WO2020188987A1 - Sputtering target and production method for sputtering target - Google Patents

Sputtering target and production method for sputtering target Download PDF

Info

Publication number
WO2020188987A1
WO2020188987A1 PCT/JP2020/001602 JP2020001602W WO2020188987A1 WO 2020188987 A1 WO2020188987 A1 WO 2020188987A1 JP 2020001602 W JP2020001602 W JP 2020001602W WO 2020188987 A1 WO2020188987 A1 WO 2020188987A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
sputtering
temperature
phase
less
Prior art date
Application number
PCT/JP2020/001602
Other languages
French (fr)
Japanese (ja)
Inventor
慎治 曽川
荒川 篤俊
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to JP2021506197A priority Critical patent/JPWO2020188987A1/ja
Priority to CN202080022678.3A priority patent/CN113614281A/en
Priority to KR1020217032233A priority patent/KR20210134760A/en
Publication of WO2020188987A1 publication Critical patent/WO2020188987A1/en
Priority to JP2023213307A priority patent/JP2024037947A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Definitions

  • This specification discloses a sputtering target and a technique relating to a method for manufacturing the sputtering target.
  • MRAM magnetoresistive memory
  • a material to which boron is added may be used for the perpendicular magnetization film of the tunnel magnetoresistive element which is a component thereof.
  • Such a perpendicularly magnetized film can be formed by a sputtering method using a sputtering target containing boron and at least one of iron and cobalt.
  • Examples of the boron-containing sputtering target used for such a magnetoresistive memory or other applications include those described in Patent Documents 1 to 4.
  • Patent Documents 1 and 2 describe "a magnetic material sputtering target made of a sintered body having a B content of 26 at% or more and 40 at% or less and a residue selected from Co or Fe.
  • the target has a high-concentration phase of B and a low-concentration phase of B, and the maximum inscribed circle that can be drawn in the high-concentration phase of B has a diameter of 15 ⁇ m or more and one or less magnetic material sputtering.
  • “Target” is described.
  • a magnetic material target raw material powder having a B content of 26 at% or more and 40 at% or less and a residue selected from Co or Fe is prepared by a gas atomization method.
  • This gas atomizing raw material powder is sintered and used as a target, the target is a structure in which a high concentration phase of B and a low concentration phase of B are present, and the diameter of the maximum inscribed circle that can be drawn in the high concentration phase of B is 15 ⁇ m or more.
  • Patent Documents 3 and 4 describe that (CoFe) 2 B (200) in a sputtering target material containing 10 to 50% of B at at.%, The balance of which is at least one of Co and Fe, and unavoidable impurities. ) X-ray diffraction intensity [I [(CoFe) 2 B]] and (CoFe) 3 B (121) X-ray diffraction intensity [I [(CoFe) 3 B]] to the intensity ratio [I [(CoFe)) A CoFeB-based alloy sputtering target material having 3 B] / I [(CoFe) 2 B]] of 1.50 or less ”is described.
  • boron-containing sputtering target in particular, a boron-containing target containing a predetermined amount of boron and further containing iron, generates a large amount of particles during sputtering, which causes a decrease in product yield. There was a problem.
  • This specification discloses a sputtering target capable of effectively reducing particles and a method for manufacturing the sputtering target.
  • the sputtering target disclosed in this specification contains B in an amount of 10 at% to 20 at%, contains Fe in the balance, and has an average area of Fe—B phase of 20 ⁇ m 2 or less by SEM image observation.
  • the method for producing a sputtering target disclosed in this specification is that a raw material powder containing B at 10 at% to 20 at% and Fe is pressed at a temperature of 800 ° C. or higher and lower than 900 ° C. for 1 to 3 hours. It includes a sintering step of holding.
  • the sputtering target of one embodiment contains B in an amount of 10 at% to 20 at% and Fe in the balance, and the average area of the Fe—B phase by SEM image observation is 20 ⁇ m 2 or less.
  • the raw material powder is baked after a sintering step in which a predetermined raw material powder is held at a temperature of 800 ° C. or higher and lower than 900 ° C. for 1 to 3 hours while being pressurized. Obtained as a unity.
  • the sputtering target shall contain at least B (boron) and Fe (iron).
  • the content of B is 10 at% to 20 at%, preferably 14 at% to 20 at%, and more preferably 16 at% to 20 at%. If the B content is too low, it is considered that the film formed by the sputtering target cannot exhibit the desired characteristics. On the other hand, if the B content is too large, the sinterability of the powder deteriorates, and particles are generated at a level that cannot be helped only by optimizing the sintering conditions.
  • the Fe content is, for example, 5 at% to 80 at%, typically 20 at% to 65 at%.
  • Sputtering targets may also contain Co.
  • the Co content is preferably 5 at% to 80 at%, and even more preferably 20 at% to 65 at%.
  • the purity which is the total content of B, Fe and Co, is preferably 3N (99.9% by mass) or more. When Co is not contained, the content of Co is 0 (zero) mass%. This is because if the purity is less than 3N, impurities may cause particle generation.
  • the purity is even more preferably 3N5 (99.95% by mass) or more. This purity can be determined by GDMS analysis.
  • the sputtering target may contain impurities such as Si and / or Ni in a total amount of 100 mass ppm or less. Impurities contained in this amount are acceptable.
  • Fe-B phase The Fe-B phase is present in the sputtering target having the composition as described above.
  • the average area of the Fe-B phase in the sputtering target is 20 ⁇ m 2 or less when observed by a SEM (scanning electron microscope) image on a cross section orthogonal to the sputtering surface used for sputtering.
  • SEM scanning electron microscope
  • the average area of the Fe—B phase in the sputtering target is preferably 15 ⁇ m 2 or less, and even more preferably 10 ⁇ m 2 or less.
  • the average area may be, for example, 2 ⁇ m 2 or more, typically 5 ⁇ m 2 or more.
  • the total area of the Fe-B phase and the number of Fe-B phases in the field of view of the SEM image having a cross section orthogonal to the sputtering surface are calculated by image analysis, and the total area is calculated. Divide by the number to obtain.
  • a contrast of two or more phases occurs, such that a relatively light element such as B appears black, while a relatively heavy element appears white. For example, see FIGS. 1 and 2).
  • those that are connected to each other by adjacent Fe-B phases count the entire series of Fe-B phases as one Fe-B phase.
  • FIG. 3 shows the result of performing image analysis on the SEM image of FIG. 2 and identifying the Fe-B phase reflected in black in the SEM image.
  • the surface roughness Ra of the post-use sputtering surface that appears after performing predetermined sputtering using the target is small.
  • the surface roughness Ra of the sputtering surface after use of the sputtering target is preferably 2.0 ⁇ m or less. is there.
  • model number C-7100GT manufactured by Canon Anerva can be used.
  • the grain boundaries between the Fe-B phases having different sputtering rates and the other phases are not remarkable, the occurrence of arcing and the like can be suppressed, and the number of particles can be further reduced.
  • particles may be generated due to arcing or the like.
  • the surface roughness Ra of the sputtering surface after use is more preferably 1.5 ⁇ m or less.
  • the surface roughness Ra of the sputtering surface after use may be, for example, 0.4 ⁇ m or more.
  • the density ratio of the sputtering target is preferably greater than 99%. This is because when the density ratio is larger than 99%, the internal defects of the target that cause particle generation can be reduced. In this respect, the density ratio is even more preferably 99.9% or more.
  • the density ratio of the sputtering target is measured by the Archimedes method.
  • the true value of the target sputtering target may be higher than the above theoretical density. Therefore, the density ratio calculated using the above theoretical density may exceed 100%.
  • the sputtering target described above can be manufactured, for example, as follows.
  • a raw material preparation step is performed in which B is contained in an amount of 10 at% to 30 at% and a raw material powder containing Fe is prepared.
  • the raw material powder shall have the content of each element adjusted so that the composition of the predetermined sputtering target as described above can be obtained. Therefore, the raw material powder shall further contain Co, if necessary.
  • the content of Co can be 5 at% to 80 at%.
  • the gas atomizing method When producing the raw material powder, it is preferable to use the gas atomizing method from the viewpoint of reducing the oxygen content of the raw material powder.
  • the gas atomization method for example, under an inert gas atmosphere, a molten metal in which B, Fe, Co and the like are dissolved is sprayed with a high-pressure gas to form a powder.
  • the average particle size D50 of the raw material powder is 50 ⁇ m to 300 ⁇ m, for example, by sieving the gas atomized powder. This facilitates sintering of the raw material powder in the subsequent sintering step and makes it possible to obtain a high-density sputtering target.
  • a sintering step can be performed in which the raw material powder is pressed and held under a predetermined temperature for a predetermined time. As a result, a predetermined sintered body is obtained.
  • a vacuum hot press method or other hot press method a plasma discharge sintering method, a hot hydrostatic pressure sintering method, or the like can be used.
  • the temperature at the time of pressurization is 800 ° C. or higher and lower than 900 ° C., and the temperature is maintained for 1 to 3 hours.
  • this temperature is less than 800 ° C.
  • the density will not increase sufficiently.
  • the temperature is 900 ° C. or higher
  • the average area and the surface roughness Ra are increased, and as a result, the particles are increased during sputtering.
  • the holding time is less than 1 hour, the density will not increase sufficiently.
  • the holding time is longer than 3 hours, the average area and the surface roughness Ra increase due to the grain growth with time.
  • the temperature at the time of pressurization is preferably 800 ° C. or higher and lower than 900 ° C., and further preferably 850 ° C. or higher and lower than 900 ° C.
  • the holding time is 1 hour to 3 hours, more preferably 1 hour to 2 hours.
  • the heating rate until reaching the above temperature is preferably 5 ° C./min or more, and further preferably 5 ° C./min to 10 ° C./min. Further, in the temperature lowering after reaching the above temperature, the temperature lowering rate is preferably 1 ° C./min or more. This is because by increasing the heating rate and the temperature decreasing rate, the heating time becomes shorter, and further suppression of grain growth and thereby a significant reduction in the average area and surface roughness Ra can be achieved. In order to realize a predetermined temperature lowering rate, forced cooling such as air cooling may be adopted.
  • the pressing force and the atmosphere can be appropriately determined according to various conditions.
  • the pressing force can be 15 MPa to 30 MPa and the atmosphere can be a vacuum atmosphere or the like.
  • the above sintered body is machined into a predetermined shape such as a disk by a lathe or surface grinding, and the surface thereof is polished. Thereby, the sputtering target can be manufactured.
  • a raw material powder prepared by the gas atomizing method and adjusted to contain B, Co and Fe with the composition shown in Table 1 was prepared. This raw material powder was pressurized under the conditions of the temperature, holding temperature and temperature rising rate shown in Table 1 in a vacuum atmosphere to obtain a sintered body. The pressing force was 29.42 MPa. The sintered body thus obtained was subjected to predetermined machining and polishing to prepare a sputtering target.
  • the average area was small in Examples 1 to 8 which were held at a temperature of 800 ° C. or higher and lower than 900 ° C. for 1 hour to 3 hours at the time of sintering. As a result, it was obtained that the number of particles in Examples 1 to 8 was small during sputtering.
  • Comparative Example 1 the average area increased and the number of particles increased due to the high temperature at the time of sintering.
  • Comparative Example 2 since the temperature at the time of sintering was low, the pores increased and the average area could not be measured.
  • the number of particles was large.
  • Comparative Example 3 the average area was large and the number of particles was large due to the long temperature holding time during sintering.
  • Comparative Examples 4 and 5 the B content was high, the average area could not be measured due to the pores, and the number of particles increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

A sputtering target that is 10–20 at% B, the remainder including Fe. As observed by SEM image, the average area of Fe-B phases of the sputtering target is no more than 20 μm2.

Description

スパッタリングターゲット及び、スパッタリングターゲットの製造方法Sputtering target and manufacturing method of sputtering target
 この明細書は、スパッタリングターゲット及び、スパッタリングターゲットの製造方法に関する技術を開示するものである。 This specification discloses a sputtering target and a technique relating to a method for manufacturing the sputtering target.
 電源の供給なしで記憶を保持する不揮発性メモリのなかには、磁気トンネル接合の磁化状態により記憶を行う磁気抵抗メモリ(MRAM)がある。 Among the non-volatile memories that hold the memory without supplying power, there is a magnetoresistive memory (MRAM) that stores the memory according to the magnetization state of the magnetic tunnel junction.
 磁気抵抗メモリでは、その構成要素とするトンネル磁気抵抗素子の垂直磁化膜に、ホウ素を添加した材料が用いられることがある。かかる垂直磁化膜は、ホウ素と、鉄及びコバルトのうちの少なくとも一種とを含有するスパッタリングターゲットを用いたスパッタリング法により形成することができる。 In the magnetoresistive memory, a material to which boron is added may be used for the perpendicular magnetization film of the tunnel magnetoresistive element which is a component thereof. Such a perpendicularly magnetized film can be formed by a sputtering method using a sputtering target containing boron and at least one of iron and cobalt.
 このような磁気抵抗メモリ又はその他の用途に使用され、ホウ素を含有するスパッタリングターゲットとしては、たとえば、特許文献1~4に記載されたものがある。 Examples of the boron-containing sputtering target used for such a magnetoresistive memory or other applications include those described in Patent Documents 1 to 4.
 特許文献1及び2には、「Bの含有量が26at%以上、40at%以下であり、残余がCo又はFeから選択した一種以上の元素の焼結体からなる磁性材スパッタリングターゲットであって、ターゲットにBの高濃度相とBの低濃度相があり、該Bの高濃度相に描ける最大内接円の直径が15μm以上であるのが1個以下であることを特徴とする磁性材スパッタリングターゲット」が記載されている。また特許文献1及び2には、「Bの含有量が26at%以上、40at%以下であり、残余がCo又はFeから選択した一種以上の元素の磁性材ターゲット原料粉末を、ガスアトマイズ法で作製し、このガスアトマイズ原料粉末を焼結してターゲットとし、該ターゲットをBの高濃度相とBの低濃度相が存在する組織とし、該Bの高濃度相に描ける最大内接円の直径が15μm以上であるBの高濃度相を1個以下とすることを特徴とする磁性材スパッタリングターゲットの製造方法」が記載されている。 Patent Documents 1 and 2 describe "a magnetic material sputtering target made of a sintered body having a B content of 26 at% or more and 40 at% or less and a residue selected from Co or Fe. The target has a high-concentration phase of B and a low-concentration phase of B, and the maximum inscribed circle that can be drawn in the high-concentration phase of B has a diameter of 15 μm or more and one or less magnetic material sputtering. "Target" is described. Further, in Patent Documents 1 and 2, "a magnetic material target raw material powder having a B content of 26 at% or more and 40 at% or less and a residue selected from Co or Fe is prepared by a gas atomization method. , This gas atomizing raw material powder is sintered and used as a target, the target is a structure in which a high concentration phase of B and a low concentration phase of B are present, and the diameter of the maximum inscribed circle that can be drawn in the high concentration phase of B is 15 μm or more. A method for producing a magnetic material sputtering target, characterized in that the number of high-concentration phases of B is one or less. ”
 特許文献3及び4には、「at.%で、Bを10~50%含有し、残部がCoとFeの少なくとも1種、不可避的不純物からなるスパッタリングターゲット材において、(CoFe)2 B(200)のX線回折強度[I〔(CoFe)2 B〕]と(CoFe)3 B(121)のX線回折強度[I〔(CoFe)3 B〕]との強度比[I〔(CoFe)3 B〕/I〔(CoFe)2 B〕]が1.50以下であるCoFeB系合金スパッタリングターゲット材」が記載されている。 Patent Documents 3 and 4 describe that (CoFe) 2 B (200) in a sputtering target material containing 10 to 50% of B at at.%, The balance of which is at least one of Co and Fe, and unavoidable impurities. ) X-ray diffraction intensity [I [(CoFe) 2 B]] and (CoFe) 3 B (121) X-ray diffraction intensity [I [(CoFe) 3 B]] to the intensity ratio [I [(CoFe)) A CoFeB-based alloy sputtering target material having 3 B] / I [(CoFe) 2 B]] of 1.50 or less ”is described.
特許第6037415号公報Japanese Patent No. 6037415 米国特許出願公開第2016/0237552号明細書U.S. Patent Application Publication No. 2016/0237552 特開2017-57477号公報JP-A-2017-57477 米国特許出願公開第2018/0245211号明細書U.S. Patent Application Publication No. 2018/0245211
 上述したようなホウ素を含有するスパッタリングターゲットで、特に、ホウ素を所定の量で含有するとともに、さらに鉄を含有するものでは、スパッタリング時にパーティクルが多く発生し、このことが製品歩留まりの低下を招くという問題があった。 The above-mentioned boron-containing sputtering target, in particular, a boron-containing target containing a predetermined amount of boron and further containing iron, generates a large amount of particles during sputtering, which causes a decrease in product yield. There was a problem.
 この明細書では、パーティクルを有効に低減することができるスパッタリングターゲット及び、スパッタリングターゲットの製造方法を開示する。 This specification discloses a sputtering target capable of effectively reducing particles and a method for manufacturing the sputtering target.
 この明細書で開示するスパッタリングターゲットは、Bを10at%~20at%で含有し、残部にFeを含み、SEM画像観察によるFe-B相の平均面積が20μm2以下であるものである。 The sputtering target disclosed in this specification contains B in an amount of 10 at% to 20 at%, contains Fe in the balance, and has an average area of Fe—B phase of 20 μm 2 or less by SEM image observation.
 この明細書で開示するスパッタリングターゲットの製造方法は、Bを10at%~20at%で含むとともにFeを含む原料粉末を、加圧しながら800℃以上かつ900℃未満の温度で、1時間~3時間にわたって保持する焼結工程を含むものである。 The method for producing a sputtering target disclosed in this specification is that a raw material powder containing B at 10 at% to 20 at% and Fe is pressed at a temperature of 800 ° C. or higher and lower than 900 ° C. for 1 to 3 hours. It includes a sintering step of holding.
 上述したスパッタリングターゲットによれば、スパッタリング時のパーティクルを有効に低減することができる。 According to the sputtering target described above, particles during sputtering can be effectively reduced.
比較例1のスパッタリングターゲットのSEM画像である。It is an SEM image of the sputtering target of Comparative Example 1. 実施例1のスパッタリングターゲットのSEM画像である。It is an SEM image of the sputtering target of Example 1. 図2のSEM画像に対して画像解析を行って得られた画像である。It is an image obtained by performing image analysis on the SEM image of FIG.
 以下に、この明細書で開示する実施の形態について詳細に説明する。
 一の実施形態のスパッタリングターゲットは、Bを10at%~20at%で含有し、残部にFeを含むものであって、SEM画像観察によるFe-B相の平均面積が20μm2以下である。このスパッタリングターゲットは、たとえば、後述するように、所定の原料粉末を、加圧しながら800℃以上かつ900℃未満の温度で、1時間~3時間にわたって保持する焼結工程後に、当該原料粉末の焼結体として得られる。
The embodiments disclosed in this specification will be described in detail below.
The sputtering target of one embodiment contains B in an amount of 10 at% to 20 at% and Fe in the balance, and the average area of the Fe—B phase by SEM image observation is 20 μm 2 or less. In this sputtering target, for example, as will be described later, the raw material powder is baked after a sintering step in which a predetermined raw material powder is held at a temperature of 800 ° C. or higher and lower than 900 ° C. for 1 to 3 hours while being pressurized. Obtained as a unity.
(組成)
 スパッタリングターゲットは、少なくともB(ホウ素)及びFe(鉄)を含有するものとする。
 Bの含有量は、10at%~20at%とし、好ましくは14at%~20at%、より好ましくは16at%~20at%である。Bの含有量が少なすぎる場合は、当該スパッタリングターゲットで形成した膜が、所期した特性を発揮し得ないと考えられる。一方、Bの含有量が多すぎる場合は、粉末の焼結性が悪化し、焼結条件の最適化のみではどうにもならないレベルでパーティクルが発生してしまう。
(composition)
The sputtering target shall contain at least B (boron) and Fe (iron).
The content of B is 10 at% to 20 at%, preferably 14 at% to 20 at%, and more preferably 16 at% to 20 at%. If the B content is too low, it is considered that the film formed by the sputtering target cannot exhibit the desired characteristics. On the other hand, if the B content is too large, the sinterability of the powder deteriorates, and particles are generated at a level that cannot be helped only by optimizing the sintering conditions.
 Feの含有量は、たとえば5at%~80at%、典型的には20at%~65at%である。 The Fe content is, for example, 5 at% to 80 at%, typically 20 at% to 65 at%.
 スパッタリングターゲットはさらに、Coを含有することがある。この場合、Coの含有量は、5at%~80at%とすることが好ましく、さらに20at%~65at%とすることがより一層好ましい。 Sputtering targets may also contain Co. In this case, the Co content is preferably 5 at% to 80 at%, and even more preferably 20 at% to 65 at%.
 B、Fe及びCoの合計含有量である純度は、3N(99.9質量%)以上であることが好適である。なお、Coを含まない場合、Coの含有量は0(ゼロ)質量%とする。純度が3N未満であると、不純物がパーティクル発生の原因となる可能性があるからである。当該純度は、3N5(99.95質量%)以上であることがより一層好ましい。この純度は、GDMS分析により求めることができる。 The purity, which is the total content of B, Fe and Co, is preferably 3N (99.9% by mass) or more. When Co is not contained, the content of Co is 0 (zero) mass%. This is because if the purity is less than 3N, impurities may cause particle generation. The purity is even more preferably 3N5 (99.95% by mass) or more. This purity can be determined by GDMS analysis.
 なお、スパッタリングターゲットは、上述した元素の他、Si及び/又はNi等の不純物を、合計100質量ppm以下で含むことがある。この程度の量で含まれる不純物は許容され得る。 In addition to the above-mentioned elements, the sputtering target may contain impurities such as Si and / or Ni in a total amount of 100 mass ppm or less. Impurities contained in this amount are acceptable.
(Fe-B相)
 上述したような組成のスパッタリングターゲットには、Fe-B相が存在する。スパッタリングターゲット中のFe-B相は、スパッタリングに使用されるスパッタリング面に直交する断面についてSEM(走査電子顕微鏡)画像により観察して、その平均面積が20μm2以下である。
 これにより、スパッタリング面を所定のスパッタリングに供した後の、後述の使用後スパッタリング面の表面粗さが改善される。その結果として、スパッタリングによる使用時のパーティクルの発生を有効に低減することができる。
(Fe-B phase)
The Fe-B phase is present in the sputtering target having the composition as described above. The average area of the Fe-B phase in the sputtering target is 20 μm 2 or less when observed by a SEM (scanning electron microscope) image on a cross section orthogonal to the sputtering surface used for sputtering.
As a result, the surface roughness of the post-use sputtering surface, which will be described later, is improved after the sputtering surface is subjected to predetermined sputtering. As a result, it is possible to effectively reduce the generation of particles during use by sputtering.
 この観点から、スパッタリングターゲット中のFe-B相の平均面積は、15μm2以下であることが好ましく、さらに10μm2以下であることがより一層好ましい。なお、当該平均面積は、たとえば2μm2以上、典型的には5μm2以上になることがある。 From this viewpoint, the average area of the Fe—B phase in the sputtering target is preferably 15 μm 2 or less, and even more preferably 10 μm 2 or less. The average area may be, for example, 2 μm 2 or more, typically 5 μm 2 or more.
 Fe-B相の上記の平均面積は、スパッタリング面に直交する断面のSEM画像の視野内におけるFe-B相の総面積及びFe-B相の個数を、画像解析により算出し、当該総面積を個数で除して求める。SEM画像では通常、二つ以上の相が存在する場合に、B等の比較的軽い元素は黒く映る一方で、比較的重い元素は白く映るといったような、二つ以上の相のコントラストが生じる(たとえば図1及び2参照)。SEM画像で黒く映ったFe-B相のうち、隣り合うFe-B相で互いにつながっているものは、そのような一続きのFe-B相の全体を一個のFe-B相としてカウントする。また、SEM画像の外縁部分に存在するFe-B相が、その一部しか当該SEM画像の視野に入っていない場合は、その視野に入っている部分の面積だけを考慮し、その部分を一個のFe-B相とみなしてカウントする。図3は、図2のSEM画像に対して画像解析を行い、SEM画像で黒く映ったFe-B相を特定した結果である。このようにSEM画像を画像解析することにより、Fe-B相の総面積及び個数を算出することが可能である。Fe-B相の平均面積を算出するに当っては、上記の断面における一枚のSEM画像について解析を行なえばよい。 For the above average area of the Fe-B phase, the total area of the Fe-B phase and the number of Fe-B phases in the field of view of the SEM image having a cross section orthogonal to the sputtering surface are calculated by image analysis, and the total area is calculated. Divide by the number to obtain. In an SEM image, when two or more phases are present, a contrast of two or more phases occurs, such that a relatively light element such as B appears black, while a relatively heavy element appears white. For example, see FIGS. 1 and 2). Among the Fe-B phases that appear black in the SEM image, those that are connected to each other by adjacent Fe-B phases count the entire series of Fe-B phases as one Fe-B phase. Further, when the Fe-B phase existing in the outer edge portion of the SEM image is only partially in the field of view of the SEM image, only the area of the portion in the field of view is considered, and one portion thereof is considered. It is counted as the Fe-B phase of. FIG. 3 shows the result of performing image analysis on the SEM image of FIG. 2 and identifying the Fe-B phase reflected in black in the SEM image. By image analysis of the SEM image in this way, it is possible to calculate the total area and the number of Fe—B phases. In calculating the average area of the Fe-B phase, it is sufficient to analyze one SEM image in the above cross section.
(使用後スパッタリング面の表面粗さ)
 上記のスパッタリングターゲットでは、それを用いて所定のスパッタリングを行った後に表れる使用後スパッタリング面の表面粗さRaが小さいことが望ましい。具体的には、スパッタリングターゲットをスパッタリング装置にセットし、600Wの出力で60kWhまで使用した場合における、当該スパッタリングターゲットの使用後スパッタリング面の表面粗さRaは、2.0μm以下であることが好適である。なお、このスパッタリング装置としては、キャノンアネルバ社製の型番C-7100GTを用いることができる。
(Surface roughness of sputtering surface after use)
In the above sputtering target, it is desirable that the surface roughness Ra of the post-use sputtering surface that appears after performing predetermined sputtering using the target is small. Specifically, when the sputtering target is set in the sputtering apparatus and used up to 60 kWh at an output of 600 W, the surface roughness Ra of the sputtering surface after use of the sputtering target is preferably 2.0 μm or less. is there. As this sputtering apparatus, model number C-7100GT manufactured by Canon Anerva can be used.
 これにより、スパッタレートの異なるFe-B相と他の相との粒界が顕著なものではなくなり、アーキング等の発生を抑制することができ、パーティクルをより一層低減することができる。言い換えれば、使用後スパッタリング面の表面粗さRaが2.0μmを超えるスパッタリングターゲットでは、アーキング等によるパーティクル発生のおそれがある。 As a result, the grain boundaries between the Fe-B phases having different sputtering rates and the other phases are not remarkable, the occurrence of arcing and the like can be suppressed, and the number of particles can be further reduced. In other words, in a sputtering target in which the surface roughness Ra of the sputtering surface after use exceeds 2.0 μm, particles may be generated due to arcing or the like.
 使用後スパッタリング面の表面粗さRaは、より好ましくは1.5μm以下である。一方、使用後スパッタリング面の表面粗さRaは、たとえば0.4μm以上になることがある。 The surface roughness Ra of the sputtering surface after use is more preferably 1.5 μm or less. On the other hand, the surface roughness Ra of the sputtering surface after use may be, for example, 0.4 μm or more.
(密度比)
 スパッタリングターゲットの密度比は、99%よりも大きいことが好ましい。これは、密度比が99%よりも大きいことにより、パーティクル発生の原因となるターゲットの内部欠陥を減らすことができるからである。この点で密度比は、99.9%以上であることがより一層好ましい。スパッタリングターゲットの密度比は、アルキメデス法により測定する。
(Density ratio)
The density ratio of the sputtering target is preferably greater than 99%. This is because when the density ratio is larger than 99%, the internal defects of the target that cause particle generation can be reduced. In this respect, the density ratio is even more preferably 99.9% or more. The density ratio of the sputtering target is measured by the Archimedes method.
 スパッタリングターゲットの密度比は、計算により算出される理論密度と、アルキメデス法で測定した実測密度から、式:密度比=(アルキメデス法で測定した実測密度)÷(理論密度)×100(%)の式にて算出する。ここで、理論密度は、スパッタリングターゲットの構成成分が互いに拡散ないし反応せずに混在していると仮定したときの密度であり、式:理論密度=Σ(構成成分の分子量×構成成分のモル比)/Σ(構成成分の分子量×構成成分のモル比/構成成分の文献値密度)により算出する。但し、実際にはFeCoBの各元素が反応して存在していることから、対象とするスパッタリングターゲットの真の値は上記の理論密度よりも高くなることがある。したがって、上記の理論密度を用いて算出された当該密度比は、100%を超えることもあり得る。 The density ratio of the sputtering target is calculated from the theoretical density calculated by the calculation and the measured density measured by the Archimedes method, and the formula: Density ratio = (Measured density measured by the Archimedes method) ÷ (Theoretical density) x 100 (%). Calculate with the formula. Here, the theoretical density is the density when it is assumed that the constituent components of the sputtering target are mixed without being diffused or reacted with each other, and the formula: theoretical density = Σ (molecular weight of the constituent component × molar ratio of the constituent component). ) / Σ (molecular weight of constituents x molar ratio of constituents / density of literature values of constituents). However, since each element of FeCoB actually exists as a reaction, the true value of the target sputtering target may be higher than the above theoretical density. Therefore, the density ratio calculated using the above theoretical density may exceed 100%.
(製造方法)
 以上に述べたスパッタリングターゲットは、たとえば、次のようにして製造することができる。
(Production method)
The sputtering target described above can be manufactured, for example, as follows.
 はじめに、Bを10at%~30at%で含むとともにFeを含む原料粉末を準備する原料準備工程を行う。原料粉末は、先に述べたような所定のスパッタリングターゲットの組成が得られるように、各元素の含有量を調整したものとする。したがって、原料粉末はさらに、必要に応じて、Coを含有するものとする。原料粉末がCoを含有する場合、そのCoの含有量は5at%~80at%とすることができる。 First, a raw material preparation step is performed in which B is contained in an amount of 10 at% to 30 at% and a raw material powder containing Fe is prepared. The raw material powder shall have the content of each element adjusted so that the composition of the predetermined sputtering target as described above can be obtained. Therefore, the raw material powder shall further contain Co, if necessary. When the raw material powder contains Co, the content of Co can be 5 at% to 80 at%.
 原料粉末を作製する場合、ガスアトマイズ法を用いることが、原料粉末の酸素含有量の低減の観点から好ましい。ガスアトマイズ法では、たとえば、不活性ガス雰囲気の下、B、Fe、Co等を溶解させた溶湯に、高圧のガスを吹き付けて粉末状にする。
 また、たとえばガスアトマイズ粉末を篩別する等して、原料粉末の平均粒径D50を、50μm~300μmにすることが好適である。これにより、後の焼結工程での原料粉末の焼結が容易になるとともに、高い密度のスパッタリングターゲットを得ることが可能になる。
When producing the raw material powder, it is preferable to use the gas atomizing method from the viewpoint of reducing the oxygen content of the raw material powder. In the gas atomization method, for example, under an inert gas atmosphere, a molten metal in which B, Fe, Co and the like are dissolved is sprayed with a high-pressure gas to form a powder.
Further, it is preferable that the average particle size D50 of the raw material powder is 50 μm to 300 μm, for example, by sieving the gas atomized powder. This facilitates sintering of the raw material powder in the subsequent sintering step and makes it possible to obtain a high-density sputtering target.
 次いで、上記の原料粉末を、所定の温度下で、所定の時間にわたって加圧して保持する焼結工程を行うことができる。これにより、所定の焼結体が得られる。
 なおこの焼結には、真空ホットプレス法その他のホットプレス法、プラズマ放電焼結法または、熱間静水圧焼結法等を用いることができる。
Next, a sintering step can be performed in which the raw material powder is pressed and held under a predetermined temperature for a predetermined time. As a result, a predetermined sintered body is obtained.
For this sintering, a vacuum hot press method or other hot press method, a plasma discharge sintering method, a hot hydrostatic pressure sintering method, or the like can be used.
 ここでは、加圧時の温度を800℃以上かつ900℃未満とし、当該温度を1時間~3時間にわたって保持することが重要である。このように加圧時の温度を比較的低くし、かつ保持時間をある程度短くすることにより、粒成長が抑制されて、スパッタリングターゲットの先述の平均面積を小さくすることができる。またこれにより、組織が細かくなるので、先述した使用後スパッタリング面の表面粗さRaも小さくなる。 Here, it is important that the temperature at the time of pressurization is 800 ° C. or higher and lower than 900 ° C., and the temperature is maintained for 1 to 3 hours. By lowering the temperature during pressurization and shortening the holding time to some extent in this way, grain growth can be suppressed and the above-mentioned average area of the sputtering target can be reduced. Further, as a result, the structure becomes finer, so that the surface roughness Ra of the sputtering surface after use also becomes smaller as described above.
 より詳細には、この温度を800℃未満とすれば、密度が十分に上がらない。この一方で、当該温度を900℃以上にすると、平均面積及び表面粗さRaの増大を招き、その結果として、スパッタリング時にパーティクルが増大する。
 保持時間を1時間未満とした場合は、密度が十分に上がらない。また保持時間を3時間より長くした場合は、時間に伴う粒成長により、平均面積及び表面粗さRaが増大する。
More specifically, if this temperature is less than 800 ° C., the density will not increase sufficiently. On the other hand, when the temperature is 900 ° C. or higher, the average area and the surface roughness Ra are increased, and as a result, the particles are increased during sputtering.
If the holding time is less than 1 hour, the density will not increase sufficiently. When the holding time is longer than 3 hours, the average area and the surface roughness Ra increase due to the grain growth with time.
 このような観点より、加圧時の温度は、800℃以上かつ900℃未満とし、さらに850℃以上かつ900℃未満とすることが好ましい。また、保持時間は、1時間~3時間、より好ましくは1時間~2時間とする。 From this point of view, the temperature at the time of pressurization is preferably 800 ° C. or higher and lower than 900 ° C., and further preferably 850 ° C. or higher and lower than 900 ° C. The holding time is 1 hour to 3 hours, more preferably 1 hour to 2 hours.
 また、上記の温度に到達するまでの昇温速度は5℃/分以上とすることが好ましく、さらに5℃/分~10℃/分とすることがより一層好ましい。また、上記の温度に到達した後の降温では、降温速度を1℃/分以上とすることが好ましい。昇温速度及び降温速度を速くすることにより、加熱時間がより短くなって、粒成長の更なる抑制ならびに、それによる平均面積及び表面粗さRaの大幅な低下を達成できるからである。所定の降温速度を実現するため、空冷等の強制冷却を採用してもよい。 Further, the heating rate until reaching the above temperature is preferably 5 ° C./min or more, and further preferably 5 ° C./min to 10 ° C./min. Further, in the temperature lowering after reaching the above temperature, the temperature lowering rate is preferably 1 ° C./min or more. This is because by increasing the heating rate and the temperature decreasing rate, the heating time becomes shorter, and further suppression of grain growth and thereby a significant reduction in the average area and surface roughness Ra can be achieved. In order to realize a predetermined temperature lowering rate, forced cooling such as air cooling may be adopted.
 焼結工程では、加圧力及び雰囲気等は諸条件に応じて適宜決定することができるが、たとえば、加圧力は15MPa~30MPa、雰囲気は真空雰囲気等とすることができる。 In the sintering step, the pressing force and the atmosphere can be appropriately determined according to various conditions. For example, the pressing force can be 15 MPa to 30 MPa and the atmosphere can be a vacuum atmosphere or the like.
 その後、一般には上記の焼結体を、旋盤もしくは平面研削等で円板等の所定の形状に機械加工するとともに、その表面を研磨する。それにより、スパッタリングターゲットを製造することができる。 After that, in general, the above sintered body is machined into a predetermined shape such as a disk by a lathe or surface grinding, and the surface thereof is polished. Thereby, the sputtering target can be manufactured.
 次に、上述したようなスパッタリングターゲットを試作し、その性能を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。 Next, the sputtering target as described above was prototyped and its performance was confirmed, so it will be explained below. However, the description here is for the purpose of mere illustration, and is not intended to be limited thereto.
 ガスアトマイズ法により作製され、表1に示す組成でB、Co及びFeを含むように調整した原料粉末を準備した。この原料粉末を、表1に示す温度、保持温度及び昇温速度の条件にて、真空雰囲気下で加圧し、焼結体を得た。加圧力は29.42MPaとした。これにより得られた焼結体に対し、所定の機械加工、研磨を施し、スパッタリングターゲットを作製した。 A raw material powder prepared by the gas atomizing method and adjusted to contain B, Co and Fe with the composition shown in Table 1 was prepared. This raw material powder was pressurized under the conditions of the temperature, holding temperature and temperature rising rate shown in Table 1 in a vacuum atmosphere to obtain a sintered body. The pressing force was 29.42 MPa. The sintered body thus obtained was subjected to predetermined machining and polishing to prepare a sputtering target.
 表1に示すように異なる焼結時の条件の下で作製した各スパッタリングターゲットについて、先に述べた方法により、Fe-B相の平均面積、使用後スパッタリング面の表面粗さ、密度比をそれぞれ測定した。その結果も表1に示す。また比較例1及び実施例1の各スパッタリングターゲットにおける、スパッタリング面に直交する断面のSEM画像を、図1、2にそれぞれ示す。 As shown in Table 1, for each sputtering target prepared under different sintering conditions, the average area of the Fe—B phase, the surface roughness of the sputtered surface after use, and the density ratio were determined by the methods described above. It was measured. The results are also shown in Table 1. Further, SEM images of cross sections orthogonal to the sputtering plane in each of the sputtering targets of Comparative Example 1 and Example 1 are shown in FIGS. 1 and 2, respectively.
 また、各スパッタリングターゲットを用いて、キャノンアネルバ社製のC-7100GTにより、パワー600W、Ar流量30sccm、狙い膜厚20nmの条件でスパッタリングを行った。その結果、表1に示すパーティクル数となった。 Further, using each sputtering target, sputtering was performed by C-7100GT manufactured by Cannon Anerva under the conditions of power 600W, Ar flow rate 30sccm, and target film thickness 20nm. As a result, the number of particles shown in Table 1 was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から解かるように、焼結時に800℃以上かつ900℃未満の温度で、1時間~3時間にわたって保持した実施例1~8では、平均面積が小さくなった。そして、これにより、実施例1~8は、スパッタリング時のパーティクル数が少ないという結果が得られた。 As can be seen from Table 1, the average area was small in Examples 1 to 8 which were held at a temperature of 800 ° C. or higher and lower than 900 ° C. for 1 hour to 3 hours at the time of sintering. As a result, it was obtained that the number of particles in Examples 1 to 8 was small during sputtering.
 比較例1は、焼結時の温度が高かったことにより、平均面積が大きくなり、パーティクル数が増加した。これに対し、比較例2は、焼結時の温度が低かったことにより、ポアが多くなって平均面積が測定できなかった。この比較例2は、パーティクル数が多かった。
 比較例3は、焼結時の温度保持時間が長かったことに起因して、平均面積が大きくなって、パーティクル数が多かった。なお、比較例4、5は、B含有量が多く、ポアにより平均面積が測定不可となり、パーティクル数が増大した。
In Comparative Example 1, the average area increased and the number of particles increased due to the high temperature at the time of sintering. On the other hand, in Comparative Example 2, since the temperature at the time of sintering was low, the pores increased and the average area could not be measured. In this Comparative Example 2, the number of particles was large.
In Comparative Example 3, the average area was large and the number of particles was large due to the long temperature holding time during sintering. In Comparative Examples 4 and 5, the B content was high, the average area could not be measured due to the pores, and the number of particles increased.
 したがって、実施例1~8では、スパッタリング時のパーティクルを有効に低減できたといえる。 Therefore, in Examples 1 to 8, it can be said that the particles during sputtering could be effectively reduced.

Claims (11)

  1.  スパッタリングターゲットであって、Bを10at%~20at%で含有し、残部にFeを含み、SEM画像観察によるFe-B相の平均面積が20μm2以下であるスパッタリングターゲット。 A sputtering target in which B is contained in an amount of 10 at% to 20 at%, Fe is contained in the balance, and the average area of the Fe—B phase by SEM image observation is 20 μm 2 or less.
  2.  Fe-B相の前記平均面積が15μm2以下である請求項1に記載のスパッタリングターゲット。 The sputtering target according to claim 1, wherein the average area of the Fe-B phase is 15 μm 2 or less.
  3.  Fe-B相の前記平均面積が10μm2以下である請求項2に記載のスパッタリングターゲット。 The sputtering target according to claim 2 , wherein the average area of the Fe-B phase is 10 μm 2 or less.
  4.  スパッタリング装置を用いて600Wの出力で60kWhまで使用した場合の、当該使用後スパッタリング面の表面粗さRaが、2.0μm以下である請求項1~3のいずれか一項に記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 3, wherein the surface roughness Ra of the sputtering surface after use is 2.0 μm or less when used up to 60 kWh at an output of 600 W using a sputtering apparatus.
  5.  密度比が99%よりも大きい請求項1~4のいずれか一項に記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 4, wherein the density ratio is larger than 99%.
  6.  純度が3N以上である請求項1~5のいずれか一項に記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 5, which has a purity of 3N or more.
  7.  さらにCoを含有し、Coの含有量が5at%~80at%である請求項1~6のいずれか一項に記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 6, further containing Co and having a Co content of 5 at% to 80 at%.
  8.  スパッタリングターゲットを製造する方法であって、
     Bを10at%~20at%で含むとともにFeを含む原料粉末を、加圧しながら800℃以上かつ900℃未満の温度で、1時間~3時間にわたって保持する焼結工程を含む、スパッタリングターゲットの製造方法。
    A method of manufacturing a sputtering target
    A method for producing a sputtering target, which comprises a sintering step in which a raw material powder containing B at 10 at% to 20 at% and containing Fe is held at a temperature of 800 ° C. or higher and lower than 900 ° C. for 1 to 3 hours while being pressurized. ..
  9.  焼結工程で、前記温度を850℃以上かつ900℃未満とする、請求項8に記載のスパッタリングターゲットの製造方法。 The method for manufacturing a sputtering target according to claim 8, wherein the temperature is set to 850 ° C. or higher and lower than 900 ° C. in the sintering step.
  10.  焼結工程で、前記温度に到達するまでの昇温速度を5℃/分以上とし、前記温度に到達した後の降温速度を1℃/分以上とする、請求項8又は9に記載のスパッタリングターゲットの製造方法。 The sputtering according to claim 8 or 9, wherein in the sintering step, the heating rate until the temperature is reached is 5 ° C./min or more, and the temperature lowering rate after reaching the temperature is 1 ° C./min or more. How to make the target.
  11.  前記原料粉末がさらに、Coを5at%~80at%で含む請求項8~10のいずれか一項に記載のスパッタリングターゲットの製造方法。 The method for producing a sputtering target according to any one of claims 8 to 10, wherein the raw material powder further contains Co in an amount of 5 at% to 80 at%.
PCT/JP2020/001602 2019-03-20 2020-01-17 Sputtering target and production method for sputtering target WO2020188987A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021506197A JPWO2020188987A1 (en) 2019-03-20 2020-01-17
CN202080022678.3A CN113614281A (en) 2019-03-20 2020-01-17 Sputtering target and method for producing sputtering target
KR1020217032233A KR20210134760A (en) 2019-03-20 2020-01-17 Sputtering target and manufacturing method of sputtering target
JP2023213307A JP2024037947A (en) 2019-03-20 2023-12-18 Sputtering target and method for manufacturing sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019053797 2019-03-20
JP2019-053797 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020188987A1 true WO2020188987A1 (en) 2020-09-24

Family

ID=72520719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001602 WO2020188987A1 (en) 2019-03-20 2020-01-17 Sputtering target and production method for sputtering target

Country Status (5)

Country Link
JP (2) JPWO2020188987A1 (en)
KR (1) KR20210134760A (en)
CN (1) CN113614281A (en)
TW (1) TWI732428B (en)
WO (1) WO2020188987A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346423A (en) * 2003-04-30 2004-12-09 Hitachi Metals Ltd Fe-Co-B ALLOY TARGET MATERIAL, ITS MANUFACTURING METHOD, SOFT MAGNETIC FILM, MAGNETIC RECORDING MEDIUM AND TMR ELEMENT
WO2006077692A1 (en) * 2005-01-18 2006-07-27 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
JP2007161540A (en) * 2005-12-15 2007-06-28 Sanyo Special Steel Co Ltd Method of manufacturing fecob-based sputtering target material
JP2008127591A (en) * 2006-11-17 2008-06-05 Sanyo Special Steel Co Ltd Co-B-BASED TARGET MATERIAL AND MANUFACTURING METHOD THEREFOR
WO2015019513A1 (en) * 2013-08-09 2015-02-12 Jx日鉱日石金属株式会社 Process for manufacturing neodymium-iron-boron-based rare earth powder or sputtering target, neodymium-iron-boron-based rare earth powder or sputtering target, and neodymium-iron-boron-based thin film for rare earth magnet or manufacturing process therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2547091A1 (en) * 2006-05-18 2007-11-18 Hydro Quebec Ceramic preparation process, the ceramic obtained via said process and their use namely as a target for cathode sputtering
MY179242A (en) * 2012-03-15 2020-11-02 Jx Nippon Mining & Metals Corp Magnetic material sintered sputtering target
EP3015566B1 (en) 2013-11-28 2021-09-15 JX Nippon Mining & Metals Corporation Magnetic material sputtering target and method for producing same
JP5812217B1 (en) * 2014-04-17 2015-11-11 三菱マテリアル株式会社 Sputtering target and manufacturing method of sputtering target
SG11201704465WA (en) * 2015-03-04 2017-06-29 Jx Nippon Mining & Metals Corp Magnetic material sputtering target and method for producing same
JP6660130B2 (en) 2015-09-18 2020-03-04 山陽特殊製鋼株式会社 CoFeB alloy target material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346423A (en) * 2003-04-30 2004-12-09 Hitachi Metals Ltd Fe-Co-B ALLOY TARGET MATERIAL, ITS MANUFACTURING METHOD, SOFT MAGNETIC FILM, MAGNETIC RECORDING MEDIUM AND TMR ELEMENT
WO2006077692A1 (en) * 2005-01-18 2006-07-27 Nippon Mining & Metals Co., Ltd. Sb-Te BASED ALLOY POWDER FOR SINTERING AND SINTERED SPUTTERING TARGET PREPARED BY SINTERING SAID POWDER, AND METHOD FOR PREPARING Sb-Te BASED ALLOY POWDER FOR SINTERING
JP2007161540A (en) * 2005-12-15 2007-06-28 Sanyo Special Steel Co Ltd Method of manufacturing fecob-based sputtering target material
JP2008127591A (en) * 2006-11-17 2008-06-05 Sanyo Special Steel Co Ltd Co-B-BASED TARGET MATERIAL AND MANUFACTURING METHOD THEREFOR
WO2015019513A1 (en) * 2013-08-09 2015-02-12 Jx日鉱日石金属株式会社 Process for manufacturing neodymium-iron-boron-based rare earth powder or sputtering target, neodymium-iron-boron-based rare earth powder or sputtering target, and neodymium-iron-boron-based thin film for rare earth magnet or manufacturing process therefor

Also Published As

Publication number Publication date
TWI732428B (en) 2021-07-01
JP2024037947A (en) 2024-03-19
KR20210134760A (en) 2021-11-10
TW202035749A (en) 2020-10-01
JPWO2020188987A1 (en) 2020-09-24
CN113614281A (en) 2021-11-05

Similar Documents

Publication Publication Date Title
EP3015566B1 (en) Magnetic material sputtering target and method for producing same
CN103270554B (en) It is dispersed with the Fe-Pt type sputtering target of C particle
SG189832A1 (en) Ferromagnetic material sputtering target
TW201402850A (en) Fe-Pt-Ag-C-BASED SPUTTERING TARGET HAVING C PARTICLES DISPERSED THEREIN, AND METHOD FOR PRODUCING SAME
JP5960287B2 (en) Sintered sputtering target
WO2020188987A1 (en) Sputtering target and production method for sputtering target
JP6660130B2 (en) CoFeB alloy target material
WO2021141042A1 (en) Method for producing sputtering target material
CN111566253B (en) Sputtering target and magnetic film
JP6575775B2 (en) Soft magnetic film
JP2016149170A (en) Fe-Co-Nb BASED ALLOY SPUTTERING TARGET MATERIAL AND SOFT MAGNETIC FILM
JP6728094B2 (en) Ferromagnetic material sputtering target
JP7412659B2 (en) Sputtering target members, sputtering target assemblies, and film formation methods
WO2021141043A1 (en) Sputtering target material
WO2021054136A1 (en) Target
JP7317741B2 (en) Sputtering targets, magnetic films, and mixed raw material powders for making sputtering targets
JP6030009B2 (en) Sputtering target for rare earth magnet and manufacturing method thereof
JP6156734B2 (en) Fe-Co alloy sputtering target material and method for producing the same
JP2024030380A (en) sputtering target
CN113692457A (en) Sputtering target and method for producing sputtering target
JP2013235623A (en) Sputtering target material for perpendicular magnetic recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506197

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032233

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20773486

Country of ref document: EP

Kind code of ref document: A1