WO2020100897A1 - Heat exchanger and heat exchanger manufacturing method - Google Patents

Heat exchanger and heat exchanger manufacturing method Download PDF

Info

Publication number
WO2020100897A1
WO2020100897A1 PCT/JP2019/044343 JP2019044343W WO2020100897A1 WO 2020100897 A1 WO2020100897 A1 WO 2020100897A1 JP 2019044343 W JP2019044343 W JP 2019044343W WO 2020100897 A1 WO2020100897 A1 WO 2020100897A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
header
tube
transfer tube
heat exchanger
Prior art date
Application number
PCT/JP2019/044343
Other languages
French (fr)
Japanese (ja)
Inventor
裕斗 淺井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020555722A priority Critical patent/JPWO2020100897A1/en
Publication of WO2020100897A1 publication Critical patent/WO2020100897A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding

Definitions

  • the present invention relates to a heat exchanger and a method for manufacturing the heat exchanger.
  • a heat exchanger is a device that performs heat exchange between the heat transport fluid flowing from an external device and the atmosphere, that is, radiates or absorbs heat, and then returns the heat transport fluid to the original external device.
  • a general heat exchanger includes a pair of header pipes arranged in parallel with each other, a plurality of heat transfer pipes communicating between the pair of header pipes, and a large number of heat transfer pipes penetrating the plurality of heat transfer pipes. It is equipped with fins. Further, the plurality of heat transfer tubes extend in a direction orthogonal to the header tube and are arranged in parallel with each other.
  • Heat transfer fluid flows into one of the header tubes from an external device.
  • the heat-transporting fluid that has flown into one of the header tubes flows through the heat transfer tube to the other header tube. While flowing through the heat transfer tube, the heat transport fluid exchanges heat with the atmosphere. The heat transfer fluid that has undergone heat exchange is returned to the original external device through the other header tube.
  • the heat transfer tube is generally fixed to the header tube by brazing. Further, the joint portion between the header tube and the heat transfer tube needs to be airtightly configured. Therefore, when fixing the heat transfer tube to the header tube, it is necessary to use a sufficient amount of brazing material. However, if a large amount of brazing filler metal is used, excess brazing filler metal may overflow from the joint between the header pipe and the heat transfer pipe, flow into the heat transfer pipe from the end of the heat transfer pipe, and solidify there. Occurs. When the surplus brazing material solidifies inside the heat transfer tube, the heat transfer tube is clogged and the performance of the heat exchanger deteriorates.
  • the width of the gap between the outer peripheral surface of the heat transfer tube and the inner wall of the header tube is 0.05 mm on both sides in the width direction of the heat transfer tube of the heat exchanger. It is disclosed that the distance is 2 mm or less. According to Patent Document 1, the surplus brazing material flows into the gap between the outer peripheral surface of the heat transfer tube and the header tube to form a fillet, so that the surplus brazing material flows into the heat transfer tube and solidifies there. Is suppressed.
  • the present invention has been made in view of the above problems, and is a heat exchanger capable of suppressing the occurrence of clogging of a heat transfer tube due to the inflow of a brazing filler metal, in which the header tube has a small cross-sectional shape. It is an object to provide an exchanger and a method for manufacturing such a heat exchanger.
  • the heat exchanger includes a pair of header tubes that are spaced apart from each other, and is disposed between the pair of header tubes.
  • a plurality of heat transfer tubes extending in a direction orthogonal to each other and forming a flow path for flowing a fluid from one of the pair of header tubes to the other. Then, in the cross-sectional shape obtained by cutting the header pipe and the heat transfer pipe in a plane orthogonal to the longitudinal direction of the header pipe, the central axis of the heat transfer pipe connects the center of one header pipe and the center of the other header pipe. It is displaced in the same direction with respect to the formed center line.
  • the heat exchanger according to the present invention is provided with a space between the header pipe and the heat transfer pipe, into which excess brazing material flows and is solidified there, only on one side of the heat transfer pipe. Therefore, according to the present invention, the dimension of the cross-sectional shape of the header pipe can be reduced.
  • FIG. 1A Front view of the heat exchanger shown in FIG. 1A.
  • FIG. 5A The figure which shows the state which laminated
  • FIG. 5A The figure which shows the state which laminated
  • Sectional drawing which shows the shape of the header pipe which concerns on a 3rd modification according to FIG.
  • Front view of the heat exchanger shown in FIG. 7A Sectional drawing which shows the shape of the header pipe which concerns on a 5th modification according to FIG.
  • FIG. 10 A view of the partition plate included in the header pipe shown in FIG. 10 as seen from the direction indicated by arrow A in FIG. It is a figure which shows the manufacturing process of the heat exchanger which concerns on embodiment of this invention, Comprising: The sectional view which shows the state of the heat exchanger before brazing according to FIG. Sectional drawing which shows the state after brazing the heat exchanger shown in FIG. 12A according to FIG.
  • FIG. 1A is a perspective view of the heat exchanger 1 according to the embodiment of the present invention.
  • FIG. 1B is a front view of the heat exchanger 1.
  • the heat exchanger 1 includes two header tubes 2.
  • the header tubes 2 are arranged at a distance from each other and are erected vertically.
  • a plurality of heat transfer tubes 3 are arranged between the two header tubes 2.
  • the heat transfer tube 3 is a member that forms a flow path for circulating a heat transport fluid between the two header tubes 2, and its longitudinal axis extends in the horizontal direction. Further, the heat transfer tubes 3 are arranged at equal intervals in the vertical direction.
  • a large number of heat transfer fins 4 are arranged between the two header tubes 2. All the heat transfer tubes 3 penetrate all the heat transfer fins 4 and are brazed to the heat transfer fins 4.
  • a pipe (not shown) for supplying a heat-transporting fluid from an external device (not shown) to the heat exchanger 1 is connected to one of the header pipes 2.
  • the heat-transporting fluid that has flowed into the one header pipe 2 from the external device flows through the heat transfer pipe 3 to the other header pipe 2.
  • the heat transport fluid exchanges heat with the atmosphere while passing through the heat transfer tube 3. That is, the heat transport fluid radiates heat to the atmosphere or absorbs heat from the atmosphere while passing through the heat transfer tube 3.
  • the heat transport fluid releases its own heat to the atmosphere.
  • the heat transfer fluid absorbs heat from the atmosphere.
  • the heat transport fluid that has flowed into the other header pipe 2 is returned to the external device through a pipe (not shown) connected to the other header pipe 2.
  • the orthogonal coordinate system fixed to the heat exchanger 1 shown in FIGS. 1A and 1B is used.
  • the X axis is taken in the length direction of the heat transfer tube 3 and the Y axis is taken in the length direction of the header tube 2.
  • the Z axis is taken in the direction orthogonal to the X axis and the Y axis. 2 and subsequent figures, it should be understood that the relationship with the overall configuration shown in FIGS. 1A and 1B is based on the orientation of each axis.
  • FIG. 2 is a cross-sectional view of the heat exchanger 1 cut along a plane orthogonal to the longitudinal direction of the header tube 2, that is, a plane shown by the line AA ′ in FIG. 1B.
  • the X axis extends in the horizontal direction and the Z axis extends in the vertical direction.
  • the Y axis extends in a direction that penetrates the plane of the drawing.
  • the header pipe 2 is a cylindrical pipe having a circular cross section.
  • the heat transfer tube 3 is attached at a position deviated to the upper side of the header tube 2 in FIG. 2, and the central axis C3 of the heat transfer tube 3 is with respect to the center line C2 connecting the centers of the two header tubes 2.
  • the length D is set so that a space 5 having a space width W is formed between the outer surface of the heat transfer tube 3 and the inner surface of the header tube 2 below the heat transfer tube 3.
  • the space existing between the outer surface of the heat transfer tube 3 and the inner surface of the header tube 2 in the cross-sectional shape of the heat transfer tube 3 is called a space
  • the dimension of the space in the Z-axis direction is called a space width.
  • the heat transfer tube 3 is watertightly joined to the header tube 2 by brazing.
  • the space 5 is a portion into which excess brazing material overflowing from the joint between the heat transfer tube 3 and the header tube 2 flows when the heat transfer tube 3 is brazed to the header tube 2.
  • the excess brazing material that melts during the brazing and overflows from the joint between the heat transfer tube 3 and the header tube 2 flows into the space 5 by the action of gravity, and then is cooled and solidified there. Then, the fillet M is formed. In this way, the surplus brazing material flows into the space 5 and is solidified there, so that the surplus brazing material does not flow into the heat transfer tube 3 and block the heat transfer tube 3.
  • the space width of the space can be zero.
  • the space width of the space is not limited to zero.
  • FIG. 3 is a sectional view showing the heat exchanger 1 taken along the plane indicated by the line BB ′ in FIG. 1B.
  • the Z axis extends in the horizontal direction and the Y axis extends in the vertical direction.
  • the X axis extends in a direction that penetrates the plane of the drawing.
  • the heat transfer tube 3 has a flat cross section, and a plurality of flow paths 3a are arranged in the longitudinal direction of the flat cross section.
  • heat transfer tube 3 is formed of a multi-hole flat tube. The left end of the heat transfer tube 3 in FIG. 3 is higher than the right end.
  • the external air flowing into the heat exchanger 1 flows from the left side to the right side in the figure. That is, in the present embodiment, the heat transfer tube 3 has a high upwind side and a low downwind side of the flow of the external air flowing into the heat exchanger 1. Therefore, when dew condensation occurs on the surface of the heat transfer tube 3, the water droplets generated by the dew condensation are quickly discharged by wind pressure and gravity. Since the water droplets are quickly discharged in this way, it is suppressed that the water droplets are further cooled on the spot and become frost or ice to block the air passage.
  • the shape and configuration of the heat exchanger 1 are not limited to the above. Below, the modification of the heat exchanger 1 is demonstrated.
  • FIG. 4A is a cross-sectional view showing the shape of the header pipe 2 according to the first modification according to FIG.
  • the header tube 2 according to the first modification includes a contact surface 2b at a part of the peripheral edge of the insertion opening 2a into which the end of the heat transfer tube 3 is inserted.
  • FIG. 4B when the heat transfer tube 3 is attached to the header tube 2, a part of the end surface 3 b of the heat transfer tube 3 contacts the contact surface 2 b of the header tube 2.
  • the contact surface 2b is provided on a part of the peripheral edge of the insertion opening 2a of the header tube 2, the positioning of the heat transfer tube 3 when the heat transfer tube 3 is attached to the header tube 2 becomes easy.
  • FIG. 5A is a cross-sectional view showing the shape of the header pipe 2 according to the second modification according to FIG.
  • the outer dimension measured in the direction parallel to the heat transfer tube 3, that is, the dimension in the width direction indicated by B in FIG. 5A is the direction orthogonal to the heat transfer tube 3, that is, FIG. 5A.
  • It is composed of a flat tube larger than the dimension in the height direction indicated by H.
  • the heat transfer tube 3 is formed of a flat tube, the height H can be made smaller than when the heat transfer tube 3 is formed of a cylindrical tube having the same cross-sectional area. Therefore, if the heat transfer tube 3 is formed of a flat tube, as shown in FIG.
  • the stacking height LH when the plurality of heat exchangers 1 are stacked and arranged becomes small.
  • FIG. 6 is a cross-sectional view showing the shape of the header pipe 2 according to the third modification according to FIG.
  • the contour of the portion 2c into which the heat transfer tube 3 is inserted has a straight line, and the portion of the portion 2d facing the portion 2c into which the heat transfer tube 3 is inserted is located. It is a D-shaped tube whose contour is an arc.
  • the portion can be used as a reference when fixing the header tube 2 to the jig for assembling the heat exchanger 1. Therefore, the header tube 2 Positioning with respect to the assembly jig becomes easy.
  • FIGS. 7A and 7B are external views of the heat exchanger according to the fourth modified example
  • FIG. 7A is a perspective view of the heat exchanger 1
  • FIG. 7B is a front view of the heat exchanger 1.
  • the basic configuration and operation of the heat exchanger 1 according to the fourth modified example are the same as those of the heat exchanger 1 according to the above-described embodiment and the first to third modified examples.
  • the heat transfer fins 4 included in the heat exchanger 1 according to the fourth modification are characterized by being formed by bending a flat plate in zigzag.
  • FIG. 8 is a cross-sectional view showing the shape of the header pipe 2 according to the fifth modified example according to FIG.
  • the header pipe 2 according to the fifth modification is provided with a distribution pipe 7 which is connected to an external device (not shown) and into which the heat transport fluid directly flows. Therefore, the cross-sectional shape of the header pipe 2 is connected to an external device (not shown) and the heat transfer fluid flows in from the external device, and the heat transfer pipe 3 is connected and the heat transfer fluid flows out toward the heat transfer pipe 3. It is divided into an outflow section 9 that allows it.
  • the distribution pipe 7 functions as a partition member that partitions the cross-sectional shape of the header pipe 2 into the inflow section 8 and the outflow section 9.
  • a communication hole 10 that communicates between the inflow section 8 and the outflow section 9 is formed in a portion of the distribution pipe 7 that faces the end surface of the heat transfer tube 3. Therefore, the heat transport fluid that has flowed into the inflow section 8 from an external device (not shown) flows out to the outflow section 9 through the communication hole 10, flows toward the heat transfer tube 3, and flows into the heat transfer tube 3. .
  • the heat exchanger 1 according to the fifth modification includes the distribution pipe 7 having the communication hole 10 formed inside the header pipe 2, the heat transfer pipe 3 is formed inside the header pipe 2.
  • the turbulence of the flow of the heat-transporting fluid toward the side is suppressed. Therefore, the flow path resistance or pressure loss inside the header pipe 2 is reduced, and the heat transport fluid easily flows.
  • the arrangement or the direction of the communication hole 10 is adjusted, the disturbance of the flow of the heat transport fluid can be suppressed more effectively.
  • the header pipe 2 into which the liquid flows for example, the header pipe 2 on the inflow side of the heat exchanger 1 included in the outdoor unit of the air conditioner is provided with the distribution pipe 7, the flow of the heat transport fluid in the liquid state is disturbed. Since the flow resistance or pressure loss inside the header pipe 2 can be reduced by suppressing the pressure drop, the performance of the air conditioner is improved.
  • the partition member provided in the header pipe 2 is not limited to the distribution pipe 7.
  • the partition member is not limited to one that partitions the header pipe 2 into two sections.
  • the partition member may partition the cross-sectional shape of the header pipe 2 into a plurality of partitions of three or more.
  • FIG. 10 is a cross-sectional view showing the shape of the header pipe 2 according to the sixth modification according to FIG.
  • the header tube 2 according to the fifth modified example includes a first partition wall 11 that partitions the cross-sectional shape of the header tube 2 into an inflow section 8 and an outflow section 9.
  • the header pipe 2 includes a second partition wall 12 that partitions the inflow section 8 into a first inflow section 13 and a second inflow section 14.
  • the header pipe 2 according to the sixth modified example includes the first partition wall 11 and the second partition wall 12, so that the cross-sectional shape of the header pipe 2 is the first inflow section 13 and the second partition wall. It is divided into three sections, an inflow section 14 and an outflow section 9.
  • the first partition wall 11 functions as a partition member that partitions the cross-sectional shape of the header pipe 2 into the inflow section 8 and the outflow section 9.
  • the second partition 12 functions as a second partition member that partitions the inflow section 8 into a plurality of sections.
  • a communication hole 10 that connects between the first inflow section 13 or the second inflow section 14 and the outflow section 9 is provided in a portion of the first partition wall 11 facing the end surface of the heat transfer tube 3. Has been drilled. Therefore, the heat transport fluid that has flowed into the first inflow section 13 or the second inflow section 14 from an external device (not shown) flows out to the outflow section 9 through the communication hole 10 and travels toward the end surface of the heat transfer tube 3. Flowing.
  • sequence of the communication hole 10 connected to the 1st inflow division 13 and the arrangement of the communication hole 10 connected to the 2nd inflow division 14 are arrange
  • the inflow section 8 is further partitioned into the first inflow section 13 and the second inflow section 14, so that the flow path resistance in the header pipe 2 is reduced.
  • the pressure loss can be further reduced.
  • the inflow section 8 is divided into two sections, but the inflow section 8 may be divided into three or more sections.
  • the header pipe 2 according to the sixth modification can be manufactured by integrally molding the entire header pipe 2 including the first partition wall 11 and the second partition wall 12 by extrusion molding.
  • the header tube 2, the heat transfer tube 3, and the heat transfer fin 4 are each cut out from a material and manufactured. After that, the heat transfer fins 4 are arranged, the heat transfer tubes 3 are inserted into the arranged heat transfer fins 4, and the heat transfer tubes 3 are attached to the heat transfer fins 4. The heat transfer fins 4 are arranged and positioned, and the heat transfer tubes 3 are inserted by fixing the heat transfer fins 4 to an assembly jig. After that, a brazing material is applied to the outer surface of the header tube 2 and the outer surface of the end of the heat transfer tube 3.
  • the temporarily assembled heat exchanger 1 is temporarily placed on the surface plate 6.
  • the header tube 2 and the heat transfer tube 3 are made horizontal. That is, the heat exchanger 1 is temporarily placed on the surface plate 6 with the XY plane horizontal.
  • the Z axis extends in the vertical direction. That is, at this time, gravity acts in the Z-axis direction.
  • the central axis C3 of the heat transfer tube 3 is located above the central line C2 connecting the centers of the two header tubes 2.
  • the space width W is arranged below the heat transfer tube 3.
  • a temporary placement jig is provided instead of the surface plate 6, the temporarily assembled heat exchanger 1 is placed on the temporary placement jig, and the heat exchanger 1 is positioned using the temporary placement jig. Alternatively, it may be fixed.
  • the heat exchanger 1 is heated to melt the brazing material. That is, brazing is performed.
  • the brazing material melts the excess brazing material overflowing from the joint portion between the heat transfer tube 3 and the header tube 2 flows along the outer surface of the heat transfer tube 3 and flows toward the space 5 below the heat transfer tube 3 due to gravity.
  • the surplus brazing material is solidified under the heat transfer tube 3 to form the fillet M, as shown in FIG. 12B.
  • the excess brazing material overflowing from the joint between the heat transfer tube 3 and the header tube 2 is solidified below the heat transfer tube 3 to form the fillet M. Therefore, the excess brazing material overflowing from the joint between the heat transfer tube 3 and the header tube 2 does not flow into the heat transfer tube 3 and block the heat transfer tube 3.
  • the excess brazing material flows into the heat transfer tube 3, It is possible to prevent the heat transfer tube 3 from being clogged.
  • a space 5 having a space width W is formed between one end in the Z-axis direction in the cross-sectional shape of the heat transfer tube 3 and the inner surface of the header tube 2,
  • the space width of the space 5 between the other end of the heat transfer tube 3 in the Z-axis direction in the cross-sectional shape and the inner surface of the header tube 2 can be made smaller than W or 0.
  • the dimension in the width direction in the cross section of the header tube 2, that is, the dimension of the header tube 2 in the Z axis direction is set. Can be made smaller.
  • the heat transfer fin 4 is not an essential component. That is, the heat exchanger 1 may not include the heat transfer fins 4. Further, when the heat exchanger 1 is provided with the heat transfer fins 4, the shape of the heat transfer fins 4 is not limited to that shown in FIGS. Further, the heat transfer fins 4 may be formed integrally with the heat transfer tube 3.
  • the shape and dimensions of the header pipe 2 are not limited to those shown in each drawing.
  • the shape and size of the header tube 2 can be freely designed. Further, the number of heat transfer tubes 3 and the number of heat transfer fins 4 can be freely selected.
  • a flat multi-hole tube is shown as a specific example of the heat transfer tube 3, but the specific shape of the heat transfer tube 3 is not limited to the flat multi-hole tube.
  • the heat transfer tube 3 may have a single flow path.
  • the cross-sectional shape of the heat transfer tube 3 can be freely selected.
  • the cross-sectional shape of the heat transfer tube 3 may be a perfect circle or an ellipse, a rectangle or another shape.
  • the materials forming the header tube 2 and the heat transfer tube 3 are not limited.
  • the optimum material can be selected according to the purpose of use of the heat exchanger 1, the environment of the installation location, the properties of the heat transport fluid, and the like.
  • the type of brazing material is not limited. The brazing material may be used by selecting a type having a good compatibility with the material forming the header tube 2 and the heat transfer tube 3.
  • the length D is set to a size such that the space 5 having the space width W is formed between the outer surface of the heat transfer tube 3 and the inner surface of the header tube 2 below the heat transfer tube 3.
  • the space width W may be any size as long as it corresponds to the volume of the fillet M formed by the excess brazing material overflowing from the joint between the header tube 2 and the heat transfer tube 3 during brazing. That is, the space 5 has only to have a size such that the excess brazing material overflowing from the joint between the header tube 2 and the heat transfer tube 3 at the time of brazing can be held there. Therefore, at the time of brazing, the amount of excess brazing material overflowing from the joint between the header tube 2 and the heat transfer tube 3 may be estimated to determine the space width W corresponding to it.
  • the heat transfer tube 4 is attached to the heat transfer tube 3 and then the heat transfer tube 3 is attached to the header tube 2 has been shown, but the order of assembling the header tube 2, the heat transfer tube 3 and the heat transfer fin 4 is limited. Not done.
  • the heat exchanger 1 may not include the heat transfer fins 4, or the heat transfer tubes 3 may be attached to the header tubes 2 and fixed by brazing before heat transfer to the heat transfer tubes 3. The fin 4 may be attached.
  • the temporary placement posture of the heat exchanger 1, the vertical axis of the central axis C3 of the heat transfer tube 3 and the central line C2 of the header tube 2 are limited. However, these limit the posture of the heat exchanger 1 when brazing, and do not limit the posture of the heat exchanger 1 during installation or use.
  • the heat exchanger 1 is used by being installed vertically, horizontally, diagonally, or inverted upside down.
  • the header tube 2 and the heat transfer tube 3 are horizontal and the heat exchanger 1 is temporarily placed on the surface plate 6, but in this case, “horizontal” Is not limited to “geometrically exact horizontal”. In this case, it is sufficient for the heat exchanger 1 to be temporarily placed so that the space width W is located below the heat transfer tube 3. Therefore, “temporarily placing horizontally” means that the header tube 2 and the heat transfer tube 3 are temporarily placed so that they can be seen horizontally at a glance.
  • the present invention can be suitably used as a heat exchanger and a heat exchanger manufacturing method.

Abstract

A heat exchanger (1) comprises: a pair of header pipes (2) that are disposed with a space therebetween; and a plurality of heat transfer pipes (3) that are disposed between the pair of header pipes (2), that extend in a direction perpendicular to the pair of header pipes (2), and that form channels in which fluid flows from one of the pair of header pipes (2) to the other. In addition, in the cross-section formed by cutting the header pipes (2) and the heat transfer pipes (3) with a plane perpendicular to the longitudinal direction of the header pipe (2), the central axis (C3) of the heat transfer pipe (3) is shifted in the same direction with respect to a central line (C2) formed by connecting the center of the cross-sectional shape of one header pipe (2) and the center of the cross-sectional shape of the other header pipe (2).

Description

熱交換器及び熱交換器の製造方法Heat exchanger and method for manufacturing heat exchanger
 本発明は、熱交換器及び熱交換器の製造方法に関する。 The present invention relates to a heat exchanger and a method for manufacturing the heat exchanger.
 熱交換器は、外部装置から流入する熱輸送流体と大気との間で熱交換、つまり放熱又は吸熱を行って、その後に熱輸送流体を、元の外部装置に還流させる装置である。一般的な熱交換器は、互いに平行に配置された1対のヘッダ管と、1対のヘッダ管の間を連絡する複数本の伝熱管と、複数本の伝熱管が貫通する多数の伝熱フィンとを備えている。また、複数本の伝熱管は、ヘッダ管に対して直交する方向に延びていて、互いに平行に配列されている。 A heat exchanger is a device that performs heat exchange between the heat transport fluid flowing from an external device and the atmosphere, that is, radiates or absorbs heat, and then returns the heat transport fluid to the original external device. A general heat exchanger includes a pair of header pipes arranged in parallel with each other, a plurality of heat transfer pipes communicating between the pair of header pipes, and a large number of heat transfer pipes penetrating the plurality of heat transfer pipes. It is equipped with fins. Further, the plurality of heat transfer tubes extend in a direction orthogonal to the header tube and are arranged in parallel with each other.
 ヘッダ管の一方には、外部装置から熱輸送流体が流入する。一方のヘッダ管に流入した熱輸送流体は、伝熱管を通って、他方のヘッダ管に流れる。伝熱管の中を流れる間に、熱輸送流体は大気との間で熱交換を行う。熱交換を済ませた熱輸送流体は、他方のヘッダ管を通って、元の外部装置に還流される。 Heat transfer fluid flows into one of the header tubes from an external device. The heat-transporting fluid that has flown into one of the header tubes flows through the heat transfer tube to the other header tube. While flowing through the heat transfer tube, the heat transport fluid exchanges heat with the atmosphere. The heat transfer fluid that has undergone heat exchange is returned to the original external device through the other header tube.
 上記の熱交換器において、伝熱管は、ろう付けによってヘッダ管に固定されるのが一般的である。また、ヘッダ管と伝熱管の接合部は、気密に構成される必要がある。そのため、伝熱管をヘッダ管に固定する際には、十分な量のろう材を使用する必要がある。しかしながら、ろう材を多めに使用すると、ヘッダ管と伝熱管の接合部から余剰ろう材が溢れて、伝熱管の端部から伝熱管の内部に流入して、そこで固化することがあるという問題が生じる。伝熱管の内部で余剰ろう材が固化すると、伝熱管に詰まりが生じて、熱交換器の性能が低下する。一方、余剰ろう材の溢れを防止するために、ろう材の量を減らすと、ろう付け継手に隙間が生じて、気密性が損なわれるおそれがある。このように、伝熱管の詰まり防止と継手の気密性の確保を両立させることは難しい。 In the above heat exchanger, the heat transfer tube is generally fixed to the header tube by brazing. Further, the joint portion between the header tube and the heat transfer tube needs to be airtightly configured. Therefore, when fixing the heat transfer tube to the header tube, it is necessary to use a sufficient amount of brazing material. However, if a large amount of brazing filler metal is used, excess brazing filler metal may overflow from the joint between the header pipe and the heat transfer pipe, flow into the heat transfer pipe from the end of the heat transfer pipe, and solidify there. Occurs. When the surplus brazing material solidifies inside the heat transfer tube, the heat transfer tube is clogged and the performance of the heat exchanger deteriorates. On the other hand, if the amount of the brazing filler metal is reduced in order to prevent the excess brazing filler metal from overflowing, a gap may be formed in the brazing joint and the airtightness may be impaired. In this way, it is difficult to achieve both prevention of clogging of the heat transfer tube and ensuring of airtightness of the joint.
 特許文献1には、この問題を解決するための方法として、熱交換器の伝熱管の幅方向の両側において、伝熱管の外周面とヘッダ管の内壁との間の隙間の幅を0.05mm以上2mm以下とすることが開示されている。特許文献1によれば、余剰ろう材が、伝熱管の外周面とヘッダ管との間の隙間に回り込んでフィレットを形成するので、余剰ろう材が伝熱管の内部に流入して、そこで固化することが抑制される。 In Patent Document 1, as a method for solving this problem, the width of the gap between the outer peripheral surface of the heat transfer tube and the inner wall of the header tube is 0.05 mm on both sides in the width direction of the heat transfer tube of the heat exchanger. It is disclosed that the distance is 2 mm or less. According to Patent Document 1, the surplus brazing material flows into the gap between the outer peripheral surface of the heat transfer tube and the header tube to form a fillet, so that the surplus brazing material flows into the heat transfer tube and solidifies there. Is suppressed.
特開2009-168350号公報JP, 2009-168350, A
 しかしながら、特許文献1に記載の発明においては、伝熱管の幅方向の両側に隙間を形成する必要があるので、ヘッダ管の断面形の寸法が大きくなるという問題がある。その結果、熱交換器の寸法が大きくなるという問題がある。 However, in the invention described in Patent Document 1, it is necessary to form gaps on both sides in the width direction of the heat transfer tube, so that there is a problem that the cross-sectional dimension of the header tube becomes large. As a result, there is a problem that the size of the heat exchanger becomes large.
 本発明は、上記の問題に鑑みてなされたものであり、ろう材の流入による伝熱管の詰まりの発生を抑制することができる熱交換器であって、ヘッダ管の断面形の寸法が小さい熱交換器と、かかる熱交換器の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is a heat exchanger capable of suppressing the occurrence of clogging of a heat transfer tube due to the inflow of a brazing filler metal, in which the header tube has a small cross-sectional shape. It is an object to provide an exchanger and a method for manufacturing such a heat exchanger.
 上記の目的を達成するために、本発明に係る熱交換器は、間隔を空けて配置された1対のヘッダ管と、1対のヘッダ管の間に配置されて、1対のヘッダ管に対して直交する方向に延びて、1対のヘッダ管の一方から他方に流体を流す流路を形成する複数本の伝熱管と、を備える。そして、ヘッダ管と伝熱管とを、ヘッダ管の長手方向に直交する平面で切断した断面形において、伝熱管の中心軸は、一方のヘッダ管の中心と他方のヘッダ管の中心とを結んで形成される中心線に対して、同じ方向にずれている。 In order to achieve the above-mentioned object, the heat exchanger according to the present invention includes a pair of header tubes that are spaced apart from each other, and is disposed between the pair of header tubes. A plurality of heat transfer tubes extending in a direction orthogonal to each other and forming a flow path for flowing a fluid from one of the pair of header tubes to the other. Then, in the cross-sectional shape obtained by cutting the header pipe and the heat transfer pipe in a plane orthogonal to the longitudinal direction of the header pipe, the central axis of the heat transfer pipe connects the center of one header pipe and the center of the other header pipe. It is displaced in the same direction with respect to the formed center line.
 本発明に係る熱交換器は、ヘッダ管と伝熱管の間にあって、余剰ろう材を流入させて、そこで固化させるスペースを、伝熱管の一方の側だけに備える。そのため、本発明によれば、ヘッダ管の断面形の寸法を小さくすることができる。 The heat exchanger according to the present invention is provided with a space between the header pipe and the heat transfer pipe, into which excess brazing material flows and is solidified there, only on one side of the heat transfer pipe. Therefore, according to the present invention, the dimension of the cross-sectional shape of the header pipe can be reduced.
本発明の実施の形態に係る熱交換器の熱交換器の斜視図The perspective view of the heat exchanger of the heat exchanger which concerns on embodiment of this invention. 図1Aに記載の熱交換器の正面図Front view of the heat exchanger shown in FIG. 1A. 図1A、図1Bに記載の熱交換器を、図1BにおいてAA’線で示す平面で切断して示す断面図Sectional drawing which shows the heat exchanger described in FIGS. 1A and 1B by cutting along the plane indicated by the line AA ′ in FIG. 1B. 図1A、図1Bに記載の熱交換器を、図1BにおいてBB’線で示す平面で切断して示す断面図Sectional drawing which cut | disconnects and shows the heat exchanger shown in FIG. 1A and FIG. 1B by the plane shown by BB 'line in FIG. 1B. 第1の変形例に係るヘッダ管の形状を、図2に準じて示す断面図Sectional drawing which shows the shape of the header pipe which concerns on a 1st modification according to FIG. 図4Aに記載のヘッダ管に伝熱管を取り付けた状態を示す図The figure which shows the state which attached the heat transfer tube to the header tube of FIG. 4A. 第2の変形例に係るヘッダ管の形状を、図2に準じて示す断面図Sectional drawing which shows the shape of the header pipe which concerns on a 2nd modification according to FIG. 図5Aに記載のヘッダ管を備える2台の熱交換器を積層配置した状態を示す図The figure which shows the state which laminated | stacked and arranged two heat exchangers provided with the header pipe of FIG. 5A. 図5Aに記載のヘッダ管を備える2台の熱交換器を、伝熱管の長さ方向に互いにずらして積層配置した状態を示す図The figure which shows the state which laminated | stacked the two heat exchangers provided with the header pipe of FIG. 第3の変形例に係るヘッダ管の形状を、図2に準じて示す断面図Sectional drawing which shows the shape of the header pipe which concerns on a 3rd modification according to FIG. 第4の変形例に係る熱交換器の熱交換器の斜視図The perspective view of the heat exchanger of the heat exchanger which concerns on a 4th modification. 図7Aに記載の熱交換器の正面図Front view of the heat exchanger shown in FIG. 7A 第5の変形例に係るヘッダ管の形状を、図2に準じて示す断面図Sectional drawing which shows the shape of the header pipe which concerns on a 5th modification according to FIG. 図8に記載のヘッダ管が備える分配管を図8において矢印Aで示す方向から見る矢視図A view of the distribution pipe provided in the header pipe shown in FIG. 8 as seen from the direction shown by arrow A in FIG. 第6の変形例に係るヘッダ管の形状を、図2に準じて示す断面図Sectional drawing which shows the shape of the header pipe which concerns on a 6th modification according to FIG. 図10に記載のヘッダ管が備える仕切板を図10において矢印Aで示す方向から見る矢視図A view of the partition plate included in the header pipe shown in FIG. 10 as seen from the direction indicated by arrow A in FIG. 本発明の実施の形態に係る熱交換器の製造過程を示す図であって、ろう付けを行う前の熱交換器の状態を図2に準じて示す断面図It is a figure which shows the manufacturing process of the heat exchanger which concerns on embodiment of this invention, Comprising: The sectional view which shows the state of the heat exchanger before brazing according to FIG. 図12Aに示す熱交換器にろう付けを行った後の状態を、図2に準じて示す断面図Sectional drawing which shows the state after brazing the heat exchanger shown in FIG. 12A according to FIG.
 以下、本発明の実施の形態に係る熱交換器と、熱交換器の製造方法を、図面を参照しながら詳細に説明する。なお、各図面においては、同一または同等の部分に同一の符号を付している。 Hereinafter, a heat exchanger according to an embodiment of the present invention and a method for manufacturing the heat exchanger will be described in detail with reference to the drawings. In each drawing, the same or equivalent parts are designated by the same reference numerals.
 図1Aは、本発明の実施の形態に係る熱交換器1の斜視図である。図1Bは熱交換器1の正面図である。 FIG. 1A is a perspective view of the heat exchanger 1 according to the embodiment of the present invention. FIG. 1B is a front view of the heat exchanger 1.
 図1A、図1Bに示すように、熱交換器1は、2本のヘッダ管2を備えている。各ヘッダ管2は、互いに間隔を空けて配置されていて、垂直に立設されている。2本のヘッダ管2の間には、複数本の伝熱管3が配設されている。伝熱管3は、2本のヘッダ管2の間で熱輸送流体を流通させる流路を形成する部材であって、その長手方向の軸が水平方向に延びている。また、伝熱管3は、上下方向において、等間隔に配置されている。また、2本のヘッダ管2の間には多数の伝熱フィン4が配列されている。全ての伝熱管3は全ての伝熱フィン4を貫通していて、伝熱フィン4にろう付けされている。一方のヘッダ管2には、図示しない外部装置から熱交換器1に、熱輸送流体を供給する図示しない配管が接続される。外部装置から一方のヘッダ管2に流入した熱輸送流体は、伝熱管3を通って、他方のヘッダ管2に流れる。熱輸送流体は伝熱管3を通過する間に、大気との間で熱交換を行う。つまり、熱輸送流体は伝熱管3を通過する間に大気に対して放熱、あるいは、大気から吸熱を行う。熱輸送流体の温度が外気温より高い場合には、熱輸送流体は自身が持つ熱を大気に放出する。熱輸送流体の温度が外気温より低い場合には、熱輸送流体は大気から熱を吸収する。熱交換を終えて、他方のヘッダ管2に流入した熱輸送流体は、他方のヘッダ管2に接続された図示しない配管を通って、外部装置に還流される。 As shown in FIGS. 1A and 1B, the heat exchanger 1 includes two header tubes 2. The header tubes 2 are arranged at a distance from each other and are erected vertically. A plurality of heat transfer tubes 3 are arranged between the two header tubes 2. The heat transfer tube 3 is a member that forms a flow path for circulating a heat transport fluid between the two header tubes 2, and its longitudinal axis extends in the horizontal direction. Further, the heat transfer tubes 3 are arranged at equal intervals in the vertical direction. A large number of heat transfer fins 4 are arranged between the two header tubes 2. All the heat transfer tubes 3 penetrate all the heat transfer fins 4 and are brazed to the heat transfer fins 4. A pipe (not shown) for supplying a heat-transporting fluid from an external device (not shown) to the heat exchanger 1 is connected to one of the header pipes 2. The heat-transporting fluid that has flowed into the one header pipe 2 from the external device flows through the heat transfer pipe 3 to the other header pipe 2. The heat transport fluid exchanges heat with the atmosphere while passing through the heat transfer tube 3. That is, the heat transport fluid radiates heat to the atmosphere or absorbs heat from the atmosphere while passing through the heat transfer tube 3. When the temperature of the heat transport fluid is higher than the ambient temperature, the heat transport fluid releases its own heat to the atmosphere. When the temperature of the heat transfer fluid is lower than the ambient temperature, the heat transfer fluid absorbs heat from the atmosphere. After the heat exchange is completed, the heat transport fluid that has flowed into the other header pipe 2 is returned to the external device through a pipe (not shown) connected to the other header pipe 2.
 なお、本願の各図面においては、図1A、図1Bに付した、熱交換器1に固定された直交座標系を使用する。該直交座標系においては、伝熱管3の長さ方向にX軸を取り、ヘッダ管2の長さ方向にY軸を取っている。そして、X軸とY軸に直交する方向にZ軸を取っている。図2以下においては、各軸の向きを基準に、図1A、図1Bに示された全体構成との関係を理解されたい。 In each drawing of the present application, the orthogonal coordinate system fixed to the heat exchanger 1 shown in FIGS. 1A and 1B is used. In the orthogonal coordinate system, the X axis is taken in the length direction of the heat transfer tube 3 and the Y axis is taken in the length direction of the header tube 2. The Z axis is taken in the direction orthogonal to the X axis and the Y axis. 2 and subsequent figures, it should be understood that the relationship with the overall configuration shown in FIGS. 1A and 1B is based on the orientation of each axis.
 図2は、熱交換器1をヘッダ管2の長手方向に直交する平面、つまり、図1BにおいてAA’線で示す平面で切断して示す断面図である。図2においては、X軸が左右方向に延びて、Z軸が上下方向に延びている。そしてY軸は、紙面を貫く方向に延びている。図2に示すように、ヘッダ管2は、断面が円形をなす円筒管である。また、伝熱管3は、図2においてヘッダ管2の上側に偏った位置に取り付けられていて、伝熱管3の中心軸C3は、2本のヘッダ管2の中心を結ぶ中心線C2に対して、Z軸方向に長さDだけずれた位置にある。長さDは、伝熱管3の下方において、伝熱管3の外面とヘッダ管2の内面の間にスペース幅Wのスペース5が形成される大きさにされる。なお、本明細書においては、伝熱管3の断面形において伝熱管3の外面とヘッダ管2の内面の間に存在する空間をスペースと呼び、スペースのZ軸方向の寸法をスペース幅と呼ぶ。 FIG. 2 is a cross-sectional view of the heat exchanger 1 cut along a plane orthogonal to the longitudinal direction of the header tube 2, that is, a plane shown by the line AA ′ in FIG. 1B. In FIG. 2, the X axis extends in the horizontal direction and the Z axis extends in the vertical direction. The Y axis extends in a direction that penetrates the plane of the drawing. As shown in FIG. 2, the header pipe 2 is a cylindrical pipe having a circular cross section. Further, the heat transfer tube 3 is attached at a position deviated to the upper side of the header tube 2 in FIG. 2, and the central axis C3 of the heat transfer tube 3 is with respect to the center line C2 connecting the centers of the two header tubes 2. , At a position displaced by a length D in the Z-axis direction. The length D is set so that a space 5 having a space width W is formed between the outer surface of the heat transfer tube 3 and the inner surface of the header tube 2 below the heat transfer tube 3. In this specification, the space existing between the outer surface of the heat transfer tube 3 and the inner surface of the header tube 2 in the cross-sectional shape of the heat transfer tube 3 is called a space, and the dimension of the space in the Z-axis direction is called a space width.
 伝熱管3は、ろう付けによってヘッダ管2に水密に接合されている。スペース5は、伝熱管3をヘッダ管2にろう付けする際に、伝熱管3とヘッダ管2の接合部から溢れる余剰ろう材が流入する部位である。後述するように、ろう付けの際に融解して伝熱管3とヘッダ管2の接合部から溢れ出た余剰ろう材は、重力の作用によって、スペース5に流入し、その後、そこで冷却され、固化されて、フィレットMが形成される。このように、余剰ろう材は、スペース5に流入して、そこで固化されるので、余剰ろう材が伝熱管3の中に流入して、伝熱管3を詰まらせることがない。なお、伝熱管3をヘッダ管2にろう付けする際に融解して伝熱管3とヘッダ管2の接合部から溢れる余剰ろう材は、伝熱管3の上方には流れないので、伝熱管3の上方における伝熱管3の外面とヘッダ管2の内面の間のスペースは不要である。したがって、該スペースのスペース幅を0にすることができる。しかしながら、該スペースのスペース幅は0には限定されない。 The heat transfer tube 3 is watertightly joined to the header tube 2 by brazing. The space 5 is a portion into which excess brazing material overflowing from the joint between the heat transfer tube 3 and the header tube 2 flows when the heat transfer tube 3 is brazed to the header tube 2. As will be described later, the excess brazing material that melts during the brazing and overflows from the joint between the heat transfer tube 3 and the header tube 2 flows into the space 5 by the action of gravity, and then is cooled and solidified there. Then, the fillet M is formed. In this way, the surplus brazing material flows into the space 5 and is solidified there, so that the surplus brazing material does not flow into the heat transfer tube 3 and block the heat transfer tube 3. The excess brazing material that melts when the heat transfer tube 3 is brazed to the header tube 2 and overflows from the joint between the heat transfer tube 3 and the header tube 2 does not flow above the heat transfer tube 3, so No space is required between the outer surface of the heat transfer tube 3 and the inner surface of the header tube 2 above. Therefore, the space width of the space can be zero. However, the space width of the space is not limited to zero.
 図3は、熱交換器1を、図1BにおいてBB’線で示す平面で切断して示す断面図である。図3においては、Z軸が左右方向に延びて、Y軸が上下方向に延びている。そしてX軸は、紙面を貫く方向に延びている。図3に示すように、伝熱管3は、扁平な断面形を有していて、その扁平な断面形の長手方向には、複数個の流路3aが配列されている。このように、本実施の形態においては、伝熱管3は多穴扁平管で構成されている。また、伝熱管3は、図3における左端が右端よりも高くされている。また、本実施の形態においては、熱交換器1に流入する外部の空気は、図の左側から右側に向かって流れる。つまり、本実施の形態において、伝熱管3は、熱交換器1に流入する外部の空気の流れの風上側が高く、風下側が低くされている。そのため、伝熱管3の表面に結露が生じた場合に、結露によって生じた水滴は、風圧と重力によって速やかに排出される。このように水滴が速やかに排出されるので、水滴がその場で、さらに冷却されて、霜あるいは氷になって、空気の流路を塞ぐことが抑制される。 FIG. 3 is a sectional view showing the heat exchanger 1 taken along the plane indicated by the line BB ′ in FIG. 1B. In FIG. 3, the Z axis extends in the horizontal direction and the Y axis extends in the vertical direction. The X axis extends in a direction that penetrates the plane of the drawing. As shown in FIG. 3, the heat transfer tube 3 has a flat cross section, and a plurality of flow paths 3a are arranged in the longitudinal direction of the flat cross section. Thus, in the present embodiment, heat transfer tube 3 is formed of a multi-hole flat tube. The left end of the heat transfer tube 3 in FIG. 3 is higher than the right end. Further, in the present embodiment, the external air flowing into the heat exchanger 1 flows from the left side to the right side in the figure. That is, in the present embodiment, the heat transfer tube 3 has a high upwind side and a low downwind side of the flow of the external air flowing into the heat exchanger 1. Therefore, when dew condensation occurs on the surface of the heat transfer tube 3, the water droplets generated by the dew condensation are quickly discharged by wind pressure and gravity. Since the water droplets are quickly discharged in this way, it is suppressed that the water droplets are further cooled on the spot and become frost or ice to block the air passage.
 熱交換器1の形状と構成は、上記のものには限定されない。以下において、熱交換器1の変形例を説明する。 The shape and configuration of the heat exchanger 1 are not limited to the above. Below, the modification of the heat exchanger 1 is demonstrated.
(第1の変形例)
 図4Aは第1の変形例に係るヘッダ管2の形状を、図2に準じて示す断面図である。図4Aに示すように、第1の変形例に係るヘッダ管2は、伝熱管3の端部が挿入される挿入開口2aの周縁の一部に、当接面2bを備える。図4Bに示すように、ヘッダ管2に伝熱管3を取り付けた場合に、伝熱管3の端面3bの一部がヘッダ管2の当接面2bに当接する。このように、ヘッダ管2の挿入開口2aの周縁の一部に当接面2bを備えれば、ヘッダ管2に伝熱管3を取り付ける際の伝熱管3の位置決めが容易になる。
(First modification)
FIG. 4A is a cross-sectional view showing the shape of the header pipe 2 according to the first modification according to FIG. As shown in FIG. 4A, the header tube 2 according to the first modification includes a contact surface 2b at a part of the peripheral edge of the insertion opening 2a into which the end of the heat transfer tube 3 is inserted. As shown in FIG. 4B, when the heat transfer tube 3 is attached to the header tube 2, a part of the end surface 3 b of the heat transfer tube 3 contacts the contact surface 2 b of the header tube 2. As described above, when the contact surface 2b is provided on a part of the peripheral edge of the insertion opening 2a of the header tube 2, the positioning of the heat transfer tube 3 when the heat transfer tube 3 is attached to the header tube 2 becomes easy.
(第2の変形例)
 図5Aは第2の変形例に係るヘッダ管2の形状を、図2に準じて示す断面図である。第2の変形例に係るヘッダ管2は、伝熱管3に平行となる方向で測った外形寸法、つまり図5AにおいてBで示す幅方向の寸法が、伝熱管3に直交する方向、つまり図5AにおいてHで示す高さ方向の寸法よりも大きい扁平管で構成されている。伝熱管3を扁平管で構成すると、伝熱管3を断面積が等しい円筒管で構成する場合に比べて、高さHを小さくすることができる。そのため、伝熱管3を扁平管で構成すると、図5Bに示すように、複数の熱交換器1を積層配置する場合の積層高さLHが小さくなる。図5Cに示すように、複数の熱交換器1を、ヘッダ管2の幅方向、つまりX軸方向にずらして積層配置する場合も同様である。
(Second modified example)
FIG. 5A is a cross-sectional view showing the shape of the header pipe 2 according to the second modification according to FIG. In the header tube 2 according to the second modification, the outer dimension measured in the direction parallel to the heat transfer tube 3, that is, the dimension in the width direction indicated by B in FIG. 5A is the direction orthogonal to the heat transfer tube 3, that is, FIG. 5A. It is composed of a flat tube larger than the dimension in the height direction indicated by H. When the heat transfer tube 3 is formed of a flat tube, the height H can be made smaller than when the heat transfer tube 3 is formed of a cylindrical tube having the same cross-sectional area. Therefore, if the heat transfer tube 3 is formed of a flat tube, as shown in FIG. 5B, the stacking height LH when the plurality of heat exchangers 1 are stacked and arranged becomes small. As shown in FIG. 5C, the same applies to the case where a plurality of heat exchangers 1 are arranged in a stack with the header tubes 2 displaced in the width direction, that is, the X-axis direction.
(第3の変形例)
 図6は、第3の変形例に係るヘッダ管2の形状を、図2に準じて示す断面図である。図6に示すように、第3の変形例に係るヘッダ管2は、伝熱管3が挿入される部位2cの輪郭が直線をなし、伝熱管3が挿入される部位2cと対向する部位2dの輪郭が円弧をなすD形管である。このように、伝熱管3が挿入される部位2cの輪郭を直線にすると、該部位をヘッダ管2を熱交換器1の組立用治具に固定する際の基準として利用できるので、ヘッダ管2の組立用治具に対する位置決めが容易になる。
(Third Modification)
FIG. 6 is a cross-sectional view showing the shape of the header pipe 2 according to the third modification according to FIG. As shown in FIG. 6, in the header tube 2 according to the third modified example, the contour of the portion 2c into which the heat transfer tube 3 is inserted has a straight line, and the portion of the portion 2d facing the portion 2c into which the heat transfer tube 3 is inserted is located. It is a D-shaped tube whose contour is an arc. Thus, if the contour of the portion 2c into which the heat transfer tube 3 is inserted is made straight, the portion can be used as a reference when fixing the header tube 2 to the jig for assembling the heat exchanger 1. Therefore, the header tube 2 Positioning with respect to the assembly jig becomes easy.
(第4の変形例)
 図7A、図7Bは、第4の変形例に係る熱交換器の外形図であって、図7Aは熱交換器1の斜視図であり、図7Bは熱交換器1の正面図である。第4の変形例に係る熱交換器1の基本的な構成と作用は、上記の実施の形態と第1~3の変形例に係る熱交換器1と同一である。図7A、図7Bに示すように、第4の変形例に係る熱交換器1が備える伝熱フィン4は、平板をジグザグに折り曲げて形成されていることを特徴とする。
(Fourth Modification)
7A and 7B are external views of the heat exchanger according to the fourth modified example, FIG. 7A is a perspective view of the heat exchanger 1, and FIG. 7B is a front view of the heat exchanger 1. The basic configuration and operation of the heat exchanger 1 according to the fourth modified example are the same as those of the heat exchanger 1 according to the above-described embodiment and the first to third modified examples. As shown in FIGS. 7A and 7B, the heat transfer fins 4 included in the heat exchanger 1 according to the fourth modification are characterized by being formed by bending a flat plate in zigzag.
(第5の変形例)
 図8は、第5の変形例に係るヘッダ管2の形状を、図2に準じて示す断面図である。図8に示すように、第5の変形例に係るヘッダ管2は、図示しない外部装置に接続されて、当該外部装置から熱輸送流体が直接に流入する分配管7を備えている。そのため、ヘッダ管2の断面形は、図示しない外部装置に接続されて外部装置から熱輸送流体が流入する流入区画8と、伝熱管3に接続されて熱輸送流体を伝熱管3に向けて流出させる流出区画9とに仕切られる。このように、第5の変形例においては、分配管7が、ヘッダ管2の断面形を流入区画8と流出区画9とに仕切る仕切部材として機能する。
(Fifth Modification)
FIG. 8 is a cross-sectional view showing the shape of the header pipe 2 according to the fifth modified example according to FIG. As shown in FIG. 8, the header pipe 2 according to the fifth modification is provided with a distribution pipe 7 which is connected to an external device (not shown) and into which the heat transport fluid directly flows. Therefore, the cross-sectional shape of the header pipe 2 is connected to an external device (not shown) and the heat transfer fluid flows in from the external device, and the heat transfer pipe 3 is connected and the heat transfer fluid flows out toward the heat transfer pipe 3. It is divided into an outflow section 9 that allows it. As described above, in the fifth modified example, the distribution pipe 7 functions as a partition member that partitions the cross-sectional shape of the header pipe 2 into the inflow section 8 and the outflow section 9.
 図9に示すように、分配管7の伝熱管3の端面と対向する部位には、流入区画8と流出区画9の間を連絡する連絡孔10が穿設されている。そのため、図示しない外部装置から流入区画8に流入した熱輸送流体は、連絡孔10を通って、流出区画9に流出して、伝熱管3に向かって流れて、伝熱管3の中に流入する。 As shown in FIG. 9, a communication hole 10 that communicates between the inflow section 8 and the outflow section 9 is formed in a portion of the distribution pipe 7 that faces the end surface of the heat transfer tube 3. Therefore, the heat transport fluid that has flowed into the inflow section 8 from an external device (not shown) flows out to the outflow section 9 through the communication hole 10, flows toward the heat transfer tube 3, and flows into the heat transfer tube 3. .
 このように、第5の変形例に係る熱交換器1は、ヘッダ管2の内部に連絡孔10が穿設された分配管7を備えているので、ヘッダ管2の内部において、伝熱管3に向かう熱輸送流体の流れの乱れが抑制される。そのため、ヘッダ管2内部での流路抵抗あるいは圧力損失が減少するので、熱輸送流体が流れやすくなる。なお、連絡孔10の配置あるいは向きを調整すれば、熱輸送流体の流れの乱れをさらに効果的に抑制できる。特に、液体が流入するヘッダ管2、例えば冷房機の室外機が備える熱交換器1の流入側のヘッダ管2に分配管7を備えると、液体の状態にある熱輸送流体の流れの乱れを抑制して、ヘッダ管2内部での流路抵抗あるいは圧力損失を減少させることができるので、冷房機の性能が向上する。 As described above, since the heat exchanger 1 according to the fifth modification includes the distribution pipe 7 having the communication hole 10 formed inside the header pipe 2, the heat transfer pipe 3 is formed inside the header pipe 2. The turbulence of the flow of the heat-transporting fluid toward the side is suppressed. Therefore, the flow path resistance or pressure loss inside the header pipe 2 is reduced, and the heat transport fluid easily flows. In addition, if the arrangement or the direction of the communication hole 10 is adjusted, the disturbance of the flow of the heat transport fluid can be suppressed more effectively. Particularly, when the header pipe 2 into which the liquid flows, for example, the header pipe 2 on the inflow side of the heat exchanger 1 included in the outdoor unit of the air conditioner is provided with the distribution pipe 7, the flow of the heat transport fluid in the liquid state is disturbed. Since the flow resistance or pressure loss inside the header pipe 2 can be reduced by suppressing the pressure drop, the performance of the air conditioner is improved.
(第6の変形例)
 ヘッダ管2に備える仕切部材は分配管7には限定されない。また仕切部材はヘッダ管2の断面形を2個の区画に仕切るものには限定されない。仕切部材はヘッダ管2の断面形を3個以上の複数個の区画に仕切るものであっても良い。
(Sixth Modification)
The partition member provided in the header pipe 2 is not limited to the distribution pipe 7. The partition member is not limited to one that partitions the header pipe 2 into two sections. The partition member may partition the cross-sectional shape of the header pipe 2 into a plurality of partitions of three or more.
 図10は、第6の変形例に係るヘッダ管2の形状を、図2に準じて示す断面図である。図10に示すように、第5の変形例に係るヘッダ管2は、ヘッダ管2の断面形を流入区画8と流出区画9とに仕切る第1の隔壁11を備えている。また、ヘッダ管2は、流入区画8を第1の流入区画13と第2の流入区画14とに仕切る第2の隔壁12を備えている。このように第6の変形例に係るヘッダ管2は、第1の隔壁11と第2の隔壁12を備えているので、ヘッダ管2の断面形は、第1の流入区画13と第2の流入区画14と流出区画9の3個の区画に仕切られる。このように、第1の隔壁11はヘッダ管2の断面形を流入区画8と流出区画9とに仕切る仕切部材として機能する。第2の隔壁12は流入区画8を更に複数個の区画に仕切る第2の仕切部材として機能する。 FIG. 10 is a cross-sectional view showing the shape of the header pipe 2 according to the sixth modification according to FIG. As shown in FIG. 10, the header tube 2 according to the fifth modified example includes a first partition wall 11 that partitions the cross-sectional shape of the header tube 2 into an inflow section 8 and an outflow section 9. Further, the header pipe 2 includes a second partition wall 12 that partitions the inflow section 8 into a first inflow section 13 and a second inflow section 14. As described above, the header pipe 2 according to the sixth modified example includes the first partition wall 11 and the second partition wall 12, so that the cross-sectional shape of the header pipe 2 is the first inflow section 13 and the second partition wall. It is divided into three sections, an inflow section 14 and an outflow section 9. In this way, the first partition wall 11 functions as a partition member that partitions the cross-sectional shape of the header pipe 2 into the inflow section 8 and the outflow section 9. The second partition 12 functions as a second partition member that partitions the inflow section 8 into a plurality of sections.
 図11に示すように、第1の隔壁11の伝熱管3の端面と対向する部位には、第1の流入区画13あるいは第2の流入区画14と流出区画9の間を連絡する連絡孔10が穿設されている。そのため、図示しない外部装置から第1の流入区画13あるいは第2の流入区画14に流入した熱輸送流体は、連絡孔10を通って、流出区画9に流出して、伝熱管3の端面に向かって流れる。なお、第6の変形例に係る第1の隔壁11においては、第1の流入区画13と繋がる連絡孔10の配列と第2の流入区画14と繋がる連絡孔10の配列とが千鳥状に配置されている。 As shown in FIG. 11, a communication hole 10 that connects between the first inflow section 13 or the second inflow section 14 and the outflow section 9 is provided in a portion of the first partition wall 11 facing the end surface of the heat transfer tube 3. Has been drilled. Therefore, the heat transport fluid that has flowed into the first inflow section 13 or the second inflow section 14 from an external device (not shown) flows out to the outflow section 9 through the communication hole 10 and travels toward the end surface of the heat transfer tube 3. Flowing. In addition, in the 1st partition 11 which concerns on a 6th modification, the arrangement | sequence of the communication hole 10 connected to the 1st inflow division 13 and the arrangement of the communication hole 10 connected to the 2nd inflow division 14 are arrange | positioned in a zigzag form. Has been done.
 このように、第6の変形例に係る熱交換器1は、流入区画8がさらに第1の流入区画13と第2の流入区画14に仕切られているので、ヘッダ管2内の流路抵抗あるいは圧力損失をさらに減少させることができる。なお、第6の変形例においては、流入区画8を2個の区画に仕切る例を示したが、流入区画8は3個以上に仕切られてもよい。また、第6の変形例に係るヘッダ管2は、第1の隔壁11と第2の隔壁12を含むヘッダ管2の全体を、押出成形による一体成型によって製造することができる。 As described above, in the heat exchanger 1 according to the sixth modification, the inflow section 8 is further partitioned into the first inflow section 13 and the second inflow section 14, so that the flow path resistance in the header pipe 2 is reduced. Alternatively, the pressure loss can be further reduced. In the sixth modification, the inflow section 8 is divided into two sections, but the inflow section 8 may be divided into three or more sections. The header pipe 2 according to the sixth modification can be manufactured by integrally molding the entire header pipe 2 including the first partition wall 11 and the second partition wall 12 by extrusion molding.
(熱交換器の製造方法)
 最後に熱交換器1の製造方法を説明する。熱交換器1の製造に当たっては、まず、ヘッダ管2と伝熱管3と伝熱フィン4を、それぞれ、素材から切り出して、製造する。その後、伝熱フィン4を配列し、配列された伝熱フィン4に伝熱管3を挿入して、伝熱管3を伝熱フィン4に取り付ける。なお、伝熱フィン4の配列及び位置決め、及び伝熱管3の挿入は、伝熱フィン4を組立治具に固定して行う。更にその後、ヘッダ管2の外面と伝熱管3の端部の外面にろう材を塗布する。 
(Method of manufacturing heat exchanger)
Finally, a method of manufacturing the heat exchanger 1 will be described. In manufacturing the heat exchanger 1, first, the header tube 2, the heat transfer tube 3, and the heat transfer fin 4 are each cut out from a material and manufactured. After that, the heat transfer fins 4 are arranged, the heat transfer tubes 3 are inserted into the arranged heat transfer fins 4, and the heat transfer tubes 3 are attached to the heat transfer fins 4. The heat transfer fins 4 are arranged and positioned, and the heat transfer tubes 3 are inserted by fixing the heat transfer fins 4 to an assembly jig. After that, a brazing material is applied to the outer surface of the header tube 2 and the outer surface of the end of the heat transfer tube 3.
 ヘッダ管2と伝熱管3の外面にろう材を塗布したら、伝熱フィン4が取り付けられた伝熱管3を、ヘッダ管2に取り付ける。具体的には、伝熱管3の先端を、図4Aに示すヘッダ管2の挿入開口2aに挿入する。その結果、熱交換器1は仮組みされて、図1A,図1Bに示す外形が完成する。 After applying the brazing material to the outer surfaces of the header tube 2 and the heat transfer tube 3, attach the heat transfer tube 3 to which the heat transfer fins 4 are attached to the header tube 2. Specifically, the tip of the heat transfer tube 3 is inserted into the insertion opening 2a of the header tube 2 shown in FIG. 4A. As a result, the heat exchanger 1 is temporarily assembled, and the outer shape shown in FIGS. 1A and 1B is completed.
 次に、図12Aに示すように、仮組みされた熱交換器1を定盤6の上に仮置きする。この時、ヘッダ管2と伝熱管3を水平にする。つまり、XY平面を水平にして、熱交換器1を定盤6上に仮置きする。また、この時、Z軸は鉛直方向に延びる。つまり、この時、重力はZ軸方向に作用する。また、この時、伝熱管3の中心軸C3を、2本のヘッダ管2の中心を結ぶ中心線C2の上方に位置させる。その結果、スペース幅Wが伝熱管3の下方に配置される。なお、定盤6に代えて仮置き治具を備えて、仮組みされた熱交換器1を仮置き治具の上に載置して、仮置き治具を使って熱交換器1を位置決め及び固定するようにしても良い。 Next, as shown in FIG. 12A, the temporarily assembled heat exchanger 1 is temporarily placed on the surface plate 6. At this time, the header tube 2 and the heat transfer tube 3 are made horizontal. That is, the heat exchanger 1 is temporarily placed on the surface plate 6 with the XY plane horizontal. At this time, the Z axis extends in the vertical direction. That is, at this time, gravity acts in the Z-axis direction. At this time, the central axis C3 of the heat transfer tube 3 is located above the central line C2 connecting the centers of the two header tubes 2. As a result, the space width W is arranged below the heat transfer tube 3. In addition, a temporary placement jig is provided instead of the surface plate 6, the temporarily assembled heat exchanger 1 is placed on the temporary placement jig, and the heat exchanger 1 is positioned using the temporary placement jig. Alternatively, it may be fixed.
 図12Aに示すように、仮組みされた熱交換器1を定盤6上に仮置きしたら、熱交換器1を加熱して、ろう材を融解させる。つまり、ろう付け加工を行う。ろう材が融けると、伝熱管3とヘッダ管2の接合部から溢れた余剰ろう材は、伝熱管3の外表面を伝って、重力によって伝熱管3の下方、つまりスペース5に向かって流れる。その結果、ろう付け加工が完了すると、図12Bに示すように、伝熱管3の下方で、余剰ろう材が固化して、フィレットMが形成される。このように、伝熱管3とヘッダ管2の接合部から溢れた余剰ろう材が、伝熱管3の下方で固化して、フィレットMを形成する。そのため、伝熱管3とヘッダ管2の接合部から溢れた余剰ろう材が、伝熱管3の中に流入して、伝熱管3を詰まらせることがない。 As shown in FIG. 12A, when the temporarily assembled heat exchanger 1 is temporarily placed on the surface plate 6, the heat exchanger 1 is heated to melt the brazing material. That is, brazing is performed. When the brazing material melts, the excess brazing material overflowing from the joint portion between the heat transfer tube 3 and the header tube 2 flows along the outer surface of the heat transfer tube 3 and flows toward the space 5 below the heat transfer tube 3 due to gravity. As a result, when the brazing process is completed, the surplus brazing material is solidified under the heat transfer tube 3 to form the fillet M, as shown in FIG. 12B. In this way, the excess brazing material overflowing from the joint between the heat transfer tube 3 and the header tube 2 is solidified below the heat transfer tube 3 to form the fillet M. Therefore, the excess brazing material overflowing from the joint between the heat transfer tube 3 and the header tube 2 does not flow into the heat transfer tube 3 and block the heat transfer tube 3.
 以上、説明したように、上記の実施の形態及び第1~6の変形例に係る熱交換器1に、上記の製造方法を適用すれば、余剰ろう材が伝熱管3内に流入して、伝熱管3を詰まらせることを防ぐことができる。また、図2に示すように、熱交換器1においては、伝熱管3の断面形におけるZ軸方向の一方の端とヘッダ管2の内面との間にスペース幅Wのスペース5を形成し、伝熱管3の断面形におけるZ軸方向の他方の端とヘッダ管2の内面との間のスペース5のスペース幅を、Wに比べて小さく、あるいは0にすることができる。そのため、伝熱管3の断面形のZ軸方向の両側にスペース幅Wのスペース5を形成する場合に比べて、ヘッダ管2の断面形における幅方向、つまりヘッダ管2のZ軸方向の寸法を小さくすることができる。 As described above, when the above manufacturing method is applied to the heat exchanger 1 according to the above-described embodiment and the first to sixth modifications, the excess brazing material flows into the heat transfer tube 3, It is possible to prevent the heat transfer tube 3 from being clogged. Further, as shown in FIG. 2, in the heat exchanger 1, a space 5 having a space width W is formed between one end in the Z-axis direction in the cross-sectional shape of the heat transfer tube 3 and the inner surface of the header tube 2, The space width of the space 5 between the other end of the heat transfer tube 3 in the Z-axis direction in the cross-sectional shape and the inner surface of the header tube 2 can be made smaller than W or 0. Therefore, as compared with the case where the space 5 having the space width W is formed on both sides of the cross section of the heat transfer tube 3 in the Z axis direction, the dimension in the width direction in the cross section of the header tube 2, that is, the dimension of the header tube 2 in the Z axis direction is set. Can be made smaller.
 なお、上記の実施の形態は本願発明の実施態様の例示であって、本願発明の技術的範囲は上記の実施の形態によっては限定されない。本願発明は、特許請求の範囲に記載の技術的思想の限りにおいて、自由に、応用、変形あるいは改良して実施することができる。 The above-described embodiment is merely an example of the embodiment of the present invention, and the technical scope of the present invention is not limited by the above-described embodiment. The present invention can be freely applied, modified or improved within the scope of the technical idea described in the claims.
 上記の実施の形態及び変形例において、伝熱フィン4は必須の構成要素ではない。つまり熱交換器1は、伝熱フィン4を備えないものであっても良い。また、熱交換器1に伝熱フィン4を備える場合、伝熱フィン4の形状は、図1,7に図示したものには限定されない。また、伝熱フィン4は伝熱管3と一体に形成されたものであっても良い。 In the above-mentioned embodiment and modification, the heat transfer fin 4 is not an essential component. That is, the heat exchanger 1 may not include the heat transfer fins 4. Further, when the heat exchanger 1 is provided with the heat transfer fins 4, the shape of the heat transfer fins 4 is not limited to that shown in FIGS. Further, the heat transfer fins 4 may be formed integrally with the heat transfer tube 3.
 ヘッダ管2の形状と寸法は、各図面に図示されたものには限定されない。ヘッダ管2の形状及び寸法は、自由に設計することができる。また、伝熱管3の本数と伝熱フィン4の枚数は、自由に選択することができる。 The shape and dimensions of the header pipe 2 are not limited to those shown in each drawing. The shape and size of the header tube 2 can be freely designed. Further, the number of heat transfer tubes 3 and the number of heat transfer fins 4 can be freely selected.
 上記においては、伝熱管3の具体例として、扁平多穴管を示したが、伝熱管3の具体的形状は、扁平多穴管には限定されない。伝熱管3は単一の流路を備えるものであっても良い。伝熱管3の断面形状は自由に選択できる。伝熱管3の断面形状は、真円あるいは楕円であっても良いし、矩形あるいは他の形状であっても良い。 In the above, a flat multi-hole tube is shown as a specific example of the heat transfer tube 3, but the specific shape of the heat transfer tube 3 is not limited to the flat multi-hole tube. The heat transfer tube 3 may have a single flow path. The cross-sectional shape of the heat transfer tube 3 can be freely selected. The cross-sectional shape of the heat transfer tube 3 may be a perfect circle or an ellipse, a rectangle or another shape.
 ヘッダ管2と伝熱管3を構成する素材は限定されない。ヘッダ管2と伝熱管3を構成する素材は、熱交換器1の使用目的、設置場所の環境、熱輸送流体の性状等に応じて、最適な素材を選択することができる。ろう材の種類も限定されない。ろう材は、ヘッダ管2と伝熱管3を構成する素材との相性が良い種類を選択して使用すれば良い。 The materials forming the header tube 2 and the heat transfer tube 3 are not limited. For the material forming the header tube 2 and the heat transfer tube 3, the optimum material can be selected according to the purpose of use of the heat exchanger 1, the environment of the installation location, the properties of the heat transport fluid, and the like. The type of brazing material is not limited. The brazing material may be used by selecting a type having a good compatibility with the material forming the header tube 2 and the heat transfer tube 3.
 上記において、長さDは、伝熱管3の下方において、伝熱管3の外面とヘッダ管2の内面の間に、スペース幅Wのスペース5が形成される大きさにされると説明したが、スペース幅Wは、ろう付けの際にヘッダ管2と伝熱管3の接合部から溢れた余剰ろう材によって形成されるフィレットMの体積に見合う寸法であれば良い。つまりスペース5は、ろう付けの際にヘッダ管2と伝熱管3の接合部から溢れた余剰ろう材が、そこで保持される大きさを備えていれば良い。したがって、ろう付けの際にヘッダ管2と伝熱管3の接合部から溢れる余剰ろう材の量を見積もって、それに見合ったスペース幅Wを決定すれば良い。 In the above description, the length D is set to a size such that the space 5 having the space width W is formed between the outer surface of the heat transfer tube 3 and the inner surface of the header tube 2 below the heat transfer tube 3. The space width W may be any size as long as it corresponds to the volume of the fillet M formed by the excess brazing material overflowing from the joint between the header tube 2 and the heat transfer tube 3 during brazing. That is, the space 5 has only to have a size such that the excess brazing material overflowing from the joint between the header tube 2 and the heat transfer tube 3 at the time of brazing can be held there. Therefore, at the time of brazing, the amount of excess brazing material overflowing from the joint between the header tube 2 and the heat transfer tube 3 may be estimated to determine the space width W corresponding to it.
 上記においては、伝熱フィン4を伝熱管3に取り付けた後で、伝熱管3をヘッダ管2に取り付ける例を示したが、ヘッダ管2、伝熱管3及び伝熱フィン4の組立て順序は限定されない。前述したように、熱交換器1は、伝熱フィン4を備えないものであっても良いし、伝熱管3をヘッダ管2に取り付けて、ろう付け固定した後で、伝熱管3に伝熱フィン4を取り付けても良い。 In the above description, the example in which the heat transfer tube 4 is attached to the heat transfer tube 3 and then the heat transfer tube 3 is attached to the header tube 2 has been shown, but the order of assembling the header tube 2, the heat transfer tube 3 and the heat transfer fin 4 is limited. Not done. As described above, the heat exchanger 1 may not include the heat transfer fins 4, or the heat transfer tubes 3 may be attached to the header tubes 2 and fixed by brazing before heat transfer to the heat transfer tubes 3. The fin 4 may be attached.
 熱交換器1の製造方法の説明において、熱交換器1の仮置き姿勢と、伝熱管3の中心軸C3とヘッダ管2の中心線C2の上下関係を限定した。しかしながら、これらは、ろう付を行う際の熱交換器1の姿勢を限定するものであって、据え付け時あるいは使用時の熱交換器1の姿勢を限定するものではない。熱交換器1は、縦置き、横置き、斜め置き、あるいは、上下反転された状態で、据え付けされて、使用される。 In the description of the manufacturing method of the heat exchanger 1, the temporary placement posture of the heat exchanger 1, the vertical axis of the central axis C3 of the heat transfer tube 3 and the central line C2 of the header tube 2 are limited. However, these limit the posture of the heat exchanger 1 when brazing, and do not limit the posture of the heat exchanger 1 during installation or use. The heat exchanger 1 is used by being installed vertically, horizontally, diagonally, or inverted upside down.
 また、熱交換器1の製造方法の説明において、ヘッダ管2と伝熱管3を水平にして、熱交換器1を定盤6上に仮置きする旨を示したが、この場合の「水平」は、「幾何学的に厳密な水平」には限定されない。この場合、熱交換器1は、スペース幅Wが伝熱管3の下方に位置するように仮置きされれば十分である。したがって、「水平に仮置きする」は、ヘッダ管2と伝熱管3が一見して水平に見えるように仮置きすることを意味する。 Further, in the description of the manufacturing method of the heat exchanger 1, it is shown that the header tube 2 and the heat transfer tube 3 are horizontal and the heat exchanger 1 is temporarily placed on the surface plate 6, but in this case, “horizontal” Is not limited to "geometrically exact horizontal". In this case, it is sufficient for the heat exchanger 1 to be temporarily placed so that the space width W is located below the heat transfer tube 3. Therefore, “temporarily placing horizontally” means that the header tube 2 and the heat transfer tube 3 are temporarily placed so that they can be seen horizontally at a glance.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention allows various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. That is, the scope of the invention is indicated by the claims, not the embodiments. Various modifications made within the scope of the claims and the scope of the invention equivalent thereto are considered to be within the scope of the present invention.
 本出願は、2018年11月12日に出願された日本国特許出願2018-211997号に基づく。本明細書中に日本国特許出願2018-211997号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2018-211997 filed on November 12, 2018. The specification of Japanese Patent Application No. 2018-211997, the claims, and the entire drawing are incorporated herein by reference.
 本発明は、熱交換器、及び熱交換器の製造方法として好適に利用することができる。 The present invention can be suitably used as a heat exchanger and a heat exchanger manufacturing method.
1 熱交換器、2 ヘッダ管、2a 挿入開口、2b 当接面、2c,2d 部位、3 伝熱管、3a 流路、4 伝熱フィン、5 スペース、6 定盤、7 分配管、8 流入区画、9 流出区画、10 連絡孔、11 第1の隔壁、12 第2の隔壁、13 第1の流入区画、14 第2の流入区画、C2 中心線、C3 中心軸、W スペース幅、M フィレット。


 
1 heat exchanger, 2 header pipe, 2a insertion opening, 2b contact surface, 2c, 2d site, 3 heat transfer tube, 3a flow path, 4 heat transfer fin, 5 space, 6 surface plate, 7 minute pipe, 8 inflow section , 9 outflow section, 10 communication hole, 11 first partition, 12 second partition, 13 first inflow section, 14 second inflow section, C2 center line, C3 center axis, W space width, M fillet.


Claims (12)

  1.  間隔を空けて配置された1対のヘッダ管と、
     前記1対のヘッダ管の間に配置されて、前記1対のヘッダ管に対して直交する方向に延びて、前記1対のヘッダ管の一方から他方に流体を流す流路を形成する複数本の伝熱管と、を備え、
     前記ヘッダ管と前記伝熱管とを、前記ヘッダ管の長手方向に直交する平面で切断した断面形において、前記伝熱管の中心軸は、一方の前記ヘッダ管の中心と他方の前記ヘッダ管の中心とを結んで形成される中心線に対して、同じ方向にずれている、
     熱交換器。
    A pair of header tubes spaced apart,
    A plurality of flow paths that are arranged between the pair of header tubes and extend in a direction orthogonal to the pair of header tubes to form a flow path for flowing a fluid from one of the pair of header tubes to the other. And a heat transfer tube of
    In the cross-sectional shape obtained by cutting the header pipe and the heat transfer pipe in a plane orthogonal to the longitudinal direction of the header pipe, the central axis of the heat transfer pipe is the center of the one header pipe and the center of the other header pipe. Deviated in the same direction with respect to the center line formed by connecting and
    Heat exchanger.
  2.  前記ヘッダ管と前記伝熱管は、ろう付けによって接合されている、
     請求項1に記載の熱交換器。
    The header tube and the heat transfer tube are joined by brazing,
    The heat exchanger according to claim 1.
  3.  前記ヘッダ管の内部の前記伝熱管と交叉する部位において、前記伝熱管の外面と前記伝熱管の内面と間のスペースが、前記伝熱管の一方の側において広く、他方の側において狭く形成されている、
     請求項2に記載の熱交換器。
    A space between the outer surface of the heat transfer tube and the inner surface of the heat transfer tube is wide on one side of the heat transfer tube and narrow on the other side at a portion inside the header tube that intersects with the heat transfer tube. Is
    The heat exchanger according to claim 2.
  4.  前記ヘッダ管の内部の前記伝熱管と交叉する部位の、前記伝熱管の一方の側の、前記伝熱管の外面と前記伝熱管の内面と間のスペースが他方の側よりも広く形成されている部位に、フィレットが形成されている、
     請求項3に記載の熱交換器。
    A space between the outer surface of the heat transfer tube and the inner surface of the heat transfer tube on one side of the heat transfer tube in a portion intersecting with the heat transfer tube inside the header tube is formed wider than the other side. A fillet is formed on the part,
    The heat exchanger according to claim 3.
  5.  前記ヘッダ管は、前記伝熱管の端部が挿入される挿入開口の周縁の少なくとも一部に、前記伝熱管の端面と当接する当接面を備える、
     請求項1から請求項4のいずれか一項に記載の熱交換器。
    The header tube includes a contact surface that abuts an end surface of the heat transfer tube, at least at a part of a peripheral edge of an insertion opening into which an end of the heat transfer tube is inserted.
    The heat exchanger according to any one of claims 1 to 4.
  6.  前記ヘッダ管は、前記ヘッダ管の長手方向に直交する平面で切断した断面形が楕円形をなす楕円管である、
     請求項1から請求項5のいずれか一項に記載の熱交換器。
    The header tube is an elliptical tube whose cross-sectional shape cut along a plane orthogonal to the longitudinal direction of the header tube is elliptical.
    The heat exchanger according to any one of claims 1 to 5.
  7.  前記ヘッダ管は、前記ヘッダ管の長手方向に直交する平面で切断した断面形において、前記伝熱管に平行となる方向で測った外形寸法が、前記伝熱管に直交する方向で測った外形寸法よりも大きい扁平管である、
     請求項1から請求項5のいずれか一項に記載の熱交換器。
    The header tube has a cross-sectional shape cut along a plane orthogonal to the longitudinal direction of the header tube, and an outer dimension measured in a direction parallel to the heat transfer tube is larger than an outer dimension measured in a direction orthogonal to the heat transfer tube. Is also a large flat tube,
    The heat exchanger according to any one of claims 1 to 5.
  8.  前記ヘッダ管は、前記ヘッダ管の長手方向に直交する平面で切断した断面形において、前記伝熱管が挿入される部位の輪郭が直線をなし、当該直線を成す部位と対向する部位の輪郭が円弧をなすD形管である、
     請求項1から請求項5のいずれか一項に記載の熱交換器。
    In the header pipe, in a cross-sectional shape cut along a plane orthogonal to the longitudinal direction of the header pipe, a contour of a portion into which the heat transfer tube is inserted is a straight line, and a contour of a portion facing the straight line is a circular arc. Is a D-shaped tube
    The heat exchanger according to any one of claims 1 to 5.
  9.  前記伝熱管は、その断面形において、複数の流路が直列に配列された多穴扁平管であって、
     前記伝熱管は、複数の前記伝熱管の間を通過する空気の流れの風上側の端部が、前記空気の流れの風下側の端部より高くされている、
     請求項1から請求項8のいずれか一項に記載の熱交換器。
    The heat transfer tube, in its cross-sectional shape, is a multi-hole flat tube in which a plurality of flow paths are arranged in series,
    The heat transfer tube has a windward end of a flow of air passing between the plurality of heat transfer tubes that is higher than a leeward end of the air flow.
    The heat exchanger according to any one of claims 1 to 8.
  10.  外部装置から熱輸送流体が流入する側の前記ヘッダ管を、当該ヘッダ管の長手方向に直交する平面で切断した断面形において、前記断面形を前記外部装置に接続されて前記外部装置から前記熱輸送流体が直接に流入する流入区画と、前記伝熱管に接続されて前記熱輸送流体を前記伝熱管に向けて流出させる流出区画とに仕切る仕切部材を備え、
     前記仕切部材は、前記複数本の伝熱管のそれぞれと対向する部位に、前記流入区画と前記流出区画の間を連絡する連絡孔を備える、
     請求項1から請求項9のいずれか一項に記載の熱交換器。
    In the cross-sectional shape of the header pipe on the side where the heat-transporting fluid flows from the external device, taken along a plane orthogonal to the longitudinal direction of the header pipe, the cross-sectional shape is connected to the external device and the heat from the external device is applied. And a partition member that is connected to the heat transfer tube and partitions into an outflow section that allows the transport fluid to flow out toward the heat transfer tube,
    The partition member is provided with a communication hole that communicates between the inflow section and the outflow section at a portion facing each of the plurality of heat transfer tubes.
    The heat exchanger according to any one of claims 1 to 9.
  11.  前記流入区画を更に複数個の区画に仕切る第2の仕切部材を備える、
     請求項10に記載の熱交換器。
    A second partition member for partitioning the inflow section into a plurality of sections,
    The heat exchanger according to claim 10.
  12.  前記伝熱管を前記ヘッダ管にろう付けして固定する請求項1から請求項11のいずれか一項に記載の熱交換器の製造方法であって、
     前記ヘッダ管に前記伝熱管を取り付けて、前記熱交換器を仮組みする工程と、
     仮組みされた前記熱交換器を、前記ヘッダ管の前記中心軸を、前記ヘッダ管の前記中心線の上方にして、仮置きする工程と、
     前記伝熱管を前記ヘッダ管にろう付けする工程と、
     を備える熱交換器の製造方法。
    The method for manufacturing a heat exchanger according to any one of claims 1 to 11, wherein the heat transfer tube is fixed to the header tube by brazing.
    Attaching the heat transfer tube to the header tube, and temporarily assembling the heat exchanger,
    A step of temporarily placing the temporarily assembled heat exchanger, with the central axis of the header tube being above the center line of the header tube;
    Brazing the heat transfer tube to the header tube;
    A method for manufacturing a heat exchanger comprising:
PCT/JP2019/044343 2018-11-12 2019-11-12 Heat exchanger and heat exchanger manufacturing method WO2020100897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020555722A JPWO2020100897A1 (en) 2018-11-12 2019-11-12 How to manufacture heat exchangers and heat exchangers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-211997 2018-11-12
JP2018211997 2018-11-12

Publications (1)

Publication Number Publication Date
WO2020100897A1 true WO2020100897A1 (en) 2020-05-22

Family

ID=70731095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044343 WO2020100897A1 (en) 2018-11-12 2019-11-12 Heat exchanger and heat exchanger manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2020100897A1 (en)
WO (1) WO2020100897A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153511A1 (en) * 2022-02-14 2023-08-17 ダイキン工業株式会社 Refrigerant flow path module and air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293815A (en) * 2008-06-02 2009-12-17 Denso Corp Heat exchanger
US7819177B2 (en) * 2006-07-25 2010-10-26 Delphi Technologies, Inc. Heat exchanger assembly
WO2011132536A1 (en) * 2010-04-19 2011-10-27 サンデン株式会社 Heat exchanger and method for assembling heat exchanger
JP2013139916A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Heat exchanger
JP2014052135A (en) * 2012-09-07 2014-03-20 Daikin Ind Ltd Refrigerant heat exchanger
JP2015017738A (en) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 Heat exchanger
CN104422200A (en) * 2013-08-30 2015-03-18 杭州三花微通道换热器有限公司 Micro-channel heat exchanger and manufacturing method of micro-channel heat exchanger
JP2017044428A (en) * 2015-08-27 2017-03-02 株式会社東芝 Heat exchanger, split flow component and heat exchanging device
WO2017183180A1 (en) * 2016-04-22 2017-10-26 三菱電機株式会社 Heat exchanger
JP2018044759A (en) * 2017-06-05 2018-03-22 三菱電機株式会社 Header and air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991433B2 (en) * 1998-03-18 2007-10-17 日本軽金属株式会社 Multi-stage heat exchanger
JP2004225961A (en) * 2003-01-21 2004-08-12 Denso Corp Multi-flow type heat exchanger
US8516701B2 (en) * 2010-05-12 2013-08-27 Delphi Technologies, Inc. Manifold bending support and method for using same
EP2602578B1 (en) * 2010-08-05 2019-01-23 Mitsubishi Electric Corporation Heat exchanger and refrigeration and air conditioning device
EP2863161B1 (en) * 2012-04-26 2018-11-14 Mitsubishi Electric Corporation Heat exchanger and heat exchange method
PL3101339T3 (en) * 2015-06-03 2021-08-16 Alfa Laval Corporate Ab A header device for a heat exchanger system, a heat exchanger system, and a method of heating a fluid
EP3926258B1 (en) * 2016-10-26 2022-09-14 Mitsubishi Electric Corporation Distributor and heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7819177B2 (en) * 2006-07-25 2010-10-26 Delphi Technologies, Inc. Heat exchanger assembly
JP2009293815A (en) * 2008-06-02 2009-12-17 Denso Corp Heat exchanger
WO2011132536A1 (en) * 2010-04-19 2011-10-27 サンデン株式会社 Heat exchanger and method for assembling heat exchanger
JP2013139916A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Heat exchanger
JP2014052135A (en) * 2012-09-07 2014-03-20 Daikin Ind Ltd Refrigerant heat exchanger
JP2015017738A (en) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 Heat exchanger
CN104422200A (en) * 2013-08-30 2015-03-18 杭州三花微通道换热器有限公司 Micro-channel heat exchanger and manufacturing method of micro-channel heat exchanger
JP2017044428A (en) * 2015-08-27 2017-03-02 株式会社東芝 Heat exchanger, split flow component and heat exchanging device
WO2017183180A1 (en) * 2016-04-22 2017-10-26 三菱電機株式会社 Heat exchanger
JP2018044759A (en) * 2017-06-05 2018-03-22 三菱電機株式会社 Header and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153511A1 (en) * 2022-02-14 2023-08-17 ダイキン工業株式会社 Refrigerant flow path module and air conditioner
JP7448862B2 (en) 2022-02-14 2024-03-13 ダイキン工業株式会社 Refrigerant flow path module and air conditioner

Also Published As

Publication number Publication date
JPWO2020100897A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
KR102634151B1 (en) Aluminum extruded flat perforated tube and heat exchanger
KR100677719B1 (en) Brazing method and brazing structure
CN102706040A (en) Heat exchanger
JPH09189463A (en) Distributor of heat exchanger and manufacture hereof
US20080237312A1 (en) Brazing method
CN110392814A (en) Heat exchanger with heat transfer pipe unit
KR20190000926A (en) Heat exchanger
WO2013151138A1 (en) Heat exchanger
WO2012157417A1 (en) Heat exchanger
KR101554346B1 (en) Brazing jig assembly for heat exchanger
WO2020100897A1 (en) Heat exchanger and heat exchanger manufacturing method
JP2012247091A (en) Fin and tube type heat exchanger
CN102338587B (en) Heat exchanger structure and assembly technology thereof
JP6826133B2 (en) Heat exchanger and refrigeration cycle equipment
JP5884484B2 (en) Heat exchanger
WO2020095797A1 (en) Heat exchanger and method for manufacturing heat exchanger
JP2010139115A (en) Heat exchanger and heat exchanger unit
JP2021148357A (en) Header pipe, heat exchanger and manufacturing method of header pipe
JP2018071860A (en) Heat exchanger
JP2012032121A (en) Heat exchanger, air conditioner with the same, and method of manufacturing the same
CN102869946A (en) Heat exchanger and method for assembling heat exchanger
KR20050030490A (en) Heat exchanger
JP6816411B2 (en) Heat exchanger
JP5574737B2 (en) Heat exchanger
JP6035741B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885168

Country of ref document: EP

Kind code of ref document: A1