WO2020188846A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2020188846A1
WO2020188846A1 PCT/JP2019/030768 JP2019030768W WO2020188846A1 WO 2020188846 A1 WO2020188846 A1 WO 2020188846A1 JP 2019030768 W JP2019030768 W JP 2019030768W WO 2020188846 A1 WO2020188846 A1 WO 2020188846A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
semiconductor device
substrate
buffer layer
Prior art date
Application number
PCT/JP2019/030768
Other languages
English (en)
French (fr)
Inventor
信二 宇治田
田村 聡之
小川 雅弘
柴田 大輔
半田 浩之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US17/428,741 priority Critical patent/US20220157980A1/en
Priority to JP2021506131A priority patent/JP7257498B2/ja
Publication of WO2020188846A1 publication Critical patent/WO2020188846A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material

Definitions

  • This disclosure relates to a nitride semiconductor device.
  • the group III nitride semiconductor is a compound semiconductor of a group III element, that is, at least one of aluminum (Al), gallium (Ga) and indium (In) and nitrogen.
  • Patent Documents 1 and 2 below describe a transistor made of a horizontal group III nitride semiconductor in which a source electrode and a drain electrode are arranged on the same channel layer. This transistor uses sapphire (single crystal Al 2 O 3 ) or silicon (Si) as the growth substrate, and a hole injection layer made of p-type GaN is provided between the gate electrode and the channel layer below it. It is a normally-off type field effect transistor (FET).
  • FET normally-off type field effect transistor
  • Patent Document 3 describes a GaN-based High Electron Mobility Transistor (HEMT), which is also a horizontal device. Silicon is used for the growth substrate of this transistor.
  • HEMT High Electron Mobility Transistor
  • Silicon is used for the growth substrate of this transistor.
  • the channel layer is formed by a heterojunction composed of an AlGaN / GaN layer
  • an undoped AlGaN layer having a bandgap larger than that of the GaN layer is formed as a block layer under the channel layer.
  • a superlattice structure having a heterojunction in which aluminum nitride gallium (AlGaN) layers having different compositions are alternately laminated is used as a result, the GaN-based HEMT has a configuration in which a leakage current in the vertical direction is suppressed, and low on-resistance and high-speed switching operation in a high voltage region are realized.
  • AlGaN aluminum nitride gallium
  • Japanese Patent No. 471459 (FIGS. 1 and 4) Japanese Patent No. 4705421 (Fig. 1) U.S. Pat. No. 9,768,258 (Fig. 9)
  • the buffer layer formed on the hetero substrate is thickened in order to realize high withstand voltage, including the superlattice structure.
  • a dislocation density of about 10 10 cm- 2 occurs in the gallium nitride layer constituting the active layer, and a gallium nitride layer having high crystallinity cannot be obtained. As a result, it is not possible to realize a low resistance that can bring out the potential inherent in gallium nitride.
  • silicon and gallium nitride have a large lattice mismatch rate of about 17%, and lattice defects (cracks) are likely to occur due to the difference in the lattice mismatch rate and the coefficient of thermal expansion. Therefore, in the case of a field effect transistor, a configuration may be adopted in which the source electrode is grounded to the substrate to suppress the collapse current. In this case, it is necessary to make the thickness in the vertical direction (thickness direction of the semiconductor layer), specifically, the thickness of the buffer layer sufficiently thick.
  • the buffer layer on an inexpensive silicon hetero substrate can be deposited only to a thickness of about 5 ⁇ m to 6 ⁇ m, and it is difficult to increase the withstand voltage in the vertical direction to 1000 V or more.
  • Ron is the resistance value between the drain and the source at the start of operation of the transistor.
  • the present disclosure is configured to use gallium nitride as a growth substrate for a group III nitride semiconductor (hereinafter, also referred to as a nitride semiconductor).
  • a group III nitride semiconductor hereinafter, also referred to as a nitride semiconductor
  • the present disclosure targets nitride semiconductor devices and has taken the following solutions.
  • the present disclosure is provided on a substrate made of conductive gallium nitride, a buffer layer made of a first group III nitride semiconductor, and a second III.
  • a drift layer made of a group nitride semiconductor, a channel layer provided on the drift layer and composed of a third group III nitride semiconducting, and heterojunction to the drift layer, and a gate electrode provided on the channel layer.
  • a source electrode and a drain electrode provided in the regions on both sides of the gate electrode on the channel layer, respectively.
  • the buffer layer can be made thick enough to enable the required high withstand voltage, and the crystallinity of the nitride semiconductor layer on the buffer layer is improved, so that the on-resistance can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing a nitride semiconductor device according to the first embodiment.
  • FIG. 2 is a graph comparing the withstand voltage of a GaN-based semiconductor device using gallium nitride as a substrate and a GaN-based semiconductor device using silicon as a substrate.
  • FIG. 3 is a schematic cross-sectional view showing the effect of thickening the buffer layer of the nitride semiconductor device according to the first embodiment.
  • FIG. 4 is a list comparing the crystallinity of a GaN-based semiconductor using gallium nitride as a substrate and a GaN-based semiconductor using silicon as a substrate.
  • FIG. 1 is a schematic cross-sectional view showing a nitride semiconductor device according to the first embodiment.
  • FIG. 2 is a graph comparing the withstand voltage of a GaN-based semiconductor device using gallium nitride as a substrate and a GaN-based semiconductor device using silicon as a substrate.
  • FIG. 5 is a graph comparing Ron / Qoss between a GaN-based semiconductor device using gallium nitride as a substrate and a silicon-based field effect transistor and a silicon carbide-based field effect transistor.
  • FIG. 6 is a schematic cross-sectional view showing the nitride semiconductor device according to the second embodiment.
  • a first aspect according to an embodiment of the present disclosure is a substrate made of conductive gallium nitride, a buffer layer provided on the substrate and made of a first group III nitride semiconductor, and a buffer layer.
  • a drift layer made of a second group III nitride semiconductor, a channel layer provided on the drift layer and made of a third group III nitride semiconducting electrode, and a channel layer heterobonded to the drift layer, and a channel layer. It is provided with a gate electrode provided on the top and a source electrode and a drain electrode provided on both sides of the gate electrode on the channel layer, respectively.
  • the buffer layer made of the first group III nitride semiconductor is provided on the substrate made of gallium nitride. Therefore, defects such as cracks are unlikely to occur, and the buffer layer can be made thicker, so that the withstand voltage can be increased. Moreover, since it has a homoepitaxial configuration, the dislocation density is suppressed as compared with the case of heteroepitaxial growth, so that the crystallinity of the nitride semiconductor layer on the buffer layer is improved.
  • the group III nitride semiconductor of the first group may have a dislocation density of 5 ⁇ 10 7 cm- 2 or less.
  • the dislocation density generated in the buffer layer growing on the substrate should be suppressed to 5 ⁇ 10 7 cm- 2 or less. Can be done.
  • the third aspect is provided in the first or second aspect, which is provided between the channel layer and the gate electrode, and further includes a p-type control layer made of a p-type fourth group III nitride semiconductor. May be good.
  • the band potential rises during non-operation when no bias voltage is applied to the gate electrode.
  • the electron carriers in the lower 2DEG layer are depleted, and a normally-off state can be obtained.
  • the potential of the band is lowered, so that electron carriers are generated in the 2DEG layer below the gate electrode, and the drain source current (Ids) flows.
  • the buffer layer is doped with carbon (C), the thickness of the buffer layer is 7 ⁇ m or more, and the doped carbon concentration is 5. ⁇ 10 17 cm -3 or more may be used.
  • the buffer layer when the buffer layer is doped with a carbon concentration of 5 ⁇ 10 17 cm -3 or more, it is mixed from the atmosphere during production and the production equipment, etc., and the epitaxial layer is silicon having characteristics close to n-type. (Si) and oxygen (O) can be compensated, and an energy level is formed between the bands (midgap) of gallium nitride constituting the buffer layer. Since electrons are trapped in the energy level of the formed mid gap, high resistance of the buffer layer can be realized, and the withstand voltage can be improved by the buffer layer having a thickness of 7 ⁇ m or more. it can.
  • the buffer layer contains at least one of silicon and oxygen, and the carbon concentration of the buffer layer may be larger than the sum of the silicon concentration and the oxygen concentration. Good.
  • the carbon concentration of the buffer layer is larger than the sum of the silicon concentration and the oxygen concentration, the polarity of the buffer layer becomes close to n-type, and it is suppressed that the withstand voltage of the buffer layer decreases. Further, since the energy level of the mid gap is formed by the carbon described above, it is possible to surely realize high resistance of the buffer layer.
  • a sixth aspect is a fifth group III nitride provided between the buffer layer and the drift layer, heterojunctioned with the drift layer, and having a thickness of 0.5 ⁇ m or more in the first to fifth aspects.
  • a withstand voltage improving layer made of a semiconductor may be further provided.
  • the high withstand voltage by increasing the thickness of the channel layer increases the concentration of the 2DEG layer and makes it difficult to obtain the normalization characteristic. Therefore, instead of this, between the buffer layer and the drift layer.
  • the pressure resistance in the vertical direction can be further increased.
  • the pressure resistance improving layer is aluminum gallium nitride, and the composition of aluminum in the aluminum gallium nitride may be 1% or more and 10% or less.
  • the composition of aluminum in the pressure resistance improving layer smaller than that of the channel layer, the formation of an unwanted 2DEG layer at the interface between the drift layer and the pressure resistance improving layer is suppressed, and the buffer layer made of GaN is formed. It is possible to suppress the deviation of the lattice constant of.
  • the depletion layer forming layer made of the p-type sixth group III nitride semiconductor is further provided between the substrate and the buffer layer in the first to seventh aspects. Good.
  • the depletion layer forming layer provided between the substrate and the buffer layer, a high voltage is applied to the buffer layer and a ground voltage is applied to the depletion layer forming layer when an off voltage is applied. Therefore, a depletion layer is formed in the buffer layer and the depletion layer forming layer, and the formed depletion layer increases the pressure resistance in the vertical direction. Therefore, since the pressure resistance can be ensured by the formed depletion layer, it is possible to suppress the deterioration of the pressure resistance yield due to the in-plane variation of the buffer layer.
  • the group III nitride semiconductor of the sixth group is p-type gallium nitride, and the thickness of the depletion layer forming layer may be 500 nm or less.
  • the thickness of the depletion layer is adjusted so that the punch-through phenomenon does not occur. It is preferable to design. Further, if the above conditions are satisfied, the depletion layer forming layer is preferably formed as thin as possible.
  • the source electrode is grounded to the substrate in the first to ninth aspects.
  • FIG. 1 shows a cross-sectional configuration of a field effect transistor 100, which is an example of a nitride semiconductor device according to the first embodiment.
  • the thickness of each semiconductor layer and the thickness and width of each electrode are for convenience only and do not represent an actual dimensional ratio. The same applies to the following configuration drawings.
  • the field effect transistor 100 sequentially grows crystals on the main surface of a single crystal substrate (hereinafter, referred to as a substrate) 101 for device growth made of conductive gallium nitride (GaN). It has a buffer layer 102, a drift (electron traveling) layer 103, a channel (electron barrier) layer 104, and a p-type control layer 106.
  • the buffer layer 102 is made of, for example, carbon (C) doped gallium nitride (i-GaN).
  • the drift layer 103 is made of, for example, undoped gallium nitride (i-GaN).
  • the channel layer 104 is made of, for example, undoped aluminum gallium nitride (i-AlGaN).
  • the p-type control layer 106 is composed of, for example, p-type gallium nitride (p-GaN) selectively formed on the channel layer 104.
  • the undoped state means a state in which impurities are not intentionally doped into the target semiconductor.
  • a plane orientation (0001) plane that is, a c plane
  • the substrate 101 for example, an n-type GaN substrate having a thickness of about 300 ⁇ m and doped with silicon (Si) may be used as a donor.
  • the conductivity of the substrate 101 may be p-type.
  • magnesium (Mg) can be used as the acceptor in this case.
  • the buffer layer 102 is, for example, i-GaN having a thickness of 10 ⁇ m and being doped with carbon (C) at a concentration of 5 ⁇ 10 17 cm -3 or more.
  • the thickness of the buffer layer 102 may be 7 ⁇ m or more.
  • the atmosphere during manufacturing and the concentrations of silicon (Si) and oxygen (O) mixed from the manufacturing equipment (jig) are 2 ⁇ 10 15 cm -3 and 6 ⁇ 10 15 cm -3 , respectively.
  • the carbon concentration is set to be larger than the sum of the silicon concentration and the oxygen concentration so that the doped carbon is not completely compensated by the silicon and oxygen.
  • the doped carbon forms an energy level in the midgap of the GaN forming the buffer layer 102. Electrons are trapped at the level of the formed mid gap, the resistance of the buffer layer 102 is increased, and the withstand voltage can be improved.
  • the buffer layer 102 made of C-doped i-GaN according to the present embodiment has crystal growth on the main surface of the substrate 101 made of n-GaN, and even if the thickness is 10 ⁇ m, the dislocation density is 5 It can be suppressed to ⁇ 10 7 cm- 2 or less. Normally, the dislocation density of the nitride semiconductor in which crystals grow on the main surface of the substrate 101 made of GaN is suppressed to about 5 ⁇ 10 6 cm- 2 .
  • the i-GaN constituting the buffer layer 102 is an example of a first group III nitride semiconductor.
  • this i-GaN is C-doped i-AlGaN, C-doped i-AlInGaN, or C-doped i-InGaN within a range in which the difference in lattice mismatch ratio with the substrate 101 does not become relatively large. There may be. However, since GaN is used for the substrate 101, it is preferable to use GaN for the buffer layer 102.
  • the drift layer 103 is, for example, i-GaN having a thickness of about 500 nm.
  • the i-GaN constituting the drift layer 103 is an example of a second group III nitride semiconductor. Therefore, this i-GaN may be i-AlGaN, i-AlInGaN, i-InGaN, or i-InN as long as the difference in lattice mismatch rate with the buffer layer 102 does not become relatively large. ..
  • the channel layer 104 heterojunctioned with the drift layer 103 is, for example, i-AlGaN having a thickness of about 25 nm.
  • the Al composition in i-AlGaN is, for example, 0.2. However, the Al composition may be 0.1 or more and 0.5 or less.
  • the bandgap of the AlGaN semiconductor is larger than the bandgap of the GaN semiconductor.
  • the i-AlGaN constituting the channel layer 104 is an example of a third group III nitride semiconductor.
  • this i-AlGaN is i-AlInGaN or i-AlN within a range in which the band gap is larger than that of the drift layer 103 and the difference in the lattice mismatch rate with the drift layer 103 is not too large. May be good.
  • the channel layer 104 and the drift layer 103 are heterojunctions in which the channel layer 104 has a larger bandgap than the drift layer 103, and as described above, the interface between the two semiconductor layers is a group III nitride.
  • a two-dimensional electron gas (2DEG) layer 105 is generated by spontaneous polarization and piezo polarization by a semiconductor.
  • the p-type control layer 106 is, for example, p-GaN having a thickness of about 100 nm.
  • the concentration of magnesium (Mg), which is a p-type impurity, is, for example, about 1 ⁇ 10 19 cm -3 .
  • the p-GaN constituting the p-type control layer 106 is an example of a fourth group III nitride semiconductor. Therefore, this p-GaN may be p-AlN, p-AlGaN, p-AlInGaN or p-InGaN as long as the difference in lattice mismatch rate with the channel layer 104 does not become relatively large. ..
  • a gate electrode 107 is provided on the p-type control layer 106.
  • a source electrode 108 and a drain electrode 109 are provided in the regions on both sides of the p-type control layer 106 on the channel layer 104.
  • the gate electrode 107 for example, a single-layer film made of palladium (Pd) or a laminated film of palladium (Pd) and gold (Au) having a thickness of about 100 nm can be used.
  • the source electrode 108 and the drain electrode 109 for example, a laminated film of titanium (Ti) and aluminum (Al) having a thickness of about 100 nm can be used.
  • the distance between the gate electrode 107 and the drain electrode 109 is set to be larger than the distance between the gate electrode 107 and the source electrode 108. As a result, the withstand voltage (transverse withstand voltage) between the gate electrode 107 and the drain electrode 109 is increased.
  • the source electrode 108 is electrically connected to the substrate 101.
  • the current collapse phenomenon is suppressed and the increase in on-resistance is prevented.
  • the current collapse phenomenon is a deep level caused by a defect in an insulator or a semiconductor, and electrons accelerated by a concentration of a high electric field in the lateral direction are trapped immediately. This is a phenomenon in which the channel is partially depleted and the drain current decreases due to the failure to recover.
  • the current collapse phenomenon contributes to the increase in on-resistance.
  • the source electrode 108 and the substrate 101 are grounded, it becomes necessary to increase the withstand voltage (longitudinal withstand voltage) in the direction in which the source electrode 108 and the substrate 101 face each other. If the substrate 101 is configured so that the source electrode 108 is not grounded, it does not necessarily have to be conductive.
  • “provided on the main surface of the substrate 101” may be in a state of being provided directly on the main surface of the substrate 101, or via another semiconductor layer or the like. It may be in a state of being indirectly provided. In the case of direct contact, for example, it is described as “provided directly on the main surface”. This also applies to the case of the description "under the buffer layer 102", for example.
  • the gate bias exceeds the forward voltage
  • holes start to be injected from the p-type control layer 106 into the 2DEG layer 105.
  • the 2DEG layer 105 drift layer 103
  • the same amount of electrons as the injected holes are drawn from the source electrode 108 in order to satisfy the charge neutrality condition.
  • the extracted electrons move toward the drain electrode 109 due to the drain voltage.
  • the holes injected into the drift layer 103 stay below the gate electrode 107 because their mobility is about two orders of magnitude smaller than that of the electrons.
  • due to the potential barrier due to the heterojunction between the drift layer 103 and the channel layer 104 it hardly flows into the gate electrode 107.
  • (effect) (1) Improvement of withstand voltage
  • the buffer layer 102 made of GaN that homoepitaxially grows on the main surface of the substrate 101 has almost no difference in lattice mismatch and difference in thermal expansion coefficient, so that defects such as cracks hardly occur.
  • the thickness of the buffer layer 102 can be increased to 7 ⁇ m or more, and as a result, the withstand voltage in the vertical direction is improved.
  • FIG. 2 shows a GaN-based semiconductor device (field effect transistor) using gallium nitride (GaN) of the present embodiment as a growth substrate and a GaN-based semiconductor device (field effect transistor) using conventional silicon (Si) as a growth substrate.
  • GaN gallium nitride
  • Si silicon
  • the output capacitance Cass of the capacitance (parasitic capacitance) in the field effect transistor 100 can be reduced by thickening the buffer layer 102. it can. As a result, the drain source voltage Vds at the time of soft switching can be switched to 0V at high speed.
  • the output capacity Coss is expressed by the following formula (1).
  • Coss Cds + Cdg... (1)
  • Cds indicates the capacitance between the drain and source electrodes
  • Cdg indicates the capacitance between the drain and gate electrodes.
  • Cds is represented by the following equation (2).
  • Cds Cds1 + Cds2 ...
  • the buffer layer 102 is thickened to 10 ⁇ m, and if the thickness of the conventional buffer layer is, for example, 5 ⁇ m, the following simple calculation formula (3) for capacity can be used.
  • C ⁇ ⁇ S / d... (3)
  • represents the dielectric constant of the substance
  • S represents the area of the electrodes
  • d represents the distance between the electrodes.
  • the output capacitance Cass can be reduced by thickening the buffer layer 102.
  • the dislocation density of the GaN buffer layer crystal-grown on the main surface of the single crystal GaN substrate 101 is 5 ⁇ 10 7 cm- 2 or less, for example. It can be suppressed to 5 ⁇ 10 6 cm- 2 . As a result, the thickness of the buffer layer 102 can be increased to 7 ⁇ m or more, and as a result, the withstand voltage in the vertical direction is improved.
  • the dislocation density of the buffer layer made of GaN on it is 1 ⁇ 10 10 cm- 2 or more. Also. It is known that when sapphire (single crystal Al 2 O 3 ) is used for the growth substrate, the dislocation density of the buffer layer made of GaN becomes 1 ⁇ 10 8 cm- 2 .
  • TEM Transmission Electron Microscope
  • the cathode luminescence measurement method is used. This method counts the number of dark spots. There is also an advantage that the dislocation density can be measured over a wide range and non-destructive measurement is possible.
  • the crystallinity of each GaN-based semiconductor layer of the drift layer 103 made of at least undoped GaN crystal-grown on the buffer layer 102 and the channel layer 104 made of undoped AlGaN is good. Become. Therefore, the electron mobility in the drift layer 103 and the channel layer 104 including the 2DEG layer 105 is maintained high, so that the on-resistance can be reduced.
  • FIG. 4 shows an example of various parameters indicating the quality of the crystallinity of the GaN-based semiconductor using GaN as the growth substrate and the GaN-based semiconductor using silicon (Si) as the growth substrate in the present embodiment.
  • the half width (FWHM: Full Width at Half Maximum) of the locking curve in X-ray diffraction (XRD: X-ray Diffraction) is (tilt distribution) when the plane orientation is reflection by the (0002) plane. )
  • the measured value of the GaN-based semiconductor on the GaN substrate is as small as about 30% as compared with the GaN-based semiconductor on the Si substrate. That is, the tilt distribution shows a steep and good distribution.
  • the measured value of the GaN-based semiconductor on the GaN substrate is as small as about 12% as compared with the GaN-based semiconductor on the Si substrate. Become. That is, the twist distribution also shows a steep and good distribution.
  • the negative sign "-" in the exponent of the plane orientation conveniently represents the inversion of one exponent following the negative sign.
  • the mobility when the GaN substrate is used, the mobility is increased to about 1.5 times as compared with the case where the Si substrate is used.
  • the dislocation density of the GaN-based semiconductor on the GaN substrate at this time is 5 ⁇ 10 6 cm- 2 as described above, and the dislocation density of the Si substrate in the GaN-based semiconductor is 1 ⁇ 10 10 as described above. cm -2 .
  • the electron mobility of the GaN-based semiconductor on the sapphire substrate is 1700 cm 2 / Vs, and the dislocation density of the GaN-based semiconductor at this time is 1 ⁇ 10 8 cm- 2 . is there.
  • the sheet resistance of the GaN-based semiconductor on the GaN substrate is also reduced by about 33% as compared with the case of the Si substrate.
  • Ron / Qoss Reduction of Ron / Qoss
  • the output charge capacity Qoss is the amount of charge between the drain and the source, and represents the amount of charge accumulated in the output capacity Cass described above.
  • the output charge capacity Qoss is an important parameter in soft switching required for high-frequency drive for system miniaturization.
  • Low Qoss during so-called zero voltage switching (ZVS) operation in which the gate voltage is turned on to control the drain source current Ids to start flowing after the value of the drain source voltage Vds drops to 0V. Is especially needed.
  • ZVS zero voltage switching
  • the switching loss at turn-on can be made almost zero.
  • the speed at which the value of the drain / source voltage Vds drops to 0V becomes slow, so that high-frequency driving cannot be realized. Therefore, low Qoss is required for high frequency drive of the system.
  • FIG. 5 shows a GaN-based semiconductor transistor using the GaN of the present embodiment as a growth substrate, a Si-based field effect transistor (MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor), and a SiC (silicon carbide) -based field effect transistor. Ron / Qoss with (MOSFET) is shown in comparison.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the vertical axis on the left represents the output charge capacitance Qoss (nC) up to a drain voltage of 800 V
  • the horizontal axis represents the on-resistance Ron (m ⁇ )
  • the solid line in the graph is the product of Ron and Qoss. Indicates the value. For example, the lowest solid line has a product of Ron and Qoss of 2000, and the highest solid line has a product of Ron and Qoss of 30,000.
  • Ron is 80 m ⁇
  • Qoss is 25 nC
  • the product is 2000.
  • the Ron / Qoss value is approximately 9000 or more, and even in the case of the SiC field-effect transistor ( ⁇ ), the Ron / Qoss value is approximately 6000 or more. Is less than 9000.
  • FIG. 6 shows the cross-sectional configuration of the field effect transistor 120, which is an example of the nitride semiconductor device according to the second embodiment.
  • the field-effect transistor 120 according to the second embodiment has a configuration capable of further improving the withstand voltage of the field-effect transistor 100 according to the first embodiment.
  • FIG. 6 the same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • a depletion layer forming layer 121 made of p-type gallium nitride (p-GaN) is provided between the substrate 101 and the buffer layer 102.
  • the thickness of the depletion cambium 121 is, for example, 200 nm. However, the thickness of the depletion layer forming layer 121 may be about 500 nm or less.
  • the p-GaN constituting the depletion layer forming layer 121 is an example of a group III nitride semiconductor.
  • this p-GaN may be p-AlN, p-AlGaN, p-AlInGaN, or p-InGaN as long as the difference in lattice mismatch rate with the substrate 101 does not become relatively large. ..
  • the substrate 101 is GaN
  • p-GaN is preferable for the depletion layer forming layer 121.
  • a pressure resistance improving layer 122 made of undoped aluminum gallium nitride (i-AlGaN) is provided between the buffer layer 102 and the drift layer 103.
  • the Al composition of the pressure resistance improving layer 122 is, for example, 0.05.
  • the thickness of the pressure resistance improving layer 122 is, for example, 1 ⁇ m.
  • the Al composition of the pressure resistance improving layer 122 may be 0.01 or more and 0.1 or less, and the thickness of the pressure resistance improving layer 122 may be 500 nm or more.
  • the i-AlGaN constituting the withstand voltage improving layer 122 is an example of a fifth group III nitride semiconductor.
  • the i-AlGaN may be i-AlN, i-AlInGaN, or i-InGaN as long as the difference in lattice mismatch ratio with the buffer layer 102 does not become relatively large.
  • i-AlGaN having the same mixed crystal as the channel layer 104 is preferable even if the composition ratio is different.
  • only one of the depletion layer forming layer 121 and the pressure resistance improving layer 122 may be provided.
  • the withstand voltage is improved by about 50% as compared with the field effect transistor 100 according to the first embodiment, and the yield due to in-plane variation is increased. Deterioration can be suppressed by about 30%.
  • the depletion layer forming layer 121 made of p-type GaN between the n-type GaN substrate 101 and the buffer layer 102 in this way, a high voltage is applied to the buffer layer 102 when an off-voltage is applied.
  • a ground voltage is applied to the depletion layer forming layer 121. Therefore, since the depletion layer is formed in the buffer layer 102 and the depletion layer forming layer 121, the pressure resistance in the vertical direction becomes larger depending on the formed depletion layer.
  • the thickness of the depletion layer forming layer 121 is not limited to 200 nm, and may be 100 nm or more and 500 nm or less.
  • a withstand voltage improving layer 122 made of i-AlGaN is provided between the buffer layer 101 made of GaN and the drift layer 103 made of i-GaN. This is because if an attempt is made to increase the pressure resistance by increasing the thickness of the channel layer 104, the concentration of the 2DEG layer 105 becomes too high, and it becomes difficult to obtain the normal off characteristic. Therefore, the pressure resistance in the vertical direction can be further increased by providing the pressure resistance improving layer 122 that heterojunctions the drift layer 103 and its lower surface between the buffer layer 102 and the drift layer 103.
  • the Al composition of i-AlGaN constituting the pressure resistance improving layer 122 is set to be smaller than that of the channel layer 104 made of i-AlGaN. This is preferable because the formation of an unwanted 2DEG layer at the interface between the drift layer 103 and the pressure resistance improving layer 122 can be suppressed, and the deviation of the lattice constant from the buffer layer 102 made of GaN can be suppressed.
  • a substrate 101 made of n-type GaN having a (0001) plane, that is, a c-plane in the plane orientation of the main plane is prepared.
  • an organic metal vapor phase growth (MOVPE: Metal Organic Vapor Phase Epitaxy) method can be used as a film forming method for forming a GaN-based semiconductor layer on the main surface of the substrate 101.
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • MBE molecular beam epitaxy
  • the n-type GaN-based semiconductor can be formed by adding, for example, silicon (Si).
  • the p-type GaN-based semiconductor can be formed by adding magnesium (Mg).
  • Mg magnesium
  • the n-type impurities and the p-type impurities are not limited to these.
  • a depletion layer forming layer 121 made of p-GaN having a growth temperature of 950 ° C. and Mg added as a p-type impurity is grown on the main surface of the substrate 101 by the MOVPE method.
  • the composition, thickness and impurity concentration of each GaN-based semiconductor layer are the same as those in the second embodiment.
  • the flow rate of ammonia (NH 3 ), which is a group V source, is 40 L / min (standard state (0 ° C., 1 atm): the same applies hereinafter in the flow rate), and the source of group III.
  • the flow rate of a certain TMG (Trimethyl Gallium) was set to 16 mL / min.
  • the value of the V / III ratio which represents the molar ratio of the group V source to the group III source, is 10,000.
  • the flow rate of hydrogen (H 2 ), which is a carrier gas was set to 32 L / min, and the flow rate of nitrogen (N 2 ) was set to 46 L / min.
  • the flow rate of ammonia (NH 3 ) and the flow rate of the carrier gas are the same in the subsequent GaN-based semiconductors.
  • the buffer layer 102 made of i-GaN is grown on the depletion layer forming layer 121 at a growth temperature of 1020 ° C.
  • Silicon (Si) and oxygen (O) may be incorporated into the buffer layer 102 as impurities due to the influence of manufacturing equipment, jigs, and the like, and the buffer layer 102 may exhibit conductivity close to n-type.
  • Carbon (C) is added as an impurity to compensate for these unwanted impurities. As described above, the carbon concentration at this time is larger than the sum of the silicon concentration and the oxygen concentration. The carbon concentration can be increased by lowering the growth temperature of the buffer layer 102 or increasing the growth rate.
  • the flow rate of TMG from Group III source was set to 100 mL / min.
  • the value of the V / III ratio is 1000.
  • the growth temperature related to the flow rate of TMG, which is a raw material for carbon concentration, and the amount of uptake of methyl group CH 3 in the TMG is set so that the carbon concentration of the buffer layer 102 is 5 ⁇ 10 17 cm -3 or more. I'm adjusting.
  • the pressure resistance improving layer 122 made of i-Al 0.05 Ga 0.95 N is grown on the buffer layer 102 at a growth temperature of 1100 ° C.
  • the flow rate of TMG of Group III source was 38 mL / min
  • the flow rate of TMA (TrimethylAluminium) was 7 mL / min.
  • the value of the V / III ratio is 4000.
  • the growth temperature is set to 1020 ° C.
  • the drift layer 103 made of i-GaN is grown on the pressure resistance improving layer 122.
  • the flow rate of TMG of Group III source was set to 38 mL / min.
  • the value of the V / III ratio is 4000.
  • the channel layer 104 made of i-Al 0.2 Ga 0.8 N is grown on the drift layer 103 at a growth temperature of 1100 ° C.
  • the flow rates of TMG and TMA of Group III source were both set to 5 mL / min.
  • the value of the V / III ratio is 25,000.
  • a p-type control layer 106 made of p-GaN having a growth temperature of 950 ° C. and Mg added as a p-type impurity is grown on the entire surface above the channel layer 104.
  • the flow rate of TMG of Group III source was set to 100 mL / min.
  • the value of the V / III ratio is 1000.
  • the temperature and the flow rate of the raw material gas from the buffer layer 102 to the p-type control layer 106 on the substrate 101 are appropriately changed, but they are executed as a series of growth steps.
  • the substrate 101 formed up to the p-type control layer 106 is taken out from the MOVPE apparatus. Subsequently, a resist is applied to the entire surface of the p-type control layer 106, and the applied resist is patterned by photolithography so that a portion including the formation region of the gate electrode 107 remains. As a result, a resist mask for patterning the p-type control layer 106 is formed. By performing dry etching using this resist mask, the desired p-type control layer 106 is formed, and the channel layers 104 are exposed on both sides of the p-type control layer 106.
  • a laminated film of Ti and Al is formed on the exposed channel layer 104 by a vacuum vapor deposition method, a sputtering method, or the like over the entire surface including the patterned p-type control layer 106.
  • the formed laminated film is subjected to desired patterning with a resist to form a source electrode 108 and a drain electrode 109 made of a laminated film of Ti and Al, respectively.
  • a sinter (sintering) treatment is performed in a temperature range of 450 ° C. to 550 ° C. so that the source electrode 108 and the drain electrode 109 and the channel layer 104 made of i-AlGaN come into ohmic contact to lower the contact resistance.
  • a gate which is a Pd single layer film or a laminated film of Pd and Au over the entire surface including the patterned p-type control layer 106 on the channel layer 104 again by a vacuum deposition method or a sputtering method.
  • Form a metal film a metal film.
  • the formed metal film for gate is subjected to desired patterning by photolithography to form the gate electrode 107 from the metal film for gate.
  • the composition and thickness of the source electrode 108, the drain electrode 109, and the gate electrode 107 are the same as those in the second embodiment.
  • a desired resist pattern is formed on the metal film after forming a metal film for forming the electrodes.
  • the resist film is first formed as a mask pattern for masking a region other than the electrode pattern, and then a predetermined metal film is deposited on the entire surface including the formed mask pattern, and further, the mask pattern is further formed.
  • the so-called lift-off method may be used in which the metal film deposited on the metal film is removed together with the metal film.
  • the field effect transistor 120 shown in FIG. 6 is formed by the above steps.
  • the method of manufacturing the field-effect transistor 120 according to the second embodiment has been described, but the method of manufacturing the field-effect transistor 100 according to the first embodiment is the depletion under the buffer layer 101 in the field-effect transistor 120. If each growth step of the withstand voltage improving layer 122 on the layer forming layer 121 and the buffer layer 101 is omitted, it is equivalent to the field effect transistor 120.
  • FET field effect transistor
  • the present disclosure is not limited to this configuration. That is, the present disclosure mainly aims to realize high withstand voltage and low on-resistance (high speed), and even for a nitride semiconductor device having a configuration without a p-type control layer, high withstand voltage is achieved. Low on-resistance is feasible.
  • the nitride semiconductor device according to the present disclosure is useful as a power semiconductor device aiming at high withstand voltage and low on-resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

電界効果トランジスタ100は、導電性を有する窒化ガリウムからなる基板101と、基板101の上に設けられ、CドープGaNからなるバッファ層102と、バッファ層102の上に設けられ、アンドープGaNからなるドリフト層103と、ドリフト層103の上に設けられ、アンドープAlGaNからなり、ドリフト層103とヘテロ接合するチャネル層104とを有している。チャネル層104の上にはゲート電極106が設けられ、チャネル層104の上におけるゲート電極106の両側方の領域には、ソース電極108及びドレイン電極109がそれぞれ設けられている。

Description

窒化物半導体装置
 本開示は、窒化物半導体装置に関する。
 従来、パワー半導体デバイスとして、III族窒化物半導体を用いたパワートランジスタが用いられている。III族窒化物半導体は、III族元素、すなわちアルミニウム(Al)、ガリウム(Ga)及びインジウム(In)の少なくとも1つと窒素との化合物半導体である。下記の特許文献1及び特許文献2には、ソース電極とドレイン電極とを同一のチャネル層の上に配置した横型のIII族窒化物半導体からなるトランジスタが記載されている。このトランジスタは、サファイア(単結晶Al)又はシリコン(Si)を成長用基板に用いると共に、ゲート電極とその下のチャネル層との間にp型GaNよりなるホール注入層を設けた、ノーマリオフ型の電界効果トランジスタ(Field Effect Transistor:FET)である。
 また、下記の特許文献3には、同じく横型デバイスであり、GaN系高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)が記載されている。このトランジスタの成長用基板にはシリコンが用いられている。例えばチャネル層がAlGaN/GaN層よりなるヘテロ接合で形成されている場合、その下層にGaN層よりもバンドギャップが大きい例えばアンドープAlGaN層をブロック層として形成している。さらに、基板上のバッファ構造の一部には、組成が異なる窒化アルミニウムガリウム(AlGaN)層が交互に積層されたヘテロ接合を持つ超格子構造が用いられている。これにより、GaN系HEMTは、縦方向のリーク電流が抑制され、高電圧領域での低オン抵抗及び高速スイッチング動作が実現される構成としている。
特許第4712459号公報(図1、図4) 特許第4705412号公報(図1) 米国特許第9768258号明細書(図9)
 近年、種々の用途、例えば、電気自動車(EV:Electric Vehicle)用車載電源、データセンタ用無停電電源(UPS:Uninterruptible Power Supply)、及びパワーコンディショナ等、システムの高電圧化(800V程度)を目指すことが検討されている。このように、システムの電圧が800Vに高電圧化された場合、パワートランジスタには、1200V程度の耐圧が必要となる。
 しかしながら、前記従来の横型III族窒化物電界効果トランジスタは、該トランジスタの半導体層(活性層)を成長させる成長用基板に、いずれも活性層とは組成が異なる、いわゆるヘテロ基板を用いている。このため、ヘテロ基板の上に形成するバッファ層は、超格子構造を含め、高耐圧化を実現するための厚膜化が困難となる。
 ヘテロ基板では、例えばシリコン(Si)基板の場合、活性層を構成する窒化ガリウム層に1010cm-2程度の転位密度が生じてしまい、高結晶性を持つ窒化ガリウム層を得ることができない。その結果、窒化ガリウムが本来有するポテンシャルを引き出すだけの低抵抗化を実現できない。
 また、シリコンと窒化ガリウムとは、両者の格子不整合率が17%程度と大きく、その格子不整合率及び熱膨張係数の差により、格子欠陥(クラック)が生じやすい。このため、電界効果トランジスタの場合は、ソース電極を基板と接地して、コラプス電流を抑制する構成を採る場合がある。この場合は、縦方向(半導体層の厚さ方向)の厚さ、具体的には、バッファ層の厚さを十分に厚くする必要がある。しかし、安価なシリコンヘテロ基板上のバッファ層は、5μm~6μm程度の厚さにしか堆積できず、縦方向の耐圧を1000V以上に高くすることは困難である。
 本開示は、前記従来の問題を解決し、高耐圧化を図ると共に、バッファ層上の窒化物半導体層の結晶性を向上して、オン抵抗を低減することを目的とする。オン抵抗(Ron)とは、トランジスタの動作開始時のドレイン・ソース間の抵抗値をいう。
 前記の目的を達成するため、本開示は、III族窒化物半導体(以下、窒化物半導体とも呼ぶ。)の成長用基板に窒化ガリウムを用いる構成とする。
 具体的に、本開示は、窒化物半導体装置を対象とし、次のような解決手段を講じた。
 すなわち、本開示は、導電性を有する窒化ガリウムからなる基板と、基板の上に設けられ、第1のIII族窒化物半導体からなるバッファ層と、バッファ層の上に設けられ、第2のIII族窒化物半導体からなるドリフト層と、ドリフト層の上に設けられ、第3のIII族窒化物半導からなり、ドリフト層とヘテロ接合するチャネル層と、チャネル層の上に設けられたゲート電極と、チャネル層の上におけるゲート電極の両側方の領域にそれぞれ設けられたソース電極及びドレイン電極とを備えている。
 本開示によれば、必要な高耐圧化が可能となる程度にバッファ層を厚くできると共に、該バッファ層上の窒化物半導体層の結晶性が向上するので、オン抵抗を低減することができる。
図1は第1の実施形態に係る窒化物半導体装置を示す模式的な断面図である。 図2は窒化ガリウムを基板に用いたGaN系半導体デバイスと、シリコンを基板に用いたGaN系半導体デバイスとの耐圧を比較するグラフである。 図3は第1の実施形態に係る窒化物半導体装置のバッファ層の厚膜化による効果を示す模式的な断面図である。 図4は窒化ガリウムを基板に用いたGaN系半導体と、シリコンを基板に用いたGaN系半導体との結晶性を比較する一覧表である。 図5は窒化ガリウムを基板に用いたGaN系半導体デバイスと、シリコン系電界効果トランジスタ及び炭化シリコン系電界効果トランジスタとのRon・Qossを比較するグラフである。 図6は第2の実施形態に係る窒化物半導体装置を示す模式的な断面図である。
 本開示の一実施形態に係る第1の態様は、導電性を有する窒化ガリウムからなる基板と、基板の上に設けられ、第1のIII族窒化物半導体からなるバッファ層と、バッファ層の上に設けられ、第2のIII族窒化物半導体からなるドリフト層と、ドリフト層の上に設けられ、第3のIII族窒化物半導からなり、ドリフト層とヘテロ接合するチャネル層と、チャネル層の上に設けられたゲート電極と、チャネル層の上におけるゲート電極の両側方の領域にそれぞれ設けられたソース電極及びドレイン電極とを備えている。
 これによれば、窒化ガリウムからなる基板の上に第1のIII族窒化物半導体からなるバッファ層を設けるホモエピタキシャル構造により、格子不整合の差及び熱膨張係数の差がない。このため、クラック等の欠陥が発生しにくく、バッファ層を厚くできるので高耐圧化が実現する。その上、ホモエピタキシャル構成であるため、ヘテロエピタキシャル成長の場合よりも転位密度が抑制されるので、バッファ層上の窒化物半導体層の結晶性が向上する。これにより、第2のIII族窒化物半導体からなるドリフト層と第3のIII族窒化物半導からなるチャネル層とのヘテロ界面に生じる2次元電子ガス(2DEG:Two Dimensional electron Gas)層における電子移動度が高くなる。従って、オン抵抗を低減することができる。その結果、動作時の電力損失を抑制することができる。
 第2の態様は、上記第1の態様において、第1のIII族窒化物半導体は、転位密度が5×10cm-2以下であってもよい。
 これによれば、III族窒化物半導体の成長用基板に、窒化ガリウムからなる基板を用いているため、その上に成長するバッファ層に生じる転位密度を5×10cm-2以下に抑えることができる。
 第3の態様は、上記第1又は第2の態様において、チャネル層とゲート電極との間に設けられ、p型の第4のIII族窒化物半導体からなるp型制御層をさらに備えていてもよい。
 これによれば、チャネル層とゲート電極との間に設けられたp型制御層を備えているため、ゲート電極にバイアス電圧を印加していない非動作時にはバンドのポテンシャルが持ち上がるので、ゲート電極の下方の2DEG層の電子キャリアが枯渇してノーマリオフの状態を得ることができる。一方、ゲート電極に正のバイアス電圧を印加すると、バンドのポテンシャルが下がるので、ゲート電極の下方の2DEG層に電子キャリアが発生して、ドレイン・ソース電流(Ids)が流れるようになる。
 第4の態様は、上記第1~第3の態様において、バッファ層には、カーボン(C)がドープされており、バッファ層の厚さは7μm以上で、且つ、ドープされたカーボン濃度は5×1017cm-3以上であってもよい。
 これによれば、バッファ層に、カーボン濃度が5×1017cm-3以上でドープされる場合、製造中の雰囲気及び製造装置等から混入して、エピタキシャル層をn型に近い特性とするシリコン(Si)及び酸素(O)を補償することができ、その上、該バッファ層を構成する窒化ガリウムのバンド間(ミッドギャップ)にエネルギー準位が形成される。この形成されたミッドギャップのエネルギー準位に電子がトラップされるため、該バッファ層の高抵抗化を実現することができ、且つ、7μm以上の厚さのバッファ層により、耐圧を向上することができる。
 第5の態様は、上記第4の態様において、バッファ層には、シリコン及び酸素の少なくとも一方が含まれており、バッファ層のカーボン濃度は、シリコン濃度と酸素濃度との和よりも大きくてもよい。
 これによれば、バッファ層のカーボン濃度がシリコン濃度と酸素濃度との和よりも大きい場合に、バッファ層の極性がn型に近くなって、該バッファ層の耐圧が低下するのを抑制し、また、上述したカーボンによるミッドギャップのエネルギー準位が形成されるので、該バッファ層の高抵抗化を確実に実現することができる。
 第6の態様は、上記第1~第5の態様において、バッファ層とドリフト層との間に設けられ、ドリフト層とヘテロ接合し且つ厚さが0.5μm以上の第5のIII族窒化物半導体からなる耐圧向上層をさらに備えていてもよい。
 これによれば、チャネル層の厚さを大きくすることによる高耐圧化は2DEG層の濃度が高くなって、ノーマリオフ特性を得られにくくなるため、これに代えて、バッファ層とドリフト層との間にドリフト層とヘテロ接合する耐圧向上層を設けることにより、縦方向の耐圧をより大きくすることができる。
 第7の態様は、上記第6の態様において、耐圧向上層は、窒化アルミニウムガリウムであり、該窒化アルミニウムガリウムにおけるアルミニウムの組成は、1%以上且つ10%以下であってもよい。
 これによれば、耐圧向上層におけるアルミニウムの組成をチャネル層よりも小さくすることにより、ドリフト層と耐圧向上層との界面に望まない2DEG層の形成が抑制されると共に、GaNからなるバッファ層との格子定数のずれを抑制することができる。
 第8の態様は、上記第1~第7の態様において、基板とバッファ層との間に設けられ、p型の第6のIII族窒化物半導体からなる空乏層形成層をさらに備えていてもよい。
 これによれば、基板とバッファ層との間に設けられた空乏層形成層によって、オフ電圧の印加時に、バッファ層には高電圧が掛かり、空乏層形成層には接地電圧が掛かる。このため、バッファ層と空乏層形成層とに空乏層が形成され、形成された空乏層によって、縦方向の耐圧がより大きくなる。従って、形成された空乏層によって耐圧を確保することができるので、バッファ層の面内のばらつきによる耐圧の歩留りの悪化を抑制することができる。
 第9の態様は、上記第8の態様において、第6のIII族窒化物半導体は、p型の窒化ガリウムであり、空乏層形成層の厚さは、500nm以下であってもよい。なお、バッファ層側に大きい電圧を印加して、空乏層形成層とバッファ層との間に空乏層が形成される場合に、パンチスルー現象が発生しないように、空乏層形成層の厚さを設計することが好ましい。また、上記の条件を満たすのであれば、空乏層形成層はできる限り薄く形成するのが好ましい。
 第10の態様は、上記第1~9の態様において、ソース電極は基板と接地されていることが好ましい。
 このようにすると、電流コラプス現象が抑制されて、オン抵抗の増大を防ぐことができる。
 (第1の実施形態)
 本開示の第1の実施形態について図面を参照しながら説明する。
 図1は第1の実施形態に係る窒化物半導体装置の一例である電界効果トランジスタ100の断面構成を表している。ここで、各半導体層の厚さ並びに各電極の厚さ及び幅は、便宜上に過ぎず、実際の寸法比を表してはいない。以下の構成図面においても同様である。
 図1に示すように、電界効果トランジスタ100は、導電性を有する窒化ガリウム(GaN)からなるデバイス成長用の単結晶基板(以下、基板と呼ぶ。)101の主面の上に、順次結晶成長した、バッファ層102、ドリフト(電子走行)層103、チャネル(電子障壁)層104、及びp型制御層106を有している。バッファ層102は、例えば、カーボン(C)ドープ窒化ガリウム(i-GaN)により構成される。ドリフト層103は、例えば、アンドープの窒化ガリウム(i-GaN)により構成される。チャネル層104は、例えば、アンドープの窒化アルミニウムガリウム(i-AlGaN)により構成される。p型制御層106は、例えば、チャネル層104の上に選択的に形成されたp型の窒化ガリウム(p-GaN)により構成される。なお、アンドープとは、対象とする半導体に対して積極的にすなわち故意に不純物をドープしていない状態をいう。
 基板101は、その主面として、例えば、面方位(0001)面、すなわちc面を用いることができる。基板101は、例えば、厚さが約300μmで、ドナーとしてシリコン(Si)がドープされたn型GaN基板を用いてもよい。なお、基板101の導電性はp型であってもよい。この場合のアクセプタには、例えばマグネシウム(Mg)を用いることができる。
 バッファ層102は、例えば、厚さが10μmで、カーボン(C)が5×1017cm-3以上の濃度でドープされたi-GaNである。但し、バッファ層102の厚さは7μm以上であればよい。なお、製造中の雰囲気及び製造装置(治具)等から混入するシリコン(Si)及び酸素(O)の濃度を、それぞれ2×1015cm-3及び6×1015cm-3と想定すると、ドープしたカーボンが、シリコンと酸素とによって補償され尽くしてしまわないように、カーボン濃度を、シリコン濃度と酸素濃度との和よりも大きくなるように設定する。上述したように、ドープされたカーボンによって、バッファ層102を構成するGaNのミッドギャップにエネルギー準位が形成される。この形成されたミッドギャップの準位に電子がトラップされ、バッファ層102の高抵抗化が実現されて、耐圧の向上を図ることができる。
 本実施形態に係るCドープのi-GaNからなるバッファ層102は、n-GaNからなる基板101の主面上に結晶成長しており、厚さが10μmであっても、その転位密度は5×10cm-2以下に抑えることができる。通常、GaNからなる基板101の主面上に結晶成長する窒化物半導体の転位密度は、5×10cm-2程度に抑えられる。バッファ層102を構成するi-GaNは、第1のIII族窒化物半導体の一例である。従って、このi-GaNは、基板101との間で格子不整合率の差が相対的に大きくならない範囲で、Cドープのi-AlGaN、Cドープのi-AlInGaN又はCドープのi-InGaNであってもよい。但し、基板101にGaNを用いることから、バッファ層102にはGaNを用いることは好ましい。
 ドリフト層103は、例えば、厚さが約500nmのi-GaNである。ドリフト層103を構成するi-GaNは、第2のIII族窒化物半導体の一例である。従って、このi-GaNは、バッファ層102との間で格子不整合率の差が相対的に大きくならない範囲で、i-AlGaN、i-AlInGaN、i-InGaN又はi-InNであってもよい。
 ドリフト層103とヘテロ接合するチャネル層104は、例えば、厚さが約25nmのi-AlGaNである。i-AlGaNにおけるAl組成は、例えば0.2である。但し、Al組成は、0.1以上且つ0.5以下であればよい。公知のように、AlGaN半導体のバンドギャップは、GaN半導体のバンドギャップよりも大きい。チャネル層104を構成するi-AlGaNは、第3のIII族窒化物半導体の一例である。従って、このi-AlGaNは、ドリフト層103よりもバンドギャップが大きく且つドリフト層103との間での格子不整合率の差が大きくなり過ぎない範囲で、i-AlInGaN又はi-AlNであってもよい。
 上述のように、チャネル層104とドリフト層103とは、チャネル層104がドリフト層103よりもバンドギャップが大きいヘテロ接合であり、上述したように、両半導体層の界面には、III族窒化物半導体による自発分極とピエゾ分極とによって、2次元電子ガス(2DEG)層105が生成される。
 p型制御層106は、例えば、厚さが約100nmのp-GaNである。p型の不純物であるマグネシウム(Mg)の濃度は、例えば1×1019cm-3程度である。p型制御層106を構成するp-GaNは、第4のIII族窒化物半導体の一例である。従って、このp-GaNは、チャネル層104との間で格子不整合率の差が相対的に大きくならない範囲で、p-AlN、p-AlGaN、p-AlInGaN又はp-InGaNであってもよい。
 p型制御層106の上には、ゲート電極107が設けられている。チャネル層104の上におけるp型制御層106の両側方の領域には、ソース電極108と、ドレイン電極109とが設けられている。
 ゲート電極107は、例えば、厚さが100nm程度の、パラジウム(Pd)からなる単層膜又はパラジウム(Pd)と金(Au)との積層膜を用いることができる。ソース電極108及びドレイン電極109は、例えば、積層された厚さが100nm程度のチタン(Ti)とアルミニウム(Al)との積層膜を用いることができる。ゲート電極107とドレイン電極109との間隔は、ゲート電極107とソース電極108との間隔よりも大きく設定されている。これにより、ゲート電極107とドレイン電極109との耐圧(横方向耐圧)が高められている。
 また、ソース電極108は、基板101と電気的に接続されている。これにより、電流コラプス現象を抑制してオン抵抗の増大を防いでいる。なお、公知のように、電流コラプス現象とは、絶縁体との界面や半導体中の欠陥に起因する深い準位に、横方向に高電界が集中することによって加速された電子がトラップされ、すぐに回復しないことにより、チャネルが部分的に空乏化してドレイン電流が減少する現象をいう。電流コラプス現象は、オン抵抗の増大の一因となる。このソース電極108の基板101との接地により、縦方向にも電界が分散して掛かり、この電界が緩和することによって、電流コラプス現象を抑制することができる。一方、ソース電極108と基板101とを接地すると、ソース電極108と基板101とが対向する方向の耐圧(縦方向耐圧)を上げる必要が生じる。なお、基板101には、ソース電極108を接地しない構成を採る場合は、必ずしも導電性を持たせる必要はない。
 ここで、本明細書において、例えば「基板101の主面の上に設けられる」とは、基板101の主面上に直接に設けられている状態でもよく、また、他の半導体層等を介して間接的に設けられている状態であってもよい。なお、直接に接触する場合は、例えば「主面の上に直接に設けられる」と記載する。これは、例えば「バッファ層102の下に」という記載の場合も同様である。
 (電界効果トランジスタの動作)
 電界効果トランジスタ100においては、ゲートバイアス(ゲート電圧)を印加していない場合は、p型制御層106とその下のチャネル層104との実質的なpn接合によって、ポテンシャル障壁が高くなるので、ノーマリオフ化が実現される。さらには、ゲート順方向のオン電圧の向上と、ゲートリーク電流の低減とが実現される。
 次に、ゲートバイアスを上記pn接合の順方向電圧以下で印加すると、チャネル層104におけるポテンシャル障壁が低くなって、ゲートバイアスが電界効果トランジスタのしきい値以上になると、電流が流れ始める。
 次に、ゲートバイアスが順方向電圧を超えると、p型制御層106から2DEG層105にホールが注入され始める。2DEG層105(ドリフト層103)には、電荷中性条件を満たすために、注入されたホールと同量の電子がソース電極108から引き出される。これにより、引き出された電子は、ドレイン電圧によってドレイン電極109に向かって移動する。このとき、ドリフト層103に注入されたホールは、その移動度が電子よりも二桁程度も小さいため、ゲート電極107の下方に滞留する。その上、ドリフト層103とチャネル層104とのヘテロ接合によるポテンシャル障壁によって、ゲート電極107にはほとんど流入しない。
 (効果)
 (1)耐圧の向上
 本実施形態においては、横型デバイスである電界効果トランジスタを例として、III族窒化物半導体(以下、GaN系半導体とも呼ぶ。)の成長用基板に単結晶GaNからなる基板101を用いている。このため、基板101の主面上にホモエピタキシャル成長するGaNからなるバッファ層102は、格子不整合の差及び熱膨張係数の差がほぼないため、クラック等の欠陥がほとんど発生しない。これにより、バッファ層102の厚さは7μm以上にまで大きくすることが可能となり、その結果、縦方向の耐圧が向上する。
 図2に、本実施形態の窒化ガリウム(GaN)を成長用基板に用いたGaN系半導体デバイス(電界効果トランジスタ)と、従来のシリコン(Si)を成長用基板に用いたGaN系半導体デバイス(電界効果トランジスタ)との耐圧の一例を比較する。図2に示すように、従来のSi基板を用いた場合は、縦軸に示すドレイン・ソース電流Idsが0.04Aの場合に、横軸に示すドレイン・ソース電圧Vdsが約1080Vを示す。これに対し、本実施形態のGaN基板を用いた場合は、ドレイン・ソース電流Idsが0.04Aで同一の場合、ドレイン・ソース電圧Vdsが約1500Vを示し、約1.4倍の耐圧を得られている。
 (2)出力容量(Output Capacitance)Cossの低減
 本実施形態においては、バッファ層102の厚膜化によって、電界効果トランジスタ100における静電容量(寄生容量)のうちの出力容量Cossを低減することができる。これにより、ソフトスイッチング時のドレイン・ソース電圧Vdsを0Vに高速にスイッチングすることができる。
 出力容量Cossは、以下の式(1)で表される。
  Coss = Cds + Cdg …(1)
 ここで、Cdsはドレイン・ソース電極間容量を、Cdgはドレイン・ゲート電極間容量を示す。
 図3に示すように、電界効果トランジスタ100は、ソース電極108を基板101に接地しているので、Cdsは以下の式(2)で表される。
  Cds = Cds1 + Cds2 …(2)
 本実施形態においては、バッファ層102を10μmに厚膜化しており、従来のバッファ層の厚さが、例えば5μmとすると、以下の容量の簡易計算式(3)から、
  C = ε×S/d …(3)
 ここで、εは物質の誘電率を、Sは電極の面積を、dは電極間の距離を表す。
 Cds2の容量値は、従来のトランジスタの容量値の2分の1に低減できるため、バッファ層102の厚膜化により、出力容量Cossを低減することができる。
 (3)結晶性の向上
 また、本実施形態に係る電界効果ランジスタ100は、単結晶GaN基板101の主面上に結晶成長したGaNバッファ層の転位密度を5×10cm-2以下、例えば5×10cm-2にまで抑えることができる。これにより、バッファ層102の厚さは、7μm以上にまで大きくすることが可能となり、その結果、縦方向の耐圧が向上する。
 なお、成長用基板にシリコン(Si)を用いると、その上のGaNからなるバッファ層の転位密度は1×1010cm-2以上となることが知られている。また。成長用基板にサファイア(単結晶Al)を用いると、GaNからなるバッファ層の転位密度は1×10cm-2となることが知られている。
 ところで、半導体結晶に対して、その転位密度を測定するには、以下に示す2通りの方法がある。
 第1の方法として、転位密度が比較的に高い場合は、透過電子顕微鏡(TEM:Transmission Electron Microscope)を用いる。測定対象の半導体から試料をスポット状に切り出し、切り出した試料の側面から転位である筋状部分の数を数える。この場合、測定範囲が小さいため、数える際の労力は比較的小さい。
 第2の方法として、転位密度が比較的に低い場合、本実施形態のように転位密度が5×10cm-2以下の場合は、カソードルミネセンス(Cathodoluminescence)測定法を用いる。この測定法では、ダークスポットの数を数える。広範囲にわたって転位密度の測定が可能であり、非破壊測定が可能であるというメリットもある。
 バッファ層102の低転位密度化により、バッファ層102の上に結晶成長した少なくともアンドープのGaNからなるドリフト層103、及びアンドープのAlGaNからなるチャネル層104の各GaN系半導体層の結晶性が良好となる。このため、2DEG層105を含む、ドリフト層103及びチャネル層104における電子移動度が高く維持されるので、オン抵抗の低抵抗化が実現される。
 図4に、本実施形態におけるGaNを成長用基板に用いたGaN系半導体と、シリコン(Si)を成長用基板に用いたGaN系半導体との結晶性の良否を表す各種パラメータの一例を示す。図4に示すように、X線回折(XRD:X-ray Diffraction)におけるロッキングカーブの半値幅(FWHM:Full Width at Half Maximum)は、面方位が(0002)面による反射の場合に(チルト分布)、GaN基板上のGaN系半導体は、Si基板上のGaN系半導体と比べて、測定値が約30%にまで小さくなる。すなわち、チルト分布は、急峻で良好となる分布を示す。また、面方位の(10-11)面による反射の場合に(ツイスト分布)、GaN基板上のGaN系半導体は、Si基板上のGaN系半導体と比べて、測定値が約12%にまで小さくなる。すなわち、ツイスト分布においても、急峻で良好となる分布を示す。なお、面方位の指数中の負符号“-”は、該負符号に続く一の指数の反転を便宜的に表している。
 また、電子移動度においても、GaN基板を用いた場合は、Si基板を用いた場合と比べて、移動度が約1.5倍にまで大きくなっている。なお、このときのGaN基板上のGaN系半導体における転位密度は、上述したように5×10cm-2であり、Si基板のGaN系半導体における転位密度は、上述したように1×1010cm-2である。また、図4には載せていないが、サファイア基板上のGaN系半導体における電子移動度は、1700cm/Vsであり、このときのGaN系半導体における転位密度は、1×10cm-2である。
 シート抵抗においても、GaN基板上のGaN系半導体の場合は、Si基板の場合と比べて、約33%だけ低減している。
 なお、ドリフト層103及びチャネル層104において、結晶転位の密度が高い場合には、2DEG層105を生成するドリフト層103とチャネル層104との界面にトラップが形成されて、このトラップに電子が捕獲される。トラップに電子が捕獲されると、バンドにおけるポテンシャルが持ち上がり、電子の走行の障壁となる。また、トラップに電子が捕獲されて負に帯電したスポットによっても、走行中の電子が散乱される。これらの要因から、電子移動度が低下して、オン抵抗も高くなる。
 (4)Ron・Qossの低減
 トランジスタデバイスにおいては、オン抵抗Ronと出力電荷容量Qossとの積(Ron・Qoss)が小さいほど、高周波駆動に有利となることが知られている。出力電荷容量Qossは、ドレイン・ソース間の電荷量であって、上述した出力容量Cossに蓄積される電荷量を表す。
 出力電荷容量Qossは、システムの小型化に向けた高周波駆動を行うのに必要なソフトスイッチングにおいて重要なパラメータである。ドレイン・ソース電圧Vdsの値が0Vに立下がった後に、ゲート電圧をオンにしてドレイン・ソース電流Idsが流れ始めるように制御する、いわゆるゼロボルテージスイッチング(Zero Voltage Switching:ZVS)動作時に、低Qossが特に必要となる。この動作を行う際には、ターンオン時のスイッチング損失をほぼ0にすることができる。これに対し、出力電荷容量Qossが大きいトランジスタの場合は、ドレイン・ソース電圧Vdsの値が0Vに立ち下がる速度が遅くなるので、高周波駆動を実現することができない。従って、システムの高周波駆動には、低Qossが必要となる。
 図5に、本実施形態のGaNを成長用基板に用いたGaN系半導体トランジスタと、Si系電界効果トランジスタ(MOSFET:Metal-Oxide-Semiconductor Field-Effect Transistor)及びSiC(炭化シリコン)系電界効果トランジスタ(MOSFET)とのRon・Qossを比較して示す。
 図5において、左の縦軸はドレイン電圧が800Vまでの出力電荷容量Qoss(nC)を表しており、横軸はオン抵抗Ron(mΩ)を表し、グラフ内の実線はRonとQossを掛け合わせた値を示す。例えば、最低位の実線はRon・Qossの積が2000となり、最上位の実線はRon・Qossの積が30000となる。
 図5から分かるように、本実施形態に係るGaN基板上のGaN系半導体トランジスタの場合(●印)の一例は、Ronが80mΩで、Qossが25nCであり、その積は2000である。
 これに対し、Si系電界効果トランジスタの場合(▲)のRon・Qossの値は、ほぼ9000以上であり、SiC系電界効果トランジスタの場合(■)でも、Ron・Qossの値は、約6000以上で9000以下である。
 (第2の実施形態)
 以下、本開示の第2の実施形態について図面を参照しながら説明する。
 図6は第2の実施形態に係る窒化物半導体装置の一例である電界効果トランジスタ120の断面構成を表している。
 第2の実施形態に係る電界効果トランジスタ120は、第1の実施形態に係る電界効果トランジスタ100に対して、さらに耐圧の向上を図ることが可能な構成としている。なお、図6において、図1に示した符号と同一の構成部材には同一の符号を付すことにより、その説明を省略する。
 図6に示すように、基板101とバッファ層102との間には、例えば、p型窒化ガリウム(p-GaN)からなる空乏層形成層121が設けられている。空乏層形成層121の厚さは、例えば200nmである。但し、空乏層形成層121の厚さは、500nm以下程度であればよい。なお、空乏層形成層121を構成するp-GaNは、第6のIII族窒化物半導体の一例である。従って、このp-GaNは、基板101との間で格子不整合率の差が相対的に大きくならない範囲で、p-AlN、p-AlGaN、p-AlInGaN、又はp-InGaNであってもよい。但し、基板101がGaNであることから、空乏層形成層121にはp-GaNが好ましい。
 また、バッファ層102とドリフト層103との間には、例えば、アンドープの窒化アルミニウムガリウム(i-AlGaN)からなる耐圧向上層122が設けられている。耐圧向上層122におけるAl組成は、例えば0.05である。耐圧向上層122の厚さは、例えば1μmである。但し、耐圧向上層122のAl組成は、0.01以上且つ0.1以下であればよく、耐圧向上層122の厚さは、500nm以上であればよい。なお、耐圧向上層122を構成するi-AlGaNは、第5のIII族窒化物半導体の一例である。従って、このi-AlGaNは、バッファ層102との間で格子不整合率の差が相対的に大きくならない範囲で、i-AlN、i-AlInGaN、又はi-InGaNであってもよい。但し、耐圧向上層122には、組成比は異なっていてもチャネル層104と同じ混晶のi-AlGaNが好ましい。
 なお、本実施形態においては、空乏層形成層121と耐圧向上層122とは、いずれか一方のみを設けてもよい。空乏層形成層121と耐圧向上層122との両方の層を設けた場合は、第1の実施形態に係る電界効果トランジスタ100と比べて、耐圧が50%程度向上し、面内ばらつきによる歩留りの悪化を30%程度抑制することができる。
 このように、n型のGaN基板101とバッファ層102との間に、p型GaNからなる空乏層形成層121を設けることにより、オフ電圧の印加時に、バッファ層102には高電圧が掛かり、空乏層形成層121には接地電圧が掛かる。このため、バッファ層102と空乏層形成層121とに空乏層が形成されるので、形成された空乏層によって、縦方向の耐圧がより大きくなる。なお、空乏層形成層121の厚さは、200nmに限られず、100nm以上且つ500nm以下であってもよい。
 また、本実施形態においては、GaNからなるバッファ層101とi-GaNからなるドリフト層103との間に、i-AlGaNからなる耐圧向上層122を設けている。これは、チャネル層104の厚さを大きくすることによって高耐圧化を図ろうとすると、2DEG層105の濃度が高くなり過ぎて、ノーマリオフ特性を得られにくくなるからである。従って、バッファ層102とドリフト層103との間にドリフト層103とその下面でヘテロ接合する耐圧向上層122を設けることにより、縦方向の耐圧をより大きくすることができる。
 なお、耐圧向上層122を構成するi-AlGaNのAl組成は、i-AlGaNからなるチャネル層104よりも小さく設定している。これにより、ドリフト層103と耐圧向上層122との界面に、望まない2DEG層の形成が抑制されると共に、GaNからなるバッファ層102との格子定数のずれを抑制することができるので好ましい。
 (製造方法)
 以下に、第2の実施形態に係る電界効果トランジスタ120の製造方法の一例を説明する。
 まず、主面の面方位に(0001)面、すなわちc面を持つn型GaNからなる基板101を準備する。
 基板101の主面上にGaN系半導体層を成膜する成膜法には、例えば、有機金属気相成長(MOVPE:Metal Organic Vapor Phase Epitaxy)法を用いることができる。他の成膜法として、例えば、分子線エピタキシ(MBE:Molecular Beam Epitaxy)法を用いることができる。
 n型のGaN系半導体は、例えばシリコン(Si)を添加することにより形成できる。p型のGaN系半導体は、マグネシウム(Mg)を添加することにより形成できる。なお、n型の不純物及びp型の不純物は、これらに限られない。
 次に、MOVPE法により、基板101の主面上に、成長温度を950℃とし、p型の不純物としてMgを添加したp-GaNからなる空乏層形成層121を成長させる。各GaN系半導体層の組成、厚さ及び不純物濃度は第2の実施形態と同一である。
 空乏層形成層121における各種の製造パラメータは、V族源であるアンモニア(NH)の流量を40L/min(標準状態(0℃,1atm):流量において以下同じ。)で、III族源であるTMG(Trimethyl Gallium)の流量を16mL/minとした。V族源とIII族源とのモル比を表すV/III比の値は10000である。また、共にキャリアガスである、水素(H)の流量を32L/minとし、窒素(N)の流量を46L/minとした。アンモニア(NH)の流量及びキャリアガスの流量は、これ以降のGaN系半導体でも同一である。
 次に、空乏層形成層121の上に、成長温度を1020℃とし、i-GaNからなるバッファ層102を成長させる。このときのバッファ層102には、製造装置や治具等の影響によって、シリコン(Si)及び酸素(O)が不純物として取り込まれ、バッファ層102がn型に近い導電性を示すことがある。これらの望まない不純物を補償するため、カーボン(C)を不純物として添加する。このときのカーボン濃度は、上述したように、シリコン濃度及び酸素濃度の和よりも大きい。なお、カーボン濃度は、バッファ層102の成長温度を下げるか、成長速度を上げることにより、高くすることができる。バッファ層102における製造パラメータは、III族源のTMGの流量を100mL/minとした。V/III比の値は1000である。ここでは、バッファ層102のカーボン濃度が5×1017cm-3以上となるように、カーボン濃度の原材料となるTMGの流量及びそのTMG内のメチル基CHの取り込み量に関係する成長温度を調整している。
 次に、バッファ層102の上に、成長温度を1100℃とし、i-Al0.05Ga0.95Nからなる耐圧向上層122を成長させる。耐圧向上層122における製造パラメータは、III族源のTMGの流量を38mL/minとし、TMA(Trimethyl Aluminium)の流量を7mL/minとした。V/III比の値は4000である。
 次に、耐圧向上層122の上に、成長温度を1020℃とし、i-GaNからなるドリフト層103を成長させる。ドリフト層103における製造パラメータは、III族源のTMGの流量を38mL/minとした。V/III比の値は4000である。
 次に、ドリフト層103の上に、成長温度を1100℃とし、i-Al0.2Ga0.8Nからなるチャネル層104を成長させる。チャネル層104における製造パラメータは、III族源のTMG及びTMAの流量を、共に5mL/minとした。V/III比の値は25000である。
 次に、チャネル層104の上の全面に、成長温度を950℃とし、p型の不純物としてMgを添加したp-GaNからなるp型制御層106を成長させる。p型制御層106における製造パラメータは、III族源のTMGの流量を100mL/minとした。V/III比の値は1000である。
 なお、基板101上のバッファ層102からp型制御層106までは、温度及び原料ガスの流量は適宜変更されるものの、一連の成長工程として実行される。
 次に、MOVPE装置から、p型制御層106まで形成された基板101を取り出す。続いて、p型制御層106の上の全面にレジストを塗布し、塗布したレジストを、ゲート電極107の形成領域を含む部分が残るように、フォトリソグラフィによってパターニングする。これにより、p型制御層106のパターニング用のレジストマスクが形成される。このレジストマスクを用いてドライエッチングを行うことにより、所望のp型制御層106が形成されると共に、p型制御層106の両側方に、チャネル層104が露出する。
 次に、真空蒸着法又はスパッタリング法等により、露出したチャネル層104の上に、パターン化されたp型制御層106を含む全面にわたってTiとAlとの積層膜を形成する。続いて、形成された積層膜に対するレジストによる所望のパターニングを行って、TiとAlとの積層膜からなるソース電極108及びドレイン電極109をそれぞれ形成する。その後、ソース電極108及びドレイン電極109と、i-AlGaNからなるチャネル層104とがオーミック接触してコンタクト抵抗が低くなるように、温度が450℃~550℃の範囲でシンタ(焼結)処理を行う。
 次に、真空蒸着法又はスパッタリング法により、再度、チャネル層104の上に、パターン化されたp型制御層106を含む全面にわたって、Pd単層膜又はPdとAuとの積層膜であるゲート用金属膜を形成する。続いて、形成されたゲート用金属膜に対して、フォトリソグラフィによる所望のパターニングを行って、ゲート用金属膜からゲート電極107を形成する。ソース電極108、ドレイン電極109及びゲート電極107の組成及び厚さは、第2の実施形態と同一である。
 なお、ここでは、ソース電極108及びドレイン電極109、並びにゲート電極107の各形成工程において、それぞれ電極形成用の金属膜を成膜した後に、金属膜の上に所望のレジストパターンを形成している。この方法に代えて、レジスト膜を、先に電極パターン以外の領域をマスクするマスクパターンとして形成しておき、その後、形成したマスクパターンを含む全面に所定の金属膜を堆積し、さらに、マスクパターンを、その上に堆積した金属膜と共に除去する、いわゆるリフトオフ法を用いてもよい。
 以上の工程により、図6に示す電界効果トランジスタ120が形成される。
 ここでは、第2の実施形態に係る電界効果トランジスタ120の製造方法を説明したが、第1の実施形態に係る電界効果トランジスタ100の製造方法は、電界効果トランジスタ120におけるバッファ層101の下の空乏層形成層121及びバッファ層101の上の耐圧向上層122の各成長工程を省略すれば、電界効果トランジスタ120と同等である。
 (他の実施形態)
 第1の実施形態及び第2の実施形態においては、窒化物半導体装置の例として、ノーマリオフ動作を実現すると共に、2DEG層にホールを注入する機能を果たすp型制御層を有する電界効果トランジスタ(FET)を挙げたが、本開示はこの構成に限られない。すなわち、本開示は、主に高耐圧化と低オン抵抗化(高速化)との実現を目指しており、p型制御層を設けない構成の窒化物半導体装置に対しても、高耐圧化と低オン抵抗化とは実現可能である。
 本開示に係る窒化物半導体装置は、高耐圧化と低オン抵抗化とを目指すパワー半導体デバイスとして有用である。
100、120 電界効果トランジスタ
101 基板
102 バッファ層
103 ドリフト層
104 チャネル層
105 2DEG層
106 p型制御層
107 ゲート電極
108 ソース電極
109 ドレイン電極
121 空乏層形成層
122 耐圧向上層

Claims (10)

  1.  導電性を有する窒化ガリウムからなる基板と、
     前記基板の上に設けられ、第1のIII族窒化物半導体からなるバッファ層と、
     前記バッファ層の上に設けられ、第2のIII族窒化物半導体からなるドリフト層と、
     前記ドリフト層の上に設けられ、第3のIII族窒化物半導からなり、前記ドリフト層とヘテロ接合するチャネル層と、
     前記チャネル層の上に設けられたゲート電極と、
     前記チャネル層の上における前記ゲート電極の両側方の領域にそれぞれ設けられたソース電極及びドレイン電極とを備えている窒化物半導体装置。
  2.  請求項1に記載の窒化物半導体装置において、
     前記第1のIII族窒化物半導体は、転位密度が5×10cm-2以下である窒化物半導体装置。
  3.  請求項1又は2に記載の窒化物半導体装置において、
     前記チャネル層と前記ゲート電極との間に設けられ、p型の第4のIII族窒化物半導体からなるp型制御層をさらに備えている窒化物半導体装置。
  4.  請求項1~3のいずれか1項に記載の窒化物半導体装置において、
     前記バッファ層には、カーボンがドープされており、
     前記バッファ層の厚さは7μm以上で、且つ、ドープされたカーボン濃度は5×1017cm-3以上である窒化物半導体装置。
  5.  請求項4に記載の窒化物半導体装置において、
     前記バッファ層には、シリコン及び酸素の少なくとも一方が含まれており、
     前記バッファ層の前記カーボン濃度は、シリコン濃度と酸素濃度との和よりも大きい窒化物半導体装置。
  6.  請求項1~5のいずれか1項に記載の窒化物半導体装置において、
     前記バッファ層と前記ドリフト層との間に設けられ、前記ドリフト層とヘテロ接合し且つ厚さが0.5μm以上の第5のIII族窒化物半導体からなる耐圧向上層をさらに備えている窒化物半導体装置。
  7.  請求項6に記載の窒化物半導体装置において、
     前記第5のIII族窒化物半導体は、窒化アルミニウムガリウムであり、
     前記窒化アルミニウムガリウムにおけるアルミニウムの組成は、1%以上且つ10%以下である窒化物半導体装置。
  8.  請求項1~7のいずれか1項に記載の窒化物半導体装置において、
     前記基板と前記バッファ層との間に設けられ、p型の第6のIII族窒化物半導体からなる空乏層形成層をさらに備えている窒化物半導体装置。
  9.  請求項8に記載の窒化物半導体装置において、
     前記第6のIII族窒化物半導体は、p型の窒化ガリウムであり、
     前記空乏層形成層の厚さは、500nm以下である窒化物半導体装置。
  10.  請求項1~9のいずれか1項に記載の窒化物半導体装置において、
     前記ソース電極は、前記基板と接地されている窒化物半導体装置。
PCT/JP2019/030768 2019-03-20 2019-08-05 窒化物半導体装置 WO2020188846A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/428,741 US20220157980A1 (en) 2019-03-20 2019-08-05 Nitride semiconductor device
JP2021506131A JP7257498B2 (ja) 2019-03-20 2019-08-05 窒化物半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019053451 2019-03-20
JP2019-053451 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020188846A1 true WO2020188846A1 (ja) 2020-09-24

Family

ID=72519037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030768 WO2020188846A1 (ja) 2019-03-20 2019-08-05 窒化物半導体装置

Country Status (3)

Country Link
US (1) US20220157980A1 (ja)
JP (1) JP7257498B2 (ja)
WO (1) WO2020188846A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130645A (zh) * 2020-12-18 2021-07-16 英诺赛科(苏州)科技有限公司 半导体器件以及制造半导体器件的方法
JP6990948B1 (ja) * 2021-06-29 2022-01-12 株式会社パウデック ダイオード、受電装置および電力伝送システム
US11888054B2 (en) 2020-12-18 2024-01-30 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071307A (ja) * 2009-09-25 2011-04-07 Sharp Corp 電界効果トランジスタ及びその製造方法
JP2012199398A (ja) * 2011-03-22 2012-10-18 Sumitomo Electric Ind Ltd 複合GaN基板およびその製造方法、ならびにIII族窒化物半導体デバイスおよびその製造方法
JP2013197357A (ja) * 2012-03-21 2013-09-30 Hitachi Cable Ltd 窒化物半導体デバイス及びその製造方法
JP2015126034A (ja) * 2013-12-25 2015-07-06 サンケン電気株式会社 電界効果型半導体素子
WO2016175024A1 (ja) * 2015-04-30 2016-11-03 日本電信電話株式会社 半導体装置およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364988B2 (en) * 2005-06-08 2008-04-29 Cree, Inc. Method of manufacturing gallium nitride based high-electron mobility devices
JP5775321B2 (ja) * 2011-02-17 2015-09-09 トランスフォーム・ジャパン株式会社 半導体装置及びその製造方法、電源装置
JP6035721B2 (ja) * 2011-09-27 2016-11-30 住友電気工業株式会社 半導体装置の製造方法
KR20160134882A (ko) * 2012-06-20 2016-11-23 고쿠리츠겐큐가이하츠호진 산교기쥬츠소고겐큐쇼 반도체 장치
JP2015176936A (ja) * 2014-03-13 2015-10-05 株式会社東芝 半導体装置
US11031493B2 (en) * 2018-06-05 2021-06-08 Indian Institute Of Science Doping and trap profile engineering in GaN buffer to maximize AlGaN/GaN HEMT EPI stack breakdown voltage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071307A (ja) * 2009-09-25 2011-04-07 Sharp Corp 電界効果トランジスタ及びその製造方法
JP2012199398A (ja) * 2011-03-22 2012-10-18 Sumitomo Electric Ind Ltd 複合GaN基板およびその製造方法、ならびにIII族窒化物半導体デバイスおよびその製造方法
JP2013197357A (ja) * 2012-03-21 2013-09-30 Hitachi Cable Ltd 窒化物半導体デバイス及びその製造方法
JP2015126034A (ja) * 2013-12-25 2015-07-06 サンケン電気株式会社 電界効果型半導体素子
WO2016175024A1 (ja) * 2015-04-30 2016-11-03 日本電信電話株式会社 半導体装置およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130645A (zh) * 2020-12-18 2021-07-16 英诺赛科(苏州)科技有限公司 半导体器件以及制造半导体器件的方法
US11888054B2 (en) 2020-12-18 2024-01-30 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and method for manufacturing the same
JP6990948B1 (ja) * 2021-06-29 2022-01-12 株式会社パウデック ダイオード、受電装置および電力伝送システム

Also Published As

Publication number Publication date
JPWO2020188846A1 (ja) 2020-09-24
US20220157980A1 (en) 2022-05-19
JP7257498B2 (ja) 2023-04-13

Similar Documents

Publication Publication Date Title
US9293561B2 (en) High voltage III-nitride semiconductor devices
US7709859B2 (en) Cap layers including aluminum nitride for nitride-based transistors
US7595544B2 (en) Semiconductor device and manufacturing method thereof
US7714359B2 (en) Field effect transistor having nitride semiconductor layer
US8541816B2 (en) III nitride electronic device and III nitride semiconductor epitaxial substrate
US7687828B2 (en) Field-effect transistor
US8878249B2 (en) Method for heteroepitaxial growth of high channel conductivity and high breakdown voltage nitrogen polar high electron mobility transistors
US9419125B1 (en) Doped barrier layers in epitaxial group III nitrides
US8350292B2 (en) Gallium nitride epitaxial crystal, method for production thereof, and field effect transistor
US7626217B2 (en) Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices
US7985984B2 (en) III-nitride semiconductor field effect transistor
US20130240901A1 (en) Nitride semiconductor device
JP4577460B2 (ja) 半導体素子およびその製造方法
WO2007097264A1 (ja) 半導体素子
US7601573B2 (en) Method for producing nitride semiconductor device
US20120273795A1 (en) Semiconductor device
US20110215424A1 (en) Semiconductor device and manufacturing method thereof
WO2020188846A1 (ja) 窒化物半導体装置
US8089096B2 (en) Field effect transistor with main surface including C-axis
US10629688B2 (en) Epitaxial substrate for semiconductor elements, semiconductor element, and manufacturing method for epitaxial substrates for semiconductor elements
US11848205B2 (en) Semiconductor structure and manufacturing method therefor
US8524550B2 (en) Method of manufacturing semiconductor device and semiconductor device
US20230253471A1 (en) Nitride semiconductor device and method of manufacturing nitride semiconductor device
US20230223467A1 (en) HIGH ELECTRON MOBILITY TRANSISTORS (HEMTS) INCLUDING A YTTRIUM (Y) AND ALUMINUM NITRIDE (AlN) (YAlN) ALLOY LAYER
Zhao et al. AlGaN/GaN HEMTs with a magnetron-sputtered AlN buffer layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920160

Country of ref document: EP

Kind code of ref document: A1