WO2020187267A1 - Btk抑制剂及其药学上可接受的盐和多晶型物及其应用 - Google Patents

Btk抑制剂及其药学上可接受的盐和多晶型物及其应用 Download PDF

Info

Publication number
WO2020187267A1
WO2020187267A1 PCT/CN2020/080024 CN2020080024W WO2020187267A1 WO 2020187267 A1 WO2020187267 A1 WO 2020187267A1 CN 2020080024 W CN2020080024 W CN 2020080024W WO 2020187267 A1 WO2020187267 A1 WO 2020187267A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
crystal form
ray powder
diffraction pattern
Prior art date
Application number
PCT/CN2020/080024
Other languages
English (en)
French (fr)
Inventor
江涛涛
李金晶
赵双妮
姚霞
Original Assignee
上海海雁医药科技有限公司
扬子江药业集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海雁医药科技有限公司, 扬子江药业集团有限公司 filed Critical 上海海雁医药科技有限公司
Priority to CN202080003606.4A priority Critical patent/CN112334469B/zh
Priority to JP2021520949A priority patent/JP2022505053A/ja
Priority to US17/271,202 priority patent/US20210395247A1/en
Priority to AU2020242723A priority patent/AU2020242723B2/en
Priority to EP20773247.0A priority patent/EP3851438A4/en
Priority to CA3109765A priority patent/CA3109765A1/en
Publication of WO2020187267A1 publication Critical patent/WO2020187267A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • A61P29/02Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID] without antiinflammatory effect
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention belongs to the technical field of medicine. Specifically, the present invention relates to a BTK inhibitor and its pharmaceutically acceptable salts and polymorphs and applications thereof.
  • the inhibitor is (R)-6-((1- Acryloylpiperidin-3-yl)amino)-7-fluoro-4-((2-fluoro-4-morpholinophenyl)amino)-1,2-dihydro-3H-pyrrolo[3,4 -c] Pyridin-3-one.
  • BTK kinase is a non-receptor tyrosine kinase in the TEC kinase family. It is a key regulator of the BCR signaling pathway and plays an important role in the maturation, proliferation and survival of B cells. BTK is overexpressed in a variety of B-cell lymphomas, and it is currently the only clinically proven effective drug development target in the TEC kinase family. Inhibition of BTK can inhibit the proliferation of a series of B-cell lymphomas.
  • BCR B cell antigen receptor
  • Btk Bruton's tyrosine kinase
  • Btk plays a key role in the BCR signal pathway of hematopoietic cells and is a very good target in the research of new therapies for lymphoma.
  • BTK inhibitors act on the BCR pathway to inhibit Btk autophosphorylation, Btk's physiological substrate PLC ⁇ phosphorylation and downstream kinase ERK phosphorylation.
  • BTK inhibitors act on chronic lymphocytic leukemia (CLL) cells to induce cytotoxicity and inhibit the proliferation of CLL cells. Inhibit the proliferation of primary B cells activated by BCR, and inhibit the secretion of TNF ⁇ , IL-1 ⁇ and IL-6 in primary monocytes. BTK inhibitors act on collagen-induced arthritis models and significantly reduce clinical arthritis symptoms such as foot swelling and joint inflammation by inhibiting B cell activity.
  • CLL chronic lymphocytic leukemia
  • BTK inhibitor ibrutinib At present, only the only BTK inhibitor ibrutinib has been approved for marketing, so it is necessary to develop more BTK inhibitors with better activity, safer and more effective.
  • the present invention develops various salt forms and crystal forms of BTK inhibitors on the basis of the foregoing work, which is helpful for further drug development.
  • the purpose of the present invention is to provide a pharmaceutically acceptable salt of a BTK inhibitor and its polymorphic form and its application.
  • the pharmaceutically acceptable salt is selected from the group consisting of hydrochloride, sulfate, hydrobromide, phosphate, methanesulfonate, maleate, L-tartrate, lemon Salt, fumarate, succinate.
  • the pharmaceutically acceptable salt of the compound of formula X or the polymorph of the compound of formula X and the pharmaceutically acceptable salt thereof is in the form of anhydrous, hydrate or solvate.
  • the pharmaceutically acceptable salt is selected from: hydrochloride, sulfate, hydrobromide, phosphate, methanesulfonate, L-tartrate, fumarate, succinate .
  • the pharmaceutically acceptable salt is hydrochloride
  • the molar ratio of hydrochloric acid to the compound of formula X is (0.8-2.1):1, for example (0.9-1.1):1.
  • the pharmaceutically acceptable salt is fumarate, and the molar ratio of fumaric acid to the compound of formula X is (0.8-1.2):1. In another embodiment, the pharmaceutically acceptable salt is fumarate, and the molar ratio of fumaric acid to the compound of formula X is (0.9-1.1):1. In yet another embodiment, the pharmaceutically acceptable salt is fumarate, and the molar ratio of fumaric acid to the compound of formula X is 1:1.
  • the polymorph is a type A crystal of the hydrochloride salt of the compound of formula X, that is, crystal form A, and its X-ray powder diffraction pattern has the diffraction angle 2 ⁇ (°) value of the lower group A-1 Peaks: 14.75 ⁇ 0.2, 15.97 ⁇ 0.2, 17.20 ⁇ 0.2, 18.94 ⁇ 0.2, 19.72 ⁇ 0.2, 22.15 ⁇ 0.2, 24.35 ⁇ 0.2, 25.12 ⁇ 0.2, 26.21 ⁇ 0.2, 26.80 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form A further includes two or more peaks selected from the group A-2 at the diffraction angle 2 ⁇ (°) value: 6.57 ⁇ 0.2, 8.71 ⁇ 0.2, 12.24 ⁇ 0.2, 14.07 ⁇ 0.2, 14.47 ⁇ 0.2, 15.48 ⁇ 0.2, 16.66 ⁇ 0.2, 17.70 ⁇ 0.2, 18.61 ⁇ 0.2, 20.24 ⁇ 0.2, 20.62 ⁇ 0.2, 22.72 ⁇ 0.2, 27.46 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form A is selected from 6 or more or all of the groups A-1 and A-2 (such as 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, etc.) have peaks at the 2 ⁇ (°) values.
  • the X-ray powder diffraction pattern of the crystal form A has a diffraction angle 2 ⁇ (°) value of 8.71 ⁇ 0.2, 12.24 ⁇ 0.2, 14.07 ⁇ 0.2, 14.47 ⁇ 0.2, 14.75 ⁇ 0.2, 15.48 ⁇ 0.2, 15.97 ⁇ 0.2, 16.66 ⁇ 0.2, 17.20 ⁇ 0.2, 17.70 ⁇ 0.2, 18.61 ⁇ 0.2, 18.94 ⁇ 0.2, 19.72 ⁇ 0.2, 20.24 ⁇ 0.2, 20.62 ⁇ 0.2, 22.15 ⁇ 0.2, 22.72 ⁇ 0.2, 24.35 ⁇ 0.2, 25.12 ⁇ There are peaks at 0.2, 26.21 ⁇ 0.2, 26.80 ⁇ 0.2, and 27.46 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form A has a peak at the 2 ⁇ (°) value shown in Table A1, and the relative intensity of each peak is shown in Table A1:
  • the X-ray powder diffraction pattern of the crystal form A is basically characterized as shown in Figure 1-1.
  • the crystalline form A has a differential scanning calorimetry (DSC) spectrum substantially the same as that shown in FIGS. 1-3.
  • DSC differential scanning calorimetry
  • the crystal form A has substantially the same thermogravimetric analysis (TGA) pattern as shown in FIGS. 1-2.
  • TGA thermogravimetric analysis
  • the polymorph is the B-1 type crystal of the sulfate salt of the compound of formula X, that is, the crystal form B-1, and its X-ray powder diffraction pattern is in the diffraction angle 2 ⁇ ( °) values have peaks: 10.27 ⁇ 0.2, 14.06 ⁇ 0.2, 14.41 ⁇ 0.2, 17.59 ⁇ 0.2, 19.39 ⁇ 0.2, 21.84 ⁇ 0.2, 26.38 ⁇ 0.2, 26.68 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form B-1 has a peak at the 2 ⁇ (°) value shown in Table B1, and the relative intensity of each peak is shown in Table B1:
  • the X-ray powder diffraction pattern of the crystal form B-1 is basically characterized as shown in Figure 2-1.
  • the polymorph is the B-2 type crystal of the sulfate salt of the compound of formula X, that is, the crystal form B-2, and its X-ray powder diffraction pattern is in the lower group B-2-1 at the diffraction angle 2 ⁇ ( °) has a peak at the value: 8.59 ⁇ 0.2, 10.64 ⁇ 0.2, 13.90 ⁇ 0.2, 14.38 ⁇ 0.2, 15.53 ⁇ 0.2, 17.05 ⁇ 0.2, 17.26 ⁇ 0.2, 17.75 ⁇ 0.2, 19.28 ⁇ 0.2, 21.85 ⁇ 0.2, 25.82 ⁇ 0.2 , 26.32 ⁇ 0.2, 26.62 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystalline form B-2 further includes two or more peaks at the diffraction angle 2 ⁇ (°) value selected from the group B-2-2: 11.39 ⁇ 0.2, 12.28 ⁇ 0.2, 12.97 ⁇ 0.2, 15.81 ⁇ 0.2, 18.79 ⁇ 0.2, 20.31 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form B-2 is selected from 6 or more or all of the groups B-2-1 and B-2-2 (such as 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, etc.) have a peak at the 2 ⁇ (°) value.
  • the X-ray powder diffraction pattern of the crystal form B-2 has peaks at the 2 ⁇ (°) values shown in Table B2, and the relative intensity of each peak is shown in Table B2:
  • the X-ray powder diffraction pattern of the crystalline form B-2 is basically characterized in Figure 2-2.
  • the polymorph is the B-3 type crystal of the sulfate salt of the compound of formula X, that is, the crystal form B-3, and its X-ray powder diffraction pattern is in the diffraction angle 2 ⁇ ( °) has a peak at the value: 8.59 ⁇ 0.2, 10.21 ⁇ 0.2, 10.60 ⁇ 0.2, 11.39 ⁇ 0.2, 13.03 ⁇ 0.2, 13.93 ⁇ 0.2, 14.38 ⁇ 0.2, 15.49 ⁇ 0.2, 15.82 ⁇ 0.2, 17.03 ⁇ 0.2, 17.71 ⁇ 0.2 , 19.30 ⁇ 0.2, 20.23 ⁇ 0.2, 21.59 ⁇ 0.2, 21.97 ⁇ 0.2, 23.95 ⁇ 0.2, 24.62 ⁇ 0.2, 26.23 ⁇ 0.2, 26.65 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystalline form B-3 further includes a peak at a diffraction angle 2 ⁇ (°) value selected from the group B-3-2: 18.78 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form B-3 has peaks at the 2 ⁇ (°) values shown in Table B3, and the relative intensity of each peak is shown in Table B3:
  • the X-ray powder diffraction pattern of the crystal form B-3 is basically characterized as shown in Figure 2-3.
  • the polymorph is a type C crystal of the hydrobromide salt of the compound of formula X, that is, crystal form C, and its X-ray powder diffraction pattern is at the diffraction angle 2 ⁇ (°) value of the lower group C-1 With peaks: 15.26 ⁇ 0.2, 15.91 ⁇ 0.2, 17.09 ⁇ 0.2, 18.43 ⁇ 0.2, 18.76 ⁇ 0.2, 19.49 ⁇ 0.2, 20.47 ⁇ 0.2, 21.91 ⁇ 0.2, 24.10 ⁇ 0.2, 24.88 ⁇ 0.2, 25.87 ⁇ 0.2, 26.48 ⁇ 0.2 .
  • the X-ray powder diffraction pattern of the crystal form C further includes two or more peaks selected from the group C-2 at the diffraction angle 2 ⁇ (°) value: 8.69 ⁇ 0.2, 9.16 ⁇ 0.2, 10.82 ⁇ 0.2, 11.50 ⁇ 0.2, 14.62 ⁇ 0.2, 16.55 ⁇ 0.2, 17.50 ⁇ 0.2, 20.05 ⁇ 0.2, 21.33 ⁇ 0.2, 22.62 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form C is selected from 6 or more or all of the groups C-1 and C-2 (such as 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, etc.) have peaks at the 2 ⁇ (°) values.
  • the X-ray powder diffraction pattern of the crystal form C has a diffraction angle 2 ⁇ (°) value of 8.69 ⁇ 0.2, 10.82 ⁇ 0.2, 11.50 ⁇ 0.2, 14.62 ⁇ 0.2, 15.26 ⁇ 0.2, 15.91 ⁇ 0.2, 17.09 ⁇ 0.2, 17.50 ⁇ 0.2, 18.43 ⁇ 0.2, 18.76 ⁇ 0.2, 19.49 ⁇ 0.2, 20.05 ⁇ 0.2, 20.47 ⁇ 0.2, 21.33 ⁇ 0.2, 21.91 ⁇ 0.2, 22.62 ⁇ 0.2, 24.10 ⁇ 0.2, 24.88 ⁇ 0.2, 25.87 ⁇ There are peaks at 0.2 and 26.48 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form C has a peak at the 2 ⁇ (°) value shown in Table C1, and the relative intensity of each peak is shown in Table C1:
  • the X-ray powder diffraction pattern of the crystalline form C is basically characterized in FIG. 3.
  • the polymorph is the D crystal of the phosphate of the compound of formula X, that is, crystal form D, and its X-ray powder diffraction pattern has a peak at the diffraction angle 2 ⁇ (°) value of the lower group D-1 : 12.24 ⁇ 0.2, 13.93 ⁇ 0.2, 17.24 ⁇ 0.2, 18.18 ⁇ 0.2, 23.93 ⁇ 0.2, 26.38 ⁇ 0.2, 26.68 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form D has a peak at the 2 ⁇ (°) value shown in Table D1, and the relative intensity of each peak is shown in Table D1:
  • the X-ray powder diffraction pattern of the crystalline form D is basically characterized in FIG. 4.
  • the polymorph is the E-1 type crystal of the mesylate salt of the compound of formula X, that is, the crystal form E-1, and its X-ray powder diffraction pattern is in the diffraction angle of the following group E-1-1 There are peaks at 2 ⁇ (°) values: 8.56 ⁇ 0.2, 11.39 ⁇ 0.2, 17.47 ⁇ 0.2, 17.80 ⁇ 0.2, 26.32 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystalline form E-1 further includes two or more peaks at the diffraction angle 2 ⁇ (°) value selected from the group E-1-2: 6.61 ⁇ 0.2, 12.79 ⁇ 0.2, 14.91 ⁇ 0.2, 16.81 ⁇ 0.2, 19.42 ⁇ 0.2, 20.23 ⁇ 0.2, 21.16 ⁇ 0.2, 21.40 ⁇ 0.2, 23.14 ⁇ 0.2, 25.96 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystalline form E-1 further includes two or more peaks at the diffraction angle 2 ⁇ (°) value selected from the group E-1-3: 14.48 ⁇ 0.2, 15.79 ⁇ 0.2, 18.61 ⁇ 0.2, 19.96 ⁇ 0.2, 22.27 ⁇ 0.2, 24.07 ⁇ 0.2, 24.46 ⁇ 0.2, 25.75 ⁇ 0.2, 27.67 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystalline form E-1 is selected from 6 or more or all of the groups E-1-1, E-1-2 and E-1-3 (For example, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, etc.) have a peak at the 2 ⁇ (°) value.
  • the X-ray powder diffraction pattern of the crystal form E-1 has a diffraction angle 2 ⁇ (°) value of 6.61 ⁇ 0.2, 8.56 ⁇ 0.2, 11.39 ⁇ 0.2, 12.79 ⁇ 0.2, 14.91 ⁇ 0.2, 16.81 ⁇ 0.2, 17.47 ⁇ 0.2, 17.80 ⁇ 0.2, 19.42 ⁇ 0.2, 20.23 ⁇ 0.2, 21.16 ⁇ 0.2, 21.40 ⁇ 0.2, 23.14 ⁇ 0.2, 25.96 ⁇ 0.2, 26.32 ⁇ 0.2 have peaks.
  • the X-ray powder diffraction pattern of the crystal form E-1 has peaks at the 2 ⁇ (°) values shown in Table E1, and the relative intensity of each peak is shown in Table E1:
  • the X-ray powder diffraction pattern of the crystalline form E-1 is basically characterized in Figure 5-1.
  • the polymorph is the E-2 type crystal of the mesylate salt of the compound of formula X, that is, the crystal form E-2, and its X-ray powder diffraction pattern is in the diffraction angle of the following group E-2-1 Peaks at 2 ⁇ (°) values: 15.79 ⁇ 0.2, 16.76 ⁇ 0.2, 17.41 ⁇ 0.2, 17.80 ⁇ 0.2, 20.26 ⁇ 0.2, 21.05 ⁇ 0.2, 24.10 ⁇ 0.2, 25.63 ⁇ 0.2, 26.53 ⁇ 0.2, 26.92 ⁇ 0.2, 27.50 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystalline form E-2 further includes two or more peaks at the diffraction angle 2 ⁇ (°) value selected from the group E-2-2: 8.45 ⁇ 0.2, 11.33 ⁇ 0.2, 14.30 ⁇ 0.2, 14.89 ⁇ 0.2, 18.60 ⁇ 0.2, 19.36 ⁇ 0.2, 19.87 ⁇ 0.2, 22.16 ⁇ 0.2, 23.09 ⁇ 0.2, 29.08 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystalline form E-2 further includes two or more peaks at the diffraction angle 2 ⁇ (°) value selected from the group E-2-3: 12.30 ⁇ 0.2, 12.75 ⁇ 0.2, 13.09 ⁇ 0.2, 13.29 ⁇ 0.2, 13.73 ⁇ 0.2, 16.03 ⁇ 0.2, 16.24 ⁇ 0.2, 22.77 ⁇ 0.2, 28.49 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form E-2 is selected from 6 or more or all of the groups E-2-1, E-2-2 and E-2-3 (For example, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, etc.) have a peak at the 2 ⁇ (°) value.
  • the X-ray powder diffraction pattern of the crystal form E-2 has a diffraction angle 2 ⁇ (°) value of 8.45 ⁇ 0.2, 11.33 ⁇ 0.2, 14.30 ⁇ 0.2, 14.89 ⁇ 0.2, 15.79 ⁇ 0.2, 16.76 ⁇ 0.2, 17.41 ⁇ 0.2, 17.80 ⁇ 0.2, 18.60 ⁇ 0.2, 19.36 ⁇ 0.2, 19.87 ⁇ 0.2, 20.26 ⁇ 0.2, 21.05 ⁇ 0.2, 22.16 ⁇ 0.2, 23.09 ⁇ 0.2, 24.10 ⁇ 0.2, 25.63 ⁇ 0.2, 26.53 ⁇ 0.2, There are peaks at 26.92 ⁇ 0.2, 27.50 ⁇ 0.2, and 29.08 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form E-2 has a peak at the 2 ⁇ (°) value shown in Table E2, and the relative intensity of each peak is shown in Table E2:
  • the X-ray powder diffraction pattern of the crystalline form E-2 is basically characterized in Figure 5-2.
  • the polymorph is the F crystal of the tartrate salt of the compound of formula X, that is, the crystal form F, and its X-ray powder diffraction pattern has a peak at the diffraction angle 2 ⁇ (°) value of the lower group F-1 : 18.58 ⁇ 0.2, 19.84 ⁇ 0.2, 20.56 ⁇ 0.2, 24.88 ⁇ 0.2, 28.73 ⁇ 0.2, 29.45 ⁇ 0.2, 31.81 ⁇ 0.2, 33.28 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form F has a peak at the 2 ⁇ (°) value shown in Table F1, and the relative intensity of each peak is shown in Table F1:
  • the X-ray powder diffraction pattern of the crystalline form F is basically as shown in FIG. 6.
  • the polymorph is a type G crystal of the fumarate of the compound of formula X, that is, crystal form G, and its X-ray powder diffraction pattern is at the diffraction angle 2 ⁇ (°) value of the lower group G-1 It has peaks: 16.06 ⁇ 0.2, 18.76 ⁇ 0.2, 20.32 ⁇ 0.2, 21.49 ⁇ 0.2, 22.52 ⁇ 0.2, 22.84 ⁇ 0.2, 24.32 ⁇ 0.2, 24.50 ⁇ 0.2, 26.06 ⁇ 0.2, 28.48 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form G further includes two or more peaks selected from the group G-2 at the diffraction angle 2 ⁇ (°) value: 7.35 ⁇ 0.2, 12.25 ⁇ 0.2, 12.88 ⁇ 0.2, 13.60 ⁇ 0.2, 13.96 ⁇ 0.2, 15.50 ⁇ 0.2, 17.03 ⁇ 0.2, 17.80 ⁇ 0.2, 19.34 ⁇ 0.2, 20.93 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form G is selected from 6 or more or all of the groups G-1 and G-2 (such as 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, etc.) have peaks at the 2 ⁇ (°) values.
  • the X-ray powder diffraction pattern of the crystal form G has a peak at the 2 ⁇ (°) value shown in Table G1, and the relative intensity of each peak is shown in Table G1:
  • the X-ray powder diffraction pattern of the crystalline form G is basically characterized in FIG. 7.
  • the polymorph is the H-1 crystal of the succinate of the compound of formula X, that is, the crystal form H-1, and its X-ray powder diffraction pattern is in the diffraction angle 2 ⁇ of the following group H-1-1 There is a peak at the (°) value: 21.70 ⁇ 0.2.
  • the polymorph is the H-1 type crystal of the succinate of the compound of formula X, that is, the crystal form H-1, and its X-ray powder diffraction pattern is basically as shown in Figure 8-1.
  • the polymorph is the H-2 crystal of the succinate of the compound of formula X, that is, the crystal form H-2, and its X-ray powder diffraction pattern is in the lower group H-2-1 at the diffraction angle 2 ⁇ There are peaks at the (°) value: 19.78 ⁇ 0.2, 21.63 ⁇ 0.2, 25.96 ⁇ 0.2, 31.23 ⁇ 0.2.
  • the polymorph is the H-2 type crystal of the succinate of the compound of formula X, that is, the crystal form H-2, and its X-ray powder diffraction pattern is basically as shown in Figure 8-2.
  • the polymorph is the H-3 crystal of the succinate of the compound of formula X, that is, the crystal form H-3, and its X-ray powder diffraction pattern is in the lower group H-3-1 at the diffraction angle 2 ⁇ There are peaks at the (°) value: 12.20 ⁇ 0.2, 19.72 ⁇ 0.2, 19.84 ⁇ 0.2, 25.82 ⁇ 0.2, 31.21 ⁇ 0.2.
  • the polymorph is the H-3 type crystal of the succinate of the compound of formula X, that is, the crystal form H-3, and its X-ray powder diffraction pattern is basically characterized in Figure 8-3.
  • the polymorph is the crystalline form I of the compound of formula X, and its X-ray powder diffraction pattern has peaks at the diffraction angle 2 ⁇ (°) value of the following group I-1: 16.01 ⁇ 0.2, 18.64 ⁇ 0.2, 20.27 ⁇ 0.2, 21.40 ⁇ 0.2, 22.84 ⁇ 0.2, 24.49 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystalline form I further includes two or more peaks at the diffraction angle 2 ⁇ (°) values selected from the following group I-2: 7.28 ⁇ 0.2, 12.23 ⁇ 0.2, 12.88 ⁇ 0.2, 13.55 ⁇ 0.2, 17.05 ⁇ 0.2, 17.83 ⁇ 0.2, 19.36 ⁇ 0.2, 26.06 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystalline form I further includes two or more peaks at the diffraction angle 2 ⁇ (°) values selected from the following group I-3: 8.83 ⁇ 0.2, 9.48 ⁇ 0.2, 10.39 ⁇ 0.2, 13.94 ⁇ 0.2, 15.58 ⁇ 0.2, 25.19 ⁇ 0.2, 28.02 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form I is selected from 6 or more or all of the groups I-1, I-2 and I-3 (such as 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, etc.) have peaks at the 2 ⁇ (°) values.
  • the X-ray powder diffraction pattern of the crystal form I has a diffraction angle 2 ⁇ (°) value of 7.28 ⁇ 0.2, 12.23 ⁇ 0.2, 12.88 ⁇ 0.2, 13.55 ⁇ 0.2, 16.01 ⁇ 0.2, 17.05 ⁇ 0.2, 17.83 ⁇ 0.2, 18.64 ⁇ 0.2, 19.36 ⁇ 0.2, 20.27 ⁇ 0.2, 21.40 ⁇ 0.2, 22.84 ⁇ 0.2, 24.49 ⁇ 0.2, 26.06 ⁇ 0.2 have peaks.
  • the X-ray powder diffraction pattern of the crystal form I has a diffraction angle 2 ⁇ (°) value of 7.28 ⁇ 0.2, 9.48 ⁇ 0.2, 12.23 ⁇ 0.2, 12.88 ⁇ 0.2, 13.55 ⁇ 0.2, 13.94 ⁇ 0.2, 15.58 ⁇ 0.2, 16.01 ⁇ 0.2, 17.05 ⁇ 0.2, 17.83 ⁇ 0.2, 18.64 ⁇ 0.2, 19.36 ⁇ 0.2, 20.27 ⁇ 0.2, 21.40 ⁇ 0.2, 22.84 ⁇ 0.2, 24.49 ⁇ 0.2, 26.06 ⁇ 0.2, 28.02 ⁇ 0.2 have peaks .
  • the X-ray powder diffraction pattern of the crystal form I has a peak at the 2 ⁇ (°) value shown in Table I1, and the relative intensity of each peak is shown in Table I1:
  • the X-ray powder diffraction pattern of the crystalline form I is basically characterized in Figure 9-1.
  • the crystalline form I has a differential scanning calorimetry (DSC) spectrum substantially the same as that shown in FIG. 9-3.
  • DSC differential scanning calorimetry
  • the crystal form I has substantially the same thermogravimetric analysis (TGA) pattern as shown in FIG. 9-2.
  • TGA thermogravimetric analysis
  • the polymorph is the crystalline form II of the compound of formula X, and its X-ray powder diffraction pattern has peaks at the diffraction angle 2 ⁇ (°) value of group II-1: 7.32 ⁇ 0.2, 9.84 ⁇ 0.2, 13.56 ⁇ 0.2, 17.47 ⁇ 0.2, 22.73 ⁇ 0.2, 24.37 ⁇ 0.2, 25.09 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form II further includes two or more peaks at the diffraction angle 2 ⁇ (°) values selected from the group II-2: 12.37 ⁇ 0.2, 12.82 ⁇ 0.2, 13.89 ⁇ 0.2, 15.53 ⁇ 0.2, 15.98 ⁇ 0.2, 17.03 ⁇ 0.2, 17.82 ⁇ 0.2, 18.64 ⁇ 0.2, 19.20 ⁇ 0.2, 19.84 ⁇ 0.2, 20.20 ⁇ 0.2, 20.30 ⁇ 0.2, 21.36 ⁇ 0.2, 24.01 ⁇ 0.2 , 29.84 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form II is selected from 6 or more or all of the group II-1 and II-2 (such as 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, etc.) have peaks at the 2 ⁇ (°) values.
  • the X-ray powder diffraction pattern of the crystal form II has a diffraction angle 2 ⁇ (°) value of 7.32 ⁇ 0.2, 9.84 ⁇ 0.2, 12.37 ⁇ 0.2, 13.56 ⁇ 0.2, 15.53 ⁇ 0.2, 15.98 ⁇ 0.2, There are peaks at 17.03 ⁇ 0.2, 17.47 ⁇ 0.2, 17.82 ⁇ 0.2, 18.64 ⁇ 0.2, 20.20 ⁇ 0.2, 20.30 ⁇ 0.2, 21.36 ⁇ 0.2, 22.73 ⁇ 0.2, 24.37 ⁇ 0.2, 25.09 ⁇ 0.2, 29.84 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form II has a peak at the 2 ⁇ (°) value shown in Table II1, and the relative intensity of each peak is shown in Table II1:
  • the X-ray powder diffraction pattern of the crystal form II is basically characterized in FIG. 10.
  • the polymorph is the crystal form III of the compound of formula X, and its X-ray powder diffraction pattern has peaks at the diffraction angle 2 ⁇ (°) value of the lower group III-1: 9.52 ⁇ 0.2, 11.77 ⁇ 0.2 ⁇ 12.43 ⁇ 0.2 ⁇ 12.78 ⁇ 0.2 ⁇ 15.31 ⁇ 0.2 ⁇ 16.33 ⁇ 0.2 ⁇ 16.84 ⁇ 0.2 ⁇ 17.83 ⁇ 0.2 ⁇ 18.49 ⁇ 0.2 ⁇ 19.57 ⁇ 0.2 ⁇ 20.15 ⁇ 0.2 ⁇ 21.71 ⁇ 0.2 ⁇ 23.26 ⁇ 0.2 ⁇ 23.84 ⁇ 0.2 ⁇ 24.52 ⁇ 0.2, 25.30 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form III further includes two or more peaks at the diffraction angle 2 ⁇ (°) values selected from the group III-2: 7.00 ⁇ 0.2, 8.35 ⁇ 0.2, 11.35 ⁇ 0.2, 13.65 ⁇ 0.2, 17.20 ⁇ 0.2, 22.18 ⁇ 0.2, 22.60 ⁇ 0.2, 25.70 ⁇ 0.2, 28.33 ⁇ 0.2, 29.77 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form III is selected from 6 or more or all of the groups III-1 and III-2 (such as 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, etc.) have peaks at the 2 ⁇ (°) values.
  • the X-ray powder diffraction pattern of the crystal form II has a diffraction angle 2 ⁇ (°) value of 8.35 ⁇ 0.2, 9.52 ⁇ 0.2, 11.35 ⁇ 0.2, 11.77 ⁇ 0.2, 12.43 ⁇ 0.2, 12.78 ⁇ 0.2, 13.65 ⁇ 0.2 ⁇ 15.31 ⁇ 0.2 ⁇ 16.33 ⁇ 0.2 ⁇ 16.84 ⁇ 0.2 ⁇ 17.20 ⁇ 0.2 ⁇ 17.83 ⁇ 0.2 ⁇ 18.49 ⁇ 0.2 ⁇ 19.57 ⁇ 0.2 ⁇ 20.15 ⁇ 0.2 ⁇ 21.71 ⁇ 0.2 ⁇ 22.18 ⁇ 0.2 ⁇ 22.60 ⁇ 0.2 ⁇ 23.26 ⁇ There are peaks at 0.2, 23.84 ⁇ 0.2, 24.52 ⁇ 0.2, 25.30 ⁇ 0.2, 25.70 ⁇ 0.2, 28.33 ⁇ 0.2, 29.77 ⁇ 0.2.
  • the X-ray powder diffraction pattern of the crystal form III has a peak at the 2 ⁇ (°) value shown in Table III1, and the relative intensity of each peak is shown in Table III1:
  • the X-ray powder diffraction pattern of the crystal form III is basically characterized as shown in FIG. 11.
  • the preparation method of the pharmaceutically acceptable salt of the compound of formula X or its polymorph includes the steps:
  • step (1) the compound of formula X is reacted with an acid in the presence of a solvent, and the solvent is selected from the group consisting of water, acetonitrile, ethanol, isopropanol, acetone, ethyl acetate Ester, methyl tert-butyl ether, tetrahydrofuran, n-heptane, dimethyl sulfoxide.
  • the compound of formula X is reacted with an acid in the presence of a solvent, and the solvent is isopropanol, acetone, ethyl acetate, or acetonitrile.
  • the acid is selected from hydrochloric acid, sulfuric acid, hydrobromic acid, phosphoric acid, methanesulfonic acid, L-tartaric acid, fumaric acid and succinic acid.
  • the crystallization treatment method is suspension centrifugation, suspension stirring, slow volatilization, and cooling crystallization.
  • the preparation method of crystal form A includes the following steps:
  • step (A-2) Hydrochloric acid is added to the mixture of step (A1), heated, suspended, stirred, cooled, and separated to obtain crystal form A.
  • the solvent is selected from ethyl acetate, acetone and acetonitrile.
  • step (A-2) the molar ratio of hydrochloric acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (A-2), the molar ratio of hydrochloric acid to the compound of formula X is (1-2):1. In another embodiment, in step (A-2), the molar ratio of hydrochloric acid to the compound of formula X is 1.2:1.
  • step (A-2) the concentration of hydrochloric acid is 0.25M-1M, for example, 1M.
  • step (A-2) heating, suspending, stirring, and then cooling, solids precipitate out.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (A-2) cooling to 0°C-30°C, for example, room temperature.
  • step (A-2) the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (A-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystal form B-1 includes the following steps:
  • step (B-1-2) Sulfuric acid is added to the mixture in step (B-1-1), heated, suspended, stirred, cooled, and separated to obtain crystal form B-1.
  • step (B-1-1) the solvent is isopropanol.
  • step (B-1-2) the molar ratio of sulfuric acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (B-1-2), the molar ratio of sulfuric acid to the compound of formula X is (1-2):1. In another embodiment, in step (B-1-2), the molar ratio of sulfuric acid to the compound of formula X is 1.2:1.
  • the concentration of sulfuric acid is 0.25M-1M, such as 0.5M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (B-1-2) cooling to 0°C-30°C, for example, room temperature.
  • the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (B-1-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystal form B-2 includes the following steps:
  • step (B-2-2) Sulfuric acid is added to the mixture of step (B-2-1), heated, suspended, stirred, cooled, and separated to obtain crystal form B-2.
  • the solvent is ethyl acetate or acetonitrile.
  • step (B-2-2) the molar ratio of sulfuric acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (B-2-2), the molar ratio of sulfuric acid to the compound of formula X is (1-2):1. In another embodiment, in step (B-2-2), the molar ratio of sulfuric acid to the compound of formula X is 1.2:1.
  • the concentration of sulfuric acid is 0.25M-1M, such as 0.5M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (B-2-2) cooling to 0°C-30°C, for example, room temperature.
  • the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (B-2-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystalline form B-3 includes the following steps:
  • step (B-3-2) Sulfuric acid is added to the mixture in step (B-3-1), heated, suspended, stirred, cooled, and separated to obtain crystal form B-3.
  • step (B-3-1) the solvent is acetone.
  • step (B-3-2) the molar ratio of sulfuric acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (B-3-2), the molar ratio of sulfuric acid to the compound of formula X is (1-2):1. In another embodiment, in step (B-3-2), the molar ratio of sulfuric acid to the compound of formula X is 1.2:1.
  • the concentration of sulfuric acid is 0.25M-1M, such as 0.5M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (B-3-2) cooling to 0°C-30°C, for example, room temperature.
  • the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (B-3-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystal form C includes the following steps:
  • step (C-2) Hydrobromic acid is added to the mixture in step (C-1), heated, suspended, stirred, cooled, and separated to obtain crystal form C.
  • the solvent is ethyl acetate, acetone or acetonitrile.
  • step (C-2) the molar ratio of hydrobromic acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (C-2), the molar ratio of hydrobromic acid to the compound of formula X is (1-2):1. In another embodiment, in step (C-2), the molar ratio of hydrobromic acid to the compound of formula X is 1.2:1.
  • the concentration of hydrobromic acid is 0.25M-1M, for example, 1M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • step (C-2) the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (C-2) cooling to 0°C-30°C, for example, room temperature.
  • step (C-2) the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (C-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystal form D includes the following steps:
  • step (D-2) Phosphoric acid is added to the mixture in step (D-1), heated, suspended, stirred, cooled, and separated to obtain crystal form D.
  • step (D-1) the solvent is ethyl acetate.
  • step (D-2) the molar ratio of phosphoric acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (D-2), the molar ratio of phosphoric acid to the compound of formula X is (1-2):1. In another embodiment, in step (D-2), the molar ratio of phosphoric acid to the compound of formula X is 1.2:1.
  • step (D-2) the concentration of phosphoric acid is 0.25M-1M, for example, 1M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • step (D-2) the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (D-2) cooling to 0°C-30°C, for example, room temperature.
  • step (D-2) the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (D-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystal form E-1 includes the following steps:
  • step (E-1-2) Adding methanesulfonic acid to the mixture in step (E-1-1), heating, suspending, stirring, cooling, and separating to obtain crystal form E-1.
  • step (E-1-1) the solvent is isopropanol.
  • step (E-1-2) the molar ratio of methanesulfonic acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (E-1-2), the molar ratio of methanesulfonic acid to the compound of formula X is (1-2):1. In another embodiment, in step (E-1-2), the molar ratio of methanesulfonic acid to the compound of formula X is 1.2:1.
  • the concentration of methanesulfonic acid is 0.25M-1M, for example, 1M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (E-1-2) cooling to 0°C-30°C, for example, room temperature.
  • the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (E-1-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystal form E-2 includes the following steps:
  • step (E-2-2) Methanesulfonic acid was added to the mixture of step (E-2-1), heated, suspended, stirred, cooled, and separated to obtain crystal form E-2.
  • step (E-2-1) the solvent is ethyl acetate or acetone.
  • step (E-2-2) the molar ratio of methanesulfonic acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (E-2-2), the molar ratio of methanesulfonic acid to the compound of formula X is (1-2):1. In another embodiment, in step (E-2-2), the molar ratio of methanesulfonic acid to the compound of formula X is 1.2:1.
  • the concentration of methanesulfonic acid is 0.25M-1M, for example, 1M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (E-2-2) cooling to 0°C-30°C, for example, room temperature.
  • the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (E-2-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystal form F includes the following steps:
  • step (F-2) Tartaric acid is added to the mixture of step (F-1), heated, suspended, stirred, cooled, and separated to obtain crystal form F.
  • step (F-1) the solvent is ethyl acetate.
  • step (F-2) the molar ratio of tartaric acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (F-2), the molar ratio of tartaric acid to the compound of formula X is (1-2):1. In another embodiment, in step (F-2), the molar ratio of tartaric acid to the compound of formula X is 1.2:1.
  • step (F-2) the concentration of tartaric acid is 0.25M-1M, for example, 1M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • step (F-2) the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (F-2) cooling to 0°C-30°C, for example, room temperature.
  • step (F-2) the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (F-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystal form G includes the following steps:
  • step (G-2) Add fumaric acid to the mixture of step (G-1), heat and stir, cool, and separate to obtain crystal form G.
  • the solvent is isopropanol, acetonitrile, ethyl acetate, tetrahydrofuran or acetone.
  • step (G-2) after cooling, an anti-solvent or variety is added.
  • step (G-2) the anti-solvent is methyl tert-butyl ether.
  • step (G-2) the molar ratio of fumaric acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (G-2), the molar ratio of fumaric acid to the compound of formula X is (1-2):1. In another embodiment, in step (G-2), the molar ratio of fumaric acid to the compound of formula X is 1.2:1.
  • step (G-2) the concentration of fumaric acid is 0.25M-1M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (G-2) cooling to 0°C-30°C, for example, room temperature.
  • step (G-2) the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (G-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystalline form H-1 includes the following steps:
  • step (H-1-2) Succinic acid is added to the mixture in step (H-1-1), heated, suspended, stirred, cooled, and separated to obtain crystal form H-1.
  • step (H-1-1) the solvent is isopropanol or acetonitrile.
  • step (H-1-2) the molar ratio of succinic acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (H-1-2), the molar ratio of succinic acid to the compound of formula X is (1-2):1. In another embodiment, in step (H-1-2), the molar ratio of succinic acid to the compound of formula X is 1.2:1.
  • the concentration of succinic acid is 0.25M-1M, such as 0.5M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (H-1-2) cooling to 0°C-30°C, for example, room temperature.
  • the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (H-1-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystalline form H-2 includes the following steps:
  • step (H-2-2) Succinic acid is added to the mixture of step (H-2-1), heated, suspended, stirred, cooled, and separated to obtain crystal form H-2.
  • step (H-2-1) the solvent is ethyl acetate.
  • step (H-2-2) the molar ratio of succinic acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (H-2-2), the molar ratio of succinic acid to the compound of formula X is (1-2):1. In another embodiment, in step (H-2-2), the molar ratio of succinic acid to the compound of formula X is 1.2:1.
  • the concentration of succinic acid is 0.25M-1M, such as 0.5M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (H-2-2) cooling to 0°C-30°C, for example, room temperature.
  • the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (H-2-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystalline form H-3 includes the following steps:
  • step (H-3-2) Succinic acid is added to the mixture of step (H-3-1), heated, suspended, stirred, cooled, and separated to obtain crystal form H-3.
  • step (H-3-1) the solvent is acetone.
  • step (H-3-2) the molar ratio of succinic acid to the compound of formula X is (0.2-2.5):1. In another embodiment, in step (H-3-2), the molar ratio of succinic acid to the compound of formula X is (1-2):1. In another embodiment, in step (H-3-2), the molar ratio of succinic acid to the compound of formula X is 1.2:1.
  • the concentration of succinic acid is 0.25M-1M, such as 0.5M.
  • the heating temperature is 25°C-60°C, for example, 40°C-60°C.
  • the heating time is 0.5-12 hours, for example, 3-8 hours.
  • step (H-3-2) cooling to 0°C-30°C, for example, room temperature.
  • the cooling time is 0.5-30 hours, for example, 12-24 hours.
  • step (H-3-2) the separation is performed by centrifugal separation or filtration.
  • the preparation method of crystal form I includes the following steps:
  • step (I-1-2) Suspend the mixture of step (I-1-1) by centrifugation or suspension stirring for separation to obtain crystal form I.
  • the solvent is water, n-heptane or methyl tert-butyl ether.
  • step (I-1-1) and step (I-1-2) are performed at room temperature.
  • the preparation method of crystal form I includes the following steps:
  • step (I-2-2) Suspend and shake the mixture of step (I-2-1) for separation to obtain crystal form I.
  • the solvent is water, acetonitrile, isopropanol, acetone, ethyl acetate, tetrahydrofuran, n-heptane or methyl tert-butyl ether.
  • step (I-2-2) is performed at room temperature.
  • the shaking time is 1-48 hours, such as 24-48 hours.
  • the preparation method of crystal form I includes the following steps:
  • step (I-3-2) Suspend and shake the mixture of step (I-3-1) for separation to obtain crystal form I.
  • the solvent is acetonitrile, acetone, ethyl acetate or tetrahydrofuran.
  • step (I-3-2) is performed at 40°C-60°C, for example, 50°C.
  • the shaking time is 1-48 hours, such as 24-48 hours.
  • the preparation method of crystal form I includes the following steps:
  • step (I-4-2) The mixture of step (I-4-1) is crystallized by cooling and separated to obtain crystal form I.
  • the solvent is isopropanol, acetone or tetrahydrofuran.
  • step (I-4-1) is performed at 30°C-60°C, for example, 40°C-60°C.
  • step (I-4-2) is performed at 0°C to room temperature.
  • the preparation method of crystal form II includes the following steps:
  • step (II-1-2) Slowly volatilize the solution of step (II-1-1), and separate solid after precipitation to obtain crystal form II.
  • step (II-1-1) the solvent is isopropanol.
  • step (II-1-1) and step (II-1-2) are performed at room temperature.
  • the preparation method of crystal form II includes the following steps:
  • step (II-2-2) Suspend and shake the mixture of step (II-2-1) for separation to obtain crystal form II.
  • step (II-2-1) the solvent is isopropanol.
  • step (II-2-2) is performed at 40°C-60°C, for example, 50°C.
  • the shaking time is 1-48 hours, such as 24-48 hours.
  • the preparation method of crystalline form IIII includes the following steps:
  • step (III-1-2) Suspend and shake the mixture of step (III-1-1) and separate to obtain crystal form III.
  • step (III-1-1) the solvent is ethanol.
  • step (III-1-2) is performed at 20°C-60°C, for example, room temperature to 50°C.
  • the shaking time is 1-48 hours, such as 24-48 hours.
  • the preparation method of crystal form III includes the following steps:
  • step (III-2-2) The mixture of step (III-2-1) is crystallized by cooling and separated to obtain crystal form III.
  • step (III-2-1) the solvent is ethanol.
  • step (III-2-1) is performed at 40°C-60°C.
  • step (III-2-2) is carried out at 0°C to room temperature.
  • the third aspect of the present invention provides a pharmaceutical composition, the pharmaceutical composition comprising:
  • the fourth aspect of the present invention provides a pharmaceutically acceptable salt of the compound of formula X according to the first aspect of the present invention, or a polymorph of the compound of formula X or a pharmaceutically acceptable salt thereof, or the third aspect of the present invention Application of the pharmaceutical composition in the preparation of kinase inhibitors.
  • the kinase inhibitor is a BTK inhibitor.
  • the fifth aspect of the present invention provides a pharmaceutically acceptable salt of the compound of formula X according to the first aspect of the present invention, or a polymorph of the compound of formula X or a pharmaceutically acceptable salt thereof, or the third aspect of the present invention Application of the pharmaceutical composition in the preparation of drugs for treating and/or preventing diseases mediated by B cells.
  • the sixth aspect of the present invention provides a method for treating diseases mediated by B cells, comprising administering to a patient a therapeutically effective amount of the pharmaceutically acceptable salt of the compound of formula X according to the first aspect of the present invention, or formula X Polymorphs of the compound or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition according to the third aspect of the present invention.
  • the disease mediated by B cells is selected from: tumor disease, proliferative disease, allergic disease, autoimmune disease, or inflammatory disease.
  • the disease mediated by B cells is selected from: solid tumor, acute lymphocytic leukemia, chronic lymphocytic leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, rheumatoid arthritis, psoriatic arthritis , Osteoarthritis, Systemic Lupus Erythematosus, Psoriasis, Rheumatoid Spondylitis and Gouty Arthritis.
  • the disease mediated by B cells is a solid tumor.
  • the solid tumor is at least one selected from lymphoma, soft tissue sarcoma, lymphocytic lymphoma, mantle cell lymphoma, melanoma, and multiple myeloma.
  • crystals of the present invention As used in the present invention, “crystals of the present invention”, “crystal forms of the present invention”, “polymorphs of the present invention” and the like can be used interchangeably.
  • the compound of formula X is (R)-6-((1-acryloylpiperidin-3-yl)amino)-7-fluoro-4-((2-fluoro-4-morpholinophenyl) )Amino)-1,2-dihydro-3H-pyrrolo[3,4-c]pyridin-3-one, which has high inhibitory activity on BTK WT kinase and ⁇ BTK Y223 cells, and has a higher inhibitory activity on wild-type EGFR kinase Lower inhibitory activity. Therefore, it has selective inhibitory activity on BTK and WT kinase.
  • the present invention also includes a pharmaceutically acceptable salt of the compound of formula X, or a polymorph of the compound of formula X or a pharmaceutically acceptable salt thereof.
  • the pharmaceutically acceptable salt is selected from the following group: hydrochloride, sulfate, hydrobromide, phosphate, methanesulfonate, maleate, L-tartrate, lemon Salt, fumarate, succinate.
  • Solids exist either in amorphous form or in crystalline form.
  • the molecules are positioned within a three-dimensional character position.
  • polymorphism When a compound crystallizes from a solution or slurry, it can crystallize in different spatial lattice arrangements (this property is called "polymorphism") to form crystals with different crystalline forms.
  • These various crystalline forms are Called "polymorphs". Different polymorphs of a given substance may differ from each other in one or more physical properties (such as solubility and dissolution rate, true specific gravity, crystal shape, packing method, fluidity, and/or solid state stability).
  • the solubility limit of the compound of interest can be exceeded by manipulating the solution, thereby completing production-scale crystallization. This can be done in a variety of ways, such as dissolving the compound at a relatively high temperature and then cooling the solution below the saturation limit. Or through boiling, atmospheric pressure evaporation, vacuum drying or some other methods to reduce the liquid volume.
  • the solubility of the compound of interest can be reduced by adding an antisolvent or a solvent in which the compound has low solubility, or a mixture of such solvents. Another alternative is to adjust the pH to reduce solubility.
  • crystallization please refer to Crystallization, Third Edition, JW Mullens, Butterworth-Heineman Ltd., 1993, ISBN 0750611294.
  • the "suspension stirring" in the present invention refers to mixing the compound of formula X and the corresponding acid or the solution of the corresponding acid in a suitable solvent to form a turbid liquid, or mixing the compound of formula X with a suitable solvent to form a turbid liquid and then stirring to obtain A method of crystals.
  • suitable solvents can be water or organic solvents.
  • the “slow volatilization” in the present invention refers to a method of placing the solution of the compound of formula X or the solution containing the compound of formula X and the corresponding acid at a certain temperature to slowly evaporate the solvent to obtain crystals.
  • addition of anti-solvent refers to a method of adding another suitable solvent to a solution of the compound of formula X to obtain crystals by precipitation.
  • salt formation and crystallization are desired to occur at the same time, if the salt is less soluble in the reaction medium than the raw materials, then the addition of an appropriate acid or base can lead to direct crystallization of the desired salt. Similarly, in a medium with less solubility than the reactants in the final desired form, the completion of the synthesis reaction can directly crystallize the final product.
  • the optimization of crystallization may include seeding the crystal in the crystallization medium with crystals of the desired form as a variety.
  • many crystallization methods use a combination of the above strategies.
  • One example is to dissolve the compound of interest in a solvent at high temperature, and then add an appropriate volume of anti-solvent in a controlled manner so that the system is just below the saturation level. At this point, you can add the variety of the desired form (and maintain the integrity of the variety), and cool the system to complete crystallization.
  • room temperature generally refers to 4°C to 30°C, such as 20 ⁇ 5°C.
  • polymorph of the present invention includes the compound of formula X or a pharmaceutically acceptable salt (such as hydrochloride, fumarate), or polymorphs of various solvates thereof , Also includes different polymorphs of the same salt or solvate.
  • the polymorphs of the present invention include (but are not limited to):
  • the method of determining the X-ray powder diffraction of the crystal form is known in the art. For example, use an X-ray powder diffractometer with a scanning speed of 2° per minute and a copper radiation target to obtain the spectrum.
  • the polymorph of the compound of formula X of the present invention or a pharmaceutically acceptable salt thereof has a specific crystal form and has specific characteristic peaks in X-ray powder diffraction (XRPD) patterns.
  • DSC Different Calorimetric Scanning Analysis
  • the polymorph of the compound of formula X of the present invention or a pharmaceutically acceptable salt thereof can be administered in a suitable dosage form with one or more pharmaceutical carriers.
  • dosage forms are suitable for oral, rectal, topical, intraoral, and other parenteral administration (for example, subcutaneous, intramuscular, intravenous, etc.).
  • dosage forms suitable for oral administration include capsules, tablets, granules, and syrups.
  • the compounds of the present invention contained in these formulations may be solid powders or granules; solutions or suspensions in aqueous or non-aqueous liquids; water-in-oil or oil-in-water emulsions, and the like.
  • the above-mentioned dosage forms can be prepared from the active compound and one or more carriers or excipients through general pharmaceutical methods.
  • the above-mentioned carrier needs to be compatible with the active compound or other excipients.
  • commonly used non-toxic carriers include but are not limited to mannitol, lactose, starch, magnesium stearate, cellulose, glucose, sucrose and the like.
  • Carriers for liquid preparations include water, physiological saline, aqueous dextrose, ethylene glycol, polyethylene glycol, and the like.
  • the active compound can form a solution or a suspension with the aforementioned carriers.
  • composition of the present invention is formulated, quantified and administered in a manner that conforms to medical practice standards.
  • the "effective amount" of the compound administered is determined by factors such as the specific condition to be treated, the individual to be treated, the cause of the condition, the target of the drug, and the mode of administration.
  • the present invention provides that the pharmaceutically acceptable salt of the compound of formula X according to the first aspect of the present invention, or the polymorph of the compound of formula X or its pharmaceutically acceptable salt can be used to prepare BTK inhibitors or treat BTK-related diseases medicine.
  • the BTK-related disease is cancer, abnormal cell proliferation disease, infection, inflammatory disease, autoimmune disease, cardiovascular disease, neurodegenerative disease, hematopoietic toxic disease caused by radiation, or a combination thereof.
  • the cancer is breast cancer, ovarian cancer, prostate cancer, melanoma, brain tumor, esophageal cancer, stomach cancer, liver cancer, pancreatic cancer, colorectal cancer, lung cancer, kidney cancer, skin cancer, glioblastoma, nerve Blastoma, sarcoma, liposarcoma, osteochondroma, osteoma, osteosarcoma, seminoma, testicular tumor, uterine cancer, head and neck tumor, multiple myeloma, malignant lymphoma, polycythemia vera, leukemia, thyroid Tumor, ureteral tumor, bladder tumor, gallbladder cancer, cholangiocarcinoma, choriocarcinoma or pediatric tumor, or any combination thereof.
  • the breast cancer is HR-positive, HER2-negative advanced breast cancer.
  • therapeutically effective amount refers to an amount that can produce function or activity on humans and/or animals and can be accepted by humans and/or animals.
  • pharmaceutically acceptable carrier refers to a non-toxic, inert, solid, semi-solid substance or liquid filling machine, diluent, encapsulating material or auxiliary preparation or any type of excipient, which is compatible with the patient and most It is preferably a mammal, such as a human, which is suitable for delivering the active agent to the target target without terminating the activity of the agent.
  • patient refers to an animal, preferably a mammal, and more preferably a human.
  • mammal refers to warm-blooded spinal mammals, including cats, dogs, rabbits, bears, foxes, wolves, monkeys, deer, rats, pigs, and humans.
  • treating refers to reducing, delaying progression, attenuating, preventing, or maintaining an existing disease or condition (e.g., cancer). Treatment also includes curing one or more symptoms of the disease or condition, preventing its development, or alleviating to a certain degree.
  • the therapeutically effective amount of the pharmaceutically acceptable salt of the compound of formula X, or the polymorph of the compound of formula X or its pharmaceutically acceptable salt contained in the pharmaceutical composition of the present invention or the pharmaceutical composition may be 0.1 mg-5g/kg (body weight).
  • the structure and purity of the compound are determined by nuclear magnetic resonance ( 1 HNMR) and/or liquid mass spectrometry (LC-MS).
  • 1HNMR BrukerAVANCE-400 nuclear magnetometer, the internal standard is tetramethylsilane (TMS).
  • LC-MS Agilent 1200 HPLC System, 6140 MS liquid mass spectrometer (purchased from Agilent), column WatersX-Bridge, 150 ⁇ 4.6mm, 3.5 ⁇ m.
  • ISCO Combiflash-Rf75 or Rf200 type automatic column passing instrument Agela 4g, 12g, 20g, 40g, 80g, 120g disposable silica gel column.
  • the thin layer chromatography silica gel plate uses Yantai Huanghai HSGF254 or Qingdao GF254 silica gel plate, thin layer chromatography (TLC), the size of the silica gel plate used for the detection reaction is 0.15mm-0.2mm, and the silica gel used for the separation and purification of products by thin layer chromatography The size of the board is 0.4mm-0.5mm.
  • the silica gel generally uses Yantai Huanghai silica gel 200-300 mesh silica gel as the carrier.
  • Basic alumina columns generally use FCP200-300 mesh basic alumina for chromatography as a carrier.
  • DCM dichloromethane
  • DMF means dimethylformamide
  • DMSO means dimethyl sulfoxide
  • THF means tetrahydrofuran
  • DIPA means diisopropylamine
  • DIPEA or DIEA means N,N-diisopropylethylamine
  • NMP stands for N-methylpyrrolidone
  • n-BuLi stands for n-butyllithium
  • NaBH(OAc) 3 stands for sodium triacetoxyborohydride
  • Xantphos stands for 4,5-bis(diphenylphosphine)-9,9- Dimethylxanthene
  • Xphos means 2-dicyclohexylphosphorus-2',4',6'-triisopropylbiphenyl
  • TFA means trifluoroacetic acid
  • EA means ethyl acetate
  • PE means petroleum ether.
  • BINAP stands for (2R, 3S)-2,2'-bisdiphenylphosphino-1,1'-binaphthyl
  • NBS stands for N-bromosuccinimide
  • NCS stands for N-chlorosuccinimide
  • Pd 2 (dba) 3 represents tris(dibenzylideneacetone) dipalladium
  • Pd(dppf)Cl 2 represents [1,1'-bis(diphenylphosphorus)ferrocene] palladium dichloride
  • Et 3 SiH represents triethylsilane.
  • Acetonitrile ACN methanol MeOH, ethanol EtOH, isopropanol IPA, acetone ACE, ethyl acetate EA, methyl tert-butyl ether MTBE, tetrahydrofuran THF, water H20, 50% acetonitrile 50% ACN.
  • room temperature refers to about 20 ⁇ 5°C.
  • the powder X-ray diffraction pattern of the above-mentioned crystal form is obtained by a method known in the art using a D8 ADVANCE X-ray powder diffraction analyzer.
  • the instrument test conditions are shown in the following table:
  • the position of each peak is determined by 2 ⁇ (°). It can be understood that different instruments and/or conditions may cause slightly different data generated, and the position and relative intensity of each peak may vary. The intensity division of the peak only reflects the approximate size of the peak at each location.
  • each crystal form takes the diffraction peak with the highest peak height as the base peak, defines its relative intensity as 100%, as I 0 (the peak with the 2 ⁇ (°) value of form I 20.27 is the base peak, The peak with a 2 ⁇ (°) value of 7.32 for crystal form II is the base peak, the peak with a 2 ⁇ (°) value of 17.83 for crystal form III is the base peak, and the peak with a 2 ⁇ (°) value of 26.21 for crystal form A is the base peak.
  • the peak with a 2 ⁇ (°) value of 17.59 of crystal form B-1 is the base peak, the peak with a 2 ⁇ (°) value of 26.32 of crystal form B-2 is the base peak, and the 2 ⁇ (°) value of crystal form B-3
  • the peak at 17.03 is the base peak
  • the peak with the 2 ⁇ (°) value of form C is 25.87
  • the peak with the 2 ⁇ (°) value of form D 26.38 is the base peak
  • the peak with 2 ⁇ (°) of form E-1
  • the peak with a value of 17.80 is the base peak
  • the peak with a 2 ⁇ (°) value of 17.80 of crystal form E-2 is the base peak
  • the peak with a 2 ⁇ (°) value of 18.58 of crystal form F is the base peak
  • the peak of crystal form G The peak with a 2 ⁇ (°) value of 28.48 is the base peak
  • the peak with a 2 ⁇ (°) value of 21.70 of the crystal form H-1 is the base peak
  • the peak with a 2 ⁇ (°) value of 19.78 of the crystal form H-2 is the base peak.
  • Peak, the 2 ⁇ (°) value of crystalline form H-3 is the peak of 25.82 as the base peak), and the ratio of the peak height to the peak height of the base peak is used as the relative intensity I/I 0 of the other peaks.
  • the division definition is shown in the following table:
  • the salt or crystal form of the present invention is used to determine the acid-base molar ratio by HPLC/IC or 1 H NMR.
  • High performance liquid chromatography In the present invention, high performance liquid chromatography (HPLC) is collected on Agilent 1260 HPLC.
  • TGA and DSC spectra were collected on TA Q500/5000 thermogravimetric analyzer and TA Q200/2000 differential scanning calorimeter respectively. The instrument test conditions are shown in the following table:
  • Dynamic moisture adsorption (DVS) curve collected on DVS Intrinsic of SMS (Surface Measurement Systems). The relative humidity at 25°C is corrected by the deliquescent point of LiCl, Mg(NO 3 ) 2 and KCl. The instrument test conditions are shown in the following table:
  • Step 1 Compound 1a-1 (6.0g, 30.0mmol) in THF (80mL) solution was added n-BuLi (27mL, 66mmol) and DIPA (6.6g, 66mmol) at -78°C, the mixture was stirred for 1h and then DMF( 10mL) and warmed to room temperature to continue stirring for 2h. LC-MS tracked until the reaction was complete. HCl (2N) was added to the system to adjust the pH to 5-6, extracted with ethyl acetate, the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, concentrated, and purified by column chromatography to obtain 6.8 g of compound 1a-2. MS m/z (ESI): 238 [M+H] + .
  • Step 2 Compound 1a-2 (6.8g, 30.0mmol) of 1,4-dioxane (80mL) was added to compound 1a.1 (15g, 90.0mmol), acetic acid (2mL) and NaBH(OAc) 3 (18.9 g, 90.0 mmol), and the mixture was stirred at 50°C overnight. LC-MS tracked until the reaction was complete. The reaction solution was evaporated to dryness under reduced pressure, washed with saturated brine, extracted with DCM, the organic layer was dried, concentrated, and purified by column chromatography to obtain 4.8 g of compound 1a. MS m/z (ESI): 371 [M+H] + .
  • Step 1 Add compound 1b-1 (1.5g, 5.17mmol), morpholine (470mg, 5.39mmol), Pd 2 (dba) 3 (210mg, 0.23mmol), Xphos (240mg, 0.503mmol) into a 100mL three-necked flask ), a 1,4-dioxane (20 mL) solution of cesium carbonate (3.38 g, 10.37 mmol) and react at 110° C. for 3 hours. LC-MS tracked until the reaction was complete.
  • Step 2 Compound 1b-2 (1.38 g, 4.659 mmol), methanol (20 mL) and HCl/1,4-dioxane (4M, 10 mL) were added to a 100 mL flask, and the mixture was stirred at room temperature overnight. The reaction solution was concentrated under reduced pressure to remove the solvent, the residue was washed with saturated sodium bicarbonate, extracted with dichloromethane, the organic layer was dried and concentrated for 900 mg to obtain a yellow solid compound 1b. MS m/z (ESI): 197.2 [M+H] + .
  • Step 1 A NMP (10 mL) solution of compound 1a (740 mg, 2 mmol) was added to compound 2.1 (600 mg, 3 mmol) and DIPEA (780 mg, 6 mmol), and the mixture was microwaved at 180° C. for 30 min under an argon atmosphere. LC-MS tracked until the reaction was complete. The reaction solution was cooled to room temperature, diluted with DCM, washed with water and saturated brine, and the organic layer was dried, concentrated, and purified by column chromatography to obtain 300 mg of compound X-1. MS m/z (ESI): 535 [M+H] + .
  • Step 2 Compound X-1 (250mg, 0.5mmol), Compound 1b (118mg, 0.6mmol), Pd 2 (dba) 3 (45mg, 0.05mmol), Xantphos (54mg, 0.1mmol), Cesium carbonate (326mg, 1mmol) ) 1,4-dioxane (15 mL) solution was microwaved at 160°C for 50 min under argon atmosphere. LC-MS tracked until the reaction was complete. The reaction solution was cooled to room temperature, diluted with EA, washed with water and saturated brine respectively, the organic layer was dried, concentrated, and purified by column chromatography to obtain 185 mg of compound X-2. MS m/z (ESI): 695.3 [M+H] + .
  • Step 3 To a solution of compound X-2 (185 mg, 0.27 mmol) in DCM (12 mL) was added TFA (4.5 mL). The mixture was stirred at room temperature for 1 h. LC-MS tracked until the reaction was complete. Most of the TFA was removed under reduced pressure, saturated sodium bicarbonate solution was added, the pH was adjusted to 7-8, DCM was extracted, the organic layers were combined, dried and concentrated to obtain compound X-3, which was directly used in the next reaction. MS m/z (ESI): 595.2 [M+H] + .
  • Step 4 A solution of compound X-3 (100 mg) in DCM (10 mL) was added acryloyl chloride (15.4 mg, 0.17 mmol) and DIPEA (66 mg, 0.51 mmol) under argon atmosphere. The mixture was stirred at room temperature for 2h. LC-MS tracked until the reaction was complete. The reaction solution was washed with saturated brine, extracted with DCM, the organic layer was dried and concentrated to obtain a crude product, which was purified by column chromatography to obtain 86 mg of compound X-4. MS m/z (ESI): 649 [M+H] + .
  • the obtained solid was sent to XRD for detection, and its powder X-ray diffraction pattern showed no characteristic peaks.
  • the powder X-ray diffraction pattern is shown in Figure 12 (the 2 ⁇ angle has been marked), which is an amorphous form.
  • the powder X-ray diffraction pattern of the obtained solid is shown in Figure 9-1 (the 2 ⁇ angle has been marked), and it is crystal form I.
  • the TGA pattern of the crystal form I is shown in Figure 9-2. According to the TGA pattern, the crystal form I has basically no weight loss below 250°C, and the stability is very good.
  • the DSC spectrum and DVS spectrum of the crystal form I are shown in Figure 9-3 and Figure 9-4, respectively, and the crystal form I has a moisture absorption weight gain of 0.22% at 90% RH, which is slightly hygroscopic.
  • the polarized microscope picture of crystal form I is shown in Figure 9-5.
  • the crystal form I is granular with a very small particle size of about a few microns.
  • the solvents used and the corresponding crystal forms obtained are shown in Table 3 and Table 4:
  • crystal form A Defined as crystal form A in this application.
  • the TGA spectrum of crystal form A is shown in Figure 1-2.
  • the weight loss of crystal form A is 5.9% during the heating process from about 50°C to 100°C, which may be due to the volatilization of organic solvents and the removal of hydrochloric acid;
  • the weight of the crystal form A is further reduced when the temperature is raised to about 160°C, which should be due to the decomposition of the compound, and the hydrochloride is unstable at high temperatures.
  • the DSC spectrum and DVS spectrum of the crystal form A are shown in Figures 1-3 and Figure 1-4, respectively.
  • the crystal form A has a moisture absorption weight gain of 7.509% at 90% RH, which is hygroscopic.
  • the polarized microscope picture of crystal form A is shown in Figure 1-5.
  • the crystal form A is granular with a very small particle size of a few microns.
  • the crystalline forms corresponding to various solvents are shown in Table 6.
  • the temperature is 50°C, the reaction time is 4-8h; after the reaction, the heating is stopped, the sample is slowly cooled to room temperature in a water bath, the reaction liquid becomes turbid, the turbid liquid sample is centrifuged (8000rpm, 10min) to discard the supernatant and then dried
  • the powder X-ray diffraction pattern of the obtained crystal is shown in Figure 1-1 (the 2 ⁇ angle has been marked), and the acid-base molar ratio is 1.2:1. Defined as crystal form A in this application.
  • the reaction conditions are shown in Table 7:
  • Form A undergoes accelerated conditions of 40°C/75%RH and high temperature conditions of 60°C for 8 days and 14 days, the content has no obvious change, and the compound is relatively stable. There is no change in the characteristic peaks of the XRD pattern, and the compound is stable in its original crystal form.
  • the XRD pattern showed that the amorphous form and the three crystal forms were transformed into crystal form I after suspension and shaking at 50°C for 1 day, at room temperature for 1 day and 7 days, and the crystal form I was a stable crystal form;
  • the XRD pattern showed that the amorphous and three crystal forms were transformed into crystal form I after suspension and shaking at 50°C for 1 day, at room temperature for 1 day and 7 days in acetonitrile, and crystal form I was a stable crystal form;
  • XRD patterns showed that the amorphous and three crystal forms were transformed into crystal form I after suspension and shaking at 50°C for 1 day, at room temperature for 1 day and 7 days in ethyl acetate, and crystal form I was a stable crystal form. ;
  • the XRD pattern showed that the amorphous and three crystal forms were transformed into crystal form I after suspension and shaking at 50°C for 1 day, at room temperature for 1 day and 7 days in isopropanol.
  • Form I was a stable crystal form. ;
  • XRD patterns showed that the amorphous and three crystal forms were transformed into crystalline form III after suspension and shaking at 50°C in ethanol for 1 day, at room temperature for 1 day and 7 days, and the compound of formula X was amorphous in ethanol. Crystallization through suspension, shaking and cooling will transform into crystal form III, so crystal form III is a stable crystal form in ethanol.
  • Sample condition content% relative substance% Form I/0 days 100.11 no 60°C-1 week 99.91 no 60°C-2 weeks 99.76 no
  • Form A tablets are prepared from the following components:
  • the crystalline form A and starch are mixed and sieved, and then mixed with the above-mentioned other components uniformly, and directly compressed.
  • Form I capsules are prepared from the following components:
  • the crystalline form I and starch are mixed and sieved, then mixed with the above-mentioned other components uniformly, and filled into ordinary gelatin capsules.
  • the compound was pre-dissolved in 100% DMSO. Dissolve a 10mM drug stock solution at room temperature, and dilute it stepwise with a 8vol% DMSO solution to a final concentration of 10-0.005 ⁇ M. 384-well plate (Corning 3676), add 2.5 ⁇ l of analyte solution and 2.5 ⁇ l of kinase (Invitrogen PV3363) diluted in reaction buffer to each well, and then add 5 ⁇ l of reaction buffer to dilute Fluososcei-PolyGT (Invitrogen PV3610) substrate The mixture with ATP (Invitrogen PV3227) starts the reaction.
  • the blank hole uses reaction buffer instead of kinase, and the kinase hole (Enzyme) does not add any drugs.
  • 10 ⁇ l Detection Solution Invitrogen PV3528 and EDTA mixture, dilute with TR-FRET dilution buffer, EDTA working concentration is 5mM, Lanthascreening Tb PY20 antibody working concentration is 0.2nM), and react for 30 minutes on a shaker at room temperature.
  • the plate was read on a VictorX5 fluorescence microplate reader (PerkinElmer), and the light absorption at the excitation wavelength of 340nm, emission wavelength of 500nm and 520nm was measured.
  • Inhibition rate calculation method (refer to Invitrogen, PV3363 manual) is as follows:
  • Emission rate(ER) Coumarin Emission(520nm)/Fluorescein Emission(500nm)
  • Inhibition rate (ER kinase -ER test compound )/(ER kinase -ER blank ) ⁇ 100%.
  • XLFIT 5.0 software (IDBS, UK) was used to calculate the IC50 of the half inhibitory concentration. The results are shown in Table 14:
  • Test Example 2 Intracellular ⁇ BTK Y223 phosphorylation detection HTRF experimental method
  • the compound was pre-dissolved in 100% DMSO. Dissolve a 10mM drug stock solution at room temperature, and dilute it stepwise with a 5vol% DMSO solution to a final concentration of 3-0.0014 ⁇ M.
  • Ramos cells were seeded into a 96-well plate at a density of 4 ⁇ 10 5 /well, 45 ⁇ l of 1640 medium containing 10% (V/V) FBS per well, 5 ⁇ l of diluted test substance solution was added to each well, Incubate at 37°C and 5% (V/V) CO 2 for 1 hour.
  • Test Example 3 Inhibition test of wild-type EGFR kinase activity
  • the reagents used in the following z-lyte test methods can be purchased from Invitrogen.
  • the z-lyte method was used to determine the inhibitory activity of the test substance against wild-type EGFR kinase (Invitrogen, PV3872).
  • the working concentration of each component in the 10uL wild-type EGFR kinase reaction system is: 10 ⁇ M ATP, 0.8ng/ ⁇ L wild-type EGFR kinase (Invitrogen, PV3872), 2 ⁇ M Tyr04 substrate (Invitrogen, PV3193).
  • the final concentration of DMSO after adding the test substance is 2%.
  • the drug stock solution dissolved in 10 mM at room temperature is gradually diluted with 4% DMSO water to a final concentration of 10-0.005 ⁇ M.
  • the C1 well uses the reaction buffer instead of ATP, the C2 well does not add any drugs, and the C3 well adds phosphorylated substrate as described in the instructions. After 60 minutes of reaction in a shaker at 25 degrees in the dark.
  • Inhibition rate calculation method (refer to Invitrogen, PV3193 manual) is as follows:
  • Phosphorylation rate (1-((ER ⁇ C3 520nm -C3 450nm )/((C1 450nm -C3 450nm )+ER ⁇ (C3 520nm -C1 520nm ))) ⁇ 100%
  • the compound of formula X has lower inhibitory activity against wild-type EGFR kinase. Therefore, the compound of formula X has selective inhibitory activity on BTK and WT kinase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明提供了一种BTK抑制剂及其药学上可接受的盐和多晶型物及其应用。具体地,本发明提供了(R)-6-((1-丙烯酰基哌啶-3-基)氨基)-7-氟-4-((2-氟-4-吗啉代苯基)氨基)-1,2-二氢-3H-吡咯并[3,4-c]吡啶-3-酮或其药学上可接受的盐的多晶型物及其应用。此外,本发明还公开了含该抑制剂的药物组合物及其应用。

Description

BTK抑制剂及其药学上可接受的盐和多晶型物及其应用 技术领域
本发明属于医药技术领域,具体地说,本发明涉及一种BTK抑制剂及其药学上可接受的盐和多晶型物及其应用,该抑制剂为(R)-6-((1-丙烯酰基哌啶-3-基)氨基)-7-氟-4-((2-氟-4-吗啉代苯基)氨基)-1,2-二氢-3H-吡咯并[3,4-c]吡啶-3-酮。
背景技术
BTK激酶是TEC激酶家族中的一种非受体络氨酸激酶,是BCR信号通路的关键调节因子,对于B细胞成熟、增殖、存活具有重要的作用。在多种B细胞淋巴瘤中BTK都有过度表达,是目前TEC激酶家族中唯一经过临床验证的有效的药物开发的靶点。抑制BTK能够抑制一系列B细胞淋巴瘤的增殖。
B细胞抗原受体(BCR)信号通道的活化对诱发和维持B细胞恶性肿瘤及自免疫疾病有重要作用。Bruton′s酪氨酸激酶(Btk)在造血细胞BCR信号通道中起着关键作用,是淋巴瘤新疗法研究中非常良好的靶点。BTK抑制剂作用于BCR通路,抑制Btk自磷酸化,Btk′s生理底物PLCγ磷酸化和下游激酶ERK的磷酸化。
BTK抑制剂作用于慢性淋巴细胞白血病(CLL)细胞,诱导细胞毒性,抑制CLL细胞增殖能力。抑制BCR激活的原代B细胞增殖,且抑制原代单核细胞中TNFα,IL-1β和IL-6等分泌。BTK抑制剂作用于胶原诱导的关节炎模型,通过抑制B细胞活性,显著降低足肿胀和关节发炎等临床关节炎症状。
目前仅有唯一的BTK抑制剂ibrutinib获批上市,因此有必要开发更多活性更好,更加安全有效的BTK抑制剂。本发明在前述工作的基础上开发了BTK抑制剂的多种盐型和晶型,有助于进一步的药物开发。
发明内容
本发明的目的在于提供一种BTK抑制剂的药学上可接受的盐及其多晶型及其应用。
在本发明的第一方面,提供了一种式X化合物、或其药学上可接受的盐,或式X化合物及其药学上可接受的盐的多晶型物:
Figure PCTCN2020080024-appb-000001
在一个实施例中,所述药学上可接受的盐选自下组:盐酸盐、硫酸盐、氢溴酸盐、磷酸盐、甲磺酸盐、马来酸盐、L-酒石酸盐、柠檬酸盐、富马酸盐、琥珀酸盐。
在一个实施例中,所述式X化合物药学上可接受的盐或式X化合物及其药学上可接受的盐的多晶型物为无水形式、水合物形式或溶剂合物形式。
在一个实施例中,所述药学上可接受的盐选自:盐酸盐、硫酸盐、氢溴酸盐、磷酸盐、甲磺酸盐、L-酒石酸盐、富马酸盐、琥珀酸盐。
在一个实施例中,所述药学上可接受的盐为盐酸盐,并且盐酸与式X化合物的摩尔比为(0.8-2.1)∶1,例如(0.9-1.1)∶1。
在一个实施例中,所述药学上可接受的盐为富马酸盐,并且富马酸与式X化合物的摩尔比为(0.8-1.2)∶1。在另一个实施例中,所述药学上可接受的盐为富马酸盐,并且富马酸与式X化合物的摩尔比为(0.9-1.1)∶1。在又一个实施例中,所述药学上可接受的盐为富马酸盐,并且富马酸与式X化合物的摩尔比为1∶1。
在一个实施例中,所述多晶型物为式X化合物盐酸盐的A型结晶,即晶型A,其X射线粉末衍射图在下组A-1的衍射角2θ(°)值处具有峰:14.75±0.2、15.97±0.2、17.20±0.2、18.94±0.2、19.72±0.2、22.15±0.2、24.35±0.2、25.12±0.2、26.21±0.2、26.80±0.2。
在一个实施例中,所述晶型A的X射线粉末衍射图还包含在2个或2个以上选自下组A-2的衍射角2θ(°)值处的峰:6.57±0.2、8.71±0.2、12.24±0.2、14.07±0.2、14.47±0.2、15.48±0.2、16.66±0.2、17.70±0.2、18.61±0.2、20.24±0.2、20.62±0.2、22.72±0.2、27.46±0.2。
在一个实施例中,所述晶型A的X射线粉末衍射图在选自组A-1和A-2中的6个或更多个或全部(如6、7、8、9、10、11、12、13、14、15等)的2θ(°)值处具有峰。
在一个实施例中,所述晶型A的X射线粉末衍射图在衍射角2θ(°)值为8.71±0.2、12.24±0.2、14.07±0.2、14.47±0.2、14.75±0.2、15.48±0.2、15.97±0.2、16.66±0.2、17.20±0.2、17.70±0.2、18.61±0.2、18.94±0.2、19.72±0.2、20.24±0.2、20.62±0.2、22.15±0.2、22.72±0.2、24.35±0.2、25.12±0.2、26.21±0.2、26.80±0.2、27.46±0.2处具有峰。
在一个实施例中,所述晶型A的X射线粉末衍射图在表A1所示的2θ(°)值处具有峰,各峰相对强度如表A1所示:
表A1
2θ(°) I/I 0 2θ(°) I/I 0 2θ(°) I/I 0
6.57 W 8.71 M 12.24 M
14.07 M 14.47 M 14.75 S
15.48 M 15.97 VS 16.66 M
17.20 S 17.70 M 18.61 M
18.94 S 19.72 S 20.24 M
20.62 M 22.15 VS 22.72 M
24.35 S 25.12 S 26.21 VS
26.80 VS 27.46 M    
在一个实施例中,所述晶型A的X射线粉末衍射图基本如图1-1所表征。
在一个实施例中,所述晶型A具有与图1-3中所示基本上相同的差示扫描量热分析(DSC)谱图。
在一个实施例中,所述晶型A具有与图1-2中所示基本上相同的热重分析(TGA)图谱。
在一个实施例中,所述多晶型物为式X化合物硫酸盐的B-1型结晶,即晶型B-1,其X射线粉末衍射图在下组B-1-1的衍射角2θ(°)值处具有峰:10.27±0.2、14.06±0.2、14.41±0.2、17.59±0.2、19.39±0.2、21.84±0.2、26.38±0.2、26.68±0.2。
在一个实施例中,所述晶型B-1的X射线粉末衍射图在表B1所示的2θ(°)值处具有峰,各峰相对强度如表B1所示:
表B1
2θ(°) I/I 0 2θ(°) I/I 0
10.27 VS 19.39 S
14.06 VS 21.84 S
14.41 VS 26.38 VS
17.59 VS 26.68 VS
在一个实施例中,所述晶型B-1的X射线粉末衍射图基本如图2-1所表征。
在一个实施例中,所述多晶型物为式X化合物硫酸盐的B-2型结晶,即晶型B-2,其X射线粉末衍射图在下组B-2-1的衍射角2θ(°)值处具有峰:8.59±0.2、10.64±0.2、13.90±0.2、14.38±0.2、15.53±0.2、17.05±0.2、17.26±0.2、17.75±0.2、19.28±0.2、21.85±0.2、25.82±0.2、26.32±0.2、26.62±0.2。
在一个实施例中,所述晶型B-2的X射线粉末衍射图还包含在2个或2个以上选自下组B-2-2的衍射角2θ(°)值处的峰:11.39±0.2、12.28±0.2、12.97±0.2、15.81±0.2、18.79±0.2、20.31±0.2。
在一个实施例中,所述晶型B-2的X射线粉末衍射图在选自组B-2-1和B-2-2中的6个或更多个或全部(如6、7、8、9、10、11、12、13、14、15等)的2θ(°)值处具有峰。
在一个实施例中,所述晶型B-2的X射线粉末衍射图在表B2所示的2θ(°)值处具有峰,各峰相对强度如表B2所示:
表B2
2θ(°) I/I 0 2θ(°) I/I 0 2θ(°) I/I 0
8.59 VS 15.53 S 19.28 S
10.64 S 15.81 M 20.31 M
11.39 M 17.05 VS 21.85 S
12.28 M 17.26 S 25.82 VS
12.97 M 17.75 S 26.32 VS
13.90 S 18.79 M 26.62 VS
14.38 S        
在一个实施例中,所述晶型B-2的X射线粉末衍射图基本如图2-2所表征。
在一个实施例中,所述多晶型物为式X化合物硫酸盐的B-3型结晶,即晶型B-3,其X射线粉末衍射图在下组B-3-1的衍射角2θ(°)值处具有峰:8.59±0.2、10.21±0.2、10.60±0.2、11.39±0.2、13.03±0.2、13.93±0.2、14.38±0.2、15.49±0.2、15.82±0.2、17.03±0.2、17.71±0.2、19.30±0.2、20.23±0.2、21.59±0.2、21.97±0.2、23.95±0.2、24.62±0.2、26.23±0.2、26.65±0.2。
在一个实施例中,所述晶型B-3的X射线粉末衍射图还包含在选自下组B-3-2的衍射角2θ(°)值处的峰:18.78±0.2。
在一个实施例中,所述晶型B-3的X射线粉末衍射图在表B3所示的2θ(°)值处具有峰,各峰相对强度如表B3所示:
表B3
2θ(°) I/I0 2θ(°) I/I0 2θ(°) I/I0
8.59 VS 15.49 S 21.59 S
10.21 VS 15.82 VS 21.97 S
10.60 VS 17.03 VS 23.95 S
11.39 S 17.71 VS 24.62 S
13.03 S 18.78 M 26.23 VS
13.93 VS 19.30 VS 26.65 VS
14.39 VS 20.23 S    
在一个实施例中,所述晶型B-3的X射线粉末衍射图基本如图2-3所表征。
在一个实施例中,所述多晶型物为式X化合物氢溴酸盐的C型结晶,即晶型C,其 X射线粉末衍射图在下组C-1的衍射角2θ(°)值处具有峰:15.26±0.2、15.91±0.2、17.09±0.2、18.43±0.2、18.76±0.2、19.49±0.2、20.47±0.2、21.91±0.2、24.10±0.2、24.88±0.2、25.87±0.2、26.48±0.2。
在一个实施例中,所述晶型C的X射线粉末衍射图还包含在2个或2个以上选自下组C-2的衍射角2θ(°)值处的峰:8.69±0.2、9.16±0.2、10.82±0.2、11.50±0.2、14.62±0.2、16.55±0.2、17.50±0.2、20.05±0.2、21.33±0.2、22.62±0.2。
在一个实施例中,所述晶型C的X射线粉末衍射图在选自组C-1和C-2中的6个或更多个或全部(如6、7、8、9、10、11、12、13、14、15等)的2θ(°)值处具有峰。
在一个实施例中,所述晶型C的X射线粉末衍射图在衍射角2θ(°)值为8.69±0.2、10.82±0.2、11.50±0.2、14.62±0.2、15.26±0.2、15.91±0.2、17.09±0.2、17.50±0.2、18.43±0.2、18.76±0.2、19.49±0.2、20.05±0.2、20.47±0.2、21.33±0.2、21.91±0.2、22.62±0.2、24.10±0.2、24.88±0.2、25.87±0.2和26.48±0.2处具有峰。
在一个实施例中,所述晶型C的X射线粉末衍射图在表C1所示的2θ(°)值处具有峰,各峰相对强度如表C1所示:
表C1
2θ(°) I/I 0 2θ(°) I/I 0 2θ(°) I/I 0
8.69 M 17.09 S 21.33 M
9.16 W 17.50 M 21.91 S
10.82 M 18.43 S 22.62 M
11.50 M 18.76 S 24.10 S
14.62 M 19.49 S 24.88 S
15.26 S 20.05 M 25.87 VS
15.91 S 20.47 S 26.48 VS
16.55 W        
在一个实施例中,所述晶型C的X射线粉末衍射图基本如图3所表征。
在一个实施例中,所述多晶型物为式X化合物磷酸盐的D型结晶,即晶型D,其X射线粉末衍射图在下组D-1的衍射角2θ(°)值处具有峰:12.24±0.2、13.93±0.2、17.24±0.2、18.18±0.2、23.93±0.2、26.38±0.2、26.68±0.2。
在一个实施例中,所述晶型D的X射线粉末衍射图在表D1所示的2θ(°)值处具有峰,各峰相对强度如表D1所示:
表D1
2θ(°) I/I 0 2θ(°) I/I 0
12.24 VS 23.93 VS
13.93 VS 26.38 VS
17.24 VS 26.68 VS
18.18 VS    
在一个实施例中,所述晶型D的X射线粉末衍射图基本如图4所表征。
在一个实施例中,所述多晶型物为式X化合物甲磺酸盐的E-1型结晶,即晶型E-1,其X射线粉末衍射图在下组E-1-1的衍射角2θ(°)值处具有峰:8.56±0.2、11.39±0.2、17.47±0.2、17.80±0.2、26.32±0.2。
在一个实施例中,所述晶型E-1的X射线粉末衍射图还包含在2个或2个以上选自下组E-1-2的衍射角2θ(°)值处的峰:6.61±0.2、12.79±0.2、14.91±0.2、16.81±0.2、19.42±0.2、20.23±0.2、21.16±0.2、21.40±0.2、23.14±0.2、25.96±0.2。
在一个实施例中,所述晶型E-1的X射线粉末衍射图还包含在2个或2个以上选自下组E-1-3的衍射角2θ(°)值处的峰:14.48±0.2、15.79±0.2、18.61±0.2、19.96±0.2、22.27±0.2、24.07±0.2、24.46±0.2、25.75±0.2、27.67±0.2。
在一个实施例中,所述晶型E-1的X射线粉末衍射图在选自组E-1-1、E-1-2和E-1-3中的6个或更多个或全部(如6、7、8、9、10、11、12、13、14、15等)的2θ(°)值处具有峰。
在一个实施例中,所述晶型E-1的X射线粉末衍射图在衍射角2θ(°)值为6.61±0.2、8.56±0.2、11.39±0.2、12.79±0.2、14.91±0.2、16.81±0.2、17.47±0.2、17.80±0.2、19.42±0.2、20.23±0.2、21.16±0.2、21.40±0.2、23.14±0.2、25.96±0.2、26.32±0.2处具有峰。
在一个实施例中,所述晶型E-1的X射线粉末衍射图在表E1所示的2θ(°)值处具有峰,各峰相对强度如表E1所示:
表E1
2θ(°) I/I 0 2θ(°) I/I 0 2θ(°) I/I 0
6.61 M 17.47 S 22.27 W
8.56 VS 17.80 VS 23.14 M
11.39 S 18.61 W 24.07 W
12.79 M 19.42 M 24.46 W
14.48 W 19.96 W 25.75 W
14.91 M 20.23 M 25.96 M
15.79 W 21.16 M 26.32 S
16.81 M 21.40 M 27.67 W
在一个实施例中,所述晶型E-1的X射线粉末衍射图基本如图5-1所表征。
在一个实施例中,所述多晶型物为式X化合物甲磺酸盐的E-2型结晶,即晶型E-2,其X射线粉末衍射图在下组E-2-1的衍射角2θ(°)值处具有峰:15.79±0.2、16.76±0.2、17.41±0.2、17.80±0.2、20.26±0.2、21.05±0.2、24.10±0.2、25.63±0.2、26.53±0.2、26.92±0.2、27.50±0.2。
在一个实施例中,所述晶型E-2的X射线粉末衍射图还包含在2个或2个以上选自下组E-2-2的衍射角2θ(°)值处的峰:8.45±0.2、11.33±0.2、14.30±0.2、14.89±0.2、18.60±0.2、19.36±0.2、19.87±0.2、22.16±0.2、23.09±0.2、29.08±0.2。
在一个实施例中,所述晶型E-2的X射线粉末衍射图还包含在2个或2个以上选自下组E-2-3的衍射角2θ(°)值处的峰:12.30±0.2、12.75±0.2、13.09±0.2、13.29±0.2、13.73±0.2、16.03±0.2、16.24±0.2、22.77±0.2、28.49±0.2。
在一个实施例中,所述晶型E-2的X射线粉末衍射图在选自组E-2-1、E-2-2和E-2-3中的6个或更多个或全部(如6、7、8、9、10、11、12、13、14、15等)的2θ(°)值处具有峰。
在一个实施例中,所述晶型E-2的X射线粉末衍射图在衍射角2θ(°)值为8.45±0.2、11.33±0.2、14.30±0.2、14.89±0.2、15.79±0.2、16.76±0.2、17.41±0.2、17.80±0.2、18.60±0.2、19.36±0.2、19.87±0.2、20.26±0.2、21.05±0.2、22.16±0.2、23.09±0.2、24.10±0.2、25.63±0.2、26.53±0.2、26.92±0.2、27.50±0.2、29.08±0.2处具有峰。
在一个实施例中,所述晶型E-2的X射线粉末衍射图在表E2所示的2θ(°)值处具有峰,各峰相对强度如表E2所示:
表E2
2θ(°) I/I 0 2θ(°) I/I 0 2θ(°) I/I 0
8.45 M 16.03 W 22.16 M
11.33 M 16.24 W 22.77 W
12.30 W 16.76 S 23.09 M
12.75 W 17.41 S 24.10 S
13.09 W 17.80 VS 25.63 VS
13.29 W 18.60 M 26.53 S
13.73 W 19.36 M 26.92 S
14.30 M 19.87 M 27.50 S
14.89 M 20.26 S 28.49 W
15.79 S 21.05 S 29.08 M
在一个实施例中,所述晶型E-2的X射线粉末衍射图基本如图5-2所表征。
在一个实施例中,所述多晶型物为式X化合物酒石酸盐的F型结晶,即晶型F,其 X射线粉末衍射图在下组F-1的衍射角2θ(°)值处具有峰:18.58±0.2、19.84±0.2、20.56±0.2、24.88±0.2、28.73±0.2、29.45±0.2、31.81±0.2、33.28±0.2。
在一个实施例中,所述晶型F的X射线粉末衍射图在表F1所示的2θ(°)值处具有峰,各峰相对强度如表F1所示:
表F1
2θ(°) I/I0 2θ(°) I/I0
18.58 VS 28.73 M
19.84 M 29.45 M
20.56 VS 31.81 M
24.88 S 33.28 M
在一个实施例中,所述晶型F的X射线粉末衍射图基本如图6所表征。
在一个实施例中,所述多晶型物为式X化合物富马酸盐的G型结晶,即晶型G,其X射线粉末衍射图在下组G-1的衍射角2θ(°)值处具有峰:16.06±0.2、18.76±0.2、20.32±0.2、21.49±0.2、22.52±0.2、22.84±0.2、24.32±0.2、24.50±0.2、26.06±0.2、28.48±0.2。
在一个实施例中,所述晶型G的X射线粉末衍射图还包含在2个或2个以上选自下组G-2的衍射角2θ(°)值处的峰:7.35±0.2、12.25±0.2、12.88±0.2、13.60±0.2、13.96±0.2、15.50±0.2、17.03±0.2、17.80±0.2、19.34±0.2、20.93±0.2、。
在一个实施例中,所述晶型G的X射线粉末衍射图在选自组G-1和G-2中的6个或更多个或全部(如6、7、8、9、10、11、12、13、14、15等)的2θ(°)值处具有峰。
在一个实施例中,所述晶型G的X射线粉末衍射图在表G1所示的2θ(°)值处具有峰,各峰相对强度如表G1所示:
表G1
2θ(°) I/I 0 2θ(°) I/I 0
7.35 M 19.34 M
12.25 M 20.32 VS
12.88 M 20.93 M
13.60 M 21.49 VS
13.96 M 22.52 S
15.50 M 22.84 VS
16.06 S 24.32 S
17.03 M 24.50 S
17.80 M 26.06 S
18.76 VS 28.48 VS
在一个实施例中,所述晶型G的X射线粉末衍射图基本如图7所表征。
在一个实施例中,所述多晶型物为式X化合物琥珀酸盐的H-1型结晶,即晶型H-1,其X射线粉末衍射图在下组H-1-1的衍射角2θ(°)值处具有峰:21.70±0.2。
在一个实施例中,所述多晶型物为式X化合物琥珀酸盐的H-1型结晶,即晶型H-1,其X射线粉末衍射图基本如图8-1所表征。
在一个实施例中,所述多晶型物为式X化合物琥珀酸盐的H-2型结晶,即晶型H-2,其X射线粉末衍射图在下组H-2-1的衍射角2θ(°)值处具有峰:19.78±0.2、21.63±0.2、25.96±0.2、31.23±0.2。
在一个实施例中,所述多晶型物为式X化合物琥珀酸盐的H-2型结晶,即晶型H-2,其X射线粉末衍射图基本如图8-2所表征。
在一个实施例中,所述多晶型物为式X化合物琥珀酸盐的H-3型结晶,即晶型H-3,其X射线粉末衍射图在下组H-3-1的衍射角2θ(°)值处具有峰:12.20±0.2、19.72±0.2、19.84±0.2、25.82±0.2、31.21±0.2。
在一个实施例中,所述多晶型物为式X化合物琥珀酸盐的H-3型结晶,即晶型H-3,其X射线粉末衍射图基本如图8-3所表征。
在一个实施例中,所述多晶型物为式X化合物的晶型I,其X射线粉末衍射图在下组I-1的衍射角2θ(°)值处具有峰:16.01±0.2、18.64±0.2、20.27±0.2、21.40±0.2、22.84±0.2、24.49±0.2。
在一个实施例中,所述晶型I的X射线粉末衍射图还包含在2个或2个以上选自下组I-2的衍射角2θ(°)值处的峰:7.28±0.2、12.23±0.2、12.88±0.2、13.55±0.2、17.05±0.2、17.83±0.2、19.36±0.2、26.06±0.2。
在一个实施例中,所述晶型I的X射线粉末衍射图还包含在2个或2个以上选自下组I-3的衍射角2θ(°)值处的峰:8.83±0.2、9.48±0.2、10.39±0.2、13.94±0.2、15.58±0.2、25.19±0.2、28.02±0.2。
在一个实施例中,所述晶型I的X射线粉末衍射图在选自组I-1、I-2和I-3中的6个或更多个或全部(如6、7、8、9、10、11、12、13、14、15等)的2θ(°)值处具有峰。
在一个实施例中,所述晶型I的X射线粉末衍射图在衍射角2θ(°)值为7.28±0.2、12.23±0.2、12.88±0.2、13.55±0.2、16.01±0.2、17.05±0.2、17.83±0.2、18.64±0.2、19.36±0.2、20.27±0.2、21.40±0.2、22.84±0.2、24.49±0.2、26.06±0.2处具有峰。
在一个实施例中,所述晶型I的X射线粉末衍射图在衍射角2θ(°)值为7.28±0.2、9.48±0.2、12.23±0.2、12.88±0.2、13.55±0.2、13.94±0.2、15.58±0.2、16.01±0.2、17.05±0.2、17.83±0.2、18.64±0.2、19.36±0.2、20.27±0.2、21.40±0.2、22.84±0.2、24.49±0.2、26.06±0.2、 28.02±0.2处具有峰。
在一个实施例中,所述晶型I的X射线粉末衍射图在表I1所示的2θ(°)值处具有峰,各峰相对强度如表I1所示:
表I1
2θ(°) I/I 0 2θ(°) I/I 0 2θ(°) I/I 0
7.28 S 13.94 M 20.27 VS
8.83 W 15.58 M 21.40 VS
9.48 M 16.01 VS 22.84 VS
10.39 W 17.05 S 24.49 VS
12.23 S 17.83 S 25.19 W
12.88 S 18.64 VS 26.06 S
13.55 S 19.36 S 28.02 M
在一个实施例中,所述晶型I的X射线粉末衍射图基本如图9-1所表征。
在一个实施例中,所述晶型I具有与图9-3中所示基本上相同的差示扫描量热分析(DSC)谱图。
在一个实施例中,所述晶型I具有与图9-2中所示基本上相同的热重分析(TGA)图谱。
在一个实施例中,所述多晶型物为式X化合物的晶型II,其X射线粉末衍射图在组II-1的衍射角2θ(°)值处具有峰:7.32±0.2、9.84±0.2、13.56±0.2、17.47±0.2、22.73±0.2、24.37±0.2、25.09±0.2。
在一个实施例中,所述晶型II的X射线粉末衍射图还包含在2个或2个以上选自下组II-2的衍射角2θ(°)值处的峰:12.37±0.2、12.82±0.2、13.89±0.2、15.53±0.2、15.98±0.2、17.03±0.2、17.82±0.2、18.64±0.2、19.20±0.2、19.84±0.2、20.20±0.2、20.30±0.2、21.36±0.2、24.01±0.2、29.84±0.2。
在一个实施例中,所述晶型II的X射线粉末衍射图在选自组II-1和II-2中的6个或更多个或全部(如6、7、8、9、10、11、12、13、14、15等)的2θ(°)值处具有峰。
在一个实施例中,所述晶型II的X射线粉末衍射图在衍射角2θ(°)值为7.32±0.2、9.84±0.2、12.37±0.2、13.56±0.2、15.53±0.2、15.98±0.2、17.03±0.2、17.47±0.2、17.82±0.2、18.64±0.2、20.20±0.2、20.30±0.2、21.36±0.2、22.73±0.2、24.37±0.2、25.09±0.2、29.84±0.2处具有峰。
在一个实施例中,所述晶型II的X射线粉末衍射图在表II1所示的2θ(°)值处具有峰,各峰相对强度如表II1所示:
表II1
2θ(°) I/I 0 2θ(°) I/I 0 2θ(°) I/I 0
7.32 VS 17.03 M 20.30 M
9.84 S 17.47 S 21.36 M
12.37 M 17.82 M 22.73 S
12.82 W 18.64 M 24.01 W
13.56 S 19.20 W 24.37 S
13.89 W 19.84 W 25.09 S
15.53 M 20.20 M 29.84 M
15.98 M        
在一个实施例中,所述晶型II的X射线粉末衍射图基本如图10所表征。
在一个实施例中,所述多晶型物为式X化合物的晶型III,其X射线粉末衍射图在下组III-1的衍射角2θ(°)值处具有峰:9.52±0.2、11.77±0.2、12.43±0.2、12.78±0.2、15.31±0.2、16.33±0.2、16.84±0.2、17.83±0.2、18.49±0.2、19.57±0.2、20.15±0.2、21.71±0.2、23.26±0.2、23.84±0.2、24.52±0.2、25.30±0.2。
在一个实施例中,所述晶型III的X射线粉末衍射图还包含在2个或2个以上选自下组III-2的衍射角2θ(°)值处的峰:7.00±0.2、8.35±0.2、11.35±0.2、13.65±0.2、17.20±0.2、22.18±0.2、22.60±0.2、25.70±0.2、28.33±0.2、29.77±0.2。
在一个实施例中,所述晶型III的X射线粉末衍射图在选自组III-1和III-2中的6个或更多个或全部(如6、7、8、9、10、11、12、13、14、15等)的2θ(°)值处具有峰。
在一个实施例中,所述晶型II的X射线粉末衍射图在衍射角2θ(°)值为8.35±0.2、9.52±0.2、11.35±0.2、11.77±0.2、12.43±0.2、12.78±0.2、13.65±0.2、15.31±0.2、16.33±0.2、16.84±0.2、17.20±0.2、17.83±0.2、18.49±0.2、19.57±0.2、20.15±0.2、21.71±0.2、22.18±0.2、22.60±0.2、23.26±0.2、23.84±0.2、24.52±0.2、25.30±0.2、25.70±0.2、28.33±0.2、29.77±0.2处具有峰。
在一个实施例中,所述晶型III的X射线粉末衍射图在表III1所示的2θ(°)值处具有峰,各峰相对强度如表III1所示:
表III1
2θ(°) I/I 0 2θ(°) I/I 0 2θ(°) I/I 0
7.00 W 16.33 S 22.60 M
8.35 M 16.84 S 23.26 S
9.52 S 17.20 M 23.84 S
11.35 M 17.83 VS 24.52 VS
11.77 S 18.49 S 25.30 S
12.43 VS 19.57 VS 25.70 M
12.78 S 20.15 S 28.33 M
13.65 M 21.71 S 29.77 M
15.31 S 22.18 M    
在一个实施例中,所述晶型III的X射线粉末衍射图基本如图11所表征。
在本发明的第二方面,提供了一种制备本发明第一方面所述的式X化合物药学上可接受的盐、或式X化合物或其药学上可接受的盐的多晶型物的方法,
其中式X化合物药学上可接受的盐或其多晶型物的制备方法包括步骤:
(1)将式X化合物与酸进行成盐反应,从而形成药学上可接受的盐;
(2)将步骤(1)形成的式X化合物药学上可接受的盐进行结晶处理,从而获得多晶型
物。
在一个实施例中,步骤(1)中,在溶剂存在下,将式X化合物与酸进行成盐反应,所述溶剂选自下组:水、乙腈、乙醇、异丙醇、丙酮、乙酸乙酯、甲基叔丁基醚、四氢呋喃、正庚烷、二甲基亚砜。在另一个实施例中,步骤(1)中,在溶剂存在下,将式X化合物与酸进行成盐反应,所述溶剂为异丙醇、丙酮、乙酸乙酯、或乙腈。
在一个实施例中,步骤(1)中,所述的酸选自:盐酸、硫酸、氢溴酸、磷酸、甲磺酸、L-酒石酸、富马酸和琥珀酸。
在一个实施例中,步骤(2)中,结晶处理方式为悬浮离心、悬浮搅拌、缓慢挥发、降温结晶。
在一个实施例中,晶型A的制备方法包括以下步骤:
(A-1)将式X化合物溶解或悬浮于溶剂中;
(A-2)向步骤(A1)的混合物中加入盐酸,加热悬浮搅拌后冷却,分离,得到晶型A。
在一个实施例中,步骤(A-1)中,所述溶剂选自乙酸乙酯、丙酮和乙腈。
在一个实施例中,步骤(A-2)中,盐酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(A-2)中,盐酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(A-2)中,盐酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(A-2)中,盐酸的浓度为0.25M-1M,例如为1M。
在一个实施例中,步骤(A-2)中,加热悬浮搅拌后冷却,固体析出。
在一个实施例中,步骤(A-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(A-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(A-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(A-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(A-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型B-1的制备方法包括以下步骤:
(B-1-1)将式X化合物悬浮于溶剂中;
(B-1-2)向步骤(B-1-1)的混合物中加入硫酸,加热悬浮搅拌后冷却,分离,得到晶型B-1。
在一个实施例中,步骤(B-1-1)中,所述溶剂为异丙醇。
在一个实施例中,步骤(B-1-2)中,硫酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(B-1-2)中,硫酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(B-1-2)中,硫酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(B-1-2)中,硫酸的浓度为0.25M-1M,例如为0.5M。
在一个实施例中,步骤(B-1-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(B-1-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(B-1-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(B-1-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(B-1-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型B-2的制备方法包括以下步骤:
(B-2-1)将式X化合物悬浮于溶剂中;
(B-2-2)向步骤(B-2-1)的混合物中加入硫酸,加热悬浮搅拌后冷却,分离,得到晶型B-2。
在一个实施例中,步骤(B-2-1)中,所述溶剂为乙酸乙酯或乙腈。
在一个实施例中,步骤(B-2-2)中,硫酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(B-2-2)中,硫酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(B-2-2)中,硫酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(B-2-2)中,硫酸的浓度为0.25M-1M,例如为0.5M。
在一个实施例中,步骤(B-2-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(B-2-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(B-2-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(B-2-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(B-2-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型B-3的制备方法包括以下步骤:
(B-3-1)将式X化合物悬浮于溶剂中;
(B-3-2)向步骤(B-3-1)的混合物中加入硫酸,加热悬浮搅拌后冷却,分离,得到晶型B-3。
在一个实施例中,步骤(B-3-1)中,所述溶剂为丙酮。
在一个实施例中,步骤(B-3-2)中,硫酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(B-3-2)中,硫酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(B-3-2)中,硫酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(B-3-2)中,硫酸的浓度为0.25M-1M,例如为0.5M。
在一个实施例中,步骤(B-3-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(B-3-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(B-3-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(B-3-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(B-3-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型C的制备方法包括以下步骤:
(C-1)将式X化合物悬浮于溶剂中;
(C-2)向步骤(C-1)的混合物中加入氢溴酸,加热悬浮搅拌后冷却,分离,得到晶型C。
在一个实施例中,步骤(C-1)中,所述溶剂为乙酸乙酯、丙酮或乙腈。
在一个实施例中,步骤(C-2)中,氢溴酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(C-2)中,氢溴酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(C-2)中,氢溴酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(C-2)中,氢溴酸的浓度为0.25M-1M,例如为1M。
在一个实施例中,步骤(C-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(C-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(C-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(C-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(C-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型D的制备方法包括以下步骤:
(D-1)将式X化合物悬浮于溶剂中;
(D-2)向步骤(D-1)的混合物中加入磷酸,加热悬浮搅拌后冷却,分离,得到晶型D。
在一个实施例中,步骤(D-1)中,所述溶剂为乙酸乙酯。
在一个实施例中,步骤(D-2)中,磷酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(D-2)中,磷酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(D-2)中,磷酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(D-2)中,磷酸的浓度为0.25M-1M,例如为1M。
在一个实施例中,步骤(D-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(D-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(D-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(D-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(D-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型E-1的制备方法包括以下步骤:
(E-1-1)将式X化合物悬浮于溶剂中;
(E-1-2)向步骤(E-1-1)的混合物中加入甲磺酸,加热悬浮搅拌后冷却,分离,得到晶型E-1。
在一个实施例中,步骤(E-1-1)中,所述溶剂为异丙醇。
在一个实施例中,步骤(E-1-2)中,甲磺酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(E-1-2)中,甲磺酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(E-1-2)中,甲磺酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(E-1-2)中,甲磺酸的浓度为0.25M-1M,例如为1M。
在一个实施例中,步骤(E-1-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(E-1-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(E-1-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(E-1-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(E-1-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型E-2的制备方法包括以下步骤:
(E-2-1)将式X化合物悬浮于溶剂中;
(E-2-2)向步骤(E-2-1)的混合物中加入甲磺酸,加热悬浮搅拌后冷却,分离,得到晶型E-2。
在一个实施例中,步骤(E-2-1)中,所述溶剂为乙酸乙酯或丙酮。
在一个实施例中,步骤(E-2-2)中,甲磺酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(E-2-2)中,甲磺酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(E-2-2)中,甲磺酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(E-2-2)中,甲磺酸的浓度为0.25M-1M,例如为1M。
在一个实施例中,步骤(E-2-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(E-2-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(E-2-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(E-2-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(E-2-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型F的制备方法包括以下步骤:
(F-1)将式X化合物悬浮于溶剂中;
(F-2)向步骤(F-1)的混合物中加入酒石酸,加热悬浮搅拌后冷却,分离,得到晶型F。
在一个实施例中,步骤(F-1)中,所述溶剂为乙酸乙酯。
在一个实施例中,步骤(F-2)中,酒石酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(F-2)中,酒石酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(F-2)中,酒石酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(F-2)中,酒石酸的浓度为0.25M-1M,例如为1M。
在一个实施例中,步骤(F-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(F-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(F-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(F-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(F-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型G的制备方法包括以下步骤:
(G-1)将式X化合物溶解于或悬浮于溶剂中;
(G-2)向步骤(G-1)的混合物中加入富马酸,加热搅拌后冷却,分离,得到晶型G。
在一个实施例中,步骤(G-1)中,所述溶剂为异丙醇、乙腈、乙酸乙酯、四氢呋喃或丙酮。
在一个实施例中,步骤(G-2)中,待冷却后,添加反溶剂或品种。
在一个实施例中,步骤(G-2)中,反溶剂为甲基叔丁基醚。
在一个实施例中,步骤(G-2)中,富马酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(G-2)中,富马酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(G-2)中,富马酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(G-2)中,富马酸的浓度为0.25M-1M。
在一个实施例中,步骤(G-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(G-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(G-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(G-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(G-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型H-1的制备方法包括以下步骤:
(H-1-1)将式X化合物悬浮于溶剂中;
(H-1-2)向步骤(H-1-1)的混合物中加入琥珀酸,加热悬浮搅拌后冷却,分离,得到晶型H-1。
在一个实施例中,步骤(H-1-1)中,所述溶剂为异丙醇或乙腈。
在一个实施例中,步骤(H-1-2)中,琥珀酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(H-1-2)中,琥珀酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(H-1-2)中,琥珀酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(H-1-2)中,琥珀酸的浓度为0.25M-1M,例如为0.5M。
在一个实施例中,步骤(H-1-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(H-1-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(H-1-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(H-1-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(H-1-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型H-2的制备方法包括以下步骤:
(H-2-1)将式X化合物悬浮于溶剂中;
(H-2-2)向步骤(H-2-1)的混合物中加入琥珀酸,加热悬浮搅拌后冷却,分离,得到晶型H-2。
在一个实施例中,步骤(H-2-1)中,所述溶剂为乙酸乙酯。
在一个实施例中,步骤(H-2-2)中,琥珀酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(H-2-2)中,琥珀酸与式X化合物的摩尔比为(1~2)∶1。在又一个实施例中,步骤(H-2-2)中,琥珀酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(H-2-2)中,琥珀酸的浓度为0.25M-1M,例如为0.5M。
在一个实施例中,步骤(H-2-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(H-2-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(H-2-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(H-2-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(H-2-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型H-3的制备方法包括以下步骤:
(H-3-1)将式X化合物悬浮于溶剂中;
(H-3-2)向步骤(H-3-1)的混合物中加入琥珀酸,加热悬浮搅拌后冷却,分离,得到晶型H-3。
在一个实施例中,步骤(H-3-1)中,所述溶剂为丙酮。
在一个实施例中,步骤(H-3-2)中,琥珀酸与式X化合物的摩尔比为(0.2~2.5)∶1。在另一个实施例中,步骤(H-3-2)中,琥珀酸与式X化合物的摩尔比为(1~2)∶1。 在又一个实施例中,步骤(H-3-2)中,琥珀酸与式X化合物的摩尔比为1.2∶1。
在一个实施例中,步骤(H-3-2)中,琥珀酸的浓度为0.25M-1M,例如为0.5M。
在一个实施例中,步骤(H-3-2)中,加热温度为25℃-60℃,例如为40℃-60℃。
在一个实施例中,步骤(H-3-2)中,加热时间为0.5-12小时,例如为3-8小时。
在一个实施例中,步骤(H-3-2)中,冷却至0℃-30℃,例如为室温。
在一个实施例中,步骤(H-3-2)中,冷却时间为0.5-30小时,例如为12-24小时。
在一个实施例中,步骤(H-3-2)中,所述分离采用离心分离或过滤方式进行。
在一个实施例中,晶型I的制备方法包括以下步骤:
(I-1-1)将式X化合物悬浮于溶剂中;
(I-1-2)将步骤(I-1-1)的混合物混悬离心或悬浮搅拌,分离,得到晶型I。
在一个实施例中,步骤(I-1-1)中,所述溶剂为水、正庚烷或甲基叔丁基醚。
在一个实施例中,步骤(I-1-1)和步骤(I-1-2)在室温下进行。
在一个实施例中,晶型I的制备方法包括以下步骤:
(I-2-1)将式X化合物悬浮于溶剂中;
(I-2-2)将步骤(I-2-1)的混合物混悬振摇,分离,得到晶型I。
在一个实施例中,步骤(I-2-1)中,所述溶剂为水、乙腈、异丙醇、丙酮、乙酸乙酯、四氢呋喃、正庚烷或甲基叔丁基醚。
在一个实施例中,步骤(I-2-2)在室温下进行。
在一个实施例中,步骤(I-2-2)中,振摇时间为1-48小时,例如24-48小时。
在一个实施例中,晶型I的制备方法包括以下步骤:
(I-3-1)将式X化合物悬浮于溶剂中;
(I-3-2)将步骤(I-3-1)的混合物混悬振摇,分离,得到晶型I。
在一个实施例中,步骤(I-3-1)中,所述溶剂为乙腈、丙酮、乙酸乙酯或四氢呋喃。
在一个实施例中,步骤(I-3-2)在40℃-60℃下进行,例如为50℃。
在一个实施例中,步骤(I-3-2)中,振摇时间为1-48小时,例如24-48小时。
在一个实施例中,晶型I的制备方法包括以下步骤:
(I-4-1)将式X化合物溶解于溶剂中;
(I-4-2)将步骤(I-4-1)的混合物降温结晶,分离,得到晶型I。
在一个实施例中,步骤(I-4-1)中,所述溶剂为异丙醇、丙酮或四氢呋喃。
在一个实施例中,步骤(I-4-1)在30℃-60℃下进行,例如40℃-60℃。
在一个实施例中,步骤(I-4-2)在0℃至室温下进行。
在一个实施例中,晶型II的制备方法包括以下步骤:
(II-1-1)将式X化合物溶解于溶剂中;
(II-1-2)将步骤(II-1-1)的溶液缓慢挥发,析出固体后分离,得到晶型II。
在一个实施例中,步骤(II-1-1)中,所述溶剂为异丙醇。
在一个实施例中,步骤(II-1-1)和步骤(II-1-2)在室温下进行。
在一个实施例中,晶型II的制备方法包括以下步骤:
(II-2-1)将式X化合物悬浮于溶剂中;
(II-2-2)将步骤(II-2-1)的混合物混悬振摇,分离,得到晶型II。
在一个实施例中,步骤(II-2-1)中,所述溶剂为异丙醇。
在一个实施例中,步骤(II-2-2)在40℃-60℃下进行,例如为50℃。
在一个实施例中,步骤(II-2-2)中,振摇时间为1-48小时,例如24-48小时。
在一个实施例中,晶型IIII的制备方法包括以下步骤:
(III-1-1)将式X化合物悬浮于溶剂中;
(III-1-2)将步骤(III-1-1)的混合物混悬振摇,分离,得到晶型III。
在一个实施例中,步骤(III-1-1)中,所述溶剂为乙醇。
在一个实施例中,步骤(III-1-2)在20℃-60℃下进行,例如为室温至50℃。
在一个实施例中,步骤(III-1-2)中,振摇时间为1-48小时,例如24-48小时。
在一个实施例中,晶型III的制备方法包括以下步骤:
(III-2-1)将式X化合物溶解于溶剂中;
(III-2-2)将步骤(III-2-1)的混合物降温结晶,分离,得到晶型III。
在一个实施例中,步骤(III-2-1)中,所述溶剂为乙醇。
在一个实施例中,步骤(III-2-1)在40℃-60℃下进行。
在一个实施例中,步骤(III-2-2)在0℃至室温下进行。
本发明第三方面提供了一种药物组合物,所述药物组合物包括:
(a)本发明第一方面中任一所述的式X化合物药学上可接受的盐、或式X化合物或其药学上可接受的盐的多晶型物;以及(b)药学可接受的载体。
本发明第四方面提供了本发明第一方面所述的式X化合物药学上可接受的盐、或式X化合物或其药学上可接受的盐的多晶型物或本发明第三方面所述药物组合物在制备激酶抑制剂中的应用。
在一个实施例中,所述激酶抑制剂为BTK抑制剂。
本发明第五方面提供了本发明第一方面所述的式X化合物药学上可接受的盐、或式X化合物或其药学上可接受的盐的多晶型物或本发明第三方面所述药物组合物在制备治疗和/或预防由B细胞介导的疾病的药物中的应用。
本发明第六方面提供了一种治疗由B细胞介导的疾病的方法,包括给予所需患者治疗有效量的本发明第一方面所述的式X化合物药学上可接受的盐、或式X化合物或其药学上可接受的盐的多晶型物,或本发明第三方面所述药物组合物。
在一个实施例中,由B细胞介导的疾病选自:肿瘤疾病、增殖性疾病、变态反应性疾病、自身免疫性疾病或炎症性疾病。
在一个实施例中,由B细胞介导的疾病选自:实体瘤、急性淋巴细胞白血病、慢性淋巴细胞白血病、急性骨髓性白血病、慢性骨髓性白血病、类风湿性关节炎、银屑病关节炎、骨关节炎、系统性红斑狼疮、牛皮癣、类风湿性脊椎炎和痛风性关节炎。
在一个实施例中,由B细胞介导的疾病为实体瘤。
在一个实施例中,所述实体瘤为选自淋巴瘤、软组织肉瘤、淋巴细胞性淋巴瘤、套细胞淋巴瘤、黑色素瘤、多发性骨髓瘤中的至少一种。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1-1晶型A的X射线粉末衍射图谱
图1-2晶型A的热重分析图谱
图1-3晶型A的差示扫描量热分析图谱
图1-4晶型A的DVS图谱
图1-5晶型A的偏光显微镜图片
图2-1晶型B-1的X射线粉末衍射图谱
图2-2晶型B-2的X射线粉末衍射图谱
图2-3晶型B-3的X射线粉末衍射图谱
图3晶型C的X射线粉末衍射图谱
图4晶型D的X射线粉末衍射图谱
图5-1晶型E-1的X射线粉末衍射图谱
图5-2晶型E-2的X射线粉末衍射图谱
图6晶型F的X射线粉末衍射图谱
图7晶型G的X射线粉末衍射图谱
图8-1晶型H-1的X射线粉末衍射图谱
图8-2晶型H-2的X射线粉末衍射图谱
图8-3晶型H-3的X射线粉末衍射图谱
图9-1晶型I的X射线粉末衍射图谱
图9-2晶型I的热重分析图谱
图9-3晶型I的差示扫描量热分析图谱
图9-4晶型I的DVS图谱
图9-5晶型I的偏光显微镜图片
图10晶型II的X射线粉末衍射图谱
图11晶型III的X射线粉末衍射图谱
图12式X化合物游离碱无定形的X射线粉末衍射图谱
具体实施方式
发明人经过广泛而深入的研究,发现了一系列式X化合物的游离碱多晶型物、其盐以及盐的多晶型物,对BTK具有较高的抑制活性。研究还发现,式X化合物的一系列游离碱多晶型物、其盐以及盐的多晶型物不仅具有较好的体内、体外相关药理活性,还具有较好的物理化学稳定性,因此具有进一步开发成为药物的可能。
术语
如本发明所用,“本发明的晶体”、“本发明的晶型”、“本发明的多晶型物”等可互换使用。
式X化合物
在本发明中,式X化合物为(R)-6-((1-丙烯酰基哌啶-3-基)氨基)-7-氟-4-((2-氟-4-吗啉代苯基)氨基)-1,2-二氢-3H-吡咯并[3,4-c]吡啶-3-酮,其对BTK WT激酶和βBTK Y223细胞具有较高的抑制活性,对野生型EGFR激酶具有较低的抑制活性。因此对BTK WT激酶具有选择抑制活性。
本发明还包括式X化合物药学上可接受的盐、或式X化合物或其药学上可接受的盐的多晶型物。
在本发明中,所述的药学上可接受的盐选自下组:盐酸盐、硫酸盐、氢溴酸盐、磷酸盐、甲磺酸盐、马来酸盐、L-酒石酸盐、柠檬酸盐、富马酸盐、琥珀酸盐。
多晶型物
固体不是以无定形的形式就是以结晶的形式存在。在结晶形式的情况下,分子定位于三维品格格位内。当化合物从溶液或浆液中结晶出来时,它可以不同的空间点阵排列结晶(这种性质被称作“多晶型现象”),形成具有不同的结晶形式的晶体,这各种结晶形式被称作“多晶型物”。给定物质的不同多晶型物可在一个或多个物理属性方 面(如溶解度和溶解速率、真比重、晶形、堆积方式、流动性和/或固态稳定性)彼此不同。
结晶
可以通过操作溶液,使得感兴趣化合物的溶解度极限被超过,从而完成生产规模的结晶。这可以通过多种方法来完成,例如,在相对高的温度下溶解化合物,然后冷却溶液至饱和极限以下。或者通过沸腾、常压蒸发、真空干燥或通过其它的一些方法来减小液体体积。可通过加入抗溶剂或化合物在其中具有低的溶解度的溶剂或这样的溶剂的混合物,来降低感兴趣化合物的溶解度。另一种可选方法是调节pH值以降低溶解度。有关结晶方面的详细描述请参见Crystallization,第三版,J W Mullens,Butterworth-Heineman Ltd.,1993,ISBN 0750611294。
本发明所述的“悬浮搅拌”是指将式X化合物和相应的酸或相应酸的溶液在合适的溶剂中混合形成浑浊液,或者将式X化合物与合适的溶剂混合形成浑浊液后搅拌得到晶体的一种方法。合适的溶剂可以为水或有机溶剂。
本发明所述的“缓慢挥发”是指将式X化合物的溶液或含式X化合物和相应酸的溶液置于一定温度下缓慢挥发掉溶剂,得到晶体的一种方法。
本发明所述的“反溶剂添加”或“添加反溶剂”是指向式X化合物的一种溶液中加入另一种合适溶剂后析出得到晶体的一种方法。
假如期望盐的形成与结晶同时发生,如果盐在反应介质中比原料溶解度小,那么加入适当的酸或碱可导致所需盐的直接结晶。同样,在最终想要的形式比反应物溶解度小的介质中,合成反应的完成可使最终产物直接结晶。
结晶的优化可包括用所需形式的晶体作为品种接种于结晶介质中。另外,许多结晶方法使用上述策略的组合。一个实施例是在高温下将感兴趣的化合物溶解在溶剂中,随后通过受控方式加入适当体积的抗溶剂,以使体系正好在饱和水平之下。此时,可加入所需形式的品种(并保持品种的完整性),将体系冷却以完成结晶。
如本文所用,术语“室温”一般指4℃-30℃,例如20±5℃。
本发明的多晶型物
如本文所用,术语“本发明的多晶型物”包括式X化合物或其药学上可接受的盐(如盐酸盐、富马酸盐),或其各种溶剂合物的多晶型物,还包括相同的盐或溶剂合物的不同多晶型物。
“式X化合物”与“式X化合物游离碱”可互换使用,“式X化合物的多晶型物”与“式X化合物游离碱的多晶型物”可互换使用。
本发明多晶型物包括(但并不限于):
(i)晶型A、B-1、B-2、B-3、C、D、E-1、E-2、F、G、H-1、H-2、H-3(式X化合 物的盐的多晶型物);
(ii)晶型I、II、III(式X化合物的多晶型物)。
在本发明中,某些晶型可以相互转化,因此本发明还提供了部分晶型相互转化的方法。
多晶型物的鉴定和性质
本发明在制备式X化合物的多晶型物后,采用如下多种方式和仪器对其性质进行了研究。
X射线粉末衍射
测定晶型的X射线粉末衍射的方法在本领域中是已知的。例如使X射线粉末衍射仪,以2°每分钟的扫描速度,采用铜辐射靶获取图谱。
本发明的式X化合物或其药学上可接受的盐的多晶型物,具有特定的晶型形态,在X-射线粉末衍射(XRPD)图中具有特定的特征峰。
示差扫描量热分析
又称“差示量热扫描分析”(DSC),是在加热过程中,测量被测物质与参比物之间的能量差与温度之间关系的一种技术。DSC图谱上的峰位置、形状和峰数目与物质的性质有关,故可以定性地用来鉴定物质。本领域常用该方法来检测物质的相变温度、玻璃化转变温度、反应热等多种参数。
式X化合物的药物组合物及其应用
通常,本发明式X化合物或其药学可接受的盐的多晶型物可以与一种或多种药用载体形成适合的剂型施用。这些剂型适用于口服、直肠给药、局部给药、口内给药以及其他非胃肠道施用(例如,皮下、肌肉、静脉等)。例如,适合口服给药的剂型包括胶囊、片剂、颗粒剂以及糖浆等。这些制剂中包含的本发明的化合物可以是固体粉末或颗粒;水性或非水性液体中的溶液或是混悬液;油包水或水包油的乳剂等。上述剂型可由活性化合物与一种或多种载体或辅料经由通用的药剂学方法制成。上述的载体需要与活性化合物或其他辅料兼容。对于固体制剂,常用的无毒载体包括但不限于甘露醇、乳糖、淀粉、硬脂酸镁、纤维素、葡萄糖、蔗糖等。用于液体制剂的载体包括水、生理盐水、葡萄糖水溶液、乙二醇和聚乙二醇等。活性化合物可与上述载体形成溶液或是混悬液。
本发明的组合物以符合医学实践规范的方式配制,定量和给药。给予化合物的“有效量”由要治疗的具体病症、治疗的个体、病症的起因、药物的靶点以及给药方式等因素决定。
本发明提供了本发明第一方面所述的式X化合物药学上可接受的盐、或式X化合物或其药学上可接受的盐的多晶型物可用于制备BTK抑制剂或治疗BTK相关疾病的 药物。
例如,所述BTK相关疾病为癌症、异常细胞增殖性疾病、感染、炎性病症、自身免疫性疾病、心血管疾病、神经变性疾病、由辐射引起的造血毒性疾病,或其组合。
例如,所述癌症为乳腺癌、卵巢癌、前列腺癌、黑色素瘤、脑瘤、食管癌、胃癌、肝癌、胰腺癌、结肠直肠癌、肺癌、肾癌、皮肤癌、成胶质细胞瘤、神经母细胞瘤、肉瘤、脂肪肉瘤、骨软骨瘤、骨瘤、骨肉瘤、精原细胞瘤、睾丸肿瘤、子宫癌、头颈肿瘤、多发性骨髓瘤、恶性淋巴瘤、真性红细胞增多症、白血病、甲状腺肿瘤、输尿管肿瘤、膀胱肿瘤、胆囊癌、胆管癌、绒毛膜上皮癌或儿科肿瘤,或它们的任何组合。
例如,所述乳腺癌是HR-阳性、HER2-阴性晚期乳腺癌。
如本文所用,“治疗有效量”是指可对人和/或动物产生功能或活性的且可被人和/或动物所接受的量。
如本文所用,“药学可接受的载体”是指无毒、惰性、固态、半固态的物质或液体灌装机、稀释剂、封装材料或辅助制剂或任何类型辅料,其与患者相兼容,最好为哺乳动物,例如为人,其适合将活性试剂输送到目标靶点而不终止试剂的活性。
如本文所用,“患者”是指一种动物,最好为哺乳动物,更好的为人。术语“哺乳动物”是指温血脊椎类哺乳动物,包括如猫、狗、兔、熊、狐狸、狼、猴子、鹿、鼠、猪和人类。
如本文所用,“治疗”是指减轻、延缓进展、衰减、预防,或维持现有疾病或病症(例如癌症)。治疗还包括将疾病或病症的一个或多个症状治愈、预防其发展或减轻到某种程度。
本发明的药物组合物或所述药用组合物中含有的式X化合物药学上可接受的盐、或式X化合物或其药学上可接受的盐的多晶型物的治疗有效量可以为0.1mg-5g/kg(体重)。
本发明的主要优点在于:
本发明人发现,(R)-6-((1-丙烯酰基哌啶-3-基)氨基)-7-氟-4-((2-氟-4-吗啉代苯基)氨基)-1,2-二氢-3H-吡咯并[3,4-c]吡啶-3-酮游离碱和盐的多晶型物以及盐也具有较好的物理化学稳定性和突出的相关药理活性,是理想的BTK抑制剂。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
试剂与仪器
本发明中,化合物的结构和纯度通过核磁共振( 1HNMR)和、或液质联用质谱(LC-MS)来确定。1HNMR:BrukerAVANCE-400核磁仪,内标为四甲基硅烷(TMS)。LC-MS:Agilent 1200 HPLC System、6140 MS液质联用质谱仪(购自安捷伦),柱子WatersX-Bridge,150×4.6mm,3.5μm。制备高效液相色谱(pre-HPLC):用Waters PHW007,柱子XBridge C18,4.6*150mm,3.5um。
采用ISCO Combiflash-Rf75或Rf200型自动过柱仪,Agela 4g、12g、20g、40g、80g、120g一次性硅胶柱。
薄层层析硅胶板使用烟台黄海HSGF254或青岛GF254硅胶板,薄层色谱法(TLC),检测反应使用的硅胶板采用的规格是0.15mm-0.2mm,薄层色谱法分离纯化产品使用的硅胶板采用的规格是0.4mm-0.5mm。硅胶一般使用烟台黄海硅胶200-300目硅胶为载体。碱性氧化铝柱一般使用国药层析用FCP200-300目碱性氧化铝为载体。
实施例中无特殊说明,反应均在氮气或氩气氛下进行。实施例中无特殊说明,溶液是指水溶液。
如本文所用,DCM表示二氯甲烷,DMF表示二甲基甲酰胺,DMSO表示二甲基亚砜,THF表示四氢呋喃,DIPA表示二异丙胺,DIPEA或DIEA表示N,N-二异丙基乙胺,NMP表示N-甲基吡咯烷酮,n-BuLi表示正丁基锂,NaBH(OAc) 3表示三乙酰氧基硼氢化钠,Xantphos表示4,5-双(二苯基膦)-9,9-二甲基氧杂蒽,Xphos表示2-二环己基磷-2′,4′,6′-三异丙基联苯,TFA表示三氟乙酸,EA表示乙酸乙酯,PE表示石油醚。BINAP表示(2R,3S)-2,2’-双二苯膦基-1,1’-联萘,NBS表示N-溴代丁二酰亚胺,NCS表示N-氯代丁二酰亚胺,Pd 2(dba) 3表示三(二亚苄基丙酮)二钯,Pd(dppf)Cl 2表示[1,1’-双(二苯基磷)二茂铁]二氯化钯,Et 3SiH表示三乙基硅烷。
乙腈ACN,甲醇MeOH,乙醇EtOH,异丙醇IPA,丙酮ACE,乙酸乙酯EA,甲基叔丁基醚MTBE,四氢呋喃THF,水H20,50%乙腈50%ACN。
如本文所用,室温指的是约20±5℃。
通用方法
X射线粉末衍射:本发明中,上述晶型的粉末X射线衍射图谱是通过本领域的已知方法,使用D8 ADVANCE X射线粉末衍射分析仪获得。仪器测试条件如下表所示:
Figure PCTCN2020080024-appb-000002
Figure PCTCN2020080024-appb-000003
在粉末X射线衍射图中,各峰的位置由2θ(°)确定。可以理解,不同的仪器和/或条件可导致产生的数据会略有不同,各峰的位置和相对强度会有变化。峰的强度划分仅仅反映了各位置上峰的近似大小。在本发明中,各晶型均以其峰高最高的衍射峰作为基峰,定义其相对强度为100%,作为I 0(晶型I的2θ(°)值为20.27的峰为基峰,晶型II的2θ(°)值为7.32的峰为基峰,晶型III的2θ(°)值为17.83的峰为基峰,晶型A的2θ(°)值为26.21的峰为基峰,晶型B-1的2θ(°)值为17.59的峰为基峰,晶型B-2的2θ(°)值为26.32的峰为基峰,晶型B-3的2θ(°)值为17.03的峰为基峰,晶型C的2θ(°)值为25.87的峰为基峰,晶型D的2θ(°)值为26.38的峰为基峰,晶型E-1的2θ(°)值为17.80的峰为基峰,晶型E-2的2θ(°)值为17.80的峰为基峰,晶型F的2θ(°)值为18.58的峰为基峰,晶型G的2θ(°)值为28.48的峰为基峰,晶型H-1的2θ(°)值为21.70的峰为基峰,晶型H-2的2θ(°)值为19.78的峰为基峰,晶型H-3的2θ(°)值为25.82的峰为基峰),其它各峰以其峰高与基峰峰高的比值作为其相对强度I/I 0,各峰相对强度的划分定义如下表所示:
相对强度I/I 0(%) 定义
50~100 VS(很强)
25~50 S(强)
10~25 M(中等)
1~10 W(弱)
本发明的盐或其晶型通过HPLC/IC或 1H NMR确定酸碱摩尔比。
高效液相色谱:本发明中,高效液相色谱(HPLC)在Agilent1260 HPLC上采集。
TGA和DSC图谱:TGA和DSC图谱分别在TA Q500/5000热重分析仪和TA Q200/2000差示扫描量热仪上采集。仪器测试条件如下表所示:
参数 TGA DSC
方法 线性升温 线性升温
样品盘 铂金盘,敞开 铝盘,压盖
温度范围 室温-设定温度 25℃-设定温度
扫描速率(℃/分钟) 10 10
保护气体 氮气 氮气
动态水分吸附(DVS)曲线:在SMS(Surface Measurement Systems)的DVS Intrinsic上采集。在25℃时的相对湿度用LiCl,Mg(NO 3) 2和KCl的潮解点校正。仪器测试条件如下表所示:
Figure PCTCN2020080024-appb-000004
Figure PCTCN2020080024-appb-000005
可以理解的是,使用与上述仪器作用相同的其他类型的仪器或使用不同与本发明中使用的测试条件时,可能会得到另外的数值,因此,所引用的数值不应视为绝对的数值。
由于仪器的误差或操作人员的区别,本领域技术人员能理解,以上用于表征晶体的物理性质的参数可能有微小的差别,所以上述的参数仅用于辅助表征本发明提供的多晶型物,而不能视为是对本发明的多晶型物的限制。
中间体1a的制备
Figure PCTCN2020080024-appb-000006
步骤1:化合物1a-1(6.0g,30.0mmol)的THF(80mL)溶液在-78℃下加入n-BuLi(27mL,66mmol)和DIPA(6.6g,66mmol),混合物搅拌1h后加入DMF(10mL)并升至室温继续搅拌2h。LC-MS跟踪至反应完全。向体系中加HCl(2N)调pH至5-6,乙酸乙酯萃取,有机层经饱和食盐水洗涤,无水硫酸钠干燥,浓缩,柱层析纯化得6.8g化合物1a-2。MS m/z(ESI):238[M+H] +
步骤2:化合物1a-2(6.8g,30.0mmol)的1,4-二氧六环(80mL)加入化合物1a.1(15g,90.0mmol)、醋酸(2mL)和NaBH(OAc) 3(18.9g,90.0mmol),混合物于50℃搅拌过夜。LC-MS跟踪至反应完全。反应液减压蒸干,加饱和食盐水洗涤,经DCM萃取,有机层干燥、浓缩,柱层析纯化得4.8g化合物1a。MS m/z(ESI):371[M+H] +
中间体1b的制备
Figure PCTCN2020080024-appb-000007
步骤1:100mL的三颈烧瓶中加入化合物1b-1(1.5g,5.17mmol)、吗啉(470mg,5.39mmol)、Pd 2(dba) 3(210mg,0.23mmol)、Xphos(240mg,0.503mmol)、碳酸铯(3.38g,10.37mmol)的1,4-二氧六环(20mL)溶液于110℃反应3h。LC-MS跟踪至反应完全。反应液冷却至室温,浓缩后经柱层析纯化(含0-20%EA的正己烷)得灰色固体化合物1b-2(1.38g,90.1%产率)。MS m/z(ESI):297.2[M+H] +
步骤2:100mL的烧瓶中加入化合物1b-2(1.38g,4.657mmol)、甲醇(20mL)和HCl/1,4-二氧六环(4M,10mL),混合物室温搅拌过夜。反应液减压浓缩去除溶剂,残留物加饱和碳酸氢钠洗涤,二氯甲烷萃取,有机层干燥后浓缩900mg得黄色固体化合物1b。MS m/z(ESI):197.2[M+H] +
实施例1 式X化合物的制备
Figure PCTCN2020080024-appb-000008
步骤1:化合物1a(740mg,2mmol)的NMP(10mL)溶液加入化合物2.1(600mg,3mmol)和DIPEA(780mg,6mmol),混合物在氩气氛围下于180℃微波反应30min。LC-MS跟踪至反应完全。反应液冷却至室温,加DCM稀释,分别经水与饱和食盐水洗涤,有机层干燥、浓缩后经柱层析纯化得300mg化合物X-1。MS m/z(ESI):535[M+H] +
步骤2:化合物X-1(250mg,0.5mmol)、化合物1b(118mg,0.6mmol)、Pd 2(dba) 3(45mg,0.05mmol)、Xantphos(54mg,0.1mmol)、碳酸铯(326mg,1mmol)的1,4-二氧六环(15mL)溶液在氩气氛围下于160℃微波反应50min。LC-MS跟踪至反应完全。反应液冷却至室温,加EA稀释,分别经水与饱和食盐水洗涤,有机层干燥、浓缩后经柱层析纯化得185mg化合物X-2。MS m/z(ESI):695.3[M+H] +
步骤3:化合物X-2(185mg,0.27mmol)的DCM(12mL)溶液中加入TFA(4.5mL)。混合物室温搅拌1h。LC-MS跟踪至反应完全。减压去除大部分TFA,加饱和碳酸氢钠溶液,调pH至7-8,DCM萃取,有机层合并后干燥、浓缩得化合物X-3,直接用于下一步反应。MS m/z(ESI):595.2[M+H] +
步骤4:化合物X-3(100mg)的DCM(10mL)溶液在氩气氛围下分别加入丙烯酰氯(15.4mg,0.17mmol)和DIPEA(66mg,0.51mmol)。混合物室温搅拌2h。LC-MS跟踪至反应完全。反应液经饱和食盐水洗涤,DCM萃取,有机层干燥、浓缩得粗品,柱层析纯化得86mg化合物X-4。MS m/z(ESI):649[M+H] +
步骤5:化合物X-4(86mg,0.13mmol)的TFA(3mL)溶液加入Et 3SiH(0.2mL),混合物加热至80℃搅拌2h。LC-MS跟踪至反应完全。减压去除大部分TFA,加饱和碳酸氢钠溶液调pH至7-8,乙酸乙酯萃取,合并有机层,干燥、浓缩后经Prep-HPLC(洗脱剂DCM∶MeOH=100∶3)纯化得10mg固体化合物X。MS m/z(ESI):499.3[M+H] +1H NMR(400MHz,DMSO-d 6)δ8.65(d,J=2.6Hz,1H),8.28-8.16(m,2H),7.08-6.99(m,1H),6.87(d,J=14.3Hz,1.5H),6.58(d,J=9.1Hz,1.5H),6.18-5.98(m,1H),5.72(d,J=10.4Hz,0.5H),5.42(d,J=10.6Hz,0.5H),4.55(d,J=12.4Hz,0.5H),4.37(s,2H),4.17(d,J=12.6Hz,0.5H),3.99(s,1H),3.89(s,1H),3.71(t,J=4.6Hz,4H),3.03-2.98(m,5H),2.66-2.85(m,1H),2.00(s,1H),1.79(d,J=13.5Hz,1H),1.65(d,J=12.5Hz,1H),1.43(s,1H)。将所得固体送XRD检测,其粉末X射线衍射图显示无特征峰,粉末X射线衍射图如图12所示(2θ角已标出),为无定形形式。
实施例2 式X化合物晶型I的制备
分别称取适量式X化合物游离碱(无定形)于样品瓶中,室温下边搅拌边逐步往瓶中加入适量的下表中溶剂,得到式X化合物的混悬液,将混悬液离心干燥得到固体,将固体送XRD检测。所得固体的粉末X射线衍射图如图9-1所示(2θ角已标出),在本申请中定义为晶型I。所加式X化合物游离碱,溶剂的类型和量以及制备方式与所得晶型类型如表1所示:
表1
Figure PCTCN2020080024-appb-000009
实施例3 式X化合物晶型I的制备
分别称取20mg式X化合物游离碱(无定形)于离心管中,加入适量溶剂后50℃加热溶解,冷却降温后析出固体,分离得到固体,将固体送XRD检测。所得固体的粉末X射线衍射图如图9-1所示(2θ角已标出),在本申请中定义为晶型I。所使用溶剂以及相应所得的晶型如表2所示:
表2
溶剂/制备方式/晶型 晶型
异丙醇 晶型I
丙酮 晶型I
四氢呋喃 晶型I
实施例4 式X化合物晶型I的制备
分别称取20mg式X化合物游离碱(无定形)于离心管中,加入适量溶剂使其悬浮在溶剂中,置于室温下混悬振摇1天,分离固体,将固体送XRD检测。所得固体的粉末X射线衍射图如图9-1所示(2θ角已标出),在本申请中定义为晶型I。另分别称取20mg式X化合物于离心管中,加入适量溶剂使其悬浮在溶剂中,置于50℃混悬振摇1天,分离固体,将固体送XRD检测。所得固体的粉末X射线衍射图如图9-1所示(2θ角已标出),为晶型I。晶型I的TGA图谱如图9-2所示,根据TGA图谱,晶型I在250℃以下基本无减重,稳定性很好。晶型I的DSC图谱和DVS图谱分别如图9-3和图9-4所示,晶型I在90%RH下吸湿增重为0.22%,略有吸湿性。晶型I的偏光显微镜图如图9-5所示,晶型I呈颗粒状,粒径非常小在几微米左右。所使用溶剂以及所得相应晶型如表3和表4所示:
表3
Figure PCTCN2020080024-appb-000010
表4
Figure PCTCN2020080024-appb-000011
Figure PCTCN2020080024-appb-000012
实施例5 式X化合物游离碱晶型II的制备
称取10.44mg式X化合物游离碱(无定形)于样品瓶中,室温下逐步往瓶中加入2.5ml异丙醇,使完全溶解,将溶液置于通风厨中缓慢挥发使其析出固体,将固体送XRD检测。所得固体的粉末X射线衍射图如图10所示(2θ角已标出),在本申请中定义为晶型II。
研究发现,分别使用丙酮、乙腈、乙酸乙酯、乙醇、甲醇、四氢呋喃及二甲亚砜作溶剂采用相同方法制备得到的固体XRD图谱显示无特征峰,为无定形形式。
实施例6 式X化合物游离碱晶型II的制备
称取20mg式X化合物游离碱(无定形)于离心管中,加入适量异丙醇,得到混悬液。将混悬液在50℃混悬振摇1天,分离固体,将固体送XRD检测。所得固体的粉末X射线衍射图如图10所示(2θ角已标出),在本申请中定义为晶型II。
实施例7 式X化合物游离碱晶型III的制备
分别称取20mg式X化合物游离碱(无定形)于离心管,加入适量乙醇使其悬浮在溶剂中,一份样品置于室温下混悬振摇1天,另一份在50℃混悬振摇1天,分离固体,将固体送XRD检测。所得固体的粉末X射线衍射图如图11所示(2θ角已标出),在本申请中定义为晶型III。结果如表5所示。
表5
Figure PCTCN2020080024-appb-000013
实施例8 式X化合物游离碱晶型III的制备
称取20mg式X化合物游离碱(无定形)于离心管中,加入适量乙醇后50℃加热溶解,冷却降温后析出固体,分离得到固体,将固体送XRD检测。所得固体的粉末X射线衍射图如图11所示(2θ角已标出),在本申请中定义为晶型III。
实施例9 式X化合物晶型A的制备
每个样品瓶称取20mg式X化合物游离碱(无定形),分别加入适量相应有机溶剂,待化合物溶解后加入1M盐酸50μL,使其发生成盐反应,样品瓶中加入磁力搅拌子置于磁力搅拌器50℃水浴反应4h,一边加热一遍搅拌,反应结束后冷却至室温,反应液变浑浊,离心干燥测XRD。所得结晶的粉末X射线衍射图如图1-1所示(2θ角已标出),酸碱摩尔比为1.2∶1。在本申请中定义为晶型A。晶型A的TGA图谱如图1-2所示,根据TGA图谱,晶型A从50℃左右升温至100℃过程中重量损失了5.9%,可能是有机溶剂挥发和脱去了盐酸;从100℃升温至160℃左右晶型A重量进一步减轻,应该是化合物分解,盐酸盐在高温下不稳定。晶型A的DSC图谱和DVS图谱分别如图1-3和图1-4所示,晶型A在90%RH下吸湿增重为7.509%,具有吸湿性。晶型A的偏光显微镜图如图1-5所示,晶型A呈颗粒状,粒径非常小在几微米左右。各种溶剂所对应形成的晶型如表6所示。
表6
异丙醇 丙酮 乙酸乙酯 乙睛
盐酸 无定形 晶型A 晶型A 晶型A
实施例10 式X化合物晶型A的制备
按下表称取式X化合物游离碱(无定形),溶于或悬浮于乙酸乙酯或丙酮中;按照酸碱摩尔比1.2∶1分别缓慢滴加相应浓度盐酸使其发生成盐反应,水浴温度50℃,反应时间4-8h;反应后停止加热,样品在水浴锅缓慢冷却至室温,反应液变浑浊,将浑浊液样品用离心机离心(8000rpm,10min)弃去上清液后烘干,所得结晶的粉末X射线衍射图如图1-1所示(2θ角已标出),酸碱摩尔比为1.2∶1。在本申请中定义为晶型A。反应条件如表7所示:
表7
样品量 加酸前状态 冷却时间 盐酸浓度 溶剂
20mg 澄清 不过夜 1M 乙酸乙酯
40mg 浑浊 过夜 0.25M 乙酸乙酯
20mg 澄清 过夜 0.25M 乙酸乙酯
20mg 澄清 过夜 0.5M 乙酸乙酯
20mg 澄清 过夜 0.75M 乙酸乙酯
40mg 澄清 过夜 1M 乙酸乙酯
100mg 浑浊 过夜 1M 乙酸乙酯
10mg 澄清 过夜 1M 乙酸乙酯
200mg 浑浊 过夜 1M 乙酸乙酯
100mg 澄清 过夜 1M 乙酸乙酯
50mg 澄清 过夜 1M 乙酸乙酯
50mg 澄清 过夜 1M 丙酮
100mg 澄清 过夜 1M 丙酮
实施例11 式X化合物晶型G的制备
每个样品瓶称取20mg式X化合物游离碱(无定形),分别加入适量相应有机溶剂,待化合物溶解后加入0.25M富马酸200μL,使其发生成盐反应,样品瓶中加入磁力搅拌子置于磁力搅拌器50℃水浴反应4h,一边加热一遍搅拌,反应结束后冷却至室温,反应液变浑浊,离心干燥测XRD。所得结晶的粉末X射线衍射图如图7所示(2θ角已标出),酸碱摩尔比为1.2∶1。在本申请中定义为晶型G。各种溶剂所对应形成的晶型如表8所示。
表8
异丙醇 丙酮 乙酸乙酯 乙睛
富马酸 晶型G 晶型G 晶型G 晶型G
实施例12 式X化合物晶型G的制备
按下表称取式X化合物游离碱(无定形),溶于或悬浮于乙酸乙酯或四氢呋喃中;按照酸碱摩尔比1.2∶1分别缓慢滴加相应浓度富马酸使其发生成盐反应,水浴温度50℃,反应时间4-8h;反应后停止加热,样品在水浴锅缓慢冷却至室温,反应液为澄清,将反应液烘干,所得结晶的粉末X射线衍射图如图7所示(2θ角已标出),酸碱摩尔比为1.2∶1。在本申请中定义为晶型G。反应条件如表9所示:
表9
样品量 加酸前状态 富马酸浓度 溶剂 冷却时间
20mg 澄清 0.25M 乙酸乙酯 不过夜
40mg 浑浊 0.25M 乙酸乙酯 过夜
20mg 澄清 0.5M 乙酸乙酯 过夜
20mg 澄清 0.5M 四氢呋喃 过夜
20mg 浑浊 1M 乙酸乙酯 过夜
20mg 澄清 0.5M 乙酸乙酯 过夜
20mg 澄清 1M 乙酸乙酯 过夜
实施例13 式X化合物晶型B-1至晶型F及晶型H-1、H-2、H-3的制备
每个样品瓶称取20mg式X化合物游离碱(无定形),加入1-3ml相应有机溶剂,待化合物溶解后按照酸碱摩尔比1.2∶1加入相应的酸(1M的酸加50μL,0.5M的酸加入100μL,0.25M的酸加200μL),使其发生成盐反应;加入磁力搅拌子置于磁力搅拌器,50℃水浴反应4h,一边加热一遍搅拌。反应结束后冷却至室温,将状态呈溶液的样品烘干测XRD,将呈浑浊液样品离心干燥测XRD。晶型B-1、B-2、B-3、C、D、E-1、E-2、F、G、H-1、H-2、H-3的X射线粉末衍射图谱分别如图2-1、图2-2、图2-3、图3、图4、图5-1、图5-2、图6、图7、图8-1、图8-2和图8-3所示。所得结果如表10所示:
表10
Figure PCTCN2020080024-appb-000014
实施例14 稳定性实验
取式X化合物(无定形)和晶型A分别置于40℃/75%RH加速稳定性箱和60℃烘箱内,定点取样。实验条件和结果如表11所示:
表11
Figure PCTCN2020080024-appb-000015
Figure PCTCN2020080024-appb-000016
从上表可以看出,式X化合物(无定形)经过40℃/75%RH加速条件和60℃高温条件下8天和14天,未检测到有关物质的增加,含量无明显变化,化合物稳定。
晶型A经过40℃/75%RH加速条件和60℃高温条件下8天和14天,含量无明显变化,化合物较稳定。XRD图谱特征峰无变化,化合物品型稳定,为原先晶型。
实施例15 溶解性实验
每个离心管称取大约5mg式X化合物(无定形),晶型I和晶型A,加入0.5ml或1ml相应介质,超声振摇使其尽量溶解形成过饱和溶液;离心,取上清液(溶解度大的对其进行稀释)进液相,计算溶解度;5.69mg式X化合物(无定形)能完全溶解于0.5ml 0.1M HCl介质;4.24mg晶型I能完全溶解于1ml 0.1M HCl介质。实验结果如表12所示:
表12
样品 峰面积/状态 浓度mg/ml 稀释倍数 溶解度mg/ml
无定形-0.1M HCl 澄清 ≥11.38 NA ≥11.38
无定形-H2O 100.2 0.011 NA 0.011
无定形-pH4.5 80.5 0.009 NA 0.009
无定形-pH6.8 63.8 0.007 NA 0.007
晶型I-0.1M HCl 澄清 ≥4.24 NA ≥4.24
晶型I-H2O 67 0.007 NA 0.007
晶型I-pH4.5 71.7 0.008 NA 0.008
晶型I-pH6.8 55.9 0.006 NA 0.006
晶型A-0.1M HCl 956.9 0.123 20 2.459
晶型A-H2O 546.6 0.068 20 1.366
晶型A-pH4.5 1231.4 0.160 NA 0.160
晶型A-pH6.8 512.4 0.064 NA 0.064
从上表可以看出,式X化合物(无定形)和晶型I在0.1M HCl介质中溶解度较大,而在水、pH4.5和pH6.8介质中溶解度非常小;晶型A在0.1M HCl介质和水中溶解度较大,而在pH4.5和pH6.8介质中溶解度较小。
实施例16 式X化合物游离碱晶型稳定性实验
分别称量80mg式X化合物无定形、晶型I、晶型II和晶型III,于样品瓶中混合;于每个离心管内称取20mg混合物,共计15个样品(5个实验溶剂、3个实验条件);实验溶剂:丙酮、乙腈、乙酸乙酯、异丙醇和乙醇;实验条件:室温-1天和7天,50℃-1天。实验条件和结果如下:
XRD图谱显示,无定形和三种晶型在丙酮中50℃混悬振摇1天、室温下混悬振摇1天和7天后均转变为晶型I,晶型I为稳定晶型;
XRD图谱显示,无定形和三种晶型在乙腈中50℃混悬振摇1天、室温下混悬振摇1天和7天后均转变为晶型I,晶型I为稳定晶型;
XRD图谱显示,无定形和三种晶型在乙酸乙酯中50℃混悬振摇1天、室温下混悬振摇1天和7天后均转变为晶型I,晶型I为稳定晶型;
XRD图谱显示,无定形和三种晶型在异丙醇中50℃混悬振摇1天、室温下混悬振摇1天和7天后均转变为晶型I,晶型I为稳定晶型;
XRD图谱显示,无定形和三种晶型在乙醇中50℃混悬振摇1天、室温下混悬振摇1天和7天后均转变为晶型III,结合式X化合物无定形在乙醇中通过混悬振摇和降温结晶会转变为晶型III,所以晶型III在乙醇中是稳定晶型。
实施例17 晶型I稳定性实验
称量样品,置于60℃烘箱,定点取样检测,实验结果如表13所示:
表13
样品条件 含量% 有关物质%
晶型I/0天 100.11
60℃-1周 99.91
60℃-2周 99.76
从上表可以看出,晶型I在60℃条件下经过1周和2周后,含量无变化,未检测到有关物质,化学性质稳定;XRD图谱显示晶型未变,物理性质晶型稳定。
实施例18 药物组合物
由以下组分制备品型A的片剂:
Figure PCTCN2020080024-appb-000017
Figure PCTCN2020080024-appb-000018
按常规方法,将晶型A、淀粉混合过筛,再与上述其它组分混合均匀,直接压片。
实施例19 药物组合物
由以下组分制备品型I的胶囊:
Figure PCTCN2020080024-appb-000019
按常规方法,将晶型I、淀粉混合过筛,再与上述其它组分混合均匀,装入普通明胶胶囊。
生物测试
测试例1 Lantha screening激酶反应实验方法
化合物预先溶解在100%DMSO中。室温溶解10mM的药物储存液,经8vol%DMSO溶液梯度稀释至终浓度10-0.005μM。384孔板(Corning 3676)每孔中加入2.5μl的待测物溶液以及2.5μl经反应缓冲液稀释的激酶(Invitrogen PV3363),再加入5μl的反应缓冲液稀释Fluososcei-PolyGT(Invitrogen PV3610)底物与ATP(Invitrogen PV3227)的混合物启动反应。其中空白孔(Blank)用反应缓冲液代替激酶,激酶孔(Enzyme)不加入任何药物。在25℃摇床避光反应60分钟后。加入10μl Detection Solution(Invitrogen PV3528与EDTA的混合液,用TR-FRET稀释缓冲液进行稀释,EDTA工作浓度为5mM,Lanthascreening Tb PY20 antibody工作浓度为0.2nM),于室温摇床反应30分钟。在VictorX5荧光酶标仪(PerkinElmer)上读板,测定激发波长为340nm、发射波长为500nm和520nm的光吸收。
抑制率计算方法(参照Invitrogen,PV3363的说明书)如下:
1.Emission rate(ER):Coumarin Emission(520nm)/Fluorescein Emission(500nm)
2.抑制率(IR):(ER kinase-ER test compound)/(ER kinase-ER blank)×100%。用XLFIT 5.0软件(英国IDBS公司)拟合计算半数抑制浓度IC50。结果如表14所示:
表14化合物对BTK WT的抑制活性
Figure PCTCN2020080024-appb-000020
Figure PCTCN2020080024-appb-000021
其中化合物(S)-6-((1-丙烯酰基哌啶-3-基)氨基)-7-氟-4-((2-氟-4-吗啉代苯基)氨基)-1,2-二氢-3H-吡咯并[3,4-c]吡啶-3-酮以(S)-3-氨基哌啶-1-羧酸叔丁酯为原料参照实施例1的方法制备得到。
测试例2 细胞内βBTK Y223磷酸化检测HTRF实验方法
化合物预先溶解在100%DMSO中。室温溶解10mM的药物储存液,经5vol%DMSO溶液梯度稀释至终浓度3-0.0014μM。将Ramos细胞以4×10 5/孔的密度种到96孔板中,每孔45μl含10%(V/V)FBS的1640培养基,每孔中加入5μl的稀释好的待测物溶液,37℃、5%(V/V)CO 2培养1小时。加入10μl过钒酸钠稀释液(无血清的1640稀释),阴性对照孔加入10μl无血清培养基,25℃摇床孵育30分钟。每孔加入20μl裂解液(4x裂解液:封闭母液25∶1),25℃摇床孵育30分钟。振荡器800rpm震荡1分钟,取16μl细胞裂解液加入384孔板(Greiner 784075)中,加入4μl预先混合的抗体溶液(Phospho-BTK d2抗体和Phospho-BTK Cryptate抗体使用检测液稀释20倍),25℃摇床孵育过夜。在VictorX5荧光酶标仪(PerkinElmer)上读板,测定激发波长为317nm、发射波长为500nm和520nm的光吸收(参照Cisbio,63ADK017PEH的说明书)。用XLFIT 5.0软件(英国IDBS公司)拟合计算半数抑制浓度IC50。结果如表15所示:
表15化合物对βBTK Y223细胞的抑制活性
Figure PCTCN2020080024-appb-000022
从表14和表15可以看出,式X化合物对酶和细胞具有较高的抑制活性。
测试例3 对野生型EGFR激酶的活性抑制测试
以下z-lyte测试方法中所用试剂均可购自Invitrogen。
利用z-lyte方法测定待测物对野生型EGFR激酶(Invitrogen,PV3872)的抑制活性。
10uL野生型EGFR激酶反应体系中各组分的工作浓度为:10μM ATP,0.8ng/μL野生型EGFR激酶(Invitrogen,PV3872),2μM Tyr04底物(Invitrogen,PV3193)。加入待测物后DMSO的终浓度为2%。
室温溶解10mM的药物储存液经4%DMSO的水梯度稀释至终浓度10-0.005μM。每孔中加入2.5μL的待测物溶液以及5μL经反应缓冲液稀释的野生型EGFR激酶与Tyr04底物的混合物,再加入2.5μL的ATP启动反应。其中C1孔用反应缓冲液代替ATP,C2孔不加入任何药物,C3孔按说明书描述加入磷酸化的底物。在25度摇床避光反应 60分钟后。加入5μL Development Reagent B(Invitrogen,用TR-FRET稀释缓冲液进行稀释),于室温摇床反应60分钟。在VictorX5荧光酶标仪(PerkinElmer)上读板,测定激发波长为405nm、发射波长为450nm和520nm的光吸收(例如,C3 520nm表示C3孔在520nm的读值)。
抑制率计算方法(参照Invitrogen,PV3193的说明书)如下:
1、ER=Coumarin Emission(450nm)/Fluorescein Emission(520nm)
2、磷酸化率=(1-((ER×C3 520nm-C3 450nm)/((C1 450nm-C3 450nm)+ER×(C3 520nm-C1 520nm))))×100%
3、抑制率(IR)=(1-(测试化合物的磷酸化率)/(C2的磷酸化率))×100%
用XLFIT 5.0软件(英国IDBS公司)拟合计算半数抑制浓度IC 50
表16化合物对EGFR WT的抑制活性
Figure PCTCN2020080024-appb-000023
从表16可以看出,式X化合物对野生型EGFR激酶具有较低的抑制活性。因此式X化合物对BTK WT激酶具有选择抑制活性。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (13)

  1. 一种式X化合物、或其药学上可接受的盐,
    Figure PCTCN2020080024-appb-100001
  2. 如权利要求1所述的式X化合物、或其药学上可接受的盐,其特征在于,所述药学上可接受的盐选自:盐酸盐、硫酸盐、氢溴酸盐、磷酸盐、甲磺酸盐、马来酸盐、L-酒石酸盐、柠檬酸盐、富马酸盐、或琥珀酸盐。
  3. 一种式X化合物及其药学上可接受的盐的多晶型物,
    Figure PCTCN2020080024-appb-100002
    其特征在于,所述药学上可接受的盐选自:盐酸盐、硫酸盐、氢溴酸盐、磷酸盐、甲磺酸盐、马来酸盐、L-酒石酸盐、柠檬酸盐、富马酸盐、或琥珀酸盐。
  4. 如权利要求3所述的多晶型物,其特征在于,所述多晶型物选自下组:
    式X化合物盐酸盐的A型结晶,即晶型A,其X射线粉末衍射图在下组A-1的衍射角2θ(°)值处具有峰:14.75±0.2、15.97±0.2、17.20±0.2、18.94±0.2、19.72±0.2、22.15±0.2、24.35±0.2、25.12±0.2、26.21±0.2、26.80±0.2;
    式X化合物硫酸盐的B-1型结晶,即晶型B-1,其X射线粉末衍射图在下组B-1-1的衍射角2θ(°)值处具有峰:10.27±0.2、14.06±0.2、14.41±0.2、17.59±0.2、19.39±0.2、21.84±0.2、26.38±0.2、26.68±0.2;
    式X化合物硫酸盐的B-2型结晶,即晶型B-2,其X射线粉末衍射图在下组B-2-1的衍射角2θ(°)值处具有峰:8.59±0.2、10.64±0.2、13.90±0.2、14.38±0.2、15.53±0.2、17.05±0.2、17.26±0.2、17.75±0.2、19.28±0.2、21.85±0.2、25.82±0.2、26.32±0.2、26.62±0.2;
    式X化合物硫酸盐的B-3型结晶,即晶型B-3,其X射线粉末衍射图在下组B-3-1的衍射角2θ(°)值处具有峰:8.59±0.2、10.21±0.2、10.60±0.2、11.39±0.2、13.03±0.2、13.93±0.2、14.38±0.2、15.49±0.2、15.82±0.2、17.03±0.2、17.71±0.2、19.30±0.2、20.23±0.2、 21.59±0.2、21.97±0.2、23.95±0.2、24.62±0.2、26.23±0.2、26.65±0.2;
    式X化合物氢溴酸盐的C型结晶,即晶型C,其X射线粉末衍射图在下组C-1的衍射角2θ(°)值处具有峰:15.26±0.2、15.91±0.2、17.09±0.2、18.43±0.2、18.76±0.2、19.49±0.2、20.47±0.2、21.91±0.2、24.10±0.2、24.88±0.2、25.87±0.2、26.48±0.2;
    式X化合物磷酸盐的D型结晶,即晶型D,其X射线粉末衍射图在下组D-1的衍射角2θ(°)值处具有峰:12.24±0.2、13.93±0.2、17.24±0.2、18.18±0.2、23.93±0.2、26.38±0.2、26.68±0.2;
    式X化合物甲磺酸盐的E-1型结晶,即晶型E-1,其X射线粉末衍射图在下组E-1-1的衍射角2θ(°)值处具有峰:8.56±0.2、11.39±0.2、17.47±0.2、17.80±0.2、26.32±0.2;
    式X化合物甲磺酸盐的E-2型结晶,即晶型E-2,其X射线粉末衍射图在下组E-2-1的衍射角2θ(°)值处具有峰:15.79±0.2、16.76±0.2、17.41±0.2、17.80±0.2、20.26±0.2、21.05±0.2、24.10±0.2、25.63±0.2、26.53±0.2、26.92±0.2、27.50±0.2;
    式X化合物酒石酸盐的F型结晶,即晶型F,其X射线粉末衍射图在下组F-1的衍射角2θ(°)值处具有峰:18.58±0.2、19.84±0.2、20.56±0.2、24.88±0.2、28.73±0.2、29.45±0.2、31.81±0.2、33.28±0.2;
    式X化合物富马酸盐的G型结晶,即晶型G,其X射线粉末衍射图在下组G-1的衍射角2θ(°)值处具有峰:16.06±0.2、18.76±0.2、20.32±0.2、21.49±0.2、22.52±0.2、22.84±0.2、24.32±0.2、24.50±0.2、26.06±0.2、28.48±0.2;
    式X化合物琥珀酸盐的H-1型结晶,即晶型H-1,其X射线粉末衍射图在下组H-1-1的衍射角2θ(°)值处具有峰:21.70±0.2;
    式X化合物琥珀酸盐的H-2型结晶,即晶型H-2,其X射线粉末衍射图在下组H-2-1的衍射角2θ(°)值处具有峰:19.78±0.2、21.63±0.2、25.96±0.2、31.23±0.2;或
    式X化合物琥珀酸盐的H-3型结晶,即晶型H-3,其X射线粉末衍射图在下组H-3-1的衍射角2θ(°)值处具有峰:12.20±0.2、19.72±0.2、19.84±0.2、25.82±0.2、31.21±0.2。
  5. 如权利要求3所述的多晶型物,其特征在于,所述多晶型物选自下组:
    式X化合物的晶型I,其X射线粉末衍射图在下组I-1的衍射角2θ(°)值处具有峰:16.01±0.2、18.64±0.2、20.27±0.2、21.40±0.2、22.84±0.2、24.49±0.2;
    式X化合物的晶型II,其X射线粉末衍射图在组II-1的衍射角2θ(°)值处具有峰:7.32±0.2、9.84±0.2、13.56±0.2、17.47±0.2、22.73±0.2、24.37±0.2、25.09±0.2;
    式X化合物的晶型III,其X射线粉末衍射图在下组III-1的衍射角2θ(°)值处具有峰:9.52±0.2、11.77±0.2、12.43±0.2、12.78±0.2、15.31±0.2、16.33±0.2、16.84±0.2、17.83±0.2、18.49±0.2、19.57±0.2、20.15±0.2、21.71±0.2、23.26±0.2、23.84±0.2、24.52±0.2、25.30±0.2。
  6. 如权利要求4所述的多晶型物,其特征在于,
    所述晶型A的X射线粉末衍射图基本如图1-1所表征;
    所述晶型B-1的X射线粉末衍射图基本如图2-1所表征;
    所述晶型B-2的X射线粉末衍射图基本如图2-2所表征;
    所述晶型B-3的X射线粉末衍射图基本如图2-3所表征;
    所述晶型C的X射线粉末衍射图基本如图3所表征;
    所述晶型D的X射线粉末衍射图基本如图4所表征;
    所述晶型E-1的X射线粉末衍射图基本如图5-1所表征;
    所述晶型E-2的X射线粉末衍射图基本如图5-2所表征;
    所述晶型F的X射线粉末衍射图基本如图6所表征;
    所述晶型G的X射线粉末衍射图基本如图7所表征;
    所述晶型H-1的X射线粉末衍射图基本如图8-1所表征;
    所述晶型H-2的X射线粉末衍射图基本如图8-2所表征;
    所述晶型H-3的X射线粉末衍射图基本如图8-3所表征。
  7. 如权利要求5所述的多晶型物,其特征在于,
    所述晶型I的X射线粉末衍射图基本如图9-1所表征;
    所述晶型II的X射线粉末衍射图基本如图10所表征;
    所述晶型III的X射线粉末衍射图基本如图11所表征。
  8. 一种制备式X化合物的晶型I的方法,所述式X如下所示:
    Figure PCTCN2020080024-appb-100003
    所述方法包括以下步骤:
    (a)在10℃-60℃下,将式X化合物悬浮于溶剂中,其中所述溶剂为水、乙腈、异丙醇、丙酮、乙酸乙酯、四氢呋喃、正庚烷或甲基叔丁基醚;
    (b)将步骤(a)的混合物混悬离心,悬浮搅拌或混悬振摇,分离,得到晶型I。
  9. 一种制备式X化合物的晶型I的方法,所述式X如下所示:
    Figure PCTCN2020080024-appb-100004
    所述方法包括以下步骤:
    (i)在30℃-60℃下,将式X化合物溶解于溶剂中;其中所述溶剂为异丙醇、丙酮或四氢呋喃;
    (ii)将步骤(i)的混合物降温结晶,分离,得到晶型I。
  10. 一种药物组合物,其特征在于,所述药物组合物包括:
    (a)权利要求1所述的式X化合物、或其药学上可接受的盐;以及(b)药学可接受的载体。
  11. 一种药物组合物,其特征在于,所述药物组合物包括:
    (a)权利要求3所述的多晶型物;以及(b)药学可接受的载体。
  12. 权利要求1所述的式X化合物、或其药学上可接受的盐,或权利要求10所述药物组合物在制备治疗和/或预防肿瘤、癌症、增殖性疾病、变态反应性疾病、自身免疫性疾病或炎症性疾病的药物上的用途。
  13. 权利要求3所述的式X化合物及其药学上可接受的盐的多晶型物,或权利要求11所述药物组合物在制备治疗和/或预防肿瘤、癌症、增殖性疾病、变态反应性疾病、自身免疫性疾病或炎症性疾病的药物上的用途。
PCT/CN2020/080024 2019-03-18 2020-03-18 Btk抑制剂及其药学上可接受的盐和多晶型物及其应用 WO2020187267A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080003606.4A CN112334469B (zh) 2019-03-18 2020-03-18 Btk抑制剂及其药学上可接受的盐和多晶型物及其应用
JP2021520949A JP2022505053A (ja) 2019-03-18 2020-03-18 Btk阻害剤、その薬学的に許容可能な塩と結晶多形体、及びその応用
US17/271,202 US20210395247A1 (en) 2019-03-18 2020-03-18 Btk inhibitors, pharmaceutically acceptable salts, polymorphs and application thereof
AU2020242723A AU2020242723B2 (en) 2019-03-18 2020-03-18 BTK inhibitor, pharmaceutically acceptable salt, polymorph and application thereof
EP20773247.0A EP3851438A4 (en) 2019-03-18 2020-03-18 BTK INHIBITOR, PHARMACEUTICALLY ACCEPTABLE SALT, POLYMORPHIC AND APPLICATION OF THE SAME
CA3109765A CA3109765A1 (en) 2019-03-18 2020-03-18 Btk inhibitor, pharmaceutically acceptable salt, polymorph and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910203239.1 2019-03-18
CN201910203239 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020187267A1 true WO2020187267A1 (zh) 2020-09-24

Family

ID=72519604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080024 WO2020187267A1 (zh) 2019-03-18 2020-03-18 Btk抑制剂及其药学上可接受的盐和多晶型物及其应用

Country Status (7)

Country Link
US (1) US20210395247A1 (zh)
EP (1) EP3851438A4 (zh)
JP (1) JP2022505053A (zh)
CN (1) CN112334469B (zh)
AU (1) AU2020242723B2 (zh)
CA (1) CA3109765A1 (zh)
WO (1) WO2020187267A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048551A1 (zh) * 2020-09-01 2022-03-10 上海海雁医药科技有限公司 布鲁顿酪氨酸激酶抑制剂的多晶型物及其制备方法和应用
WO2023040876A1 (zh) * 2021-09-15 2023-03-23 上海海雁医药科技有限公司 氮杂芳环类化合物及其药学上可接受的盐的多晶型物、药物组合物和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062329A1 (zh) * 2017-09-28 2019-04-04 上海海雁医药科技有限公司 4,6,7-三取代1,2-二氢吡咯并[3,4-c]吡啶/嘧啶-3-酮衍生物及用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2516434E (pt) * 2009-12-23 2015-10-05 Takeda Pharmaceutical Pirrolidinonas heteroaromáticas fundidas como inibidores de syk
SG11201602070TA (en) * 2013-09-30 2016-04-28 Beijing Synercare Pharma Tech Co Ltd Substituted nicotinimide inhibitors of btk and their preparation and use in the treatment of cancer, inflammation and autoimmune disease
WO2015131080A1 (en) * 2014-02-28 2015-09-03 Nimbus Lakshmi, Inc. Tyk2 inhibitors and uses thereof
CN107021963A (zh) * 2016-01-29 2017-08-08 北京诺诚健华医药科技有限公司 吡唑稠环类衍生物、其制备方法及其在治疗癌症、炎症和免疫性疾病上的应用
JP2019519579A (ja) * 2016-06-30 2019-07-11 デウン ファーマシューティカル カンパニー リミテッド キナーゼ阻害剤としてのピラゾロピリミジン誘導体
KR102032418B1 (ko) * 2017-06-15 2019-10-16 한국화학연구원 접합 피리미딘 유도체, 이의 제조방법 및 이를 유효성분으로 포함하는 브루톤티로신 키나제 활성 관련 질환의 예방 또는 치료용 약학적 조성물

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062329A1 (zh) * 2017-09-28 2019-04-04 上海海雁医药科技有限公司 4,6,7-三取代1,2-二氢吡咯并[3,4-c]吡啶/嘧啶-3-酮衍生物及用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J W MULLENS: "Crystallization", 1993, BUTTERWORTH-HEINEMAN LTD.
See also references of EP3851438A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048551A1 (zh) * 2020-09-01 2022-03-10 上海海雁医药科技有限公司 布鲁顿酪氨酸激酶抑制剂的多晶型物及其制备方法和应用
WO2023040876A1 (zh) * 2021-09-15 2023-03-23 上海海雁医药科技有限公司 氮杂芳环类化合物及其药学上可接受的盐的多晶型物、药物组合物和应用

Also Published As

Publication number Publication date
JP2022505053A (ja) 2022-01-14
CA3109765A1 (en) 2020-09-24
EP3851438A4 (en) 2021-11-10
AU2020242723A1 (en) 2021-03-11
CN112334469B (zh) 2022-10-04
CN112334469A (zh) 2021-02-05
EP3851438A1 (en) 2021-07-21
US20210395247A1 (en) 2021-12-23
AU2020242723B2 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
CN107922425B (zh) 制备parp抑制剂、结晶形式的方法及其用途
US20200361908A1 (en) Crystals of aniline pyrimidine compound serving as egfr inhibitor
CA3026602A1 (en) Pyrrolopyrimidine crystal for preparing jak inhibitor
JP6268276B2 (ja) PERK阻害剤としての新規なN(2,3−ジヒドロ−1H−ピロロ[2,3−b]ピリジン−5−イル)−4−キナゾリンアミン誘導体およびN−(2,3−ジヒドロ−1H−インドール−5−イル)−4−キナゾリンアミン誘導体
WO2020187267A1 (zh) Btk抑制剂及其药学上可接受的盐和多晶型物及其应用
CN110357905B (zh) 作为蛋白激酶抑制剂的大环类衍生物及其制备方法和用途
CN110551142A (zh) 一种稠环嘧啶类化合物的盐、晶型及其制备方法和应用
JP7554007B2 (ja) Jak阻害剤化合物及びその使用
CN111601791B (zh) Ezh2抑制剂及其药学上可接受的盐和多晶型物及其应用
CN111566101B (zh) Cdk4/6抑制剂及其药学上可接受的盐和多晶型物及其应用
CN104418867A (zh) 作为PI3K/mTOR抑制剂的化合物,其制备方法和用途
CN108430987B (zh) Pi3k抑制剂及其药学上可接受的盐和多晶型物及其应用
CN104119321B (zh) 二氢吲哚酮衍生物的二马来酸盐及其多晶型物
WO2022048551A1 (zh) 布鲁顿酪氨酸激酶抑制剂的多晶型物及其制备方法和应用
WO2024109871A1 (zh) 一种含氮杂环类化合物的可药用盐、晶型及制备方法
CN114026088A (zh) Jak2抑制剂的结晶形式
CN115232124A (zh) 一种atx抑制剂的结晶形式及其制备方法
CN104557955B (zh) 作为PI3K/mTOR抑制剂的三环类化合物,其制备方法和用途
EA043251B1 (ru) Кристаллическая форма соединения для ингибирования активности cdk4/6 и ее применение

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3109765

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020773247

Country of ref document: EP

Effective date: 20210218

ENP Entry into the national phase

Ref document number: 2020242723

Country of ref document: AU

Date of ref document: 20200318

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021520949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE