WO2020189648A1 - ディスクブレーキ用摩擦材 - Google Patents

ディスクブレーキ用摩擦材 Download PDF

Info

Publication number
WO2020189648A1
WO2020189648A1 PCT/JP2020/011571 JP2020011571W WO2020189648A1 WO 2020189648 A1 WO2020189648 A1 WO 2020189648A1 JP 2020011571 W JP2020011571 W JP 2020011571W WO 2020189648 A1 WO2020189648 A1 WO 2020189648A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction material
friction
wax
acid
titanate
Prior art date
Application number
PCT/JP2020/011571
Other languages
English (en)
French (fr)
Inventor
卓弥 高田
素行 宮道
健太郎 大輪
健太 木村
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Priority to US17/440,400 priority Critical patent/US20220163081A1/en
Priority to CN202080022529.7A priority patent/CN113614197A/zh
Priority to EP20773732.1A priority patent/EP3943570A4/en
Publication of WO2020189648A1 publication Critical patent/WO2020189648A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • F16D2200/0086Moulding materials together by application of heat and pressure

Definitions

  • the present invention relates to a friction material used for disc brakes of automobiles, railroad vehicles, industrial machines, etc.
  • Patent Document 1 in a friction material obtained by molding a friction material composition of NAO material including a binder, a fiber base material, a friction adjusting material, a lubricating material, a pH adjusting material, and a filler, the friction material composition is used. , 2 to 6% by weight of alkali metal salt and / or alkaline earth metal salt as the pH adjusting material with respect to the total amount of the friction material composition, and 1 of the fibrillated organic fiber as the fiber base material with respect to the total amount of the friction material composition.
  • a friction material containing up to 7% by weight and having a water-repellent component content of 0 to 0.5% by weight based on the total amount of the friction material composition is disclosed.
  • Patent Document 2 it is a friction material containing a fiber base material, a friction adjusting material and a binder, and the content of copper is 0.5% by mass or less in terms of copper element, and the content of the binder is A friction material is disclosed which is 10% by mass or more, contains calcium hydroxide and zinc, and has a pH of 11.7 or more.
  • the friction load between the friction material and rotor in the regenerative cooperative brake is lighter than that of the conventional brake. Therefore, the roughness of the friction material and the rotor surface becomes small, the true contact area becomes large, and the wear powder containing the iron component derived from the cast iron rotor, which is the mating material, is hard to be discharged. It is considered that the above problem occurs because the iron component in the rotor and the abrasion powder rusts and generates an adhesive force in these states and is affected by the moisture.
  • the friction surface of the friction material and the abrasion powder absorb moisture and are affected by moisture, so that the friction coefficient temporarily increases.
  • the braking force of the brake becomes too high, causing abnormal effects or squealing.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and is a friction material for disc brakes which can suppress the occurrence of a rust sticking phenomenon and has stable friction characteristics even after being left in a low temperature and high humidity environment. It is an issue to be solved to provide.
  • the present invention relates to the following ⁇ 1> to ⁇ 3>.
  • ⁇ 1> A friction material for disc brakes containing a wax containing an ester of a higher fatty acid and a higher alcohol as a main component.
  • ⁇ 2> The friction material for a disc brake according to ⁇ 1>, wherein the wax has a melting point of 65 to 105 ° C.
  • ⁇ 3> The friction material for a disc brake according to ⁇ 1> or ⁇ 2>, which contains titanate.
  • a friction material for a disc brake which can suppress the occurrence of a rust sticking phenomenon and has stable friction characteristics even after being left in a low temperature and high humidity environment.
  • the friction material generally contains a friction adjusting material, a binder, and a fiber base material.
  • the friction material for disc brakes of the present invention (hereinafter, may be referred to as "friction material of the present invention") contains a wax containing an ester of a higher fatty acid and a higher alcohol as a main component as a friction adjusting material.
  • each component will be described in detail.
  • the friction material of the present invention is characterized by containing a wax containing an ester of a higher fatty acid and a higher alcohol as a main component (hereinafter, may be referred to as "wax A").
  • Abrasion powder is generated when the friction material rubs against the rotor which is the mating material.
  • the friction material of the present invention contains wax A
  • the wax A softens or melts due to the frictional heat generated by the friction during braking, and coats the wear powder containing the iron component derived from the rotor and the surface of the rotor.
  • the influence of moisture on the abrasion powder particles, the friction material and the friction surface of the rotor is suppressed, and the occurrence of the rust sticking phenomenon is suppressed.
  • wax A has water repellency
  • the friction material of the present invention contains wax A, moisture absorption on the friction surface of the friction material is suppressed, and abrasion powder is coated on wax A. Therefore, it is considered that the adhesive force of the wear debris aggregate is suppressed from being strengthened by the influence of moisture, and the friction material of the present invention becomes a friction material having stable friction characteristics even in a low temperature and high humidity environment.
  • Wax A contains an ester of a higher fatty acid and a higher alcohol (hereinafter, may be referred to as "ester B") as a main component.
  • ester B an ester of a higher fatty acid and a higher alcohol
  • main component means that the content of ester B in wax A is 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. Is.
  • Ester B can be obtained from higher fatty acids and higher alcohols by a known method.
  • the higher fatty acid and the higher alcohol may be dehydrated and condensed in the presence of a dehydrating agent.
  • the higher fatty acid means a saturated or unsaturated fatty acid having 10 or more carbon atoms.
  • the number of carbon atoms is preferably 12 or more, more preferably 14 or more, preferably 45 or less, and more preferably 40 or less.
  • the higher fatty acid may be linear, branched or cyclic.
  • higher fatty acids include cerotic acid, palmitic acid, bechenic acid, lignoceric acid, lauric acid, myristic acid, stearic acid, undecylenic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, and eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and the like.
  • cerotic acid, palmitic acid, behenic acid, and lignoceric acid are preferable from the viewpoint of coating performance of abrasion powder and rotor surface.
  • the higher alcohol means a saturated or unsaturated alcohol having 6 or more carbon atoms.
  • the carbon number is preferably 10 or more, more preferably 20 or more, preferably 50 or less, and more preferably 40 or less.
  • the higher alcohol may be linear, branched or cyclic.
  • higher alcohols include myricyl alcohol, 1-hexacosanol, triacanthanol, lauryl alcohol, myristyl alcohol, cetyl alcohol, icosanol, dodecenol, ficeteryl alcohol, zomarin alcohol, oleyl alcohol, and gado.
  • Examples thereof include rail alcohol, icosenol, docosenol, and lanolin alcohol.
  • myricyl alcohol, 1-hexacosanol, and triacontanol are preferable from the viewpoint of coating performance of abrasion powder and rotor surface.
  • ester B examples include brazing ester and the like.
  • wax A may contain, for example, free fatty acids (non-esterified fatty acids), free alcohols (non-esterified alcohols), hydrocarbons, resins, lactones and the like.
  • the carbon number of the free fatty acid and the free alcohol is, for example, 10 to 40, preferably 15 to 35.
  • the number of carbon atoms in the hydrocarbon is, for example, 10 to 40, preferably 15 to 35.
  • Wax A can be produced by mixing and stirring the above components at, for example, 100 to 250 ° C. Further, as the wax A, a naturally derived wax A can be used. Above all, from the viewpoint of reducing the environmental load, it is preferable to use naturally derived ones. Examples of the naturally occurring wax A include carnauba wax, rice wax and the like, and powdered wax A is desirable.
  • Carnauba wax is obtained from a palm tree that originates in northern Brazil. Rice wax is obtained by refining the wax separated when refining rice oil extracted from rice bran.
  • the melting point of wax A is preferably 65 to 105 ° C, more preferably 75 to 95 ° C, and even more preferably 80 to 90 ° C.
  • the melting point of the wax A is 65 ° C. or higher, the material does not have an adverse effect such as adhering to the wall of the stirring pot or the like during the material mixing and stirring in the manufacturing process of the friction material.
  • the melting point of wax A is 65 ° C. or higher, the temperature of the friction surface between the friction material and the rotor is unlikely to rise under braking conditions where the braking load is light due to regenerative braking or the like.
  • the melting point of the wax A is 105 ° C. or lower, the wax A softens or melts even under braking conditions where the braking load is light, and the occurrence of the rust sticking phenomenon is easily suppressed.
  • the content of wax A in the entire friction material is preferably 0.2 to 3.0% by mass, more preferably 0.5 to 2.5% by mass, and further preferably 1.0 to 2.0% by mass. is there.
  • the content of wax A is 0.2% by mass or more, the occurrence of rust adhesion can be suppressed, and stable friction characteristics can be easily obtained even after the friction material is left in a low temperature and high humidity environment.
  • the content of wax A is 3.0% by mass or less, the thermal expansion of the friction material does not become too large.
  • Examples of other friction adjusting materials include inorganic fillers, organic fillers, abrasives, solid lubricants and the like.
  • inorganic filler examples include inorganic materials such as titanate, barium sulfate, calcium carbonate, calcium hydroxide, vermiculite and mica, and metal powders such as aluminum, tin and zinc. These are used alone or in combination of two or more.
  • titanate can form a friction film on the friction surface of the friction material and the rotor and impart relatively stable friction characteristics, it is relatively suitable for the friction material from the viewpoint of heat resistance, effective stability, and abrasion resistance. It is often mixed. Therefore, a relatively large amount of the titanate component is also present in the wear debris generated when the friction material and the rotor rub against each other. Titanate is easily compatible with water due to its salt component, which is a chemical structure. As mentioned above, during regenerative cooperative braking with a light friction load, it is difficult for the wear debris generated when the friction material and the rotor rub against each other to be discharged. Therefore, wear debris tends to remain at the friction material and rotor interface, resulting in repeated light load braking. The wear debris particles are further ground.
  • Abrasion powder containing a large amount of finely ground titanate has high hygroscopicity and is easily affected by moisture to form abrasion powder aggregates.
  • the wear debris can be coated with the wax A, the influence of the moisture of the wear debris generated by braking can be suppressed even when the titanium salt is used, and the friction material is placed in a low temperature and high humidity environment. Stable friction characteristics can be obtained even after being left in.
  • the content of titanium salt in the entire friction material is preferably 5 to 30% by mass, more preferably 10 to 25% by mass, and further preferably 15 to 20% by mass.
  • titanate examples include potassium titanate, lithium titanate, lithium potassium titanate, sodium titanate, calcium titanate, magnesium titanate, magnesium potassium titanate, barium titanate and the like.
  • potassium titanate, potassium lithium titanate, and potassium magnesium titanate are preferable, and potassium titanate is more preferable, from the viewpoint of improving wear resistance.
  • organic filler examples include various rubber powders (raw rubber powder, tire powder, etc.), cashew dust, tire tread, melamine dust, and the like. These are used alone or in combination of two or more.
  • abrasive examples include alumina, silica, magnesia, zirconia, zirconium silicate, chromium oxide, iron tetraoxide (Fe 3 O 4 ), chromate and the like. These are used alone or in combination of two or more.
  • solid lubricant examples include graphite (graphite), antimony trisulfide, molybdenum disulfide, tin sulfide, and polytetrafluoroethylene (PTFE). These are used alone or in combination of two or more.
  • the friction adjusting material is preferably used in an amount of 60 to 85% by mass, more preferably 65 to 80% by mass, based on the entire friction material, from the viewpoint of sufficiently imparting the desired friction characteristics to the friction material.
  • Binder various commonly used binders can be used. Specific examples thereof include various modified phenolic resins made of phenolic resin, elastomer and the like, thermosetting resins such as melamine resin, epoxy resin and polyimide resin.
  • elastomer-modified phenolic resin examples include acrylic rubber-modified phenolic resin, silicone rubber-modified phenolic resin, and nitrile rubber (NBR) -modified phenolic resin. These are used alone or in combination of two or more.
  • the binder is preferably used in an amount of 6 to 10% by mass, more preferably 7 to 9% by mass, based on the entire friction material.
  • fiber base material various commonly used fiber base materials can be used. Specific examples thereof include organic fibers, inorganic fibers and metal fibers.
  • organic fibers examples include aromatic polyamide (aramid) fibers and flame-resistant acrylic fibers.
  • the inorganic fiber examples include biosoluble inorganic fiber, ceramic fiber, glass fiber, carbon fiber, rock wool and the like. Among these, biosoluble inorganic fibers are preferable from the viewpoint of having little effect on the human body.
  • the biosoluble inorganic fibers for example, SiO 2 -CaO-MgO-based fiber, SiO 2 -CaO-MgO-Al 2 O 3 fibers, biosoluble ceramic fibers or living body such as SiO 2 -MgO-SrO based fiber Examples include soluble rock wool.
  • the metal fiber include steel fiber and the like. These are used alone or in combination of two or more.
  • the fiber base material is preferably used in an amount of 6 to 12% by mass, more preferably 7 to 11% by mass, based on the entire friction material.
  • the content of the copper component in the entire friction material of the present invention is preferably 0.5% by mass or less, and more preferably not contained, from the viewpoint of reducing the environmental load.
  • the friction material of the present invention can be manufactured by a known manufacturing process. For example, each of the above components is blended, and the blended material is manufactured through steps such as preforming, thermoforming, heating, and polishing according to a usual manufacturing method. can do.
  • a method for manufacturing a brake pad provided with a friction material generally has the following steps.
  • d Pressure to which the preformed product and an adhesive are applied.
  • Thermal molding step molding temperature 130 to 180 ° C., molding pressure 30 to 80 MPa, molding time 2 to 10 minutes
  • a step of performing after-cure 150 to 300 ° C., 1 to 5 hours) and finally performing finishing treatments such as polishing, surface baking, and painting.
  • Examples 1 to 9, Comparative Example 1 The compounding materials shown in Table 2 were collectively put into a mixing stirrer and mixed at room temperature for 2 to 10 minutes to obtain a friction material.
  • the obtained friction material was subjected to the following steps of preforming (i), thermoforming (ii), and heating (iii) to prepare a brake pad provided with the friction material.
  • the friction materials according to Examples 1 to 9 can suppress the occurrence of the rust sticking phenomenon as compared with the friction materials according to Comparative Example 1, and after being left in a low temperature and high humidity environment and It was found that it has stable friction characteristics in the dew condensation state.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

本発明の課題は、錆固着現象の発生を抑制することができ、低温高湿度環境下において放置後も安定した摩擦特性を有するディスクブレーキ用摩擦材を提供することである。本発明は、高級脂肪酸及び高級アルコールのエステルを主成分とするワックスを含有する、ディスクブレーキ用摩擦材に関する。

Description

ディスクブレーキ用摩擦材
 本発明は、自動車、鉄道車両及び産業機械等のディスクブレーキに用いられる摩擦材に関する。
 自動車を雨天及び早朝等の結露が発生する高湿度環境下で放置した後や、洗車後に放置した後では、水分が原因でブレーキにおける摩擦材及びロータが錆により固着する現象(以下、「錆固着現象」と称することがある。)が発生することが知られている。
 そこで、錆固着現象の原因となる発錆を抑制する摩擦材が種々提案されている。例えば、特許文献1では、結合材、繊維基材、摩擦調整材、潤滑材、pH調整材、充填材を含むNAO材の摩擦材組成物を成型してなる摩擦材において、摩擦材組成物は、pH調整材としてアルカリ金属塩および/またはアルカリ土類金属塩を摩擦材組成物全量に対し2~6重量%と、繊維基材としてフィブリル化された有機繊維を摩擦材組成物全量に対し1~7重量%を含有し、且つ、撥水性成分の含有量が摩擦材組成物全量に対し0~0.5重量%であることを特徴とする摩擦材が開示されている。
 また、特許文献2では、繊維基材、摩擦調整材及び結合材を含む摩擦材であって、銅の含有量が銅元素換算で0.5質量%以下であり、前記結合材の含有量が10質量%以上であり、水酸化カルシウム及び亜鉛を含み、摩擦材のpHが11.7以上である、摩擦材が開示されている。
日本国特開2017-25286号公報 日本国特開2015-93933号公報
 一般に、錆固着現象は、構造上水分が内部に保持されにくいディスクブレーキでは、ドラムブレーキに比べて発生しにくいとされる。
 しかしながら、本発明者らの検討によると、近年ハイブリッド車や電気自動車に用いられている回生協調ブレーキでは、ディスクブレーキを使用した場合でも錆固着現象が発生しやすいという問題があった。
 回生協調ブレーキにおける摩擦材及びロータ間の摩擦負荷が従来のブレーキと比較して軽い。よって、摩擦材及びロータ面の粗さが小さくなり、真実接触面積が大きくなる状態と、相手材である鋳鉄ロータ由来の鉄成分を含んだ摩耗粉が排出されにくい状態となる。これらの状態であって、かつ水分の影響を受けることによりロータと摩耗粉中の鉄成分が錆びて固着力を発生させることから上記問題が起こると考えられる。
 錆固着現象が原因で、自動車が発進した際に摩擦材とロータ摩擦面の錆固着が剥がれてインパクト加振が発生し、自動車足廻りや車体に振動が伝わり、異音が発生することがある。錆固着が酷い場合、自動車のクリープ力では発進できなくなる。
 また、摩擦材を比較的低温かつ高湿度環境下で放置すると、摩擦材の摩擦面と摩耗粉が吸湿し水分の影響を受けることにより、摩擦係数が一時的に増大する。摩擦係数が増大すると、ブレーキの制動力が高くなりすぎて異常効きが起きたり、鳴きが発生したりする。
 本発明は、上記従来の実情に鑑みてなされたものであって、錆固着現象の発生を抑制することができ、低温高湿度環境下において放置後も安定した摩擦特性を有するディスクブレーキ用摩擦材を提供することを解決すべき課題としている。
 本発明者らは、鋭意検討を重ねた結果、摩擦材に高級脂肪酸及び高級アルコールのエステルを主成分とするワックスを含有させることで、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記<1>~<3>に関するものである。
<1>高級脂肪酸及び高級アルコールのエステルを主成分とするワックスを含有する、ディスクブレーキ用摩擦材。
<2>前記ワックスの融点が65~105℃である、<1>に記載のディスクブレーキ用摩擦材。
<3>チタン酸塩を含有する、<1>又は<2>に記載のディスクブレーキ用摩擦材。
 本発明によれば、錆固着現象の発生を抑制することができ、低温高湿度環境下において放置後も安定した摩擦特性を有するディスクブレーキ用摩擦材を提供することができる。
 以下、本発明について詳述するが、これらは望ましい実施態様の一例を示すものであり、本発明はこれらの内容に特定されるものではない。
 摩擦材は一般的に、摩擦調整材、結合材、繊維基材を含有する。
 本発明のディスクブレーキ用摩擦材(以下、「本発明の摩擦材」と称することがある。)は、高級脂肪酸及び高級アルコールのエステルを主成分とするワックスを摩擦調整材として含有する。
 以下、各成分について詳細に説明する。
<摩擦調整材>
(高級脂肪酸及び高級アルコールのエステルを主成分とするワックス)
 本発明の摩擦材は、高級脂肪酸及び高級アルコールのエステルを主成分とするワックス(以下、「ワックスA」と称することがある。)を含有することを特徴とする。
 摩擦材が相手材であるロータと摩擦することにより、摩耗粉が発生する。本発明の摩擦材がワックスAを含有すると、ワックスAは、ブレーキ制動時の摩擦によって発生する摩擦熱により軟化または溶融し、ロータ由来の鉄成分を含有する摩耗粉及びロータ表面を被覆する。その結果、摩耗粉粒子、摩擦材及びロータの摩擦面での水分の影響が抑制され、錆固着現象の発生が抑制されると考えられる。
 また、ワックスAには撥水性があるので、本発明の摩擦材がワックスAを含有すると、摩擦材の摩擦面の吸湿が抑制され、かつ摩耗粉がワックスAに被覆される。よって、水分の影響により摩耗粉凝集体の凝着力が強固になるのが抑制され、本発明の摩擦材が低温高湿度環境下においても安定した摩擦特性を有する摩擦材となると考えられる。
 ワックスAは、高級脂肪酸及び高級アルコールのエステル(以下、「エステルB」と称することがある。)を主成分とする。本発明において、上記「主成分とする」とは、ワックスA中のエステルBの含有量が、50質量%以上であることを意味し、好ましくは70質量%以上、より好ましくは80質量%以上である。
 エステルBは、高級脂肪酸及び高級アルコールから公知の方法で得ることができる。例えば、脱水剤の存在下で高級脂肪酸及び高級アルコールを脱水縮合反応させればよい。
 本発明において、高級脂肪酸とは、炭素数が10以上の飽和又は不飽和脂肪酸を意味する。当該炭素数は、好適な融点のワックスAを得る観点から、好ましくは12以上、より好ましくは14以上であり、好ましくは45以下、より好ましくは40以下である。なお、高級脂肪酸は、直鎖状、分岐鎖状、環状のいずれでもよい。
 高級脂肪酸の具体例としては、例えば、セロチン酸、パルミチン酸、ベヘン酸、リグノセリン酸、ラウリン酸、ミリスチン酸、ステアリン酸、ウンデシレン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)等が挙げられる。これらの中でも、摩耗粉及びロータ表面の被覆性能の観点から、セロチン酸、パルミチン酸、ベヘン酸、リグノセリン酸が好ましい。
 本発明において、高級アルコールとは、炭素数が6以上の飽和又は不飽和アルコールを意味する。当該炭素数は、好適な融点のワックスAを得る観点から、好ましくは10以上、より好ましくは20以上であり、好ましくは50以下、より好ましくは40以下である。なお、高級アルコールは、直鎖状、分岐鎖状、環状のいずれでもよい。
 高級アルコールの具体例としては、例えば、ミリシルアルコール、1-ヘキサコサノール、トリアコンタノール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、イコサノール、ドデセノール、フィセテリルアルコール、ゾーマリンアルコール、オレイルアルコール、ガドレイルアルコール、イコセノール、ドコセノール、ラノリンアルコール等が挙げられる。これらの中でも、摩耗粉及びロータ表面の被覆性能の観点から、ミリシルアルコール、1-ヘキサコサノール、トリアコンタノールが好ましい。
 エステルBとしては、例えば、ろうエステル等が挙げられる。
 ワックスAは、エステルB以外に、例えば、遊離脂肪酸(非エステル化脂肪酸)、遊離アルコール(非エステル化アルコール)、炭化水素、樹脂、ラクトン類等を含有してもよい。
 遊離脂肪酸、遊離アルコールの炭素数は、例えば10~40、好ましくは15~35である。炭化水素の炭素数は、例えば10~40、好ましくは15~35である。
 ワックスAは、上記成分を、例えば100~250℃で混合及び撹拌することにより製造できる。また、ワックスAは、天然由来のものを用いることができる。中でも、環境負荷低減の観点から、天然由来のものを用いることが好ましい。
 天然由来のワックスAとしては、例えば、カルナバワックス、ライスワックス等が挙げられ、粉末状が望ましい。
 カルナバワックスは、北ブラジルを産地とするヤシ科バーム樹から得られる。ライスワックスは、米ヌカから抽出された米油を精製する際に分離した蝋分を精製して得られる。
 ワックスAの融点は、好ましくは65~105℃、より好ましくは75~95℃、さらに好ましくは80~90℃である。ワックスAの融点が65℃以上であれば、摩擦材の製造工程において材料混合撹拌時に材料が撹拌釜の壁等に付着するなどの悪影響を及ぼさない。また、ワックスAの融点が65℃以上であれば、回生協調ブレーキ等による制動負荷の軽い制動条件では、摩擦材とロータの摩擦面の温度が上昇しにくい。ワックスAの融点が105℃以下であれば、制動負荷の軽い制動条件でもワックスAが軟化または溶融し、錆固着現象の発生が抑制されやすくなる。
 ワックスAの摩擦材全体中の含有量は、0.2~3.0質量%が好ましく、より好ましくは0.5~2.5質量%、さらに好ましくは1.0~2.0質量%である。ワックスAの含有量が0.2質量%以上であれば、錆固着の発生が抑制でき、摩擦材を低温高湿度環境下に放置した後でも安定した摩擦特性を得やすい。ワックスAの含有量が3.0質量%以下であれば、摩擦材の熱膨張が大きくなりすぎない。
(その他の摩擦調整材)
 その他の摩擦調整材は、耐摩耗性、耐熱性、耐フェード性等の所望の摩擦特性を摩擦材に付与するために用いられる。
 その他の摩擦調整材としては、例えば、無機充填材、有機充填材、研削材、固体潤滑材等を挙げることができる。
 無機充填材としては、例えば、チタン酸塩、硫酸バリウム、炭酸カルシウム、水酸化カルシウム、バーミキュライト、マイカ等の無機材料や、アルミニウム、スズ、亜鉛等の金属粉末が挙げられる。これらは各々単独で、または2種以上組み合わせて用いられる。
 なお、チタン酸塩は、摩擦材およびロータの摩擦面に摩擦皮膜を形成し比較的安定した摩擦特性を付与できるため、耐熱性、効き安定性、耐摩耗性の観点から摩擦材には比較的多く配合される。そのため、摩擦材とロータが摩擦した際に発生する摩耗粉中にもチタン酸塩成分が比較的多く存在する。チタン酸塩はその塩成分という化学構造により水に馴染みやすい。摩擦負荷の軽い回生協調ブレーキ時には、前述の通り、摩擦材とロータが摩擦した際に発生した摩耗粉の排出がされにくいため、摩擦材とロータ界面に摩耗粉が残りやすく軽負荷制動の繰り返しによって摩耗粉粒子がさらに細かくすりつぶされる。細かくすりつぶされたチタン酸塩を多く含む摩耗粉は吸湿性が高く水分の影響を受け摩耗粉凝集体を形成しやすくなる。そのような摩耗粉凝集体が摩擦材とロータの摩擦界面に存在している状態で制動することにより、強固に凝集した摩耗粉によりせん断力が強くなり、ブレーキ制動力が高くなりすぎて異常効きを起こすと考えられる。
 しかしながら、本発明では上述の通り、ワックスAによって当該摩耗粉を被覆できるので、チタン酸塩を用いた場合でも制動によって発生した摩耗粉の水分の影響を抑制でき、摩擦材を低温高湿度環境下で放置した後でも安定した摩擦特性が得られる。
 チタン酸塩を用いる場合、チタン酸塩の摩擦材全体中の含有量は、5~30質量%が好ましく、より好ましくは10~25質量%、さらに好ましくは15~20質量%である。
 チタン酸塩としては、例えば、チタン酸カリウム、チタン酸リチウム、チタン酸リチウムカリウム、チタン酸ナトリウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸マグネシウムカリウム、チタン酸バリウム等が挙げられる。これらの中でも、耐摩耗性が向上する点から、チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウムが好ましく、チタン酸カリウムがより好ましい。
 有機充填材としては、例えば、各種ゴム粉末(生ゴム粉末、タイヤ粉末等)、カシューダスト、タイヤトレッド、メラミンダスト等が挙げられる。これらは各々単独で、または2種以上組み合わせて用いられる。
 研削材としては、例えば、アルミナ、シリカ、マグネシア、ジルコニア、珪酸ジルコニウム、酸化クロム、四三酸化鉄(Fe)、クロマイト等が挙げられる。これらは各々単独で、または2種以上組み合わせて用いられる。
 固体潤滑材としては、例えば、黒鉛(グラファイト)、三硫化アンチモン、二硫化モリブデン、硫化錫、ポリテトラフルオロエチレン(PTFE)等が挙げられる。これらは各々単独で、または2種以上組み合わせて用いられる。
 摩擦調整材は、上記所望の摩擦特性を摩擦材に十分付与する観点から、摩擦材全体中、好ましくは60~85質量%、より好ましくは65~80質量%用いられる。
<結合材>
 結合材としては、通常用いられる種々の結合材を用いることができる。具体的には、フェノール樹脂、エラストマー等による各種変性フェノール樹脂、メラミン樹脂、エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹脂が挙げられる。
 エラストマー変性フェノール樹脂としては、例えば、アクリルゴム変性フェノール樹脂やシリコーンゴム変性フェノール樹脂、ニトリルゴム(NBR)変性フェノール樹脂等が挙げられる。これらは各々単独で、または2種以上組み合わせて用いられる。
 結合材は、摩擦材の成形性の観点から、摩擦材全体中、好ましくは6~10質量%、より好ましくは7~9質量%用いられる。
<繊維基材>
 繊維基材としては、通常用いられる種々の繊維基材を用いることができる。具体的には、有機繊維、無機繊維、金属繊維が挙げられる。
 有機繊維としては、例えば、芳香族ポリアミド(アラミド)繊維、耐炎性アクリル繊維等が挙げられる。
 無機繊維としては、例えば、生体溶解性無機繊維、セラミック繊維、ガラス繊維、カーボン繊維、ロックウール等が挙げられる。これらの中でも、人体への影響が少ない観点から、生体溶解性無機繊維が好ましい。生体溶解性無機繊維としては、例えば、SiO-CaO-MgO系繊維、SiO-CaO-MgO-Al系繊維、SiO-MgO-SrO系繊維等の生体溶解性セラミック繊維や生体溶解性ロックウール等が挙げられる。
 金属繊維としては、例えば、スチール繊維等が挙げられる。これらは各々単独で、または2種以上組み合わせて用いられる。
 繊維基材は、摩擦材の十分な強度を確保する観点から、摩擦材全体中、好ましくは6~12質量%、より好ましくは7~11質量%用いられる。
 なお、本発明の摩擦材全体中の銅成分の含有量は、環境負荷低減の観点から、0.5質量%以下が好ましく、含有しないことがより好ましい。
<摩擦材の製造方法>
 本発明の摩擦材は、公知の製造工程により製造でき、例えば、上記各成分を配合し、その配合物を通常の製法に従って予備成形、熱成形、加熱、研摩等の工程を経て摩擦材を製造することができる。
 摩擦材を備えたブレーキパッドの製造方法は、一般的に以下の工程を有する。
(a)板金プレスによりプレッシャプレートを所定の形状に成形する工程
(b)上記プレッシャプレートに脱脂処理、化成処理及びプライマー処理を施し、接着剤を塗布する工程
(c)摩擦調整材、結合材及び繊維基材等の原料を配合し、混合により十分に均質化して、常温にて所定の圧力で成形して予備成形体を作製する工程
(d)上記予備成形体と接着剤が塗布されたプレッシャプレートとを、所定の温度及び圧力を加えて両部材を一体に固着する熱成形工程(成形温度130~180℃、成形圧力30~80MPa、成形時間2~10分間)
(e)アフターキュア(150~300℃、1~5時間)を行って、最終的に研摩、表面焼き、及び塗装等の仕上げ処理を施す工程
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明は何らこれらに限定されるものではない。
(実施例1~9、比較例1)
 表2に示す配合材料を、混合撹拌機に一括して投入し、常温で2~10分間混合し、摩擦材を得た。得られた摩擦材を以下の予備成形(i)、熱成形(ii)、加熱(iii)の工程を経て、摩擦材を備えたブレーキパッドを作製した。
(i)予備成形
 摩擦材を予備成形プレスの金型に投入し、常温にて20MPaで10秒間成形を行い、予備成形品を作製した。
(ii)熱成形
 この予備成形品を熱成形型に投入し、予め接着剤を塗布した金属板(プレッシャプレート)を重ね、150℃、40MPaで5分間加熱圧縮成形を行った。
(iii)加熱
 この加熱圧縮成形体に、200~250℃、3時間の熱処理を実施した後、研摩した。
 次いで、この加熱圧縮成形体の表面に表面焼き処理を施し、仕上げに塗装を行い、摩擦材を備えたブレーキパッドを得た。
 実施例1~9及び比較例1で得られた摩擦材を備えたブレーキパッドに対して以下の方法により、錆固着性及び摩擦係数安定性の評価を行った。
<錆固着性>
 後輪にビルトイン式ディスクブレーキを採用する自動車に、上記で得られたブレーキパッド及び鋳鉄ロータを設置した。
 錆固着性の評価開始1日目に、下記の操作を行った。
(1)摺り合せ:速度50km/h、減速度1.96m/s、パッドIBT(Initial Brake Temperature)50℃以下にて100回制動
(2)水掛け:15L/min、3分間
(3)クリープにて3回制動
(4)パーキングブレーキをノッチ数7でかけて18時間屋外放置
(5)貼り付きを確認
(6)No.(1)~(5)の操作を1日とし、毎日繰り返した。
 試験4日目、11日目、14日目(11日目から14日目については3晩放置)のクリープ発進時の実車の音圧をについて助手席ヘッドレスト部分にマイクをセットし、音圧を測定した。結果を表2に示す。
 試験4日目、11日目、14日目に測定した音圧を下記基準に基づき評価した。結果を表2に示す。
◎:50dB未満または貼り付きなし
○:50dB以上60dB未満
△:60dB以上70dB未満
×:70dB以上またはクリープ発進不可
 なお、上記「貼り付きなし」とは、摩擦材とロータ摩擦面が錆固着して剥がれる際の音がしなかったことを意味する。
<低温高湿放置後、水濡れ時(結露状態の模擬)の平均摩擦係数変化>
 得られたブレーキパッドを使用し、フルサイズのダイナモメーターを用いて下記表1に示す試験条件に基づき、評価を実施した。
 制動条件1の平均摩擦係数、制動条件2の8時間放置後の平均摩擦係数、及び制動条件3の水スプレー噴霧後の平均摩擦係数をそれぞれ比較し、低温高湿放置後と水スプレー噴霧後の平均摩擦係数の変化率を下記式によって求め、下記基準に基づき評価した。結果を表2に示す。
 水スプレー噴霧は、結露状態の模擬を目的とし、インナー摩擦面及びアウター摩擦面それぞれに3mLずつ噴霧を実施した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-M000002
◎:±5%未満
○:±5%以上±10%未満
△:±10%以上±15%未満
×:±15%以上
Figure JPOXMLDOC01-appb-T000003
 表2の結果から、実施例1~9に係る摩擦材は、比較例1に係る摩擦材と比べて、錆固着現象の発生を抑制することができ、低温高湿度環境下での放置後および結露状態において安定した摩擦特性を有することがわかった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2019年3月20日出願の日本特許出願(特願2019-53712)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (3)

  1.  高級脂肪酸及び高級アルコールのエステルを主成分とするワックスを含有する、ディスクブレーキ用摩擦材。
  2.  前記ワックスの融点が65~105℃である、請求項1に記載のディスクブレーキ用摩擦材。
  3.  チタン酸塩を含有する、請求項1又は2に記載のディスクブレーキ用摩擦材。
PCT/JP2020/011571 2019-03-20 2020-03-16 ディスクブレーキ用摩擦材 WO2020189648A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/440,400 US20220163081A1 (en) 2019-03-20 2020-03-16 Friction material for disc brake
CN202080022529.7A CN113614197A (zh) 2019-03-20 2020-03-16 盘式制动器用摩擦材料
EP20773732.1A EP3943570A4 (en) 2019-03-20 2020-03-16 DISC BRAKE FRICTION MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-053712 2019-03-20
JP2019053712A JP7323309B2 (ja) 2019-03-20 2019-03-20 ディスクブレーキ用摩擦材

Publications (1)

Publication Number Publication Date
WO2020189648A1 true WO2020189648A1 (ja) 2020-09-24

Family

ID=72520838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011571 WO2020189648A1 (ja) 2019-03-20 2020-03-16 ディスクブレーキ用摩擦材

Country Status (5)

Country Link
US (1) US20220163081A1 (ja)
EP (1) EP3943570A4 (ja)
JP (2) JP7323309B2 (ja)
CN (1) CN113614197A (ja)
WO (1) WO2020189648A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286436A (en) * 1975-02-07 1977-07-18 Ferro Corp Friction materials containing spinel solid solution as friction modifier
JPH01307528A (ja) * 1988-06-03 1989-12-12 Mitsubishi Gas Chem Co Inc ディスクブレーキ・パッド.
JPH06184524A (ja) * 1992-12-18 1994-07-05 Hitachi Chem Co Ltd 摩擦材組成物
JPH10220507A (ja) * 1997-02-07 1998-08-21 Sutaaraito Kogyo Kk 摩擦用ライニング材
JP2006125618A (ja) * 2004-09-30 2006-05-18 Nissin Kogyo Co Ltd 摩擦材
JP2015093933A (ja) 2013-11-12 2015-05-18 曙ブレーキ工業株式会社 摩擦材
JP2017025286A (ja) 2015-07-22 2017-02-02 日清紡ブレーキ株式会社 摩擦材
JP2019053712A (ja) 2017-09-15 2019-04-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 電子投票システム、及び、制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104174A (en) * 1960-05-09 1963-09-17 Gen Motors Corp Friction facing and process of manufacture
JP6301997B2 (ja) * 2016-04-19 2018-03-28 日清紡ブレーキ株式会社 摩擦材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286436A (en) * 1975-02-07 1977-07-18 Ferro Corp Friction materials containing spinel solid solution as friction modifier
JPH01307528A (ja) * 1988-06-03 1989-12-12 Mitsubishi Gas Chem Co Inc ディスクブレーキ・パッド.
JPH06184524A (ja) * 1992-12-18 1994-07-05 Hitachi Chem Co Ltd 摩擦材組成物
JPH10220507A (ja) * 1997-02-07 1998-08-21 Sutaaraito Kogyo Kk 摩擦用ライニング材
JP2006125618A (ja) * 2004-09-30 2006-05-18 Nissin Kogyo Co Ltd 摩擦材
JP2015093933A (ja) 2013-11-12 2015-05-18 曙ブレーキ工業株式会社 摩擦材
JP2017025286A (ja) 2015-07-22 2017-02-02 日清紡ブレーキ株式会社 摩擦材
JP2019053712A (ja) 2017-09-15 2019-04-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 電子投票システム、及び、制御方法

Also Published As

Publication number Publication date
JP2023145601A (ja) 2023-10-11
JP2020152847A (ja) 2020-09-24
US20220163081A1 (en) 2022-05-26
EP3943570A4 (en) 2023-03-08
EP3943570A1 (en) 2022-01-26
JP7323309B2 (ja) 2023-08-08
CN113614197A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6764216B2 (ja) 摩擦材
JP5221177B2 (ja) 摩擦材
JP5358070B2 (ja) 摩擦材
KR101904546B1 (ko) 마찰재
WO2014007130A1 (ja) 摩擦材
JP3754122B2 (ja) 摩擦材
JP2023143948A (ja) 摩擦材
JP7240424B2 (ja) 摩擦材組成物、摩擦材及び摩擦部材
CN107709504B (zh) 非石棉系摩擦材料
JP5691125B2 (ja) 摩擦材組成物、これを用いた摩擦材及び摩擦部材
WO2021079831A1 (ja) 摩擦材
WO2017014173A1 (ja) 摩擦材
WO2020189648A1 (ja) ディスクブレーキ用摩擦材
WO2021125143A1 (ja) 摩擦材
WO2019150504A1 (ja) 摩擦材、摩擦材組成物及び摩擦部材
JP2004155843A (ja) 非石綿系摩擦材
KR101777423B1 (ko) 디스크 브레이크 패드
JP6480145B2 (ja) 摩擦材組成物、摩擦材及び摩擦部材
JP2010083972A (ja) 摩擦材及びその製造方法
WO2023189977A1 (ja) 摩擦材
JP5519142B2 (ja) 摩擦部材及びブレーキ装置
WO2023085286A1 (ja) 摩擦材
WO2023085287A1 (ja) 摩擦材
JP2022068940A (ja) 摩擦材
JP2018146106A (ja) 摩擦材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773732

Country of ref document: EP

Effective date: 20211020