WO2020191719A1 - 可重构的液芯光纤及其制备方法、激光器及其制备方法 - Google Patents

可重构的液芯光纤及其制备方法、激光器及其制备方法 Download PDF

Info

Publication number
WO2020191719A1
WO2020191719A1 PCT/CN2019/080116 CN2019080116W WO2020191719A1 WO 2020191719 A1 WO2020191719 A1 WO 2020191719A1 CN 2019080116 W CN2019080116 W CN 2019080116W WO 2020191719 A1 WO2020191719 A1 WO 2020191719A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
sub
laser
optical fiber
liquid
Prior art date
Application number
PCT/CN2019/080116
Other languages
English (en)
French (fr)
Inventor
何俊
王义平
张哲�
丘志鸿
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2019/080116 priority Critical patent/WO2020191719A1/zh
Publication of WO2020191719A1 publication Critical patent/WO2020191719A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding

Definitions

  • the present invention relates to the field of optical technology, in particular to a reconfigurable liquid core fiber and a preparation method thereof, a laser and a preparation method thereof.
  • the application range of fiber lasers is very wide, including laser fiber communication, laser space telecommunication, industrial shipbuilding, automobile manufacturing, laser engraving, laser marking, laser cutting, printing rolls, metal and non-metal drilling/cutting/welding (brazing, quenching) Water, cladding and deep welding), military and national defense security, medical equipment and equipment, large-scale infrastructure, as the pump source of other lasers, etc.
  • the fiber amplifier developed by the fiber laser using the fiber doped with rare earth elements has brought revolutionary changes to the field of light wave technology. Since any optical amplifier can form a laser through an appropriate feedback mechanism, fiber lasers can be developed on the basis of fiber amplifiers.
  • the currently developed fiber lasers mainly use rare-earth-doped fibers as gain media.
  • the fiber core in the fiber laser is very thin, it is easy to form a high power density in the fiber under the action of the pump light, causing the laser energy level of the laser working substance to "number inversion". Therefore, when the positive feedback loop is properly added (to form a resonant cavity), laser oscillation can be formed.
  • liquid dyes have a low threshold, a wide range of wavelength adjustment, and basically cover the entire visible light region.
  • frequency doubling technology can also extend to the ultraviolet and infrared regions. Therefore, the liquid core fiber laser came into being.
  • the prior art there are many types of liquid core fiber lasers, but the same type of liquid core fiber laser can only output laser light with a single wavelength, which results in low applicability of the liquid core fiber laser.
  • the purpose of the present invention is to provide a reconfigurable liquid core fiber and a preparation method thereof, a laser and a preparation method thereof, so that it can output lasers of different wavelengths, thereby improving the applicability of the laser.
  • a reconfigurable liquid-core optical fiber includes a first sub-fiber, a second sub-fiber, and a third sub-fiber connected in sequence; the second sub-fiber includes a second core, and the second core has a hollow structure , The first sub-fiber and the third sub-fiber together make the second sub-fiber form a resonant cavity; wherein a liquid circulation channel is provided on the second sub-fiber, and the liquid circulation channel is in communication with the second core, The liquid circulation channel is used for injecting and discharging liquid dye into the second core, so as to form a reconfigurable liquid core optical fiber.
  • the liquid circulation channel is provided with a through opening, and the through opening is used to inject and discharge the liquid dye in the second core.
  • a conduit is provided on the port.
  • the through port includes a first through port and a second through port, wherein the first through port is used for injecting liquid dye, and the second through port is used for discharging dye.
  • a first fiber Bragg grating is provided in the first sub-fiber
  • a second fiber Bragg grating is provided in the third sub-fiber, wherein the reflection wavelengths of the first fiber Bragg grating and the second fiber Bragg grating are Similarly, the reflectivity of the first fiber Bragg grating is less than the reflectivity of the second fiber Bragg grating.
  • a method for preparing the above-mentioned reconfigurable liquid core optical fiber includes the following steps: a channel preparation step, preparing a liquid circulation channel on a second sub-fiber; a connecting step, sequentially connecting the first sub-fiber, the second sub-fiber, and The third sub-fiber; injection step, inject liquid dye into the second sub-fiber through the liquid circulation channel; writing step, write the first fiber Bragg grating in the first sub-fiber, and write the second sub-fiber in the third sub-fiber Fiber Bragg grating.
  • a laser includes a pump laser: the output end of the pump laser is connected to the input end of a wavelength division multiplexer; a wavelength division multiplexer: the wavelength division multiplexer includes an input end, a first output end, and The second output end, the first output end is connected to the input end of the first sub-fiber, and the second output end is used to output the laser lasing in the liquid core fiber; and the above-mentioned reconfigurable liquid core fiber.
  • the laser further includes an optical fiber isolator, the input end of the optical fiber isolator is connected with the second output end of the wavelength division multiplexer, and the output end of the optical fiber isolator is used to output the laser lasing in the liquid core fiber laser.
  • the laser further includes a laser analyzer connected to the output end of the optical fiber isolator, wherein the laser analyzer is used to analyze the information of the lasing laser.
  • a method for preparing the laser includes the following steps: preparing a liquid circulation channel on a second sub-fiber; sequentially connecting the first sub-fiber, the second sub-fiber and the third sub-fiber; Inject liquid dye into the sub-fiber; connect the output end of the pump laser and the input end of the wavelength division multiplexer, the first output end of the wavelength division multiplexer, the first sub-fiber, and the second output end of the wavelength division multiplexer in sequence And the input end of the optical fiber isolator; the first fiber Bragg grating is written in the first sub-fiber, and the second fiber Bragg grating is written in the third sub-fiber.
  • the present invention provides a liquid circulation channel on the second sub-optical fiber.
  • the reconstruction can be realized only by replacing the corresponding liquid dye through the liquid circulation channel, thereby outputting the corresponding The wavelength of the laser improves its applicability.
  • the invention can be applied to important fields such as optical fiber communication, laser space long-distance communication, military and national defense security.
  • Fig. 1 is a schematic diagram of a reconfigurable liquid core optical fiber according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a laser according to an embodiment of the present invention.
  • Fig. 3 is a flowchart of a method for preparing a reconfigurable liquid core optical fiber according to an embodiment of the present invention.
  • Fig. 4 is a flowchart of a method for preparing a laser according to an embodiment of the present invention.
  • Fig. 1 is a schematic diagram of a reconfigurable liquid core optical fiber according to an embodiment of the present invention.
  • the reconfigurable liquid core optical fiber 1 may have a first sub-fiber 11, a second sub-fiber 12, and a third sub-fiber 13 connected in sequence, and the second sub-fiber 12 includes a second core 121 ,
  • the second fiber core 121 has a hollow structure, and the first sub-fiber 11 and the third sub-fiber 13 together make the second sub-fiber 12 form a resonant cavity; wherein the second sub-fiber 12 is provided with a liquid circulation channel 14 for liquid circulation
  • the channel 14 communicates with the second core 121, and the second sub-optical fiber 12 can inject and discharge liquid dye into the second core 121 through the liquid circulation channel 14, thereby forming a reconfigurable liquid core optical fiber.
  • the liquid circulation channel 14 is provided on the second sub-optical fiber 12.
  • the liquid dye in the second core 121 needs to be replaced, the liquid dye in the second core 121 is first discharged through the liquid circulation channel 14. The required liquid dye is injected into the second core 121 through the liquid circulation channel 14 to achieve reconstruction, thereby improving its applicability.
  • the liquid circulation channel 14 penetrates the second sub-optical fiber 12, and a first through hole 141 and a second through hole 142 are formed on the circumferential side wall of the second sub-optical fiber 12.
  • the liquid dye is injected into the second core 121 through the first port 141 and discharged from the second core 121 through the second port 142, so that the reconfigurable liquid core optical fiber 1 can be reconstructed.
  • the structure is ingeniously designed and can output different wavelengths according to different requirements, thereby improving its applicability.
  • the liquid circulation channel 14 may also partially penetrate the second sub-optical fiber 12, and a through port is formed on the circumferential side wall of the second sub-optical fiber 12, and the liquid dye can be injected through the through port.
  • the inside of the second core 121 can be discharged from the inside of the second core 121 through the opening, thereby realizing the reconstruction of the reconfigurable liquid core optical fiber 1.
  • a first conduit 143 is provided on the first port 141, through which the liquid dye can be easily injected; a second conduit 144 is provided on the second port 142, which passes through the The conduit 144 can facilitate the discharge of the liquid dye.
  • the liquid dyes can be dyes with different energy level structures to output lasers of different wavelengths.
  • the dyes include but are not limited to flash dyes, coumarin dyes, cyanine dyes, and the like.
  • the refractive index of the liquid dye in the second sub-fiber 12 is greater than the refractive index of the cladding material, thereby forming a refractive index guided waveguide.
  • the first sub-fiber 11 and the third sub-fiber 13 are quartz fibers, where the quartz fiber can be a common single-mode fiber, a hydrogen-carrying single-mode fiber, a non-stop single-mode photonic crystal fiber, and a solid-core multi-mode fiber. Optical fiber or photonic crystal multimode fiber, etc. It can be understood that, in an alternative embodiment, the first sub-fiber 11 and the third sub-fiber 13 may also be multi-component glass fibers or plastic fibers.
  • a first fiber Bragg grating 111 is provided in the first sub-fiber 11, and a second fiber Bragg grating 131 is provided in the third sub-fiber 13, which passes through the first fiber Bragg grating 111 and the second fiber Bragg grating 131 , Thereby forming a resonant cavity together. Since the first sub-fiber 11, the second sub-fiber 12, and the third sub-fiber 13 adopt a split structure, the first sub-fiber 11 and the third sub-fiber 13 can be replaced according to the required feedback wavelength, and the The corresponding fiber Bragg gratings can be written on the subsequent first sub-fiber 11 and third sub-fiber 13 without replacing the entire fiber, thereby greatly reducing the cost.
  • Fig. 2 is a schematic diagram of a laser according to an embodiment of the present invention.
  • the laser 10 can have a pump laser 2, a wavelength division multiplexer 3, a reconfigurable liquid core fiber 1 as in any of the foregoing embodiments, the output end of the pump laser 2 and the wavelength division
  • the input 31 of the multiplexer 3 is connected.
  • the wavelength division multiplexer 3 includes an input 31, a first output 32, and a second output 33.
  • the first output 32 is connected to the input of the first sub-fiber 11.
  • the second output end 33 is used to output the laser light lasing in the liquid core fiber.
  • the pump laser 2 is a pulsed laser, and the wavelength of the pump laser 2 corresponds to the energy level structure of the liquid dye.
  • the liquid dye molecule absorbs the pump laser 2 so that the electron energy level is reversed.
  • the reflection wavelengths of the first fiber Bragg grating 111 and the second fiber Bragg grating 131 are the same.
  • the two fiber Bragg gratings and liquid dyes with the same reflection wavelength have the same wavelength, which is different from the wavelength of the pump laser 2 so that the pump laser 2 can be injected into the resonant cavity of the second sub-fiber 12.
  • the reflectivity of the first fiber Bragg grating 111 is smaller than that of the second fiber Bragg grating 131, the first fiber Bragg grating 111 is used to output laser light lasing in the resonator; the second fiber Bragg grating 131 is used To completely reflect the laser lasing in the resonant cavity, thereby amplifying the lasing laser.
  • the first fiber Bragg grating 111 and the second fiber Bragg grating 131 when the distance between the first fiber Bragg grating 111 and the second fiber Bragg grating 131 is 0.5 mm-2 mm, that is, the length of the second fiber is 0.5mm-2mm, the first fiber Bragg grating 111 and the second fiber Bragg grating 131 can form a ⁇ -phase shifted fiber Bragg grating, thereby forming an ultra-narrow linewidth distributed feedback Type (DFB) fiber laser.
  • DFB distributed feedback Type
  • the laser 10 may have an optical fiber isolator 4.
  • the input end of the optical fiber isolator 4 is connected to the second output end 33 of the wavelength division multiplexer 3, and the output end of the optical fiber isolator 4 is used to output the liquid.
  • the optical fiber isolator 4 is a magneto-optical crystal device with Faraday rotation effect.
  • the laser beam transmitted in the forward direction can pass, and the laser beam transmitted in the reverse direction is prohibited from passing, thereby preventing backward transmission in the optical path due to various reasons.
  • the laser 10 may have a laser analyzer 5, which is connected to the output end of the optical fiber isolator 4.
  • the laser analyzer 5 includes, but is not limited to, a spectrum analyzer, a high-speed photodetector, Spectrum analyzer, oscilloscope, etc.
  • the laser analyzer 5 can measure and display information such as the wavelength, intensity, repetition frequency, and beat frequency of the lasing laser. It can be understood that, in an alternative embodiment, the laser analyzer 5 can also be directly connected to the second output end 33 of the wavelength division multiplexer 3, thereby reducing the optical fiber isolator 4.
  • the liquid circulation channel 14 is provided on the second sub-fiber 12.
  • the reconstruction can be realized by only replacing the corresponding liquid dye through the liquid circulation channel 14, so that the laser 10 Output the laser of the corresponding wavelength to improve its applicability.
  • the invention can be applied to important fields such as optical fiber communication, laser space long-distance communication, military and national defense security.
  • Fig. 3 is a flowchart of a method for preparing a reconfigurable liquid core optical fiber according to an embodiment of the present invention. Including the following steps:
  • the liquid circulation channel can be prepared by a femtosecond laser micromachining method, or can be prepared by a focused ion beam etching method.
  • the size of the liquid circulation channel is on the order of microns.
  • the structure of the liquid circulation channel is divided into two types:
  • the liquid circulation channel penetrates the second sub-optical fiber, and a first through port and a second through port are formed on the circumferential side wall of the second sub-optical fiber.
  • the liquid circulation channel partially penetrates the second sub-optical fiber, and a through opening is formed on the circumferential side wall of the second sub-optical fiber.
  • S102 Connect the first sub-fiber, the second sub-fiber, and the third sub-fiber in sequence;
  • first sub-fiber, the second sub-fiber, and the third sub-fiber in sequence by fusion splicing. Before connecting, cut the end faces of the first, second, and third sub-fibers to be connected flat and wipe clean. This step can not only reduce the loss of the optical fiber, but also improve the reliability of the connection.
  • S104 Write a first fiber Bragg grating in the first sub-fiber, and write a second fiber Bragg grating in the third sub-fiber.
  • the first fiber Bragg grating is written in the first sub-fiber by the laser phase mask method, and the second fiber Bragg grating is written in the third sub-fiber.
  • the two fiber Bragg gratings Reflectivity By controlling the laser energy and exposure time, adjust the two fiber Bragg gratings Reflectivity, thereby forming a first fiber Bragg grating with a lower reflectivity and a second fiber Bragg grating with a higher reflectivity.
  • the first fiber Bragg grating and the second fiber Bragg grating can also be prepared by laser double-beam interferometry. It can be understood that in the preparation process, an excimer laser, femtosecond laser, continuous wave laser, pulsed laser, etc. can be used but not limited to.
  • the liquid dye in the second core when the liquid dye in the second core needs to be replaced, the liquid dye in the second core is discharged through the second port, and then the required liquid dye is injected into the second core through the second port. Reconstruction can be achieved within two cores, thereby improving its applicability.
  • Fig. 4 is a flowchart of a method for preparing a laser according to an embodiment of the present invention. Including the following steps:
  • S102 Connect the first sub-fiber, the second sub-fiber, and the third sub-fiber in sequence;
  • the output end of the optical fiber isolator is connected to the laser analyzer.
  • the spectrum analyzer is used to determine whether the laser is emitted.
  • the high-speed photodetector, spectrum analyzer, and oscilloscope are used to measure the characteristic parameters of the laser.
  • a liquid circulation channel is provided on the second sub-fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种可重构的液芯光纤(1)及其制备方法、激光器(10)及其制备方法,可重构的液芯光纤(1)包括依次连接的第一子光纤(11)、第二子光纤(12)以及第三子光纤(13);第二子光纤(12)包括第二纤芯(121),第二纤芯(121)为空心结构,第一子光纤(11)和第三子光纤(13)共同使第二子光纤(12)形成一谐振腔;其中,第二子光纤(12)上设有液体流通通道(14),液体流通通道(14)和第二纤芯(121)连通,液体流通通道(14)用于向第二纤芯(121)内注入和排出液体染料,从而形成可重构的液芯光纤(1)。通过在第二子光纤(12)上设置液体流通通道(14),当需要输出不同波长的激光时,只需通过液体流通通道(14)更换相应的液体染料即可实现重构,从而输出相应波长的激光,提高其适用性。

Description

可重构的液芯光纤及其制备方法、激光器及其制备方法 技术领域
本发明涉及光学技术领域,尤其涉及一种可重构的液芯光纤及其制备方法、激光器及其制备方法。
背景技术
光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。光纤激光器利用掺杂稀土元素的光纤研制成的光纤放大器给光波技术领域带来了革命性的变化。由于任何光放大器都可通过恰当的反馈机制形成激光器,因此光纤激光器可在光纤放大器的基础上开发。目前开发研制的光纤激光器主要采用掺稀土元素的光纤作为增益介质。由于光纤激光器中光纤纤芯很细,在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”。因此,当适当加进正反馈回路(构成谐振腔)便可形成激光振荡。
近年来微流控技术得到飞速的发展,通过结合微流控技术和光学技术,从而形成光流控技术。液体染料作为绝佳的激光增益介质,具有阈值低,波长调节范围广,基本覆盖整个可见光区域,利用倍频技术还可以延伸至紫外和红外区域。因此,液芯光纤激光器应运而生。在现有技术中,液芯光纤激光器的种类繁多,但是同一类型的液芯光纤激光器只能输出单一波长的激光,导致液芯光纤激光器的适用性低。
技术问题
本发明的目的在于提供一种可重构的液芯光纤及其制备方法、激光器及其制备方法,使其能够输出不同波长的激光,从而提高激光器的适用性。
技术解决方案
为了解决上述技术问题,本发明提供的技术方案为:
一种可重构的液芯光纤,包括依次连接的第一子光纤、第二子光纤以及第三子光纤;所述第二子光纤包括第二纤芯,所述第二纤芯为空心结构,所述第一子光纤和第三子光纤共同使第二子光纤形成一谐振腔;其中,所述第二子光纤上设有液体流通通道,所述液体流通通道和第二纤芯连通,所述液体流通通道用于向第二纤芯内注入和排出液体染料,从而形成可重构的液芯光纤。
其中,所述液体流通通道上设有通口,所述通口用于注入和排出第二纤芯内的液体染料。
其中,所述通口上设有导管。
其中,所述通口包括第一通口和第二通口,其中,所述第一通口用于注入液体染料,所述第二通口用于排出染料。
其中,所述第一子光纤内设有第一光纤布拉格光栅,所述第三子光纤内设有第二光纤布拉格光栅,其中,所述第一光纤布拉格光栅和第二光纤布拉格光栅的反射波长相同,所述第一光纤布拉格光栅的反射率小于第二光纤布拉格光栅的反射率。
本发明提供的另一技术方案为:
一种用于制备上述可重构的液芯光纤的方法,包括如下步骤:通道制备步骤,在第二子光纤上制备液体流通通道;连接步骤,依次连接第一子光纤、第二子光纤以及第三子光纤;注入步骤,通过液体流通通道向第二子光纤内注入液体染料;写制步骤,在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
本发明提供的又一技术方案为:
一种激光器,包括泵浦激光:所述泵浦激光的输出端和波分复用器的输入端连接;波分复用器:所述波分复用器包括输入端、第一输出端以及第二输出端,所述第一输出端和第一子光纤的输入端连接,所述第二输出端用于输出液芯光纤中激射的激光;以及上述可重构的液芯光纤。
其中,所述激光器还包括光纤隔离器,所述光纤隔离器的输入端和波分复用器的第二输出端连接,所述光纤隔离器的输出端用于输出液芯光纤中激射的激光。
其中,所述激光器还包括激光分析仪,所述激光分析仪和光纤隔离器的输出端连接,其中,所述激光分析仪用于分析激射激光的信息。
本发明提供的其他技术方案为:
一种用于制备所述激光器的方法,包括如下步骤:在第二子光纤上制备液体流通通道;依次连接第一子光纤、第二子光纤以及第三子光纤;通过液体流通通道向第二子光纤内注入液体染料;依次连接泵浦激光的输出端和波分复用器输入端、波分复用器的第一输出端和第一子光纤、波分复用器的第二输出端和光纤隔离器的输入端;在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
有益效果
本发明的有益效果为:本发明通过在第二子光纤上设置液体流通通道,当需要输出不同波长的激光时,只需通过液体流通通道更换相应的液体染料即可实现重构,从而输出相应波长的激光,提高其适用性。本发明作为可重构、可调谐的高品质激光光源,可应用在光纤通信、激光空间远距通信、军事国防安全等重要领域。
附图说明
参照附图,本发明的公开内容将更加显然。应当了解,这些附图仅仅用于说明的目的,而并非意在对本发明的保护范围构成限制。图中:
图1是根据本发明的一个实施方式的可重构的液芯光纤的示意图。
图2是根据本发明的一个实施方式的激光器的示意图。
图3是根据本发明的一个实施方式的用于制备可重构的液芯光纤的方法流程图。
图4是根据本发明的一个实施方式的用于制备激光器的方法流程图。
10、激光器;1、可重构的液芯光纤;11、第一子光纤;111、第一光纤布拉格光栅;12、第二子光纤;121、第二纤芯;13、第三子光纤;131、第二光纤布拉格光栅;14、液体流通通道;141、第一通口;142、第二通口;143、第一导管;144、第二导管;2、泵浦激光;3、波分复用器;31、输入端;32、第一输出端;33、第二输出端;4、光纤隔离器;5、激光分析仪。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1是根据本发明的一个实施方式的可重构的液芯光纤的示意图。
从图中可以看出,该可重构的液芯光纤1可以具有依次连接的第一子光纤11、第二子光纤12以及第三子光纤13,第二子光纤12包括第二纤芯121,第二纤芯121为空心结构,第一子光纤11和第三子光纤13共同使第二子光纤12形成一谐振腔;其中,第二子光纤12上设有液体流通通道14,液体流通通道14和第二纤芯121连通,第二子光纤12可通过液体流通通道14向第二纤芯121内注入和排出液体染料,从而形成可重构的液芯光纤。本实施方式通过在第二子光纤12上设置液体流通通道14,当需要更换第二纤芯121内的液体染料时,先将第二纤芯121内的液体染料通过液体流通通道14排出,再将所需的液体染料通过液体流通通道14注入第二纤芯121内即可实现重构,从而提高其适用性。
在本实施方式中,液体流通通道14贯穿第二子光纤12,并且在第二子光纤12的周向侧壁上形成第一通口141和第二通口142。液体染料通过第一通口141注入第二纤芯121内,并且通过第二通口142从第二纤芯121内排出,从而可实现可重构的液芯光纤1的重构。该结构设计巧妙,可以根据不同的需求,输出不同的波长,从而提高其适用性。可以了解,在可选的实施方式中,液体流通通道14也可以部分贯穿第二子光纤12,并且在第二子光纤12的周向侧壁上形成一通口,液体染料既可以通过通口注入第二纤芯121内,又可以通过该通口从第二纤芯121内排出,从而实现可重构的液芯光纤1的重构。
如图1中所示,在第一通口141上设有第一导管143,通过第一导管143可方便液体染料的注入;在第二通口142上设有第二导管144,通过第二导管144可方便液体染料的排出。
在本实施方式中,液体染料可以是不同能级结构的染料,从而输出不同波段的激光,染料包括但不限于闪光染料、香豆素染料以及花青染料等。
在本实施方式中,第二子光纤12内的液体染料折射率大于包层材料的折射率,从而形成折射率引导型波导。
在本实施方式中,第一子光纤11和第三子光纤13为石英光纤,其中,石英光纤可以为普通单模光纤、载氢单模光纤、无截止单模光子晶体光纤、实芯多模光纤或者光子晶体多模光纤等。可以了解,在可选的实施方式中,第一子光纤11和第三子光纤13也可以为多组分玻璃光纤或者塑料光纤。
在本实施方式中,第一子光纤11内设有第一光纤布拉格光栅111,第三子光纤13内设有第二光纤布拉格光栅131,通过第一光纤布拉格光栅111和第二光纤布拉格光栅131,从而共同形成一谐振腔。由于第一子光纤11、第二子光纤12以及第三子光纤13采用分体式结构,因此,可根据所需反馈波长的不同,更换第一子光纤11和第三子光纤13,并且在更换后的第一子光纤11和第三子光纤13上写入相应的光纤布拉格光栅即可,无需更换整条光纤,从而大大降低成本。
图2是根据本发明的一个实施方式的激光器的示意图。
从图中可以看出,该激光器10可以具有泵浦激光2、波分复用器3以及如前述任一实施方式的可重构的液芯光纤1,泵浦激光2的输出端和波分复用器3的输入端31连接,波分复用器3包括输入端31、第一输出端32以及第二输出端33,第一输出端32和第一子光纤11的输入端连接,第二输出端33用于输出液芯光纤中激射的激光。
在本实施方式中,泵浦激光2为脉冲激光,泵浦激光2的波长和液体染料的能级结构对应,液体染料分子吸收泵浦激光2,从而使电子能级发生粒子数反转。
在本实施方式中,第一光纤布拉格光栅111和第二光纤布拉格光栅131的反射波长相同。其中,两个反射波长相同的光纤布拉格光栅和液体染料的波长相同,和泵浦激光2的波长不同,从而使泵浦激光2可以射入第二子光纤12的谐振腔内。
在本实施方式中,第一光纤布拉格光栅111的反射率小于第二光纤布拉格光栅131的反射率,第一光纤布拉格光栅111用于输出谐振腔中激射的激光;第二光纤布拉格光栅131用于完全反射谐振腔中激射的激光,从而放大激射的激光。
在可选的实施方式中,当第一光纤布拉格光栅111和第二光纤布拉格光栅131之间的距离为0.5 mm-2 mm,即第二光纤的长度为0.5mm-2mm,第一光纤布拉格光栅111和第二光纤布拉格光栅131可以形成一个π相移的光纤布拉格光栅,从而形成超窄线宽的分布反馈式(DFB)光纤激光器。当第一光纤布拉格光栅111和第二光纤布拉格光栅131之间的距离为2cm-5cm,即第二光纤的长度为2cm-5cm,可以形成DBR结构的多纵模高功率光纤激光器。
如图2中所示,该激光器10可以具有光纤隔离器4,光纤隔离器4的输入端和波分复用器3的第二输出端33连接,光纤隔离器4的输出端用于输出液芯光纤中激射的激光。在本实施方式中,光纤隔离器4是具有法拉第旋光效应的磁光晶体器件,正向传输的激光可以通过,反向传输的激光禁止通过,从而防止光路中由于各种原因产生的后向传输的激光对光源以及光路系统产生的不良影响。
如图2中所示,该激光器10可以具有激光分析仪5,激光分析仪5和光纤隔离器4的输出端连接,其中,激光分析仪5包括但不限于光谱分析仪、高速光电探测器、频谱分析仪、示波器等。通过激光分析仪5可以测量和显示激射激光的波长、强度、重频、拍频等信息。可以了解,在可选的实施方式中,激光分析仪5也可以直接和波分复用器3的第二输出端33连接,从而减少光纤隔离器4。
本实施方式通过在第二子光纤12上设置液体流通通道14,当激光器10需要输出不同波长的激光时,只需通过液体流通通道14更换相应的液体染料即可实现重构,从而使激光器10输出相应波长的激光,提高其适用性。本发明作为可重构、可调谐的高品质激光光源,可应用在光纤通信、激光空间远距通信、军事国防安全等重要领域。
图3是根据本发明的一个实施方式的用于制备可重构的液芯光纤的方法流程图。包括如下步骤:
S101,在第二子光纤上制备液体流通通道;
液体流通通道可以采用飞秒激光微加工的方法制备,也可以采用聚焦离子束刻蚀的方法制备。为了防止液体染料从液体流通通道流出,因此,液体流通通道的尺寸在微米量级。
液体流通通道的结构分为两种:
A、液体流通通道贯穿第二子光纤,并且在第二子光纤的周向侧壁上形成第一通口和第二通口。
B、液体流通通道部分贯穿第二子光纤,并且在第二子光纤的周向侧壁上形成一通口。
为了方便向第二纤芯内注入液体染料,可以执行如下步骤:
A、在液体流通通道的第一通口和第二通口上做标记;
B、使用细棒在导管需要连接的一端涂抹粘结剂;
C、在显微镜辅助下,将导管分别粘结在已标记的第一通口和第二通口上,并且加热固定。
S102,依次连接第一子光纤、第二子光纤以及第三子光纤;
通过熔接的方式依次连接第一子光纤、第二子光纤以及第三子光纤,在连接前,将第一子光纤、第二子光纤以及第三子光纤需要连接的端面切平并且擦拭干净,该步骤不仅能够降低光纤的损耗,而且能够提高连接的可靠性。
S103,通过液体流通通道向第二子光纤内注入液体染料;
使用注射器将适量的液体染料通过第一通口注入第二纤芯内。
S104,在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
通过激光相位掩模板法分别在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅,通过控制激光能量和曝光时间,调节两个光纤布拉格光栅的反射率,从而形成反射率较低的第一光纤布拉格光栅和反射率较高的第二光纤布拉格光栅。第一光纤布拉格光栅和第二光纤布拉格光栅也可以通过激光双光束干涉法制备。可以了解,在制备的过程中,可以使用但并不限于准分子激光器、飞秒激光器、连续波激光器、脉冲式激光器等。
S105,更换第二子光纤内的液体染料。
A、先使用胶头滴管通过第二通口将第二纤芯内的液体染料吸出;
B、使用酒精多次清洗第二纤芯;
C、最后执行S103。
在本实施方式中,当需要更换第二纤芯内的液体染料时,先通过第二通口将第二纤芯内的液体染料排出,再将所需的液体染料通过第二通口注入第二纤芯内即可实现重构,从而提高其适用性。
图4是根据本发明的一个实施方式的用于制备激光器的方法流程图。包括如下步骤:
S101、在第二子光纤上制备液体流通通道;
S102、依次连接第一子光纤、第二子光纤以及第三子光纤;
S103、通过液体流通通道向第二子光纤内注入液体染料;
S104、依次连接泵浦激光的输出端和波分复用器输入端、波分复用器的第一输出端和第一子光纤、波分复用器的第二输出端和光纤隔离器的输入端;
为了测量激光器射出的激光特征参量,使光纤隔离器的输出端和激光分析仪连接。在连接过程中,关闭泵浦激光和激光分析仪;连接后,打开泵浦激光和激光分析仪。先通过光谱分析仪判断激光是否射出,当激光射出后,使用高速光电探测器、频谱分析仪、示波器分别测量激光的特征参量。
S105、在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
本实施方式通过在第二子光纤上设置液体流通通道,当需要输出不同波长的激光时,只需通过液体流通通道更换相应的液体染料即可实现重构,从而输出相应波长的激光,提高其适用性。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种可重构的液芯光纤,其特征在于,包括依次连接的第一子光纤、第二子光纤以及第三子光纤;所述第二子光纤包括第二纤芯,所述第二纤芯为空心结构,所述第一子光纤和第三子光纤共同使第二子光纤形成一谐振腔;其中,所述第二子光纤上设有液体流通通道,所述液体流通通道和第二纤芯连通,所述液体流通通道用于向第二纤芯内注入和排出液体染料,从而得到可重构的液芯光纤。
  2. 根据权利要求1所述的可重构的液芯光纤,其特征在于,所述液体流通通道上设有通口,所述通口用于注入和排出第二纤芯内的液体染料。
  3. 根据权利要求2所述的可重构的液芯光纤,其特征在于,所述通口上设有导管。
  4. 根据权利要求2所述的可重构的液芯光纤,其特征在于,所述通口包括第一通口和第二通口,其中,所述第一通口用于注入液体染料,所述第二通口用于排出染料。
  5. 根据权利要求1所述的可重构的液芯光纤,其特征在于,所述第一子光纤内设有第一光纤布拉格光栅,所述第三子光纤内设有第二光纤布拉格光栅,其中,所述第一光纤布拉格光栅和第二光纤布拉格光栅的反射波长相同,所述第一光纤布拉格光栅的反射率小于第二光纤布拉格光栅的反射率。
  6. 一种用于制备权利要求1-5任一项所述可重构的液芯光纤的方法,其特征在于,包括如下步骤:
    通道制备步骤,在第二子光纤上制备液体流通通道;
    连接步骤,依次连接第一子光纤、第二子光纤以及第三子光纤;
    注入步骤,通过液体流通通道向第二子光纤内注入液体染料;
    写制步骤,在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
  7. 一种激光器,其特征在于,包括
    权利要求1-5任一项所述的可重构的液芯光纤;
    泵浦激光:所述泵浦激光的输出端和波分复用器的输入端连接;以及
    波分复用器:所述波分复用器包括输入端、第一输出端以及第二输出端,所述第一输出端和第一子光纤的输入端连接,所述第二输出端用于输出液芯光纤中激射的激光。
  8. 根据权利要求7所述的激光器,其特征在于,所述激光器还包括光纤隔离器,所述光纤隔离器的输入端和波分复用器的第二输出端连接,所述光纤隔离器的输出端用于输出液芯光纤中激射的激光。
  9. 根据权利要求8所述的激光器,其特征在于,所述激光器还包括激光分析仪,所述激光分析仪和光纤隔离器的输出端连接,其中,所述激光分析仪用于分析激射激光的信息。
  10. 一种用于制备权利要求7所述激光器的方法,其特征在于,包括如下步骤:
    在第二子光纤上制备液体流通通道;
    依次连接第一子光纤、第二子光纤以及第三子光纤;
    通过液体流通通道向第二子光纤内注入液体染料;
    依次连接泵浦激光的输出端和波分复用器输入端、波分复用器的第一输出端和第一子光纤、波分复用器的第二输出端和光纤隔离器的输入端;
    在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
PCT/CN2019/080116 2019-03-28 2019-03-28 可重构的液芯光纤及其制备方法、激光器及其制备方法 WO2020191719A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080116 WO2020191719A1 (zh) 2019-03-28 2019-03-28 可重构的液芯光纤及其制备方法、激光器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080116 WO2020191719A1 (zh) 2019-03-28 2019-03-28 可重构的液芯光纤及其制备方法、激光器及其制备方法

Publications (1)

Publication Number Publication Date
WO2020191719A1 true WO2020191719A1 (zh) 2020-10-01

Family

ID=72608770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080116 WO2020191719A1 (zh) 2019-03-28 2019-03-28 可重构的液芯光纤及其制备方法、激光器及其制备方法

Country Status (1)

Country Link
WO (1) WO2020191719A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060139741A1 (en) * 2003-04-29 2006-06-29 National Chiao Tung University Evanescent-field optical amplifiers and lasers
US20090168815A1 (en) * 2006-05-17 2009-07-02 Eolite Systems High-power fiber optic pulsed laser device
CN102231475A (zh) * 2011-05-06 2011-11-02 哈尔滨理工大学 一种获取具有高度保真脉冲波形的受激布里渊散射光的方法及装置
CN103440895A (zh) * 2013-09-18 2013-12-11 哈尔滨理工大学 利用液芯光纤产生稳定涡旋光束的装置及方法
CN104037614A (zh) * 2014-06-09 2014-09-10 高秀敏 一种光纤光流体染料激光器
CN203942143U (zh) * 2014-06-09 2014-11-12 高秀敏 一种光纤光流体染料激光器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060139741A1 (en) * 2003-04-29 2006-06-29 National Chiao Tung University Evanescent-field optical amplifiers and lasers
US20090168815A1 (en) * 2006-05-17 2009-07-02 Eolite Systems High-power fiber optic pulsed laser device
CN102231475A (zh) * 2011-05-06 2011-11-02 哈尔滨理工大学 一种获取具有高度保真脉冲波形的受激布里渊散射光的方法及装置
CN103440895A (zh) * 2013-09-18 2013-12-11 哈尔滨理工大学 利用液芯光纤产生稳定涡旋光束的装置及方法
CN104037614A (zh) * 2014-06-09 2014-09-10 高秀敏 一种光纤光流体染料激光器
CN203942143U (zh) * 2014-06-09 2014-11-12 高秀敏 一种光纤光流体染料激光器

Similar Documents

Publication Publication Date Title
EP1676344B1 (en) An optical system for providing short laser-pulses
JP4668378B2 (ja) モードロック多モードファイバレーザパルス光源
US9564730B2 (en) Optical gain fiber having fiber segments with different-sized cores and associated method
CN101640367B (zh) 脉冲全光纤激光器
US8508843B2 (en) Laser systems with doped fiber components
US8295314B2 (en) Fiber laser having superior resistance to reflection light
DE112019007185T5 (de) Faserlaserpumpreflektor
CN111490446A (zh) 一种耗散孤子共振光纤激光器
CN111856644A (zh) 切趾长周期光纤光栅刻写装置、刻写方法以及激光系统
JP6026885B2 (ja) ドープされたファイバを実装する光源、当該光源用ファイバ、および、当該ファイバの製造方法
CN209656929U (zh) 可重构的液芯光纤及其激光器
CN109946788B (zh) 可重构的液芯光纤及其制备方法、激光器及其制备方法
CN112490834A (zh) 基于多模光纤偏芯熔接的锁模掺镱光纤激光器
WO2020191719A1 (zh) 可重构的液芯光纤及其制备方法、激光器及其制备方法
JP2012501532A (ja) 高い平均のパワーのファイバーを備えたレーザーデバイス
WO2008074359A1 (en) Optical fibre laser
JP2020134552A (ja) 光導波路デバイス、光モジュール、レーザ装置、及び光導波路デバイスの作製方法
Nakai et al. 30W Q-SW fiber laser
JPS63220586A (ja) Nd添加フアイバレ−ザ装置
CN217062822U (zh) 一种树杈型多光栅激光谐振腔结构
CN219917892U (zh) 一种高保真超短脉冲激光源
CN115632298A (zh) 一种大能量单模皮秒光纤激光振荡器
CN114552341A (zh) 高功率白光超连续谱激光器
Schülzgen et al. Recent advances in phosphate glass fiber and its application to compact high-power fiber lasers
Liu et al. 7.2 W supercontinuum generation in photonic crystal fibers pumped by a nanosecond fiber laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19921099

Country of ref document: EP

Kind code of ref document: A1