被所述胶框包围的液晶层;所述液晶层包括间隔分布的多个液晶分子以及多个反应型单体;
    所述第一光照单元用于对液晶面板进行光照使多个反应型单体中的部分反应型单体产生反应以使液晶分子形成预倾角;
    所述第二光照单元用于和第一光照单元同时对液晶面板进行光照以使多个反应型单体中剩余的未反应的反应型单体产生反应。
  2. 如权利要求1所述的光配向装置,其中,所述TFT阵列基板面向于第二光照单元,所述对置基板面向于第一光照单元。
  3. 如权利要求2所述的光配向装置,其中,所述TFT阵列基板包括第一衬底基板、设于所述第一衬底基板上的TFT层以及设于所述TFT层上的色阻层;所述对置基板包括第二衬底基板以及设于所述第二衬底基板上的黑色矩阵。
  4. 如权利要求3所述的光配向装置,其中,所述TFT层包括相互绝缘的第一金属层和第二金属层;所述第一金属层和第二金属层靠近胶框的区域均设有多个间隔分布的开孔。
  5. 如权利要求1所述的光配向装置,其中,所述第一光照单元与第二光照单元均包括平行设置的多个灯管;所述灯管为荧光灯或LED灯;所述灯管与液晶面板之间的距离为10-100cm。
  6. 一种光配向方法,包括如下步骤:
    步骤S1、提供光配向装置;所述光配向装置包括:支撑单元、设于所述支撑单元上方的第一光照单元以及设于所述支撑单元下方的第二光照单元;
    步骤S2、所述支撑单元承载液晶面板;所述液晶面板包括相对设置的TFT阵列基板和对置基板、设于所述TFT阵列基板和对置基板之间的胶框以及设于所述TFT阵列基板和对置基板之间并被所述胶框包围的液晶层;所述液晶层包括间隔分布的多个液晶分子以及多个反应型单体;
    步骤S3、所述第一光照单元对液晶面板进行光照使多个反应型单体中的部分反应型单体产生反应以使液晶分子形成预倾角;
    步骤S4、所述第二光照单元和第一光照单元同时对液晶面板进行光照以使多个反应型单体中剩余的未反应的反应型单体产生反应。
  7. 如权利要求6所述的光配向方法,其中,所述TFT阵列基板面向于第二光照单元,所述对置基板面向于第一光照单元。
  8. 如权利要求7所述的光配向方法,其中,所述TFT阵列基板包括第一衬底基板、设于所述第一衬底基板上的TFT层以及设于所述TFT层上的色阻层;所述对置基板包括第二衬底基板以及设于所述第二衬底基板上的黑色矩阵。
  9. 如权利要求8所述的光配向方法,其中,所述TFT层包括相互绝缘的第一金属层和第二金属层;所述第一金属层和第二金属层靠近胶框的区域均设有多个间隔分布的开孔。
  10. 如权利要求6所述的光配向方法,其中,所述第一光照单元与第二光照单元均包括平行设置的多个灯管;所述灯管为荧光灯或LED灯;所述灯管与液晶面板之间的距离为10-100cm。
PCT/CN2019/083115 2019-03-26 2019-04-17 光配向装置及光配向方法 WO2020191835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910234864.2 2019-03-26
CN201910234864.2A CN109752885A (zh) 2019-03-26 2019-03-26 光配向装置及光配向方法

Publications (1)

Publication Number Publication Date
WO2020191835A1 true WO2020191835A1 (zh) 2020-10-01

Family

ID=66409321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083115 WO2020191835A1 (zh) 2019-03-26 2019-04-17 光配向装置及光配向方法

Country Status (2)

Country Link
CN (1) CN109752885A (zh)
WO (1) WO2020191835A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317148B (zh) * 2019-06-27 2022-05-03 Tcl华星光电技术有限公司 反应型单体和液晶组合物及液晶显示面板
CN113406825A (zh) * 2021-06-02 2021-09-17 Tcl华星光电技术有限公司 紫外配向装置及配向方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009116194A (ja) * 2007-11-08 2009-05-28 Sharp Corp 液晶表示装置の製造方法
JP2009162928A (ja) * 2007-12-28 2009-07-23 Sharp Corp 液晶表示装置および液晶表示装置の製造方法
CN101726901A (zh) * 2008-10-10 2010-06-09 华映视讯(吴江)有限公司 液晶显示面板的制作方法
CN102087440A (zh) * 2009-12-08 2011-06-08 华映视讯(吴江)有限公司 液晶显示面板的制作方法
CN105759508A (zh) * 2016-04-21 2016-07-13 深圳市华星光电技术有限公司 用于液晶显示面板的光配向装置
CN109358454A (zh) * 2018-12-15 2019-02-19 深圳市华星光电半导体显示技术有限公司 用于液晶配向的紫外线照射装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707495B (zh) * 2011-03-28 2015-03-11 群创光电股份有限公司 液晶显示器的制造方法
CN103605232A (zh) * 2013-11-15 2014-02-26 深圳市华星光电技术有限公司 液晶显示面板及液晶显示器
CN104597661B (zh) * 2014-11-21 2017-06-27 深圳市华星光电技术有限公司 垂直配向液晶显示器及其制作方法
CN106547150A (zh) * 2016-11-23 2017-03-29 惠科股份有限公司 一种光反应机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009116194A (ja) * 2007-11-08 2009-05-28 Sharp Corp 液晶表示装置の製造方法
JP2009162928A (ja) * 2007-12-28 2009-07-23 Sharp Corp 液晶表示装置および液晶表示装置の製造方法
CN101726901A (zh) * 2008-10-10 2010-06-09 华映视讯(吴江)有限公司 液晶显示面板的制作方法
CN102087440A (zh) * 2009-12-08 2011-06-08 华映视讯(吴江)有限公司 液晶显示面板的制作方法
CN105759508A (zh) * 2016-04-21 2016-07-13 深圳市华星光电技术有限公司 用于液晶显示面板的光配向装置
CN109358454A (zh) * 2018-12-15 2019-02-19 深圳市华星光电半导体显示技术有限公司 用于液晶配向的紫外线照射装置

Also Published As

Publication number Publication date
CN109752885A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
US8721096B2 (en) Backlight unit of liquid crystal display device and method for driving the same
US9097931B2 (en) Color filter substrate and liquid crystal display
US20100134483A1 (en) Driving method thereof
KR101165840B1 (ko) 백라이트유닛과 이를 이용한 액정표시장치
US20230375871A1 (en) Manufacturing method of liquid crystal display panel and liquid crystal display panel
WO2020191835A1 (zh) 光配向装置及光配向方法
WO2020133818A1 (zh) 紫外光固化设备及框胶固化方法
CN101923251B (zh) 液晶显示器基板配向处理方法及液晶显示器制造方法
KR101267084B1 (ko) 액정모듈
US8279381B2 (en) Liquid crystal display and fabricating method thereof
WO2020191830A1 (zh) 液晶显示面板及预倾角形成方法
CN110998425A (zh) 液晶显示面板和液晶显示面板的制造方法
WO2020186561A1 (zh) 液晶显示面板的制作方法
CN108803150B (zh) 光照装置及对mmg面板进行配向的方法
US9418601B2 (en) Display device with luminance boosting unit
CN111752017A (zh) 一种lcd生产的ito图形刻蚀工艺
KR20050028718A (ko) 액정표시장치 및 그의 구동방법
US20220326576A1 (en) Alignment film material and liquid crystal display device
KR101786044B1 (ko) 발광다이오드 어레이 구동 장치 및 방법과 이를 이용한 액정표시장치
CN114527591B (zh) 液晶显示面板的制备方法及液晶显示面板
CN108919566A (zh) 用于液晶显示器的液晶分子层及液晶显示器
US8953140B2 (en) Method for setting pre-tilt angle of liquid crystal molecule
KR101818460B1 (ko) 백 라이트 유닛 및 이를 이용한 액정 표시장치
US11592714B2 (en) Method of coating polyimide film and method of fabricating display panel using same
EP4053618A1 (en) Panel repairing device and panel repairing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921168

Country of ref document: EP

Kind code of ref document: A1