WO2020189483A1 - Heat exchanger and heat exchanger manufacturing method - Google Patents
Heat exchanger and heat exchanger manufacturing method Download PDFInfo
- Publication number
- WO2020189483A1 WO2020189483A1 PCT/JP2020/010748 JP2020010748W WO2020189483A1 WO 2020189483 A1 WO2020189483 A1 WO 2020189483A1 JP 2020010748 W JP2020010748 W JP 2020010748W WO 2020189483 A1 WO2020189483 A1 WO 2020189483A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat transfer
- transfer tube
- wall
- embossed portion
- heat exchanger
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
Definitions
- This disclosure relates to heat exchangers and methods for manufacturing heat exchangers.
- Some heat exchangers have a header that distributes and aggregates the refrigerant to the heat transfer tube that transfers heat to the fins.
- the header and heat transfer tube are generally brazed.
- Patent Document 1 includes a heat transfer tube, an insertion hole into which the heat transfer tube is inserted, and a header having an outer wall formed with a peripheral wall surrounding the opening of the insertion hole, and the heat transfer tube is brazed to the peripheral wall.
- the heat exchanger is disclosed.
- the insertion hole and the peripheral wall are formed by burring the outer wall of the header.
- Patent Document 2 describes that in a method of punching a metal plate to form a hole having a diameter smaller than the plate thickness on the metal plate, burrs adhere to the inner wall of the hole.
- the present disclosure has been made in order to solve the above problems, and an object of the present disclosure is to provide a heat exchanger and a method for manufacturing a heat exchanger, which have a high joint strength between a heat transfer tube and a header and are easy to manufacture.
- the heat exchanger surrounds the heat transfer tube for transferring heat to the fins, the insertion hole into which the heat transfer tube is inserted, and the insertion hole, and projects in the axial direction of the heat transfer tube.
- a header having an outer wall on which an embossed portion is formed is provided. In the header, heat transfer tubes are brazed to the embossed portion and the inner wall of the insertion hole.
- the heat transfer tube is brazed to the embossed portion and the inner wall of the insertion hole, so that the joint strength is high. Further, since the embossed portion is only formed on the outer wall, it is easy to manufacture even if the thickness of the outer wall is increased.
- Perspective view of the heat exchanger according to the first embodiment of the present disclosure Perspective view of the heat transfer tube included in the heat exchanger according to the first embodiment of the present disclosure.
- Perspective view of the cut portion when the heat exchanger is cut in the region III shown in FIG. Front view of the cut portion when the heat exchanger is cut in the region III shown in FIG. Sectional view at the VV cutting line shown in FIG.
- Cross-sectional view of the outer wall of the header in which the embossed portion is formed by the method for manufacturing the heat exchanger according to the first embodiment of the present disclosure Cross-sectional view of the outer wall of the header when a through hole is formed in the embossed portion in the method for manufacturing the heat exchanger according to the first embodiment of the present disclosure.
- Cross-sectional view of a header when a heat transfer tube is inserted into a through hole in the method for manufacturing a heat exchanger according to the first embodiment of the present disclosure Perspective view of the heat exchanger according to the second embodiment of the present disclosure.
- Front view of the heat exchanger according to the second embodiment of the present disclosure Cross-sectional view taken along the XI-XI cutting line shown in FIG.
- Front view of the heat exchanger according to the third embodiment of the present disclosure Front view of the heat exchanger according to the third embodiment of the present disclosure.
- Cross-sectional view of a modified example of the heat exchanger according to the first embodiment of the present disclosure Cross-sectional view of a modified example of the outer wall of the header
- the heat exchanger according to the first embodiment is a heat exchanger in which an embossed portion is formed on the outer wall of the header.
- a heat transfer tube is brazed to the embossed portion.
- FIGS. 1 to 2 the configuration of the heat exchanger will be described with reference to FIGS. 1 to 2, and then the embossed portion will be described with reference to FIGS. 3 to 5.
- a method of manufacturing the heat exchanger will be described with reference to FIGS. 6-8.
- FIG. 1 is a perspective view of the heat exchanger 1A according to the first embodiment.
- FIG. 2 is a perspective view of the heat transfer tube 20 included in the heat exchanger 1A.
- parts such as a refrigerant pipe and a joint for supplying and discharging the refrigerant are omitted for easy understanding.
- the heat exchanger 1A has a plurality of headers 10F and 10B in which a refrigerant is supplied from an external device or discharges a refrigerant to the external device, and a plurality of headers 10F and 10B through which the refrigerants of the headers 10F and 10B are circulated to transfer the heat of the refrigerant.
- the heat transfer tube 20 and a plurality of fins 30 that dissipate the heat of the heat transfer tube 20 are provided.
- Headers 10F and 10B have rectangular parallelepiped outer walls 11F and 11B. Although not shown, a flow path for flowing a refrigerant is formed inside the flow path.
- the headers 10F and 10B are arranged so as to be separated from each other with the longitudinal directions of the outer walls 11F and 11B facing left and right.
- the headers 10F and 10B are connected to each other by a plurality of heat transfer tubes 20 in order to allow the refrigerant to flow.
- headers 10F and 10B have shapes symmetrical with respect to the XZ plane. Further, the headers 10F and 10B have the same configuration except that they are symmetrical. Therefore, in the present specification, the headers 10F and 10B are simply referred to as headers 10 except when the arrangement relationship is described below. Similarly, the outer wall 11F and 11B are also simply referred to as the outer wall 11 except when the arrangement relationship is explained.
- the heat transfer tube 20 is formed in a flat front view.
- the flat shape is a shape in which both ends in the longitudinal direction are rounded into a semicircle in the front view, and is, for example, a flat oval in the front view.
- the heat transfer tube 20 has an internal space that serves as a flow path for flowing the refrigerant.
- the internal space extends in the horizontal direction and is partitioned by a plurality of partition walls 21 arranged in the vertical direction in order to enhance heat transfer.
- the tube axis of the heat transfer tube 20 extends linearly in the direction from the back to the front, that is, in the Y direction.
- the heat transfer tube 20 and the heat transfer tube 20 are arranged with a gap between them in order to increase the heat exchange rate with air.
- a plurality of fins 30 are attached to the heat transfer tube 20 in order to dissipate heat transferred from the refrigerant.
- the fin 30 is formed in the shape of a rectangular plate in order to improve heat dissipation. Its thickness is 0.09-0.2 mm. Although not shown, a notch that can be fitted to the end portion of the heat transfer tube 20 in the longitudinal direction of the cross section is formed in the longitudinal direction of the fin 30. The number of cutouts is the same as that of the heat transfer tube 20, and the pitch of the cutouts is the same as the left-right pitch of the heat transfer tube 20 and the heat transfer tube 20. Then, the notch portion is fitted to the heat transfer tube 20, and a plurality of fins 30 are attached to the heat transfer tube 20. The fins 30 are fixed to the heat transfer tube 20 by being brazed to the heat transfer tube 20 at these notches. Then, as shown in FIG. 1, the fins 30 are assembled to the plurality of heat transfer tubes 20 in a state where the longitudinal direction is directed to the left-right direction and at a constant pitch, for example, at a pitch of 1.0-2.0 mm. There is.
- the fin 30 and the heat transfer tube 20 are made of aluminum or an aluminum alloy in order to enhance the heat transfer property and increase the heat exchange rate between the refrigerant and air.
- the fin 30 is subjected to surface treatment for anticorrosion, antifouling, hydrophilicity, water repellency, etc. according to the usage environment.
- a sacrificial anode layer containing zinc is provided on the surface of the heat transfer tube 20 in order to prevent leakage of the refrigerant due to pitting corrosion.
- the header 10 is made of aluminum or an aluminum alloy like the heat transfer tube 20. A sacrificial anode layer containing zinc is formed on the surface. Since the header 10 is made of the same material as the heat transfer tube 20, the occurrence of distortion after joining with the heat transfer tube 20 is reduced. The header 10 is formed with an embossed portion 12 for joining the heat transfer tubes 20. Next, the embossed portion 12 of the header 10 will be described with reference to FIGS. 3 to 5.
- FIG. 3 is a perspective view of the cut portion when the heat exchanger 1A is cut in the region III shown in FIG.
- FIG. 4 is a front view of the cut portion.
- FIG. 5 is a cross-sectional view taken along the line VV shown in FIG. In FIG. 3, the brazing material 14 is omitted for ease of understanding.
- a convex embossed portion 12 is formed on the + Y side on the front side of the outer wall 11, that is, the wall portion on the + Y side.
- the embossed portion 12 is a portion formed by a processing method called embossing, half piercing, half punching, dowel processing, or the like. Although the detailed processing method will be described later, as shown in FIG. 5, the embossed portion 12 has a shape in which a part of the outer wall 11 is displaced in the tube axis direction of the heat transfer tube 20.
- the above-mentioned processing method in which the embossed portion 12 is formed is hereinafter referred to as an embossing processing method.
- the embossed portion 12 a part of the outer wall 11 is projected in the Y direction, which is the pipe axis direction, in a local region A narrower than the thickness T of the outer wall 11.
- the raised portion of the outer wall 11 is parallel to the non-protruded portion of the outer wall 11.
- the raised distance is half the thickness T of the outer wall 11. Therefore, in the embossed portion 12, the wall surface on the + Y side protrudes by half the thickness T in the + Y direction, and the wall surface on the ⁇ Y side is recessed by half the thickness T in the ⁇ Y direction.
- the direction in which the embossed portion 12 is raised is also referred to as a protrusion direction and a displacement direction
- the length in which the embossed portion 12 is raised is also referred to as a protrusion length.
- the embossed portion 12 has a shear cross section 120 by the above processing method.
- the shearing surface 120 is a smooth surface formed by the processing tool when the outer wall 11 is sheared by the above processing method.
- the shear surface 120 has fine scratches extending in the thickness direction of the wall by the processing tool.
- the embossed portion 12 is formed in a flat shape similar to the heat transfer tube 20 in the front view. Its size is larger than that of the heat transfer tube 20. On the other hand, a through hole 13 into which the heat transfer tube 20 is inserted is formed in the center of the embossed portion 12.
- the through hole 13 is formed in a flat shape similar to the heat transfer tube 20 in which the heat transfer tube 20 can be loosely inserted. As shown in FIG. 5, the through hole 13 penetrates the embossed portion 12 in the Y direction. The through hole 13 has a gap C1 over the entire circumference of the heat transfer tube 20.
- the gap C1 is formed in a size that allows the molten brazing material 14 to penetrate. Specifically, the gap C1 has a size of, for example, about 0.1-0.5 mm, although it depends on the material and surface treatment of the header 10. Then, the through hole 13 is filled with the brazing material 14, and the heat transfer tube 20 is joined to the inner wall of the through hole 13.
- a low fillet is formed between the heat transfer tube 20 and the through hole 13 so as to protrude from the through hole 13 and close the heat transfer tube 20.
- the joint strength with the heat transfer tube 20 is increased.
- the brazing material 14 is filled over the entire circumference of the gap C1 between the through hole 13 and the heat transfer tube 20.
- the low fillet is formed all around the low fillet. As a result, the gap C1 is closed with high airtightness, and the pressure resistance of the brazed portion is enhanced.
- the ⁇ Y end of the through hole 13 is continuous with the depression on the + Y side of the embossed portion 12.
- the above-mentioned shear section 120 is formed on the inner wall of the depression.
- a gap C2 having a size of about 2-3 times the gap C1 is provided between the sheared cross section 120 and the inserted heat transfer tube 20.
- the gap C2 is filled with the brazing material 14 described above.
- a low fillet is formed in the gap C2, and the gap C2 is closed by the low fillet.
- the gap C2 is filled with the brazing material 14 over the entire circumference and is closed by the wax fillet.
- the shear section 120 has fine scratches extending in the thickness direction of the wall. Therefore, the brazing material 14 penetrates between the scratches on the shear surface 120. As a result, the joint strength with the heat transfer tube 20 is increased.
- the through hole 13 is also referred to as an insertion hole because the heat transfer tube 20 is inserted into the through hole 13. Further, the through hole 13 is an example of the insertion hole as referred to in the present specification.
- FIG. 6 is a cross-sectional view of the outer wall 11 of the header 10 when the embossed portion 12 is formed in the method of manufacturing the heat exchanger 1A according to the first embodiment.
- FIG. 7 is a cross-sectional view of the outer wall 11 of the header 10 when the through hole 13 is formed in the embossed portion 12 by the same manufacturing method.
- FIG. 8 is a cross-sectional view of the header 10 when the heat transfer tube 20 is inserted into the through hole 13 by the same manufacturing method.
- the cut surface corresponding to the VI-VIII region shown in FIG. 5 is shown.
- a plurality of heat transfer tubes 20 having the above-mentioned shapes are manufactured by processing methods such as extrusion molding, pultrusion molding, and bending. Further, a plurality of fins 30 having the above-mentioned shapes are produced by press working. At this time, as the material, aluminum, an aluminum alloy, or a clad material in which these materials are clad is used. The surface is surface-treated according to the purpose of use.
- a plurality of heat transfer tubes 20 are arranged at the above-mentioned positions, and the heat transfer tubes 20 arranged in the notches of the plurality of fins 30 are fitted. Further, the notch is brazed to the heat transfer tube 20 to join the heat transfer tube 20 and the fin 30.
- the brazing material is supplied by applying a paste-like brazing material or placing a fixed brazing material in the vicinity of the notch portion of the fin 30. After that, the brazing material is melted and permeated between the heat transfer tube 20 and the notch of the fin 30. Further, the permeated brazing material is cooled, and the heat transfer tube 20 and the fin 30 are joined with the brazing material. As a result, the heat transfer tube 20 and the fin 30 are joined.
- this step is hereinafter referred to as assembling the heat transfer tube 20 and the fin 30.
- the header 10 is manufactured in parallel with the production of the heat transfer tube 20 and the fin 30 and the assembly of the heat transfer tube 20 and the fin 30.
- the above-mentioned aluminum or aluminum alloy sheet metal having a thickness T is prepared and used as the outer wall 11 of the header 10.
- the sheet metal is processed by the embossing method described above to form the embossed portion 12 having the shape described above.
- the outer wall 11 is arranged between the punch 100 and the die 200, the punch 100 is pushed into the outer wall 11, and the outer wall 11 is sheared by the punch 100.
- the pushing amount of the punch 100 is set to half the thickness T of the outer wall 11.
- the embossed portion 12 is formed on the outer wall 11.
- a shear section 120 is formed in a portion of the outer wall 11 pushed by the punch 100.
- This step is an example of the embossed portion forming step as referred to in the present specification.
- a through hole 13 having the above-mentioned shape is formed in the outer wall 11 on which the embossed portion 12 is formed.
- the through hole 13 is formed in the outer wall 11 by using a cutting tool, a machine tool, a press machine, or the like.
- the through hole 13 is formed by machining or press working. This step is an example of the through hole forming step as referred to in the present specification.
- the rectangular parallelepiped header 10 described above is formed by pressing the outer wall 11 on which the through hole 13 is formed.
- the through hole 13 may be formed and the header 10 having the above-mentioned shape may be formed by press working.
- the heat transfer tube 20 is inserted into the through hole 13 of the header 10 formed in a rectangular parallelepiped shape by press working. At this time, a gap C1 is provided between the inner wall of the through hole 13 and the heat transfer tube 20.
- the heat transfer tube 20 to be inserted is a heat transfer tube 20 to which the fins 30 are joined by assembling the heat transfer tube 20 and the fins 30. This step is an example of the heat transfer tube insertion step as referred to in the present specification.
- the brazing material 14 is placed in the opening of the through hole 13 with the gap C1 provided. Then, the brazing material 14 is heated and melted, and as shown by an arrow R, the brazing material 14 is infiltrated into the gap C1 between the inner wall of the through hole 13 and the heat transfer tube 20. Further, the brazing material 14 is infiltrated into the gap between the inner wall of the through hole 13 and the sheared surface 120. As a result, as shown in FIG. 5, the brazing material 14 protrudes from the recess of the embossed portion 12 having the opening of the through hole 13 and the sheared cross section 120, and a low fillet is formed to close these gaps by surface tension.
- brazing material 14 penetrates between the fine linear scratches on the shear surface 120. Then, the brazing material 14 is cooled and cured. The brazing material 14 forms a low fillet, and the heat transfer tube 20 is firmly joined to the header 10. This step is an example of the brazing step as referred to in the present specification.
- the brazing material 14 is placed in the opening of the through hole 13, and the brazing material 14 may be in a well-known form such as a paste, a wire, or a foil.
- the fin 30, the heat transfer tube 20, and the header 10 are assembled, and the heat exchanger 1A is completed.
- the heat transfer tube 20 is joined by the brazing material 14 to the sheared cross section 120 of the embossed portion 12 formed in the header 10 and the inner wall of the through hole 13. .. Therefore, the joint area between the heat transfer tube 20 and the header 10 is large, and the joint strength is high.
- the embossed portion 12 is formed in a shape in which a part of the wall portion of the outer wall 11 of the header 10 is projected in the tube axial direction of the heat transfer tube 20. Therefore, the embossed portion 12 is recessed in the direction opposite to the raised direction. Then, the brazing material 14 is filled in the depression. As a result, the embossed portion 12 supports the heat transfer tube 20. As a result, in the heat exchanger 1A, the strength of the heat transfer tube 20 is high.
- the embossed portion 12 is formed by a punch 100 pushing a part of the outer wall 11 by a processing method called embossing, half piercing, or the like. Therefore, in the heat exchanger 1A, the embossed portion 12 can be easily manufactured even when the thickness of the outer wall 11 is larger than the inner diameter of the through hole 13. As a result, it is easy to increase the thickness of the outer wall 11 to increase the joint strength between the heat transfer tube 20 and the header 10.
- embossed portion 12 which is one size larger than the through hole 13 is only formed on the outer wall 11, it is easy to manufacture even if the thickness of the outer wall 11 is increased as compared with the burring process.
- a through hole 13 is formed in the embossed portion 12 by machining or press working. Therefore, the embossed portion 12 and the through hole 13 can be formed with high position accuracy as compared with the case where the through hole 13 and the peripheral wall are formed by the burring process.
- one through hole 13 is formed in one embossed portion 12.
- one heat transfer tube 20 is joined to one embossed portion 12.
- the embossed portion 12 is not limited to this.
- a plurality of through holes 43 are formed in one embossed portion 42.
- a plurality of heat transfer tubes 20 are joined to the plurality of through holes 43.
- FIG. 9 is a perspective view of the heat exchanger 1B according to the second embodiment.
- FIG. 10 is a front view of the heat exchanger 1B.
- FIG. 11 is a cross-sectional view taken along the XI-XI cutting line shown in FIG.
- FIG. 12 is a cross-sectional view of the header 40 when the heat transfer tube 20 is inserted into the through hole 43 in the method of manufacturing the heat exchanger 1B according to the second embodiment.
- FIG. 9 shows a cut portion when the header 40 is partially cut in a plane parallel to the YZ plane, as in FIG. Further, in FIG. 12, the cut surface of the XI-XI cutting line shown in FIG. 10 is shown.
- the heat exchanger 1B includes a header 40 in which an embossed portion 42 in which two heat transfer tubes 20 are joined is formed.
- the embossed portion 42 is formed in a rectangular shape when viewed from the front.
- the longitudinal direction of the embossed portion 42 is directed in the vertical direction. Its length is larger than the longitudinal direction of the cross section of the heat transfer tube 20.
- the lateral direction of the embossed portion 42 is directed to the left-right direction. The length in the lateral direction is larger than the sum of the pitch P of the heat transfer tube 20 and the length of the heat transfer tube 20 in the lateral direction.
- the embossed portion 42 has a size that allows two through holes 43 having the same shape and the same size as the through holes 13 described in the first embodiment to be arranged.
- the embossed portion 42 is formed with the two through holes 43 described above. A heat transfer tube 20 is inserted into each of the through holes 43.
- a gap C1 similar to that of the first embodiment is provided between the inner wall of the through hole 43 and the heat transfer tube 20.
- the brazing material 14 is filled between the inner wall of the through hole 43 and the heat transfer tube 20 as in the first embodiment.
- the heat transfer tube 20 is joined to the inner wall of the through hole 43.
- two heat transfer tubes 20 are joined to the embossed portion 42.
- the same gap C2 as in the first embodiment is provided between the inner wall UW at the upper end of the recess of the embossed portion 42 and the heat transfer tube 20.
- the brazing material 14 is filled as in the first embodiment.
- the inner wall UW has the same shear section 120 as in the first embodiment.
- the heat transfer tube 20 is firmly joined to the inner wall UW.
- the embossed portion 42 only a part of the inner wall of the recess is joined to the heat transfer tube 20 by the brazing material 14. However, a part of the inner wall has a shear surface of 120. Therefore, the header 40 and the heat transfer tube 20 are more firmly joined to each other as compared with the case where the embossed portion 42 is not formed.
- the heat transfer tube 20 and the fin 30 are manufactured in the same manner as in the first embodiment, and then the heat transfer tube 20 and the fin 30 are assembled. Further, the header 40 having the above-mentioned shape is produced. At this time, the embossed portion 42 and the through hole 43 having the above-mentioned shapes are produced by performing the same embossed portion forming step and through hole forming step as in the first embodiment.
- the heat transfer tube 20 is inserted with the gap C1 provided in the through hole 43.
- the brazing material 14 having a shape surrounding the outer periphery of the heat transfer tube 20 is installed in the heat transfer tube 20 while maintaining the gap C1.
- the brazing material 14 is heated and melted, and the brazing material 14 is infiltrated into the gap C1 between the inner wall of the through hole 43 and the heat transfer tube 20.
- the brazing material 14 penetrates into the gap C1 and the gap C2 between the inner wall UW at the upper end of the recess of the embossed portion 42 and the heat transfer tube 20 by surface tension.
- the brazing material 14 is filled in the gap C2.
- the brazing material 14 that has penetrated into the gap C1 hangs down due to gravity as shown by the arrow S.
- the gap C3 is larger than the gap C2 of the inner wall UW at the upper end of the recess of the embossed portion 42. Therefore, the brazing material 14 is unlikely to be filled in the gap C3 due to surface tension.
- the brazing material 14 when the brazing material 14 is melted in an amount more than necessary for joining the inner wall of the through hole 43 and the heat transfer tube 20, wax clogging occurs or the header 40 or the heat transfer tube 20 is melted, so-called. Erosion may occur.
- a gap C3 larger than the gap C2 is provided at the lower end of the recess of the embossed portion 42. Therefore, the surplus brazing material 14 flows downward due to gravity and gathers in the gap C3. As a result, wax clogging is less likely to occur, and so-called erosion is less likely to occur.
- the heat exchanger 1B is completed by the above steps.
- the heat transfer tube 20 is brazed to the inner wall UW of the embossed portion 42 having the sheared cross section 120 as in the first embodiment. Therefore, even in the heat exchanger 1B, the joint strength between the heat transfer tube 20 and the header 40 is high.
- the pitch P of the heat transfer tube 20 is too small, the pitch of the through holes 43 also becomes small, and the strength of the wall portion between the through holes 43 decreases. As a result, it may be difficult to form the through hole 43 and the peripheral wall.
- the embossed portion 42 to which a plurality of heat transfer tubes 20 can be joined is formed in the same embossed portion forming step as in the first embodiment.
- a through hole 43 is formed in the embossed portion 42 by the same through hole forming step as in the first embodiment. That is, the through hole 43 is formed by machining or press working. Therefore, the embossed portion 42 and the through hole 43 can be formed more easily than the burring process.
- a step is provided between the outer wall 11 and the embossed portions 12 and 42. That is, the embossed portions 12 and 42 have a step shape protruding from the outer wall 11 to the front side, and as a result, a step is provided.
- the number of stages is one.
- the embossed portions 12 and 42 are not limited to this.
- the embossed portions 12 and 42 may have a stepped shape having a plurality of steps.
- the heat exchanger 1C according to the third embodiment includes a stepped embossed portion 52.
- FIG. 13 is a perspective view of the heat exchanger 1C according to the third embodiment of the present disclosure.
- FIG. 14 is a front view of the heat exchanger 1C.
- FIG. 15 is a cross-sectional view taken along the XV-XV cutting line shown in FIG. Note that FIG. 13 shows a cut portion when the header 50 is partially cut in a plane parallel to the YZ plane, as in FIG. Further, in FIG. 13, the brazing material 14 is omitted for easy understanding.
- the heat exchanger 1C includes a header 50, and an embossed portion 52 projecting to the front side in a stepped manner is formed on the outer wall 51 of the header 50.
- the embossed portion 52 is formed in the shape of a staircase having a plurality of steps. Specifically, the embossed portion 52 is formed in the shape of a staircase having three steps 521-523 that rise toward the front side from the peripheral edge toward the center. Each step 521-523 of the embossed portion 52 has a flat front view similar to the cross-sectional shape of the heat transfer tube 20. Each stage is similar to each other. The step 523 on the center side of the embossed portion 52 is the smallest of the steps 521-523, but the step 523 is larger than the cross-sectional shape of the heat transfer tube 20 in front view because it is connected to the heat transfer tube 20.
- stages 521-523 are projected on the front side, that is, in the + Y direction by being formed by the embossing method described in the first embodiment.
- the step 521 is formed by a part of the outer wall 51 protruding in the + Y direction by the protrusion length L1 by the embossing method.
- the protruding length L1 is more than half the thickness T of the outer wall 51.
- the ⁇ Y side of the step 521 is recessed by the protrusion length L1 from the ⁇ Y surface of the outer wall 51.
- the stepped surface has a shear section 121 formed by an embossing method.
- the step 522 is formed by a part of the step 521 protruding in the + Y direction by the embossing method.
- the protruding length L2 is the same as the protruding length L1 of the step 521.
- the + X end and the ⁇ X end of the step 522 are located on the center side of the step 521 by a width W from the + X end and the ⁇ X end of the step 521.
- the width W is more than half of the thickness T of the outer wall 51.
- the step 522 is smaller than the step 521 in the XY cross-sectional view.
- the -Y side of the step 522 is formed by the embossing method, so that the protrusion length L2 is recessed from the -Y surface of the step 521.
- the ⁇ Y surface of the step 522 has a step with a protruding length L2 from the ⁇ Y surface of the step 521.
- the stepped surface is formed by a shearing surface 122.
- the step 523 is formed by a part of the step 522 protruding in the + Y direction by the embossing method.
- the protruding length L3 is the same as the protruding length L1 of the step 521, and the positional relationship of the step 523 with respect to the step 522 is the same as the positional relationship of the step 522 with respect to the step 521.
- the step 523 has the same step as the protrusion length L3 on the ⁇ Y side, and has a shearing cross section 123 on the step surface.
- the step 523 is formed inside the step 522. Further, the step 522 is formed inside the step 521. As a result, the ⁇ Y side of the step 523 is the most recessed among the steps 521-523.
- a through hole 53 is formed in the central portion thereof so as to penetrate the central portion in the Y direction. A heat transfer tube 20 extending in the same direction is inserted into the through hole 53.
- the heat transfer tube 20 has a gap C1 between it and the inner wall of the through hole 53, as in the first embodiment. Further, the heat transfer tube 20 has a gap C2 between the heat transfer tube 20 and the shearing section 123 on the ⁇ Y side of the step 523, similarly to the shearing section 120 described in the first embodiment. Further, the heat transfer tube 20 has gaps C4 and C5 between the shear sections 122 and 121.
- the brazing material 14 is filled in these gaps C1, C2, C4, and C5.
- a low fillet is formed in the gap C5.
- this low fillet is formed over the entire circumference of the gap C5 between the heat transfer tube 20 and the shear section 121.
- the gap C5 is closed with high airtightness, and the brazing pressure resistance is high.
- the gaps C1, C2, and C4 are also closed with high airtightness.
- the brazing material 14 has penetrated into the shear section 121-123, the joint strength between the heat transfer tube 20 and the embossed portion 52 is high.
- the heat transfer tube 20 and the fin 30 are manufactured in the same manner as in the first and second embodiments, and then the prepared heat transfer tube 20 and the fin 30 are assembled.
- the header 50 having the embossed portion 52 described above is manufactured.
- the stepped steps 521-523 are formed on the outer wall 51 by repeating the embossed portion forming step described in the first embodiment.
- the punch 100 and the die 200 described in the first embodiment are used to form the step 521, and then the punch 100 and the die 200 are used with another punch and die (not shown) to form the step 521.
- a step 522 is formed inside.
- the other punch and die are replaced with another one to form a step 523 inside the step 522.
- a stepped embossed portion 52 is formed on the outer wall 51.
- the same through hole forming step and brazing step as in the first embodiment are performed.
- a through hole 53 is formed in the embossed portion 52, and the heat transfer tube 20 is inserted into the formed through hole 53.
- the gaps C1, C2, C4, and C5 formed between the heat transfer tube 20 and the through hole 53 or the embossed portion 52 are filled with the brazing material 14.
- the molten brazing material 14 permeates the gaps C1, C2, C4, and C5 due to the capillary phenomenon.
- the molten brazing material 14 gathers in a narrow space due to surface tension, it gathers in the gaps C1, C2, C4, and C5, so that it is difficult for the molten brazing material 14 to flow from the end of the heat transfer tube 20 into the inside thereof.
- so-called wax clogging in which the internal space of the heat transfer tube 20 is blocked by the brazing material 14, is suppressed.
- the brazing material 14 fills the gaps C1, C2, C4, and C5 to close the gaps C1, C2, C4, and C5 with high airtightness.
- the embossed portion 52 formed in the shape of a staircase and having three steps, that is, the steps 521-523 is described.
- the embossed portion 52 may have a plurality of stages. Therefore, the embossed portion 52 may have, for example, two steps. Further, the embossed portion 52 may have more than three steps.
- the low fillet is formed in the gap C5, but the low fillet may be formed in the gaps C2 and C4 in addition to the gap C5. This is because even in such a form, the heat transfer tube 20 can be brazed to at least the sheared surface 121.
- the brazing fillet may be formed in the gaps C2, C4, and C5 according to the amount of the brazing material 14 supplied in the brazing step.
- one heat transfer tube 20 is joined to the embossed portion 52, but as in the second embodiment, a plurality of heat transfer tubes 20 may be joined to the embossed portion 52.
- the heat exchanger 1C according to the third embodiment includes an embossed portion 52 formed in a stepped shape, and the embossed portion 52 has a shear section 121-123.
- the heat transfer tube 20 is brazed to the shear section 121-123, so that the joint strength between the heat transfer tube 20 and the header 50 is high.
- the joint strength of the heat transfer tube 20 is higher than that in the first embodiment.
- the present disclosure is not limited to the above embodiments.
- the embossed portions 12, 42, 52 project toward the outside of the headers 10, 40, 50.
- the embossed portions 12, 42 and 52 are not limited to this.
- the embossed portions 12, 42, and 52 may project in the axial direction of the heat transfer tube 20. Therefore, the embossed portions 12, 42, 52 may protrude inward of the headers 10, 40, 50.
- FIG. 16 is a cross-sectional view of a modified example of the heat exchanger 1A according to the first embodiment. Note that FIG. 16 shows a cross-sectional view taken along the cutting line at the same location as the VV cutting line shown in FIG.
- the heat exchanger 1D includes a header 60 in which an embossed portion 62 projecting toward the internal space, which is a flow path, is formed.
- the embossed portion 62 projects in the tube axis direction of the heat transfer tube 20, more specifically, in the ⁇ Y direction.
- the embossed portions 12, 42, 52 may protrude toward the inside of the headers 10, 40, 50. Even in such a form, the recesses of the embossed portions 12, 42 and 52 can be filled with the brazing material 14 to firmly join the heat transfer tube 20 to the embossed portions 12, 42 and 52.
- the embossed portions 12, 42, 52, 62 are projected by half the thickness T of the outer wall 11. Further, the thicknesses of the embossed portions 12, 42, 52 and 62 are the same as the thickness T of the outer wall 11. However, the embossed portions 12, 42, 52 and 62 are not limited to this.
- the embossed portions 12, 42, 52, 62 may project in the pipe axis direction, and the projecting length thereof is arbitrary. Further, the thicknesses of the embossed portions 12, 42, 52 and 62 are also arbitrary.
- the embossed portions 12, 42, 52, 62 may protrude by 1/3 of the thickness T of the outer wall 11, and the thickness of the embossed portions 12, 42, 52, 62 presses the punch 100. By doing so, it may be thinner than the thickness T.
- the headers 10, 40, 50, and 60 have a rectangular parallelepiped outer wall 11, but the headers 10, 40, 50, and 60 are not limited to this.
- the headers 10, 40, 50, 60 may have outer walls 11, 41, 51, 61 in which the through holes 13, 43, 53 and the embossed portions 12, 42, 52, 62 are formed. Therefore, the headers 10, 40, 50, and 60 have an arbitrary shape to this extent.
- the headers 10, 40, 50, 60 may have a cylindrical outer wall 11.
- the materials of the headers 10, 40, 50 and 60 are also arbitrary.
- the sacrificial anode layer is formed on the surface of the headers 10, 40, 50, 60, but the headers 10, 40, 50, 60 are not limited to this.
- the headers 10, 40, 50, 60 may be formed of a brazing sheet of the outer wall 71.
- FIG. 17 is a cross-sectional view of a modified example of the outer wall 11 of the header 10. Note that FIG. 17 shows only a part of the outer wall 11.
- the outer wall 71 is formed of a brazing sheet in which a brazing material is provided as a skin material on aluminum or an aluminum alloy as a core material.
- the outer wall 71 is formed of a first layer 72 formed of an alloy containing manganese and aluminum, and an aluminum alloy having a lower melting point than the alloy of the first layer 72.
- a second layer 73 and a third layer 74 formed of the same aluminum alloy as the second layer 73 or an alloy containing zinc and aluminum are laminated.
- the aluminum alloy of the second layer 73 is the same material as the brazing material 14.
- the headers 10, 40, 50, and 60 may be formed of the brazing sheet of the outer wall 71.
- the skin material of the brazing sheet may be formed on one side of the core material or on both sides of the core material, as in the outer wall 71.
- the shearing surface 120 described above may be formed on a brazing material which is a skin material. In such a form, since the shear surface 120 itself is a brazing material, the heat transfer tube 20 can be reliably joined.
- the internal structure of the headers 10, 40, 50, and 60 is also arbitrary.
- the inside of the headers 10, 40, 50, and 60 may be divided by a partition wall, and there may be a plurality of flow paths.
- the number of headers 10, 40, 50, and 60 may be one depending on the flow path.
- the headers 10, 40, 50, 60 and 70 are formed of one member, but the headers 10, 40, 50, 60 and 70 are manufactured by combining a plurality of header parts. It may have been done. In that case, a plurality of header parts may be brazed.
- the headers 10, 40, 50, 60, 70 have through holes 13, 43, 53 and outer walls 11, 41, 51, 61 in which the embossed portions 12, 42, 52, 62 are formed. You just have to do it. Then, the heat transfer tube 20 may be brazed to the inner walls of the embossed portions 12, 42, 52, 62 and the through holes 13, 43, 53. Therefore, as long as this condition is satisfied, the direction in which the outer walls 11, 41, 51, and 61 are oriented and the direction in which the heat transfer tube 20 extends are arbitrary. Further, as long as this condition is satisfied, the number of heat transfer tubes 20 provided is also arbitrary.
- headers 10, 40, 50, 60, 70 include outer walls 11, 41, 51, 61 facing forward or backward, and outer walls 11, 41, 51, 61 facing right or left, front or rear.
- a large number, for example, 10 to 100 heat transfer tubes 20 may be connected to the facing outer walls 11, 41, 51, 61, and the heat transfer tubes 20 may be arranged in the left-right direction.
- a large number, for example, 2 to 100 heat transfer tubes 20 may be connected to the outer walls 11, 41, 51, 61 facing upward or downward, and the heat transfer tubes 20 may be arranged in the vertical direction.
- the number of heat transfer tubes 20 brazed to the embossed portions 12, 42, 52, and 62 is, of course, arbitrary.
- a plurality of heat transfer tubes 20 may be brazed to the embossed portions 12, 42, 52, and 62.
- the headers 10, 40, 50, 60, and 70 are provided with a plurality of outer wall walls 11, 41, 51, 61 facing in different directions, the embossed portions are formed on the outer wall walls 11, 41, 51, 61 facing in which direction.
- 12, 42, 52, 62 are provided.
- the embossed portions 12, 42, 52, 62 may be provided on the outer walls 11, 41, 51, 61 facing upward or downward.
- 1A-1D heat exchanger 10,10F, 10B header, 11,11F, 11B outer wall, 12 embossed part, 13 through hole, 14 brazing material, 20 heat transfer tube, 21 partition wall, 30 fins, 40 header, 41 outer wall , 42 embossed part, 43 through hole, 50 header, 51 outer partition wall, 52 embossed part, 53 through hole, 60 header, 61 outer wall, 62 embossed part, 71 outer wall, 72 first layer, 73 second layer , 74 Third layer, 100 punch, 120, 121, 122, 123 shear cross section, 200 die, 521-523 steps, A area, C1-C5 gap, L1-L3 protrusion length, P pitch, LW, UW inner wall, R, S arrow, T thickness, W width.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
A heat exchanger (1A) is provided with heat transfer tubes (20) and headers (10F, 10B). The heat transfer tubes (20) transfer heat to fins (30). Each of the headers (10F, 10B) has an outer wall (11F, 11B) having insertion holes into which the heat transfer tubes (20) are inserted and embossed portions (12) that surround the insertion holes and protrude in the tube axis direction of the heat transfer tubes (20). In the headers (10F, 10B), the heat transfer tubes (20) are brazed to the embossed portions (12) and the inner walls of the insertion holes.
Description
本開示は熱交換器及び熱交換器の製造方法に関する。
This disclosure relates to heat exchangers and methods for manufacturing heat exchangers.
熱交換器には、フィンに熱を伝える伝熱管に冷媒を分配、集約するヘッダを備えるものがある。このような熱交換器では、一般的にはヘッダと伝熱管がロウ付けされている。
Some heat exchangers have a header that distributes and aggregates the refrigerant to the heat transfer tube that transfers heat to the fins. In such heat exchangers, the header and heat transfer tube are generally brazed.
例えば、特許文献1には、伝熱管と、伝熱管が挿入された挿入孔及び、挿入孔の開口を囲む周壁が形成された外郭壁を有するヘッダと、を備え、伝熱管が周壁にロウ付けされた熱交換器が開示されている。
For example, Patent Document 1 includes a heat transfer tube, an insertion hole into which the heat transfer tube is inserted, and a header having an outer wall formed with a peripheral wall surrounding the opening of the insertion hole, and the heat transfer tube is brazed to the peripheral wall. The heat exchanger is disclosed.
特許文献1に記載の熱交換器では、ヘッダの外郭壁をバーリング加工することにより、挿入孔と周壁が形成されている。
In the heat exchanger described in Patent Document 1, the insertion hole and the peripheral wall are formed by burring the outer wall of the header.
一方、特許文献2には、金属板を打ち抜いて、板厚に対して径が小さい孔を金属板に形成する方法において、孔の内壁にバリが付着することが記載されている。
On the other hand, Patent Document 2 describes that in a method of punching a metal plate to form a hole having a diameter smaller than the plate thickness on the metal plate, burrs adhere to the inner wall of the hole.
伝熱管とヘッダとの接合強度を高めるには、伝熱管とヘッダの接合面積を広くすることが望ましい。
In order to increase the joint strength between the heat transfer tube and the header, it is desirable to increase the joint area between the heat transfer tube and the header.
特許文献1に記載の熱交換器では、伝熱管とヘッダの接合面積を広くするために、バーリング加工によって挿入孔と周壁が形成されていると考えられる。そして、その挿入孔と周壁の形成では、挿入孔よりも小さい下穴を予め形成する必要があると考えられる。しかし、特許文献2に記載されているように、板厚に対して下穴の径が小さい場合、バリが付着する。このため、挿入孔に対して外郭壁の厚みが大きすぎると、挿入孔と周壁の形成が困難である。
In the heat exchanger described in Patent Document 1, it is considered that the insertion hole and the peripheral wall are formed by burring in order to widen the joint area between the heat transfer tube and the header. Then, in forming the insertion hole and the peripheral wall, it is considered necessary to form a pilot hole smaller than the insertion hole in advance. However, as described in Patent Document 2, when the diameter of the pilot hole is smaller than the plate thickness, burrs adhere. Therefore, if the outer wall is too thick with respect to the insertion hole, it is difficult to form the insertion hole and the peripheral wall.
また、ヘッダと伝熱管の接合面積を広くするため、ヘッダの外郭壁の厚みを大きくすることが考えられる。この場合も、挿入孔に対して外郭壁の厚みが大きすぎると、挿入孔の形成が困難である。
Also, in order to widen the joint area between the header and the heat transfer tube, it is conceivable to increase the thickness of the outer wall of the header. In this case as well, if the outer wall is too thick with respect to the insertion hole, it is difficult to form the insertion hole.
本開示は上記の課題を解決するためになされたもので、伝熱管とヘッダの接合強度が高く、製造が容易な熱交換器及び熱交換器の製造方法を提供することを目的とする。
The present disclosure has been made in order to solve the above problems, and an object of the present disclosure is to provide a heat exchanger and a method for manufacturing a heat exchanger, which have a high joint strength between a heat transfer tube and a header and are easy to manufacture.
上記の目的を達成するため、本開示に係る熱交換器は、フィンに熱を伝える伝熱管と、伝熱管が挿入された挿入孔及び、挿入孔を囲み、伝熱管の管軸方向に突出したエンボス部が形成された外郭壁を有するヘッダと、を備える。ヘッダでは、伝熱管がエンボス部と挿入孔の内壁にロウ付けされている。
In order to achieve the above object, the heat exchanger according to the present disclosure surrounds the heat transfer tube for transferring heat to the fins, the insertion hole into which the heat transfer tube is inserted, and the insertion hole, and projects in the axial direction of the heat transfer tube. A header having an outer wall on which an embossed portion is formed is provided. In the header, heat transfer tubes are brazed to the embossed portion and the inner wall of the insertion hole.
本開示の構成によれば、伝熱管がエンボス部と挿入孔の内壁にロウ付けされているので、接合強度が高い。また、外郭壁にエンボス部を形成するだけであるため、外郭壁の厚みを大きくしても製造が容易である。
According to the configuration of the present disclosure, the heat transfer tube is brazed to the embossed portion and the inner wall of the insertion hole, so that the joint strength is high. Further, since the embossed portion is only formed on the outer wall, it is easy to manufacture even if the thickness of the outer wall is increased.
以下、本開示の実施の形態に係る熱交換器及び熱交換器の製造方法について図面を参照して詳細に説明する。なお、図中、同一又は同等の部分には同一の符号を付す。図に示す直交座標系XYZにおいて、伝熱管が延在する方向を正面から背面に向かう方向としたときの、左右方向がX軸、上下方向がZ軸、X軸とZ軸とに直交する方向がY軸である。以下、適宜、この座標系を引用して説明する。
Hereinafter, the heat exchanger and the method for manufacturing the heat exchanger according to the embodiment of the present disclosure will be described in detail with reference to the drawings. In the figure, the same or equivalent parts are designated by the same reference numerals. In the Cartesian coordinate system XYZ shown in the figure, when the direction in which the heat transfer tube extends is the direction from the front to the back, the horizontal direction is the X axis, the vertical direction is the Z axis, and the direction orthogonal to the X axis and the Z axis. Is the Y axis. Hereinafter, this coordinate system will be referred to and described as appropriate.
(実施の形態1)
実施の形態1に係る熱交換器は、ヘッダの外郭壁にエンボス部が形成された熱交換器である。この熱交換器では、エンボス部に伝熱管がロウ付けされている。以下、図1-図2を参照して、熱交換器の構成について説明し、続いて、図3-図5を参照して、エンボス部について説明する。次に、図6-図8を参照して、熱交換器の製造方法について説明する。 (Embodiment 1)
The heat exchanger according to the first embodiment is a heat exchanger in which an embossed portion is formed on the outer wall of the header. In this heat exchanger, a heat transfer tube is brazed to the embossed portion. Hereinafter, the configuration of the heat exchanger will be described with reference to FIGS. 1 to 2, and then the embossed portion will be described with reference to FIGS. 3 to 5. Next, a method of manufacturing the heat exchanger will be described with reference to FIGS. 6-8.
実施の形態1に係る熱交換器は、ヘッダの外郭壁にエンボス部が形成された熱交換器である。この熱交換器では、エンボス部に伝熱管がロウ付けされている。以下、図1-図2を参照して、熱交換器の構成について説明し、続いて、図3-図5を参照して、エンボス部について説明する。次に、図6-図8を参照して、熱交換器の製造方法について説明する。 (Embodiment 1)
The heat exchanger according to the first embodiment is a heat exchanger in which an embossed portion is formed on the outer wall of the header. In this heat exchanger, a heat transfer tube is brazed to the embossed portion. Hereinafter, the configuration of the heat exchanger will be described with reference to FIGS. 1 to 2, and then the embossed portion will be described with reference to FIGS. 3 to 5. Next, a method of manufacturing the heat exchanger will be described with reference to FIGS. 6-8.
図1は、実施の形態1に係る熱交換器1Aの斜視図である。図2は、熱交換器1Aが備える伝熱管20の斜視図である。なお、図1では、理解を容易にするため、冷媒を供給、排出するための冷媒管、継手等の部品を省略している。
FIG. 1 is a perspective view of the heat exchanger 1A according to the first embodiment. FIG. 2 is a perspective view of the heat transfer tube 20 included in the heat exchanger 1A. In FIG. 1, parts such as a refrigerant pipe and a joint for supplying and discharging the refrigerant are omitted for easy understanding.
図1に示すように、熱交換器1Aは、外部機器から冷媒が供給又は外部機器へ冷媒を排出するヘッダ10F、10Bと、ヘッダ10F、10Bの冷媒が流通し、その冷媒の熱を伝える複数の伝熱管20と、伝熱管20の熱を放熱する複数のフィン30と、を備えている。
As shown in FIG. 1, the heat exchanger 1A has a plurality of headers 10F and 10B in which a refrigerant is supplied from an external device or discharges a refrigerant to the external device, and a plurality of headers 10F and 10B through which the refrigerants of the headers 10F and 10B are circulated to transfer the heat of the refrigerant. The heat transfer tube 20 and a plurality of fins 30 that dissipate the heat of the heat transfer tube 20 are provided.
ヘッダ10F、10Bは、直方体状の外郭壁11F、11Bを有する。図示しないが、その内部には、冷媒を流すための流路が形成されている。そして、ヘッダ10F、10Bは、外郭壁11F、11Bの長手方向を左右方向に向け、互いに離されて配置されている。ヘッダ10Fと10Bは、冷媒を流通させるため、複数の伝熱管20によって互いに接続されている。
Headers 10F and 10B have rectangular parallelepiped outer walls 11F and 11B. Although not shown, a flow path for flowing a refrigerant is formed inside the flow path. The headers 10F and 10B are arranged so as to be separated from each other with the longitudinal directions of the outer walls 11F and 11B facing left and right. The headers 10F and 10B are connected to each other by a plurality of heat transfer tubes 20 in order to allow the refrigerant to flow.
なお、ヘッダ10Fと10Bは、XZ平面に対して対称な形状である。また、ヘッダ10Fと10Bは、この対称であることを除いて同じ構成である。このため、本明細書では、以下、配置関係を説明するときを除いて、ヘッダ10Fと10Bを単にヘッダ10と称する。また、外郭壁11F、11Bも、同様に、配置関係を説明するときを除いて、単に外郭壁11と称する。
Note that the headers 10F and 10B have shapes symmetrical with respect to the XZ plane. Further, the headers 10F and 10B have the same configuration except that they are symmetrical. Therefore, in the present specification, the headers 10F and 10B are simply referred to as headers 10 except when the arrangement relationship is described below. Similarly, the outer wall 11F and 11B are also simply referred to as the outer wall 11 except when the arrangement relationship is explained.
伝熱管20は、図2に示すように、正面視扁平状に形成されている。ここで、扁平状とは、正面視で長手方向の両端が半円状に丸められた形状のことであり、例えば、正面視で平たい長円のことである。伝熱管20は、冷媒を流すため、流路となる内部空間を有している。その内部空間は、伝熱性を高めるため、水平方向に延在し、上下方向に並べられた複数の隔壁21によって仕切られている。
As shown in FIG. 2, the heat transfer tube 20 is formed in a flat front view. Here, the flat shape is a shape in which both ends in the longitudinal direction are rounded into a semicircle in the front view, and is, for example, a flat oval in the front view. The heat transfer tube 20 has an internal space that serves as a flow path for flowing the refrigerant. The internal space extends in the horizontal direction and is partitioned by a plurality of partition walls 21 arranged in the vertical direction in order to enhance heat transfer.
図1に戻って、伝熱管20の管軸は、背面から正面に向かう方向、すなわち、Y方向に直線的に延在している。そして、伝熱管20と伝熱管20は、空気との熱交換率を高めるため、互いの間に隙間を設けて配置されている。伝熱管20には、冷媒から伝わった熱を放熱するため、複数のフィン30が取り付けられている。
Returning to FIG. 1, the tube axis of the heat transfer tube 20 extends linearly in the direction from the back to the front, that is, in the Y direction. The heat transfer tube 20 and the heat transfer tube 20 are arranged with a gap between them in order to increase the heat exchange rate with air. A plurality of fins 30 are attached to the heat transfer tube 20 in order to dissipate heat transferred from the refrigerant.
フィン30は、放熱性を高めるため、矩形状の板の形状に形成されている。その厚さは、0.09-0.2mmである。図示しないが、フィン30の長手方向には、伝熱管20の管断面長手方向端部に嵌合可能な切り欠き部が形成されている。その切り欠き部の数は、伝熱管20と同数であり、切り欠き部のピッチは、伝熱管20と伝熱管20の左右方向ピッチと同じである。そして、切り欠き部が伝熱管20に嵌め合わされ、複数のフィン30が伝熱管20に取り付けられている。フィン30は、それら切り欠き部で伝熱管20にロウ付けされることにより、伝熱管20に固定されている。そして、フィン30は、図1に示すように、長手方向を左右方向に向けた状態かつ、一定のピッチで、例えば、1.0-2.0mmのピッチで複数の伝熱管20に組み付けられている。
The fin 30 is formed in the shape of a rectangular plate in order to improve heat dissipation. Its thickness is 0.09-0.2 mm. Although not shown, a notch that can be fitted to the end portion of the heat transfer tube 20 in the longitudinal direction of the cross section is formed in the longitudinal direction of the fin 30. The number of cutouts is the same as that of the heat transfer tube 20, and the pitch of the cutouts is the same as the left-right pitch of the heat transfer tube 20 and the heat transfer tube 20. Then, the notch portion is fitted to the heat transfer tube 20, and a plurality of fins 30 are attached to the heat transfer tube 20. The fins 30 are fixed to the heat transfer tube 20 by being brazed to the heat transfer tube 20 at these notches. Then, as shown in FIG. 1, the fins 30 are assembled to the plurality of heat transfer tubes 20 in a state where the longitudinal direction is directed to the left-right direction and at a constant pitch, for example, at a pitch of 1.0-2.0 mm. There is.
フィン30と伝熱管20は、伝熱性を高めて冷媒と空気との熱交換率を高めるため、アルミニウム又はアルミニウム合金で形成されている。そして、フィン30は、使用環境に応じて防食、防汚、親水、撥水等のための表面処理が施されている。伝熱管20の表面には、孔食による冷媒の漏れを防ぐため、亜鉛を含む犠牲陽極層が設けられている。
The fin 30 and the heat transfer tube 20 are made of aluminum or an aluminum alloy in order to enhance the heat transfer property and increase the heat exchange rate between the refrigerant and air. The fin 30 is subjected to surface treatment for anticorrosion, antifouling, hydrophilicity, water repellency, etc. according to the usage environment. A sacrificial anode layer containing zinc is provided on the surface of the heat transfer tube 20 in order to prevent leakage of the refrigerant due to pitting corrosion.
これに対して、ヘッダ10は、伝熱管20と同じく、アルミニウム又はアルミニウム合金で形成されている。その表面には、亜鉛を含む犠牲陽極層が形成されている。ヘッダ10は、伝熱管20と同材料で形成されることにより、伝熱管20との接合後のゆがみの発生を小さくしている。ヘッダ10には、伝熱管20を接合するためのエンボス部12が形成されている。次に、図3-図5を参照して、ヘッダ10のエンボス部12について説明する。
On the other hand, the header 10 is made of aluminum or an aluminum alloy like the heat transfer tube 20. A sacrificial anode layer containing zinc is formed on the surface. Since the header 10 is made of the same material as the heat transfer tube 20, the occurrence of distortion after joining with the heat transfer tube 20 is reduced. The header 10 is formed with an embossed portion 12 for joining the heat transfer tubes 20. Next, the embossed portion 12 of the header 10 will be described with reference to FIGS. 3 to 5.
図3は、図1に示すIII領域で熱交換器1Aを切断したときの切断部分の斜視図である。図4は、その切断部分の正面図である。図5は、図4に示すV-V切断線での断面図である。なお、図3では、理解を容易にするため、ロウ材14を省略している。
FIG. 3 is a perspective view of the cut portion when the heat exchanger 1A is cut in the region III shown in FIG. FIG. 4 is a front view of the cut portion. FIG. 5 is a cross-sectional view taken along the line VV shown in FIG. In FIG. 3, the brazing material 14 is omitted for ease of understanding.
図3及び図4に示すように、外郭壁11の正面側、すなわち+Y側の壁部には、+Y側に凸状のエンボス部12が形成されている。
As shown in FIGS. 3 and 4, a convex embossed portion 12 is formed on the + Y side on the front side of the outer wall 11, that is, the wall portion on the + Y side.
エンボス部12は、エンボス加工、ハーフピアス加工、半抜き加工、ダボ加工等の名称で呼ばれる加工方法で形成された部分である。詳細な加工方法は後述するが、エンボス部12は、図5に示すように、外郭壁11の一部分が伝熱管20の管軸方向にずれた形状を有する。なお、エンボス部12を形成した上記加工方法のことを、以下、エンボス加工法というものとする。
The embossed portion 12 is a portion formed by a processing method called embossing, half piercing, half punching, dowel processing, or the like. Although the detailed processing method will be described later, as shown in FIG. 5, the embossed portion 12 has a shape in which a part of the outer wall 11 is displaced in the tube axis direction of the heat transfer tube 20. The above-mentioned processing method in which the embossed portion 12 is formed is hereinafter referred to as an embossing processing method.
詳細には、エンボス部12は、外郭壁11の一部が外郭壁11の厚さTよりも狭い局所的な領域Aで管軸方向であるY方向に浮き出している。その外郭壁11の浮き出した部分は、外郭壁11の浮き出していない部分と平行である。その浮き出した距離は、外郭壁11の厚さTの半分である。このため、エンボス部12では、+Y側の壁面が+Y方向に厚さTの半分だけ突出し、-Y側の壁面が-Y方向に厚さTの半分だけ窪んでいる。なお、本明細書では、エンボス部12が浮き出す方向のことを突出方向、ずれ方向ともいい、エンボス部12が浮き出す長さのことを突出長ともいう。
Specifically, in the embossed portion 12, a part of the outer wall 11 is projected in the Y direction, which is the pipe axis direction, in a local region A narrower than the thickness T of the outer wall 11. The raised portion of the outer wall 11 is parallel to the non-protruded portion of the outer wall 11. The raised distance is half the thickness T of the outer wall 11. Therefore, in the embossed portion 12, the wall surface on the + Y side protrudes by half the thickness T in the + Y direction, and the wall surface on the −Y side is recessed by half the thickness T in the −Y direction. In the present specification, the direction in which the embossed portion 12 is raised is also referred to as a protrusion direction and a displacement direction, and the length in which the embossed portion 12 is raised is also referred to as a protrusion length.
また、エンボス部12は、上記加工方法により剪断面120を有する。ここで、剪断面120とは、上記の加工方法で外郭壁11が剪断加工されたときに、加工具によって形成される平滑な面のことである。剪断面120は、加工具によって壁の厚み方向に向かって延在する微細な傷を有する。
Further, the embossed portion 12 has a shear cross section 120 by the above processing method. Here, the shearing surface 120 is a smooth surface formed by the processing tool when the outer wall 11 is sheared by the above processing method. The shear surface 120 has fine scratches extending in the thickness direction of the wall by the processing tool.
図3及び図4に戻って、エンボス部12は、正面視で、伝熱管20と相似形の扁平の形状に形成されている。その大きさは、伝熱管20よりも大きい。一方、エンボス部12の中央には、伝熱管20が挿入された貫通孔13が形成されている。
Returning to FIGS. 3 and 4, the embossed portion 12 is formed in a flat shape similar to the heat transfer tube 20 in the front view. Its size is larger than that of the heat transfer tube 20. On the other hand, a through hole 13 into which the heat transfer tube 20 is inserted is formed in the center of the embossed portion 12.
貫通孔13は、伝熱管20が緩挿可能な、伝熱管20と正面視相似形の扁平に形成されている。貫通孔13は、図5に示すように、エンボス部12をY方向に貫通している。そして、貫通孔13は、伝熱管20の全周にわたって隙間C1を有する。
The through hole 13 is formed in a flat shape similar to the heat transfer tube 20 in which the heat transfer tube 20 can be loosely inserted. As shown in FIG. 5, the through hole 13 penetrates the embossed portion 12 in the Y direction. The through hole 13 has a gap C1 over the entire circumference of the heat transfer tube 20.
隙間C1は、溶融したロウ材14が浸透可能な大きさに形成されている。詳細には、隙間C1は、ヘッダ10の材質、表面処理に依存するが、例えば、0.1-0.5mm程度の大きさである。そして、貫通孔13には、ロウ材14が充填され、貫通孔13の内壁には、伝熱管20が接合されている。
The gap C1 is formed in a size that allows the molten brazing material 14 to penetrate. Specifically, the gap C1 has a size of, for example, about 0.1-0.5 mm, although it depends on the material and surface treatment of the header 10. Then, the through hole 13 is filled with the brazing material 14, and the heat transfer tube 20 is joined to the inner wall of the through hole 13.
一方、貫通孔13の+Y端には、伝熱管20との間に貫通孔13からはみ出し、かつ伝熱管20との間を塞ぐロウフィレットが形成されている。その結果、伝熱管20との接合強度が高められている。なお、図示しないが、貫通孔13と伝熱管20との隙間C1全周にわたってロウ材14が充填されている。そして、ロウフィレットは、その全周にわたって形成されている。これにより、隙間C1は、高い気密性で塞がれ、ロウ付け部の耐圧性が高められている。
On the other hand, at the + Y end of the through hole 13, a low fillet is formed between the heat transfer tube 20 and the through hole 13 so as to protrude from the through hole 13 and close the heat transfer tube 20. As a result, the joint strength with the heat transfer tube 20 is increased. Although not shown, the brazing material 14 is filled over the entire circumference of the gap C1 between the through hole 13 and the heat transfer tube 20. And the low fillet is formed all around the low fillet. As a result, the gap C1 is closed with high airtightness, and the pressure resistance of the brazed portion is enhanced.
貫通孔13の-Y端は、エンボス部12の+Y側への窪みと連続している。その窪みの内壁には、上述した剪断面120が形成されている。剪断面120と挿入された伝熱管20との間には、隙間C1の2-3倍程度の大きさの隙間C2が設けられている。
The −Y end of the through hole 13 is continuous with the depression on the + Y side of the embossed portion 12. The above-mentioned shear section 120 is formed on the inner wall of the depression. A gap C2 having a size of about 2-3 times the gap C1 is provided between the sheared cross section 120 and the inserted heat transfer tube 20.
隙間C2には、上述したロウ材14が充填されている。そして、隙間C2には、ロウフィレットが形成され、隙間C2は、そのロウフィレットによって塞がれている。ここで、図示しないが、隙間C2は、全周にわたってロウ材14が充填され、ロウフィレットによって塞がれている。上述したように、剪断面120は、壁の厚み方向に向かって延在する微細な傷を有する。このため、ロウ材14は、剪断面120の傷と傷の間に浸透している。その結果、伝熱管20との接合強度が高められている。
なお、本明細書では、貫通孔13は、伝熱管20が挿入されることから、挿入孔ともいう。また、貫通孔13は、本明細書でいうところの挿入孔の一例である。 The gap C2 is filled with thebrazing material 14 described above. A low fillet is formed in the gap C2, and the gap C2 is closed by the low fillet. Here, although not shown, the gap C2 is filled with the brazing material 14 over the entire circumference and is closed by the wax fillet. As mentioned above, the shear section 120 has fine scratches extending in the thickness direction of the wall. Therefore, the brazing material 14 penetrates between the scratches on the shear surface 120. As a result, the joint strength with the heat transfer tube 20 is increased.
In the present specification, the throughhole 13 is also referred to as an insertion hole because the heat transfer tube 20 is inserted into the through hole 13. Further, the through hole 13 is an example of the insertion hole as referred to in the present specification.
なお、本明細書では、貫通孔13は、伝熱管20が挿入されることから、挿入孔ともいう。また、貫通孔13は、本明細書でいうところの挿入孔の一例である。 The gap C2 is filled with the
In the present specification, the through
次に、図6-図8を参照して、熱交換器1Aの製造方法について説明する。
Next, a method of manufacturing the heat exchanger 1A will be described with reference to FIGS. 6-8.
図6は、実施の形態1に係る熱交換器1Aの製造方法で、エンボス部12を形成するときのヘッダ10の外郭壁11の断面図である。図7は、同製造方法で、エンボス部12に貫通孔13を形成したときのヘッダ10の外郭壁11の断面図である。図8は、同製造方法で、貫通孔13に伝熱管20を挿入したときのヘッダ10の断面図である。なお、図6-図8では、図5に示すVI-VIII領域に相当する切断面を図示している。
FIG. 6 is a cross-sectional view of the outer wall 11 of the header 10 when the embossed portion 12 is formed in the method of manufacturing the heat exchanger 1A according to the first embodiment. FIG. 7 is a cross-sectional view of the outer wall 11 of the header 10 when the through hole 13 is formed in the embossed portion 12 by the same manufacturing method. FIG. 8 is a cross-sectional view of the header 10 when the heat transfer tube 20 is inserted into the through hole 13 by the same manufacturing method. In addition, in FIG. 6-8, the cut surface corresponding to the VI-VIII region shown in FIG. 5 is shown.
まず、上述した形状の複数の伝熱管20を押し出し成形、引き抜き成形、曲げ加工等の加工方法により作製する。また、上述した形状の複数のフィン30を、プレス加工により作製する。このとき、材料には、アルミニウム、アルミニウム合金又はこれらの材料がクラッドされたクラッド材料が用いられる。その表面には、使用目的に応じて表面処理が施される。
First, a plurality of heat transfer tubes 20 having the above-mentioned shapes are manufactured by processing methods such as extrusion molding, pultrusion molding, and bending. Further, a plurality of fins 30 having the above-mentioned shapes are produced by press working. At this time, as the material, aluminum, an aluminum alloy, or a clad material in which these materials are clad is used. The surface is surface-treated according to the purpose of use.
続いて、複数の伝熱管20を上述した位置に配置し、複数のフィン30の切り欠き部に配置された伝熱管20を嵌め合わせる。さらに、切り欠き部を伝熱管20にロウ付けして、伝熱管20とフィン30を接合する。このロウ付けでは、ペースト状のロウ材を塗布したり、フィン30の切り欠き部近傍に固定のロウ材を置いたりすることによりロウ材を供給する。その後、ロウ材を熔解させて、伝熱管20とフィン30の切り欠き部との間に浸透させる。さらに浸透したロウ材を冷却させてロウ材で伝熱管20とフィン30を接合する。これにより、伝熱管20とフィン30を接合する。なお、この工程を、以下、伝熱管20とフィン30の組み立てという。
Subsequently, a plurality of heat transfer tubes 20 are arranged at the above-mentioned positions, and the heat transfer tubes 20 arranged in the notches of the plurality of fins 30 are fitted. Further, the notch is brazed to the heat transfer tube 20 to join the heat transfer tube 20 and the fin 30. In this brazing, the brazing material is supplied by applying a paste-like brazing material or placing a fixed brazing material in the vicinity of the notch portion of the fin 30. After that, the brazing material is melted and permeated between the heat transfer tube 20 and the notch of the fin 30. Further, the permeated brazing material is cooled, and the heat transfer tube 20 and the fin 30 are joined with the brazing material. As a result, the heat transfer tube 20 and the fin 30 are joined. In addition, this step is hereinafter referred to as assembling the heat transfer tube 20 and the fin 30.
上記の伝熱管20、フィン30の作製と、伝熱管20とフィン30の組み立てと並行して、ヘッダ10を作製する。
The header 10 is manufactured in parallel with the production of the heat transfer tube 20 and the fin 30 and the assembly of the heat transfer tube 20 and the fin 30.
そのヘッダの作製では、まず、上述した厚さTのアルミニウム、アルミニウム合金の板金を準備し、ヘッダ10の外郭壁11とする。続いて、その板金を、上述したエンボス加工法で加工して、上述した形状のエンボス部12を形成する。詳細には、図6に示すように、外郭壁11をパンチ100とダイ200の間に配置し、パンチ100を外郭壁11に押し込んで、パンチ100で外郭壁11を剪断する。このとき、パンチ100の押し込み量を、外郭壁11の厚さTの半分とする。これにより、外郭壁11にエンボス部12が形成される。また、外郭壁11の、パンチ100で押し込んだ部分に、剪断面120が形成される。剪断面120には、パンチ100の押し込みによってその押し込み方向に延在する線状の微細な傷が多数、形成される。なお、この工程は、本明細書でいうところのエンボス部形成工程の一例である。
In the production of the header, first, the above-mentioned aluminum or aluminum alloy sheet metal having a thickness T is prepared and used as the outer wall 11 of the header 10. Subsequently, the sheet metal is processed by the embossing method described above to form the embossed portion 12 having the shape described above. Specifically, as shown in FIG. 6, the outer wall 11 is arranged between the punch 100 and the die 200, the punch 100 is pushed into the outer wall 11, and the outer wall 11 is sheared by the punch 100. At this time, the pushing amount of the punch 100 is set to half the thickness T of the outer wall 11. As a result, the embossed portion 12 is formed on the outer wall 11. Further, a shear section 120 is formed in a portion of the outer wall 11 pushed by the punch 100. When the punch 100 is pushed in, a large number of fine linear scratches extending in the pushing direction are formed on the sheared surface 120. This step is an example of the embossed portion forming step as referred to in the present specification.
次に、図7に示すように、エンボス部12が形成された外郭壁11に、上述した形状の貫通孔13を形成する。この貫通孔13の形成では、切削工具、工作機械、プレス機械等を用いて、外郭壁11に貫通孔13を形成する。換言すると、機械加工又はプレス加工により、貫通孔13を形成する。なお、この工程は、本明細書でいうところの貫通孔形成工程の一例である。
Next, as shown in FIG. 7, a through hole 13 having the above-mentioned shape is formed in the outer wall 11 on which the embossed portion 12 is formed. In the formation of the through hole 13, the through hole 13 is formed in the outer wall 11 by using a cutting tool, a machine tool, a press machine, or the like. In other words, the through hole 13 is formed by machining or press working. This step is an example of the through hole forming step as referred to in the present specification.
続いて、貫通孔13が形成された外郭壁11をプレス加工することにより、上述した直方体状のヘッダ10を形成する。なお、貫通孔形成工程で、プレス加工することにより、貫通孔13を形成すると共に、上述した形状のヘッダ10を形成しても良い。
Subsequently, the rectangular parallelepiped header 10 described above is formed by pressing the outer wall 11 on which the through hole 13 is formed. In the through hole forming step, the through hole 13 may be formed and the header 10 having the above-mentioned shape may be formed by press working.
次に、図8に示すように、プレス加工により直方体状に形成されたヘッダ10の貫通孔13に、伝熱管20を挿入する。このとき、貫通孔13の内壁と伝熱管20との間に隙間C1を設ける。ここで、挿入する伝熱管20は、図示しないが、伝熱管20とフィン30の組み立てによって、フィン30が接合された伝熱管20である。なお、この工程は、本明細書でいうところの伝熱管挿入工程の一例である。
Next, as shown in FIG. 8, the heat transfer tube 20 is inserted into the through hole 13 of the header 10 formed in a rectangular parallelepiped shape by press working. At this time, a gap C1 is provided between the inner wall of the through hole 13 and the heat transfer tube 20. Here, although not shown, the heat transfer tube 20 to be inserted is a heat transfer tube 20 to which the fins 30 are joined by assembling the heat transfer tube 20 and the fins 30. This step is an example of the heat transfer tube insertion step as referred to in the present specification.
次に、隙間C1が設けられた状態のまま、貫通孔13の開口にロウ材14を載置する。そして、ロウ材14を加熱して熔解させ、矢印Rに示すように、貫通孔13の内壁と伝熱管20との間の隙間C1にロウ材14を浸透させる。さらに、ロウ材14を貫通孔13の内壁と剪断面120との間の隙間まで浸透させる。その結果、ロウ材14は、図5に示すように、貫通孔13の開口と剪断面120があるエンボス部12の窪みからはみ出し、表面張力によりこれら隙間を塞ぐロウフィレットが形成される。さらに、ロウ材14は、剪断面120の微細な線状の傷と傷の間まで浸透する。その後、ロウ材14を冷却して硬化させる。ロウ材14は、ロウフィレットを形成すると共に、伝熱管20は、ヘッダ10に強固に接合される。なお、この工程は、本明細書でいうところのロウ付け工程の一例である。
Next, the brazing material 14 is placed in the opening of the through hole 13 with the gap C1 provided. Then, the brazing material 14 is heated and melted, and as shown by an arrow R, the brazing material 14 is infiltrated into the gap C1 between the inner wall of the through hole 13 and the heat transfer tube 20. Further, the brazing material 14 is infiltrated into the gap between the inner wall of the through hole 13 and the sheared surface 120. As a result, as shown in FIG. 5, the brazing material 14 protrudes from the recess of the embossed portion 12 having the opening of the through hole 13 and the sheared cross section 120, and a low fillet is formed to close these gaps by surface tension. Further, the brazing material 14 penetrates between the fine linear scratches on the shear surface 120. Then, the brazing material 14 is cooled and cured. The brazing material 14 forms a low fillet, and the heat transfer tube 20 is firmly joined to the header 10. This step is an example of the brazing step as referred to in the present specification.
なお、ロウ付け工程では、貫通孔13の開口にロウ材14を載置するが、そのロウ材14は、ペースト、ワイヤー、箔状等の周知の形態であっても良い。
In the brazing step, the brazing material 14 is placed in the opening of the through hole 13, and the brazing material 14 may be in a well-known form such as a paste, a wire, or a foil.
以上の工程により、フィン30、伝熱管20及びヘッダ10が組み立てられ、熱交換器1Aが完成する。
By the above steps, the fin 30, the heat transfer tube 20, and the header 10 are assembled, and the heat exchanger 1A is completed.
以上のように、実施の形態1に係る熱交換器1Aは、伝熱管20が、ヘッダ10に形成されたエンボス部12の剪断面120と貫通孔13の内壁がロウ材14によって接合されている。このため、伝熱管20とヘッダ10の接合面積が大きく、接合強度が高い。
As described above, in the heat exchanger 1A according to the first embodiment, the heat transfer tube 20 is joined by the brazing material 14 to the sheared cross section 120 of the embossed portion 12 formed in the header 10 and the inner wall of the through hole 13. .. Therefore, the joint area between the heat transfer tube 20 and the header 10 is large, and the joint strength is high.
エンボス部12は、ヘッダ10が有する外郭壁11の一部の壁部が伝熱管20の管軸方向に浮き出した形状に形成されている。このため、エンボス部12は、浮き出した方向と逆方向に窪んでいる。そして、その窪みにはロウ材14が充填されている。これにより、エンボス部12は、伝熱管20を支持する。その結果、熱交換器1Aでは、伝熱管20の強度が高い。
The embossed portion 12 is formed in a shape in which a part of the wall portion of the outer wall 11 of the header 10 is projected in the tube axial direction of the heat transfer tube 20. Therefore, the embossed portion 12 is recessed in the direction opposite to the raised direction. Then, the brazing material 14 is filled in the depression. As a result, the embossed portion 12 supports the heat transfer tube 20. As a result, in the heat exchanger 1A, the strength of the heat transfer tube 20 is high.
一般に、バーリング加工により、貫通孔13と周壁を形成する場合、外郭壁11の厚さが、貫通孔13の内径よりも大きい場合、貫通孔13と周壁を形成することが難しい。
Generally, when the through hole 13 and the peripheral wall are formed by burring, it is difficult to form the through hole 13 and the peripheral wall when the thickness of the outer wall 11 is larger than the inner diameter of the through hole 13.
これに対して、エンボス部12は、エンボス加工、ハーフピアス加工等の名称で呼ばれる加工方法で、外郭壁11の一部をパンチ100が押し込むことで形成されている。このため、熱交換器1Aでは、貫通孔13の内径よりも外郭壁11の厚さが大きい場合でも、エンボス部12を容易に製造できる。その結果、外郭壁11の厚さを大きくして、伝熱管20とヘッダ10の接合強度を高めることが容易である。
On the other hand, the embossed portion 12 is formed by a punch 100 pushing a part of the outer wall 11 by a processing method called embossing, half piercing, or the like. Therefore, in the heat exchanger 1A, the embossed portion 12 can be easily manufactured even when the thickness of the outer wall 11 is larger than the inner diameter of the through hole 13. As a result, it is easy to increase the thickness of the outer wall 11 to increase the joint strength between the heat transfer tube 20 and the header 10.
また、外郭壁11に貫通孔13よりも一回り大きなエンボス部12を形成するだけであるので、バーリング加工と比較して外郭壁11の厚みを大きくしても製造が容易である。
Further, since the embossed portion 12 which is one size larger than the through hole 13 is only formed on the outer wall 11, it is easy to manufacture even if the thickness of the outer wall 11 is increased as compared with the burring process.
熱交換器1Aでは、エンボス部12に機械加工又はプレス加工により、貫通孔13を形成する。このため、バーリング加工により貫通孔13と周壁を形成する場合と比較して、高い位置精度でエンボス部12と貫通孔13を形成することができる。
In the heat exchanger 1A, a through hole 13 is formed in the embossed portion 12 by machining or press working. Therefore, the embossed portion 12 and the through hole 13 can be formed with high position accuracy as compared with the case where the through hole 13 and the peripheral wall are formed by the burring process.
(実施の形態2)
実施の形態1では、1つのエンボス部12に1つの貫通孔13が形成されている。これにより、1つのエンボス部12に1つの伝熱管20が接合されている。しかし、エンボス部12はこれに限定されない。実施の形態2に係る熱交換器1Bでは、1つのエンボス部42に複数の貫通孔43が形成されている。そして、複数の貫通孔43に複数の伝熱管20が接合されている。 (Embodiment 2)
In the first embodiment, one throughhole 13 is formed in one embossed portion 12. As a result, one heat transfer tube 20 is joined to one embossed portion 12. However, the embossed portion 12 is not limited to this. In the heat exchanger 1B according to the second embodiment, a plurality of through holes 43 are formed in one embossed portion 42. A plurality of heat transfer tubes 20 are joined to the plurality of through holes 43.
実施の形態1では、1つのエンボス部12に1つの貫通孔13が形成されている。これにより、1つのエンボス部12に1つの伝熱管20が接合されている。しかし、エンボス部12はこれに限定されない。実施の形態2に係る熱交換器1Bでは、1つのエンボス部42に複数の貫通孔43が形成されている。そして、複数の貫通孔43に複数の伝熱管20が接合されている。 (Embodiment 2)
In the first embodiment, one through
以下、図9-図12を参照して、実施の形態2に係る熱交換器1Bを説明する。実施の形態2では、実施の形態1と異なる構成について説明する。
Hereinafter, the heat exchanger 1B according to the second embodiment will be described with reference to FIGS. 9 to 12. In the second embodiment, a configuration different from that of the first embodiment will be described.
図9は、実施の形態2に係る熱交換器1Bの斜視図である。図10は、熱交換器1Bの正面図である。図11は、図10に示すXI-XI切断線での断面図である。図12は、実施の形態2に係る熱交換器1Bの製造方法で、貫通孔43に伝熱管20を挿入したときのヘッダ40の断面図である。なお、図9では、図3と同様に、ヘッダ40をYZ平面に平行な平面で部分的に切断したときの切断部分を示している。また、図12では、図10に示すXI-XI切断線の切断面を図示している。
FIG. 9 is a perspective view of the heat exchanger 1B according to the second embodiment. FIG. 10 is a front view of the heat exchanger 1B. FIG. 11 is a cross-sectional view taken along the XI-XI cutting line shown in FIG. FIG. 12 is a cross-sectional view of the header 40 when the heat transfer tube 20 is inserted into the through hole 43 in the method of manufacturing the heat exchanger 1B according to the second embodiment. Note that FIG. 9 shows a cut portion when the header 40 is partially cut in a plane parallel to the YZ plane, as in FIG. Further, in FIG. 12, the cut surface of the XI-XI cutting line shown in FIG. 10 is shown.
図9に示すように、熱交換器1Bは、2つの伝熱管20が接合されたエンボス部42が形成されたヘッダ40を備えている。
As shown in FIG. 9, the heat exchanger 1B includes a header 40 in which an embossed portion 42 in which two heat transfer tubes 20 are joined is formed.
エンボス部42は、図10に示すように、正面視矩形状に形成されている。エンボス部42の長手方向は、上下方向に向けられている。その長さは、伝熱管20の管断面長手方向よりも大きい。また、エンボス部42の短手方向は、左右方向に向けられている。短手方向の長さは、伝熱管20のピッチPと伝熱管20の管断面短手方向の長さとの和よりも大きい。これにより、エンボス部42には、実施の形態1で説明した貫通孔13と同形、同じ大きさの貫通孔43が2つ配置可能な大きさを有する。そして、エンボス部42には、上述した貫通孔43が2つ形成されている。それら貫通孔43には、伝熱管20がそれぞれ挿入されている。
As shown in FIG. 10, the embossed portion 42 is formed in a rectangular shape when viewed from the front. The longitudinal direction of the embossed portion 42 is directed in the vertical direction. Its length is larger than the longitudinal direction of the cross section of the heat transfer tube 20. Further, the lateral direction of the embossed portion 42 is directed to the left-right direction. The length in the lateral direction is larger than the sum of the pitch P of the heat transfer tube 20 and the length of the heat transfer tube 20 in the lateral direction. As a result, the embossed portion 42 has a size that allows two through holes 43 having the same shape and the same size as the through holes 13 described in the first embodiment to be arranged. The embossed portion 42 is formed with the two through holes 43 described above. A heat transfer tube 20 is inserted into each of the through holes 43.
貫通孔43の内壁と伝熱管20との間には、図11に示すように、実施の形態1と同じ隙間C1が設けられている。そして、貫通孔43の内壁と伝熱管20との間には、実施の形態1と同じくロウ材14が充填されている。これにより、伝熱管20が貫通孔43の内壁に接合されている。その結果、熱交換器1Bでは、エンボス部42に2つの伝熱管20が接合されている。
As shown in FIG. 11, a gap C1 similar to that of the first embodiment is provided between the inner wall of the through hole 43 and the heat transfer tube 20. Then, the brazing material 14 is filled between the inner wall of the through hole 43 and the heat transfer tube 20 as in the first embodiment. As a result, the heat transfer tube 20 is joined to the inner wall of the through hole 43. As a result, in the heat exchanger 1B, two heat transfer tubes 20 are joined to the embossed portion 42.
一方、エンボス部42の窪み上端の内壁UWと伝熱管20との間には、実施の形態1と同じ隙間C2が設けられている。これにより、実施の形態1と同様に、ロウ材14が充填されている。そして、内壁UWは、実施の形態1と同じ剪断面120である。その結果、伝熱管20は、内壁UWに強固に接合されている。
On the other hand, the same gap C2 as in the first embodiment is provided between the inner wall UW at the upper end of the recess of the embossed portion 42 and the heat transfer tube 20. As a result, the brazing material 14 is filled as in the first embodiment. The inner wall UW has the same shear section 120 as in the first embodiment. As a result, the heat transfer tube 20 is firmly joined to the inner wall UW.
これに対して、エンボス部42の窪み下端の内壁LWでは、伝熱管20との間に隙間C2よりも大きい隙間C3が形成されている。これにより、隙間C3には、ロウ材14が充填されず、内壁LWの近傍だけにロウ材14が存在している。その結果、内壁LWは、伝熱管20と接合されていない。
On the other hand, in the inner wall LW at the lower end of the recess of the embossed portion 42, a gap C3 larger than the gap C2 is formed between the embossed portion 42 and the heat transfer tube 20. As a result, the brazing material 14 is not filled in the gap C3, and the brazing material 14 exists only in the vicinity of the inner wall LW. As a result, the inner wall LW is not joined to the heat transfer tube 20.
このように、エンボス部42では、窪みの内壁の一部だけがロウ材14によって伝熱管20と接合されている。しかし、その内壁の一部は、剪断面120である。このため、ヘッダ40と伝熱管20は、エンボス部42が形成されていない場合と比較して、より強固に接合されている。
As described above, in the embossed portion 42, only a part of the inner wall of the recess is joined to the heat transfer tube 20 by the brazing material 14. However, a part of the inner wall has a shear surface of 120. Therefore, the header 40 and the heat transfer tube 20 are more firmly joined to each other as compared with the case where the embossed portion 42 is not formed.
次に、実施の形態2に係る熱交換器1Bの製造方法について説明する。
Next, the method of manufacturing the heat exchanger 1B according to the second embodiment will be described.
まず、実施の形態1と同様に、伝熱管20とフィン30を作製し、その後、伝熱管20とフィン30を組み立てる。また、上述した形状のヘッダ40を作製する。このとき、実施の形態1と同じエンボス部形成工程、貫通孔形成工程を行うことにより、上述した形状のエンボス部42と貫通孔43を作製する。
First, the heat transfer tube 20 and the fin 30 are manufactured in the same manner as in the first embodiment, and then the heat transfer tube 20 and the fin 30 are assembled. Further, the header 40 having the above-mentioned shape is produced. At this time, the embossed portion 42 and the through hole 43 having the above-mentioned shapes are produced by performing the same embossed portion forming step and through hole forming step as in the first embodiment.
続いて、図12に示すように、貫通孔43に隙間C1を設けた状態で、伝熱管20を挿入する。そして、隙間C1を維持したまま、伝熱管20の外周を囲む形状のロウ材14を伝熱管20に設置する。そして、実施の形態1と同様に、ロウ材14を加熱して熔解させ、貫通孔43の内壁と伝熱管20との間の隙間C1にロウ材14を浸透させる。このとき、ロウ材14は、隙間C1のほか、エンボス部42の窪み上端の内壁UWと伝熱管20との隙間C2に表面張力により浸透する。そして、ロウ材14は、この隙間C2に充填される。
Subsequently, as shown in FIG. 12, the heat transfer tube 20 is inserted with the gap C1 provided in the through hole 43. Then, the brazing material 14 having a shape surrounding the outer periphery of the heat transfer tube 20 is installed in the heat transfer tube 20 while maintaining the gap C1. Then, as in the first embodiment, the brazing material 14 is heated and melted, and the brazing material 14 is infiltrated into the gap C1 between the inner wall of the through hole 43 and the heat transfer tube 20. At this time, the brazing material 14 penetrates into the gap C1 and the gap C2 between the inner wall UW at the upper end of the recess of the embossed portion 42 and the heat transfer tube 20 by surface tension. Then, the brazing material 14 is filled in the gap C2.
一方、エンボス部42の窪み下端では、隙間C1に浸透したロウ材14が、矢印Sに示すように、重力により下に垂れる。隙間C3は、エンボス部42の窪み上端の内壁UWの隙間C2よりも大きい。このため、ロウ材14は、表面張力によって隙間C3に充填されにくい。
On the other hand, at the lower end of the recess of the embossed portion 42, the brazing material 14 that has penetrated into the gap C1 hangs down due to gravity as shown by the arrow S. The gap C3 is larger than the gap C2 of the inner wall UW at the upper end of the recess of the embossed portion 42. Therefore, the brazing material 14 is unlikely to be filled in the gap C3 due to surface tension.
ここで、貫通孔43の内壁と伝熱管20との接合に必要な量以上にロウ材14が溶融している場合に、ロウ詰まりが発生したり、ヘッダ40又は伝熱管20を溶融させる、いわゆるエロージョンが発生したりする。しかし、実施の形態2では、エンボス部42の窪み下端には、隙間C2よりも大きい隙間C3が設けられている。このため、余剰なロウ材14は、重力により下に流れて、隙間C3に集まる。その結果、ロウ詰まりが発生しにくく、また、いわゆるエロージョンが発生しにくい。
Here, when the brazing material 14 is melted in an amount more than necessary for joining the inner wall of the through hole 43 and the heat transfer tube 20, wax clogging occurs or the header 40 or the heat transfer tube 20 is melted, so-called. Erosion may occur. However, in the second embodiment, a gap C3 larger than the gap C2 is provided at the lower end of the recess of the embossed portion 42. Therefore, the surplus brazing material 14 flows downward due to gravity and gathers in the gap C3. As a result, wax clogging is less likely to occur, and so-called erosion is less likely to occur.
ロウ材14を加熱して熔解させた後、ロウ材14を冷却させて硬化させる。これにより、伝熱管20をヘッダ10にロウ付けする。以上の工程により、熱交換器1Bが完成する。
After the brazing material 14 is heated and melted, the brazing material 14 is cooled and cured. As a result, the heat transfer tube 20 is brazed to the header 10. The heat exchanger 1B is completed by the above steps.
以上のように、実施の形態2に係る熱交換器1Bでも、実施の形態1と同様に、伝熱管20が、剪断面120である、エンボス部42の内壁UWにロウ付けされている。このため、熱交換器1Bでも、伝熱管20とヘッダ40の接合強度が高い。
As described above, also in the heat exchanger 1B according to the second embodiment, the heat transfer tube 20 is brazed to the inner wall UW of the embossed portion 42 having the sheared cross section 120 as in the first embodiment. Therefore, even in the heat exchanger 1B, the joint strength between the heat transfer tube 20 and the header 40 is high.
バーリング加工では、伝熱管20のピッチPが小さすぎる場合、貫通孔43のピッチも小さくなり、貫通孔43間の壁部の強度が低下する。その結果、貫通孔43と周壁を形成することが難しいことがある。
In the burring process, if the pitch P of the heat transfer tube 20 is too small, the pitch of the through holes 43 also becomes small, and the strength of the wall portion between the through holes 43 decreases. As a result, it may be difficult to form the through hole 43 and the peripheral wall.
しかし、熱交換器1Bでは、実施の形態1と同じエンボス部形成工程で複数の伝熱管20が接合可能なエンボス部42を形成する。また、エンボス部42に、実施の形態1と同じ貫通孔形成工程で貫通孔43を形成する。すなわち、機械加工又はプレス加工により貫通孔43を形成する。このため、バーリング加工よりも、容易にエンボス部42と貫通孔43を形成することができる。
However, in the heat exchanger 1B, the embossed portion 42 to which a plurality of heat transfer tubes 20 can be joined is formed in the same embossed portion forming step as in the first embodiment. Further, a through hole 43 is formed in the embossed portion 42 by the same through hole forming step as in the first embodiment. That is, the through hole 43 is formed by machining or press working. Therefore, the embossed portion 42 and the through hole 43 can be formed more easily than the burring process.
(実施の形態3)
実施の形態1及び2では、外郭壁11とエンボス部12、42との間に段差が設けられている。すなわち、エンボス部12、42は、外郭壁11から正面側へ出た段の形状であり、その結果、段差が設けられている。その段数は一段である。しかし、エンボス部12、42はこれに限定されない。エンボス部12、42は、段数が複数の階段状であっても良い。実施の形態3に係る熱交換器1Cは、階段状のエンボス部52を備える。 (Embodiment 3)
In the first and second embodiments, a step is provided between theouter wall 11 and the embossed portions 12 and 42. That is, the embossed portions 12 and 42 have a step shape protruding from the outer wall 11 to the front side, and as a result, a step is provided. The number of stages is one. However, the embossed portions 12 and 42 are not limited to this. The embossed portions 12 and 42 may have a stepped shape having a plurality of steps. The heat exchanger 1C according to the third embodiment includes a stepped embossed portion 52.
実施の形態1及び2では、外郭壁11とエンボス部12、42との間に段差が設けられている。すなわち、エンボス部12、42は、外郭壁11から正面側へ出た段の形状であり、その結果、段差が設けられている。その段数は一段である。しかし、エンボス部12、42はこれに限定されない。エンボス部12、42は、段数が複数の階段状であっても良い。実施の形態3に係る熱交換器1Cは、階段状のエンボス部52を備える。 (Embodiment 3)
In the first and second embodiments, a step is provided between the
以下、図13-図15を参照して、実施の形態3に係る熱交換器1Cを説明する。実施の形態3では、実施の形態1及び2と異なる構成について説明する。
Hereinafter, the heat exchanger 1C according to the third embodiment will be described with reference to FIGS. 13 to 15. In the third embodiment, a configuration different from the first and second embodiments will be described.
図13は、本開示の実施の形態3に係る熱交換器1Cの斜視図である。図14は、熱交換器1Cの正面図である。図15は、図14に示すXV-XV切断線での断面図である。なお、図13では、図3と同様に、ヘッダ50をYZ平面に平行な平面で部分的に切断したときの切断部分を示している。また、図13では、理解を容易にするため、ロウ材14を省略している。
FIG. 13 is a perspective view of the heat exchanger 1C according to the third embodiment of the present disclosure. FIG. 14 is a front view of the heat exchanger 1C. FIG. 15 is a cross-sectional view taken along the XV-XV cutting line shown in FIG. Note that FIG. 13 shows a cut portion when the header 50 is partially cut in a plane parallel to the YZ plane, as in FIG. Further, in FIG. 13, the brazing material 14 is omitted for easy understanding.
図13及び図14に示すように、熱交換器1Cは、ヘッダ50を備え、そのヘッダ50が有する外郭壁51には、階段状に正面側に突出するエンボス部52が形成されている。
As shown in FIGS. 13 and 14, the heat exchanger 1C includes a header 50, and an embossed portion 52 projecting to the front side in a stepped manner is formed on the outer wall 51 of the header 50.
エンボス部52は、複数の段を有する階段の形状に形成されている。詳細には、エンボス部52は、その周縁から中央に向かって正面側に高くなる、3つの段521-523を有する階段の形状に形成されている。エンボス部52の各段521-523は、伝熱管20の断面形状と同じく、正面視扁平の形状である。各段は、互いに相似形である。そして、エンボス部52の中央側にある段523が段521-523のうち最も小さいが、その段523は、伝熱管20と接続するため、正面視で伝熱管20の断面形状よりも大きい。
The embossed portion 52 is formed in the shape of a staircase having a plurality of steps. Specifically, the embossed portion 52 is formed in the shape of a staircase having three steps 521-523 that rise toward the front side from the peripheral edge toward the center. Each step 521-523 of the embossed portion 52 has a flat front view similar to the cross-sectional shape of the heat transfer tube 20. Each stage is similar to each other. The step 523 on the center side of the embossed portion 52 is the smallest of the steps 521-523, but the step 523 is larger than the cross-sectional shape of the heat transfer tube 20 in front view because it is connected to the heat transfer tube 20.
これら段521-523は、実施の形態1で説明したエンボス加工法で形成されることにより、正面側、すなわち+Y方向に浮き出している。
These stages 521-523 are projected on the front side, that is, in the + Y direction by being formed by the embossing method described in the first embodiment.
詳細には、段521は、図15に示すように、外郭壁51の一部分が、エンボス加工法によって、+Y方向に突出長L1だけ突出することにより、形成されている。その突出長L1は、外郭壁51の厚さTの半分以上である。これにより、段521の-Y側は、外郭壁51の-Y面よりも、突出長L1だけ窪んでいる。その結果、段521の-Y面と外郭壁51の-Y面との間に、突出長L1の段差を有する。その段差面は、エンボス加工法によって形成された剪断面121を有する。
Specifically, as shown in FIG. 15, the step 521 is formed by a part of the outer wall 51 protruding in the + Y direction by the protrusion length L1 by the embossing method. The protruding length L1 is more than half the thickness T of the outer wall 51. As a result, the −Y side of the step 521 is recessed by the protrusion length L1 from the −Y surface of the outer wall 51. As a result, there is a step having a protruding length L1 between the −Y surface of the step 521 and the −Y surface of the outer wall 51. The stepped surface has a shear section 121 formed by an embossing method.
また、段522は、段521の一部分が、エンボス加工法によって、+Y方向に突出することにより、形成されている。その突出長L2は、段521の突出長L1と同じである。また、段522の+X端、-X端は、段521の+X端、-X端よりも幅Wだけ、段521の中央側に位置する。ここで、幅Wは、外郭壁51の厚さTの半分以上である。これにより、段522は、XY断面視で段521よりも小さい。
Further, the step 522 is formed by a part of the step 521 protruding in the + Y direction by the embossing method. The protruding length L2 is the same as the protruding length L1 of the step 521. Further, the + X end and the −X end of the step 522 are located on the center side of the step 521 by a width W from the + X end and the −X end of the step 521. Here, the width W is more than half of the thickness T of the outer wall 51. As a result, the step 522 is smaller than the step 521 in the XY cross-sectional view.
段522の-Y側は、エンボス加工法で形成されることにより、段521の-Y面よりも、突出長L2だけ窪んでいる。その結果、段522の-Y面は、段521の-Y面との間に突出長L2の段差を有する。また、段差面は、剪断面122によって形成されている。
The -Y side of the step 522 is formed by the embossing method, so that the protrusion length L2 is recessed from the -Y surface of the step 521. As a result, the −Y surface of the step 522 has a step with a protruding length L2 from the −Y surface of the step 521. Further, the stepped surface is formed by a shearing surface 122.
さらに、段523は、段522の一部分が、エンボス加工法によって、+Y方向に突出することにより、形成されている。その突出長L3は、段521の突出長L1と同じであり、段523の、段522に対する位置関係は、段522の、段521に対する位置関係と同じである。そして、段523は、-Y側に突出長L3と同じ段差を有し、その段差面に、剪断面123を有する。
Further, the step 523 is formed by a part of the step 522 protruding in the + Y direction by the embossing method. The protruding length L3 is the same as the protruding length L1 of the step 521, and the positional relationship of the step 523 with respect to the step 522 is the same as the positional relationship of the step 522 with respect to the step 521. The step 523 has the same step as the protrusion length L3 on the −Y side, and has a shearing cross section 123 on the step surface.
段523は、段522の内部に形成されている。さらに、段522は、段521の内部に形成されている。その結果、段523の-Y側は、段521-523のうちで、最も窪んでいる。その中央部には、その中央部をY方向に貫通する貫通孔53が形成されている。その貫通孔53には、同方向に延在する伝熱管20が挿入されている。
The step 523 is formed inside the step 522. Further, the step 522 is formed inside the step 521. As a result, the −Y side of the step 523 is the most recessed among the steps 521-523. A through hole 53 is formed in the central portion thereof so as to penetrate the central portion in the Y direction. A heat transfer tube 20 extending in the same direction is inserted into the through hole 53.
伝熱管20は、実施の形態1と同様に、貫通孔53の内壁との間に隙間C1を有する。また、伝熱管20は、段523の-Y側にある剪断面123との間に、実施の形態1で説明した剪断面120と同様に、隙間C2を有する。さらに、伝熱管20は、剪断面122と121との間に、隙間C4、C5を有する。
The heat transfer tube 20 has a gap C1 between it and the inner wall of the through hole 53, as in the first embodiment. Further, the heat transfer tube 20 has a gap C2 between the heat transfer tube 20 and the shearing section 123 on the −Y side of the step 523, similarly to the shearing section 120 described in the first embodiment. Further, the heat transfer tube 20 has gaps C4 and C5 between the shear sections 122 and 121.
これら隙間C1、C2、C4、C5には、ロウ材14が充填されている。そして、隙間C5には、ロウフィレットが形成されている。図示しないが、このロウフィレットは、伝熱管20と剪断面121との間の隙間C5全周にわたって形成されている。これにより、隙間C5は、高い気密性で塞がれ、ロウ付けの耐圧性が高い。その結果、隙間C1、C2、C4も、高い気密性で塞がれている。
The brazing material 14 is filled in these gaps C1, C2, C4, and C5. A low fillet is formed in the gap C5. Although not shown, this low fillet is formed over the entire circumference of the gap C5 between the heat transfer tube 20 and the shear section 121. As a result, the gap C5 is closed with high airtightness, and the brazing pressure resistance is high. As a result, the gaps C1, C2, and C4 are also closed with high airtightness.
さらに、剪断面121-123にロウ材14が浸透しているので、伝熱管20とエンボス部52との接合強度が高い。
Further, since the brazing material 14 has penetrated into the shear section 121-123, the joint strength between the heat transfer tube 20 and the embossed portion 52 is high.
次に、実施の形態3に係る熱交換器1Cの製造方法について説明する。
Next, the manufacturing method of the heat exchanger 1C according to the third embodiment will be described.
まず、実施の形態1、2と同様に、伝熱管20とフィン30を作製し、続いて、作製した伝熱管20とフィン30を組み立てる。
First, the heat transfer tube 20 and the fin 30 are manufactured in the same manner as in the first and second embodiments, and then the prepared heat transfer tube 20 and the fin 30 are assembled.
また、上述したエンボス部52を有するヘッダ50を作製する。このヘッダ50の作製では、実施の形態1で説明したエンボス部形成工程を繰り返すことにより、外郭壁51に階段状の段521-523を形成する。
Further, the header 50 having the embossed portion 52 described above is manufactured. In the production of the header 50, the stepped steps 521-523 are formed on the outer wall 51 by repeating the embossed portion forming step described in the first embodiment.
詳細には、実施の形態1で説明したパンチ100とダイ200を用いて、段521を形成し、続いて、パンチ100とダイ200とは図示しない別のパンチとダイを用いて、段521の内部に、段522を形成する。さらに、その別のパンチとダイをさらに別のものに交換して、段522の内部に、段523を形成する。これにより、外郭壁51に階段状のエンボス部52を形成する。
Specifically, the punch 100 and the die 200 described in the first embodiment are used to form the step 521, and then the punch 100 and the die 200 are used with another punch and die (not shown) to form the step 521. A step 522 is formed inside. Further, the other punch and die are replaced with another one to form a step 523 inside the step 522. As a result, a stepped embossed portion 52 is formed on the outer wall 51.
次に、実施の形態1と同じ貫通孔形成工程とロウ付け工程を行う。これにより、エンボス部52に貫通孔53が形成され、形成された貫通孔53に伝熱管20が挿入される。さらに、伝熱管20と貫通孔53又はエンボス部52との間に形成された隙間C1、C2、C4、C5がロウ材14によって充填される。
Next, the same through hole forming step and brazing step as in the first embodiment are performed. As a result, a through hole 53 is formed in the embossed portion 52, and the heat transfer tube 20 is inserted into the formed through hole 53. Further, the gaps C1, C2, C4, and C5 formed between the heat transfer tube 20 and the through hole 53 or the embossed portion 52 are filled with the brazing material 14.
このロウ材14の充填では、毛細管現象によって、溶融したロウ材14が隙間C1、C2、C4、C5に浸透する。溶融したロウ材14は、表面張力により狭い空間に集まる結果、隙間C1、C2、C4、C5に集まるので、伝熱管20の端部からその内部に流れにくい。その結果、伝熱管20の内部空間がロウ材14によって塞がれる、いわゆるロウ詰まりが抑制される。ロウ材14は、隙間C1、C2、C4、C5を充填して、隙間C1、C2、C4、C5を高い気密性で塞ぐ。
In the filling of the brazing material 14, the molten brazing material 14 permeates the gaps C1, C2, C4, and C5 due to the capillary phenomenon. As a result of the molten brazing material 14 gathering in a narrow space due to surface tension, it gathers in the gaps C1, C2, C4, and C5, so that it is difficult for the molten brazing material 14 to flow from the end of the heat transfer tube 20 into the inside thereof. As a result, so-called wax clogging, in which the internal space of the heat transfer tube 20 is blocked by the brazing material 14, is suppressed. The brazing material 14 fills the gaps C1, C2, C4, and C5 to close the gaps C1, C2, C4, and C5 with high airtightness.
なお、実施の形態3では、階段の形状に形成され、3つの段を有する、すなわち段521-523を有するエンボス部52を説明している。しかし、エンボス部52は、複数の段を有してれば良い。このため、エンボス部52は、例えば、2段の段を有していても良い。また、エンボス部52は、3段よりも多い数の段を有しても良い。
In the third embodiment, the embossed portion 52 formed in the shape of a staircase and having three steps, that is, the steps 521-523 is described. However, the embossed portion 52 may have a plurality of stages. Therefore, the embossed portion 52 may have, for example, two steps. Further, the embossed portion 52 may have more than three steps.
また、実施の形態3では、隙間C5にロウフィレットが形成されているが、ロウフィレットは、隙間C5のほか、隙間C2、C4に形成されても良い。このような形態であっても、少なくとも剪断面121に伝熱管20をロウ付けすることができるからである。ロウフィレットは、ロウ付け工程でのロウ材14の供給量に応じて、隙間C2、C4、C5に形成されることになれば良い。
Further, in the third embodiment, the low fillet is formed in the gap C5, but the low fillet may be formed in the gaps C2 and C4 in addition to the gap C5. This is because even in such a form, the heat transfer tube 20 can be brazed to at least the sheared surface 121. The brazing fillet may be formed in the gaps C2, C4, and C5 according to the amount of the brazing material 14 supplied in the brazing step.
実施の形態3では、エンボス部52に伝熱管20が1つ接合されているが、実施の形態2と同様に、エンボス部52に複数の伝熱管20が接合されても良い。
In the third embodiment, one heat transfer tube 20 is joined to the embossed portion 52, but as in the second embodiment, a plurality of heat transfer tubes 20 may be joined to the embossed portion 52.
以上のように、実施の形態3に係る熱交換器1Cでは、階段状に形成されたエンボス部52を備え、そのエンボス部52が、剪断面121-123を有する。熱交換器1Cでも、実施の形態1及び2と同様に、伝熱管20が、剪断面121-123にロウ付けされているので、伝熱管20とヘッダ50の接合強度が高い。
As described above, the heat exchanger 1C according to the third embodiment includes an embossed portion 52 formed in a stepped shape, and the embossed portion 52 has a shear section 121-123. In the heat exchanger 1C as well, as in the first and second embodiments, the heat transfer tube 20 is brazed to the shear section 121-123, so that the joint strength between the heat transfer tube 20 and the header 50 is high.
また、熱交換器1Cでは、実施の形態1と比較してロウフィレットが大きいので、実施の形態1よりも、伝熱管20の接合強度が高い。
Further, in the heat exchanger 1C, since the low fillet is larger than that in the first embodiment, the joint strength of the heat transfer tube 20 is higher than that in the first embodiment.
以上、本開示の実施の形態を説明したが、本開示は上記の実施の形態に限定されるものではない。例えば、実施の形態1-3では、エンボス部12、42、52が、ヘッダ10、40、50の外側に向かって突出している。しかし、エンボス部12、42、52はこれに限定されない。エンボス部12、42、52は、伝熱管20の管軸方向に突出していれば良い。このため、エンボス部12、42、52は、ヘッダ10、40、50の内側に向かって突出しても良い。
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. For example, in the first embodiment, the embossed portions 12, 42, 52 project toward the outside of the headers 10, 40, 50. However, the embossed portions 12, 42 and 52 are not limited to this. The embossed portions 12, 42, and 52 may project in the axial direction of the heat transfer tube 20. Therefore, the embossed portions 12, 42, 52 may protrude inward of the headers 10, 40, 50.
図16は、実施の形態1に係る熱交換器1Aの変形例の断面図である。なお、図16では、図4に示すV-V切断線と同じ箇所の切断線での断面図を示している。
FIG. 16 is a cross-sectional view of a modified example of the heat exchanger 1A according to the first embodiment. Note that FIG. 16 shows a cross-sectional view taken along the cutting line at the same location as the VV cutting line shown in FIG.
図16に示すように、熱交換器1Dは、流路である内部空間に向かって突出したエンボス部62が形成されたヘッダ60を備えている。エンボス部62は、伝熱管20の管軸方向、詳細には、-Y方向に突出する。
As shown in FIG. 16, the heat exchanger 1D includes a header 60 in which an embossed portion 62 projecting toward the internal space, which is a flow path, is formed. The embossed portion 62 projects in the tube axis direction of the heat transfer tube 20, more specifically, in the −Y direction.
このように、エンボス部12、42、52は、ヘッダ10、40、50の内側に向かって突出しても良い。このような形態であっても、エンボス部12、42、52の窪みにロウ材14を充填して、伝熱管20をエンボス部12、42、52に強固に接合することができる。
In this way, the embossed portions 12, 42, 52 may protrude toward the inside of the headers 10, 40, 50. Even in such a form, the recesses of the embossed portions 12, 42 and 52 can be filled with the brazing material 14 to firmly join the heat transfer tube 20 to the embossed portions 12, 42 and 52.
実施の形態1-3では、エンボス部12、42、52、62が、外郭壁11の厚さTの半分だけ浮き出している。また、エンボス部12、42、52、62の厚さは、外郭壁11の厚さTと同じである。しかし、エンボス部12、42、52、62はこれに限定されない。エンボス部12、42、52、62は管軸方向に突出していればよく、その突出長は任意である。また、エンボス部12、42、52、62の厚さも任意である。例えば、エンボス部12、42、52、62は、外郭壁11の厚さTの1/3だけ突出しても良いし、エンボス部12、42、52、62の厚さは、パンチ100に加圧されることにより、厚さTよりも薄くなっても良い。
In the first embodiment, the embossed portions 12, 42, 52, 62 are projected by half the thickness T of the outer wall 11. Further, the thicknesses of the embossed portions 12, 42, 52 and 62 are the same as the thickness T of the outer wall 11. However, the embossed portions 12, 42, 52 and 62 are not limited to this. The embossed portions 12, 42, 52, 62 may project in the pipe axis direction, and the projecting length thereof is arbitrary. Further, the thicknesses of the embossed portions 12, 42, 52 and 62 are also arbitrary. For example, the embossed portions 12, 42, 52, 62 may protrude by 1/3 of the thickness T of the outer wall 11, and the thickness of the embossed portions 12, 42, 52, 62 presses the punch 100. By doing so, it may be thinner than the thickness T.
実施の形態1-3では、ヘッダ10、40、50、60が直方体状の外郭壁11を有しているが、ヘッダ10、40、50、60はこれに限定されない。ヘッダ10、40、50、60は、貫通孔13、43、53とエンボス部12、42、52、62が形成された外郭壁11、41、51、61を有していれば良い。このため、ヘッダ10、40、50、60は、この限りにおいて、その形状は任意である。例えば、ヘッダ10、40、50、60は、円筒状の外郭壁11を有しても良い。
In the first embodiment, the headers 10, 40, 50, and 60 have a rectangular parallelepiped outer wall 11, but the headers 10, 40, 50, and 60 are not limited to this. The headers 10, 40, 50, 60 may have outer walls 11, 41, 51, 61 in which the through holes 13, 43, 53 and the embossed portions 12, 42, 52, 62 are formed. Therefore, the headers 10, 40, 50, and 60 have an arbitrary shape to this extent. For example, the headers 10, 40, 50, 60 may have a cylindrical outer wall 11.
また、上記の限りにおいて、ヘッダ10、40、50、60の材料も任意である。実施の形態1-3では、ヘッダ10、40、50、60の表面に犠牲陽極層が形成されているが、ヘッダ10、40、50、60は、これに限定されない。例えば、ヘッダ10、40、50、60は、外郭壁71のブレージングシートで形成されても良い。
Further, as far as the above is concerned, the materials of the headers 10, 40, 50 and 60 are also arbitrary. In the first embodiment, the sacrificial anode layer is formed on the surface of the headers 10, 40, 50, 60, but the headers 10, 40, 50, 60 are not limited to this. For example, the headers 10, 40, 50, 60 may be formed of a brazing sheet of the outer wall 71.
図17は、ヘッダ10が有する外郭壁11の変形例の断面図である。なお、図17では、外郭壁11の一部だけを図示している。
FIG. 17 is a cross-sectional view of a modified example of the outer wall 11 of the header 10. Note that FIG. 17 shows only a part of the outer wall 11.
外郭壁71は、心材となるアルミニウム又はアルミニウム合金に、皮材としてロウ材料が設けられた、ブレージングシートで形成されている。詳細には、外郭壁71は、図17に示すように、マンガンとアルミニウムを含む合金で形成された第1の層72と、第1の層72の合金よりも融点が低いアルミニウム合金で形成された第2の層73と、第2の層73と同じアルミニウム合金又は、亜鉛とアルミニウムを含む合金で形成された第3の層74と、が積層されている。ここで、第2の層73のアルミニウム合金は、ロウ材14と同じ材料である。
The outer wall 71 is formed of a brazing sheet in which a brazing material is provided as a skin material on aluminum or an aluminum alloy as a core material. Specifically, as shown in FIG. 17, the outer wall 71 is formed of a first layer 72 formed of an alloy containing manganese and aluminum, and an aluminum alloy having a lower melting point than the alloy of the first layer 72. A second layer 73 and a third layer 74 formed of the same aluminum alloy as the second layer 73 or an alloy containing zinc and aluminum are laminated. Here, the aluminum alloy of the second layer 73 is the same material as the brazing material 14.
このように、ヘッダ10、40、50、60は、外郭壁71のブレージングシートで形成されても良い。この場合、ブレージングシートの皮材は、外郭壁71と同じく、心材の片面に形成されても良いし、心材の両面に形成されても良い。そして、上述した剪断面120は、皮材であるロウ材料に形成されると良い。このような形態であれば、剪断面120それ自体が、ロウ材料であるため、確実に伝熱管20を接合することができる。
As described above, the headers 10, 40, 50, and 60 may be formed of the brazing sheet of the outer wall 71. In this case, the skin material of the brazing sheet may be formed on one side of the core material or on both sides of the core material, as in the outer wall 71. The shearing surface 120 described above may be formed on a brazing material which is a skin material. In such a form, since the shear surface 120 itself is a brazing material, the heat transfer tube 20 can be reliably joined.
また、ヘッダ10、40、50、60の内部構造も任意である。ヘッダ10、40、50、60の内部が隔壁で分割され、複数の流路があっても良い。なお、熱交換器1A-1Dは、流路に応じてヘッダ10、40、50、60の数は1つであっても良い。
The internal structure of the headers 10, 40, 50, and 60 is also arbitrary. The inside of the headers 10, 40, 50, and 60 may be divided by a partition wall, and there may be a plurality of flow paths. In the heat exchanger 1A-1D, the number of headers 10, 40, 50, and 60 may be one depending on the flow path.
実施の形態1-3では、ヘッダ10、40、50、60、70が一つの部材で形成されているが、ヘッダ10、40、50、60、70は複数のヘッダ部品が組み合わされることにより作製されていても良い。その場合、複数のヘッダ部品はロウ付けされていても良い。
In the first embodiment, the headers 10, 40, 50, 60 and 70 are formed of one member, but the headers 10, 40, 50, 60 and 70 are manufactured by combining a plurality of header parts. It may have been done. In that case, a plurality of header parts may be brazed.
上述したように、ヘッダ10、40、50、60、70は、貫通孔13、43、53と、エンボス部12、42、52、62が形成された外郭壁11、41、51、61を有していれば良い。そして、伝熱管20がエンボス部12、42、52、62と貫通孔13、43、53の内壁にロウ付けされていれば良い。このため、この条件を満たす限りにおいて、外郭壁11、41、51、61がどの向きに向いているか、伝熱管20がどの向きに延びているか、は任意である。また、この条件を満たす限りにおいて、伝熱管20が何本設けられているか、も任意である。
As described above, the headers 10, 40, 50, 60, 70 have through holes 13, 43, 53 and outer walls 11, 41, 51, 61 in which the embossed portions 12, 42, 52, 62 are formed. You just have to do it. Then, the heat transfer tube 20 may be brazed to the inner walls of the embossed portions 12, 42, 52, 62 and the through holes 13, 43, 53. Therefore, as long as this condition is satisfied, the direction in which the outer walls 11, 41, 51, and 61 are oriented and the direction in which the heat transfer tube 20 extends are arbitrary. Further, as long as this condition is satisfied, the number of heat transfer tubes 20 provided is also arbitrary.
例えば、ヘッダ10、40、50、60、70が前又は後に向く外郭壁11、41、51、61と、右又は左に向く外郭壁11、41、51、61と、を備え、前又は後に向く外郭壁11、41、51、61に多数、例えば、10~100本の伝熱管20が接続されて、伝熱管20が左右方向に配列しても良い。さらに、上又は下に向く外郭壁11、41、51、61に多数、例えば、2~100本の伝熱管20が接続されて、伝熱管20が上下方向に配列しても良い。
For example, headers 10, 40, 50, 60, 70 include outer walls 11, 41, 51, 61 facing forward or backward, and outer walls 11, 41, 51, 61 facing right or left, front or rear. A large number, for example, 10 to 100 heat transfer tubes 20 may be connected to the facing outer walls 11, 41, 51, 61, and the heat transfer tubes 20 may be arranged in the left-right direction. Further, a large number, for example, 2 to 100 heat transfer tubes 20 may be connected to the outer walls 11, 41, 51, 61 facing upward or downward, and the heat transfer tubes 20 may be arranged in the vertical direction.
また、上記条件を満たせば良いので、当然ながら、エンボス部12、42、52、62にロウ付けされる伝熱管20の本数も任意である。例えば、エンボス部12、42、52、62に複数の伝熱管20がロウ付けされても良い。また、ヘッダ10、40、50、60、70が別々の方向に向く複数の外郭壁11、41、51、61を備える場合に、どの方向に向く外郭壁11、41、51、61にエンボス部12、42、52、62が設けられるかも任意である。例えば、上記の上又は下に向く外郭壁11、41、51、61にエンボス部12、42、52、62が設けられても良い。
Further, as long as the above conditions are satisfied, the number of heat transfer tubes 20 brazed to the embossed portions 12, 42, 52, and 62 is, of course, arbitrary. For example, a plurality of heat transfer tubes 20 may be brazed to the embossed portions 12, 42, 52, and 62. Further, when the headers 10, 40, 50, 60, and 70 are provided with a plurality of outer wall walls 11, 41, 51, 61 facing in different directions, the embossed portions are formed on the outer wall walls 11, 41, 51, 61 facing in which direction. It is also optional that 12, 42, 52, 62 are provided. For example, the embossed portions 12, 42, 52, 62 may be provided on the outer walls 11, 41, 51, 61 facing upward or downward.
本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。
The present disclosure allows various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining the present disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated by the claims, not the embodiments. And various modifications made within the scope of the claims and within the equivalent meaning of disclosure are considered to be within the scope of the present disclosure.
本出願は、2019年3月15日に出願された日本国特許出願特願2019-47920号に基づく。本明細書中に日本国特許出願特願2019-47920号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
This application is based on Japanese Patent Application No. 2019-47920 filed on March 15, 2019. The specification, claims, and drawings of Japanese Patent Application No. 2019-47920 shall be incorporated into this specification as a reference.
1A-1D 熱交換器、10,10F,10B ヘッダ、11,11F,11B 外郭壁、12 エンボス部、13 貫通孔、14 ロウ材、20 伝熱管、21 隔壁、30 フィン、40 ヘッダ、41 外郭壁、42 エンボス部、43 貫通孔、50 ヘッダ、51 外隔壁、52 エンボス部、53 貫通孔、60 ヘッダ、61 外郭壁、62 エンボス部、71 外郭壁、72 第1の層、73 第2の層、74 第3の層、100 パンチ、120、121、122、123 剪断面、200 ダイ、521-523 段、A 領域、C1-C5 隙間、L1-L3 突出長、P ピッチ、LW,UW 内壁、R,S 矢印、T 厚さ、W 幅。
1A-1D heat exchanger, 10,10F, 10B header, 11,11F, 11B outer wall, 12 embossed part, 13 through hole, 14 brazing material, 20 heat transfer tube, 21 partition wall, 30 fins, 40 header, 41 outer wall , 42 embossed part, 43 through hole, 50 header, 51 outer partition wall, 52 embossed part, 53 through hole, 60 header, 61 outer wall, 62 embossed part, 71 outer wall, 72 first layer, 73 second layer , 74 Third layer, 100 punch, 120, 121, 122, 123 shear cross section, 200 die, 521-523 steps, A area, C1-C5 gap, L1-L3 protrusion length, P pitch, LW, UW inner wall, R, S arrow, T thickness, W width.
Claims (11)
- フィンに熱を伝える伝熱管と、
前記伝熱管が挿入された挿入孔及び、前記挿入孔を囲み、前記伝熱管の管軸方向に突出したエンボス部が形成された外郭壁を有し、前記伝熱管が前記エンボス部と前記挿入孔の内壁にロウ付けされたヘッダと、
を備える熱交換器。 A heat transfer tube that transfers heat to the fins,
The heat transfer tube has an insertion hole into which the heat transfer tube is inserted and an outer wall surrounding the insertion hole and having an embossed portion protruding in the tube axis direction of the heat transfer tube. The heat transfer tube has the embossed portion and the insertion hole. With the header waxed on the inner wall of
A heat exchanger equipped with. - 前記エンボス部は、突出方向と反対の側が窪み、
前記伝熱管は、前記エンボス部の窪みとの間に充填されたロウ材によって、前記窪みの内壁にロウ付けされている、
請求項1に記載の熱交換器。 The embossed portion has a dent on the side opposite to the protruding direction.
The heat transfer tube is brazed to the inner wall of the recess by a brazing material filled between the heat transfer tube and the recess of the embossed portion.
The heat exchanger according to claim 1. - 前記伝熱管は、前記窪みの内壁全周にわたって、又は、前記窪みの内壁の一部にロウ付けされている、
請求項2に記載の熱交換器。 The heat transfer tube is brazed over the entire inner wall of the depression or a part of the inner wall of the depression.
The heat exchanger according to claim 2. - 前記外郭壁には、前記挿入孔が複数個、形成されている、
請求項1から3のいずれか1項に記載の熱交換器。 A plurality of the insertion holes are formed in the outer wall.
The heat exchanger according to any one of claims 1 to 3. - 前記エンボス部は、複数の段を有する階段の形状を備える、
請求項1から4のいずれかの1項に記載の熱交換器。 The embossed portion has the shape of a staircase having a plurality of steps.
The heat exchanger according to any one of claims 1 to 4. - 前記伝熱管は、前記複数の段のうちの少なくとも一つが有する内壁との間に充填されたロウ材によって、前記エンボス部の内壁にロウ付けされている、
請求項5に記載の熱交換器。 The heat transfer tube is brazed to the inner wall of the embossed portion by a brazing material filled between the heat transfer tube and the inner wall of at least one of the plurality of stages.
The heat exchanger according to claim 5. - ヘッダが有する外郭壁をエンボス加工して前記外郭壁にエンボス部を形成するエンボス部形成工程と、
前記エンボス部に貫通孔を形成する貫通孔形成工程と、
前記貫通孔に伝熱管を挿入する伝熱管挿入工程と、
前記貫通孔に挿入された前記伝熱管を前記エンボス部と前記貫通孔の内壁にロウ付けするロウ付け工程と、
を備える熱交換器の製造方法。 An embossed portion forming step of embossing the outer wall of the header to form an embossed portion on the outer wall.
A through hole forming step of forming a through hole in the embossed portion,
A heat transfer tube insertion step of inserting a heat transfer tube into the through hole, and
A brazing step of brazing the heat transfer tube inserted into the through hole to the embossed portion and the inner wall of the through hole.
A method of manufacturing a heat exchanger comprising. - 前記ロウ付け工程では、前記エンボス部の、突出方向と反対の側にある窪み内壁と前記伝熱管との間にロウ材を充填し、前記ロウ材で前記伝熱管を前記エンボス部にロウ付けする、
請求項7に記載の熱交換器の製造方法。 In the brazing step, a brazing material is filled between the inner wall of the recess on the side opposite to the protruding direction of the embossed portion and the heat transfer tube, and the heat transfer tube is brazed to the embossed portion with the brazing material. ,
The method for manufacturing a heat exchanger according to claim 7. - 前記エンボス部形成工程では、前記外郭壁をエンボス加工することにより、前記外郭壁に剪断面を形成する、
請求項8に記載の熱交換器の製造方法。 In the embossing portion forming step, a sheared cross section is formed on the outer wall by embossing the outer wall.
The method for manufacturing a heat exchanger according to claim 8. - 前記ロウ付け工程では、前記剪断面と前記伝熱管との間にロウ材を充填し、前記ロウ材で前記伝熱管を前記剪断面にロウ付けする、
請求項9に記載の熱交換器の製造方法。 In the brazing step, a brazing material is filled between the sheared surface and the heat transfer tube, and the heat transfer tube is brazed to the sheared surface with the brazed material.
The method for manufacturing a heat exchanger according to claim 9. - 前記貫通孔形成工程では、前記エンボス部をプレス加工又は機械加工することにより、前記貫通孔を形成する、
請求項7から10のいずれか1項に記載の熱交換器の製造方法。 In the through hole forming step, the through hole is formed by pressing or machining the embossed portion.
The method for manufacturing a heat exchanger according to any one of claims 7 to 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021507267A JP7101868B2 (en) | 2019-03-15 | 2020-03-12 | How to manufacture heat exchangers and heat exchangers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019047920 | 2019-03-15 | ||
JP2019-047920 | 2019-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020189483A1 true WO2020189483A1 (en) | 2020-09-24 |
Family
ID=72519085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/010748 WO2020189483A1 (en) | 2019-03-15 | 2020-03-12 | Heat exchanger and heat exchanger manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7101868B2 (en) |
WO (1) | WO2020189483A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022118739A1 (en) * | 2020-12-03 | 2022-06-09 | パナソニックホールディングス株式会社 | Heat storage device and method for manufacturing heat storage device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582127A (en) * | 1982-12-22 | 1986-04-15 | Societe Anonyme Des Usines Chausson | Tube end plate for heat exchanger with tubes and water boxes |
US5172762A (en) * | 1989-10-20 | 1992-12-22 | Sanden Corporation | Heat exchanger |
JP2004286358A (en) * | 2003-03-24 | 2004-10-14 | Calsonic Kansei Corp | Core structure of heat exchanger |
JP2005308261A (en) * | 2004-04-19 | 2005-11-04 | Calsonic Kansei Corp | Heat exchanger |
JP2012215365A (en) * | 2011-04-01 | 2012-11-08 | Yanmar Co Ltd | Heat exchanger |
JP2014047965A (en) * | 2012-08-31 | 2014-03-17 | Mitsubishi Heavy Ind Ltd | Heat exchanger |
JP2014169851A (en) * | 2013-03-05 | 2014-09-18 | Denso Corp | Heat exchanger |
JP2015025405A (en) * | 2013-07-25 | 2015-02-05 | 株式会社ユタカ技研 | Heat exchanger and heat exchange device |
WO2015081274A1 (en) * | 2013-11-27 | 2015-06-04 | Brayton Energy, Llc | Flattened envelope heat exchanger |
WO2018173536A1 (en) * | 2017-03-21 | 2018-09-27 | 株式会社デンソー | Heat exchanger |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2984285B2 (en) * | 1988-09-02 | 1999-11-29 | サンデン株式会社 | Heat exchanger and method of manufacturing the same |
JP2009014213A (en) * | 2007-07-02 | 2009-01-22 | Calsonic Kansei Corp | Shear surface coating process for clad member |
KR101271140B1 (en) * | 2011-04-08 | 2013-06-04 | 주식회사 유엠하이텍 | Tube-insertion hole for header pipe of regenerator and punch for processing thereof |
JP2016017666A (en) * | 2014-07-07 | 2016-02-01 | 株式会社ケーヒン・サーマル・テクノロジー | Heat exchanger and its process of manufacture |
JP2016080236A (en) * | 2014-10-15 | 2016-05-16 | 三菱重工オートモーティブサーマルシステムズ株式会社 | Heat exchanger |
JP6944470B2 (en) * | 2016-12-26 | 2021-10-06 | 株式会社ティラド | How to process flat holes with burring on metal plates |
-
2020
- 2020-03-12 WO PCT/JP2020/010748 patent/WO2020189483A1/en active Application Filing
- 2020-03-12 JP JP2021507267A patent/JP7101868B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582127A (en) * | 1982-12-22 | 1986-04-15 | Societe Anonyme Des Usines Chausson | Tube end plate for heat exchanger with tubes and water boxes |
US5172762A (en) * | 1989-10-20 | 1992-12-22 | Sanden Corporation | Heat exchanger |
JP2004286358A (en) * | 2003-03-24 | 2004-10-14 | Calsonic Kansei Corp | Core structure of heat exchanger |
JP2005308261A (en) * | 2004-04-19 | 2005-11-04 | Calsonic Kansei Corp | Heat exchanger |
JP2012215365A (en) * | 2011-04-01 | 2012-11-08 | Yanmar Co Ltd | Heat exchanger |
JP2014047965A (en) * | 2012-08-31 | 2014-03-17 | Mitsubishi Heavy Ind Ltd | Heat exchanger |
JP2014169851A (en) * | 2013-03-05 | 2014-09-18 | Denso Corp | Heat exchanger |
JP2015025405A (en) * | 2013-07-25 | 2015-02-05 | 株式会社ユタカ技研 | Heat exchanger and heat exchange device |
WO2015081274A1 (en) * | 2013-11-27 | 2015-06-04 | Brayton Energy, Llc | Flattened envelope heat exchanger |
WO2018173536A1 (en) * | 2017-03-21 | 2018-09-27 | 株式会社デンソー | Heat exchanger |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022118739A1 (en) * | 2020-12-03 | 2022-06-09 | パナソニックホールディングス株式会社 | Heat storage device and method for manufacturing heat storage device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020189483A1 (en) | 2021-10-14 |
JP7101868B2 (en) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080237312A1 (en) | Brazing method | |
JP6355473B2 (en) | Heat exchanger | |
JP2007205585A (en) | Manufacturing method of heat exchanger, and heat exchanger | |
WO2020189483A1 (en) | Heat exchanger and heat exchanger manufacturing method | |
US6446337B1 (en) | Formation of tube slots in clad aluminum materials | |
JP6583071B2 (en) | Tank and heat exchanger | |
JP6231800B2 (en) | Al member for heat exchanger having fine passage and method for manufacturing the same | |
CN112344763B (en) | Method for manufacturing heat exchanger | |
JP6674262B2 (en) | Heat exchanger and method of manufacturing the same | |
JP2018124034A (en) | Tube for heat exchanger | |
JP2007170805A (en) | Brazed structure and method of manufacturing the same | |
JP2020076535A (en) | Heat exchanger and method of manufacturing the same | |
JP7209825B2 (en) | How to connect heat exchangers, pipe fittings and pipes | |
CN100476340C (en) | Brazed structure and method of manufacturing the same | |
WO2021199458A1 (en) | Heat exchanger header, heat exchanger, method for manufacturing heat exchanger header, and method for manufacturing heat exchanger | |
JP2012078059A (en) | Heat exchanger | |
WO2020100897A1 (en) | Heat exchanger and heat exchanger manufacturing method | |
WO2020217940A1 (en) | Heat exchanger manufacturing method and heat exchanger | |
JP7550690B2 (en) | Headers and Heat Exchangers | |
JP2009063229A (en) | Heat exchanger and its manufacturing method | |
WO2018124254A1 (en) | Metal plate burring method | |
JP2014238204A (en) | Process of manufacture of flat tube heat exchanger and flat tube heat exchanger manufactured by the process | |
JP6521624B2 (en) | Flat tube used for plate fin type heat exchanger having excellent corrosion resistance and heat exchanger using the same | |
JP2019143816A (en) | Brazing member and heat exchanger | |
WO2023171451A1 (en) | Header and heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20772779 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021507267 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20772779 Country of ref document: EP Kind code of ref document: A1 |