WO2020188681A1 - Exposure system, exposure device, and exposure method - Google Patents

Exposure system, exposure device, and exposure method Download PDF

Info

Publication number
WO2020188681A1
WO2020188681A1 PCT/JP2019/011101 JP2019011101W WO2020188681A1 WO 2020188681 A1 WO2020188681 A1 WO 2020188681A1 JP 2019011101 W JP2019011101 W JP 2019011101W WO 2020188681 A1 WO2020188681 A1 WO 2020188681A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
substrate
region
information
inspection
Prior art date
Application number
PCT/JP2019/011101
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 川上
泰輝 布川
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/011101 priority Critical patent/WO2020188681A1/en
Priority to CN202080021585.9A priority patent/CN113574459B/en
Priority to KR1020217030345A priority patent/KR20210129171A/en
Priority to PCT/JP2020/012066 priority patent/WO2020189729A1/en
Priority to TW109109005A priority patent/TWI810444B/en
Priority to JP2021507402A priority patent/JP7310879B2/en
Publication of WO2020188681A1 publication Critical patent/WO2020188681A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70608Monitoring the unpatterned workpiece, e.g. measuring thickness, reflectivity or effects of immersion liquid on resist
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2035Exposure; Apparatus therefor simultaneous coating and exposure; using a belt mask, e.g. endless
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to an exposure system, an exposure apparatus, and an exposure method.
  • a method of forming patterns having different surface characteristics on a substrate and creating fine devices by utilizing the differences in the surface characteristics has been proposed.
  • a pattern forming method utilizing the difference in surface characteristics on the substrate for example, there is a method of forming a hydrophilic region and a water-repellent region on the substrate and applying an aqueous solution of a functional material to the hydrophilic region. In this method, since the aqueous solution of the functional material wets and spreads only in the hydrophilic region, a pattern of the functional material can be formed.
  • Patent Document 1 describes a fluorine-containing compound capable of changing the contact angle before and after light irradiation. After irradiating such a compound with light, it is preferable to be able to determine whether or not sufficient light irradiation has been performed on the compound in order to satisfactorily apply the functional material to the hydrophilic region.
  • an exposure system that exposes a layer containing a compound having a photosensitive protective group formed on a substrate to form a pro-liquid repellent pattern including a pro-liquid region and a liquid-repellent region.
  • An exposure device that exposes a layer containing a compound having a photosensitive protective group, an inspection device that acquires information on the amount of desorption of the photosensitive protective group in a region exposed by the exposure device for each measurement point, and an inspection device.
  • an exposure system including a control device having a determination unit for determining the quality of exposure based on information on measurement points included in an area exposed by the exposure device.
  • an exposure apparatus that exposes a layer containing a compound having a photosensitive protective group formed on a substrate to form a pro-liquid repellent pattern including a pro-liquid region and a liquid-repellent region.
  • An exposure unit that exposes a layer containing a compound having a photosensitive protective group, an inspection unit that acquires information on the amount of desorption of the photosensitive protective group in the area exposed by the exposure unit for each measurement point, and an inspection unit.
  • an exposure apparatus including a control unit having a determination unit for determining the quality of exposure based on information on measurement points included in an area exposed by the exposure unit.
  • an exposure formed on a substrate and containing a compound having a photosensitive protective group is exposed to form a pro-liquid repellent pattern including a pro-liquid water region and a liquid-repellent region.
  • the method is to expose a layer containing a compound having a photosensitive protective group, to obtain information on the amount of desorption of the photosensitive protective group in the exposed region for each measurement point, and to obtain the exposed region.
  • An exposure method is provided, including determining the quality of exposure based on the information of the measurement points included in the above.
  • FIG. 1 It is a figure which shows an example of the exposure system which concerns on 1st Embodiment.
  • (A) and (B) are images showing an example of measurement results by an atomic force microscope.
  • (A) and (B) are diagrams schematically showing an example of a procedure for determining the quality of exposure based on information related to the amount of desorption. It is a flowchart which shows an example of the exposure method by the exposure system which concerns on 1st Embodiment. It is a flowchart which shows another example of the exposure method by the exposure system which concerns on 1st Embodiment. It is a flowchart which shows another example of the exposure method by the exposure system which concerns on 1st Embodiment.
  • FIGS. 1 and (B) are diagrams showing an example in the case of controlling the length of the transport path of the substrate in the plating apparatus in the exposure system according to the fourth embodiment. It is a figure which shows an example of the exposure system which concerns on 5th Embodiment. It is a figure which shows an example of the exposure apparatus which concerns on 6th Embodiment.
  • the protective group of the compound layer having a photosensitive protective group is removed by exposure, and this portion is relatively liquefied to form a pro-liquid repellent pattern.
  • a wiring pattern is formed by applying a plating catalyst to the water-repellent portion and performing electroless plating, or by applying a wiring forming material to the hydrophilic portion.
  • the degree of liquefaction is small. Even if electroless plating or coating of a wiring forming material is performed in such a state, it is difficult to obtain a good wiring pattern.
  • the layer of the compound having a photosensitive protecting group is exposed to form a pro-liquid repellent pattern, it is determined whether or not the protective group is sufficiently removed before forming the wiring pattern.
  • an exposure system an exposure apparatus, and an exposure method capable of capable.
  • the substrate is fed from a supply roll in which a flexible sheet-shaped substrate (sheet substrate) is wound in a roll shape, and various treatments are performed on the fed substrate.
  • a so-called roll-to-roll (Roll To Roll) method is adopted in which the substrate after various treatments is wound up with a recovery roll after continuous application.
  • the substrate has a strip-like shape in which the transport direction of the substrate is the longitudinal direction (long) and the width direction is the lateral direction (short).
  • the substrate sent from the supply roll is sequentially subjected to various treatments such as pretreatment, exposure treatment, and posttreatment, and is wound up by the recovery roll.
  • the substrate is not limited to being conveyed in a roll-to-roll manner. For example, a plurality of rectangular substrates are continuously or intermittently conveyed in a predetermined direction, and various processes are performed during the transfer. There may be.
  • FIG. 1 is a diagram showing an example of an exposure system according to the first embodiment.
  • the exposure system 100 includes a coating device CT, an exposure device EX, a transport device TR, an inspection device DT, and a control device CONT.
  • the coating device CT, the exposure device EX, and the inspection device DT are arranged in this order from the upstream side to the downstream side in the transport direction of the substrate FS by the transport device TR, for example.
  • the coating device CT coats a droplet of a compound having a photosensitive protecting group on the substrate FS to form a layer of this compound (hereinafter referred to as a compound layer).
  • a droplet coating device such as an inkjet type coating device, a spin coating type coating device, a roll coating type coating device, or a slot coating type coating device is used.
  • One or more coating devices CT are arranged. When a plurality of coating devices CT are arranged, for example, they may be arranged along the transport direction of the substrate FS, or may be arranged in the width direction of the substrate FS.
  • a fluorine-containing compound represented by the following general formula (1) can be used as the compound having a photosensitive protecting group.
  • X represents a halogen atom or an alkoxy group
  • R 1 represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms
  • R f1 and R f2. are independently alkoxy groups, siloxy groups, or fluorinated alkoxy groups
  • n represents an integer of 0 or more.
  • X is a halogen atom or an alkoxy group.
  • the halogen atom of X include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkoxy group of X preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, further preferably 1 to 5 carbon atoms, particularly preferably 1 to 3 carbon atoms, and most preferably 1 or 2 carbon atoms. It is preferable that X is an alkoxy group rather than a halogen atom.
  • N represents an integer of 0 or more, and is preferably an integer of 1 to 20 and more preferably an integer of 2 to 15 from the viewpoint of easy availability of starting materials. Further, n is preferably 3 or more, and more preferably 4 or more.
  • R 1 is a hydrogen atom or a linear, branched chain or cyclic alkyl group having 1 to 10 carbon atoms.
  • the alkyl group of R 1 is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, or an isobutyl group. Examples include a group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group and the like.
  • cyclic alkyl group examples include a group obtained by removing one or more hydrogen atoms from a polycycloalkane such as a monocycloalkane, a bicycloalkane, a tricycloalkane, and a tetracycloalkane.
  • R 1 is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group.
  • R f1 and R f2 are independently alkoxy groups, siloxy groups, or fluorinated alkoxy groups, respectively.
  • the fluorinated alkoxy groups of R f1 and R f2 are preferably alkoxy groups having 3 or more carbon atoms, and may be partially fluorinated, and perfluoroalkoxy. It may be a group. In this embodiment, it is preferably a partially fluorinated fluorinated alkoxy group.
  • examples of the fluorinated alkoxy group of R f1 and R f2 include a group represented by —O— (CH 2 ) n f1- (C n f2 F 2n f2 +1 ).
  • the n f1 is an integer of 0 or more
  • n f2 is an integer of 1 or more.
  • n f1 is preferably 0 to 30, more preferably 0 to 15, and particularly preferably 0 to 5.
  • n f2 is preferably 1 to 30, more preferably 1 to 15, further preferably 1 to 10, and particularly preferably 1 to 6.
  • a fluorine-containing compound represented by the following general formula (2) can be used as the compound having a photosensitive protecting group.
  • R 1 represents a hydrogen atom or a linear, branched chain or cyclic alkyl group having 1 to 10 carbon atoms, and R f1 and R f2 are independently alkoxy groups and siloxy groups, respectively. Alternatively, it is a fluorinated alkoxy group.
  • description of R 1, R f1, R f2 are the same as the description of the R 1, R f1, R f2 of the general formula (1).
  • the fluorine-containing compound represented by the general formula (1) is preferably produced using the fluorine-containing compound represented by the general formula (2) as a raw material (intermediate).
  • Examples of the solvent used in the following steps include ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, benzene, toluene and acetonitrile. , Methylene chloride, chloroform, dichloroethane, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and the like. These may be used alone or in combination of two or more.
  • the fluorine-containing compound represented by the general formula (2) can be obtained, for example, by going through each of the following steps.
  • R 1, R f1 and R f2 are the same as R 1, R f1 and R f2 in the general formula (1), I-R f1 ', I -R f2' R in f1 ', R f2 ' are the same as those of R f1 and R f2 , respectively.
  • R 1, R f1 and R f2 are the same as R 1, R f1 and R f2 in the general formula (1).
  • R 1, R f1 and R f2 are the same as R 1, R f1 and R f2 in the general formula (1).
  • R 1, R f1, R f2 is as described for R 1, R f1, R f2 in the formula (1).
  • the fluorine-containing compound represented by the general formula (1) can be obtained, for example, by the following steps.
  • X description of R 1, R f1, R f2 , n is the same as the description of the X, the R 1, R f1, R f2 , n in the general formula (1).
  • the compound having a photosensitive protecting group As the compound having a photosensitive protecting group, the compound described in International Publication WO2015 / 029981 can be applied.
  • the exposure apparatus EX exposes the compound layer formed on the substrate FS by irradiating the substrate FS with the exposure light SP, and forms a parent liquid repellent pattern including the parent liquid region and the liquid repellent region. That is, the compound layer formed on the substrate FS has liquid repellency.
  • the photosensitive protecting group is eliminated, and the portion (region) from which the photosensitive protecting group is removed loses its liquid repellency and becomes liquid-friendly. ..
  • the pro-liquid repellent pattern is formed by forming the liquid-repellent portion and the pro-liquid repellent portion.
  • the exposure apparatus EX for example, a direct drawing type exposure apparatus that does not use a mask, a so-called raster scan type exposure apparatus, can be used.
  • the exposure apparatus EX can adjust the focal position by adjusting the optical system including the lens element GL. The configuration of the exposure apparatus will be described later.
  • the exposure light SP emitted from the exposure apparatus EX examples include ultraviolet rays and the like.
  • the exposure light SP preferably contains light having a wavelength included in the range of 200 to 450 nm, and more preferably contains light having a wavelength included in the range of 320 to 450 nm. Further, the exposure light SP is preferably light having a wavelength of 365 nm. Light having these wavelengths can efficiently desorb the above-mentioned photosensitive protecting group.
  • Light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, sodium lamps; gas lasers such as nitrogen, liquid lasers of organic dye solutions, and solid lasers containing rare earth ions in inorganic single crystals. Can be mentioned.
  • a light source other than the laser that can obtain monochromatic light light of a specific wavelength obtained by using an optical filter such as a bandpass filter or a cutoff filter for a wide band line spectrum or a continuous spectrum may be used. Since a large area can be irradiated at one time, a high-pressure mercury lamp or an ultra-high-pressure mercury lamp may be used as the light source.
  • the transport device TR transports the substrate FS.
  • the transport device TR includes a feed roller RL1, a take-up roller RL2, and a drive device AC.
  • the delivery roller RL1 is formed by winding an unprocessed substrate FS, and is arranged on the upstream side of the substrate FS in the transport direction.
  • the take-up roller RL2 is arranged on the downstream side in the transport direction of the substrate FS so as to take up the substrate FS that has been sent out from the feed-out roller RL1 and processed.
  • the drive device AC rotationally drives the take-up roller RL2.
  • the substrate FS can be moved in the transport direction by rotating the take-up roller RL2 to wind up the substrate FS.
  • the drive device AC may rotate the delivery roller RL1 so as to synchronize with the rotation of the take-up roller RL2.
  • one or a plurality of transfer rollers may be arranged below the moving substrate FS to guide the movement of the substrate FS.
  • the transfer roller is arranged below each of the coating device CT, the exposure device EX, and the inspection device DT, and includes a gap between the coating device CT and the substrate FS, a gap between the exposure device EX and the substrate FS, and the inspection device DT.
  • the gap with the substrate FS may be defined.
  • the transfer roller may be provided so as to be movable in the normal direction of the substrate FS so that the above-mentioned gap can be adjusted.
  • a resin film or a foil made of a metal or alloy such as stainless steel is used as the substrate FS.
  • the material of the resin film include polyolefin resin, polysilicone resin, polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, and polystyrene.
  • a resin containing at least one or more of the resin and the vinyl acetate resin may be used.
  • the thickness and rigidity (Young's modulus) of the substrate FS are, for example, a range in which the substrate FS does not have creases or irreversible wrinkles due to buckling when passing through a moving path facing the coating device CT.
  • the substrate FS may be within a range that does not cause creases or irreversible wrinkles due to buckling when passing through the moving path facing the exposure apparatus EX.
  • the substrate FS may receive heat in each process, it is preferable to select a substrate FS made of a material whose thermal expansion coefficient is not remarkably large.
  • the coefficient of thermal expansion can be suppressed by mixing the inorganic filler with the resin film.
  • the inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, silicon oxide or the like.
  • the substrate FS may be a single layer of ultrathin glass having a thickness of about 100 ⁇ m manufactured by a float method or the like, or a laminate obtained by laminating the above resin film, foil or the like on the ultrathin glass. It may be.
  • the flexibility of the substrate FS refers to the property that the substrate FS can be flexed without shearing or breaking even when a force of about its own weight is applied to the substrate FS. Flexibility also includes the property of bending by a force of about its own weight. Further, the degree of flexibility varies depending on the material, size, thickness of the substrate FS, the layer structure formed on the substrate FS, the environment such as temperature and humidity, and the like.
  • the substrate FS may buckle and crease when the substrate FS is correctly wound around a transfer direction changing member such as a delivery roller RL1, a take-up roller RL2, various transfer rollers, and a rotary drum provided in a moving path. If it can be conveyed smoothly without being damaged (tearing or cracking), it can be said that it is in the flexible range.
  • the inspection device DT provides information on the amount of desorption of the photosensitive protecting group (hereinafter, referred to as desorption amount-related information) in the region exposed by the exposure device EX (hereinafter referred to as the exposure area W) for each measurement point. get.
  • the region not exposed by the exposure apparatus EX is referred to as a non-exposure region N.
  • the inspection device DT can set coordinates in, for example, the transport direction of the substrate FS and the width direction of the substrate FS, and can set a measurement point for each set coordinate.
  • the inspection device DT transmits the measurement result to the control device CONT.
  • the inspection device DT includes, for example, an ultraviolet visible spectrophotometer, an infrared spectrophotometer, an atomic force microscope (AFM), a palpable step meter, an optical inspection device, a scanning electron microscope, and a contact angle meter.
  • an ultraviolet visible spectrophotometer an infrared spectrophotometer
  • an atomic force microscope AFM
  • a palpable step meter an optical inspection device
  • a scanning electron microscope and a contact angle meter.
  • Mass analyzers Mass analyzers, X-ray photoelectron spectrometers and other measuring instruments can be used.
  • the inspection device DT can specify the exposure area W and acquire the desorption amount-related information by acquiring the information regarding the position of the exposure area W on the surface of the substrate FS from the control device CONT or the like. is there. However, the inspection device DT may measure the non-exposed region N on the surface of the substrate FS.
  • an ultraviolet visible spectrophotometer When an ultraviolet visible spectrophotometer is used as the inspection device DT, information related to the amount of desorption can be obtained from a change in the absorption degree of predetermined ultraviolet light in the exposure region W. Since the photosensitive protecting groups are desorbed in the exposed region W, the number of photosensitive protecting groups is smaller than that in the non-exposed region N. Therefore, the desorption amount-related information can be obtained from the change in the degree of absorption of ultraviolet light due to the photosensitive protecting group. When an infrared spectrophotometer is used as the inspection device DT, information related to the amount of desorption can be obtained from the absorption change of a predetermined infrared light derived from a functional group in the exposure region W.
  • the number of photosensitive protecting groups is smaller than that in the non-exposed region N. Therefore, it is possible to irradiate a predetermined infrared light that can be absorbed by the functional group of the photosensitive protecting group and obtain the desorption amount-related information from the change in the absorption amount of the infrared light.
  • an atomic force microscope when used as the inspection device DT, information related to the amount of desorption can be acquired by the adhesive force in the exposure region W.
  • the adhesive force becomes large. Therefore, when an atomic force microscope is used, information related to the amount of desorption can be obtained from the change in the adhesive force of the cantilever in the exposure region W.
  • the cantilever of the atomic force microscope is used, for example, in a form in which the portion in contact with the exposure region W is sphere-shaped (spherical or curved) to prevent (suppress) the exposure region W from being scratched. You may.
  • FIGS. 2 (A) and 2 (B) are images showing an example of measurement results by an atomic force microscope. Note that FIGS. 2 (A) and 2 (B) are represented as one image by joining the four obtained images, respectively.
  • FIG. 2A shows an image that visualizes the measurement result when the adhesive force of the sphere type cantilever is 2000 mJ / cm 2 .
  • FIG. 2B shows an image that visualizes the measurement result when the adhesive force of the cantilever is 500 mJ / cm 2 .
  • the adhesive force of the exposed region W becomes larger than the adhesive force of the non-exposed region N.
  • the exposed region W appears as an image visualized in an manner corresponding to the amount of desorption of the photosensitive protecting group, unlike the non-exposed region N.
  • the exposed region W appears white with respect to the non-exposed region N, and it is confirmed that the exposed region W includes a portion having a different white color.
  • image processing for example, comparison processing of brightness and color with the threshold value
  • the photosensitive protecting group in the exposure region W can be distinguished while distinguishing between the exposure region W and the non-exposure region N.
  • the amount of desorption that is, information related to the amount of desorption
  • information related to the amount of desorption in the exposure region W may be acquired depending on the film thickness of the exposure region W. Further, when an atomic force microscope is used, information related to the amount of desorption in the exposure region W may be acquired from the change in the film thickness acquired by the contact of the cantilever with the exposure region W.
  • the inspection device DT When a palpation type profilometer is used as the inspection device DT, information related to the amount of desorption is acquired from the change in film thickness acquired when the contactor comes into contact with the exposure area W. Since the photosensitive protecting group is removed in the exposure region W, the film thickness is slightly reduced. Therefore, by detecting the change in the film thickness in the exposure region W, the desorption amount-related information can be acquired.
  • the desorption amount-related information is acquired from the change in the film thickness acquired by irradiating the exposure region W with light of a predetermined wavelength. Since the film thickness is slightly reduced in the exposure region W as described above, information related to the amount of desorption can be obtained by irradiating light of a predetermined wavelength and detecting the film thickness in the exposure region W. ..
  • a scanning electron microscope SEM
  • information related to the amount of desorption is acquired from changes in secondary electrons or backscattered electrons caused by irradiating the exposed region W with an electron beam.
  • the secondary electrons or backscattered electrons generated by irradiation with an electron beam differ depending on the amount of desorption of the photosensitive protecting group in the exposure region W. Therefore, by detecting changes in secondary electrons or backscattered electrons in the exposure region W, information related to the amount of desorption can be obtained.
  • a contact angle meter is used as the inspection device DT, information related to the amount of desorption is acquired by the contact angle or surface tension in the exposure region W.
  • the contact angle (static contact angle, dynamic contact angle, burr property) in a predetermined liquid (reagent) differs depending on the amount of desorption of the photosensitive protecting group in the exposure region W. Therefore, the desorption amount-related information can be acquired by detecting the change in the contact angle in the exposure region W.
  • the inspection device DT When a mass spectrometer is used as the inspection device DT, information related to the amount of desorption is acquired from the change in the mass detection intensity of the photosensitive protecting group in the exposure region W. Since the photosensitive protecting group is desorbed in the exposure region W, the mass detection intensity of the photosensitive protecting group changes. Therefore, the desorption amount-related information can be obtained by detecting the change in the mass detection intensity in the exposure region W.
  • an X-ray photoelectron spectrometer is used as the inspection device DT
  • information related to the amount of desorption is acquired from a change in the detection intensity of a predetermined element derived from a photosensitive protecting group in the exposure region W. Since the photosensitive protecting group is desorbed in the exposure region W, the detection intensity of a predetermined element derived from the photosensitive protecting group changes. Therefore, the desorption amount-related information can be obtained by detecting the intensity of the predetermined element in the exposure region W.
  • the control device CONT comprehensively controls the coating device CT, the exposure device EX, the transfer device TR, and the inspection device DT.
  • the control device CONT includes a coating control unit 61, an exposure control unit 62, a transfer control unit 63, and a determination unit 64.
  • the coating control unit 61 controls the operation of the coating device CT.
  • the exposure control unit 62 controls the operation of the exposure apparatus EX.
  • the transport control unit 63 controls the operation of the transport device TR.
  • the determination unit 64 determines whether the exposure is good or bad based on the measurement result of the inspection device DT.
  • the determination unit 64 determines whether or not the exposure is good or bad based on the information of the measurement points (for example, the information related to the amount of desorption) included in the predetermined region of the region (exposure region W) exposed by the exposure apparatus EX.
  • the determination unit 64 determines, for example, whether the exposure is good or bad based on the information related to the amount of desorption per unit area in the compound layer.
  • 3A and 3B are diagrams schematically showing an example of a procedure for determining the quality of exposure based on information related to the amount of desorption. 3 (A) and 3 (B) show a case where a part of the compound layer on the substrate FS is exposed to form an exposed region W and a non-exposed region N.
  • the determination unit 64 selects the exposed region W and the non-exposed region N in the compound layer, for example, by performing image processing on the images shown in FIGS. 2A and 2B.
  • the determination unit 64 divides the detected exposure region W into a predetermined unit region Wa.
  • the unit region Wa has a square shape, but is not limited to this shape, and may be, for example, a rectangle, another polygon such as a triangle, a circle, or an ellipse. , Oval or other shapes may be used.
  • the determination unit 64 sets the unit area Wa so that the areas are equal to each other, but it is not always necessary to make the areas of all the unit areas Wa equal.
  • Each unit area Wa contains measurement results for a plurality of measurement points detected by the inspection device DT.
  • the determination unit 64 divides the exposed region W into unit regions Wa having the same area, and then measures the measurement results at a plurality of measurement points for each unit region Wa (for example, in the case of an ultraviolet visible spectrophotometer, the absorbance and atomic force microscope). If so, the detachment amount related information is calculated based on the adhesive force).
  • the determination unit 64 may calculate the desorption amount-related information based on the average value of the measurement results at a plurality of measurement points, for example.
  • FIG. 3B shows an example in which the total of the measurement results for each unit region Wa is expressed in five stages from 1 to 5 as the desorption amount-related information. "1" has the smallest total measurement result, and "5" has the largest total measurement result.
  • the determination unit 64 compares the calculated desorption amount (numerical value of 1 to 5 in 5-step notation) with, for example, the threshold value set for each measuring device of the inspection device DT. Based on the comparison result, the determination unit 64 determines whether or not the photosensitive protecting group is sufficiently removed, that is, whether or not the exposure is good or bad. For example, when an ultraviolet visible spectrophotometer is used as the inspection device DT, the determination unit 64 determines that the unit region Wa is poorly exposed if the absorbance of the unit region Wa is equal to or greater than the threshold value. When an atomic force microscope is used as the inspection device DT, the determination unit 64 determines that the unit region Wa is poorly exposed if the adhesive force of the unit region Wa is equal to or less than the threshold value.
  • the determination unit 64 determines the quality of exposure in the exposure region W based on the evaluation for each unit region Wa. For example, when the number of unit regions Wa determined to be poorly exposed exceeds a predetermined ratio (for example, 20%, 40%, etc.) in the exposed region W, the determination unit 64 determines that the exposed region W is poorly exposed. If there is at least one unit region Wa determined to be poorly exposed, it may be determined that the exposed region W is poorly exposed.
  • the specific method for determining the quality of exposure in the exposure region W is not limited to the above method. Further, the determination unit 64 may determine the quality of the exposure for each unit region Wa, and may use the result as the determination result regarding the exposure of the exposure region W.
  • FIG. 4 is a flowchart showing an example of an exposure method by the exposure system 100.
  • a liquid for forming a compound layer which is a layer of a compound having a photosensitive protecting group, is applied onto the substrate FS by the coating device CT.
  • a compound layer is formed on the substrate FS.
  • a drying device for drying the substrate FS, a heating device for heating, and a cleaning device for further cleaning may be arranged.
  • the compound layer formed on the substrate FS reaches the exposure device EX on the downstream side in the transport direction as the substrate FS moves by the transport device TR.
  • the exposure apparatus EX irradiates the substrate FS coated with the compound layer with the exposure light SP to expose a predetermined region of the compound layer (step S01).
  • the exposure light SP which is spot light having a predetermined diameter, is scanned by the exposure device EX in the width direction of the substrate FS.
  • the exposure light SP is irradiated to a predetermined region over the transport direction and the width direction of the substrate FS, and the exposure region W is formed.
  • a part of the irradiation region of the exposure light SP may overlap.
  • the exposure apparatus EX may have a configuration in which the exposure light SP is collectively irradiated to a predetermined region instead of the configuration in which the exposure light SP is scanned.
  • the present invention is not limited to the form of irradiating the exposure light SP while transporting the substrate FS in the transport direction, and the exposure light SP is irradiated from the exposure apparatus EX with the movement of the substrate FS stopped to expose the next exposure region. It may be in the form of step-moving the substrate FS, such as moving it to the device EX.
  • the exposed region formed in the compound layer reaches the inspection device DT on the downstream side in the transport direction as the substrate FS moves by the transport device TR.
  • the inspection device DT acquires information related to the amount of desorption of the photosensitive protecting group in the exposure region W exposed by the exposure device EX for each measurement point (step S02).
  • the inspection device DT acquires the desorption amount-related information in the exposure region while transporting the substrate FS in the transport direction by the transport device TR.
  • the inspection device DT transmits the measurement result to the control device CONT.
  • the inspection device DT may acquire the desorption amount-related information at the timing when the substrate FS is stopped.
  • the control device CONT determines whether or not the exposure to the substrate FS is good or bad based on the measurement result from the inspection device DT (step S03).
  • the control device CONT first calculates information on measurement points (for example, information related to the amount of desorption) included in a predetermined area of the area (exposure area W) exposed by the exposure device EX.
  • the control device CONT calculates, for example, information related to the amount of desorption per unit area. Then, based on the calculated desorption amount-related information, the determination unit 64 of the control device CONT determines whether the exposure is good or bad.
  • the control device CONT may output the determination result by the determination unit 64 to a display device (not shown) or the like, or may output the determination result to an external management device or the like.
  • the user can easily confirm the quality of the exposure in the exposure region W by viewing the determination result by the determination unit 64 on a display device or the like.
  • FIG. 5 is a flowchart showing another example of the exposure method by the exposure system 100.
  • the exposure system 100 performs the processes of steps S01 to S03 in the same manner as described above.
  • the control device CONT detects whether or not the determination unit 64 has determined that the exposure is poor (step S04).
  • the exposure control unit 62 controls the exposure apparatus EX based on the calculated desorption amount related information (YES in step S04). Step S05).
  • the exposure control unit 62 changes the exposure conditions in, for example, the exposure apparatus EX.
  • the exposure conditions include, for example, changing the intensity of the exposure light SP at the time of exposure of the exposure apparatus EX, changing the focal position of the exposure light SP, changing the irradiation time of the exposure light SP, and so on. It includes at least one of changing the overlap amount of the exposure light SP.
  • the irradiation time of the exposure light can be changed, for example, by changing the scanning speed of the exposure light SP.
  • the exposure control unit 62 sets an appropriate exposure amount for the place according to, for example, a place where the exposure is poor in the exposure area W and the degree of the exposure failure (for example, the degree of insufficient exposure amount). Controls the intensity of exposure light, focal position, irradiation time, amount of overlap, etc. As a result, the exposure in the exposure apparatus EX is improved, and it is possible to eliminate the exposure defect in the exposure region W. If the determination unit 64 does not determine that the exposure is defective as a result of the detection in step S04 (NO in step S04), the control device CONT (exposure control unit 62) does not have to control the exposure device EX.
  • FIG. 6 is a flowchart showing another example of the exposure method by the exposure system 100.
  • the exposure system 100 performs the processes of steps S01 to S03 in the same manner as described above, and the determination unit 64 detects whether or not the exposure is defective (step S04).
  • the transfer control unit 63 determines that the substrate FS by the transfer device TR is based on the calculated desorption amount related information.
  • the transport speed is controlled (step S06).
  • the transfer control unit 63 can reduce the transfer speed of the substrate FS so that the irradiation time of the exposure light SP in the exposure apparatus EX becomes longer, for example. If, as a result of the detection in step S04, the determination unit 64 does not determine that the exposure is defective (NO in step S04), the control device CONT (transport control unit 63) does not have to control the transfer device TR.
  • the control device CONT has information for identifying the exposure region W determined to be the exposure defect (for example, the position on the substrate FS). May be obtained from the inspection device DT. Since the exposure region W determined to be poorly exposed is taken up by the take-up roller RL2 as it is, it is difficult to later identify which part is poorly exposed. By acquiring the information for specifying the exposure region W as described above, it is possible to take measures such as omitting a later step for this portion, and it is possible to improve the processing efficiency.
  • the exposure defect is determined by the determination unit 64 based on the measurement result of the inspection device DT, so that the user can determine the exposure defect by the determination unit 64. By confirming the judgment, it is possible to easily confirm the exposure defect.
  • FIG. 7 is a diagram showing an example of the exposure system 200 according to the second embodiment.
  • the exposure system 200 shown in FIG. 7 is similar to the exposure system 100 of the first embodiment in that it has a coating device CT, an exposure device EX, and a transfer device TR, but is provided with a plurality of inspection devices DT. It is different from the above-described embodiment.
  • the same components as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified.
  • the plurality of inspection devices DT are arranged on the downstream side of the exposure device EX in the transport direction of the substrate FS.
  • FIG. 7 shows a configuration in which two inspection devices DT are arranged, the present invention is not limited to this form, and three or more inspection devices DT may be arranged.
  • the plurality of inspection devices DT the same inspection device DT may be used, or different inspection device DTs may be used.
  • the plurality of inspection devices DT are arranged side by side in the transport direction of the substrate FS, for example.
  • the inspection device DTa arranged on the upstream side in the transport direction of the substrate FS may be used as the main, and the inspection device DTb arranged on the downstream side may be used as a sub or backup, or a part of the exposure area W to be inspected. May be measured by the inspection device DTa on the upstream side, and the remaining portion of the exposure region W may be measured by the inspection device DTb on the downstream side.
  • FIG. 8 is a diagram showing another example of the exposure system according to the second embodiment.
  • FIG. 8 shows a state in which the substrate FS is viewed from above in the exposure system 200A.
  • two inspection devices DT are arranged side by side in the width direction (direction orthogonal to the transport direction) of the substrate FS.
  • One inspection device DTa measures a region from the center of the substrate FS in the width direction to one end side.
  • the other inspection device DTb measures the region from the center of the substrate FS in the width direction to the other end edge.
  • the inspection devices DTa and DTb transmit the measurement result to the control device CONT.
  • the control device CONT calculates the desorption amount related information based on the measurement results of the inspection devices DTa and DTb, and determines whether the exposure is good or bad.
  • FIG. 9 is a diagram showing another example of the exposure system according to the second embodiment.
  • FIG. 9 shows a state in which the substrate FS is viewed from above in the exposure system 200B.
  • the same number of exposure apparatus EX and inspection apparatus DT are provided, for example, three units each, and the exposure apparatus EX and the inspection apparatus DT are arranged correspondingly.
  • the description of the control device CONT is omitted.
  • one exposure apparatus EXa is arranged at the center of the substrate FS in the width direction. Further, the remaining two exposure devices EXb and EXc are arranged at both ends of the substrate FS in the width direction on the upstream side of the exposure device EXa in the transport direction of the substrate FS.
  • the exposure apparatus EXa irradiates the exposure light SP to the central region in the width direction of the substrate FS.
  • the exposure devices EXb and EXc irradiate the regions at both ends of the substrate FS in the width direction with the exposure light SP, respectively. Therefore, the exposure light SP is applied to the exposure region W by the three exposure apparatus EXa to EXc, sharing the respective regions of the center and both ends in the width direction of the substrate FS.
  • one inspection device DTa is arranged at the center in the width direction of the substrate FS. Further, on the upstream side of the inspection device DTa in the transport direction of the substrate FS, the remaining two inspection devices DTb and DTc are arranged at both ends in the width direction of the substrate FS. That is, the arrangement of the three inspection devices DTa to DTc is the same as the arrangement of the three exposure devices EXa to EXc.
  • the inspection device DTa measures the central region of the exposure region W in the width direction of the substrate FS.
  • the inspection devices DTb and DTc measure each of the exposed regions W at both ends in the width direction of the substrate FS. Therefore, the exposure region W is measured by the three inspection devices DTa to DTc, sharing each region in the center and both ends in the width direction of the substrate FS.
  • Each of the three inspection devices DTa to DTc transmits the measurement result to the control device CONT.
  • the control device CONT calculates the desorption amount related information based on the measurement results of the inspection devices DTa to DTc, and determines whether the exposure is good or bad. With this configuration, the control device CONT separately determines the quality of exposure for each of the three areas of the central region in the width direction and the regions at both ends of the substrate FS measured by the three inspection devices DTa to DTc. ..
  • the control device CONT controls the exposure devices EXa to EXc arranged in that area based on the desorption amount related information. It can be carried out. For example, the control device CONT controls the exposure device EXa based on the measurement result of the inspection device DTa, controls the exposure device EXb based on the measurement result of the inspection device DTb, and based on the measurement result of the inspection device DTc.
  • the exposure apparatus EXc may be controlled.
  • all the exposure devices EXa to EXc may be controlled, and it is determined that the exposure is poor.
  • the exposure devices EXa to EXc arranged in the non-exposed area may be controlled.
  • the processing load on one inspection device DT can be reduced.
  • the moving speed of the substrate FS can be increased, and the processing efficiency of the substrate FS can be improved.
  • FIG. 10 is a diagram showing an example of the exposure system 300 according to the third embodiment.
  • the exposure system 300 shown in FIG. 10 is similar to the exposure systems 100 and 200 of the above-described embodiment in that it has a coating device CT, a transfer device TR, and an inspection device DT, but a plurality of exposure devices EX are formed on the substrate FS. It differs from the above embodiment in that the transport direction is provided on the upstream side and the downstream side of the inspection device DT.
  • the same components as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified.
  • the plurality of exposure devices EX include a first exposure device EX1 and a second exposure device EX2.
  • the first exposure apparatus EX1 is arranged on the upstream side of the substrate FS in the transport direction with respect to the inspection apparatus DT.
  • the second exposure apparatus EX2 is arranged on the downstream side of the substrate FS in the transport direction with respect to the inspection apparatus DT.
  • the first exposure apparatus EX1 and the second exposure apparatus EX2 have the same configuration as the above-mentioned exposure apparatus EX.
  • the first exposure apparatus EX1 and the second exposure apparatus EX2 may have the same configuration or different configurations.
  • the control device CONT includes a first exposure control unit 65 that controls the first exposure device EX1 and a second exposure control unit 66 that controls the second exposure device EX2.
  • FIG. 11 is a flowchart showing an example of an exposure method by the exposure system 300.
  • the exposure system 300 performs the processes of steps S01 to S03 in the same manner as in the above embodiment.
  • the exposure process in step S01 is performed by the first exposure apparatus EX1.
  • the control device CONT detects whether or not the determination unit 64 has determined that the exposure is poor (step S04).
  • step S04 When the determination unit 64 determines in step S04 that the exposure is poor (YES in step S04), the control device CONT reappears with the exposure region W determined by the determination unit 64 to be poor exposure by the second exposure device EX2.
  • the exposure is performed (step S07).
  • step S07 the second exposure control unit 66 controls the second exposure device EX2 based on the calculated desorption amount-related information.
  • the second exposure control unit 66 based on the calculated desorption amount related information, for example, the intensity of the exposure light SP at the time of exposure of the second exposure apparatus EX2, the focal position of the exposure light SP, and the irradiation time of the exposure light SP. , And the amount of overlap of the exposure light SP is adjusted.
  • the control device CONT is based on the calculated desorption amount related information in addition to causing the exposure by the second exposure device EX2. Therefore, the first exposure control unit 65 may control the first exposure device EX1 or the transfer device TR. Further, the control device CONT may control the exposure light SP by the second exposure device EX2 on the poorly exposed portion (for example, the unit area Wa shown in FIG. 3) in the exposure area W. Good. As a result, it is possible to avoid irradiation of the exposure light SP to the portion that does not need to be re-exposed by the second exposure apparatus EX2.
  • the second exposure apparatus EX2 re-exposes the poorly exposed exposure region W, so that the exposed region W remains poorly exposed. It is possible to prevent moving to the subsequent processing. As a result, it is possible to suppress a decrease in the yield in the substrate FS.
  • the inspection device DT is arranged on the downstream side of the second exposure device EX2, and whether or not an exposure defect has occurred by the determination unit 64 after the exposure by the second exposure device EX2 (exposure defect remains). Whether or not it is) may be determined.
  • FIG. 12 is a diagram showing an example of the exposure system 400 according to the fourth embodiment.
  • the exposure system 400 shown in FIG. 12 is different from the first to third embodiments described above in that it includes a plating device MK in addition to the coating device CT, the exposure device EX, the transport device TR, and the inspection device DT. There is.
  • the plating apparatus MK is arranged on the downstream side of the inspection apparatus DT in the transport direction of the substrate FS.
  • the plating apparatus MK performs a plating treatment (for example, electroless plating treatment) on the substrate FS on which the water-repellent pattern is formed by the exposure apparatus EX.
  • a plating treatment for example, electroless plating treatment
  • the plating apparatus MK has a plating catalyst tank MKa for performing a plating catalyst bath on the substrate FS, a plating tank MKb for performing plating on the substrate FS, and a plurality of transfer rollers MKc.
  • the plating catalyst tank MKa is arranged on the upstream side in the transport direction of the substrate FS, and applies the plating catalyst to the parent liquid portion of the parent liquid repellent pattern formed on the substrate FS. That is, in the exposed region W of the substrate FS, the photosensitive protecting group is desorbed and has positivity, and in the non-exposed region N, the photosensitive protecting group is not desorbed and thus has positivity. , The plating catalyst solution adheres to the exposed region W.
  • the plating catalyst solution stored in the plating catalyst tank MKa for example, any one required for electroless plating is selected and stored.
  • the plating tank MKb is arranged on the downstream side in the transport direction of the substrate FS, and electroless plating is performed on the parent liquid portion of the substrate FS to which the plating catalyst is applied. That is, since the plating catalyst is applied to the exposed region W of the substrate FS, this exposed region W plating process is performed. As a result, a wiring pattern is formed on the substrate FS by plating.
  • the substrate FS moves in the plating apparatus MK when the take-up roller RL2 winds up the substrate FS.
  • the plurality of transfer rollers MKc guide the substrate FS in the plating apparatus MK. Of the plurality of transport rollers MKc, at least one may be a drive roller and the rest may be driven rollers. By using one of the transfer rollers MKc as a drive roller, the transfer speed of the substrate FS can be changed in the plating apparatus MK.
  • the transfer roller MKc moves in the transfer direction of the substrate FS in the plating catalyst tank MKa or the plating tank MKb, so that the transfer distance of the substrate FS in the plating catalyst tank MKa or the transfer distance of the substrate FS in the plating tank MKb The length of is changeable.
  • the control device CONT has a plating control unit 67 that controls the plating device MK.
  • the plating control unit 67 can control the rotation speed of the transfer roller MKc (drive roller), that is, the transfer speed of the substrate FS in the plating apparatus MK.
  • the change in the transfer speed of the substrate FS changes the immersion time of the substrate FS in the plating catalyst tank MKa or the immersion time of the substrate FS in the plating tank MKb.
  • the plating control unit 67 moves the position of the movable transfer roller MKc, that is, the plating catalyst tank MKa. It is possible to control the transport distance of the substrate FS inside or in the plating tank MKb. Changing the transport distance of the substrate FS in the plating catalyst tank MKa or the plating tank MKb changes the immersion time of the substrate FS in the plating catalyst tank MKa or the immersion time of the substrate FS in the plating tank MKb.
  • FIG. 13 is a flowchart showing an example of an exposure method by the exposure system 400 according to the present embodiment.
  • the exposure system 400 performs the processes of steps S01 to S03 in the same manner as in the above embodiment.
  • the control device CONT detects whether or not the exposure region W is determined to be poor exposure by the determination unit 64 (step S04).
  • the determination unit 64 determines that the exposure is poor as a result of the detection in step S04 (YES in step S04)
  • the transport control unit 63 controls the plating apparatus MK based on the calculated desorption amount related information (YES in step S04). Step S08).
  • step S08 the plating control unit 67 controls, for example, the transfer speed of the substrate FS and the transfer distance of the substrate FS in the plating apparatus MK by adjusting the rotation speed and the position of the transfer roller MKc, for example, the plating catalyst.
  • the immersion time of the substrate FS in the tank MKa or the plating tank MKb is lengthened.
  • the rate of applying the plating catalyst per hour is low, but by lengthening the immersion time of the substrate FS in the plating catalyst tank MKa, the exposure region W is exposed to light. It is possible to supplement the application of the plating catalyst. Alternatively, even when the plating catalyst is not sufficiently applied to the exposure region W, the immersion time of the substrate FS in the plating tank MKb is increased to be sufficient for the exposure region W (sufficient as a wiring pattern). It is possible to form a plating.
  • FIG. 14 (A) and 14 (B) are diagrams showing an example of changing the transport distance of the substrate FS in the plating apparatus MK in the exposure system 400.
  • the transfer roller MKc is arranged so that the length of the transfer path is the shortest when the substrate FS is immersed in the plating catalyst tank MKa or the plating tank MKb.
  • the substrate FS is moved upward by moving the transfer roller MKc1 out of the plurality of transfer rollers MKc arranged in the plating catalyst tank MKa or the plating tank MKb. It moves in a state of meandering in the vertical direction in the plating catalyst tank MKa or the plating tank MKb. That is, the substrate FS has a longer transport path in the plating catalyst tank MKa or the plating tank MKb, and the immersion time in the plating catalyst tank MKa or the plating tank MKb can be lengthened.
  • the plating device MK is controlled to adjust the immersion time of the substrate FS in the plating catalyst tank MKa or the plating tank MKb (longer). Therefore, an appropriate plating process can be applied to the exposed region W determined to be poorly exposed. As a result, it is possible to suppress a decrease in the yield on the substrate FS by forming a desired wiring pattern in the exposure region W determined to be poorly exposed.
  • FIG. 15 is a diagram showing an example of the exposure system 500 according to the fifth embodiment.
  • the exposure system 500 shown in FIG. 15 includes an exposure device EX3 and an inspection device DT.
  • an XYZ Cartesian coordinate system with the gravity direction as the Z direction is set, and the X direction, the Y direction, and the Z direction will be described according to the arrows shown in the figure.
  • the direction pointed by the arrow will be described as the + direction (for example, the + X direction), and the opposite direction will be described as the ⁇ direction (for example, the ⁇ X direction).
  • the exposure system 500 is, for example, a part of a manufacturing system in which a manufacturing line for manufacturing flexible displays, flexible sensors, etc. as electronic devices is constructed.
  • a flexible display will be described as an electronic device.
  • the substrate FS is fed from a feeding roller (see the feeding roller RL1 in FIG. 1) in which a flexible sheet-shaped substrate (sheet substrate) FS is wound in a roll shape, and the substrate FS is sent out to the fed substrate FS.
  • the substrate FS after various treatments is wound up by a take-up roller (see the take-up roller RL2 in FIG. 1), that is, a so-called roll-to-roll (Roll To Roll) structure.
  • the substrate FS has a strip-like shape in which the transport direction of the substrate FS is the longitudinal direction (long) and the width direction is the lateral direction (short).
  • the substrate FS sent from the delivery roller is sequentially subjected to various processes by the process device PR1, the exposure device (drawing device, beam scanning device) EX4, the process device PR2, and the like, and is wound up by a take-up roll.
  • the X direction is a direction (transportation direction) from the process device PR1 to the process device PR2 via the exposure device EX3 in the horizontal plane.
  • the Y direction is a direction orthogonal to the X direction in the horizontal plane, and is a width direction (short direction) of the substrate FS.
  • the Z direction is a direction (upward) orthogonal to the X direction and the Y direction, and is parallel to the direction in which gravity acts.
  • the process device PR1 performs the pre-process processing on the substrate FS to be exposed by the exposure device EX.
  • the process apparatus PR1 sends the substrate FS processed in the previous process to the exposure apparatus EX.
  • the substrate FS sent to the exposure apparatus EX by the process of this previous step is a substrate on which the resist layer R is formed on the surface thereof.
  • the exposure device EX3 as a beam scanning device is a direct drawing type exposure device that does not use a mask, that is, a so-called raster scan type exposure device.
  • the exposure apparatus EX3 irradiates the irradiated surface (exposure region W) of the substrate FS supplied from the process apparatus PR1 with an optical pattern corresponding to a predetermined pattern for an electronic device for a display, a circuit, wiring, or the like. To do.
  • the exposure apparatus EX3 scans the exposure light SP of the beam LB for exposure one-dimensionally in a predetermined scanning direction (Y direction) on the irradiated surface of the substrate FS while transporting the substrate FS in the + X direction.
  • the intensity of the exposure light SP is modulated (on / off) at high speed according to the pattern data (drawing data).
  • pattern data drawing data
  • an optical pattern corresponding to a predetermined pattern such as an electronic device, a circuit, or a wiring is drawn and exposed on the irradiated surface of the substrate FS.
  • the exposure light SP is relatively two-dimensionally scanned on the irradiated surface of the substrate FS, and a predetermined pattern is drawn and exposed on the substrate FS. Further, since the substrate FS is conveyed along the conveying direction (+ X direction), the exposure regions W where the pattern is exposed by the exposure apparatus EX are spaced apart from each other along the long direction of the substrate FS. Multiple will be provided. Since the electronic device is formed in the exposure region W, the exposure region W is also an electronic device formation region. Since the electronic device is configured by superimposing a plurality of pattern layers (layers on which patterns are formed), the pattern corresponding to each layer may be exposed by the exposure apparatus EX3.
  • the process apparatus PR2 performs post-process processing (for example, plating processing, development / etching processing, etc.) on the substrate FS exposed by the exposure apparatus EX3.
  • post-process processing for example, plating processing, development / etching processing, etc.
  • a pattern layer for example, a wiring pattern layer of an electronic device is formed on the substrate FS.
  • the electronic device is configured by superimposing a plurality of pattern layers, one pattern layer is generated through at least each process of the device manufacturing system including the exposure system 500. Therefore, in order to generate an electronic device, each process of the device manufacturing system including the exposure system 500 as shown in FIG. 15 must be performed, for example, twice. Therefore, for example, the pattern layer can be laminated by mounting the take-up roller on which the substrate FS is taken up as a delivery roller on another device manufacturing system. By repeating such an operation, an electronic device is formed.
  • the processed substrate FS is in a state in which a plurality of electronic device forming regions are connected along the elongated direction of the substrate FS at predetermined intervals. That is, the substrate FS is a substrate for multi-chamfering.
  • the exposure apparatus EX3 is stored in the temperature control chamber ECV. By keeping the inside of the temperature control chamber ECV at a predetermined temperature, the shape change of the substrate FS conveyed inside is suppressed due to the temperature.
  • the temperature control chamber ECV is arranged on the installation surface E of a manufacturing factory or the like via passive or active vibration isolation units SU1 and SU2.
  • the vibration isolation units SU1 and SU2 reduce vibration from the installation surface E.
  • the installation surface E may be the floor surface of the factory itself, or may be a surface on the installation base installed on the floor surface in order to create a horizontal surface.
  • the exposure device EX3 includes a substrate transfer mechanism 12, a light source device 14, a beam switching member 16, an exposure head 18, a control device 20, and a plurality of alignment microscopes AMm (AM1 to AM4).
  • the substrate transfer mechanism 12 conveys the substrate FS conveyed from the process apparatus PR1 at a predetermined speed in the exposure apparatus EX3, and then sends the substrate FS to the process apparatus PR2 at a predetermined speed.
  • the substrate transport mechanism 12 defines a moving path of the substrate FS transported in the exposure apparatus EX3.
  • the substrate transport mechanism 12 includes an edge position controller EPC, a drive roller R1, a tension adjusting roller RT1, a rotary drum (cylindrical drum) DR, and a tension adjusting roller RT2 in order from the upstream side ( ⁇ X direction side) of the substrate FS in the transport direction. It has a drive roller R2 and a drive roller R3.
  • the substrate transfer mechanism 12 conveys the substrate FS conveyed from the process apparatus PR1 at a predetermined speed in the exposure apparatus EX3, and then sends the substrate FS to the process apparatus PR2 at a predetermined speed.
  • the substrate transport mechanism 12 defines a moving path of the substrate FS transported in the exposure apparatus EX3.
  • the substrate transfer mechanism 12 includes an edge position controller EPC, a drive roller R1, a tension adjustment roller RT1, a rotary drum DR, a tension adjustment roller RT2, and a drive roller R2 in order from the upstream side ( ⁇ X direction side) of the substrate FS in the transfer direction. It also has a drive roller R3.
  • the light source device 14 has a light source (pulse light source) and emits a pulsed beam (pulse light, laser) LB.
  • the beam LB is, for example, ultraviolet light having a peak wavelength in a wavelength band of 370 nm or less, and the oscillation frequency (emission frequency) of the beam LB is Fs.
  • the beam LB emitted by the light source device 14 is incident on the exposure head 18 via the beam switching member 16.
  • the light source device 14 emits and emits a beam LB at an oscillation frequency Fs according to the control of the control device 20.
  • the light source device 14 includes, for example, a semiconductor laser element that generates pulsed light in the infrared wavelength region, a fiber amplifier, and a wavelength conversion element (harmonic) that converts amplified pulsed light in the infrared wavelength region into pulsed light in the ultraviolet wavelength region.
  • a fiber amplifier laser light source is used, which is composed of a wave generating element) or the like, has an oscillation frequency of several hundred MHz, and can obtain high-intensity ultraviolet pulsed light having a emission time of one pulsed light of about picoseconds.
  • the beam LB from the light source device 14 is incident on one scanning unit Un that performs one-dimensional scanning of the exposure light SP.
  • the optical path of the beam LB is switched so as to be performed.
  • the exposure head 18 includes a plurality of scanning units Un (U1 to U6) into which the beam LB is incident.
  • the exposure head 18 draws a pattern on a part of the substrate FS supported by the circumferential surface of the rotating drum DR by a plurality of scanning units Un (U1 to U6).
  • the exposure head 18 is a so-called multi-beam type exposure head in which a plurality of scanning units Un (U1 to U6) having the same configuration are arranged. Since the exposure head 18 repeatedly performs pattern exposure for electronic devices on the substrate FS, the exposure region W (electronic device forming region) on which the pattern is exposed is a predetermined along the longitudinal direction of the substrate FS. Multiple are provided at intervals.
  • the odd-numbered scanning units U1, U3, and U5 are arranged on the upstream side ( ⁇ X direction side) of the substrate FS in the transport direction with respect to the central surface Poc, and are arranged along the Y direction.
  • the even-numbered scanning units U2, U4, and U6 are arranged on the downstream side (+ X direction side) of the substrate FS in the transport direction with respect to the central surface Poc, and are arranged along the Y direction.
  • the odd-numbered scanning units U1, U3, and U5 and the even-numbered scanning units U2, U4, and U6 are provided symmetrically with respect to the central surface Poc.
  • the scanning unit Un projects the beam LB from the light source device 14 on the irradiated surface of the substrate FS so as to converge on the exposure light SP, and causes the exposure light SP to be linear on the irradiated surface of the substrate FS.
  • a single drawing line (scanning line) SLn (SL1 to SL6) is scanned one-dimensionally by a rotating polygon mirror.
  • An inspection device DT is arranged on the downstream side of the scanning unit Un. The inspection device DT measures information on the amount of desorption of the photosensitive protecting group in the exposure region W of the substrate FS moving along the outer peripheral surface of the rotating drum DR for each measurement point. The measurement result by the inspection device DT is sent to the control device 20.
  • the inspection device DT can acquire information on the amount of desorption of the photosensitive protecting group in the exposure region W.
  • the inspection device DT is not limited to being arranged so as to face the substrate FS that moves by the rotating drum DR.
  • the inspection device DT may be arranged so as to face the substrate FS that moves downstream from the rotary drum DR.
  • FIG. 16 is a diagram showing an example of the exposure apparatus EX4 according to the sixth embodiment.
  • the same components as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified.
  • the exposure system 600 includes an exposure apparatus EX4.
  • the exposure apparatus EX4 includes an inspection apparatus DT, unlike the above-described embodiment.
  • the inspection device DT is provided in the exposure device EX4 on the downstream side in the transport direction of the substrate FS with respect to the portion irradiated with the exposure light SP.
  • the exposure apparatus EX4 exposes the exposure region W with the exposure light SP, and acquires information on the amount of desorption of the photosensitive protecting group in the exposure region W by the inspection apparatus DT. That is, it is possible to acquire information on the amount of desorption of the photosensitive protecting group in the exposure region W immediately after the exposure region W is exposed by the exposure light SP.
  • Information on the amount of desorption of the photosensitive protecting group acquired by the inspection device DT is sent to a control device (not shown) provided in the exposure device EX4 or a control device (not shown) provided outside the exposure device EX4.
  • This control device may include the determination unit 64 described above.
  • the control device may control the exposure conditions (for example, the intensity of the exposure light SP, the moving speed of the substrate FS, etc.) in the exposure device EX4. ..
  • the inspection device DT provided in the exposure device EX4 acquires information on the amount of desorption of the photosensitive protecting group, it is not necessary to arrange the inspection device DT outside the exposure device EX4. As a result, the length of the substrate FS in the transport direction (that is, the length of the electronic device manufacturing line in the substrate FS) can be shortened. Further, the measurement result of the inspection device DT provided in the exposure device EX4 is obtained by using a device other than the exposure device EX4 (for example, another exposure device arranged on the upstream side and the downstream side of the exposure device EX4, process devices PR1, PR2, etc.). It may be used as information for controlling.
  • a device other than the exposure device EX4 for example, another exposure device arranged on the upstream side and the downstream side of the exposure device EX4, process devices PR1, PR2, etc.

Abstract

[Problem] To determine whether or not photosensitive protecting groups are sufficiently removed after forming a lyophilic/lyophobic pattern by exposing a layer of a compound having the protecting groups to light and before forming a wiring pattern. [Solution] This exposure system is designed to form a lyophilic/lyophobic pattern including a lyophilic region and a lyophobic region by exposing a layer containing a compound having photosensitive protecting groups formed on a substrate to light, and is provided with: an exposure device for exposing the layer containing a compound having a photosensitive protecting group to light; an inspection device for acquiring, at each measurement point, information relating to the amount of removed photosensitive protecting groups in the region exposed to light by the exposure device; and a control device having a determination unit for determining whether or not the exposure was performed successfully on the basis of the information for the measurement points included in the region exposed to light by the exposure device.

Description

露光システム、露光装置、及び露光方法Exposure system, exposure equipment, and exposure method
 本発明は、露光システム、露光装置、及び露光方法に関する。 The present invention relates to an exposure system, an exposure apparatus, and an exposure method.
 近年、半導体素子、集積回路、有機ELディスプレイ用デバイス等の微細デバイス等の製造において、基板上に、表面特性の異なるパターンを形成し、その表面特性の違いを利用して微細デバイスを作成する方法が提案されている。
 基板上の表面特性の違いを利用したパターン形成方法としては、例えば、基板上に親水領域と撥水領域とを形成し、機能性材料の水溶液を親水領域に塗布する方法がある。この方法は、親水領域でのみ機能性材料の水溶液が濡れ広がるため、機能性材料のパターンを形成できる。
 基板上に親水領域と撥水領域とを形成することができる材料として、例えば、特許文献1には、光照射の前後で接触角を変化させることができる含フッ素化合物が記載されている。このような化合物に光照射した後は、機能性材料を親水領域に良好に塗布するため、当該化合物に十分な光照射が行われたか否かを判断できることが好ましい。
In recent years, in the manufacture of fine devices such as semiconductor elements, integrated circuits, and devices for organic EL displays, a method of forming patterns having different surface characteristics on a substrate and creating fine devices by utilizing the differences in the surface characteristics. Has been proposed.
As a pattern forming method utilizing the difference in surface characteristics on the substrate, for example, there is a method of forming a hydrophilic region and a water-repellent region on the substrate and applying an aqueous solution of a functional material to the hydrophilic region. In this method, since the aqueous solution of the functional material wets and spreads only in the hydrophilic region, a pattern of the functional material can be formed.
As a material capable of forming a hydrophilic region and a water-repellent region on a substrate, for example, Patent Document 1 describes a fluorine-containing compound capable of changing the contact angle before and after light irradiation. After irradiating such a compound with light, it is preferable to be able to determine whether or not sufficient light irradiation has been performed on the compound in order to satisfactorily apply the functional material to the hydrophilic region.
特許第4997765号公報Japanese Patent No. 4997765
 本発明の第1の態様に従えば、基板上に形成された、感光性保護基を有する化合物を含む層を露光し、親液領域及び撥液領域を含む親撥液パターンを形成する露光システムであって、感光性保護基を有する化合物を含む層を露光する露光装置と、露光装置により露光された領域における感光性保護基の脱離量に関する情報を測定点毎に取得する検査装置と、露光装置により露光された領域に含まれる測定点の情報に基づいて露光の良否を判断する判断部を有する制御装置と、を備える、露光システムが提供される。 According to the first aspect of the present invention, an exposure system that exposes a layer containing a compound having a photosensitive protective group formed on a substrate to form a pro-liquid repellent pattern including a pro-liquid region and a liquid-repellent region. An exposure device that exposes a layer containing a compound having a photosensitive protective group, an inspection device that acquires information on the amount of desorption of the photosensitive protective group in a region exposed by the exposure device for each measurement point, and an inspection device. Provided is an exposure system including a control device having a determination unit for determining the quality of exposure based on information on measurement points included in an area exposed by the exposure device.
 本発明の第2の態様に従えば、基板上に形成された、感光性保護基を有する化合物を含む層を露光し、親液領域及び撥液領域を含む親撥液パターンを形成する露光装置であって、感光性保護基を有する化合物を含む層を露光する露光部と、露光部により露光された領域における感光性保護基の脱離量に関する情報を測定点毎に取得する検査部と、露光部により露光された領域に含まれる測定点の情報に基づいて露光の良否を判断する判断部を有する制御部と、を備える、露光装置が提供される。 According to the second aspect of the present invention, an exposure apparatus that exposes a layer containing a compound having a photosensitive protective group formed on a substrate to form a pro-liquid repellent pattern including a pro-liquid region and a liquid-repellent region. An exposure unit that exposes a layer containing a compound having a photosensitive protective group, an inspection unit that acquires information on the amount of desorption of the photosensitive protective group in the area exposed by the exposure unit for each measurement point, and an inspection unit. Provided is an exposure apparatus including a control unit having a determination unit for determining the quality of exposure based on information on measurement points included in an area exposed by the exposure unit.
 本発明の第3の態様に従えば、基板上に形成された、感光性保護基を有する化合物を含む層を露光し、親液水領域及び撥液領域を含む親撥液パターンを形成する露光方法であって、感光性保護基を有する化合物を含む層を露光することと、露光された領域における感光性保護基の脱離量に関する情報を測定点毎に取得することと、露光された領域に含まれる測定点の情報に基づいて露光の良否を判断することと、を含む、露光方法が提供される。 According to the third aspect of the present invention, an exposure formed on a substrate and containing a compound having a photosensitive protective group is exposed to form a pro-liquid repellent pattern including a pro-liquid water region and a liquid-repellent region. The method is to expose a layer containing a compound having a photosensitive protective group, to obtain information on the amount of desorption of the photosensitive protective group in the exposed region for each measurement point, and to obtain the exposed region. An exposure method is provided, including determining the quality of exposure based on the information of the measurement points included in the above.
第1実施形態に係る露光システムの一例を示す図である。It is a figure which shows an example of the exposure system which concerns on 1st Embodiment. (A)及び(B)は、原子間力顕微鏡により測定結果の一例を示す画像である。(A) and (B) are images showing an example of measurement results by an atomic force microscope. (A)及び(B)は、脱離量関連情報に基づいて露光の良否を判断する手順の一例を模式的に示す図である。(A) and (B) are diagrams schematically showing an example of a procedure for determining the quality of exposure based on information related to the amount of desorption. 第1実施形態に係る露光システムによる露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure method by the exposure system which concerns on 1st Embodiment. 第1実施形態に係る露光システムによる露光方法の他の例を示すフローチャートである。It is a flowchart which shows another example of the exposure method by the exposure system which concerns on 1st Embodiment. 第1実施形態に係る露光システムによる露光方法の他の例を示すフローチャートである。It is a flowchart which shows another example of the exposure method by the exposure system which concerns on 1st Embodiment. 第2実施形態に係る露光システムの一例を示す図である。It is a figure which shows an example of the exposure system which concerns on 2nd Embodiment. 第2実施形態に係る露光システムの他の例を示し、基板を上方から見た図である。It is the figure which showed the other example of the exposure system which concerns on 2nd Embodiment, and looked at the substrate from above. 第2実施形態に係る露光システムの他の例を示す図である。It is a figure which shows another example of the exposure system which concerns on 2nd Embodiment. 第3実施形態に係る露光システムの一例を示す図である。It is a figure which shows an example of the exposure system which concerns on 3rd Embodiment. 第3実施形態に係る露光システムによる露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure method by the exposure system which concerns on 3rd Embodiment. 第4実施形態に係る露光システムの一例を示す図である。It is a figure which shows an example of the exposure system which concerns on 4th Embodiment. 第4実施形態に係る露光システムによる露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure method by the exposure system which concerns on 4th Embodiment. (A)及び(B)は、第4実施形態に係る露光システムにおいて、めっき装置内の基板の搬送経路の長さを制御する場合の一例を示す図である。(A) and (B) are diagrams showing an example in the case of controlling the length of the transport path of the substrate in the plating apparatus in the exposure system according to the fourth embodiment. 第5実施形態に係る露光システムの一例を示す図である。It is a figure which shows an example of the exposure system which concerns on 5th Embodiment. 第6実施形態に係る露光装置の一例を示す図である。It is a figure which shows an example of the exposure apparatus which concerns on 6th Embodiment.
 感光性保護基を有する化合物の層は、露光により保護基が外れ、この部分が相対的に親液化することで親撥液パターンが形成される。親撥液パターンが形成された後、親液部分にめっき触媒を付与して無電解めっきを行う、又は親水部分に配線形成材料を塗布することで、配線パターンを形成する。このような感光性保護基を有する化合物の層において、露光による保護基の脱離が十分でない場合、親液化の度合いが小さい。このような状態で無電解めっき、又は配線形成材料の塗布を行っても、良好な配線パターンを得ることは困難である。本実施形態では、感光性保護基を有する化合物の層を露光して親撥液パターンを形成した後、配線パターンを形成する前に、保護基の脱離が十分であるか否かを判断することが可能な露光システム、露光装置、及び露光方法を提供する。 The protective group of the compound layer having a photosensitive protective group is removed by exposure, and this portion is relatively liquefied to form a pro-liquid repellent pattern. After the water-repellent pattern is formed, a wiring pattern is formed by applying a plating catalyst to the water-repellent portion and performing electroless plating, or by applying a wiring forming material to the hydrophilic portion. In the layer of the compound having such a photosensitive protecting group, when the protective group is not sufficiently removed by exposure, the degree of liquefaction is small. Even if electroless plating or coating of a wiring forming material is performed in such a state, it is difficult to obtain a good wiring pattern. In the present embodiment, after the layer of the compound having a photosensitive protecting group is exposed to form a pro-liquid repellent pattern, it is determined whether or not the protective group is sufficiently removed before forming the wiring pattern. Provided are an exposure system, an exposure apparatus, and an exposure method capable of capable.
 以下、本発明の各実施形態について図面を参照しながら説明する。ただし、本発明は以下に記載される実施形態に限定されない。また、図面においては実施形態を説明するため、一部分を大きく又は強調して記載するなど適宜縮尺を変更して表現している。本実施形態では、例えば、電子デバイスとしてのフレキシブル・ディスプレイ、フレキシブル配線、フレキシブル・センサ等の回路基板を製造する場合を例に挙げて説明する。フレキシブル・ディスプレイとしては、例えば、有機ELディスプレイ、液晶ディスプレイ等がある。 Hereinafter, each embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments described below. In addition, in order to explain the embodiment, the drawings are expressed by changing the scale as appropriate, such as drawing a part larger or emphasized. In the present embodiment, for example, a case of manufacturing a circuit board such as a flexible display, flexible wiring, and a flexible sensor as an electronic device will be described as an example. Flexible displays include, for example, organic EL displays, liquid crystal displays, and the like.
 本実施形態に係る電子デバイスを製造する場合には、可撓性のシート状の基板(シート基板)をロール状に巻いた供給ロールから基板が送り出され、送り出された基板に対して各種処理を連続的に施した後、各種処理後の基板を回収ロールで巻き取る、いわゆる、ロール・ツー・ロール(Roll To Roll)方式が採用される。基板は、基板の搬送方向が長手方向(長尺)となり、幅方向が短手方向(短尺)となる帯状の形状を有する。供給ロールから送られた基板は、順次、前処理、露光処理、後処理等の各種処理が施され、回収ロールで巻き取られる。なお、基板をロール・ツー・ロールで搬送することに限定されず、例えば、矩形状の複数枚の基板を所定方向に連続的にあるいは断続的に搬送し、搬送途中において各種処理を行う形態であってもよい。 When manufacturing the electronic device according to the present embodiment, the substrate is fed from a supply roll in which a flexible sheet-shaped substrate (sheet substrate) is wound in a roll shape, and various treatments are performed on the fed substrate. A so-called roll-to-roll (Roll To Roll) method is adopted in which the substrate after various treatments is wound up with a recovery roll after continuous application. The substrate has a strip-like shape in which the transport direction of the substrate is the longitudinal direction (long) and the width direction is the lateral direction (short). The substrate sent from the supply roll is sequentially subjected to various treatments such as pretreatment, exposure treatment, and posttreatment, and is wound up by the recovery roll. The substrate is not limited to being conveyed in a roll-to-roll manner. For example, a plurality of rectangular substrates are continuously or intermittently conveyed in a predetermined direction, and various processes are performed during the transfer. There may be.
 <第1実施形態>
 図1は、第1実施形態に係る露光システムの一例を示す図である。図1に示すように、露光システム100は、塗布装置CTと、露光装置EXと、搬送装置TRと、検査装置DTと、制御装置CONTと、を備える。塗布装置CT、露光装置EX、検査装置DTは、例えば搬送装置TRによる基板FSの搬送方向の上流側から下流側にこの順で配置される。塗布装置CTは、感光性保護基を有する化合物の液滴を基板FSに塗布し、この化合物の層(以下、化合物層と表記する)を形成する。塗布装置CTは、例えばインクジェット型塗布装置、スピンコート型塗布装置、ロールコート型塗布装置、スロットコート型塗布装置などの液滴塗布装置が用いられる。塗布装置CTは、1台又は複数台が配置される。塗布装置CTが複数台配置される場合、例えば、基板FSの搬送方向に沿って配置されてもよいし、基板FSの幅方向に配置されてもよい。
<First Embodiment>
FIG. 1 is a diagram showing an example of an exposure system according to the first embodiment. As shown in FIG. 1, the exposure system 100 includes a coating device CT, an exposure device EX, a transport device TR, an inspection device DT, and a control device CONT. The coating device CT, the exposure device EX, and the inspection device DT are arranged in this order from the upstream side to the downstream side in the transport direction of the substrate FS by the transport device TR, for example. The coating device CT coats a droplet of a compound having a photosensitive protecting group on the substrate FS to form a layer of this compound (hereinafter referred to as a compound layer). As the coating device CT, for example, a droplet coating device such as an inkjet type coating device, a spin coating type coating device, a roll coating type coating device, or a slot coating type coating device is used. One or more coating devices CT are arranged. When a plurality of coating devices CT are arranged, for example, they may be arranged along the transport direction of the substrate FS, or may be arranged in the width direction of the substrate FS.
 感光性保護基を有する化合物としては、例えば下記一般式(1)で表される含フッ素化合物を用いることができる。 As the compound having a photosensitive protecting group, for example, a fluorine-containing compound represented by the following general formula (1) can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[一般式(1)中、Xはハロゲン原子又はアルコキシ基を表し、Rは水素原子又は炭素数1~10の直鎖状、分岐鎖状又は環状のアルキル基を表し、Rf1、Rf2はそれぞれ独立にアルコキシ基、シロキシ基、又はフッ素化アルコキシ基であって、nは0以上の整数を表す。] [In the general formula (1), X represents a halogen atom or an alkoxy group, R 1 represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, and R f1 and R f2. Are independently alkoxy groups, siloxy groups, or fluorinated alkoxy groups, and n represents an integer of 0 or more. ]
 前記一般式(1)中、Xはハロゲン原子又はアルコキシ基である。Xのハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子等を挙げることができる。Xのアルコキシ基は、炭素数が1~20であることが好ましく、1~10がより好ましく、1~5がさらに好ましく、1~3が特に好ましく、1又は2が最も好ましい。Xはハロゲン原子であるよりもアルコキシ基であることが好ましい。 In the general formula (1), X is a halogen atom or an alkoxy group. Examples of the halogen atom of X include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. The alkoxy group of X preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, further preferably 1 to 5 carbon atoms, particularly preferably 1 to 3 carbon atoms, and most preferably 1 or 2 carbon atoms. It is preferable that X is an alkoxy group rather than a halogen atom.
 nは0以上の整数を表し、出発原料の入手の容易さの点から、1~20の整数であることが好ましく、2~15の整数であることがより好ましい。また、nは3以上であることも好ましく、4以上であることがより好ましい。 N represents an integer of 0 or more, and is preferably an integer of 1 to 20 and more preferably an integer of 2 to 15 from the viewpoint of easy availability of starting materials. Further, n is preferably 3 or more, and more preferably 4 or more.
 前記一般式(1)中、Rは水素原子、又は炭素数1~10の直鎖状、分岐鎖状又は環状のアルキル基である。Rのアルキル基としては、炭素数1~5の直鎖状又は分岐鎖状のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。環状のアルキル基としては、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。本実施形態においては、Rは水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であることが好ましい。 In the general formula (1), R 1 is a hydrogen atom or a linear, branched chain or cyclic alkyl group having 1 to 10 carbon atoms. The alkyl group of R 1 is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, or an isobutyl group. Examples include a group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group and the like. Examples of the cyclic alkyl group include a group obtained by removing one or more hydrogen atoms from a polycycloalkane such as a monocycloalkane, a bicycloalkane, a tricycloalkane, and a tetracycloalkane. In this embodiment, R 1 is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group.
 前記一般式(1)中、Rf1、Rf2はそれぞれ独立にアルコキシ基、シロキシ基、又はフッ素化アルコキシ基である。前記一般式(1)中、Rf1、Rf2のフッ素化アルコキシ基は、好ましくは炭素数3以上のアルコキシ基であって、部分的にフッ素化されたものであってもよく、パーフルオロアルコキシ基であってもよい。本実施形態においては、部分的にフッ素化されたフッ素化アルコキシ基であることが好ましい。 In the general formula (1), R f1 and R f2 are independently alkoxy groups, siloxy groups, or fluorinated alkoxy groups, respectively. In the general formula (1), the fluorinated alkoxy groups of R f1 and R f2 are preferably alkoxy groups having 3 or more carbon atoms, and may be partially fluorinated, and perfluoroalkoxy. It may be a group. In this embodiment, it is preferably a partially fluorinated fluorinated alkoxy group.
 本実施形態において、Rf1、Rf2のフッ素化アルコキシ基としては、例えば、-O-(CH f1-(C f22n f2 +1)で表される基が挙げられる。前記nf1は0以上の整数であり、nf2は1以上の整数である。本実施形態において、nf1は0~30であることが好ましく、0~15であることがより好ましく、0~5であることが特に好ましい。また、本実施形態において、nf2は1~30であることが好ましく、1~15であることがより好ましく、1~10であることがさらに好ましく、1~6であることが特に好ましい。 In the present embodiment, examples of the fluorinated alkoxy group of R f1 and R f2 include a group represented by —O— (CH 2 ) n f1- (C n f2 F 2n f2 +1 ). The n f1 is an integer of 0 or more, and n f2 is an integer of 1 or more. In the present embodiment, n f1 is preferably 0 to 30, more preferably 0 to 15, and particularly preferably 0 to 5. Further, in the present embodiment, n f2 is preferably 1 to 30, more preferably 1 to 15, further preferably 1 to 10, and particularly preferably 1 to 6.
 以下に一般式(1)で表される含フッ素化合物の具体例を示す。 Specific examples of the fluorine-containing compound represented by the general formula (1) are shown below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 感光性保護基を有する化合物としては、例えば下記一般式(2)で表される含フッ素化合物を用いることができる。 As the compound having a photosensitive protecting group, for example, a fluorine-containing compound represented by the following general formula (2) can be used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[一般式(2)中、Rは水素原子又は炭素数1~10の直鎖状、分岐鎖状又は環状のアルキル基を表し、Rf1、Rf2はそれぞれ独立にアルコキシ基、シロキシ基、又はフッ素化アルコキシ基である。]
 一般式(2)中、R、Rf1、Rf2についての説明は、前記一般式(1)中のR、Rf1、Rf2についての説明と同様である。
[In the general formula (2), R 1 represents a hydrogen atom or a linear, branched chain or cyclic alkyl group having 1 to 10 carbon atoms, and R f1 and R f2 are independently alkoxy groups and siloxy groups, respectively. Alternatively, it is a fluorinated alkoxy group. ]
In the general formula (2), description of R 1, R f1, R f2 are the same as the description of the R 1, R f1, R f2 of the general formula (1).
<含フッ素化合物の製造方法>
 一般式(1)で表される含フッ素化合物は、上記した一般式(2)で表される含フッ素化合物を原料(中間体)として製造することが好ましい。
<Manufacturing method of fluorine-containing compound>
The fluorine-containing compound represented by the general formula (1) is preferably produced using the fluorine-containing compound represented by the general formula (2) as a raw material (intermediate).
 下記工程において、用いられる溶媒としては、例えば酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、ベンゼン、トルエン、アセトニトリル、塩化メチレン、クロロホルム、ジクロロエタン、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノールなどが挙げられる。これらは、単独で用いてもよく、2種以上混合して用いてもよい。 Examples of the solvent used in the following steps include ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, benzene, toluene and acetonitrile. , Methylene chloride, chloroform, dichloroethane, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and the like. These may be used alone or in combination of two or more.
 一般式(2)で表される含フッ素化合物は、例えば、以下のそれぞれの工程を経ることにより、得ることができる。 The fluorine-containing compound represented by the general formula (2) can be obtained, for example, by going through each of the following steps.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式中、R、Rf1及びRf2は、前記一般式(1)中のR、Rf1及びRf2と同様であり、I-Rf1’、I-Rf2’中のRf1’、Rf2’はそれぞれ、前記Rf1、Rf2と同様である。 In the above formulas, R 1, R f1 and R f2 are the same as R 1, R f1 and R f2 in the general formula (1), I-R f1 ', I -R f2' R in f1 ', R f2 ' are the same as those of R f1 and R f2 , respectively.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式中、R、Rf1及びRf2は、前記一般式(1)中のR、Rf1及びRf2と同様である。 In the above formulas, R 1, R f1 and R f2 are the same as R 1, R f1 and R f2 in the general formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式中、R、Rf1及びRf2は、前記一般式(1)中のR、Rf1及びRf2と同様である。 In the above formulas, R 1, R f1 and R f2 are the same as R 1, R f1 and R f2 in the general formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記反応式中、R、Rf1、Rf2についての説明は前記一般式(1)中におけるR、Rf1、Rf2についての説明と同様である。 In the above reaction formula, the description of R 1, R f1, R f2 is as described for R 1, R f1, R f2 in the formula (1).
 一般式(1)で表される含フッ素化合物は、例えば、以下の工程により、得ることができる。以下の式中、X、R、Rf1、Rf2、nについての説明は前記一般式(1)中におけるX、R、Rf1、Rf2、nについての説明と同様である。 The fluorine-containing compound represented by the general formula (1) can be obtained, for example, by the following steps. In the following formulas, X, description of R 1, R f1, R f2 , n is the same as the description of the X, the R 1, R f1, R f2 , n in the general formula (1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 なお、感光性保護基を有する化合物は、国際公開WO2015/029981に記載の化合物を適用可能である。 As the compound having a photosensitive protecting group, the compound described in International Publication WO2015 / 029981 can be applied.
 露光装置EXは、基板FSに露光光SPを照射することで、基板FSに形成された化合物層を露光し、親液領域及び撥液領域を含む親撥液パターンを形成する。すなわち、基板FSに形成された化合物層は、撥液性を有している。この化合物層に露光光SPが照射されることにより感光性保護基が脱離し、この感光性保護基が脱離した部分(領域)は撥液性が失われて親液性を持つことになる。このように、撥液性を持つ部分と親液性を持つ部分とを形成することにより親撥液パターンを形成する。露光装置EXは、例えばマスクを用いない直描方式の露光装置、いわゆるラスタースキャン方式の露光装置を用いることができる。露光装置EXは、レンズ素子GLを含む光学系を調整することにより、焦点位置を調整可能である。なお、露光装置の構成については後述する。 The exposure apparatus EX exposes the compound layer formed on the substrate FS by irradiating the substrate FS with the exposure light SP, and forms a parent liquid repellent pattern including the parent liquid region and the liquid repellent region. That is, the compound layer formed on the substrate FS has liquid repellency. When this compound layer is irradiated with the exposure light SP, the photosensitive protecting group is eliminated, and the portion (region) from which the photosensitive protecting group is removed loses its liquid repellency and becomes liquid-friendly. .. In this way, the pro-liquid repellent pattern is formed by forming the liquid-repellent portion and the pro-liquid repellent portion. As the exposure apparatus EX, for example, a direct drawing type exposure apparatus that does not use a mask, a so-called raster scan type exposure apparatus, can be used. The exposure apparatus EX can adjust the focal position by adjusting the optical system including the lens element GL. The configuration of the exposure apparatus will be described later.
 露光装置EXから照射する露光光SPは、例えば紫外線等が挙げられる。露光光SPは、200~450nmの範囲に含まれる波長を有する光を含むことが好ましく、320~450nmの範囲に含まれる波長を有する光を含むことがより好ましい。また、露光光SPは、365nmの波長を有する光であることが好ましい。これらの波長を有する光は、上述の感光性保護基を効率よく脱離することができる。光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ナトリウムランプ;窒素等の気体レーザ、有機色素溶液の液体レーザ、無機単結晶に希土類イオンを含有させた固体レーザ等が挙げられる。 Examples of the exposure light SP emitted from the exposure apparatus EX include ultraviolet rays and the like. The exposure light SP preferably contains light having a wavelength included in the range of 200 to 450 nm, and more preferably contains light having a wavelength included in the range of 320 to 450 nm. Further, the exposure light SP is preferably light having a wavelength of 365 nm. Light having these wavelengths can efficiently desorb the above-mentioned photosensitive protecting group. Light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, sodium lamps; gas lasers such as nitrogen, liquid lasers of organic dye solutions, and solid lasers containing rare earth ions in inorganic single crystals. Can be mentioned.
 また、単色光が得られるレーザ以外の光源としては、広帯域の線スペクトル、連続スペクトルをバンドパスフィルター、カットオフフィルター等の光学フィルターを使用して取出した特定波長の光を使用してもよい。一度に大きな面積を照射することができることから、光源としては高圧水銀ランプ又は超高圧水銀ランプを用いてもよい。 Further, as a light source other than the laser that can obtain monochromatic light, light of a specific wavelength obtained by using an optical filter such as a bandpass filter or a cutoff filter for a wide band line spectrum or a continuous spectrum may be used. Since a large area can be irradiated at one time, a high-pressure mercury lamp or an ultra-high-pressure mercury lamp may be used as the light source.
 搬送装置TRは、基板FSを搬送する。搬送装置TRは、送り出しローラRL1と、巻き取りローラRL2と、駆動装置ACとを有する。送り出しローラRL1は、未処理の基板FSが巻かれて形成されており、基板FSの搬送方向の上流側に配置される。巻き取りローラRL2は、送り出しローラRL1から送り出されて処理された基板FSを巻き取るように、基板FSの搬送方向の下流側に配置される。駆動装置ACは、巻き取りローラRL2を回転駆動させる。巻き取りローラRL2が回転して基板FSを巻き取ることにより、基板FSを搬送方向に移動させることができる。なお、駆動装置ACは、巻き取りローラRL2の回転に同期させるように、送り出しローラRL1を回転させてもよい。 The transport device TR transports the substrate FS. The transport device TR includes a feed roller RL1, a take-up roller RL2, and a drive device AC. The delivery roller RL1 is formed by winding an unprocessed substrate FS, and is arranged on the upstream side of the substrate FS in the transport direction. The take-up roller RL2 is arranged on the downstream side in the transport direction of the substrate FS so as to take up the substrate FS that has been sent out from the feed-out roller RL1 and processed. The drive device AC rotationally drives the take-up roller RL2. The substrate FS can be moved in the transport direction by rotating the take-up roller RL2 to wind up the substrate FS. The drive device AC may rotate the delivery roller RL1 so as to synchronize with the rotation of the take-up roller RL2.
 また、移動する基板FSの下方には、1つ又は複数の搬送ローラが配置され、基板FSの移動をガイドしてもよい。例えば、搬送ローラは、塗布装置CT、露光装置EX、検査装置DTのそれぞれの下方に配置されて、塗布装置CTと基板FSとのギャップ、露光装置EXと基板FSとのギャップ、検査装置DTと基板FSとのギャップを規定してもよい。この搬送ローラは、基板FSの法線方向に移動可能に設けられて、上記したギャップを調整可能としてもよい。 Further, one or a plurality of transfer rollers may be arranged below the moving substrate FS to guide the movement of the substrate FS. For example, the transfer roller is arranged below each of the coating device CT, the exposure device EX, and the inspection device DT, and includes a gap between the coating device CT and the substrate FS, a gap between the exposure device EX and the substrate FS, and the inspection device DT. The gap with the substrate FS may be defined. The transfer roller may be provided so as to be movable in the normal direction of the substrate FS so that the above-mentioned gap can be adjusted.
 基板FSは、例えば、樹脂フィルム、若しくは、ステンレス鋼等の金属又は合金からなる箔(フォイル)等が用いられる。樹脂フィルムの材質としては、例えば、ポリオレフィン樹脂、ポリシリコーン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、及び酢酸ビニル樹脂のうち、少なくとも1つ以上を含んだものを用いてもよい。また、基板FSの厚みや剛性(ヤング率)は、例えば、塗布装置CTに対向する移動路を通る際に、基板FSに座屈による折れ目や非可逆的なシワが生じないような範囲、又は/及び露光装置EXに対向する移動路を通る際に、基板FSに座屈による折れ目や非可逆的なシワが生じないような範囲であればよい。基板FSの母材として、厚みが25μm~200μm程度のPET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)等のフィルムは、好適なシート基板の典型として用いられる。 As the substrate FS, for example, a resin film or a foil made of a metal or alloy such as stainless steel is used. Examples of the material of the resin film include polyolefin resin, polysilicone resin, polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, and polystyrene. A resin containing at least one or more of the resin and the vinyl acetate resin may be used. Further, the thickness and rigidity (Young's modulus) of the substrate FS are, for example, a range in which the substrate FS does not have creases or irreversible wrinkles due to buckling when passing through a moving path facing the coating device CT. Alternatively, the substrate FS may be within a range that does not cause creases or irreversible wrinkles due to buckling when passing through the moving path facing the exposure apparatus EX. As a base material of the substrate FS, a film having a thickness of about 25 μm to 200 μm, such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate), is used as a typical suitable sheet substrate.
 基板FSは、各工程において熱を受ける場合があるため、熱膨張係数が顕著に大きくない材質の基板FSを選定することが好ましい。例えば、無機フィラーを樹脂フィルムに混合することによって熱膨張係数を抑えることができる。無機フィラーは、例えば、酸化チタン、酸化亜鉛、アルミナ、又は酸化ケイ素等でもよい。また、基板FSは、フロート法等で製造された厚さ100μm程度の極薄ガラスの単層体であってもよいし、この極薄ガラスに上記の樹脂フィルム、箔等を貼り合わせた積層体であってもよい。 Since the substrate FS may receive heat in each process, it is preferable to select a substrate FS made of a material whose thermal expansion coefficient is not remarkably large. For example, the coefficient of thermal expansion can be suppressed by mixing the inorganic filler with the resin film. The inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, silicon oxide or the like. Further, the substrate FS may be a single layer of ultrathin glass having a thickness of about 100 μm manufactured by a float method or the like, or a laminate obtained by laminating the above resin film, foil or the like on the ultrathin glass. It may be.
 基板FSの可撓性(flexibility)とは、基板FSに自重程度の力を加えてもせん断したり破断したりすることはなく、その基板FSを撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。また、基板FSの材質、大きさ、厚さ、基板FS上に成膜される層構造、温度、湿度等の環境等に応じて、可撓性の程度は変わる。基板FSは、移動路に設けられる送り出しローラRL1、巻き取りローラRL2、各種の搬送ローラ、回転ドラム等の搬送方向転換用の部材に基板FSを正しく巻き付けた場合に、座屈して折り目がついたり、破損(破れや割れが発生)したりせずに、滑らかに搬送できれば、可撓性の範囲といえる。 The flexibility of the substrate FS refers to the property that the substrate FS can be flexed without shearing or breaking even when a force of about its own weight is applied to the substrate FS. Flexibility also includes the property of bending by a force of about its own weight. Further, the degree of flexibility varies depending on the material, size, thickness of the substrate FS, the layer structure formed on the substrate FS, the environment such as temperature and humidity, and the like. The substrate FS may buckle and crease when the substrate FS is correctly wound around a transfer direction changing member such as a delivery roller RL1, a take-up roller RL2, various transfer rollers, and a rotary drum provided in a moving path. If it can be conveyed smoothly without being damaged (tearing or cracking), it can be said that it is in the flexible range.
 検査装置DTは、露光装置EXにより露光された領域(以下、露光領域Wと称する)における感光性保護基の脱離量に関する情報(以下、脱離量関連情報と表記する)を測定点毎に取得する。なお、露光装置EXにより露光されない領域を非露光領域Nと称する。検査装置DTは、例えば基板FSの搬送方向と基板FSの幅方向とに座標を設定し、設定した座標毎に測定点を設定することができる。検査装置DTは、計測結果を制御装置CONTに送信する。検査装置DTとしては、例えば、紫外可視分光光度計、赤外分光光度計、原子間力顕微鏡(AFM:Atomic Force Microscope)、触診式段差計、光学式検査装置、走査型電子顕微鏡、接触角計、質量分析計、X線光電子分光計等の各種測定機器を用いることができる。 The inspection device DT provides information on the amount of desorption of the photosensitive protecting group (hereinafter, referred to as desorption amount-related information) in the region exposed by the exposure device EX (hereinafter referred to as the exposure area W) for each measurement point. get. The region not exposed by the exposure apparatus EX is referred to as a non-exposure region N. The inspection device DT can set coordinates in, for example, the transport direction of the substrate FS and the width direction of the substrate FS, and can set a measurement point for each set coordinate. The inspection device DT transmits the measurement result to the control device CONT. The inspection device DT includes, for example, an ultraviolet visible spectrophotometer, an infrared spectrophotometer, an atomic force microscope (AFM), a palpable step meter, an optical inspection device, a scanning electron microscope, and a contact angle meter. , Mass analyzers, X-ray photoelectron spectrometers and other measuring instruments can be used.
 検査装置DTは、基板FSの表面のうち、露光領域Wの位置に関する情報を制御装置CONT等から取得することにより、この露光領域Wを特定して脱離量関連情報を取得することが可能である。ただし、検査装置DTは、基板FSの表面のうち、非露光領域Nについて計測を行ってもよい。 The inspection device DT can specify the exposure area W and acquire the desorption amount-related information by acquiring the information regarding the position of the exposure area W on the surface of the substrate FS from the control device CONT or the like. is there. However, the inspection device DT may measure the non-exposed region N on the surface of the substrate FS.
 検査装置DTとして紫外線可視分光光度計を用いる場合には、露光領域Wにおける所定の紫外光の吸収度の変化から脱離量関連情報を取得できる。露光領域Wは、感光性保護基が脱離しているので、非露光領域Nと比べて感光性保護基が少ない。従って、感光性保護基に起因する紫外光の吸収度の変化から脱離量関連情報を取得することができる。検査装置DTとして赤外分光光度計を用いる場合には、露光領域Wにおける官能基由来の所定の赤外光の吸収変化から脱離量関連情報を取得できる。露光領域Wは、感光性保護基が脱離しているので、非露光領域Nと比べて感光性保護基が少ない。従って、感光性保護基の官能基で吸収可能な所定の赤外光を照射して、その赤外光の吸収量の変化から脱離量関連情報を取得することができる。 When an ultraviolet visible spectrophotometer is used as the inspection device DT, information related to the amount of desorption can be obtained from a change in the absorption degree of predetermined ultraviolet light in the exposure region W. Since the photosensitive protecting groups are desorbed in the exposed region W, the number of photosensitive protecting groups is smaller than that in the non-exposed region N. Therefore, the desorption amount-related information can be obtained from the change in the degree of absorption of ultraviolet light due to the photosensitive protecting group. When an infrared spectrophotometer is used as the inspection device DT, information related to the amount of desorption can be obtained from the absorption change of a predetermined infrared light derived from a functional group in the exposure region W. Since the photosensitive protecting groups are desorbed in the exposed region W, the number of photosensitive protecting groups is smaller than that in the non-exposed region N. Therefore, it is possible to irradiate a predetermined infrared light that can be absorbed by the functional group of the photosensitive protecting group and obtain the desorption amount-related information from the change in the absorption amount of the infrared light.
 また、検査装置DTとして原子間力顕微鏡を用いる場合には、露光領域Wにおける付着力により脱離量関連情報を取得できる。基板FSに形成される化合物層が露光されて保護基が脱離した場合、付着力が大きくなる。従って、原子間力顕微鏡を用いる場合には、露光領域Wにおけるカンチレバーの付着力の変化から脱離量関連情報を取得することができる。なお、原子間力顕微鏡のカンチレバーは、例えば、露光領域Wに接触する部分がスフィア型(球型、曲面型)とした形態が用いられ、露光領域Wに傷がつくのを防止(抑制)してもよい。 Further, when an atomic force microscope is used as the inspection device DT, information related to the amount of desorption can be acquired by the adhesive force in the exposure region W. When the compound layer formed on the substrate FS is exposed and the protecting group is removed, the adhesive force becomes large. Therefore, when an atomic force microscope is used, information related to the amount of desorption can be obtained from the change in the adhesive force of the cantilever in the exposure region W. The cantilever of the atomic force microscope is used, for example, in a form in which the portion in contact with the exposure region W is sphere-shaped (spherical or curved) to prevent (suppress) the exposure region W from being scratched. You may.
 図2(A)及び(B)は、原子間力顕微鏡により測定結果の一例を示す画像である。なお、図2(A)及び(B)は、それぞれ、得られた4つの画像を繋ぎ合わせて1つの画像として表したものである。図2(A)では、スフィア型のカンチレバーの付着力が2000mJ/cmである場合の測定結果を可視化した画像を示す。図2(B)では、カンチレバーの付着力が500mJ/cmである場合の測定結果を可視化した画像を示す。基板FSに形成された化合物層が露光されて感光性保護基が脱離した場合、露光領域Wの付着力は、非露光領域Nの付着力よりも大きくなる。 2 (A) and 2 (B) are images showing an example of measurement results by an atomic force microscope. Note that FIGS. 2 (A) and 2 (B) are represented as one image by joining the four obtained images, respectively. FIG. 2A shows an image that visualizes the measurement result when the adhesive force of the sphere type cantilever is 2000 mJ / cm 2 . FIG. 2B shows an image that visualizes the measurement result when the adhesive force of the cantilever is 500 mJ / cm 2 . When the compound layer formed on the substrate FS is exposed and the photosensitive protecting group is removed, the adhesive force of the exposed region W becomes larger than the adhesive force of the non-exposed region N.
 その結果、図2(A)及び(B)に示すように、露光領域Wは、非露光領域Nとは異なり、感光性保護基の脱離量に応じた態様で可視化した画像として現れる。図2(A)及び(B)に示す例では、非露光領域Nに対して露光領域Wが白くなって現れており、露光領域W内において白さが異なる部分を含んでいることが確認される。従って、この画像に基づいて画像処理(例えば、輝度、色を閾値との比較処理)を行うことで、露光領域Wと非露光領域Nとを区別しつつ、露光領域Wにおける感光性保護基の脱離量(すなわち脱離量関連情報)を取得することができる。なお、検査装置DTとして原子間力顕微鏡を用いる場合には、露光領域Wの膜厚により露光領域Wにおける脱離量関連情報を取得してもよい。また、原子間力顕微鏡を用いる場合には、露光領域Wにカンチレバーが接触することにより取得した膜厚の変化から露光領域Wにおける脱離量関連情報を取得してもよい。 As a result, as shown in FIGS. 2A and 2B, the exposed region W appears as an image visualized in an manner corresponding to the amount of desorption of the photosensitive protecting group, unlike the non-exposed region N. In the examples shown in FIGS. 2 (A) and 2 (B), the exposed region W appears white with respect to the non-exposed region N, and it is confirmed that the exposed region W includes a portion having a different white color. To. Therefore, by performing image processing (for example, comparison processing of brightness and color with the threshold value) based on this image, the photosensitive protecting group in the exposure region W can be distinguished while distinguishing between the exposure region W and the non-exposure region N. The amount of desorption (that is, information related to the amount of desorption) can be obtained. When an atomic force microscope is used as the inspection device DT, information related to the amount of desorption in the exposure region W may be acquired depending on the film thickness of the exposure region W. Further, when an atomic force microscope is used, information related to the amount of desorption in the exposure region W may be acquired from the change in the film thickness acquired by the contact of the cantilever with the exposure region W.
 検査装置DTとして触診式段差計を用いる場合には、露光領域Wに接触子が接触することにより取得した膜厚の変化から脱離量関連情報を取得する。露光領域Wでは感光性保護基が脱離しているため、わずかに膜厚が減少している。従って、露光領域Wにおける膜厚の変化を検出することで、脱離量関連情報を取得することができる。検査装置DTとして光学式検査装置を用いる場合には、露光領域Wに所定波長の光を照射することにより取得した膜厚の変化から脱離量関連情報を取得する。上記のように露光領域Wではわずかに膜厚が減少しているので、所定波長の光を照射して露光領域Wの膜厚を検出することで、脱離量関連情報を取得することができる。 When a palpation type profilometer is used as the inspection device DT, information related to the amount of desorption is acquired from the change in film thickness acquired when the contactor comes into contact with the exposure area W. Since the photosensitive protecting group is removed in the exposure region W, the film thickness is slightly reduced. Therefore, by detecting the change in the film thickness in the exposure region W, the desorption amount-related information can be acquired. When an optical inspection device is used as the inspection device DT, the desorption amount-related information is acquired from the change in the film thickness acquired by irradiating the exposure region W with light of a predetermined wavelength. Since the film thickness is slightly reduced in the exposure region W as described above, information related to the amount of desorption can be obtained by irradiating light of a predetermined wavelength and detecting the film thickness in the exposure region W. ..
 検査装置DTとして走査型電子顕微鏡(SEM)を用いる場合には、露光領域Wに電子線を照射することにより生じる二次電子又は反射電子の変化から脱離量関連情報を取得する。露光領域Wにおける感光性保護基の脱離量に応じて、電子線の照射により生じる二次電子又は反射電子が異なる。従って、露光領域Wにおける二次電子又は反射電子の変化を検出することで、脱離量関連情報を取得することができる。検査装置DTとして接触角計を用いる場合には、露光領域Wにおける接触角又は表面張力により脱離量関連情報を取得する。露光領域Wにおける感光性保護基の脱離量に応じて、所定の液体(試薬)における接触角(静的接触角、動的接触角、ねれ性)が異なる。従って、露光領域Wにおける接触角の変化を検出することで、脱離量関連情報を取得することができる。 When a scanning electron microscope (SEM) is used as the inspection device DT, information related to the amount of desorption is acquired from changes in secondary electrons or backscattered electrons caused by irradiating the exposed region W with an electron beam. The secondary electrons or backscattered electrons generated by irradiation with an electron beam differ depending on the amount of desorption of the photosensitive protecting group in the exposure region W. Therefore, by detecting changes in secondary electrons or backscattered electrons in the exposure region W, information related to the amount of desorption can be obtained. When a contact angle meter is used as the inspection device DT, information related to the amount of desorption is acquired by the contact angle or surface tension in the exposure region W. The contact angle (static contact angle, dynamic contact angle, burr property) in a predetermined liquid (reagent) differs depending on the amount of desorption of the photosensitive protecting group in the exposure region W. Therefore, the desorption amount-related information can be acquired by detecting the change in the contact angle in the exposure region W.
 検査装置DTとして質量分析計を用いる場合には、露光領域Wにおける感光性保護基の質量検出強度の変化から脱離量関連情報を取得する。露光領域Wでは感光性保護基が脱離しているため、感光性保護基の質量検出強度が変化する。従って、露光領域Wにおける質量検出強度の変化を検出することで、脱離量関連情報を取得することができる。検査装置DTとしてX線光電子分光計を用いる場合には、露光領域Wにおける感光性保護基に由来する所定元素の検出強度の変化から脱離量関連情報を取得する。露光領域Wでは感光性保護基が脱離しているため、感光性保護基に由来する所定元素の検出強度が変化する。従って、露光領域Wにおける所定元素の強度を検出することで、脱離量関連情報を取得することができる。 When a mass spectrometer is used as the inspection device DT, information related to the amount of desorption is acquired from the change in the mass detection intensity of the photosensitive protecting group in the exposure region W. Since the photosensitive protecting group is desorbed in the exposure region W, the mass detection intensity of the photosensitive protecting group changes. Therefore, the desorption amount-related information can be obtained by detecting the change in the mass detection intensity in the exposure region W. When an X-ray photoelectron spectrometer is used as the inspection device DT, information related to the amount of desorption is acquired from a change in the detection intensity of a predetermined element derived from a photosensitive protecting group in the exposure region W. Since the photosensitive protecting group is desorbed in the exposure region W, the detection intensity of a predetermined element derived from the photosensitive protecting group changes. Therefore, the desorption amount-related information can be obtained by detecting the intensity of the predetermined element in the exposure region W.
 制御装置CONTは、塗布装置CT、露光装置EX、搬送装置TR、及び検査装置DTを統括的に制御する。制御装置CONTは、塗布制御部61と、露光制御部62と、搬送制御部63と、判断部64とを有する。塗布制御部61は、塗布装置CTの動作を制御する。露光制御部62は、露光装置EXの動作を制御する。搬送制御部63は、搬送装置TRの動作を制御する。判断部64は、検査装置DTの計測結果に基づいて露光の良否を判断する。判断部64は、露光装置EXにより露光された領域(露光領域W)のうちの所定の領域に含まれる測定点の情報(例えば脱離量関連情報)に基づいて露光の良否を判断する。判断部64は、例えば、化合物層における単位面積あたりの脱離量関連情報に基づいて、露光の良否を判断する。図3(A)及び(B)は、脱離量関連情報に基づいて露光の良否を判断する手順の一例を模式的に示す図である。図3(A)及び(B)では、基板FS上の化合物層の一部が露光され、露光領域Wと非露光領域Nとが形成された場合を示している。 The control device CONT comprehensively controls the coating device CT, the exposure device EX, the transfer device TR, and the inspection device DT. The control device CONT includes a coating control unit 61, an exposure control unit 62, a transfer control unit 63, and a determination unit 64. The coating control unit 61 controls the operation of the coating device CT. The exposure control unit 62 controls the operation of the exposure apparatus EX. The transport control unit 63 controls the operation of the transport device TR. The determination unit 64 determines whether the exposure is good or bad based on the measurement result of the inspection device DT. The determination unit 64 determines whether or not the exposure is good or bad based on the information of the measurement points (for example, the information related to the amount of desorption) included in the predetermined region of the region (exposure region W) exposed by the exposure apparatus EX. The determination unit 64 determines, for example, whether the exposure is good or bad based on the information related to the amount of desorption per unit area in the compound layer. 3A and 3B are diagrams schematically showing an example of a procedure for determining the quality of exposure based on information related to the amount of desorption. 3 (A) and 3 (B) show a case where a part of the compound layer on the substrate FS is exposed to form an exposed region W and a non-exposed region N.
 判断部64は、例えば、図2(A)及び(B)に示す画像に対して画像処理を行う等により、化合物層における露光領域Wと非露光領域Nとを選定する。次に、判断部64は、図3(A)に示すように、検出した露光領域Wを所定の単位領域Waに区画する。本実施形態において、単位領域Waは正方形状であるが、この形態に限定されず、例えば、長方形であってもよいし、三角形等の他の多角形であってもよいし、円形、楕円形、長円形等の他の形状であってもよい。図3(A)に示す例においては、判断部64は、それぞれの面積が等しくなるように単位領域Waを設定しているが、必ずしも全ての単位領域Waの面積を等しくする必要はない。 The determination unit 64 selects the exposed region W and the non-exposed region N in the compound layer, for example, by performing image processing on the images shown in FIGS. 2A and 2B. Next, as shown in FIG. 3A, the determination unit 64 divides the detected exposure region W into a predetermined unit region Wa. In the present embodiment, the unit region Wa has a square shape, but is not limited to this shape, and may be, for example, a rectangle, another polygon such as a triangle, a circle, or an ellipse. , Oval or other shapes may be used. In the example shown in FIG. 3A, the determination unit 64 sets the unit area Wa so that the areas are equal to each other, but it is not always necessary to make the areas of all the unit areas Wa equal.
 各単位領域Waには、検査装置DTにおいて検出された複数の測定点についての測定結果が含まれる。判断部64は、露光領域Wを面積の等しい単位領域Waに区画した後、単位領域Waごとに、複数の測定点における測定結果(例えば、紫外線可視分光光度計であれば吸光度、原子間力顕微鏡であれば付着力)に基づいて、脱離量関連情報を算出する。判断部64は、例えば、複数の測定点における測定結果の平均値に基づいて脱離量関連情報を算出してもよい。図3(B)では、脱離量関連情報として、単位領域Waごとの測定結果の合計を1~5の5段階で表記した例を示している。「1」は計測結果の合計が最も少なく、「5」は計測結果の合計が最も多い。 Each unit area Wa contains measurement results for a plurality of measurement points detected by the inspection device DT. The determination unit 64 divides the exposed region W into unit regions Wa having the same area, and then measures the measurement results at a plurality of measurement points for each unit region Wa (for example, in the case of an ultraviolet visible spectrophotometer, the absorbance and atomic force microscope). If so, the detachment amount related information is calculated based on the adhesive force). The determination unit 64 may calculate the desorption amount-related information based on the average value of the measurement results at a plurality of measurement points, for example. FIG. 3B shows an example in which the total of the measurement results for each unit region Wa is expressed in five stages from 1 to 5 as the desorption amount-related information. "1" has the smallest total measurement result, and "5" has the largest total measurement result.
 判断部64は、算出した脱離量(5段階表記の1~5の数値)と、例えば、検査装置DTの測定機器ごとに設定される閾値とを比較する。判断部64は、比較結果に基づいて、感光性保護基が十分に脱離しているか否か、すなわち、露光の良否を判断する。例えば、検査装置DTとして紫外線可視分光光度計を用いる場合、判断部64は、ある単位領域Waの吸光度が閾値以上であれば、その単位領域Waが露光不良と判断する。また、検査装置DTとして原子間力顕微鏡を用いる場合、判断部64は、ある単位領域Waの付着力が閾値以下であれば、その単位領域Waが露光不良と判断する。 The determination unit 64 compares the calculated desorption amount (numerical value of 1 to 5 in 5-step notation) with, for example, the threshold value set for each measuring device of the inspection device DT. Based on the comparison result, the determination unit 64 determines whether or not the photosensitive protecting group is sufficiently removed, that is, whether or not the exposure is good or bad. For example, when an ultraviolet visible spectrophotometer is used as the inspection device DT, the determination unit 64 determines that the unit region Wa is poorly exposed if the absorbance of the unit region Wa is equal to or greater than the threshold value. When an atomic force microscope is used as the inspection device DT, the determination unit 64 determines that the unit region Wa is poorly exposed if the adhesive force of the unit region Wa is equal to or less than the threshold value.
 次に、判断部64は、単位領域Waごとの評価に基づいて、露光領域Wにおける露光の良否を判断する。例えば、判断部64は、露光不良と判断された単位領域Waの数が露光領域Wにおける所定の割合(例えば、20%、40%など)を超える場合に、その露光領域Wが露光不良であると判断してもよいし、露光不良と判断された単位領域Waが1つでもあれば、その露光領域Wが露光不良であると判断してもよい。なお、露光領域Wの露光の良否を判断する具体的な手法は、上記の手法に限定されない。また、判断部64は、単位領域Waごとに露光の良否を判断し、その結果を、露光領域Wの露光に関する判断結果としてもよい。 Next, the determination unit 64 determines the quality of exposure in the exposure region W based on the evaluation for each unit region Wa. For example, when the number of unit regions Wa determined to be poorly exposed exceeds a predetermined ratio (for example, 20%, 40%, etc.) in the exposed region W, the determination unit 64 determines that the exposed region W is poorly exposed. If there is at least one unit region Wa determined to be poorly exposed, it may be determined that the exposed region W is poorly exposed. The specific method for determining the quality of exposure in the exposure region W is not limited to the above method. Further, the determination unit 64 may determine the quality of the exposure for each unit region Wa, and may use the result as the determination result regarding the exposure of the exposure region W.
 次に、上記のように構成された露光システム100の動作について説明する。図4は、露光システム100による露光方法の一例を示すフローチャートである。露光システム100では、搬送装置TRによって基板FSを搬送方向に搬送させながら、塗布装置CTにより基板FS上に、感光性保護基を有する化合物の層である化合物層を形成するための液体を塗布し、基板FS上に化合物層を形成させる。なお、塗布装置CTによる基板FS上への液体の塗布後に、基板FS上を乾燥させるための乾燥装置、又は加熱するための加熱装置、さらに洗浄するための洗浄装置が配置されてもよい。 Next, the operation of the exposure system 100 configured as described above will be described. FIG. 4 is a flowchart showing an example of an exposure method by the exposure system 100. In the exposure system 100, while the substrate FS is transported in the transport direction by the transport device TR, a liquid for forming a compound layer, which is a layer of a compound having a photosensitive protecting group, is applied onto the substrate FS by the coating device CT. , A compound layer is formed on the substrate FS. After the liquid is applied onto the substrate FS by the coating device CT, a drying device for drying the substrate FS, a heating device for heating, and a cleaning device for further cleaning may be arranged.
 基板FSに形成された化合物層は、搬送装置TRによる基板FSの移動に伴い、搬送方向の下流側の露光装置EXに到達する。図4に示すように、露光装置EXは、化合物層が塗布された基板FSに対して露光光SPを照射し、化合物層の所定の領域を露光する(ステップS01)。ステップS01では、搬送装置TRによって基板FSを搬送方向に搬送させながら、露光装置EXによって基板FSの幅方向に、所定の径のスポット光である露光光SPを走査させる。これにより、基板FSの搬送方向及び幅方向に亘る所定の領域に露光光SPが照射され、露光領域Wが形成される。なお、露光光SPの走査速度、又は露光光SPの1回の走査あたりの基板FSの搬送速度を調整することにより、露光光SPの照射領域の一部が重なるようにしてもよい。 The compound layer formed on the substrate FS reaches the exposure device EX on the downstream side in the transport direction as the substrate FS moves by the transport device TR. As shown in FIG. 4, the exposure apparatus EX irradiates the substrate FS coated with the compound layer with the exposure light SP to expose a predetermined region of the compound layer (step S01). In step S01, while the substrate FS is transported in the transport direction by the transport device TR, the exposure light SP, which is spot light having a predetermined diameter, is scanned by the exposure device EX in the width direction of the substrate FS. As a result, the exposure light SP is irradiated to a predetermined region over the transport direction and the width direction of the substrate FS, and the exposure region W is formed. By adjusting the scanning speed of the exposure light SP or the transport speed of the substrate FS per scanning of the exposure light SP, a part of the irradiation region of the exposure light SP may overlap.
 なお、露光装置EXは、露光光SPを走査させる構成に代えて、所定領域に一括して露光光SPを照射する構成であってもよい。また、基板FSを搬送方向に搬送させながら露光光SPを照射する形態に限定されず、基板FSの移動を停止させた状態で露光装置EXから露光光SPを照射させ、次の露光領域を露光装置EXまで移動させるといった基板FSをステップ移動させる形態であってもよい。 Note that the exposure apparatus EX may have a configuration in which the exposure light SP is collectively irradiated to a predetermined region instead of the configuration in which the exposure light SP is scanned. Further, the present invention is not limited to the form of irradiating the exposure light SP while transporting the substrate FS in the transport direction, and the exposure light SP is irradiated from the exposure apparatus EX with the movement of the substrate FS stopped to expose the next exposure region. It may be in the form of step-moving the substrate FS, such as moving it to the device EX.
 化合物層に形成された露光領域は、搬送装置TRによる基板FSの移動に伴い、搬送方向の下流側の検査装置DTに到達する。検査装置DTは、露光装置EXにより露光された露光領域Wにおける感光性保護基の脱離量関連情報を測定点毎に取得する(ステップS02)。ステップS02では、搬送装置TRによって基板FSを搬送方向に搬送させながら、検査装置DTが露光領域における脱離量関連情報を取得する。検査装置DTは、計測結果を制御装置CONTに送信する。なお、基板FSをステップ移動させて露光領域Wに露光光SPを照射している場合は、基板FSが停止しているタイミングで検査装置DTにより脱離量関連情報の取得を行ってもよい The exposed region formed in the compound layer reaches the inspection device DT on the downstream side in the transport direction as the substrate FS moves by the transport device TR. The inspection device DT acquires information related to the amount of desorption of the photosensitive protecting group in the exposure region W exposed by the exposure device EX for each measurement point (step S02). In step S02, the inspection device DT acquires the desorption amount-related information in the exposure region while transporting the substrate FS in the transport direction by the transport device TR. The inspection device DT transmits the measurement result to the control device CONT. When the substrate FS is step-moved to irradiate the exposure region W with the exposure light SP, the inspection device DT may acquire the desorption amount-related information at the timing when the substrate FS is stopped.
 制御装置CONTは、検査装置DTからの計測結果に基づいて、基板FSに対する露光の良否を判断する(ステップS03)。ステップS03において、制御装置CONTは、まず、露光装置EXにより露光された領域(露光領域W)のうちの所定の領域に含まれる測定点の情報(例えば脱離量関連情報)を算出する。制御装置CONTは、例えば、単位面積あたりの脱離量関連情報を算出する。そして、算出された脱離量関連情報に基づいて、制御装置CONTの判断部64は露光の良否を判断する。制御装置CONTは、判断部64による判断結果について、不図示の表示装置等に出力してもよいし、外部の管理装置等に出力してもよい。ユーザは、判断部64による判断結果を表示装置等で見ることにより、露光領域Wにおける露光の良否を容易に確認できる。 The control device CONT determines whether or not the exposure to the substrate FS is good or bad based on the measurement result from the inspection device DT (step S03). In step S03, the control device CONT first calculates information on measurement points (for example, information related to the amount of desorption) included in a predetermined area of the area (exposure area W) exposed by the exposure device EX. The control device CONT calculates, for example, information related to the amount of desorption per unit area. Then, based on the calculated desorption amount-related information, the determination unit 64 of the control device CONT determines whether the exposure is good or bad. The control device CONT may output the determination result by the determination unit 64 to a display device (not shown) or the like, or may output the determination result to an external management device or the like. The user can easily confirm the quality of the exposure in the exposure region W by viewing the determination result by the determination unit 64 on a display device or the like.
 図5は、露光システム100による露光方法の他の例を示すフローチャートである。図5に示す例において、露光システム100は、上記と同様にステップS01からステップS03の処理を行う。その後、制御装置CONTは、判断部64において露光不良と判断されたか否かを検出する(ステップS04)。 FIG. 5 is a flowchart showing another example of the exposure method by the exposure system 100. In the example shown in FIG. 5, the exposure system 100 performs the processes of steps S01 to S03 in the same manner as described above. After that, the control device CONT detects whether or not the determination unit 64 has determined that the exposure is poor (step S04).
 ステップS04の検出の結果、判断部64において露光不良と判断された場合(ステップS04のYES)、露光制御部62は、算出された脱離量関連情報に基づいて、露光装置EXを制御する(ステップS05)。ステップS05において、露光制御部62は、例えば露光装置EXにおける露光条件を変更する。この場合、露光条件としては、例えば、露光装置EXの露光時における露光光SPの強度を変更すること、露光光SPの焦点位置を変更すること、露光光SPの照射時間を変更すること、及び露光光SPの重ね量を変更すること、の少なくとも1つを含む。露光光の照射時間は、例えば、露光光SPの走査速度を変更することで露光光の照射時間を変更できる。 When the determination unit 64 determines that the exposure is poor as a result of the detection in step S04 (YES in step S04), the exposure control unit 62 controls the exposure apparatus EX based on the calculated desorption amount related information (YES in step S04). Step S05). In step S05, the exposure control unit 62 changes the exposure conditions in, for example, the exposure apparatus EX. In this case, the exposure conditions include, for example, changing the intensity of the exposure light SP at the time of exposure of the exposure apparatus EX, changing the focal position of the exposure light SP, changing the irradiation time of the exposure light SP, and so on. It includes at least one of changing the overlap amount of the exposure light SP. The irradiation time of the exposure light can be changed, for example, by changing the scanning speed of the exposure light SP.
 露光制御部62は、例えば、露光領域Wにおいて露光不良とされた場所及び露光不良の程度(例えば、露光量の不足の程度)に応じて、その場所に対して適切な露光量となるように露光光の強度、焦点位置、照射時間、重ね量等を制御する。その結果、露光装置EXにおける露光が改善され、露光領域Wが露光不良となることを解消することができる。なお、ステップS04の検出の結果、判断部64において露光不良と判断されない場合(ステップS04のNO)、制御装置CONT(露光制御部62)は、露光装置EXの制御を行わなくてもよい。 The exposure control unit 62 sets an appropriate exposure amount for the place according to, for example, a place where the exposure is poor in the exposure area W and the degree of the exposure failure (for example, the degree of insufficient exposure amount). Controls the intensity of exposure light, focal position, irradiation time, amount of overlap, etc. As a result, the exposure in the exposure apparatus EX is improved, and it is possible to eliminate the exposure defect in the exposure region W. If the determination unit 64 does not determine that the exposure is defective as a result of the detection in step S04 (NO in step S04), the control device CONT (exposure control unit 62) does not have to control the exposure device EX.
 図6は、露光システム100による露光方法の他の例を示すフローチャートである。図6に示す例において、露光システム100は、上記同様にステップS01からステップS03の処理を行い、判断部64において露光不良と判断されたか否かを検出する(ステップS04)。ステップS04の検出の結果、判断部64において露光不良と判断された場合(ステップS04のYES)、搬送制御部63は、算出された脱離量関連情報に基づいて、搬送装置TRによる基板FSの搬送速度を制御する(ステップS06)。ステップS06において、搬送制御部63は、例えば、露光装置EXにおける露光光SPの照射時間が長くなるように、基板FSの搬送速度を遅くすることができる。なお、ステップS04の検出の結果、判断部64において露光不良と判断されない場合(ステップS04のNO)、制御装置CONT(搬送制御部63)は、搬送装置TRの制御を行わなくてもよい。 FIG. 6 is a flowchart showing another example of the exposure method by the exposure system 100. In the example shown in FIG. 6, the exposure system 100 performs the processes of steps S01 to S03 in the same manner as described above, and the determination unit 64 detects whether or not the exposure is defective (step S04). When the determination unit 64 determines that the exposure is poor as a result of the detection in step S04 (YES in step S04), the transfer control unit 63 determines that the substrate FS by the transfer device TR is based on the calculated desorption amount related information. The transport speed is controlled (step S06). In step S06, the transfer control unit 63 can reduce the transfer speed of the substrate FS so that the irradiation time of the exposure light SP in the exposure apparatus EX becomes longer, for example. If, as a result of the detection in step S04, the determination unit 64 does not determine that the exposure is defective (NO in step S04), the control device CONT (transport control unit 63) does not have to control the transfer device TR.
 また、図4及び図5に示すフローチャートにおいて、ステップS04で露光不良と判断された場合、制御装置CONTは、露光不良と判断された露光領域Wを特定する情報(例えば、基板FSにおける位置など)を検査装置DTから取得してもよい。露光不良と判断された露光領域Wは、そのまま巻き取りローラRL2で巻き取られるので、後にどの部分が露光不良であるかを特定することが難しい。上記のように露光領域Wを特定する情報を取得しておくことにより、この部分については後の工程を省略するなどの対応が可能となり、処理効率を向上させることができる。 Further, in the flowcharts shown in FIGS. 4 and 5, when it is determined that the exposure is defective in step S04, the control device CONT has information for identifying the exposure region W determined to be the exposure defect (for example, the position on the substrate FS). May be obtained from the inspection device DT. Since the exposure region W determined to be poorly exposed is taken up by the take-up roller RL2 as it is, it is difficult to later identify which part is poorly exposed. By acquiring the information for specifying the exposure region W as described above, it is possible to take measures such as omitting a later step for this portion, and it is possible to improve the processing efficiency.
 本実施形態によれば、露光領域Wの画像等から露光不良の判断が難しい場合でも、検査装置DTの計測結果から判断部64の判断により露光不良を判断するので、ユーザは、判断部64の判断を確認することにより、露光不良を容易に確認することができる。 According to the present embodiment, even when it is difficult to determine the exposure defect from the image of the exposure region W or the like, the exposure defect is determined by the determination unit 64 based on the measurement result of the inspection device DT, so that the user can determine the exposure defect by the determination unit 64. By confirming the judgment, it is possible to easily confirm the exposure defect.
 <第2実施形態>
 図7は、第2実施形態に係る露光システム200の一例を示す図である。図7に示す露光システム200は、塗布装置CT、露光装置EX、及び搬送装置TRを有する点は第1実施形態の露光システム100と同様であるが、複数の検査装置DTが設けられる点で、上記した実施形態と異なっている。なお、上記した実施形態と同一の構成については同一の符号を付してその説明を省略又は簡略化する。図7に示す露光システム200において、複数の検査装置DTは、基板FSの搬送方向において、露光装置EXの下流側に配置される。なお、図7では、検査装置DTが2台配置された構成が示されているが、この形態に限定されず、3台以上配置されてもよい。複数の検査装置DTは、同一の検査装置DTが用いられてもよいし、異なる検査装置DTが用いられてもよい。
<Second Embodiment>
FIG. 7 is a diagram showing an example of the exposure system 200 according to the second embodiment. The exposure system 200 shown in FIG. 7 is similar to the exposure system 100 of the first embodiment in that it has a coating device CT, an exposure device EX, and a transfer device TR, but is provided with a plurality of inspection devices DT. It is different from the above-described embodiment. The same components as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified. In the exposure system 200 shown in FIG. 7, the plurality of inspection devices DT are arranged on the downstream side of the exposure device EX in the transport direction of the substrate FS. Although FIG. 7 shows a configuration in which two inspection devices DT are arranged, the present invention is not limited to this form, and three or more inspection devices DT may be arranged. As the plurality of inspection devices DT, the same inspection device DT may be used, or different inspection device DTs may be used.
 複数の検査装置DTは、例えば基板FSの搬送方向に並んで配置される。この場合、基板FSの搬送方向の上流側に配置される検査装置DTaをメインとして用い、下流側に配置される検査装置DTbをサブ又はバックアップ用としてもよいし、検査する露光領域Wの一部を上流側の検査装置DTaで計測し、露光領域Wの残りの部分を下流側の検査装置DTbで計測してもよい。 The plurality of inspection devices DT are arranged side by side in the transport direction of the substrate FS, for example. In this case, the inspection device DTa arranged on the upstream side in the transport direction of the substrate FS may be used as the main, and the inspection device DTb arranged on the downstream side may be used as a sub or backup, or a part of the exposure area W to be inspected. May be measured by the inspection device DTa on the upstream side, and the remaining portion of the exposure region W may be measured by the inspection device DTb on the downstream side.
 図8は、第2実施形態に係る露光システムの他の例を示図である。図8は、露光システム200Aにおいて基板FSを上方から見た状態を示している。図8に示す露光システム200Aでは、2つの検査装置DTが、基板FSの幅方向(搬送方向と直交する方向)に並んで配置される。一方の検査装置DTaは、基板FSの幅方向の中央から一方の端辺にかけての領域を計測する。他方の検査装置DTbは、基板FSの幅方向の中央から他方の端辺にかけての領域を計測する。検査装置DTa、DTbは、計測結果を制御装置CONTに送信する。制御装置CONTは、検査装置DTa、DTbの計測結果に基づいて脱離量関連情報を算出し、露光の良否を判断する。 FIG. 8 is a diagram showing another example of the exposure system according to the second embodiment. FIG. 8 shows a state in which the substrate FS is viewed from above in the exposure system 200A. In the exposure system 200A shown in FIG. 8, two inspection devices DT are arranged side by side in the width direction (direction orthogonal to the transport direction) of the substrate FS. One inspection device DTa measures a region from the center of the substrate FS in the width direction to one end side. The other inspection device DTb measures the region from the center of the substrate FS in the width direction to the other end edge. The inspection devices DTa and DTb transmit the measurement result to the control device CONT. The control device CONT calculates the desorption amount related information based on the measurement results of the inspection devices DTa and DTb, and determines whether the exposure is good or bad.
 図9は、第2実施形態に係る露光システムの他の例を示す図である。図9は、露光システム200Bにおいて基板FSを上方から見た状態を示している。図9に示す露光システム200Bでは、露光装置EX及び検査装置DTがそれぞれ同数、例えば3台ずつ設けられており、露光装置EXと検査装置DTとが対応して配置されている。なお、図9の露光システム200Bでは、制御装置CONTの記載を省略している。 FIG. 9 is a diagram showing another example of the exposure system according to the second embodiment. FIG. 9 shows a state in which the substrate FS is viewed from above in the exposure system 200B. In the exposure system 200B shown in FIG. 9, the same number of exposure apparatus EX and inspection apparatus DT are provided, for example, three units each, and the exposure apparatus EX and the inspection apparatus DT are arranged correspondingly. In the exposure system 200B of FIG. 9, the description of the control device CONT is omitted.
 例えば、1台の露光装置EXaが基板FSの幅方向の中央に配置される。また、その露光装置EXaに対して基板FSの搬送方向の上流側には、残り2台の露光装置EXb、EXcが基板FSの幅方向の両端にそれぞれ配置される。露光装置EXaは、基板FSの幅方向の中央の領域に対して露光光SPを照射する。露光装置EXb、EXcは、基板FSの幅方向の両端の領域に対して露光光SPをそれぞれ照射する。従って、3台の露光装置EXa~EXcにより、基板FSの幅方向の中央及び両端の各領域について分担して露光領域Wに露光光SPを照射する。 For example, one exposure apparatus EXa is arranged at the center of the substrate FS in the width direction. Further, the remaining two exposure devices EXb and EXc are arranged at both ends of the substrate FS in the width direction on the upstream side of the exposure device EXa in the transport direction of the substrate FS. The exposure apparatus EXa irradiates the exposure light SP to the central region in the width direction of the substrate FS. The exposure devices EXb and EXc irradiate the regions at both ends of the substrate FS in the width direction with the exposure light SP, respectively. Therefore, the exposure light SP is applied to the exposure region W by the three exposure apparatus EXa to EXc, sharing the respective regions of the center and both ends in the width direction of the substrate FS.
 また、3台の露光装置EXa~EXcに対して基板FSの搬送方向の下流側では、1台の検査装置DTaが基板FSの幅方向の中央に配置される。また、その検査装置DTaに対して基板FSの搬送方向の上流側には、残り2台の検査装置DTb、DTcが基板FSの幅方向の両端に配置される。つまり、3台の検査装置DTa~DTcの配置が、3台の露光装置EXa~EXcの配置と同様になっている。検査装置DTaは、露光領域Wのうち基板FSの幅方向の中央の領域に対して計測を行う。検査装置DTb、DTcは、露光領域Wのうち基板FSの幅方向の両端の領域に対してそれぞれ計測を行う。従って、3台の検査装置DTa~DTcにより、基板FSの幅方向の中央及び両端の各領域について分担して露光領域Wの計測を行う。 Further, on the downstream side in the transport direction of the substrate FS with respect to the three exposure devices EXa to EXc, one inspection device DTa is arranged at the center in the width direction of the substrate FS. Further, on the upstream side of the inspection device DTa in the transport direction of the substrate FS, the remaining two inspection devices DTb and DTc are arranged at both ends in the width direction of the substrate FS. That is, the arrangement of the three inspection devices DTa to DTc is the same as the arrangement of the three exposure devices EXa to EXc. The inspection device DTa measures the central region of the exposure region W in the width direction of the substrate FS. The inspection devices DTb and DTc measure each of the exposed regions W at both ends in the width direction of the substrate FS. Therefore, the exposure region W is measured by the three inspection devices DTa to DTc, sharing each region in the center and both ends in the width direction of the substrate FS.
 3台の検査装置DTa~DTcは、それぞれ計測結果を制御装置CONTに送信する。制御装置CONTは、検査装置DTa~DTcの計測結果に基づいて脱離量関連情報を算出し、露光の良否を判断する。この構成により、制御装置CONTは、3台の検査装置DTa~DTcで計測される基板FSの幅方向の中央の領域及び両端の領域の3つの領域のそれぞれについて、別個に露光の良否を判断する。 Each of the three inspection devices DTa to DTc transmits the measurement result to the control device CONT. The control device CONT calculates the desorption amount related information based on the measurement results of the inspection devices DTa to DTc, and determines whether the exposure is good or bad. With this configuration, the control device CONT separately determines the quality of exposure for each of the three areas of the central region in the width direction and the regions at both ends of the substrate FS measured by the three inspection devices DTa to DTc. ..
 制御装置CONTは、3つの領域のうち、いずれかの領域について露光不良であると判断された場合、その領域に配置されている露光装置EXa~EXcについて、脱離量関連情報に基づいて制御を行うことができる。例えば、制御装置CONTは、検査装置DTaの計測結果に基づいて露光装置EXaの制御を行い、検査装置DTbの計測結果に基づいて露光装置EXbの制御を行い、検査装置DTcの計測結果に基づいて露光装置EXcの制御を行ってもよい。また、制御装置CONTは、3台の検査装置DTa~DTcのいずれか1において露光不良と判断された場合、全ての露光装置EXa~EXcの制御を行ってもよいし、露光不良であると判断されていない領域に配置されている露光装置EXa~EXcの制御を行ってもよい。 When the control device CONT is determined to have poor exposure in any of the three areas, the control device CONT controls the exposure devices EXa to EXc arranged in that area based on the desorption amount related information. It can be carried out. For example, the control device CONT controls the exposure device EXa based on the measurement result of the inspection device DTa, controls the exposure device EXb based on the measurement result of the inspection device DTb, and based on the measurement result of the inspection device DTc. The exposure apparatus EXc may be controlled. Further, when the control device CONT is determined to be poorly exposed by any one of the three inspection devices DTa to DTc, all the exposure devices EXa to EXc may be controlled, and it is determined that the exposure is poor. The exposure devices EXa to EXc arranged in the non-exposed area may be controlled.
 本実施形態によれば、複数の検査装置DTにより露光領域Wを分割して計測するので、1台の検査装置DTにおける処理負担を軽減することができる。その結果、基板FSの移動速度を早くすることができ、基板FSの処理効率を向上させることができる。 According to the present embodiment, since the exposure area W is divided and measured by a plurality of inspection devices DT, the processing load on one inspection device DT can be reduced. As a result, the moving speed of the substrate FS can be increased, and the processing efficiency of the substrate FS can be improved.
 <第3実施形態>
 図10は、第3実施形態に係る露光システム300の一例を示す図である。図10に示す露光システム300は、塗布装置CT、搬送装置TR、及び検査装置DTを有する点では上記した実施形態の露光システム100、200と同様であるが、複数の露光装置EXが基板FSの搬送方向について検査装置DTの上流側と下流側とに設けられる点で、上記の実施形態とは異なっている。なお、上記した実施形態と同一の構成については同一の符号を付してその説明を省略又は簡略化する。
<Third Embodiment>
FIG. 10 is a diagram showing an example of the exposure system 300 according to the third embodiment. The exposure system 300 shown in FIG. 10 is similar to the exposure systems 100 and 200 of the above-described embodiment in that it has a coating device CT, a transfer device TR, and an inspection device DT, but a plurality of exposure devices EX are formed on the substrate FS. It differs from the above embodiment in that the transport direction is provided on the upstream side and the downstream side of the inspection device DT. The same components as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified.
 図10に示す露光システム300において、複数の露光装置EXは、第1露光装置EX1と、第2露光装置EX2とを含む。第1露光装置EX1は、検査装置DTに対して基板FSの搬送方向の上流側に配置される。第2露光装置EX2は、検査装置DTに対して基板FSの搬送方向の下流側に配置される。第1露光装置EX1及び第2露光装置EX2は、上述した露光装置EXと同様の構成である。なお、第1露光装置EX1と第2露光装置EX2とは、同一の構成であってもよいし、異なる構成であってもよい。また、制御装置CONTは、第1露光装置EX1を制御する第1露光制御部65と、第2露光装置EX2を制御する第2露光制御部66とを有する。 In the exposure system 300 shown in FIG. 10, the plurality of exposure devices EX include a first exposure device EX1 and a second exposure device EX2. The first exposure apparatus EX1 is arranged on the upstream side of the substrate FS in the transport direction with respect to the inspection apparatus DT. The second exposure apparatus EX2 is arranged on the downstream side of the substrate FS in the transport direction with respect to the inspection apparatus DT. The first exposure apparatus EX1 and the second exposure apparatus EX2 have the same configuration as the above-mentioned exposure apparatus EX. The first exposure apparatus EX1 and the second exposure apparatus EX2 may have the same configuration or different configurations. Further, the control device CONT includes a first exposure control unit 65 that controls the first exposure device EX1 and a second exposure control unit 66 that controls the second exposure device EX2.
 図11は、露光システム300による露光方法の一例を示すフローチャートである。図11に示す例において、露光システム300は、上記の実施形態と同様にステップS01からステップS03の処理を行う。なお、ステップS01の露光処理は、第1露光装置EX1において行う。ステップS03の後、制御装置CONTは、判断部64において露光不良と判断されたか否かを検出する(ステップS04)。 FIG. 11 is a flowchart showing an example of an exposure method by the exposure system 300. In the example shown in FIG. 11, the exposure system 300 performs the processes of steps S01 to S03 in the same manner as in the above embodiment. The exposure process in step S01 is performed by the first exposure apparatus EX1. After step S03, the control device CONT detects whether or not the determination unit 64 has determined that the exposure is poor (step S04).
 ステップS04において、判断部64が露光不良と判断した場合(ステップS04のYES)、制御装置CONTは、判断部64が露光不良と判断した露光領域Wに対して、第2露光装置EX2により再度の露光を行わせる(ステップS07)。ステップS07において、第2露光制御部66は、算出された脱離量関連情報に基づいて、第2露光装置EX2を制御する。第2露光制御部66は、算出された脱離量関連情報に基づいて、例えば、第2露光装置EX2の露光時における露光光SPの強度、露光光SPの焦点位置、露光光SPの照射時間、及び露光光SPの重ね量を調整する。露光不良と判断された露光領域Wに対して第2露光装置EX2により露光することで、露光領域Wの露光不良の全部又は一部を解消することができる。 When the determination unit 64 determines in step S04 that the exposure is poor (YES in step S04), the control device CONT reappears with the exposure region W determined by the determination unit 64 to be poor exposure by the second exposure device EX2. The exposure is performed (step S07). In step S07, the second exposure control unit 66 controls the second exposure device EX2 based on the calculated desorption amount-related information. The second exposure control unit 66, based on the calculated desorption amount related information, for example, the intensity of the exposure light SP at the time of exposure of the second exposure apparatus EX2, the focal position of the exposure light SP, and the irradiation time of the exposure light SP. , And the amount of overlap of the exposure light SP is adjusted. By exposing the exposure region W determined to be poorly exposed by the second exposure apparatus EX2, all or part of the poor exposure in the exposure region W can be eliminated.
 なお、制御装置CONTは、判断部64において露光不良と判断された場合(ステップS04のYES)、第2露光装置EX2により露光を行わせることに加えて、算出された脱離量関連情報に基づいて、第1露光制御部65による第1露光装置EX1の制御を行ってもよいし、搬送装置TRの制御を行ってもよい。また、制御装置CONTは、露光領域Wのうち露光不良の部分(例えば、図3に示す単位領域Wa)に対して、第2露光装置EX2により露光光SPを照射するような制御を行ってもよい。その結果、第2露光装置EX2による再度の露光が不要な部分への露光光SPの照射を回避できる。 When the determination unit 64 determines that the exposure is poor (YES in step S04), the control device CONT is based on the calculated desorption amount related information in addition to causing the exposure by the second exposure device EX2. Therefore, the first exposure control unit 65 may control the first exposure device EX1 or the transfer device TR. Further, the control device CONT may control the exposure light SP by the second exposure device EX2 on the poorly exposed portion (for example, the unit area Wa shown in FIG. 3) in the exposure area W. Good. As a result, it is possible to avoid irradiation of the exposure light SP to the portion that does not need to be re-exposed by the second exposure apparatus EX2.
 本実施形態によれば、検査装置DTにより露光領域Wが露光不良と判断された場合に、第2露光装置EX2により露光不良の露光領域Wを再度露光するので、露光領域Wが露光不良のまま後段の処理に移動することを防止できる。その結果、基板FSにおける歩留まりの低下を抑制できる。なお、本実施形態において、第2露光装置EX2の下流側に検査装置DTを配置し、第2露光装置EX2による露光後において、判断部64により露光不良が生じているか否か(露光不良が残っているか否か)を判断してもよい。 According to the present embodiment, when the inspection apparatus DT determines that the exposure region W is poorly exposed, the second exposure apparatus EX2 re-exposes the poorly exposed exposure region W, so that the exposed region W remains poorly exposed. It is possible to prevent moving to the subsequent processing. As a result, it is possible to suppress a decrease in the yield in the substrate FS. In the present embodiment, the inspection device DT is arranged on the downstream side of the second exposure device EX2, and whether or not an exposure defect has occurred by the determination unit 64 after the exposure by the second exposure device EX2 (exposure defect remains). Whether or not it is) may be determined.
 <第4実施形態>
 図12は、第4実施形態に係る露光システム400の一例を示す図である。図12に示す露光システム400は、塗布装置CT、露光装置EX、搬送装置TR、及び検査装置DTに加えて、めっき装置MKを備える点で、上記した第1~第3実施形態とは異なっている。図12に示す露光システム400において、めっき装置MKは、基板FSの搬送方向において検査装置DTの下流側に配置される。めっき装置MKは、露光装置EXにより親撥液パターンが形成された基板FSに対してめっき処理(例えば、無電解めっき処理)を行う。
<Fourth Embodiment>
FIG. 12 is a diagram showing an example of the exposure system 400 according to the fourth embodiment. The exposure system 400 shown in FIG. 12 is different from the first to third embodiments described above in that it includes a plating device MK in addition to the coating device CT, the exposure device EX, the transport device TR, and the inspection device DT. There is. In the exposure system 400 shown in FIG. 12, the plating apparatus MK is arranged on the downstream side of the inspection apparatus DT in the transport direction of the substrate FS. The plating apparatus MK performs a plating treatment (for example, electroless plating treatment) on the substrate FS on which the water-repellent pattern is formed by the exposure apparatus EX.
 めっき装置MKは、基板FSに対してめっき触媒浴を行うためのめっき触媒槽MKaと、基板FSに対してめっきを行うためのめっき槽MKbと、複数の搬送ローラMKcとを有する。めっき触媒槽MKaは、基板FSの搬送方向の上流側に配置され、基板FSに形成された親撥液パターンの親液部分にめっき触媒を付与する。すなわち、基板FSの露光領域Wでは感光性保護基が脱離して親液性を有しており、非露光領域Nでは感光性保護基が脱離していないので親液性を有しているので、露光領域Wにめっき触媒液が付着する。めっき触媒槽MKaに貯留されるめっき触媒液は、例えば、無電解めっき処理に必要な任意のもの選択されて貯留されている。 The plating apparatus MK has a plating catalyst tank MKa for performing a plating catalyst bath on the substrate FS, a plating tank MKb for performing plating on the substrate FS, and a plurality of transfer rollers MKc. The plating catalyst tank MKa is arranged on the upstream side in the transport direction of the substrate FS, and applies the plating catalyst to the parent liquid portion of the parent liquid repellent pattern formed on the substrate FS. That is, in the exposed region W of the substrate FS, the photosensitive protecting group is desorbed and has positivity, and in the non-exposed region N, the photosensitive protecting group is not desorbed and thus has positivity. , The plating catalyst solution adheres to the exposed region W. As the plating catalyst solution stored in the plating catalyst tank MKa, for example, any one required for electroless plating is selected and stored.
 めっき槽MKbは、基板FSの搬送方向の下流側に配置され、めっき触媒が付与された基板FSの親液部分に無電解めっきを行う。すなわち、基板FSの露光領域Wにめっき触媒が付与されているので、この露光領域Wめっき処理が施される。その結果、基板FSには、めっき処理による配線パターンが形成される。基板FSは、巻き取りローラRL2が基板FSを巻き取ることにより、めっき装置MKにおいて移動する。複数の搬送ローラMKcは、めっき装置MKにおいて基板FSを案内する。なお、複数の搬送ローラMKcのうち、少なくとも1つが駆動ローラであり、残りが従動ローラであってもよい。搬送ローラMKcのうち1つを駆動ローラとすることにより、めっき装置MK内において基板FSの搬送速度を変更可能である。 The plating tank MKb is arranged on the downstream side in the transport direction of the substrate FS, and electroless plating is performed on the parent liquid portion of the substrate FS to which the plating catalyst is applied. That is, since the plating catalyst is applied to the exposed region W of the substrate FS, this exposed region W plating process is performed. As a result, a wiring pattern is formed on the substrate FS by plating. The substrate FS moves in the plating apparatus MK when the take-up roller RL2 winds up the substrate FS. The plurality of transfer rollers MKc guide the substrate FS in the plating apparatus MK. Of the plurality of transport rollers MKc, at least one may be a drive roller and the rest may be driven rollers. By using one of the transfer rollers MKc as a drive roller, the transfer speed of the substrate FS can be changed in the plating apparatus MK.
 また、複数の搬送ローラMKcのうち、めっき触媒槽MKa内に配置される搬送ローラMKc、又はめっき槽MKb内に配置される搬送ローラMKcは、少なくとも1つが基板FSの搬送方向に移動可能であってもよい。この場合、搬送ローラMKcがめっき触媒槽MKa内又はめっき槽MKb内において基板FSの搬送方向に移動することで、めっき触媒槽MKaにおける基板FSの搬送距離、又はめっき槽MKbにおける基板FSの搬送距離の長さを変更可能である。 Further, of the plurality of transfer rollers MKc, at least one of the transfer rollers MKc arranged in the plating catalyst tank MKa or the transfer rollers MKc arranged in the plating tank MKb is movable in the transfer direction of the substrate FS. You may. In this case, the transfer roller MKc moves in the transfer direction of the substrate FS in the plating catalyst tank MKa or the plating tank MKb, so that the transfer distance of the substrate FS in the plating catalyst tank MKa or the transfer distance of the substrate FS in the plating tank MKb The length of is changeable.
 制御装置CONTは、めっき装置MKを制御するめっき制御部67を有する。複数の搬送ローラMKcいずれかが駆動ローラである場合、めっき制御部67は、搬送ローラMKc(駆動ローラ)の回転速度、つまりめっき装置MK内における基板FSの搬送速度を制御可能である。基板FSの搬送速度の変更は、めっき触媒槽MKaにおける基板FSの浸漬時間、又はめっき槽MKb内における基板FSの浸漬時間を変更させる。また、めっき触媒槽MKa内又はめっき槽MKb内の搬送ローラMKcが基板FSの搬送方向に移動可能である場合、めっき制御部67は、移動可能な搬送ローラMKcの位置、つまり、めっき触媒槽MKa内又はめっき槽MKb内における基板FSの搬送距離を制御可能である。めっき触媒槽MKa内又はめっき槽MKb内における基板FSの搬送距離の変更は、めっき触媒槽MKaにおける基板FSの浸漬時間、又はめっき槽MKb内における基板FSの浸漬時間を変更させる。 The control device CONT has a plating control unit 67 that controls the plating device MK. When any of the plurality of transfer rollers MKc is a drive roller, the plating control unit 67 can control the rotation speed of the transfer roller MKc (drive roller), that is, the transfer speed of the substrate FS in the plating apparatus MK. The change in the transfer speed of the substrate FS changes the immersion time of the substrate FS in the plating catalyst tank MKa or the immersion time of the substrate FS in the plating tank MKb. Further, when the transfer roller MKc in the plating catalyst tank MKa or the plating tank MKb is movable in the transfer direction of the substrate FS, the plating control unit 67 moves the position of the movable transfer roller MKc, that is, the plating catalyst tank MKa. It is possible to control the transport distance of the substrate FS inside or in the plating tank MKb. Changing the transport distance of the substrate FS in the plating catalyst tank MKa or the plating tank MKb changes the immersion time of the substrate FS in the plating catalyst tank MKa or the immersion time of the substrate FS in the plating tank MKb.
 図13は、本実施形態に係る露光システム400による露光方法の一例を示すフローチャートである。図13に示す例において、露光システム400は、上記の実施形態と同様にステップS01からステップS03の処理を行う。その後、制御装置CONTは、判断部64において露光領域Wが露光不良と判断されたか否かを検出する(ステップS04)。ステップS04の検出の結果、判断部64において露光不良と判断された場合(ステップS04のYES)、搬送制御部63は、算出された脱離量関連情報に基づいて、めっき装置MKを制御する(ステップS08)。ステップS08において、めっき制御部67は、例えば、搬送ローラMKcの回転速度、位置を調整することにより、めっき装置MK内における基板FSの搬送速度、基板FSの搬送距離を制御し、例えば、めっき触媒槽MKa内又はめっき槽MKb内における基板FSの浸漬時間を長くする。 FIG. 13 is a flowchart showing an example of an exposure method by the exposure system 400 according to the present embodiment. In the example shown in FIG. 13, the exposure system 400 performs the processes of steps S01 to S03 in the same manner as in the above embodiment. After that, the control device CONT detects whether or not the exposure region W is determined to be poor exposure by the determination unit 64 (step S04). When the determination unit 64 determines that the exposure is poor as a result of the detection in step S04 (YES in step S04), the transport control unit 63 controls the plating apparatus MK based on the calculated desorption amount related information (YES in step S04). Step S08). In step S08, the plating control unit 67 controls, for example, the transfer speed of the substrate FS and the transfer distance of the substrate FS in the plating apparatus MK by adjusting the rotation speed and the position of the transfer roller MKc, for example, the plating catalyst. The immersion time of the substrate FS in the tank MKa or the plating tank MKb is lengthened.
 その結果、露光不良と判断されている露光領域Wは、時間あたりのめっき触媒の付与率が低くなっているが、めっき触媒槽MKaにおける基板FSの浸漬時間を長くすることで、露光領域Wに対するめっき触媒の付与を補うことが可能となる。又は、露光領域Wに対して十分にめっき触媒が付与されていないときでも、めっき槽MKbにおける基板FSの浸漬時間を長くなることで、露光領域Wに対して十分な(配線パターンとして十分な)めっきを形成させることが可能となる。 As a result, in the exposure region W judged to be poorly exposed, the rate of applying the plating catalyst per hour is low, but by lengthening the immersion time of the substrate FS in the plating catalyst tank MKa, the exposure region W is exposed to light. It is possible to supplement the application of the plating catalyst. Alternatively, even when the plating catalyst is not sufficiently applied to the exposure region W, the immersion time of the substrate FS in the plating tank MKb is increased to be sufficient for the exposure region W (sufficient as a wiring pattern). It is possible to form a plating.
 図14(A)及び(B)は、露光システム400において、めっき装置MK内の基板FSの搬送距離を変更する場合の一例を示す図である。図14(A)に示す例では、基板FSがめっき触媒槽MKa又はめっき槽MKbに浸漬された状態において、搬送経路の長さが最短となるように搬送ローラMKcが配置される。この状態から、図14(B)に示すように、めっき触媒槽MKa又はめっき槽MKb内に配置された複数の搬送ローラMKcのうちの搬送ローラMKc1を上方に移動させることにより、基板FSは、めっき触媒槽MKa内又はめっき槽MKb内において上下方向に蛇行した状態で移動する。すなわち、基板FSは、めっき触媒槽MKa又はめっき槽MKbにおいて搬送経路が長くなり、めっき触媒槽MKa又はめっき槽MKbにおける浸漬時間を長くすることができる。 14 (A) and 14 (B) are diagrams showing an example of changing the transport distance of the substrate FS in the plating apparatus MK in the exposure system 400. In the example shown in FIG. 14A, the transfer roller MKc is arranged so that the length of the transfer path is the shortest when the substrate FS is immersed in the plating catalyst tank MKa or the plating tank MKb. From this state, as shown in FIG. 14B, the substrate FS is moved upward by moving the transfer roller MKc1 out of the plurality of transfer rollers MKc arranged in the plating catalyst tank MKa or the plating tank MKb. It moves in a state of meandering in the vertical direction in the plating catalyst tank MKa or the plating tank MKb. That is, the substrate FS has a longer transport path in the plating catalyst tank MKa or the plating tank MKb, and the immersion time in the plating catalyst tank MKa or the plating tank MKb can be lengthened.
 本実施形態によれば、検査装置DTにより露光領域Wが露光不良と判断された場合に、めっき装置MKを制御してめっき触媒槽MKa又はめっき槽MKbにおける基板FSの浸漬時間を調整(長く)するので、露光不良と判断された露光領域Wに対して適切なめっき処理を施すことができる。その結果、露光不良と判断された露光領域Wに対して所望の配線パターンを形成させることで、基板FSにおける歩留まりの低下を抑制できる。 According to the present embodiment, when the exposure region W is determined to be poorly exposed by the inspection device DT, the plating device MK is controlled to adjust the immersion time of the substrate FS in the plating catalyst tank MKa or the plating tank MKb (longer). Therefore, an appropriate plating process can be applied to the exposed region W determined to be poorly exposed. As a result, it is possible to suppress a decrease in the yield on the substrate FS by forming a desired wiring pattern in the exposure region W determined to be poorly exposed.
 <第5実施形態>
 図15は、第5実施形態に係る露光システム500の一例を示す図である。図15に示す露光システム500は、露光装置EX3と、検査装置DTとを備える。なお、以下の説明において、特に断わりのない限り、重力方向をZ方向とするXYZ直交座標系を設定し、図に示す矢印に従って、X方向、Y方向、及びZ方向を説明する。矢印の指す方向を+方向(例えば+X方向)とし、反対の方向を-方向(例えば-X方向)として説明する。
<Fifth Embodiment>
FIG. 15 is a diagram showing an example of the exposure system 500 according to the fifth embodiment. The exposure system 500 shown in FIG. 15 includes an exposure device EX3 and an inspection device DT. In the following description, unless otherwise specified, an XYZ Cartesian coordinate system with the gravity direction as the Z direction is set, and the X direction, the Y direction, and the Z direction will be described according to the arrows shown in the figure. The direction pointed by the arrow will be described as the + direction (for example, the + X direction), and the opposite direction will be described as the − direction (for example, the −X direction).
 露光システム500は、例えば、電子デバイスとしてのフレキシブル・ディスプレイ、フレキシブル・センサ等を製造する製造ラインが構築された製造システムの一部である。以下、電子デバイスとしてフレキシブル・ディスプレイを前提として説明する。 The exposure system 500 is, for example, a part of a manufacturing system in which a manufacturing line for manufacturing flexible displays, flexible sensors, etc. as electronic devices is constructed. Hereinafter, a flexible display will be described as an electronic device.
 露光システム500は、可撓性のシート状の基板(シート基板)FSをロール状に巻いた送り出しローラ(図1の送り出しローラRL1参照)から基板FSが送り出され、送り出された基板FSに対して各種処理を連続的に施した後、各種処理後の基板FSを巻き取りローラ(図1の巻き取りローラRL2参照)で巻き取る、いわゆる、ロール・ツー・ロール(Roll  To  Roll)方式の構造を有する。基板FSは、基板FSの搬送方向が長手方向(長尺)となり、幅方向が短手方向(短尺)となる帯状の形状を有する。送り出しローラから送られた基板FSは、順次、プロセス装置PR1、露光装置(描画装置、ビーム走査装置)EX4、及び、プロセス装置PR2等で各種処理が施され、巻き取りロールで巻き取られる。 In the exposure system 500, the substrate FS is fed from a feeding roller (see the feeding roller RL1 in FIG. 1) in which a flexible sheet-shaped substrate (sheet substrate) FS is wound in a roll shape, and the substrate FS is sent out to the fed substrate FS. After performing various treatments continuously, the substrate FS after various treatments is wound up by a take-up roller (see the take-up roller RL2 in FIG. 1), that is, a so-called roll-to-roll (Roll To Roll) structure. Have. The substrate FS has a strip-like shape in which the transport direction of the substrate FS is the longitudinal direction (long) and the width direction is the lateral direction (short). The substrate FS sent from the delivery roller is sequentially subjected to various processes by the process device PR1, the exposure device (drawing device, beam scanning device) EX4, the process device PR2, and the like, and is wound up by a take-up roll.
 なお、X方向は、水平面内において、プロセス装置PR1から露光装置EX3を経てプロセス装置PR2に向かう方向(搬送方向)である。Y方向は、水平面内においてX方向に直交する方向であり、基板FSの幅方向(短尺方向)である。Z方向は、X方向とY方向とに直交する方向(上方向)であり、重力が働く方向と平行である。 The X direction is a direction (transportation direction) from the process device PR1 to the process device PR2 via the exposure device EX3 in the horizontal plane. The Y direction is a direction orthogonal to the X direction in the horizontal plane, and is a width direction (short direction) of the substrate FS. The Z direction is a direction (upward) orthogonal to the X direction and the Y direction, and is parallel to the direction in which gravity acts.
 プロセス装置PR1は、露光装置EXで露光処理される基板FSに対して前工程の処理を行う。プロセス装置PR1は、前工程の処理を行った基板FSを露光装置EXへ向けて送る。この前工程の処理により、露光装置EXへ送られる基板FSは、その表面にレジスト層Rが形成された基板となっている。 The process device PR1 performs the pre-process processing on the substrate FS to be exposed by the exposure device EX. The process apparatus PR1 sends the substrate FS processed in the previous process to the exposure apparatus EX. The substrate FS sent to the exposure apparatus EX by the process of this previous step is a substrate on which the resist layer R is formed on the surface thereof.
 本実施形態においては、ビーム走査装置としての露光装置EX3は、マスクを用いない直描方式の露光装置、いわゆるラスタースキャン方式の露光装置である。露光装置EX3は、プロセス装置PR1から供給された基板FSの被照射面(露光領域W)に対して、ディスプレイ用の電子デバイス、回路又は配線等のための所定のパターンに応じた光パターンを照射する。露光装置EX3は、基板FSを+X方向に搬送しながら、露光用のビームLBの露光光SPを、基板FSの被照射面上で所定の走査方向(Y方向)に1次元に走査しつつ、露光光SPの強度をパターンデータ(描画データ)に応じて高速に変調(オン/オフ)する。この構成により、基板FSの被照射面に電子デバイス、回路又は配線等の所定のパターンに応じた光パターンが描画露光される。 In the present embodiment, the exposure device EX3 as a beam scanning device is a direct drawing type exposure device that does not use a mask, that is, a so-called raster scan type exposure device. The exposure apparatus EX3 irradiates the irradiated surface (exposure region W) of the substrate FS supplied from the process apparatus PR1 with an optical pattern corresponding to a predetermined pattern for an electronic device for a display, a circuit, wiring, or the like. To do. The exposure apparatus EX3 scans the exposure light SP of the beam LB for exposure one-dimensionally in a predetermined scanning direction (Y direction) on the irradiated surface of the substrate FS while transporting the substrate FS in the + X direction. The intensity of the exposure light SP is modulated (on / off) at high speed according to the pattern data (drawing data). With this configuration, an optical pattern corresponding to a predetermined pattern such as an electronic device, a circuit, or a wiring is drawn and exposed on the irradiated surface of the substrate FS.
 つまり、基板FSの搬送と、露光光SPの走査とで、露光光SPが基板FSの被照射面上で相対的に2次元走査されて、基板FSに所定のパターンが描画露光される。また、基板FSは、搬送方向(+X方向)に沿って搬送されているので、露光装置EXによってパターンが露光される露光領域Wは、基板FSの長尺方向に沿って所定の間隔をあけて複数設けられることになる。この露光領域Wに電子デバイスが形成されるので、露光領域Wは、電子デバイス形成領域でもある。なお、電子デバイスは、複数のパターン層(パターンが形成された層)が重ね合わされることで構成されるので、露光装置EX3によって各層に対応したパターンが露光されるようにしてもよい。 That is, by transporting the substrate FS and scanning the exposure light SP, the exposure light SP is relatively two-dimensionally scanned on the irradiated surface of the substrate FS, and a predetermined pattern is drawn and exposed on the substrate FS. Further, since the substrate FS is conveyed along the conveying direction (+ X direction), the exposure regions W where the pattern is exposed by the exposure apparatus EX are spaced apart from each other along the long direction of the substrate FS. Multiple will be provided. Since the electronic device is formed in the exposure region W, the exposure region W is also an electronic device formation region. Since the electronic device is configured by superimposing a plurality of pattern layers (layers on which patterns are formed), the pattern corresponding to each layer may be exposed by the exposure apparatus EX3.
 プロセス装置PR2は、露光装置EX3で露光処理された基板FSに対しての後工程の処理(例えばめっき処理や現像・エッチング処理等)を行う。この後工程の処理により、基板FS上に電子デバイスのパターン層(例えば、配線パターン層)が形成される。 The process apparatus PR2 performs post-process processing (for example, plating processing, development / etching processing, etc.) on the substrate FS exposed by the exposure apparatus EX3. By the processing of this subsequent step, a pattern layer (for example, a wiring pattern layer) of an electronic device is formed on the substrate FS.
 電子デバイスは、複数のパターン層が重ね合わされることで構成されるので、露光システム500を含むデバイス製造システムの少なくとも各処理を経て、1つのパターン層が生成される。従って、電子デバイスを生成するために、図15に示すような露光システム500を含むデバイス製造システムの各処理を、例えば2回は経なければならない。そのため、例えば、基板FSが巻き取られた巻き取りローラを送り出しローラとして、別のデバイス製造システムに装着することで、パターン層を積層することができる。そのような動作を繰り返して、電子デバイスが形成される。処理後の基板FSは、複数の電子デバイス形成領域が所定の間隔をあけて基板FSの長尺方向に沿って連なった状態となる。つまり、基板FSは、多面取り用の基板となっている。 Since the electronic device is configured by superimposing a plurality of pattern layers, one pattern layer is generated through at least each process of the device manufacturing system including the exposure system 500. Therefore, in order to generate an electronic device, each process of the device manufacturing system including the exposure system 500 as shown in FIG. 15 must be performed, for example, twice. Therefore, for example, the pattern layer can be laminated by mounting the take-up roller on which the substrate FS is taken up as a delivery roller on another device manufacturing system. By repeating such an operation, an electronic device is formed. The processed substrate FS is in a state in which a plurality of electronic device forming regions are connected along the elongated direction of the substrate FS at predetermined intervals. That is, the substrate FS is a substrate for multi-chamfering.
 露光装置EX3は、温調チャンバーECV内に格納されている。この温調チャンバーECVは、内部を所定の温度に保つことで、内部において搬送される基板FSの温度による形状変化を抑制する。温調チャンバーECVは、パッシブ又はアクティブな防振ユニットSU1、SU2を介して製造工場等の設置面Eに配置される。防振ユニットSU1、SU2は、設置面Eからの振動を低減する。この設置面Eは、工場の床面自体であってもよいし、水平面を出すために床面上に設置される設置土台上の面であってもよい。露光装置EX3は、基板搬送機構12と、光源装置14と、ビーム切換部材16と、露光ヘッド18と、制御装置20と、複数のアライメント顕微鏡AMm(AM1~AM4)とを備えている。 The exposure apparatus EX3 is stored in the temperature control chamber ECV. By keeping the inside of the temperature control chamber ECV at a predetermined temperature, the shape change of the substrate FS conveyed inside is suppressed due to the temperature. The temperature control chamber ECV is arranged on the installation surface E of a manufacturing factory or the like via passive or active vibration isolation units SU1 and SU2. The vibration isolation units SU1 and SU2 reduce vibration from the installation surface E. The installation surface E may be the floor surface of the factory itself, or may be a surface on the installation base installed on the floor surface in order to create a horizontal surface. The exposure device EX3 includes a substrate transfer mechanism 12, a light source device 14, a beam switching member 16, an exposure head 18, a control device 20, and a plurality of alignment microscopes AMm (AM1 to AM4).
 基板搬送機構12は、プロセス装置PR1から搬送される基板FSを、露光装置EX3内で所定の速度で搬送した後、プロセス装置PR2に所定の速度で送り出す。この基板搬送機構12によって、露光装置EX3内で搬送される基板FSの移動路が規定される。基板搬送機構12は、基板FSの搬送方向の上流側(-X方向側)から順に、エッジポジションコントローラEPC、駆動ローラR1、テンション調整ローラRT1、回転ドラム(円筒ドラム)DR、テンション調整ローラRT2、駆動ローラR2、及び、駆動ローラR3を有している。 The substrate transfer mechanism 12 conveys the substrate FS conveyed from the process apparatus PR1 at a predetermined speed in the exposure apparatus EX3, and then sends the substrate FS to the process apparatus PR2 at a predetermined speed. The substrate transport mechanism 12 defines a moving path of the substrate FS transported in the exposure apparatus EX3. The substrate transport mechanism 12 includes an edge position controller EPC, a drive roller R1, a tension adjusting roller RT1, a rotary drum (cylindrical drum) DR, and a tension adjusting roller RT2 in order from the upstream side (−X direction side) of the substrate FS in the transport direction. It has a drive roller R2 and a drive roller R3.
 基板搬送機構12は、プロセス装置PR1から搬送される基板FSを、露光装置EX3内で所定の速度で搬送した後、プロセス装置PR2に所定の速度で送り出す。この基板搬送機構12によって、露光装置EX3内で搬送される基板FSの移動路が規定される。基板搬送機構12は、基板FSの搬送方向の上流側(-X方向側)から順に、エッジポジションコントローラEPC、駆動ローラR1、テンション調整ローラRT1、回転ドラムDR、テンション調整ローラRT2、駆動ローラR2、及び、駆動ローラR3を有している。 The substrate transfer mechanism 12 conveys the substrate FS conveyed from the process apparatus PR1 at a predetermined speed in the exposure apparatus EX3, and then sends the substrate FS to the process apparatus PR2 at a predetermined speed. The substrate transport mechanism 12 defines a moving path of the substrate FS transported in the exposure apparatus EX3. The substrate transfer mechanism 12 includes an edge position controller EPC, a drive roller R1, a tension adjustment roller RT1, a rotary drum DR, a tension adjustment roller RT2, and a drive roller R2 in order from the upstream side (−X direction side) of the substrate FS in the transfer direction. It also has a drive roller R3.
 光源装置14は、光源(パルス光源)を有し、パルス状のビーム(パルス光、レーザ)LBを射出するものである。このビームLBは、例えば、370nm以下の波長帯域にピーク波長を有する紫外線光であり、ビームLBの発振周波数(発光周波数)をFsとする。光源装置14が射出したビームLBは、ビーム切換部材16を介して露光ヘッド18に入射する。光源装置14は、制御装置20の制御に従って、発振周波数FsでビームLBを発光して射出する。この光源装置14は、例えば、赤外波長域のパルス光を発生する半導体レーザ素子、ファイバー増幅器、増幅された赤外波長域のパルス光を紫外波長域のパルス光に変換する波長変換素子(高調波発生素子)等で構成され、発振周波数Fsが数百MHzで、1パルス光の発光時間がピコ秒程度の高輝度な紫外線のパルス光が得られるファイバーアンプレーザ光源を用いるものとする。 The light source device 14 has a light source (pulse light source) and emits a pulsed beam (pulse light, laser) LB. The beam LB is, for example, ultraviolet light having a peak wavelength in a wavelength band of 370 nm or less, and the oscillation frequency (emission frequency) of the beam LB is Fs. The beam LB emitted by the light source device 14 is incident on the exposure head 18 via the beam switching member 16. The light source device 14 emits and emits a beam LB at an oscillation frequency Fs according to the control of the control device 20. The light source device 14 includes, for example, a semiconductor laser element that generates pulsed light in the infrared wavelength region, a fiber amplifier, and a wavelength conversion element (harmonic) that converts amplified pulsed light in the infrared wavelength region into pulsed light in the ultraviolet wavelength region. A fiber amplifier laser light source is used, which is composed of a wave generating element) or the like, has an oscillation frequency of several hundred MHz, and can obtain high-intensity ultraviolet pulsed light having a emission time of one pulsed light of about picoseconds.
 ビーム切換部材16は、露光ヘッド18を構成する複数の走査ユニットUn(U1~U6)のうち、露光光SPの1次元走査を行う1つの走査ユニットUnに、光源装置14からのビームLBが入射するように、ビームLBの光路を切り換える。 In the beam switching member 16, among the plurality of scanning units Un (U1 to U6) constituting the exposure head 18, the beam LB from the light source device 14 is incident on one scanning unit Un that performs one-dimensional scanning of the exposure light SP. The optical path of the beam LB is switched so as to be performed.
 露光ヘッド18は、ビームLBがそれぞれ入射する複数の走査ユニットUn(U1~U6)を備えている。露光ヘッド18は、回転ドラムDRの円周面で支持されている基板FSの一部分に、複数の走査ユニットUn(U1~U6)によってパターンを描画する。露光ヘッド18は、同一構成の複数の走査ユニットUn(U1~U6)を配列した、いわゆるマルチビーム型の露光ヘッドとなっている。露光ヘッド18は、基板FSに対して電子デバイス用のパターン露光を繰り返して行うことから、パターンが露光される露光領域W(電子デバイス形成領域)は、基板FSの長尺方向に沿って所定の間隔をあけて複数設けられている。奇数番の走査ユニットU1、U3、U5は、中心面Pocに対して基板FSの搬送方向の上流側(-X方向側)に配置され、かつ、Y方向に沿って配置されている。偶数番の走査ユニットU2、U4、U6は、中心面Pocに対して基板FSの搬送方向の下流側(+X方向側)に配置され、かつ、Y方向に沿って配置されている。奇数番の走査ユニットU1、U3、U5と、偶数番の走査ユニットU2、U4、U6とは、中心面Pocに対して対称に設けられている。 The exposure head 18 includes a plurality of scanning units Un (U1 to U6) into which the beam LB is incident. The exposure head 18 draws a pattern on a part of the substrate FS supported by the circumferential surface of the rotating drum DR by a plurality of scanning units Un (U1 to U6). The exposure head 18 is a so-called multi-beam type exposure head in which a plurality of scanning units Un (U1 to U6) having the same configuration are arranged. Since the exposure head 18 repeatedly performs pattern exposure for electronic devices on the substrate FS, the exposure region W (electronic device forming region) on which the pattern is exposed is a predetermined along the longitudinal direction of the substrate FS. Multiple are provided at intervals. The odd-numbered scanning units U1, U3, and U5 are arranged on the upstream side (−X direction side) of the substrate FS in the transport direction with respect to the central surface Poc, and are arranged along the Y direction. The even-numbered scanning units U2, U4, and U6 are arranged on the downstream side (+ X direction side) of the substrate FS in the transport direction with respect to the central surface Poc, and are arranged along the Y direction. The odd-numbered scanning units U1, U3, and U5 and the even-numbered scanning units U2, U4, and U6 are provided symmetrically with respect to the central surface Poc.
 走査ユニットUnは、光源装置14からのビームLBを基板FSの被照射面上で露光光SPに収斂させるように投射しつつ、その露光光SPを基板FSの被照射面上で所定の直線的な描画ライン(走査線)SLn(SL1~SL6)に沿って、回転するポリゴンミラーによって1次元に走査する。なお、走査ユニットUnの下流側には、検査装置DTが配置される。検査装置DTは、回転ドラムDRの外周面に沿って移動する基板FSの露光領域Wにおける感光性保護基の脱離量に関する情報を測定点毎に計測する。検査装置DTによる計測結果は、制御装置20に送られる。 The scanning unit Un projects the beam LB from the light source device 14 on the irradiated surface of the substrate FS so as to converge on the exposure light SP, and causes the exposure light SP to be linear on the irradiated surface of the substrate FS. A single drawing line (scanning line) SLn (SL1 to SL6) is scanned one-dimensionally by a rotating polygon mirror. An inspection device DT is arranged on the downstream side of the scanning unit Un. The inspection device DT measures information on the amount of desorption of the photosensitive protecting group in the exposure region W of the substrate FS moving along the outer peripheral surface of the rotating drum DR for each measurement point. The measurement result by the inspection device DT is sent to the control device 20.
 本実施形態によれば、基板FSが回転ドラムDRに沿って移動している場合においても、検査装置DTによって露光領域Wにおける感光性保護基の脱離量に関する情報を取得することができる。なお、検査装置DTは、回転ドラムDRで移動する基板FSに対向して配置されることに限定されない。例えば、検査装置DTは、回転ドラムDRより下流側を移動する基板FSに対向させるように配置されてもよい。 According to this embodiment, even when the substrate FS is moving along the rotating drum DR, the inspection device DT can acquire information on the amount of desorption of the photosensitive protecting group in the exposure region W. The inspection device DT is not limited to being arranged so as to face the substrate FS that moves by the rotating drum DR. For example, the inspection device DT may be arranged so as to face the substrate FS that moves downstream from the rotary drum DR.
 <第6実施形態>
 図16は、第6実施形態に係る露光装置EX4一例を示す図である。なお、本実施形態において、上記した実施形態と同一の構成については同一の符号を付して、その説明を省略又は簡略化する。図16に示すように、露光システム600は、露光装置EX4を備える。この露光装置EX4は、上記した実施形態と異なり、検査装置DTを備える。
<Sixth Embodiment>
FIG. 16 is a diagram showing an example of the exposure apparatus EX4 according to the sixth embodiment. In the present embodiment, the same components as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted or simplified. As shown in FIG. 16, the exposure system 600 includes an exposure apparatus EX4. The exposure apparatus EX4 includes an inspection apparatus DT, unlike the above-described embodiment.
 検査装置DTは、露光装置EX4において、露光光SPを照射する部分よりも基板FSの搬送方向の下流側に設けられている。露光装置EX4は、露光光SPにより露光領域Wの露光を行うとともに、検査装置DTにより露光領域Wにおける感光性保護基の脱離量に関する情報を取得する。すなわち、露光光SPにより露光領域Wの露光を行った直後に、露光領域Wにおける感光性保護基の脱離量に関する情報を取得することが可能である。 The inspection device DT is provided in the exposure device EX4 on the downstream side in the transport direction of the substrate FS with respect to the portion irradiated with the exposure light SP. The exposure apparatus EX4 exposes the exposure region W with the exposure light SP, and acquires information on the amount of desorption of the photosensitive protecting group in the exposure region W by the inspection apparatus DT. That is, it is possible to acquire information on the amount of desorption of the photosensitive protecting group in the exposure region W immediately after the exposure region W is exposed by the exposure light SP.
 検査装置DTにより取得した感光性保護基の脱離量に関する情報は、露光装置EX4に備える不図示の制御装置、又は露光装置EX4の外部に設けられた不図示の制御装置に送られる。この制御装置は、上記した判断部64を備えてもよい。判断部64により露光領域Wが露光不良であると判断された場合、制御装置は、露光装置EX4における露光条件(例えば、露光光SPの強度、基板FSの移動速度など)を制御してもよい。 Information on the amount of desorption of the photosensitive protecting group acquired by the inspection device DT is sent to a control device (not shown) provided in the exposure device EX4 or a control device (not shown) provided outside the exposure device EX4. This control device may include the determination unit 64 described above. When the determination unit 64 determines that the exposure region W is poorly exposed, the control device may control the exposure conditions (for example, the intensity of the exposure light SP, the moving speed of the substrate FS, etc.) in the exposure device EX4. ..
 本実施形態によれば、露光装置EX4に備える検査装置DTにより感光性保護基の脱離量に関する情報を取得するので、露光装置EX4の外部に検査装置DTを配置する必要がない。その結果、基板FSの搬送方向の長さ(すなわち基板FSにおける電子デバイスの製造ラインの長さ)を短くすることができる。また、露光装置EX4に備える検査装置DTの測定結果は、露光装置EX4以外の装置(例えば、露光装置EX4の上流側、下流側に配置された別の露光装置、プロセス装置PR1、PR2など)を制御するための情報として用いられてもよい。 According to this embodiment, since the inspection device DT provided in the exposure device EX4 acquires information on the amount of desorption of the photosensitive protecting group, it is not necessary to arrange the inspection device DT outside the exposure device EX4. As a result, the length of the substrate FS in the transport direction (that is, the length of the electronic device manufacturing line in the substrate FS) can be shortened. Further, the measurement result of the inspection device DT provided in the exposure device EX4 is obtained by using a device other than the exposure device EX4 (for example, another exposure device arranged on the upstream side and the downstream side of the exposure device EX4, process devices PR1, PR2, etc.). It may be used as information for controlling.
 以上、本発明の実施形態について説明したが、本発明の技術範囲は、上記した実施形態あるいは変形例などで説明した態様に限定されない。上記した実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、本明細書で引用した全ての文献の開示を援用して本文の記載の一部とする。 Although the embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the embodiments described in the above-described embodiments or modifications. One or more of the requirements described in the above embodiments and the like may be omitted. In addition, the requirements described in the above-described embodiments can be combined as appropriate. In addition, to the extent permitted by law, the disclosure of all documents cited in this specification shall be incorporated as part of the text.
CONT・・・制御装置 CT・・・塗布装置 DT、DTa~DTc・・・検査装置 EX、EXa~EXc、EX3・・・露光装置 EX1・・・第1露光装置 EX2・・・第2露光装置 FS・・・基板 MK・・・めっき装置 MKa・・・めっき触媒浴 MKb・・・めっき浴 N・・・非露光領域 TR・・・搬送装置 W・・・露光領域 Wa・・・単位領域 61・・・塗布制御部 62・・・露光制御部 63・・・搬送制御部 64・・・判断部 65・・・第1露光制御部 66・・・第2露光制御部 67・・・めっき制御部 100、200、300、400、500・・・露光システム CONT ... Control device CT ... Coating device DT, DTa to DTc ... Inspection device EX, EXa to EXc, EX3 ... Exposure device EX1 ... 1st exposure device EX2 ... 2nd exposure device FS ... Substrate MK ... Plating device MKa ... Plating catalyst bath MKb ... Plating bath N ... Non-exposure area TR ... Conveyor device W ... Exposure area Wa ... Unit area 61 ... coating control unit 62 ... exposure control unit 63 ... transfer control unit 64 ... judgment unit 65 ... first exposure control unit 66 ... second exposure control unit 67 ... plating control Part 100, 200, 300, 400, 500 ... Exposure system

Claims (29)

  1.  基板上に形成された、感光性保護基を有する化合物を含む層を露光し、親液領域及び撥液領域を含む親撥液パターンを形成する露光システムであって、
     前記感光性保護基を有する化合物を含む層を露光する露光装置と、
     前記露光装置により露光された領域における前記感光性保護基の脱離量に関する情報を測定点毎に取得する検査装置と、
     前記露光装置により露光された領域に含まれる前記測定点の前記情報に基づいて前記露光の良否を判断する判断部を有する制御装置と、を備える、露光システム。
    An exposure system that exposes a layer containing a compound having a photosensitive protecting group formed on a substrate to form a parent liquid-repellent pattern including a parent liquid region and a liquid repellent region.
    An exposure apparatus that exposes a layer containing a compound having a photosensitive protecting group, and an exposure apparatus.
    An inspection device that acquires information on the amount of desorption of the photosensitive protecting group in the region exposed by the exposure device for each measurement point, and an inspection device.
    An exposure system including a control device having a determination unit for determining the quality of the exposure based on the information of the measurement points included in the region exposed by the exposure device.
  2.  前記判断部は、単位面積あたりの前記情報に基づいて前記露光の良否を判断する、請求項1に記載の露光システム。 The exposure system according to claim 1, wherein the determination unit determines the quality of the exposure based on the information per unit area.
  3.  前記制御装置は、前記判断部が露光不良であると判断した場合に、前記情報に基づいて前記露光装置を制御する、請求項1又は請求項2に記載の露光システム。 The exposure system according to claim 1 or 2, wherein the control device controls the exposure device based on the information when the determination unit determines that the exposure is poor.
  4.  前記制御装置による前記露光装置の制御は、前記露光装置の露光時における露光光の強度を変更すること、前記露光光の焦点位置を変更すること、前記露光光の照射時間を変更すること、及び前記露光光の重ね量を変更すること、の少なくとも1つを含む、請求項3に記載の露光システム。 The control of the exposure device by the control device includes changing the intensity of the exposure light at the time of exposure of the exposure device, changing the focal position of the exposure light, changing the irradiation time of the exposure light, and so on. The exposure system according to claim 3, further comprising at least one of changing the overlay amount of the exposure light.
  5.  前記露光装置による露光時を含めて前記基板を搬送する搬送装置を備える、請求項1から請求項4のいずれか一項に記載の露光システム。 The exposure system according to any one of claims 1 to 4, further comprising a transport device for transporting the substrate including the time of exposure by the exposure device.
  6.  前記検査装置は、前記搬送装置による前記基板の搬送方向において前記露光装置の下流側に配置される、請求項5に記載の露光システム。 The exposure system according to claim 5, wherein the inspection device is arranged on the downstream side of the exposure device in the transport direction of the substrate by the transfer device.
  7.  前記制御装置は、前記判断部が露光不良であると判断した場合に、前記情報に基づいて前記搬送装置による前記基板の搬送速度を制御する、請求項5又は請求項6に記載の露光システム。 The exposure system according to claim 5 or 6, wherein the control device controls the transfer speed of the substrate by the transfer device based on the information when the determination unit determines that the exposure is poor.
  8.  前記搬送装置による前記基板の搬送方向において前記検査装置の下流側に第2露光装置を備える、請求項5から請求項7のいずれか一項に記載の露光システム。 The exposure system according to any one of claims 5 to 7, wherein a second exposure device is provided on the downstream side of the inspection device in the transport direction of the substrate by the transfer device.
  9.  前記制御装置は、前記判断部が露光不良であると判断した場合に、前記情報に基づいて前記第2露光装置により前記層に対して再度の露光を行わせる、請求項8に記載の露光システム。 The exposure system according to claim 8, wherein when the determination unit determines that the exposure is poor, the control device causes the second exposure device to re-expose the layer based on the information. ..
  10.  前記搬送装置による前記基板の搬送方向において前記検査装置の下流側に、前記親撥液パターンが形成された前記基板に対してめっき処理を行うめっき装置を備える、請求項5から請求項9のいずれか一項に記載の露光システム。 Any of claims 5 to 9, wherein a plating device for plating the substrate on which the water-repellent pattern is formed is provided on the downstream side of the inspection device in the transport direction of the substrate by the transport device. The exposure system according to claim 1.
  11.  前記制御装置は、前記判断部が露光不良であると判断した場合に、前記情報に基づいて前記めっき装置を制御する、請求項10に記載の露光システム。 The exposure system according to claim 10, wherein the control device controls the plating device based on the information when the determination unit determines that the exposure is poor.
  12.  前記制御装置は、前記判断部が露光不良であると判断した場合に、前記情報に基づいて前記めっき装置におけるめっき触媒浴及びめっき浴の少なくとも一方に対する前記層の浸漬時間を変更することを含む、請求項11に記載の露光システム。 The control device includes changing the immersion time of the layer in at least one of the plating catalyst bath and the plating bath in the plating device based on the information when the determination unit determines that the exposure is poor. The exposure system according to claim 11.
  13.  前記検査装置は、前記露光装置により露光された領域における吸光度により前記情報を取得する、請求項1から請求項12のいずれか一項に記載の露光システム。 The exposure system according to any one of claims 1 to 12, wherein the inspection device acquires the information based on the absorbance in a region exposed by the exposure device.
  14.  前記検査装置は、紫外可視分光光度計であり、前記露光装置により露光された領域における所定の紫外光の吸収度の変化から前記情報を取得する、請求項13に記載の露光システム。 The exposure system according to claim 13, wherein the inspection device is an ultraviolet-visible spectrophotometer, and acquires the information from a change in a predetermined degree of absorption of ultraviolet light in a region exposed by the exposure device.
  15.  前記検査装置は、赤外分光光度計であり、前記露光装置により露光された領域における官能基由来の所定の赤外光の吸収変化から前記情報を取得する、請求項13に記載の露光システム。 The exposure system according to claim 13, wherein the inspection device is an infrared spectrophotometer, and acquires the information from a predetermined infrared light absorption change derived from a functional group in a region exposed by the exposure device.
  16.  前記検査装置は、前記露光装置により露光された領域における付着力により前記情報を取得する、請求項1から請求項12のいずれか一項に記載の露光システム。 The exposure system according to any one of claims 1 to 12, wherein the inspection device acquires the information by an adhesive force in a region exposed by the exposure device.
  17.  前記検査装置は、原子間力顕微鏡であり、前記露光装置により露光された領域におけるカンチレバーの付着力の変化から前記情報を取得する、請求項16に記載の露光システム。 The exposure system according to claim 16, wherein the inspection device is an atomic force microscope, and obtains the information from a change in the adhesive force of the cantilever in a region exposed by the exposure device.
  18.  前記検査装置は、前記露光装置により露光された領域における膜厚により前記情報を取得する、請求項1から請求項12のいずれか一項に記載の露光システム。 The exposure system according to any one of claims 1 to 12, wherein the inspection device acquires the information based on the film thickness in the region exposed by the exposure device.
  19.  前記検査装置は、原子間力顕微鏡又は触診式段差計であり、前記露光装置により露光された領域にカンチレバー又は接触子が接触することにより取得した膜厚の変化から前記情報を取得する、請求項18に記載の露光システム。 The inspection device is an atomic force microscope or a tactile stepper, and obtains the information from a change in film thickness obtained by contacting a cantilever or a contactor with a region exposed by the exposure device. 18. The exposure system according to 18.
  20.  前記検査装置は、光学式検査装置であり、前記露光装置により露光された領域に所定波長の光を照射することにより取得した膜厚の変化から前記情報を取得する、請求項18に記載の露光システム。 The exposure according to claim 18, wherein the inspection apparatus is an optical inspection apparatus, and the information is acquired from a change in the film thickness acquired by irradiating a region exposed by the exposure apparatus with light having a predetermined wavelength. system.
  21.  前記検査装置は、前記露光装置により露光された領域における二次電子又は反射電子により前記情報を取得する、請求項1から請求項12のいずれか一項に記載の露光システム。 The exposure system according to any one of claims 1 to 12, wherein the inspection device acquires the information by secondary electrons or backscattered electrons in a region exposed by the exposure device.
  22.  前記検査装置は、走査型電子顕微鏡であり、前記露光装置により露光された領域に電子線を照射することにより生じる二次電子又は反射電子の変化から前記情報を取得する、請求項21に記載の露光システム。 21. The invention of claim 21, wherein the inspection apparatus is a scanning electron microscope, and acquires the information from changes in secondary electrons or backscattered electrons caused by irradiating an area exposed by the exposure apparatus with an electron beam. Exposure system.
  23.  前記検査装置は、前記露光装置により露光された領域における接触角又は表面張力により前記情報を取得する、請求項1から請求項12のいずれか一項に記載の露光システム。 The exposure system according to any one of claims 1 to 12, wherein the inspection device acquires the information based on a contact angle or surface tension in a region exposed by the exposure device.
  24.  前記検査装置は、接触角計であり、前記露光装置により露光された領域に所定の液滴を供給し、その液滴の形状の変化から前記情報を取得する、請求項23に記載の露光システム。 The exposure system according to claim 23, wherein the inspection device is a contact angle meter, supplies a predetermined droplet to a region exposed by the exposure device, and acquires the information from a change in the shape of the droplet. ..
  25.  前記検査装置は、前記露光装置により露光された領域における分子構造により前記情報を取得する、請求項1から請求項12のいずれか一項に記載の露光システム。 The exposure system according to any one of claims 1 to 12, wherein the inspection device acquires the information based on the molecular structure in the region exposed by the exposure device.
  26.  前記検査装置は、質量分析計であり、前記露光装置により露光された領域における前記感光性保護基の質量検出強度の変化から前記情報を取得する、請求項25に記載の露光システム。 The exposure system according to claim 25, wherein the inspection device is a mass spectrometer and acquires the information from a change in the mass detection intensity of the photosensitive protecting group in a region exposed by the exposure device.
  27.  前記検査装置は、X線光電子分光計であり、前記露光装置により露光された領域における前記感光性保護基に由来する所定元素の検出強度の変化から前記情報を取得する、請求項25に記載の露光システム。 25. The inspection apparatus according to claim 25, wherein the inspection apparatus is an X-ray photoelectron spectrometer, and obtains the information from a change in the detection intensity of a predetermined element derived from the photosensitive protecting group in a region exposed by the exposure apparatus. Exposure system.
  28.  基板上に形成された、感光性保護基を有する化合物を含む層を露光し、親液領域及び撥液領域を含む親撥液パターンを形成する露光装置であって、
     前記感光性保護基を有する化合物を含む層を露光する露光部と、
     前記露光部により露光された領域における前記感光性保護基の脱離量に関する情報を測定点毎に取得する検査部と、
     前記露光部により露光された領域に含まれる前記測定点の前記情報に基づいて前記露光の良否を判断する判断部を有する制御部と、を備える、露光装置。
    An exposure apparatus that exposes a layer containing a compound having a photosensitive protecting group formed on a substrate to form a parent liquid-repellent pattern including a parent liquid region and a liquid repellent region.
    An exposed portion that exposes a layer containing the compound having a photosensitive protecting group, and an exposed portion.
    An inspection unit that acquires information on the amount of desorption of the photosensitive protecting group in the region exposed by the exposure unit for each measurement point, and an inspection unit.
    An exposure apparatus including a control unit having a determination unit for determining the quality of the exposure based on the information of the measurement points included in the region exposed by the exposure unit.
  29.  基板上に形成された、感光性保護基を有する化合物を含む層を露光し、親液水領域及び撥液領域を含む親撥液パターンを形成する露光方法であって、
     前記感光性保護基を有する化合物を含む層を露光することと、
     露光された領域における前記感光性保護基の脱離量に関する情報を測定点毎に取得することと、
     前記露光された領域に含まれる前記測定点の前記情報に基づいて前記露光の良否を判断することと、を含む、露光方法。
    An exposure method in which a layer containing a compound having a photosensitive protecting group formed on a substrate is exposed to form a parent liquid-repellent pattern including a parent liquid water region and a liquid repellent region.
    Exposing the layer containing the compound having a photosensitive protecting group and
    Obtaining information on the amount of desorption of the photosensitive protecting group in the exposed region at each measurement point, and
    An exposure method comprising determining the quality of the exposure based on the information of the measurement points included in the exposed region.
PCT/JP2019/011101 2019-03-18 2019-03-18 Exposure system, exposure device, and exposure method WO2020188681A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/011101 WO2020188681A1 (en) 2019-03-18 2019-03-18 Exposure system, exposure device, and exposure method
CN202080021585.9A CN113574459B (en) 2019-03-18 2020-03-18 Exposure system, exposure apparatus, and exposure method
KR1020217030345A KR20210129171A (en) 2019-03-18 2020-03-18 Exposure system, exposure apparatus, and exposure method
PCT/JP2020/012066 WO2020189729A1 (en) 2019-03-18 2020-03-18 Exposure system, exposure device, and exposure method
TW109109005A TWI810444B (en) 2019-03-18 2020-03-18 Exposure system, exposure device and exposure method
JP2021507402A JP7310879B2 (en) 2019-03-18 2020-03-18 Exposure system, exposure apparatus and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011101 WO2020188681A1 (en) 2019-03-18 2019-03-18 Exposure system, exposure device, and exposure method

Publications (1)

Publication Number Publication Date
WO2020188681A1 true WO2020188681A1 (en) 2020-09-24

Family

ID=72520270

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/011101 WO2020188681A1 (en) 2019-03-18 2019-03-18 Exposure system, exposure device, and exposure method
PCT/JP2020/012066 WO2020189729A1 (en) 2019-03-18 2020-03-18 Exposure system, exposure device, and exposure method

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012066 WO2020189729A1 (en) 2019-03-18 2020-03-18 Exposure system, exposure device, and exposure method

Country Status (5)

Country Link
JP (1) JP7310879B2 (en)
KR (1) KR20210129171A (en)
CN (1) CN113574459B (en)
TW (1) TWI810444B (en)
WO (2) WO2020188681A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563312B (en) * 2022-01-27 2022-12-06 苏州大学 Method and device for measuring mechanical property of thin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057427A1 (en) * 2015-09-29 2017-04-06 株式会社ニコン Production system
JP2017166003A (en) * 2016-03-14 2017-09-21 オーエム産業株式会社 Production of plated article
WO2018008610A1 (en) * 2016-07-08 2018-01-11 旭硝子株式会社 Photosensitive composition, method for producing polymer, method for producing photosensitive composition, and method for producing laminate
WO2018225549A1 (en) * 2017-06-05 2018-12-13 セントラル硝子株式会社 Fluorine-containing monomer, fluorine-containing polymer, pattern forming composition using same, and pattern forming method of same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257457A (en) * 1996-03-18 1997-10-03 Matsushita Electron Corp Measuring method for shape of pattern and measuring method for position of pattern
KR20060108616A (en) 2003-12-04 2006-10-18 아사히 가라스 가부시키가이샤 Fluorine-containing compound, water repellent composition and thin film
TWI485517B (en) * 2007-04-18 2015-05-21 Daikin Ind Ltd Repellent resist composition
JP5254381B2 (en) * 2011-02-23 2013-08-07 株式会社東芝 Pattern formation method
JP6118761B2 (en) * 2014-06-05 2017-04-19 富士フイルム株式会社 Test substance measuring kit and test substance measuring method
JP6531622B2 (en) * 2015-11-02 2019-06-19 株式会社ニコン Cylindrical mask, exposure system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057427A1 (en) * 2015-09-29 2017-04-06 株式会社ニコン Production system
JP2017166003A (en) * 2016-03-14 2017-09-21 オーエム産業株式会社 Production of plated article
WO2018008610A1 (en) * 2016-07-08 2018-01-11 旭硝子株式会社 Photosensitive composition, method for producing polymer, method for producing photosensitive composition, and method for producing laminate
WO2018225549A1 (en) * 2017-06-05 2018-12-13 セントラル硝子株式会社 Fluorine-containing monomer, fluorine-containing polymer, pattern forming composition using same, and pattern forming method of same

Also Published As

Publication number Publication date
CN113574459A (en) 2021-10-29
WO2020189729A1 (en) 2020-09-24
TWI810444B (en) 2023-08-01
JP7310879B2 (en) 2023-07-19
CN113574459B (en) 2023-10-03
JPWO2020189729A1 (en) 2020-09-24
KR20210129171A (en) 2021-10-27
TW202101130A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
KR102387648B1 (en) Exposure device
JP6690697B2 (en) Substrate processing apparatus and device manufacturing method
CN110596886B (en) Pattern drawing device
US10683185B2 (en) Processing system and device manufacturing method
WO2020189729A1 (en) Exposure system, exposure device, and exposure method
JP6743930B2 (en) Manufacturing system
KR102075325B1 (en) Scanning exposure device and device manufacturing method
JP6516030B2 (en) Pattern formation method
JP6311450B2 (en) Transport device
TW200938961A (en) Source constructed and arranged to produce extreme ultraviolet radiation and method for producing extreme ultraviolet radiation
JP7004016B2 (en) Pattern forming device
KR20190043169A (en) Lithographic apparatus
JP6409518B2 (en) Pattern forming device
JP2019215551A (en) Device manufacturing method
JP6566102B2 (en) Pattern forming device
TWI818522B (en) Methods of manufacturing a pellicle having graphite layer
JP6950787B2 (en) Pattern forming device
JP2019117393A (en) Pattern formation device
JP2013195530A (en) Substrate processing device, device manufacturing system and device manufacturing method
JP2014149391A (en) Pattern forming apparatus and pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP