CN109946788B - 可重构的液芯光纤及其制备方法、激光器及其制备方法 - Google Patents

可重构的液芯光纤及其制备方法、激光器及其制备方法 Download PDF

Info

Publication number
CN109946788B
CN109946788B CN201910243577.8A CN201910243577A CN109946788B CN 109946788 B CN109946788 B CN 109946788B CN 201910243577 A CN201910243577 A CN 201910243577A CN 109946788 B CN109946788 B CN 109946788B
Authority
CN
China
Prior art keywords
optical fiber
sub
fiber
liquid
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910243577.8A
Other languages
English (en)
Other versions
CN109946788A (zh
Inventor
何俊
王义平
张哲�
丘志鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201910243577.8A priority Critical patent/CN109946788B/zh
Publication of CN109946788A publication Critical patent/CN109946788A/zh
Application granted granted Critical
Publication of CN109946788B publication Critical patent/CN109946788B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)

Abstract

本发明涉及一种可重构的液芯光纤及其制备方法、激光器及其制备方法,所述可重构的液芯光纤包括依次连接的第一子光纤、第二子光纤以及第三子光纤;所述第二子光纤包括第二纤芯,所述第二纤芯为空心结构,所述第一子光纤和第三子光纤共同使第二子光纤形成一谐振腔;其中,所述第二子光纤上设有液体流通通道,所述液体流通通道和第二纤芯连通,所述液体流通通道用于向第二纤芯内注入和排出液体染料,从而形成可重构的液芯光纤。本发明通过在第二子光纤上设置液体流通通道,当需要输出不同波长的激光时,只需通过液体流通通道更换相应的液体染料即可实现重构,从而输出相应波长的激光,提高其适用性。

Description

可重构的液芯光纤及其制备方法、激光器及其制备方法
技术领域
本发明涉及光学技术领域,尤其涉及一种可重构的液芯光纤及其制备方法、激光器及其制备方法。
背景技术
光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。光纤激光器利用掺杂稀土元素的光纤研制成的光纤放大器给光波技术领域带来了革命性的变化。由于任何光放大器都可通过恰当的反馈机制形成激光器,因此光纤激光器可在光纤放大器的基础上开发。目前开发研制的光纤激光器主要采用掺稀土元素的光纤作为增益介质。由于光纤激光器中光纤纤芯很细,在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”。因此,当适当加进正反馈回路(构成谐振腔)便可形成激光振荡。
近年来微流控技术得到飞速的发展,通过结合微流控技术和光学技术,从而形成光流控技术。液体染料作为绝佳的激光增益介质,具有阈值低,波长调节范围广,基本覆盖整个可见光区域,利用倍频技术还可以延伸至紫外和红外区域。因此,液芯光纤激光器应运而生。在现有技术中,液芯光纤激光器的种类繁多,但是同一类型的液芯光纤激光器只能输出单一波长的激光,导致液芯光纤激光器的适用性低。
发明内容
本发明的目的在于提供一种可重构的液芯光纤及其制备方法、激光器及其制备方法,使其能够输出不同波长的激光,从而提高激光器的适用性。
为了解决上述技术问题,本发明提供的技术方案为:
一种可重构的液芯光纤,包括依次连接的第一子光纤、第二子光纤以及第三子光纤;所述第二子光纤包括第二纤芯,所述第二纤芯为空心结构,所述第一子光纤和第三子光纤共同使第二子光纤形成一谐振腔;其中,所述第二子光纤上设有液体流通通道,所述液体流通通道和第二纤芯连通,所述液体流通通道用于向第二纤芯内注入和排出液体染料,从而形成可重构的液芯光纤。
其中,所述液体流通通道上设有通口,所述通口用于注入和排出第二纤芯内的液体染料。
其中,所述通口上设有导管。
其中,所述通口包括第一通口和第二通口,其中,所述第一通口用于注入液体染料,所述第二通口用于排出染料。
其中,所述第一子光纤内设有第一光纤布拉格光栅,所述第三子光纤内设有第二光纤布拉格光栅,其中,所述第一光纤布拉格光栅和第二光纤布拉格光栅的反射波长相同,所述第一光纤布拉格光栅的反射率小于第二光纤布拉格光栅的反射率。
本发明提供的另一技术方案为:
一种用于制备上述可重构的液芯光纤的方法,包括如下步骤:通道制备步骤,在第二子光纤上制备液体流通通道;连接步骤,依次连接第一子光纤、第二子光纤以及第三子光纤;注入步骤,通过液体流通通道向第二子光纤内注入液体染料;写制步骤,在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
本发明提供的又一技术方案为:
一种激光器,包括泵浦激光:所述泵浦激光的输出端和波分复用器的输入端连接;波分复用器:所述波分复用器包括输入端、第一输出端以及第二输出端,所述第一输出端和第一子光纤的输入端连接,所述第二输出端用于输出液芯光纤中激射的激光;以及上述可重构的液芯光纤。
其中,所述激光器还包括光纤隔离器,所述光纤隔离器的输入端和波分复用器的第二输出端连接,所述光纤隔离器的输出端用于输出液芯光纤中激射的激光。
其中,所述激光器还包括激光分析仪,所述激光分析仪和光纤隔离器的输出端连接,其中,所述激光分析仪用于分析激射激光的信息。
本发明提供的其他技术方案为:
一种用于制备所述激光器的方法,包括如下步骤:在第二子光纤上制备液体流通通道;依次连接第一子光纤、第二子光纤以及第三子光纤;通过液体流通通道向第二子光纤内注入液体染料;依次连接泵浦激光的输出端和波分复用器输入端、波分复用器的第一输出端和第一子光纤、波分复用器的第二输出端和光纤隔离器的输入端;在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
本发明的有益效果为:本发明通过在第二子光纤上设置液体流通通道,当需要输出不同波长的激光时,只需通过液体流通通道更换相应的液体染料即可实现重构,从而输出相应波长的激光,提高其适用性。本发明作为可重构、可调谐的高品质激光光源,可应用在光纤通信、激光空间远距通信、军事国防安全等重要领域。
附图说明
参照附图,本发明的公开内容将更加显然。应当了解,这些附图仅仅用于说明的目的,而并非意在对本发明的保护范围构成限制。图中:
图1是根据本发明的一个实施方式的可重构的液芯光纤的示意图。
图2是根据本发明的一个实施方式的激光器的示意图。
图3是根据本发明的一个实施方式的用于制备可重构的液芯光纤的方法流程图。
图4是根据本发明的一个实施方式的用于制备激光器的方法流程图。
10、激光器;1、可重构的液芯光纤;11、第一子光纤;111、第一光纤布拉格光栅;12、第二子光纤;121、第二纤芯;13、第三子光纤;131、第二光纤布拉格光栅;14、液体流通通道;141、第一通口;142、第二通口;143、第一导管;144、第二导管;2、泵浦激光;3、波分复用器;31、输入端;32、第一输出端;33、第二输出端;4、光纤隔离器;5、激光分析仪。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1是根据本发明的一个实施方式的可重构的液芯光纤的示意图。
从图中可以看出,该可重构的液芯光纤1可以具有依次连接的第一子光纤11、第二子光纤12以及第三子光纤13,第二子光纤12包括第二纤芯121,第二纤芯121为空心结构,第一子光纤11和第三子光纤13共同使第二子光纤12形成一谐振腔;其中,第二子光纤12上设有液体流通通道14,液体流通通道14和第二纤芯121连通,第二子光纤12可通过液体流通通道14向第二纤芯121内注入和排出液体染料,从而形成可重构的液芯光纤。本实施方式通过在第二子光纤12上设置液体流通通道14,当需要更换第二纤芯121内的液体染料时,先将第二纤芯121内的液体染料通过液体流通通道14排出,再将所需的液体染料通过液体流通通道14注入第二纤芯121内即可实现重构,从而提高其适用性。
在本实施方式中,液体流通通道14贯穿第二子光纤12,并且在第二子光纤12的周向侧壁上形成第一通口141和第二通口142。液体染料通过第一通口141注入第二纤芯121内,并且通过第二通口142从第二纤芯121内排出,从而可实现可重构的液芯光纤1的重构。该结构设计巧妙,可以根据不同的需求,输出不同的波长,从而提高其适用性。可以了解,在可选的实施方式中,液体流通通道14也可以部分贯穿第二子光纤12,并且在第二子光纤12的周向侧壁上形成一通口,液体染料既可以通过通口注入第二纤芯121内,又可以通过该通口从第二纤芯121内排出,从而实现可重构的液芯光纤1的重构。
如图1中所示,在第一通口141上设有第一导管143,通过第一导管143可方便液体染料的注入;在第二通口142上设有第二导管144,通过第二导管144可方便液体染料的排出。
在本实施方式中,液体染料可以是不同能级结构的染料,从而输出不同波段的激光,染料包括但不限于闪光染料、香豆素染料以及花青染料等。
在本实施方式中,第二子光纤12内的液体染料折射率大于包层材料的折射率,从而形成折射率引导型波导。
在本实施方式中,第一子光纤11和第三子光纤13为石英光纤,其中,石英光纤可以为普通单模光纤、载氢单模光纤、无截止单模光子晶体光纤、实芯多模光纤或者光子晶体多模光纤等。可以了解,在可选的实施方式中,第一子光纤11和第三子光纤13也可以为多组分玻璃光纤或者塑料光纤。
在本实施方式中,第一子光纤11内设有第一光纤布拉格光栅111,第三子光纤13内设有第二光纤布拉格光栅131,通过第一光纤布拉格光栅111和第二光纤布拉格光栅131,从而共同形成一谐振腔。由于第一子光纤11、第二子光纤12以及第三子光纤13采用分体式结构,因此,可根据所需反馈波长的不同,更换第一子光纤11和第三子光纤13,并且在更换后的第一子光纤11和第三子光纤13上写入相应的光纤布拉格光栅即可,无需更换整条光纤,从而大大降低成本。
图2是根据本发明的一个实施方式的激光器的示意图。
从图中可以看出,该激光器10可以具有泵浦激光2、波分复用器3以及如前述任一实施方式的可重构的液芯光纤1,泵浦激光2的输出端和波分复用器3的输入端31连接,波分复用器3包括输入端31、第一输出端32以及第二输出端33,第一输出端32和第一子光纤11的输入端连接,第二输出端33用于输出液芯光纤中激射的激光。
在本实施方式中,泵浦激光2为脉冲激光,泵浦激光2的波长和液体染料的能级结构对应,液体染料分子吸收泵浦激光2,从而使电子能级发生粒子数反转。
在本实施方式中,第一光纤布拉格光栅111和第二光纤布拉格光栅131的反射波长相同。其中,两个反射波长相同的光纤布拉格光栅和液体染料的波长相同,和泵浦激光2的波长不同,从而使泵浦激光2可以射入第二子光纤12的谐振腔内。
在本实施方式中,第一光纤布拉格光栅111的反射率小于第二光纤布拉格光栅131的反射率,第一光纤布拉格光栅111用于输出谐振腔中激射的激光;第二光纤布拉格光栅131用于完全反射谐振腔中激射的激光,从而放大激射的激光。
在可选的实施方式中,当第一光纤布拉格光栅111和第二光纤布拉格光栅131之间的距离为0.5mm-2mm,即第二光纤的长度为0.5mm-2mm,第一光纤布拉格光栅111和第二光纤布拉格光栅131可以形成一个π相移的光纤布拉格光栅,从而形成超窄线宽的分布反馈式(DFB)光纤激光器。当第一光纤布拉格光栅111和第二光纤布拉格光栅131之间的距离为2cm-5cm,即第二光纤的长度为2cm-5cm,可以形成DBR结构的多纵模高功率光纤激光器。
如图2中所示,该激光器10可以具有光纤隔离器4,光纤隔离器4的输入端和波分复用器3的第二输出端33连接,光纤隔离器4的输出端用于输出液芯光纤中激射的激光。在本实施方式中,光纤隔离器4是具有法拉第旋光效应的磁光晶体器件,正向传输的激光可以通过,反向传输的激光禁止通过,从而防止光路中由于各种原因产生的后向传输的激光对光源以及光路系统产生的不良影响。
如图2中所示,该激光器10可以具有激光分析仪5,激光分析仪5和光纤隔离器4的输出端连接,其中,激光分析仪5包括但不限于光谱分析仪、高速光电探测器、频谱分析仪、示波器等。通过激光分析仪5可以测量和显示激射激光的波长、强度、重频、拍频等信息。可以了解,在可选的实施方式中,激光分析仪5也可以直接和波分复用器3的第二输出端33连接,从而减少光纤隔离器4。
本实施方式通过在第二子光纤12上设置液体流通通道14,当激光器10需要输出不同波长的激光时,只需通过液体流通通道14更换相应的液体染料即可实现重构,从而使激光器10输出相应波长的激光,提高其适用性。本发明作为可重构、可调谐的高品质激光光源,可应用在光纤通信、激光空间远距通信、军事国防安全等重要领域。
图3是根据本发明的一个实施方式的用于制备可重构的液芯光纤的方法流程图。包括如下步骤:
S101,在第二子光纤上制备液体流通通道;
液体流通通道可以采用飞秒激光微加工的方法制备,也可以采用聚焦离子束刻蚀的方法制备。为了防止液体染料从液体流通通道流出,因此,液体流通通道的尺寸在微米量级。
液体流通通道的结构分为两种:
A、液体流通通道贯穿第二子光纤,并且在第二子光纤的周向侧壁上形成第一通口和第二通口。
B、液体流通通道部分贯穿第二子光纤,并且在第二子光纤的周向侧壁上形成一通口。
为了方便向第二纤芯内注入液体染料,可以执行如下步骤:
A、在液体流通通道的第一通口和第二通口上做标记;
B、使用细棒在导管需要连接的一端涂抹粘结剂;
C、在显微镜辅助下,将导管分别粘结在已标记的第一通口和第二通口上,并且加热固定。
S102,依次连接第一子光纤、第二子光纤以及第三子光纤;
通过熔接的方式依次连接第一子光纤、第二子光纤以及第三子光纤,在连接前,将第一子光纤、第二子光纤以及第三子光纤需要连接的端面切平并且擦拭干净,该步骤不仅能够降低光纤的损耗,而且能够提高连接的可靠性。
S103,通过液体流通通道向第二子光纤内注入液体染料;
使用注射器将适量的液体染料通过第一通口注入第二纤芯内。
S104,在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
通过激光相位掩模板法分别在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅,通过控制激光能量和曝光时间,调节两个光纤布拉格光栅的反射率,从而形成反射率较低的第一光纤布拉格光栅和反射率较高的第二光纤布拉格光栅。第一光纤布拉格光栅和第二光纤布拉格光栅也可以通过激光双光束干涉法制备。可以了解,在制备的过程中,可以使用但并不限于准分子激光器、飞秒激光器、连续波激光器、脉冲式激光器等。
S105,更换第二子光纤内的液体染料。
A、先使用胶头滴管通过第二通口将第二纤芯内的液体染料吸出;
B、使用酒精多次清洗第二纤芯;
C、最后执行S103。
在本实施方式中,当需要更换第二纤芯内的液体染料时,先通过第二通口将第二纤芯内的液体染料排出,再将所需的液体染料通过第二通口注入第二纤芯内即可实现重构,从而提高其适用性。
图4是根据本发明的一个实施方式的用于制备激光器的方法流程图。包括如下步骤:
S101、在第二子光纤上制备液体流通通道;
S102、依次连接第一子光纤、第二子光纤以及第三子光纤;
S103、通过液体流通通道向第二子光纤内注入液体染料;
S104、依次连接泵浦激光的输出端和波分复用器输入端、波分复用器的第一输出端和第一子光纤、波分复用器的第二输出端和光纤隔离器的输入端;
为了测量激光器射出的激光特征参量,使光纤隔离器的输出端和激光分析仪连接。在连接过程中,关闭泵浦激光和激光分析仪;连接后,打开泵浦激光和激光分析仪。先通过光谱分析仪判断激光是否射出,当激光射出后,使用高速光电探测器、频谱分析仪、示波器分别测量激光的特征参量。
S105、在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
本实施方式通过在第二子光纤上设置液体流通通道,当需要输出不同波长的激光时,只需通过液体流通通道更换相应的液体染料即可实现重构,从而输出相应波长的激光,提高其适用性。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种可重构的液芯光纤,其特征在于,包括依次连接的第一子光纤、第二子光纤以及第三子光纤;所述第二子光纤包括第二纤芯,所述第二纤芯为空心结构,所述第一子光纤和第三子光纤共同使第二子光纤形成一谐振腔;其中,所述第二子光纤上设有液体流通通道,所述液体流通通道和第二纤芯连通,所述液体流通通道用于向第二纤芯内注入和排出液体染料,从而得到可重构的液芯光纤;所述液体流通通道上设有通口,所述通口用于注入和排出第二纤芯内的液体染料;所述第一子光纤内设有第一光纤布拉格光栅,所述第三子光纤内设有第二光纤布拉格光栅,其中,所述第一光纤布拉格光栅和第二光纤布拉格光栅的反射波长相同,所述第一光纤布拉格光栅的反射率小于第二光纤布拉格光栅的反射率。
2.根据权利要求1所述的可重构的液芯光纤,其特征在于,所述通口上设有导管。
3.根据权利要求1所述的可重构的液芯光纤,其特征在于,所述通口包括第一通口和第二通口,其中,所述第一通口用于注入液体染料,所述第二通口用于排出染料。
4.一种用于制备权利要求1-3任一项所述可重构的液芯光纤的方法,其特征在于,包括如下步骤:
通道制备步骤,在第二子光纤上制备液体流通通道;
连接步骤,依次连接第一子光纤、第二子光纤以及第三子光纤;
注入步骤,通过液体流通通道向第二子光纤内注入液体染料;
写制步骤,在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
5.一种激光器,其特征在于,包括
权利要求1-3任一项所述的可重构的液芯光纤;
泵浦激光:所述泵浦激光的输出端和波分复用器的输入端连接;以及
波分复用器:所述波分复用器包括输入端、第一输出端以及第二输出端,所述第一输出端和第一子光纤的输入端连接,所述第二输出端用于输出液芯光纤中激射的激光。
6.根据权利要求5所述的激光器,其特征在于,所述激光器还包括光纤隔离器,所述光纤隔离器的输入端和波分复用器的第二输出端连接,所述光纤隔离器的输出端用于输出液芯光纤中激射的激光。
7.根据权利要求6所述的激光器,其特征在于,所述激光器还包括激光分析仪,所述激光分析仪和光纤隔离器的输出端连接,其中,所述激光分析仪用于分析激射激光的信息。
8.一种用于制备权利要求6所述激光器的方法,其特征在于,包括如下步骤:
在第二子光纤上制备液体流通通道;
依次连接第一子光纤、第二子光纤以及第三子光纤;
通过液体流通通道向第二子光纤内注入液体染料;
依次连接泵浦激光的输出端和波分复用器输入端、波分复用器的第一输出端和第一子光纤、波分复用器的第二输出端和光纤隔离器的输入端;
在第一子光纤内写制第一光纤布拉格光栅,在第三子光纤内写制第二光纤布拉格光栅。
CN201910243577.8A 2019-03-28 2019-03-28 可重构的液芯光纤及其制备方法、激光器及其制备方法 Active CN109946788B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910243577.8A CN109946788B (zh) 2019-03-28 2019-03-28 可重构的液芯光纤及其制备方法、激光器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910243577.8A CN109946788B (zh) 2019-03-28 2019-03-28 可重构的液芯光纤及其制备方法、激光器及其制备方法

Publications (2)

Publication Number Publication Date
CN109946788A CN109946788A (zh) 2019-06-28
CN109946788B true CN109946788B (zh) 2024-03-26

Family

ID=67011992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910243577.8A Active CN109946788B (zh) 2019-03-28 2019-03-28 可重构的液芯光纤及其制备方法、激光器及其制备方法

Country Status (1)

Country Link
CN (1) CN109946788B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110954296B (zh) * 2019-12-11 2021-03-23 浙江科技学院 一种液芯光纤的光信号放大性能检测方法及其检测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894788A (en) * 1972-06-05 1975-07-15 Nat Res Dev Liquid-core fibre-optic waveguides
WO2002059253A2 (en) * 2000-10-30 2002-08-01 The Charles Stark Draper Laboratory, Inc. Fluorescence detection system including a photonic band gap structure
CN101728754A (zh) * 2009-12-04 2010-06-09 中国计量学院 一种强激光光纤光源
CN201732978U (zh) * 2010-05-27 2011-02-02 温州大学 可调波长的液晶随机激光器
CN103630973A (zh) * 2013-12-17 2014-03-12 哈尔滨理工大学 液芯光纤与石英光纤耦合装置的制作方法
CN104901151A (zh) * 2015-06-08 2015-09-09 吉林大学 轴向泵浦行波放大液芯光纤激光器
CN108539566A (zh) * 2018-05-08 2018-09-14 暨南大学 一种双波长全光纤激光器
CN109412009A (zh) * 2018-11-12 2019-03-01 北京工业大学 双谐振腔耦合的全光纤化调q锁模脉冲激光器
CN209656929U (zh) * 2019-03-28 2019-11-19 深圳大学 可重构的液芯光纤及其激光器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603940A (en) * 1983-08-30 1986-08-05 Board Of Trustees Of The Leland Stanford Junior University Fiber optic dye amplifier
US7974510B2 (en) * 2003-05-29 2011-07-05 Agilent Technologies, Inc. Optical waveguide having a core with a polarization-independent, spatially reconfigurable refractive index
WO2006086551A2 (en) * 2005-02-08 2006-08-17 President And Fellows Of Harvard College Microfluidic lasers
FR2901424B1 (fr) * 2006-05-17 2008-08-08 Femlight Sa Dispositif laser impulsionnel a fibre optique de forte puissance
US7817698B2 (en) * 2006-08-11 2010-10-19 California Institute Of Technology Mechanically tunable elastomeric optofluidic distributed feedback dye lasers
US8699125B2 (en) * 2008-02-13 2014-04-15 Jds Uniphase Corporation Reconfigurable optical amplifier

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894788A (en) * 1972-06-05 1975-07-15 Nat Res Dev Liquid-core fibre-optic waveguides
WO2002059253A2 (en) * 2000-10-30 2002-08-01 The Charles Stark Draper Laboratory, Inc. Fluorescence detection system including a photonic band gap structure
CN101728754A (zh) * 2009-12-04 2010-06-09 中国计量学院 一种强激光光纤光源
CN201732978U (zh) * 2010-05-27 2011-02-02 温州大学 可调波长的液晶随机激光器
CN103630973A (zh) * 2013-12-17 2014-03-12 哈尔滨理工大学 液芯光纤与石英光纤耦合装置的制作方法
CN104901151A (zh) * 2015-06-08 2015-09-09 吉林大学 轴向泵浦行波放大液芯光纤激光器
CN108539566A (zh) * 2018-05-08 2018-09-14 暨南大学 一种双波长全光纤激光器
CN109412009A (zh) * 2018-11-12 2019-03-01 北京工业大学 双谐振腔耦合的全光纤化调q锁模脉冲激光器
CN209656929U (zh) * 2019-03-28 2019-11-19 深圳大学 可重构的液芯光纤及其激光器

Also Published As

Publication number Publication date
CN109946788A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
CA2693112C (en) Fiber laser having superior resistance to reflection light
US8508843B2 (en) Laser systems with doped fiber components
CN103843210A (zh) 用于中和远红外的紧凑的相干和高亮度光源
DE112004002187T5 (de) Gepulste Laserquellen
Mukhopadhyay et al. All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator
CN107785769A (zh) 一种基于窄带光谱滤波的低时间抖动光纤飞秒激光器
Dong et al. Mode-locked ytterbium-doped fiber laser based on offset-spliced graded index multimode fibers
CN109346911A (zh) 一种数十兆赫兹高重频纳秒全光纤激光放大器
CN102136675A (zh) 自注入式多模倾斜光纤光栅外腔皮秒脉冲激光器
CN111856644B (zh) 切趾长周期光纤光栅刻写装置、刻写方法以及激光系统
CN109946788B (zh) 可重构的液芯光纤及其制备方法、激光器及其制备方法
CN210640481U (zh) 一种基于非线性多模干涉效应的多波长锁模光纤激光器
CN209656929U (zh) 可重构的液芯光纤及其激光器
WO2011160234A2 (en) Active optical device component with large area bragg grating
CN112490834A (zh) 基于多模光纤偏芯熔接的锁模掺镱光纤激光器
Chen et al. Normal dispersion thulium fiber for ultrafast near-2 μm fiber laser
CN110600984A (zh) 一种波长可调被动锁模光纤激光器
CN110416865A (zh) 一种多芯多稀土掺杂超宽带光梳光源
CN211265955U (zh) 一种可调超高重频超短脉冲光纤激光器
Periasamy et al. Laser amplification in an optical fiber by evanescent field coupling
WO2020191719A1 (zh) 可重构的液芯光纤及其制备方法、激光器及其制备方法
Dong et al. Mode-locked fiber laser with offset splicing between two multimode fibers as a saturable absorber
WO2008074359A1 (en) Optical fibre laser
Poeydebat et al. Pulse energy enhancement via filter shape optimization in an all-fiber Mamyshev oscillator
CN109638627A (zh) 一种皮秒种子源激光器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant