WO2021199458A1 - Heat exchanger header, heat exchanger, method for manufacturing heat exchanger header, and method for manufacturing heat exchanger - Google Patents

Heat exchanger header, heat exchanger, method for manufacturing heat exchanger header, and method for manufacturing heat exchanger Download PDF

Info

Publication number
WO2021199458A1
WO2021199458A1 PCT/JP2020/034629 JP2020034629W WO2021199458A1 WO 2021199458 A1 WO2021199458 A1 WO 2021199458A1 JP 2020034629 W JP2020034629 W JP 2020034629W WO 2021199458 A1 WO2021199458 A1 WO 2021199458A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
transfer tube
heat transfer
heat exchanger
header member
Prior art date
Application number
PCT/JP2020/034629
Other languages
French (fr)
Japanese (ja)
Inventor
大士 永友
寧彦 松尾
優紀 大谷
典宏 米田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022511500A priority Critical patent/JP7361887B2/en
Priority to DE112020006995.8T priority patent/DE112020006995T5/en
Publication of WO2021199458A1 publication Critical patent/WO2021199458A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0207Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions the longitudinal or transversal partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0248Arrangements for sealing connectors to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/28Perforating, i.e. punching holes in tubes or other hollow bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • F28F9/0217Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions the partitions being separate elements attached to header boxes

Definitions

  • This disclosure relates to a heat exchanger header, a heat exchanger, a method for manufacturing a heat exchanger header, and a method for manufacturing a heat exchanger.
  • a fin tube type heat exchanger As a heat exchanger used in air conditioners, refrigerators, etc., a fin tube type heat exchanger is known in which a heat medium is circulated through a heat transfer tube equipped with heat radiation fins to exchange heat.
  • the fin tube type heat exchanger includes a header for a heat exchanger in which a heat medium is distributed and distributed to a plurality of heat transfer tubes.
  • Patent Document 1 discloses a header for a heat exchanger in which an elongated plate is adjacent to an insertion hole of a heat transfer tube formed by burring. Since this elongated plate can bear a part of the force when the internal pressure acts on the header for the heat exchanger, the stress applied around the insertion hole of the heat transfer tube is suppressed. As a result, the withstand voltage performance of the heat exchanger header can be improved.
  • the insertion hole disclosed in Patent Document 1 is formed in a flat portion. Therefore, a configuration for improving the pressure resistance of the header is also provided in the flat portion.
  • the insertion hole is provided in the curved portion of the header for the heat exchanger, it is difficult to apply the configuration disclosed as it is to Patent Document 1 which is supposed to be provided in the flat portion.
  • the present disclosure has been made in order to solve the above-mentioned problems, and it is possible to secure the bonding strength with the heat transfer tube bonded to the curved portion, and to improve the withstand voltage performance. It is an object of the present invention to provide a header for a exchanger, a heat exchanger, a method for manufacturing a header for a heat exchanger, and a method for manufacturing a heat exchanger.
  • the heat exchanger header is a pipe forming portion which is a part of a first pipe in which a bypass flow path for circulating a heat medium is formed and a second pipe in which a main flow path for passing a heat medium is formed.
  • the second header member has a curved portion, and an insertion hole into which the heat transfer tube is inserted is formed in the curved portion, and the hole wall of the insertion hole is along the heat transfer tube to be inserted over the entire circumference.
  • the hole wall of the insertion hole formed in the curved portion is formed along the heat transfer tube to be inserted over the entire circumference.
  • FIG. 1 Top view of the heat exchanger according to the first embodiment
  • FIG. 1 Perspective view of the heat transfer tube according to the first embodiment
  • FIG. 8A and 8A An explanatory view showing the steps of manufacturing the second header member according to the first embodiment following from FIGS. 8A and 8A in the order of steps.
  • Sectional drawing which showed the state which the heat transfer tube was inserted into the 2nd header member which concerns on Embodiment 1.
  • Front view of the second header member according to the second embodiment focusing on the insertion hole. It is a figure of the 2nd header member which concerns on Embodiment 2, and is the cross-sectional view in the cutting line XIIA-XIIA in FIG.
  • the heat exchanger 1 exchanges heat between the air flowing outside the heat exchanger 1 and the heat medium flowing inside the heat exchanger 1.
  • the heat exchanger 1 includes a heat transfer tube 20 that allows a heat medium to flow inside, a heat exchanger header 500 that is connected to the heat transfer tube 20 and allows the heat medium to flow into the heat transfer tube 20, and a heat transfer tube. It includes a heat exchanger header 100 that is connected to 20 and allows the heat medium to flow out from the heat transfer tube 20, a joint tube 130 that allows the heat medium to flow out from the heat exchanger header 100, and heat radiation fins 30 that are attached to the heat transfer tube 20.
  • the heat transfer tube 20 is a piping member having a flat cross section having an arc-shaped short side and a straight long side. That is, the heat transfer tube 20 has a shape in which the semi-cylindrical portion 20b is connected to both sides of the rectangular parallelepiped portion 20a. Further, the heat transfer tube 20 has a flow hole 20c formed inside, and the heat medium is circulated through the flow hole 20c.
  • the heat transfer tube 20 is formed by a known processing technique such as extrusion processing or drawing processing.
  • the heat transfer tube 20 is made of an aluminum alloy in which a sacrificial anode layer is formed by spraying zinc on the outer surface. By forming the sacrificial anode layer on the outer surface in this way, it is possible to prevent leakage of the heat medium due to corrosion of the heat transfer tube 20.
  • One end of the heat transfer tube 20 is inserted into the insertion hole 50 formed in the heat exchanger header 100 shown in FIGS. 1 and 3, and is welded and fixed to the heat exchanger header 100 by brazing. Further, the other end of the heat transfer tube 20 is inserted into the insertion hole 550 formed in the heat exchanger header 500 shown in FIG. 1, and is welded and fixed to the heat exchanger header 500 by brazing.
  • the heat radiation fin 30 is a flat plate-shaped member for increasing the cooling efficiency by increasing the contact area with air. As shown in FIG. 1, a plurality of heat radiation fins 30 are attached to the heat transfer tube 20.
  • the material of the heat radiating fin 30 is, for example, a clad material in which a brazing material is rolled and joined to the surface of an aluminum plate.
  • the thickness of the heat radiation fin 30 is about 0.09 to 0.2 mm.
  • the heat radiating fin 30 includes a plurality of through holes 30a through which the heat transfer tube 20 is inserted.
  • the through hole 30a is a flat hole or notch through which the flat heat transfer tube 20 can be inserted.
  • a heat transfer tube 20 is inserted into each through hole 30a. Then, the heat radiation fin 30 and the heat transfer tube 20 are joined by brazing the connection portion between the inserted heat transfer tube 20 and the heat transfer fin 30.
  • a plurality of heat radiation fins 30 are attached in the longitudinal direction of the heat transfer tube 20, that is, in the direction in which the heat medium flows.
  • the heat exchanger headers 100 and 500 are a pair of piping members for supplying and discharging a heat medium which is a fluid to the heat exchanger 1.
  • a plurality of insertion holes 50 and 550 are formed in the heat exchanger headers 100 and 500, respectively.
  • a heat transfer tube 20 is inserted into each of the insertion holes 50 and 550, and the heat exchanger headers 100 and 500 are connected to the heat transfer tube 20.
  • the heat exchanger header 100 includes a first header member 110, a second header member 120, and a cap 140.
  • the first header member 110 includes a first pipe 111 on which the bypass flow path Bf is formed and a pipe forming portion 112 that forms the second pipe 150 on which the main flow path Mf is formed together with the second header member 120 to be combined.
  • the first header member 110 is a member made of an aluminum alloy in which the first pipe 111 and the pipe forming portion 112 are integrally formed by extrusion processing.
  • a sacrificial anode layer is formed on the outer surface of the first header member 110 by spraying zinc. This makes it possible to prevent leakage of the heat medium due to corrosion of the heat exchanger header 100.
  • the first pipe 111 is formed with a through hole 111a having a circular cross section that penetrates in the longitudinal direction.
  • the through hole 111a forms a bypass flow path Bf through which a heat medium flows.
  • the first pipe 111 is formed with a joint pipe connecting portion 111b to which the joint pipe 130 described later is connected.
  • the joint pipe connecting portion 111b is a portion cut out from a part of the intermediate portion of the first pipe 111.
  • the joint pipe connecting portion 111b is cut out in a shape and size into which the joint pipe 130 can be inserted.
  • the pipe forming portion 112 forms a part of the main flow path Mf parallel to the bypass flow path Bf.
  • the pipe forming portion 112 is integrally formed with the first pipe 111 over the entire length of the first pipe 111.
  • the cross section of the pipe forming portion 112 has a semicircular shape.
  • a joint pipe insertion hole 112a is formed in the pipe forming portion 112 at a position corresponding to the joint pipe connecting portion 111b.
  • the hole diameter of the joint pipe insertion hole 112a is equal to or smaller than the outer diameter of the joint pipe 130. Therefore, the joint pipe 130 can be temporarily fixed to the first header member 110 by pushing it into the joint pipe insertion hole 112a and press-fitting it.
  • the joint portion 113 to be joined to the second header member 120 is both edge portions of the pipe forming portion 112, and is formed along the direction in which the main flow path Mf is formed.
  • the joint portion 113 is formed over the entire length of the pipe forming portion 112.
  • the first header member 110 is formed with a bypass hole 110a for communicating the main flow path Mf and the bypass flow path Bf.
  • the second header member 120 has a U-shaped cross section that is joined to the first header member 110 to form a part of the main flow path Mf of the heat exchanger header 100. It is a long member of. That is, the second header member 120 is joined to the pipe forming portion 112 to form the second pipe 150 together with the pipe forming portion 112.
  • the second header member 120 is formed of a clad material obtained by rolling and joining a brazing material to an aluminum plate.
  • the second header member 120 has a semicircular portion 121 having a semicircular cross section and two planar portions 122 connected to the end portions of the semicircular portion 121. There is.
  • the second header member 120 includes a joint recess 120a as shown in FIGS. 4A and 4B.
  • the joint recess 120a is a recess formed on the inner surface of the second header member 120 having a U-shaped cross section by press working, and is formed over the entire length of the second header member 120 in the longitudinal direction.
  • the joint recesses 120a are formed at two locations on the inner surface of the second header member 120.
  • the joint portion 113 of the first header member 110 fits into the joint recess 120a when the first header member 110 and the second header member 120 are combined. At this time, the tip portion of the planar portion 122 of the second header member 120 protrudes laterally from the joint recess 120a of the first header member 110.
  • the protruding portion of the second header member 120 is crimped, and the first header member 110 and the second header member 120 are temporarily fixed. Then, when the temporarily fixed first header member 110 and the second header member 120 are heated in the heating furnace, the brazing material layer of the second header member 120 is melted, and the first header member 110 and the second header member 120 are melted. 120 is brazed.
  • the second header member 120 is formed with a plurality of insertion holes 50 for attaching the heat transfer tube 20.
  • the insertion hole 50 is formed in the semicircular portion 121 which is an example of the curved portion of the second header member 120.
  • the insertion hole 50 is a flat elongated hole that matches the outer shape of the heat transfer tube 20 shown in FIG. 2 when viewed from the front in the direction of the arrow V in FIG. It is along the circumferential direction of the circular portion 121.
  • the insertion hole 50 is divided by a pair of flat walls 50a facing the rectangular parallelepiped portion 20a of the heat transfer tube 20 shown in FIG. 2 and a pair of curved walls 50b facing the semi-cylindrical portion 20b of the heat transfer tube 20 shown in FIG. Has been done.
  • the flat wall 50a is formed along the heat transfer tube 20 inserted into the insertion hole 50.
  • the direction along the heat transfer tube 20 coincides with the X direction into which the heat transfer tube 20 is inserted.
  • the curved wall 50b is formed along the heat transfer tube 20 inserted into the insertion hole 50.
  • the X direction which is the direction in which the heat transfer tube 20 is inserted, coincides with the direction in which the heat transfer tube 20 connecting the heat exchanger header 100 on the left side and the heat exchanger header 500 on the right side of FIG. 1 extends.
  • the cap 140 has a first convex portion 141 inserted into the main flow path Mf and a second convex portion 142 inserted into the bypass flow path Bf.
  • the caps 140 are attached to both ends of the first header member 110 and the second header member 120 in the longitudinal direction, respectively. As a result, the cap 140 closes the main flow path Mf and the bypass flow path Bf formed in the heat exchanger header 100.
  • the cap 140 is formed of a clad material in which a brazing material is rolled and joined to the surface of an aluminum plate, and is formed by press working.
  • the joint pipe 130 is an L-shaped piping member for discharging the heat medium from the heat exchanger header 100.
  • the joint pipe 130 is inserted into the joint pipe insertion hole 112a formed in the first header member 110.
  • the inside of the joint pipe 130 communicates with the main flow path Mf.
  • the joint pipe 130 is formed with a through hole 130a for communicating the inside of the joint pipe 130 with the bypass flow path Bf.
  • the through holes 130a are holes that penetrate in the radial direction of the circular cross section of the joint pipe 130, and are formed at two positions of the joint pipe 130 as shown in FIG. 7.
  • the heat exchanger header 500 is connected to an end opposite to the end where the heat transfer tube 20 is connected to the heat exchanger header 100.
  • the basic configuration of the heat exchanger header 500 is the same as that of the heat exchanger header 100, and includes a first header member 510, a second header member 520, and a cap 540.
  • the heat exchanger header 500 is connected to an inflow pipe (not shown), and distributes the inflowing heat medium to the heat transfer tube 20.
  • FIG. 7 the movement of the heat medium is illustrated by an arrow.
  • the heat medium distributed to the heat transfer tube 20 by the heat exchange header 500 flows into the main flow path Mf of the heat exchanger header 100 as shown by the arrow Y1 after the heat exchange is performed.
  • a part of the heat medium flows into the joint pipe 130 as shown by the arrow Y2, and the rest flows into the bypass flow path Bf through the bypass hole 110a as shown by the arrow Y3.
  • the heat medium that has flowed into the bypass flow path Bf flows into the joint pipe 130 through the through hole 130a as shown by the arrow Y4.
  • the heat medium that has flowed into the joint pipe 130 is discharged from the joint pipe 130 as shown by the arrow Y5.
  • bypass flow path Bf into which the heat transfer tube 20 is not inserted in this way, it is possible to suppress the pressure loss in the header 100 for the heat exchanger and improve the oil return property of the refrigerating machine oil used in the compressor (not shown). Is possible. Further, by similarly providing the bypass flow path Bf in the heat exchanger header 500, the heat medium can flow evenly into the main flow path Mf, and the variation in the amount of the heat medium flowing through each heat transfer tube 20 is eliminated. be able to.
  • a plate 200 for manufacturing the second header member 120 is cut from a flat plate made of an aluminum alloy, and a joint recess 120a shown in FIG. 8A is formed by press working.
  • the cut plate 200 is placed on a die (not shown) and punched with an elongated hole-shaped punch 300 whose side surface is curved from the direction perpendicular to the main surface 200a.
  • a through hole 250 is formed in the plate 200.
  • the through hole 250 is an elongated hole having a flat wall 250a and a curved wall 250b, as shown in FIGS.
  • the flat wall 250a and the curved wall 250b of the through hole 250 thus formed are perpendicular to the main surface 200a of the plate 200. After that, the through hole 250 becomes the insertion hole 50 shown in FIG. 5 through a manufacturing process described later.
  • the plate 200 having the through hole 250 is bent to form a semicircular portion 221 having a semicircular cross section on the plate 200.
  • the plate 200 is bent by matching the circumferential direction of the semicircular portion 221 with the longitudinal direction of the through hole 250.
  • the bent plate 200 is flat in the direction perpendicular to FIG. 9A and has no bend.
  • the curved wall 250b which was perpendicular to the main surface 200a before the plate 200 was bent, is close to vertical even after the plate 200 is bent, without significantly changing the angle with respect to the main surface 200a. The relationship is maintained. Therefore, as shown in FIG. 9A, after the plate 200 is bent, the curved wall 250b inclines inward to narrow the through hole 250 and is not parallel to the X direction. On the other hand, the plate 200 does not have a bend in the direction perpendicular to FIG. 9A as described above. Therefore, after the plate 200 is bent, the flat wall 250a shown in FIG. 9A is parallel to the X direction.
  • the bent plate 200 is installed on a die (not shown).
  • the punch 301 having a curved side surface is moved in parallel in the X direction to perform a shaving process for scraping off the curved wall 250b.
  • the punch 301 used when performing the shaving process is longer than the punch 300 shown in FIG. 8A, which forms the through hole 250, by the amount of scraping the curved walls 250b on both sides.
  • the punched portion 210 is removed from the second header member 120, and a curved wall 50b parallel to the X direction is formed. In this way, the hole wall of the insertion hole 50 formed in the second header member 120 can be made parallel in the X direction over the entire circumference. Through such a process, the second header member 120 is manufactured.
  • the heat transfer tube 20 is inserted into the insertion hole 50 formed in the second header member 120. Then, by heating in a heating furnace (not shown), the brazing material is melted from the brazing material layer of the second header member 120, and the heat transfer tube 20 is brazed to the second header member 120.
  • the hole wall of the insertion hole 50 formed in the curved semicircular portion 121 is formed along the entire circumference along the heat transfer tube 20, that is, along the direction in which the heat transfer tube 20 is inserted.
  • the joint length L between the second header member 120 and the semi-cylindrical portion 20b of the heat transfer tube 20 can be made longer than the plate thickness t of the second header member 120. In this way, since the joint length L can be lengthened, the joint strength between the second header member 120 and the heat transfer tube 20 can be increased, and the pressure resistance performance can be improved.
  • the distance between the hole wall of the insertion hole 50 and the outer surface of the heat transfer tube 20 can be made constant over the joint length L. Therefore, the cooled and solidified wax can be uniformly formed between the hole wall of the insertion hole 50 and the outer surface of the heat transfer tube 20. As a result, the quality of brazing can be improved, so that the strength of the joint portion can be increased, that is, the pressure resistance performance can be improved.
  • the distance between the hole wall of the insertion hole 50 and the outer surface of the heat transfer tube 20 can be brought close to each other over the joint length L, the amount of brazing material to be supplied can be reduced. As a result, erosion that tends to occur due to excessive brazing supply can be suppressed, and the quality of brazing can be improved.
  • a long punch 301 was used in the shaving process of scraping both ends of the insertion hole 50 of the second header member 120 processed into a U shape.
  • both ends of the insertion hole 50 can be scraped off by punching once with the punch 301, and the manufacturing process can be simplified.
  • the through hole 250 is formed in the plate 200 in advance, the amount of scraping by the shaving process by the punch 301 can be reduced. As a result, deformation of the second header member 120 having a U-shaped cross section can be suppressed, and the combination with the first header member 110 can be performed with high accuracy.
  • the second header member 320 is formed with an insertion hole 350 that matches the outer shape of the heat transfer tube 20 shown in FIG.
  • the insertion hole 350 is a flat elongated hole.
  • the insertion hole 350 has a pair of flat walls 350a facing the rectangular parallelepiped portion 20a of the heat transfer tube 20 shown in FIG. 2 and a pair of curved walls 350b facing the semi-cylindrical portion 20b of the heat transfer tube 20 shown in FIG. doing.
  • the flat wall 350a is formed along the heat transfer tube 20 inserted into the insertion hole 350. Further, the flat wall 350a is parallel to the X direction, which is the insertion direction of the heat transfer tube 20. Further, as shown in FIG. 12B, the curved wall 350b is formed along the heat transfer tube 20 inserted into the insertion hole 350. Further, the curved wall 350b is parallel to the X direction, which is the insertion direction of the heat transfer tube 20.
  • a cut surface 360 is formed on the outer surface 320a of the second header member 320 along the edge of the insertion hole 350.
  • the cut surface 360 connects the hole wall of the insertion hole 350 and the outer surface 320a of the second header member 320.
  • the hole walls of the insertion hole 350 are a flat wall 350a and a curved wall 350b.
  • the cut surface 360 is inclined in a direction in which the insertion hole 350 is enlarged toward the outer surface 320a of the second header member 320.
  • the step of forming the joint recess 120a and the through hole 250 in the plate 200 for the second header member 320 is the same as that of the above embodiment.
  • the edge of the through hole 250 on one surface of the plate 200 shown in FIG. 8B is chamfered by hitting it with a tool having an inclined surface. It should be noted that one surface of the plate 200 is the surface opposite to the surface on which the joint recess 120a is formed. Subsequently, the plate 200 is bent so that one of the chamfered edges of the through hole 250 faces outward.
  • the punch 301 is moved in parallel in the X direction to perform a shaving process for scraping off the curved wall 250b.
  • a cut surface 360 can be formed at the edge of the insertion hole 350.
  • the step of chamfering the edge of the insertion hole 350 is performed before the bending process of the plate 200, it may be performed after the bending process of the plate 200. In this case, after bending the plate 200 in which the joint recess 120a and the through hole 250 are formed, the edge portion of the through hole 250 is chamfered, and finally the end portion of the through hole 250 is scraped off by shaving processing.
  • the cut surface 360 is an inclined surface that expands the insertion hole 350 toward the outer surface 320a of the second header member 320. Therefore, the heat transfer tube 20 can be inserted into the insertion hole 350 by bringing it into contact with the cut surface 360 and sliding it along the cut surface 360. As a result, the heat transfer tube 20 can be easily inserted into the insertion hole 350, and the assembly work can be smoothly performed.
  • the region between the heat transfer tube 20 inserted into the insertion hole 350 and the cut surface 360 can function as a reservoir for collecting the brazing material overflowing from the joint. As a result, it is possible to prevent the brazing material from flowing out from the joint portion between the second header member 320 and the heat transfer tube 20.
  • the second header member 420 according to the third embodiment is formed with flanges 460 at both ends of the insertion hole 450 in the longitudinal direction.
  • the second header member 120 according to the first embodiment does not have such a flange, which is different from the first embodiment.
  • the flange 460 is formed so as to project inside the second header member 420.
  • the manufacturing method of the second header member 420 according to the third embodiment will be described.
  • a joint recess 120a and a through hole 250 are formed in the plate 200 for the second header member 420, and then the plate 200 is bent as shown in FIG. 9A.
  • the steps up to this point are the same as those in the first embodiment.
  • the punch 302 is moved in the X direction, and the curved walls 250b formed at both ends of the through hole 250 are subjected to burring.
  • the curved wall 450b parallel to the X direction is formed, and the flange 460 extending in the X direction is formed so as to project inward of the second header member 420.
  • the joint length L1 between the second header member 420 and the semi-cylindrical portion 20b of the heat transfer tube 20 is made longer than the plate thickness t of the second header member 420. Can be done.
  • this joint length L1 it is possible to secure a joint length L2 corresponding to the length of the flanges 460 formed at both ends of the insertion hole 450 in the longitudinal direction. As a result, the joint strength between the second header member 420 and the heat transfer tube 20 can be increased, and the pressure resistance performance can be improved.
  • the through hole 250 is formed before the plate 200 is bent, but the through hole 250 may be formed after the plate 200 is bent.
  • the through hole 250 is formed by pressing the plate 200 in which the joint recess 120a is formed with a punch 303 from a plurality of directions. At this time, the plate 200 is not moved, and the punch 303 is rotated each time the punch is pressed to form the through hole 250 in a plurality of times.
  • the U-shaped plate 200 may be rotationally moved each time the punch 303 is pressed without rotating the punch 303 to form the through hole 250 in a plurality of times.
  • the through hole 250 shown in FIG. 14B is formed in the plate 200 formed in a U shape.
  • the punch 301 is moved in parallel in the X direction to scrape off the curved walls 250b formed at both ends of the through hole 250.
  • the second header member 120 shown in FIG. 9B in which the curved wall 50b parallel to the X direction is formed can be manufactured.
  • the punch 303 shown in FIG. 14A for drilling the through hole 250 is smaller than the punch 300 shown in FIG. 8A for drilling the through hole 250 in the flat plate 200. Therefore, the deformation of the plate 200 bent into a U shape can be suppressed.
  • heat transfer tubes 20 connected to the heat exchanger headers 100 and 500 are not limited to those having a flat cross section.
  • a heat transfer tube having another cross-sectional shape such as a circular shape, a square shape, or a triangular shape may be connected to the heat exchanger headers 100 and 500.
  • the second header member 120 is a clad material obtained by rolling and joining a brazing material to an aluminum plate, and the heat transfer tube 20 is joined with the brazing material melted from the second header member 120. What kind of joining method is used is arbitrary. Is.
  • the second header member 120 and the heat transfer tube 20 may be brazed using paste brazing, wire brazing, or the like.
  • both edges of the first header member 110 and both edges of the second header member 120 may be joined in a butt state.
  • the flange 460 is projected inside the second header member 420 by burring, but the flange may be projected outside the second header member 420.
  • the processing of scraping off the end portion of the through hole 250 to make it parallel to the X direction and the processing of forming the cut surface 360 at the edge portion of the insertion hole 350 are not limited to the above processing methods, and are known processing. You can choose any of the methods.
  • the end portion of the through hole 250 may be filed along the X direction.
  • the cut surface 360 may be formed by cutting the edge portion of the insertion hole 350 with a file, or may be formed by cutting the corner portion.
  • the insertion hole 50 may be formed in the U-shaped plate 200 by laser machining. As a result, the hole wall can form an insertion hole along the heat transfer tube 20 in the U-shaped plate 200.
  • the insertion hole 50 is formed in the semicircular portion 121 having a semicircular cross section in the second header member 120, it may be formed in a portion having another cross-sectional shape. For example, it may be formed in a bow-shaped portion of the second header member 120, or may be formed in a convex portion having a rounded tip.
  • each component of the heat exchanger 1 such as the heat exchanger header 100 and the heat transfer tube 20 is made of aluminum, it may be made of other metals such as stainless steel, steel, and copper.

Abstract

This heat exchanger header comprises: a first header member that has a first pipe in which a bypass flow passage for circulating a heat medium is formed, and a pipe forming part which is a portion of a second pipe in which a main flow passage for circulating a heat medium is formed; and a second header member (120) that is joined to the pipe forming part and forms the second pipe together with the pipe forming part. The second header member (120) has a curved section, an insertion hole (50) into which a heat transfer pipe (20) is inserted is formed in the curved section, and the hole wall of the insertion hole (50) extends along the inserted heat transfer pipe (20) over the entire circumference.

Description

熱交換器用ヘッダ、熱交換器、熱交換器用ヘッダの製造方法、及び熱交換器の製造方法Heat exchanger header, heat exchanger, heat exchanger header manufacturing method, and heat exchanger manufacturing method
 本開示は、熱交換器用ヘッダ、熱交換器、熱交換器用ヘッダの製造方法、及び熱交換器の製造方法に関する。 This disclosure relates to a heat exchanger header, a heat exchanger, a method for manufacturing a heat exchanger header, and a method for manufacturing a heat exchanger.
 空気調和機、冷凍機等に用いられる熱交換器として、放熱フィンを取り付けた伝熱管に熱媒体を流通させて熱交換を行うフィンチューブ型熱交換器が知られている。フィンチューブ型熱交換器は、複数の伝熱管に熱媒体を分配して流通させる熱交換器用のヘッダを備える。 As a heat exchanger used in air conditioners, refrigerators, etc., a fin tube type heat exchanger is known in which a heat medium is circulated through a heat transfer tube equipped with heat radiation fins to exchange heat. The fin tube type heat exchanger includes a header for a heat exchanger in which a heat medium is distributed and distributed to a plurality of heat transfer tubes.
 特許文献1は、バーリング加工により形成した伝熱管の差込孔に、細長のプレートを隣接させた熱交換器用ヘッダを開示している。この細長のプレートは、熱交換器用ヘッダに内圧が作用した際に力の一部を受け持つことができるため、伝熱管の差込孔の周囲にかかる応力を抑制する。これにより、熱交換器用ヘッダの耐圧性能を向上させることができる。 Patent Document 1 discloses a header for a heat exchanger in which an elongated plate is adjacent to an insertion hole of a heat transfer tube formed by burring. Since this elongated plate can bear a part of the force when the internal pressure acts on the header for the heat exchanger, the stress applied around the insertion hole of the heat transfer tube is suppressed. As a result, the withstand voltage performance of the heat exchanger header can be improved.
特許第4533374号公報Japanese Patent No. 45333374
 しかしながら、特許文献1に開示の差込孔は、平面状部に形成されている。そのため、ヘッダの耐圧性能を向上させるための構成も、平面状部に設けられている。一方、熱交換器用ヘッダの湾曲した部分に差込孔を設ける場合、平面状部に設けることを想定している特許文献1に開示の構成をそのまま適用することは難しい。 However, the insertion hole disclosed in Patent Document 1 is formed in a flat portion. Therefore, a configuration for improving the pressure resistance of the header is also provided in the flat portion. On the other hand, when the insertion hole is provided in the curved portion of the header for the heat exchanger, it is difficult to apply the configuration disclosed as it is to Patent Document 1 which is supposed to be provided in the flat portion.
 本開示は、上記のような問題点を解決するためになされたものであり、湾曲部に接合される伝熱管との接合強度を確保することができ、耐圧性能の向上を図ることができる熱交換器用ヘッダ、熱交換器、熱交換器用ヘッダの製造方法、及び熱交換器の製造方法を提供することを目的としている。 The present disclosure has been made in order to solve the above-mentioned problems, and it is possible to secure the bonding strength with the heat transfer tube bonded to the curved portion, and to improve the withstand voltage performance. It is an object of the present invention to provide a header for a exchanger, a heat exchanger, a method for manufacturing a header for a heat exchanger, and a method for manufacturing a heat exchanger.
 本開示に係る熱交換器用ヘッダは、熱媒体を流通させるバイパス流路が形成された第1パイプと、熱媒体を流通させるメイン流路が形成された第2パイプの一部であるパイプ形成部と、を有する第1ヘッダ部材と、パイプ形成部と接合されて、パイプ形成部とともに第2パイプを形成する第2ヘッダ部材と、を備える。第2ヘッダ部材は湾曲部を有し、伝熱管が差し込まれる差込孔が湾曲部に形成されており、差込孔の孔壁は、全周にわたって、差し込まれる伝熱管に沿っている。 The heat exchanger header according to the present disclosure is a pipe forming portion which is a part of a first pipe in which a bypass flow path for circulating a heat medium is formed and a second pipe in which a main flow path for passing a heat medium is formed. A first header member having the above, and a second header member which is joined to the pipe forming portion to form a second pipe together with the pipe forming portion. The second header member has a curved portion, and an insertion hole into which the heat transfer tube is inserted is formed in the curved portion, and the hole wall of the insertion hole is along the heat transfer tube to be inserted over the entire circumference.
 本開示によれば、湾曲部に形成された差込孔の孔壁が、全周にわたって差し込まれる伝熱管に沿って形成されている。これにより、湾曲部に接合される伝熱管との接合強度を確保することができ、耐圧性能の向上を図ることができる。 According to the present disclosure, the hole wall of the insertion hole formed in the curved portion is formed along the heat transfer tube to be inserted over the entire circumference. As a result, the joint strength with the heat transfer tube joined to the curved portion can be ensured, and the pressure resistance performance can be improved.
実施の形態1に係る熱交換器の平面図Top view of the heat exchanger according to the first embodiment 実施の形態1に係る伝熱管の斜視図Perspective view of the heat transfer tube according to the first embodiment 実施の形態1に係る熱交換器用ヘッダの分解斜視図An exploded perspective view of the heat exchanger header according to the first embodiment. 実施の形態1に係る熱交換器用ヘッダを示す図であり、熱交換器用ヘッダを分解した図It is a figure which shows the header for a heat exchanger which concerns on Embodiment 1, and is the figure which disassembled the header for a heat exchanger. 実施の形態1に係る熱交換器用ヘッダを示す図であり、熱交換器用ヘッダの断面図It is a figure which shows the header for a heat exchanger which concerns on Embodiment 1, and is the sectional view of the header for a heat exchanger. 図3中の矢印Vからみた第2ヘッダ部材に形成された差込孔に着目した図The figure focusing on the insertion hole formed in the 2nd header member seen from the arrow V in FIG. 実施の形態1に係る第2ヘッダ部材の図であり、図5中の切断線VIA-VIAにおける断面図It is a figure of the 2nd header member which concerns on Embodiment 1, and is the cross-sectional view in the cutting line VIA-VIA in FIG. 実施の形態1に係る第2ヘッダ部材の図であり、図5中の切断線VIB-VIBにおける断面図It is a figure of the 2nd header member which concerns on Embodiment 1, and is the cross-sectional view in the cutting line VIB-VIB in FIG. 実施の形態1に係る熱交換器内の熱媒体の流れを示した説明図Explanatory drawing which showed the flow of the heat medium in the heat exchanger which concerns on Embodiment 1. 実施の形態1に係る第2ヘッダ部材の製造工程を説明するため図であり、工程順に示した説明図It is a figure for demonstrating the manufacturing process of the 2nd header member which concerns on Embodiment 1, and it is explanatory drawing which showed in the order of process. 実施の形態1に係る第2ヘッダ部材の製造工程を説明するため図であり、工程順に示した説明図It is a figure for demonstrating the manufacturing process of the 2nd header member which concerns on Embodiment 1, and it is explanatory drawing which showed in the order of process. 実施の形態1に係る第2ヘッダ部材の製造工程を説明するため図であり、図8B中の矢印Cからみた図It is a figure for demonstrating the manufacturing process of the 2nd header member which concerns on Embodiment 1, and is the figure seen from the arrow C in FIG. 8B. 図8A、Bから続く実施の形態1に係る第2ヘッダ部材を製造する工程を工程順に示した説明図An explanatory view showing the steps of manufacturing the second header member according to the first embodiment following from FIGS. 8A and 8A in the order of steps. 図8A、Bから続く実施の形態1に係る第2ヘッダ部材を製造する工程を工程順に示した説明図An explanatory view showing the steps of manufacturing the second header member according to the first embodiment following from FIGS. 8A and 8A in the order of steps. 実施の形態1に係る第2ヘッダ部材に伝熱管が差し込まれた状態を示した断面図Sectional drawing which showed the state which the heat transfer tube was inserted into the 2nd header member which concerns on Embodiment 1. 差込孔に着目した実施の形態2に係る第2ヘッダ部材の正面図Front view of the second header member according to the second embodiment focusing on the insertion hole. 実施の形態2に係る第2ヘッダ部材の図であり、図11中の切断線XIIA-XIIAにおける断面図It is a figure of the 2nd header member which concerns on Embodiment 2, and is the cross-sectional view in the cutting line XIIA-XIIA in FIG. 実施の形態2に係る第2ヘッダ部材の図であり、図11中の切断線XIIB-XIIBにおける断面図It is a figure of the 2nd header member which concerns on Embodiment 2, and is the cross-sectional view in the cutting line XIIB-XIIB in FIG. 実施の形態3に係る第2ヘッダ部材の断面図Sectional drawing of the 2nd header member which concerns on Embodiment 3. 実施の形態3に係る第2ヘッダ部材の図であり、バーリング加工をしている様子を示した図It is a figure of the 2nd header member which concerns on Embodiment 3, and is the figure which showed the state of performing the burring process. 実施の形態1に係る第2ヘッダ部材を製造する工程の他の例を工程順に示した説明図Explanatory drawing which showed other example of the process of manufacturing the 2nd header member which concerns on Embodiment 1 in process order 実施の形態1に係る第2ヘッダ部材を製造する工程の他の例を工程順に示した説明図Explanatory drawing which showed other example of the process of manufacturing the 2nd header member which concerns on Embodiment 1 in process order
 以下、本開示の好適な実施の形態に係る熱交換器用ヘッダ、熱交換器、熱交換器用ヘッダの製造方法、及び熱交換器の製造方法について、図面を参照しながら説明する。 Hereinafter, a method for manufacturing a heat exchanger header, a heat exchanger, a heat exchanger header, and a method for manufacturing a heat exchanger according to a preferred embodiment of the present disclosure will be described with reference to the drawings.
(実施の形態1)
 実施の形態1に係る熱交換器1は、熱交換器1の外部を流れる空気と、熱交換器1の内部を流れる熱媒体との間で熱交換を行う。図1に示すように、熱交換器1は、内部に熱媒体を流通させる伝熱管20と、伝熱管20に接続されて伝熱管20に熱媒体を流入させる熱交換器用ヘッダ500と、伝熱管20に接続されて伝熱管20から熱媒体を流出させる熱交換器用ヘッダ100と、熱交換器用ヘッダ100から熱媒体を流出させるジョイント管130と、伝熱管20に取り付けられる放熱フィン30とを備える。
(Embodiment 1)
The heat exchanger 1 according to the first embodiment exchanges heat between the air flowing outside the heat exchanger 1 and the heat medium flowing inside the heat exchanger 1. As shown in FIG. 1, the heat exchanger 1 includes a heat transfer tube 20 that allows a heat medium to flow inside, a heat exchanger header 500 that is connected to the heat transfer tube 20 and allows the heat medium to flow into the heat transfer tube 20, and a heat transfer tube. It includes a heat exchanger header 100 that is connected to 20 and allows the heat medium to flow out from the heat transfer tube 20, a joint tube 130 that allows the heat medium to flow out from the heat exchanger header 100, and heat radiation fins 30 that are attached to the heat transfer tube 20.
 伝熱管20は、図2に示すように、円弧状の短辺と直線状の長辺とを有する断面扁平形状の配管部材である。すなわち、伝熱管20は、直方体部20aの両サイドに半円筒部20bが接続した形状を有している。また、伝熱管20は、内部に流通孔20cが形成されており、流通孔20cを介して熱媒体を流通させる。このように伝熱管20を断面扁平形状に形成することにより、伝熱管20周りの通風抵抗を低減し、熱交換効率を向上させることができる。 As shown in FIG. 2, the heat transfer tube 20 is a piping member having a flat cross section having an arc-shaped short side and a straight long side. That is, the heat transfer tube 20 has a shape in which the semi-cylindrical portion 20b is connected to both sides of the rectangular parallelepiped portion 20a. Further, the heat transfer tube 20 has a flow hole 20c formed inside, and the heat medium is circulated through the flow hole 20c. By forming the heat transfer tube 20 into a flat cross section in this way, it is possible to reduce the ventilation resistance around the heat transfer tube 20 and improve the heat exchange efficiency.
 伝熱管20は、押し出し加工、あるいは引き抜き加工といった公知の加工技術によって成形される。伝熱管20は、外面に亜鉛溶射して犠牲陽極層を形成したアルミニウム合金製である。このように外面に犠牲陽極層を形成することで、伝熱管20の腐食による熱媒体の漏れを防止することができる。 The heat transfer tube 20 is formed by a known processing technique such as extrusion processing or drawing processing. The heat transfer tube 20 is made of an aluminum alloy in which a sacrificial anode layer is formed by spraying zinc on the outer surface. By forming the sacrificial anode layer on the outer surface in this way, it is possible to prevent leakage of the heat medium due to corrosion of the heat transfer tube 20.
 伝熱管20の一方の端部は、図1、図3に示す熱交換器用ヘッダ100に形成された差込孔50に差し込まれ、ろう付けにより熱交換器用ヘッダ100に溶着固定される。また、伝熱管20の他方の端部は、図1に示す熱交換器用ヘッダ500に形成された差込孔550に差し込まれ、ろう付けにより熱交換器用ヘッダ500に溶着固定される。 One end of the heat transfer tube 20 is inserted into the insertion hole 50 formed in the heat exchanger header 100 shown in FIGS. 1 and 3, and is welded and fixed to the heat exchanger header 100 by brazing. Further, the other end of the heat transfer tube 20 is inserted into the insertion hole 550 formed in the heat exchanger header 500 shown in FIG. 1, and is welded and fixed to the heat exchanger header 500 by brazing.
 放熱フィン30は、空気との接触面積を大きくすることで、冷却効率を高めるための平板状の部材である。放熱フィン30は、図1に示すように、伝熱管20に複数枚取り付けられている。放熱フィン30の材質は、例えば、アルミ板の表面にろう材が圧延接合されたクラッド材である。また、放熱フィン30の厚さは、0.09~0.2mm程度である。 The heat radiation fin 30 is a flat plate-shaped member for increasing the cooling efficiency by increasing the contact area with air. As shown in FIG. 1, a plurality of heat radiation fins 30 are attached to the heat transfer tube 20. The material of the heat radiating fin 30 is, for example, a clad material in which a brazing material is rolled and joined to the surface of an aluminum plate. The thickness of the heat radiation fin 30 is about 0.09 to 0.2 mm.
 放熱フィン30は、図1に示すように、伝熱管20が挿通される複数の貫通孔30aを備える。貫通孔30aは、扁平形状である伝熱管20を挿通可能な扁平形状の孔あるいは切り欠きである。各貫通孔30aには、それぞれ伝熱管20が挿通される。そして、挿通された伝熱管20と放熱フィン30との接続部をろう付けすることにより、放熱フィン30と伝熱管20とが接合される。 As shown in FIG. 1, the heat radiating fin 30 includes a plurality of through holes 30a through which the heat transfer tube 20 is inserted. The through hole 30a is a flat hole or notch through which the flat heat transfer tube 20 can be inserted. A heat transfer tube 20 is inserted into each through hole 30a. Then, the heat radiation fin 30 and the heat transfer tube 20 are joined by brazing the connection portion between the inserted heat transfer tube 20 and the heat transfer fin 30.
 放熱フィン30は、図1に示すように、伝熱管20の長手方向、すなわち熱媒体の流れる方向に、複数枚取り付けられる。 As shown in FIG. 1, a plurality of heat radiation fins 30 are attached in the longitudinal direction of the heat transfer tube 20, that is, in the direction in which the heat medium flows.
 熱交換器用ヘッダ100、500は、熱交換器1に流体である熱媒体を供給、排出するための一対の配管部材である。熱交換器用ヘッダ100、500には、それぞれ複数の差込孔50、550が形成されている。それぞれの差込孔50、550に伝熱管20が差し込まれて、熱交換器用ヘッダ100、500と伝熱管20とが接続される。 The heat exchanger headers 100 and 500 are a pair of piping members for supplying and discharging a heat medium which is a fluid to the heat exchanger 1. A plurality of insertion holes 50 and 550 are formed in the heat exchanger headers 100 and 500, respectively. A heat transfer tube 20 is inserted into each of the insertion holes 50 and 550, and the heat exchanger headers 100 and 500 are connected to the heat transfer tube 20.
 熱交換器用ヘッダ100は、図3、図4A及び図4Bに示すように、第1ヘッダ部材110と、第2ヘッダ部材120と、キャップ140と、を備えている。 As shown in FIGS. 3, 4A and 4B, the heat exchanger header 100 includes a first header member 110, a second header member 120, and a cap 140.
 第1ヘッダ部材110は、バイパス流路Bfが形成された第1パイプ111と、組み合わされる第2ヘッダ部材120とともにメイン流路Mfが形成された第2パイプ150を形成するパイプ形成部112とを有している。第1ヘッダ部材110は、押し出し加工によって第1パイプ111とパイプ形成部112とが一体成形されたアルミニウム合金製の部材である。第1ヘッダ部材110の外側面には、亜鉛溶射されることによって犠牲陽極層が形成されている。これにより、熱交換器用ヘッダ100の腐食による熱媒体の漏れを防止することができる。 The first header member 110 includes a first pipe 111 on which the bypass flow path Bf is formed and a pipe forming portion 112 that forms the second pipe 150 on which the main flow path Mf is formed together with the second header member 120 to be combined. Have. The first header member 110 is a member made of an aluminum alloy in which the first pipe 111 and the pipe forming portion 112 are integrally formed by extrusion processing. A sacrificial anode layer is formed on the outer surface of the first header member 110 by spraying zinc. This makes it possible to prevent leakage of the heat medium due to corrosion of the heat exchanger header 100.
 第1パイプ111には、長手方向に貫く断面が円形状の貫通孔111aが形成されている。この貫通孔111aは、熱媒体を流通させるバイパス流路Bfを形成する。また、第1パイプ111には、図3に示すように、後述するジョイント管130が接続されるジョイント管接続部111bが形成されている。ジョイント管接続部111bは、第1パイプ111の中間部の一部を切り欠いた部分である。ジョイント管接続部111bは、ジョイント管130を差し込むことができる形状及び大きさで切り欠かれている。 The first pipe 111 is formed with a through hole 111a having a circular cross section that penetrates in the longitudinal direction. The through hole 111a forms a bypass flow path Bf through which a heat medium flows. Further, as shown in FIG. 3, the first pipe 111 is formed with a joint pipe connecting portion 111b to which the joint pipe 130 described later is connected. The joint pipe connecting portion 111b is a portion cut out from a part of the intermediate portion of the first pipe 111. The joint pipe connecting portion 111b is cut out in a shape and size into which the joint pipe 130 can be inserted.
 パイプ形成部112は、図3に示すように、バイパス流路Bfと並列するメイン流路Mfの一部を形成する。パイプ形成部112は、第1パイプ111の全長にわたって第1パイプ111と一体で成形されている。パイプ形成部112の断面は半円形状である。また、パイプ形成部112には、図3、図7に示すように、ジョイント管接続部111bに対応する位置にジョイント管挿入孔112aが形成されている。ジョイント管挿入孔112aの孔径は、ジョイント管130の外径と同等か、小さい。そのため、ジョイント管130を、ジョイント管挿入孔112aに押し込み圧入することで、第1ヘッダ部材110に仮固定することができる。 As shown in FIG. 3, the pipe forming portion 112 forms a part of the main flow path Mf parallel to the bypass flow path Bf. The pipe forming portion 112 is integrally formed with the first pipe 111 over the entire length of the first pipe 111. The cross section of the pipe forming portion 112 has a semicircular shape. Further, as shown in FIGS. 3 and 7, a joint pipe insertion hole 112a is formed in the pipe forming portion 112 at a position corresponding to the joint pipe connecting portion 111b. The hole diameter of the joint pipe insertion hole 112a is equal to or smaller than the outer diameter of the joint pipe 130. Therefore, the joint pipe 130 can be temporarily fixed to the first header member 110 by pushing it into the joint pipe insertion hole 112a and press-fitting it.
 また、図3に示すように、第2ヘッダ部材120と接合する接合部113は、パイプ形成部112の両縁部であり、メイン流路Mfが形成された方向に沿って形成されている。接合部113は、パイプ形成部112の全長にわたって形成されている。 Further, as shown in FIG. 3, the joint portion 113 to be joined to the second header member 120 is both edge portions of the pipe forming portion 112, and is formed along the direction in which the main flow path Mf is formed. The joint portion 113 is formed over the entire length of the pipe forming portion 112.
 また、第1ヘッダ部材110には、図7に示すように、メイン流路Mfとバイパス流路Bfとを連通させるバイパス孔110aが形成されている。このバイパス孔110aと、後述するジョイント管130に形成された貫通孔130aとによって、ジョイント管130から流出する熱媒体のバイパス回路が構成される。 Further, as shown in FIG. 7, the first header member 110 is formed with a bypass hole 110a for communicating the main flow path Mf and the bypass flow path Bf. The bypass hole 110a and the through hole 130a formed in the joint pipe 130, which will be described later, form a bypass circuit for the heat medium flowing out of the joint pipe 130.
 第2ヘッダ部材120は、図3、図4A及び図4Bに示すように、第1ヘッダ部材110と接合されて、熱交換器用ヘッダ100のメイン流路Mfの一部を形成する断面U字状の長尺部材である。すなわち、第2ヘッダ部材120は、パイプ形成部112に接合されて、パイプ形成部112とともに第2パイプ150を形成する。第2ヘッダ部材120は、アルミ板にろう材を圧延接合したクラッド材から形成されている。第2ヘッダ部材120は、図4Aに示すように、断面が半円状の半円状部121と、半円状部121の端部に接続された2つの平面状部122とを有している。 As shown in FIGS. 3, 4A and 4B, the second header member 120 has a U-shaped cross section that is joined to the first header member 110 to form a part of the main flow path Mf of the heat exchanger header 100. It is a long member of. That is, the second header member 120 is joined to the pipe forming portion 112 to form the second pipe 150 together with the pipe forming portion 112. The second header member 120 is formed of a clad material obtained by rolling and joining a brazing material to an aluminum plate. As shown in FIG. 4A, the second header member 120 has a semicircular portion 121 having a semicircular cross section and two planar portions 122 connected to the end portions of the semicircular portion 121. There is.
 また、第2ヘッダ部材120は、図4A、図4Bに示すように、接合凹部120aを備える。接合凹部120aは、断面U字状の第2ヘッダ部材120の内側面にプレス加工によって形成された凹部であり、第2ヘッダ部材120の長手方向全長にわたって形成されている。接合凹部120aは、第2ヘッダ部材120の内側面の2箇所に形成されている。第1ヘッダ部材110の接合部113は、第1ヘッダ部材110と第2ヘッダ部材120とが組み合わされた時、接合凹部120aに嵌り込む。このとき、第2ヘッダ部材120の平面状部122の接合凹部120aよりも先端部分は、第1ヘッダ部材110の側方に突出する。この第2ヘッダ部材120の突出した部分がかしめられて、第1ヘッダ部材110と第2ヘッダ部材120とが仮固定される。そして仮固定された第1ヘッダ部材110と第2ヘッダ部材120とが加熱炉で加熱されることで、第2ヘッダ部材120のろう材層が溶け出し、第1ヘッダ部材110と第2ヘッダ部材120とがろう付けされる。 Further, the second header member 120 includes a joint recess 120a as shown in FIGS. 4A and 4B. The joint recess 120a is a recess formed on the inner surface of the second header member 120 having a U-shaped cross section by press working, and is formed over the entire length of the second header member 120 in the longitudinal direction. The joint recesses 120a are formed at two locations on the inner surface of the second header member 120. The joint portion 113 of the first header member 110 fits into the joint recess 120a when the first header member 110 and the second header member 120 are combined. At this time, the tip portion of the planar portion 122 of the second header member 120 protrudes laterally from the joint recess 120a of the first header member 110. The protruding portion of the second header member 120 is crimped, and the first header member 110 and the second header member 120 are temporarily fixed. Then, when the temporarily fixed first header member 110 and the second header member 120 are heated in the heating furnace, the brazing material layer of the second header member 120 is melted, and the first header member 110 and the second header member 120 are melted. 120 is brazed.
 また、第2ヘッダ部材120には、図3に示すように、伝熱管20を取り付けるための複数の差込孔50が形成されている。差込孔50は、図6Bに示すように、第2ヘッダ部材120の湾曲部の一例である半円状部121に形成されている。図5に示すように、差込孔50は、図3の矢印Vの方向である正面からみると図2に示す伝熱管20の外形と合致する扁平形状の長孔であり、長手方向が半円状部121の周方向に沿っている。差込孔50は、図2に示す伝熱管20の直方体部20aと対向する対の平面壁50aと、図2に示す伝熱管20の半円筒部20bと対向する対の湾曲壁50bとにより区画されている。 Further, as shown in FIG. 3, the second header member 120 is formed with a plurality of insertion holes 50 for attaching the heat transfer tube 20. As shown in FIG. 6B, the insertion hole 50 is formed in the semicircular portion 121 which is an example of the curved portion of the second header member 120. As shown in FIG. 5, the insertion hole 50 is a flat elongated hole that matches the outer shape of the heat transfer tube 20 shown in FIG. 2 when viewed from the front in the direction of the arrow V in FIG. It is along the circumferential direction of the circular portion 121. The insertion hole 50 is divided by a pair of flat walls 50a facing the rectangular parallelepiped portion 20a of the heat transfer tube 20 shown in FIG. 2 and a pair of curved walls 50b facing the semi-cylindrical portion 20b of the heat transfer tube 20 shown in FIG. Has been done.
 平面壁50aは、図6Aに示すように、差込孔50に差し込まれる伝熱管20に沿って形成されている。この伝熱管20に沿う方向は、伝熱管20が差し込まれるX方向と一致する。また、湾曲壁50bは、図6Bに示すように、差込孔50に差し込まれる伝熱管20に沿って形成されている。なお、伝熱管20が差し込まれる方向であるX方向は、図1の左側の熱交換器用ヘッダ100と右側の熱交換器用ヘッダ500とを接続する伝熱管20が延びる方向と一致している。 As shown in FIG. 6A, the flat wall 50a is formed along the heat transfer tube 20 inserted into the insertion hole 50. The direction along the heat transfer tube 20 coincides with the X direction into which the heat transfer tube 20 is inserted. Further, as shown in FIG. 6B, the curved wall 50b is formed along the heat transfer tube 20 inserted into the insertion hole 50. The X direction, which is the direction in which the heat transfer tube 20 is inserted, coincides with the direction in which the heat transfer tube 20 connecting the heat exchanger header 100 on the left side and the heat exchanger header 500 on the right side of FIG. 1 extends.
 キャップ140は、図3、図7に示すように、メイン流路Mfに挿入される第1凸部141と、バイパス流路Bfに挿入される第2凸部142とを有している。キャップ140は、第1ヘッダ部材110及び第2ヘッダ部材120の長手方向における両端部にそれぞれ取り付けられている。これによりキャップ140は、熱交換器用ヘッダ100に形成されたメイン流路Mfとバイパス流路Bfとを閉塞する。キャップ140は、アルミ板の表面にろう材が圧延接合されたクラッド材で形成され、プレス加工によって成形されている。 As shown in FIGS. 3 and 7, the cap 140 has a first convex portion 141 inserted into the main flow path Mf and a second convex portion 142 inserted into the bypass flow path Bf. The caps 140 are attached to both ends of the first header member 110 and the second header member 120 in the longitudinal direction, respectively. As a result, the cap 140 closes the main flow path Mf and the bypass flow path Bf formed in the heat exchanger header 100. The cap 140 is formed of a clad material in which a brazing material is rolled and joined to the surface of an aluminum plate, and is formed by press working.
 ジョイント管130は、図3に示すように、熱媒体を熱交換器用ヘッダ100から排出させるためのL字状の配管部材である。ジョイント管130は、第1ヘッダ部材110に形成されたジョイント管挿入孔112aに挿入される。これにより、ジョイント管130の内部はメイン流路Mfと連通する。また、ジョイント管130には、ジョイント管130の内部とバイパス流路Bfとを連通させる貫通孔130aが形成されている。貫通孔130aは、ジョイント管130の円形断面の直径方向に貫通する孔であり、図7に示すように、ジョイント管130の2箇所に形成されている。 As shown in FIG. 3, the joint pipe 130 is an L-shaped piping member for discharging the heat medium from the heat exchanger header 100. The joint pipe 130 is inserted into the joint pipe insertion hole 112a formed in the first header member 110. As a result, the inside of the joint pipe 130 communicates with the main flow path Mf. Further, the joint pipe 130 is formed with a through hole 130a for communicating the inside of the joint pipe 130 with the bypass flow path Bf. The through holes 130a are holes that penetrate in the radial direction of the circular cross section of the joint pipe 130, and are formed at two positions of the joint pipe 130 as shown in FIG. 7.
 図1に示すように、熱交換器用ヘッダ500は、伝熱管20が熱交換器用ヘッダ100に接続された端部とは反対の端部に接続される。熱交換器用ヘッダ500の基本構成は、熱交換器用ヘッダ100と同様であり、第1ヘッダ部材510、第2ヘッダ部材520、及びキャップ540を備えている。 As shown in FIG. 1, the heat exchanger header 500 is connected to an end opposite to the end where the heat transfer tube 20 is connected to the heat exchanger header 100. The basic configuration of the heat exchanger header 500 is the same as that of the heat exchanger header 100, and includes a first header member 510, a second header member 520, and a cap 540.
 熱交換器用ヘッダ500は、図示しない流入パイプに接続されており、流入した熱媒体を伝熱管20に分配する。 The heat exchanger header 500 is connected to an inflow pipe (not shown), and distributes the inflowing heat medium to the heat transfer tube 20.
 次に、熱交換器1を流れる熱媒体の動きについて、図7を参照しながら説明する。なお、図7において、熱媒体の動きを矢印で図示している。熱交換用ヘッダ500によって伝熱管20に分配された熱媒体は、熱交換が行われた後、矢印Y1で示すように、熱交換器用ヘッダ100のメイン流路Mfに流入する。メイン流路Mfに流入した熱媒体のうち、一部は矢印Y2で示すようにジョイント管130に流入し、残りは矢印Y3で示すように、バイパス孔110aを通りバイパス流路Bfに流入する。バイパス流路Bfに流入した熱媒体は、矢印Y4で示すように、貫通孔130aを通ってジョイント管130に流入する。ジョイント管130に流入した熱媒体は、矢印Y5で示すように、ジョイント管130から排出される。 Next, the movement of the heat medium flowing through the heat exchanger 1 will be described with reference to FIG. 7. In FIG. 7, the movement of the heat medium is illustrated by an arrow. The heat medium distributed to the heat transfer tube 20 by the heat exchange header 500 flows into the main flow path Mf of the heat exchanger header 100 as shown by the arrow Y1 after the heat exchange is performed. Of the heat medium that has flowed into the main flow path Mf, a part of the heat medium flows into the joint pipe 130 as shown by the arrow Y2, and the rest flows into the bypass flow path Bf through the bypass hole 110a as shown by the arrow Y3. The heat medium that has flowed into the bypass flow path Bf flows into the joint pipe 130 through the through hole 130a as shown by the arrow Y4. The heat medium that has flowed into the joint pipe 130 is discharged from the joint pipe 130 as shown by the arrow Y5.
 このように、伝熱管20が差し込まれていないバイパス流路Bfを設けることにより、熱交換器用ヘッダ100内の圧力損失を抑制し、図示しない圧縮機で用いられる冷凍機油の返油性を向上させることが可能となる。また、熱交換器用ヘッダ500にも同様にバイパス流路Bfを設けることで、メイン流路Mfにむらなく熱媒体を流入させることができ、各伝熱管20を流れる熱媒体の量のばらつきをなくすことができる。 By providing the bypass flow path Bf into which the heat transfer tube 20 is not inserted in this way, it is possible to suppress the pressure loss in the header 100 for the heat exchanger and improve the oil return property of the refrigerating machine oil used in the compressor (not shown). Is possible. Further, by similarly providing the bypass flow path Bf in the heat exchanger header 500, the heat medium can flow evenly into the main flow path Mf, and the variation in the amount of the heat medium flowing through each heat transfer tube 20 is eliminated. be able to.
 次に、熱交換器用ヘッダが有する第2ヘッダ部材120の製造方法について説明する。まず、アルミニウム合金製の平板状のプレートから、第2ヘッダ部材120を製造するためのプレート200を切断し、プレス加工により図8Aに示す接合凹部120aを形成する。次に、図8Aに示すように、切断したプレート200を図示しないダイに設置して、主面200aに垂直な方向から側面が湾曲した長孔状のパンチ300で打ち抜く。これにより、図8Bに示すように、プレート200に貫通孔250が形成される。貫通孔250は、図8B及び図8Cに示すように、平面壁250aと湾曲壁250bとを有する長孔である。このようにして形成された貫通孔250の平面壁250a及び湾曲壁250bは、プレート200の主面200aに垂直である。貫通孔250は、その後、後述する製造工程を経て、図5に示す差込孔50となる。 Next, a method of manufacturing the second header member 120 included in the heat exchanger header will be described. First, a plate 200 for manufacturing the second header member 120 is cut from a flat plate made of an aluminum alloy, and a joint recess 120a shown in FIG. 8A is formed by press working. Next, as shown in FIG. 8A, the cut plate 200 is placed on a die (not shown) and punched with an elongated hole-shaped punch 300 whose side surface is curved from the direction perpendicular to the main surface 200a. As a result, as shown in FIG. 8B, a through hole 250 is formed in the plate 200. The through hole 250 is an elongated hole having a flat wall 250a and a curved wall 250b, as shown in FIGS. 8B and 8C. The flat wall 250a and the curved wall 250b of the through hole 250 thus formed are perpendicular to the main surface 200a of the plate 200. After that, the through hole 250 becomes the insertion hole 50 shown in FIG. 5 through a manufacturing process described later.
 次に、図9Aに示すように、貫通孔250があけられたプレート200を曲げ加工し、プレート200に断面が半円状の半円状部221を形成する。このとき半円状部221の周方向を貫通孔250の長手方向に一致させて、プレート200の曲げ加工を行う。なお、曲げ加工されたプレート200は、図9Aに垂直な方向には平らであり、曲りを有していない。 Next, as shown in FIG. 9A, the plate 200 having the through hole 250 is bent to form a semicircular portion 221 having a semicircular cross section on the plate 200. At this time, the plate 200 is bent by matching the circumferential direction of the semicircular portion 221 with the longitudinal direction of the through hole 250. The bent plate 200 is flat in the direction perpendicular to FIG. 9A and has no bend.
 なお、プレート200が曲げ加工される前に主面200aに対して垂直であった湾曲壁250bは、プレート200が曲げ加工された後においても主面200aに対する角度を大きく変化させることなく垂直に近い関係が維持される。そのため、図9Aに示すように、プレート200が曲げ加工された後、湾曲壁250bは、内側に傾斜して貫通孔250を狭め、X方向に平行とはならない。一方、プレート200は、上述のように図9Aに垂直な方向に対しては曲りを有していない。そのため、プレート200が曲げ加工された後、図9Aに示す平面壁250aはX方向に対して平行である。 The curved wall 250b, which was perpendicular to the main surface 200a before the plate 200 was bent, is close to vertical even after the plate 200 is bent, without significantly changing the angle with respect to the main surface 200a. The relationship is maintained. Therefore, as shown in FIG. 9A, after the plate 200 is bent, the curved wall 250b inclines inward to narrow the through hole 250 and is not parallel to the X direction. On the other hand, the plate 200 does not have a bend in the direction perpendicular to FIG. 9A as described above. Therefore, after the plate 200 is bent, the flat wall 250a shown in FIG. 9A is parallel to the X direction.
 続いて、図9Aに示すように、曲げ加工されたプレート200を図示しないダイに設置する。そして、側面が湾曲したパンチ301をX方向に平行に動かし、湾曲壁250bを削り取るシェービング加工を実行する。なお、シェービング加工を行う際に用いられるパンチ301は、両サイドの湾曲壁250bを削り取る分だけ、貫通孔250を形成する図8Aに示すパンチ300よりも長尺である。これにより、図9Bに示すように、打ち抜き部210が第2ヘッダ部材120から除去され、X方向に平行な湾曲壁50bが形成される。このようにして、第2ヘッダ部材120に形成された差込孔50の孔壁を、全周にわたってX方向に平行とすることができる。このような工程を経て、第2ヘッダ部材120が製造される。 Subsequently, as shown in FIG. 9A, the bent plate 200 is installed on a die (not shown). Then, the punch 301 having a curved side surface is moved in parallel in the X direction to perform a shaving process for scraping off the curved wall 250b. The punch 301 used when performing the shaving process is longer than the punch 300 shown in FIG. 8A, which forms the through hole 250, by the amount of scraping the curved walls 250b on both sides. As a result, as shown in FIG. 9B, the punched portion 210 is removed from the second header member 120, and a curved wall 50b parallel to the X direction is formed. In this way, the hole wall of the insertion hole 50 formed in the second header member 120 can be made parallel in the X direction over the entire circumference. Through such a process, the second header member 120 is manufactured.
 第2ヘッダ部材120に形成された差込孔50には、図10に示すように、伝熱管20が差し込まれる。そして、図示しない加熱炉で加熱されることで、第2ヘッダ部材120のろう材層からろう材が溶け出し、伝熱管20が第2ヘッダ部材120にろう付けされる。 As shown in FIG. 10, the heat transfer tube 20 is inserted into the insertion hole 50 formed in the second header member 120. Then, by heating in a heating furnace (not shown), the brazing material is melted from the brazing material layer of the second header member 120, and the heat transfer tube 20 is brazed to the second header member 120.
(効果)
 上記の実施の形態によれば、湾曲した半円状部121に形成した差込孔50の孔壁は、全周にわたって伝熱管20に沿う方向、すなわち伝熱管20が差し込まれる方向に沿って形成されている。これにより、図10に示すように、第2ヘッダ部材120と伝熱管20の半円筒部20bとの接合長Lを、第2ヘッダ部材120の板厚tよりも長くすることができる。このように、接合長Lを長くすることができるので、第2ヘッダ部材120と伝熱管20との接合強度を高め、耐圧性能の向上を図ることができる。
(effect)
According to the above embodiment, the hole wall of the insertion hole 50 formed in the curved semicircular portion 121 is formed along the entire circumference along the heat transfer tube 20, that is, along the direction in which the heat transfer tube 20 is inserted. Has been done. As a result, as shown in FIG. 10, the joint length L between the second header member 120 and the semi-cylindrical portion 20b of the heat transfer tube 20 can be made longer than the plate thickness t of the second header member 120. In this way, since the joint length L can be lengthened, the joint strength between the second header member 120 and the heat transfer tube 20 can be increased, and the pressure resistance performance can be improved.
 また、図10に示すように、差込孔50の孔壁と伝熱管20の外面との間隔を接合長Lにわたって一定とすることができる。そのため、差込孔50の孔壁と伝熱管20の外面との間に、冷え固まったろうを均一に形成することができる。これにより、ろう付けの品質を向上させることができるため接合部分の強度が高められ、すなわち耐圧性能の向上を図ることができる。 Further, as shown in FIG. 10, the distance between the hole wall of the insertion hole 50 and the outer surface of the heat transfer tube 20 can be made constant over the joint length L. Therefore, the cooled and solidified wax can be uniformly formed between the hole wall of the insertion hole 50 and the outer surface of the heat transfer tube 20. As a result, the quality of brazing can be improved, so that the strength of the joint portion can be increased, that is, the pressure resistance performance can be improved.
 また、図10に示すように、差込孔50の孔壁と伝熱管20の外面との間隔を接合長Lにわたって近接させることができるので、供給するろう材の量を少なくすることができる。これにより、過剰なろうの供給により発生しやすいエロージョンを抑制することができ、ろう付けの品質の向上を図ることができる。 Further, as shown in FIG. 10, since the distance between the hole wall of the insertion hole 50 and the outer surface of the heat transfer tube 20 can be brought close to each other over the joint length L, the amount of brazing material to be supplied can be reduced. As a result, erosion that tends to occur due to excessive brazing supply can be suppressed, and the quality of brazing can be improved.
 また、U字状に加工された第2ヘッダ部材120の差込孔50の両端部を削り取るシェービング加工の際に、長尺のパンチ301を用いた。これにより、パンチ301による一度の打ち抜きで、差込孔50の両端部を削り取ることができ、製造工程を簡略化することができる。また、予めプレート200に貫通孔250をあけているため、パンチ301によるシェービング加工で削り取る量を少なくすることができる。これにより、断面がU字状の第2ヘッダ部材120の変形を抑制することができ、第1ヘッダ部材110と精度良く組み合わせることができる。 Further, a long punch 301 was used in the shaving process of scraping both ends of the insertion hole 50 of the second header member 120 processed into a U shape. As a result, both ends of the insertion hole 50 can be scraped off by punching once with the punch 301, and the manufacturing process can be simplified. Further, since the through hole 250 is formed in the plate 200 in advance, the amount of scraping by the shaving process by the punch 301 can be reduced. As a result, deformation of the second header member 120 having a U-shaped cross section can be suppressed, and the combination with the first header member 110 can be performed with high accuracy.
(実施の形態2)
 次に、第2の実施の形態について説明する。図11に示すように、第2ヘッダ部材320には、図2に示す伝熱管20の外形と合致する差込孔350が形成されている。差込孔350は、扁平形状の長孔である。差込孔350は、図2に示す伝熱管20の直方体部20aと対向する対の平面壁350aと、図2に示す伝熱管20の半円筒部20bと対向する対の湾曲壁350bとを有している。
(Embodiment 2)
Next, the second embodiment will be described. As shown in FIG. 11, the second header member 320 is formed with an insertion hole 350 that matches the outer shape of the heat transfer tube 20 shown in FIG. The insertion hole 350 is a flat elongated hole. The insertion hole 350 has a pair of flat walls 350a facing the rectangular parallelepiped portion 20a of the heat transfer tube 20 shown in FIG. 2 and a pair of curved walls 350b facing the semi-cylindrical portion 20b of the heat transfer tube 20 shown in FIG. doing.
 平面壁350aは、図12Aに示すように、差込孔350に差し込まれる伝熱管20に沿って形成されている。また、平面壁350aは、伝熱管20の差し込み方向であるX方向に平行である。また、湾曲壁350bは、図12Bに示すように、差込孔350に差し込まれる伝熱管20に沿って形成されている。また、湾曲壁350bは、伝熱管20の差し込み方向であるX方向に平行である。 As shown in FIG. 12A, the flat wall 350a is formed along the heat transfer tube 20 inserted into the insertion hole 350. Further, the flat wall 350a is parallel to the X direction, which is the insertion direction of the heat transfer tube 20. Further, as shown in FIG. 12B, the curved wall 350b is formed along the heat transfer tube 20 inserted into the insertion hole 350. Further, the curved wall 350b is parallel to the X direction, which is the insertion direction of the heat transfer tube 20.
 また、第2ヘッダ部材320の外面320aには、図11に示すように、差込孔350の縁部に沿ってカット面360が形成されている。カット面360は、図12A、Bに示すように、差込孔350の孔壁と第2ヘッダ部材320の外面320aとを接続する。ここで差込孔350の孔壁とは、平面壁350a及び湾曲壁350bである。カット面360は、差込孔350を第2ヘッダ部材320の外面320aに向けて拡大させる方向に傾斜している。 Further, as shown in FIG. 11, a cut surface 360 is formed on the outer surface 320a of the second header member 320 along the edge of the insertion hole 350. As shown in FIGS. 12A and 12B, the cut surface 360 connects the hole wall of the insertion hole 350 and the outer surface 320a of the second header member 320. Here, the hole walls of the insertion hole 350 are a flat wall 350a and a curved wall 350b. The cut surface 360 is inclined in a direction in which the insertion hole 350 is enlarged toward the outer surface 320a of the second header member 320.
 次に、第2ヘッダ部材320にカット面360を形成する方法について説明する。まず、図8Bに示すように、第2ヘッダ部材320用のプレート200に、接合凹部120a及び貫通孔250を形成する工程は、上記実施の形態と同様である。次に、図8Bに示すプレート200の一方の面における貫通孔250の縁部を、傾斜面を有する工具でたたいて面取り加工する。なお、プレート200の一方の面とは、接合凹部120aが形成されている面とは反対の面である。続いて、プレート200を曲げ加工して、貫通孔250の縁部を面取りした一方の面を外側に向ける。最後に、図9Bに示す工程と同様に、パンチ301をX方向に平行に動かし、湾曲壁250bを削り取るシェービング加工を実行する。以上の工程により、図12A、Bに示すように、差込孔350の縁部にカット面360を形成することができる。 Next, a method of forming the cut surface 360 on the second header member 320 will be described. First, as shown in FIG. 8B, the step of forming the joint recess 120a and the through hole 250 in the plate 200 for the second header member 320 is the same as that of the above embodiment. Next, the edge of the through hole 250 on one surface of the plate 200 shown in FIG. 8B is chamfered by hitting it with a tool having an inclined surface. It should be noted that one surface of the plate 200 is the surface opposite to the surface on which the joint recess 120a is formed. Subsequently, the plate 200 is bent so that one of the chamfered edges of the through hole 250 faces outward. Finally, similar to the step shown in FIG. 9B, the punch 301 is moved in parallel in the X direction to perform a shaving process for scraping off the curved wall 250b. By the above steps, as shown in FIGS. 12A and 12B, a cut surface 360 can be formed at the edge of the insertion hole 350.
 なお、差込孔350の縁部を面取りする工程は、プレート200の曲げ加工前に行うと説明したが、プレート200の曲げ加工後に行うようにしてもよい。この場合、接合凹部120a及び貫通孔250が形成されたプレート200を曲げ加工した後に、貫通孔250の縁部の面取りをし、最後にシェービング加工によって貫通孔250の端部を削り取る。 Although it has been explained that the step of chamfering the edge of the insertion hole 350 is performed before the bending process of the plate 200, it may be performed after the bending process of the plate 200. In this case, after bending the plate 200 in which the joint recess 120a and the through hole 250 are formed, the edge portion of the through hole 250 is chamfered, and finally the end portion of the through hole 250 is scraped off by shaving processing.
 実施の形態2によれば、カット面360は、第2ヘッダ部材320の外面320aに向けて差込孔350を拡大させる傾斜面である。そのため、伝熱管20をカット面360に接触させて、カット面360に沿ってスライドさせていくことで、差込孔350に差し込むことができる。これにより、伝熱管20を容易に差込孔350に差し込むことができ、組立作業をスムーズに行うことができる。 According to the second embodiment, the cut surface 360 is an inclined surface that expands the insertion hole 350 toward the outer surface 320a of the second header member 320. Therefore, the heat transfer tube 20 can be inserted into the insertion hole 350 by bringing it into contact with the cut surface 360 and sliding it along the cut surface 360. As a result, the heat transfer tube 20 can be easily inserted into the insertion hole 350, and the assembly work can be smoothly performed.
 また、差込孔350に差し込まれた伝熱管20とカット面360との間の領域を、接合部からあふれたろう材をためるろうだまりとして機能させることができる。これにより、第2ヘッダ部材320と伝熱管20との接合部から、ろう材が流れ出すのを防止することができる。 Further, the region between the heat transfer tube 20 inserted into the insertion hole 350 and the cut surface 360 can function as a reservoir for collecting the brazing material overflowing from the joint. As a result, it is possible to prevent the brazing material from flowing out from the joint portion between the second header member 320 and the heat transfer tube 20.
(実施の形態3)
 図13Aに示すように、実施の形態3に係る第2ヘッダ部材420には、差込孔450の長手方向の両端部にフランジ460が形成されている。実施の形態1に係る第2ヘッダ部材120はこのようなフランジを有しておらず、この点が実施の形態1と異なっている。フランジ460は、第2ヘッダ部材420の内部に突出して形成されている。
(Embodiment 3)
As shown in FIG. 13A, the second header member 420 according to the third embodiment is formed with flanges 460 at both ends of the insertion hole 450 in the longitudinal direction. The second header member 120 according to the first embodiment does not have such a flange, which is different from the first embodiment. The flange 460 is formed so as to project inside the second header member 420.
 実施の形態3に係る第2ヘッダ部材420の製造方法について説明する。まず、図8Bに示すように、第2ヘッダ部材420用のプレート200に、接合凹部120a及び貫通孔250を形成し、続いて図9Aに示すようにプレート200を曲げ加工する。ここまでの工程は、実施の形態1と同様である。続いて、図13Bに示すように、パンチ302をX方向に動かし、貫通孔250の両端部に形成された湾曲壁250bにバーリング加工を施す。これにより、図13Aに示すように、X方向に平行な湾曲壁450bが形成されるとともに、X方向に延びるフランジ460が第2ヘッダ部材420の内側に向けて突出して形成される。 The manufacturing method of the second header member 420 according to the third embodiment will be described. First, as shown in FIG. 8B, a joint recess 120a and a through hole 250 are formed in the plate 200 for the second header member 420, and then the plate 200 is bent as shown in FIG. 9A. The steps up to this point are the same as those in the first embodiment. Subsequently, as shown in FIG. 13B, the punch 302 is moved in the X direction, and the curved walls 250b formed at both ends of the through hole 250 are subjected to burring. As a result, as shown in FIG. 13A, the curved wall 450b parallel to the X direction is formed, and the flange 460 extending in the X direction is formed so as to project inward of the second header member 420.
 実施の形態3によれば、図13Aに示すように、第2ヘッダ部材420と伝熱管20の半円筒部20bとの接合長L1を、第2ヘッダ部材420の板厚tよりも長くすることができる。この接合長L1に加えて、差込孔450の長手方向における両端部に形成したフランジ460の長さ分の接合長L2を確保することができる。これにより、第2ヘッダ部材420と伝熱管20との接合強度を高め、耐圧性能の向上を図ることができる。 According to the third embodiment, as shown in FIG. 13A, the joint length L1 between the second header member 420 and the semi-cylindrical portion 20b of the heat transfer tube 20 is made longer than the plate thickness t of the second header member 420. Can be done. In addition to this joint length L1, it is possible to secure a joint length L2 corresponding to the length of the flanges 460 formed at both ends of the insertion hole 450 in the longitudinal direction. As a result, the joint strength between the second header member 420 and the heat transfer tube 20 can be increased, and the pressure resistance performance can be improved.
 この開示は、上記実施の形態に限定されず、様々な変形及び応用が可能である。上記実施の形態では、図8Aに示すようにプレート200を曲げ加工する前に、貫通孔250を形成したが、プレート200を曲げ加工した後に、貫通孔250を形成してもよい。貫通孔250を、図14Aに示すように、接合凹部120aが形成されたプレート200に複数方向からパンチ303でプレスすることにより形成する。このとき、プレート200は動かさずに、プレスするたびにパンチ303を回転させて、複数回に分けて貫通孔250を形成する。あるいは別の方法として、パンチ303を回転させずに、プレスするたびにU字状のプレート200を回転移動させて、複数回に分けて貫通孔250を形成してもよい。このようにして、U字状に形成されたプレート200に、図14Bに示す貫通孔250を形成する。続いて、図14Bに示すように、パンチ301をX方向に平行に動かし、貫通孔250の両端部に形成された湾曲壁250bを削り落とす。これにより、X方向に平行な湾曲壁50bが形成された図9Bに示す第2ヘッダ部材120を製造することができる。 This disclosure is not limited to the above embodiment, and various modifications and applications are possible. In the above embodiment, as shown in FIG. 8A, the through hole 250 is formed before the plate 200 is bent, but the through hole 250 may be formed after the plate 200 is bent. As shown in FIG. 14A, the through hole 250 is formed by pressing the plate 200 in which the joint recess 120a is formed with a punch 303 from a plurality of directions. At this time, the plate 200 is not moved, and the punch 303 is rotated each time the punch is pressed to form the through hole 250 in a plurality of times. Alternatively, as another method, the U-shaped plate 200 may be rotationally moved each time the punch 303 is pressed without rotating the punch 303 to form the through hole 250 in a plurality of times. In this way, the through hole 250 shown in FIG. 14B is formed in the plate 200 formed in a U shape. Subsequently, as shown in FIG. 14B, the punch 301 is moved in parallel in the X direction to scrape off the curved walls 250b formed at both ends of the through hole 250. Thereby, the second header member 120 shown in FIG. 9B in which the curved wall 50b parallel to the X direction is formed can be manufactured.
 なお、貫通孔250をあける図14Aに示すパンチ303は、平板状のプレート200に貫通孔250をあける図8Aに示すパンチ300よりも小さい。そのため、U字状に曲げ加工されたプレート200の変形を抑制することができる。 The punch 303 shown in FIG. 14A for drilling the through hole 250 is smaller than the punch 300 shown in FIG. 8A for drilling the through hole 250 in the flat plate 200. Therefore, the deformation of the plate 200 bent into a U shape can be suppressed.
 また、熱交換器用ヘッダ100、500に接続される伝熱管20は、断面が扁平形状のものに限定されない。例えば、円形状、正方形状、あるいは三角形状といった他の断面形状の伝熱管を熱交換器用ヘッダ100、500に接続してもよい。 Further, the heat transfer tubes 20 connected to the heat exchanger headers 100 and 500 are not limited to those having a flat cross section. For example, a heat transfer tube having another cross-sectional shape such as a circular shape, a square shape, or a triangular shape may be connected to the heat exchanger headers 100 and 500.
 また、第2ヘッダ部材120をアルミ板にろう材を圧延接合したクラッド材とし、第2ヘッダ部材120から溶け出たろう材で伝熱管20を接合したが、どのような接合方法は用いるかは任意である。例えば、ペーストろう、ワイヤーろう等を用いて、第2ヘッダ部材120と伝熱管20とをろう付けしてもよい。 Further, the second header member 120 is a clad material obtained by rolling and joining a brazing material to an aluminum plate, and the heat transfer tube 20 is joined with the brazing material melted from the second header member 120. What kind of joining method is used is arbitrary. Is. For example, the second header member 120 and the heat transfer tube 20 may be brazed using paste brazing, wire brazing, or the like.
 また、上述した第1ヘッダ部材110と第2ヘッダ部材120との接合部分の構成は1例であり、その他の接合部分の構成としてもよい。例えば、第1ヘッダ部材110の両縁部と、第2ヘッダ部材120の両縁部とを突き合せた状態で接合してもよい。 Further, the configuration of the joint portion between the first header member 110 and the second header member 120 described above is an example, and other joint portions may be configured. For example, both edges of the first header member 110 and both edges of the second header member 120 may be joined in a butt state.
 また、上記の実施の形態では、一対の配管部材である熱交換器用ヘッダ100及び熱交換器用ヘッダ500の基本構成が同じである場合について説明したが、基本構成が異なった一対の熱交換器用ヘッダを用いてもよい。 Further, in the above embodiment, the case where the basic configurations of the heat exchanger header 100 and the heat exchanger header 500, which are a pair of piping members, are the same has been described, but the pair of heat exchanger headers having different basic configurations have been described. May be used.
 また、図13Aを参照しながら説明したように、バーリング加工によって第2ヘッダ部材420の内側に、フランジ460を突出させていたが、第2ヘッダ部材420の外側にフランジを突出させてもよい。 Further, as described with reference to FIG. 13A, the flange 460 is projected inside the second header member 420 by burring, but the flange may be projected outside the second header member 420.
 また、貫通孔250の端部を削り落としてX方向に平行とする加工、及び差込孔350の縁部にカット面360を形成する加工は、上記の加工方法に限定されず、公知の加工方法の中から任意に選択することができる。例えば、貫通孔250の端部をやすりで削ってX方向に沿わせてもよい。また、カット面360は、差込孔350の縁部をやすりで削ることで形成してもよいし、角部を切削して形成してもよい。また、U字状に形成したプレート200にレーザー加工を用いて、差込孔50を形成してもよい。これにより、U字状に形成したプレート200に、孔壁が伝熱管20に沿った差込孔を形成することができる。 Further, the processing of scraping off the end portion of the through hole 250 to make it parallel to the X direction and the processing of forming the cut surface 360 at the edge portion of the insertion hole 350 are not limited to the above processing methods, and are known processing. You can choose any of the methods. For example, the end portion of the through hole 250 may be filed along the X direction. Further, the cut surface 360 may be formed by cutting the edge portion of the insertion hole 350 with a file, or may be formed by cutting the corner portion. Further, the insertion hole 50 may be formed in the U-shaped plate 200 by laser machining. As a result, the hole wall can form an insertion hole along the heat transfer tube 20 in the U-shaped plate 200.
 また、差込孔50は、第2ヘッダ部材120のうち断面が半円状の半円状部121に形成されていると説明したが、他の断面形状を有する部分に形成されてもよい。例えば、第2ヘッダ部材120のうち弓形状に形成された部分に形成されてもよいし、先端が丸くなった凸状部分に形成されてもよい。 Further, although it has been explained that the insertion hole 50 is formed in the semicircular portion 121 having a semicircular cross section in the second header member 120, it may be formed in a portion having another cross-sectional shape. For example, it may be formed in a bow-shaped portion of the second header member 120, or may be formed in a convex portion having a rounded tip.
 また、熱交換器用ヘッダ100、伝熱管20等の熱交換器1の各構成部材はアルミニウムから形成されていると説明したが、ステンレス、鋼材、銅等の他の金属から形成してもよい。 Although it has been explained that each component of the heat exchanger 1 such as the heat exchanger header 100 and the heat transfer tube 20 is made of aluminum, it may be made of other metals such as stainless steel, steel, and copper.
 本開示は、広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 This disclosure allows for various embodiments and modifications without departing from the broad spirit and scope. Moreover, the above-described embodiment is for explaining the present disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated by the claims, not the embodiments. And various modifications made within the scope of the claims and within the equivalent meaning of disclosure are considered to be within the scope of the present disclosure.
 本出願は、2020年3月31日に出願された、日本国特許出願2020-061786号に基づく。本明細書中に日本国特許出願2020-061786号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2020-616786, which was filed on March 31, 2020. The specification, claims, and drawings of Japanese Patent Application No. 2020-616786 are incorporated herein by reference.
1 熱交換器、20 伝熱管、20a 直方体部、20b 半円筒部、20c 流通孔、30 放熱フィン、30a 貫通孔、50 差込孔、50a 平面壁、50b 湾曲壁、100 熱交換器用ヘッダ、110 第1ヘッダ部材、110a バイパス孔、111 第1パイプ、111a 貫通孔、111b ジョイント管接続部、112 パイプ形成部、112a ジョイント管挿入孔、113 接合部、120 第2ヘッダ部材、120a 接合凹部、121 半円状部、122 平面状部、130 ジョイント管、130a 貫通孔、140 キャップ、141 第1凸部、142 第2凸部、150 第2パイプ、200 プレート、200a 主面、210 打ち抜き部、221 半円状部、250 貫通孔、250a 平面壁、250b 湾曲壁、300,301,302,303 パンチ、320 第2ヘッダ部材、320a 外面、350 差込孔、350a 平面壁、350b 湾曲壁、360 カット面、420 第2ヘッダ部材、450 差込孔、450b 湾曲壁、460 フランジ、500 熱交換器用ヘッダ、510 第1ヘッダ部材、520 第2ヘッダ部材、540 キャップ、550 差込孔。 1 heat exchanger, 20 heat transfer tube, 20a square body part, 20b semi-cylindrical part, 20c flow hole, 30 heat dissipation fin, 30a through hole, 50 insertion hole, 50a flat wall, 50b curved wall, 100 heat exchanger header, 110 1st header member, 110a bypass hole, 111 1st pipe, 111a through hole, 111b joint pipe connection part, 112 pipe forming part, 112a joint pipe insertion hole, 113 joint part, 120 2nd header member, 120a joint recess, 121 Semi-circular part, 122 flat part, 130 joint pipe, 130a through hole, 140 cap, 141 first convex part, 142 second convex part, 150 second pipe, 200 plate, 200a main surface, 210 punched part, 221 Semi-circular part, 250 through hole, 250a flat wall, 250b curved wall, 300, 301, 302, 303 punch, 320 second header member, 320a outer surface, 350 insertion hole, 350a flat wall, 350b curved wall, 360 cut Surface, 420 second header member, 450 insertion hole, 450b curved wall, 460 flange, 500 heat exchanger header, 510 first header member, 520 second header member, 540 cap, 550 insertion hole.

Claims (17)

  1.  熱媒体を流通させるバイパス流路が形成された第1パイプと、熱媒体を流通させるメイン流路が形成された第2パイプの一部であるパイプ形成部と、を有する第1ヘッダ部材と、
     前記パイプ形成部と接合されて、前記パイプ形成部とともに前記第2パイプを形成する第2ヘッダ部材と、を備え、
     前記第2ヘッダ部材は湾曲部を有し、伝熱管が差し込まれる差込孔が前記湾曲部に形成されており、
     前記差込孔の孔壁は、全周にわたって、差し込まれる前記伝熱管に沿っている、
     熱交換器用ヘッダ。
    A first header member having a first pipe in which a bypass flow path for circulating a heat medium is formed, and a pipe forming portion which is a part of a second pipe in which a main flow path for passing a heat medium is formed.
    A second header member that is joined to the pipe forming portion to form the second pipe together with the pipe forming portion is provided.
    The second header member has a curved portion, and an insertion hole into which a heat transfer tube is inserted is formed in the curved portion.
    The hole wall of the insertion hole is along the heat transfer tube to be inserted all around.
    Header for heat exchanger.
  2.  前記差込孔の孔壁は、全周にわたって、前記伝熱管の差し込み方向に平行である、
     請求項1に記載の熱交換器用ヘッダ。
    The hole wall of the insertion hole is parallel to the insertion direction of the heat transfer tube over the entire circumference.
    The header for a heat exchanger according to claim 1.
  3.  前記第2ヘッダ部材の外面における前記差込孔の縁部は、面取りされている、
     請求項1又は2に記載の熱交換器用ヘッダ。
    The edge of the insertion hole on the outer surface of the second header member is chamfered.
    The header for a heat exchanger according to claim 1 or 2.
  4.  前記差込孔は、長手方向が前記第2パイプの周方向に沿った長孔であり、
     前記湾曲部は、前記差込孔の長手方向における両端部に、前記伝熱管の差し込み方向に沿ったフランジを有する、
     請求項1から3のいずれか1項に記載の熱交換器用ヘッダ。
    The insertion hole is an elongated hole whose longitudinal direction is along the circumferential direction of the second pipe.
    The curved portion has flanges at both ends in the longitudinal direction of the insertion hole along the insertion direction of the heat transfer tube.
    The header for a heat exchanger according to any one of claims 1 to 3.
  5.  前記パイプ形成部が接合される前記第2ヘッダ部材の内側面には、前記パイプ形成部の縁部が嵌まる凹部が前記メイン流路に沿って形成されている、
     請求項1から4のいずれか1項に記載の熱交換器用ヘッダ。
    On the inner surface of the second header member to which the pipe forming portion is joined, a recess into which the edge portion of the pipe forming portion is fitted is formed along the main flow path.
    The header for a heat exchanger according to any one of claims 1 to 4.
  6.  請求項1から5のいずれか1項に記載の熱交換器用ヘッダと、
     前記差込孔に差し込まれ、前記メイン流路に接続された前記伝熱管と、
     前記伝熱管に取り付けられたフィンと、を備える、
     熱交換器。
    The heat exchanger header according to any one of claims 1 to 5.
    With the heat transfer tube inserted into the insertion hole and connected to the main flow path,
    With fins attached to the heat transfer tube,
    Heat exchanger.
  7.  前記伝熱管は、前記差込孔に差し込まれた状態で前記熱交換器用ヘッダに接合され、
     前記第2パイプの周方向における前記差込孔の両端部において、前記差込孔の孔壁と前記伝熱管の外面とが接合された部分の前記伝熱管に沿う長さは、前記第2ヘッダ部材の板厚よりも長い、
     請求項6に記載の熱交換器。
    The heat transfer tube is joined to the heat exchanger header in a state of being inserted into the insertion hole.
    At both ends of the insertion hole in the circumferential direction of the second pipe, the length of the portion where the hole wall of the insertion hole and the outer surface of the heat transfer tube are joined is the length along the heat transfer tube of the second header. Longer than the plate thickness of the member,
    The heat exchanger according to claim 6.
  8.  前記第2パイプの周方向における前記差込孔の両端部において、前記差込孔の孔壁と前記伝熱管の外面との間隔は、前記伝熱管に沿う方向に一定である、
     請求項6又は7に記載の熱交換器。
    At both ends of the insertion hole in the circumferential direction of the second pipe, the distance between the hole wall of the insertion hole and the outer surface of the heat transfer tube is constant in the direction along the heat transfer tube.
    The heat exchanger according to claim 6 or 7.
  9.  第2ヘッダ部材に、伝熱管が差し込まれる差込孔を形成する工程と、
     前記差込孔が形成された前記第2ヘッダ部材を曲げ加工する工程と、
     前記差込孔の孔壁のうち、前記伝熱管の差し込み方向に沿っていない部分を加工して、前記伝熱管の差し込み方向に沿わせる工程と、
     前記孔壁を加工した前記第2ヘッダ部材と第1ヘッダ部材とを接合して、内部に熱媒体を流通させる流路を形成する工程と、を備える、
     熱交換器用ヘッダの製造方法。
    The process of forming an insertion hole into the second header member into which the heat transfer tube is inserted, and
    The step of bending the second header member in which the insertion hole is formed, and
    A step of processing a portion of the hole wall of the insertion hole that is not along the insertion direction of the heat transfer tube so that the portion is along the insertion direction of the heat transfer tube.
    A step of joining the second header member with the processed hole wall and the first header member to form a flow path through which a heat medium flows is provided.
    How to manufacture headers for heat exchangers.
  10.  第2ヘッダ部材を曲げ加工する工程と、
     曲げ加工した前記第2ヘッダ部材に、複数回孔あけをして、伝熱管が差し込まれる差込孔を形成する工程と、
     前記差込孔の孔壁のうち、前記伝熱管の差し込み方向に沿っていない部分を加工して、前記伝熱管の差し込み方向に沿わせる工程と、
     前記孔壁を加工した前記第2ヘッダ部材と第1ヘッダ部材とを接合して、内部に熱媒体を流通させる流路を形成する工程と、を備える、
     熱交換器用ヘッダの製造方法。
    The process of bending the second header member and
    A step of forming a insertion hole into which a heat transfer tube is inserted by making holes in the bent second header member a plurality of times.
    A step of processing a portion of the hole wall of the insertion hole that is not along the insertion direction of the heat transfer tube so that the portion is along the insertion direction of the heat transfer tube.
    A step of joining the second header member with the processed hole wall and the first header member to form a flow path through which a heat medium flows is provided.
    How to manufacture headers for heat exchangers.
  11.  前記孔壁に行う加工は、前記伝熱管の差し込み方向に沿っていない部分を削り取るシェービング加工である、
     請求項9又は10に記載の熱交換器用ヘッダの製造方法。
    The processing performed on the hole wall is a shaving processing for scraping off a portion not along the insertion direction of the heat transfer tube.
    The method for manufacturing a header for a heat exchanger according to claim 9 or 10.
  12.  前記孔壁に行う加工は、前記伝熱管の差し込み方向にフランジを形成するバーリング加工である、
     請求項9又は10に記載の熱交換器用ヘッダの製造方法。
    The processing performed on the hole wall is a burring processing for forming a flange in the insertion direction of the heat transfer tube.
    The method for manufacturing a header for a heat exchanger according to claim 9 or 10.
  13.  前記孔壁に行う加工により、前記孔壁を全周にわたって前記伝熱管の差し込み方向と平行にする、
     請求項9から12のいずれか1項に記載の熱交換器用ヘッダの製造方法。
    By processing the hole wall, the hole wall is made parallel to the insertion direction of the heat transfer tube over the entire circumference.
    The method for manufacturing a header for a heat exchanger according to any one of claims 9 to 12.
  14.  前記第2ヘッダ部材の長手方向に沿って凹部を形成する工程、をさらに備え、
     前記第2ヘッダ部材を曲げ加工する工程により、湾曲した前記第2ヘッダ部材の内側面に前記凹部を配置させ、
     前記第2ヘッダ部材と前記第1ヘッダ部材とを接合する際、前記第1ヘッダ部材の縁部を前記凹部に嵌めた状態で前記第2ヘッダ部材と前記第1ヘッダ部材とを仮固定する、
     請求項9から13のいずれか1項に記載の熱交換器用ヘッダの製造方法。
    A step of forming a recess along the longitudinal direction of the second header member is further provided.
    By the step of bending the second header member, the recess is arranged on the inner side surface of the curved second header member.
    When joining the second header member and the first header member, the second header member and the first header member are temporarily fixed in a state where the edge portion of the first header member is fitted in the recess.
    The method for manufacturing a header for a heat exchanger according to any one of claims 9 to 13.
  15.  請求項9から14のいずれか1項に記載の熱交換器用ヘッダの製造方法が備える各工程と、
     フィンに形成された貫通孔に伝熱管を差し込む工程と、
     前記第2ヘッダ部材に形成された前記差込孔に前記伝熱管を差し込み、熱媒体を流通させる前記流路に前記伝熱管を接続する工程と、
     組み立てた前記第2ヘッダ部材、前記伝熱管、及び前記フィンを加熱して接合する工程と、を備える、
     熱交換器の製造方法。
    Each step included in the method for manufacturing a header for a heat exchanger according to any one of claims 9 to 14.
    The process of inserting a heat transfer tube into the through hole formed in the fin,
    A step of inserting the heat transfer tube into the insertion hole formed in the second header member and connecting the heat transfer tube to the flow path through which the heat medium flows.
    It comprises a step of heating and joining the assembled second header member, the heat transfer tube, and the fins.
    How to manufacture a heat exchanger.
  16.  前記第2ヘッダ部材の周方向における前記差込孔の両端部において、前記差込孔の孔壁と前記伝熱管の外面とが接合された部分の前記伝熱管に沿う長さは、前記第2ヘッダ部材の板厚よりも長い、
     請求項15に記載の熱交換器の製造方法。
    At both ends of the insertion hole in the circumferential direction of the second header member, the length of the portion where the hole wall of the insertion hole and the outer surface of the heat transfer tube are joined is the length along the heat transfer tube of the second. Longer than the plate thickness of the header member,
    The method for manufacturing a heat exchanger according to claim 15.
  17.  前記第2ヘッダ部材の周方向における前記差込孔の両端部において、前記差込孔の孔壁と前記伝熱管の外面との間隔は、前記伝熱管に沿う方向に一定である、
     請求項15又は16に記載の熱交換器の製造方法。
    At both ends of the insertion hole in the circumferential direction of the second header member, the distance between the hole wall of the insertion hole and the outer surface of the heat transfer tube is constant in the direction along the heat transfer tube.
    The method for manufacturing a heat exchanger according to claim 15 or 16.
PCT/JP2020/034629 2020-03-31 2020-09-14 Heat exchanger header, heat exchanger, method for manufacturing heat exchanger header, and method for manufacturing heat exchanger WO2021199458A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022511500A JP7361887B2 (en) 2020-03-31 2020-09-14 Heat exchanger header, heat exchanger, method for manufacturing heat exchanger header, and method for manufacturing heat exchanger
DE112020006995.8T DE112020006995T5 (en) 2020-03-31 2020-09-14 Heat exchanger header, heat exchanger, method of manufacturing a heat exchanger header and method of manufacturing a heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020061786 2020-03-31
JP2020-061786 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021199458A1 true WO2021199458A1 (en) 2021-10-07

Family

ID=77928404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034629 WO2021199458A1 (en) 2020-03-31 2020-09-14 Heat exchanger header, heat exchanger, method for manufacturing heat exchanger header, and method for manufacturing heat exchanger

Country Status (3)

Country Link
JP (1) JP7361887B2 (en)
DE (1) DE112020006995T5 (en)
WO (1) WO2021199458A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114288A (en) * 1997-06-24 1999-01-22 Denso Corp Heat exchanger
JP2002213893A (en) * 2001-01-16 2002-07-31 Zexel Valeo Climate Control Corp Heat exchanger
JP2004239592A (en) * 2002-12-11 2004-08-26 Calsonic Kansei Corp Vehicular heat exchanger
JP2012102928A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Heat exchanger, and vehicle air conditioner including the same
JP2019086196A (en) * 2017-11-06 2019-06-06 三菱電機株式会社 Heat exchanger header and heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174496A (en) 2000-12-08 2002-06-21 Mitsubishi Heavy Ind Ltd Heat exchanger and its manufacturing method
DE10316756A1 (en) 2003-04-10 2004-10-28 Behr Gmbh & Co. Kg Heat exchangers, in particular intercoolers for motor vehicles
JP6934962B2 (en) 2018-12-13 2021-09-15 Kddi株式会社 Communication equipment, information processing methods, and programs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114288A (en) * 1997-06-24 1999-01-22 Denso Corp Heat exchanger
JP2002213893A (en) * 2001-01-16 2002-07-31 Zexel Valeo Climate Control Corp Heat exchanger
JP2004239592A (en) * 2002-12-11 2004-08-26 Calsonic Kansei Corp Vehicular heat exchanger
JP2012102928A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Heat exchanger, and vehicle air conditioner including the same
JP2019086196A (en) * 2017-11-06 2019-06-06 三菱電機株式会社 Heat exchanger header and heat exchanger

Also Published As

Publication number Publication date
DE112020006995T5 (en) 2023-01-26
JP7361887B2 (en) 2023-10-16
JPWO2021199458A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US5456006A (en) Method for making a heat exchanger tube
JP2008238223A (en) Brazing method
KR20150053135A (en) Heat exchanger and Manufacturing method fo the same
JPH07318289A (en) Heat exchanger
JP2004020174A (en) Flat radiating fin, heat exchanger using it, and its manufacturing method
JP2016038141A (en) Heat exchanger
GB2486788A (en) A heat exchanger, a tube for a heat exchanger, a method of making a tube for a heat exchanger and a method of making a heat exchanger
JP2012247091A (en) Fin and tube type heat exchanger
WO2021199458A1 (en) Heat exchanger header, heat exchanger, method for manufacturing heat exchanger header, and method for manufacturing heat exchanger
JP2016097434A (en) Tube for heat exchanger and its manufacturing method
JP2007144496A (en) Joint structure and its manufacturing method
WO2020189483A1 (en) Heat exchanger and heat exchanger manufacturing method
JP2007170805A (en) Brazed structure and method of manufacturing the same
JP4239840B2 (en) Mouth expansion jig for heat exchanger tubes
JP2019086196A (en) Heat exchanger header and heat exchanger
AU2002320794B2 (en) Heat exchanger
JP2007107754A (en) Heat exchanger and its manufacturing method
JP2005331176A (en) Heat exchanger
WO2021251186A1 (en) Heat exchanger header, heat exchanger, and method for manufacturing heat exchanger header
JP4506435B2 (en) Heat exchanger
WO2021186766A1 (en) Heat exchanger header, heat exchanger, method for producing heat exchanger header and method for producing heat exchanger
JP4222195B2 (en) Heat exchanger
JP2005127676A (en) Heat exchanger, and manufacturing method of heat exchanger
JP6632868B2 (en) Aluminum heat exchanger
JP4103762B2 (en) Brazed flat tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511500

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20928580

Country of ref document: EP

Kind code of ref document: A1