WO2020187218A1 - 一种终端 - Google Patents

一种终端 Download PDF

Info

Publication number
WO2020187218A1
WO2020187218A1 PCT/CN2020/079852 CN2020079852W WO2020187218A1 WO 2020187218 A1 WO2020187218 A1 WO 2020187218A1 CN 2020079852 W CN2020079852 W CN 2020079852W WO 2020187218 A1 WO2020187218 A1 WO 2020187218A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
front screen
circuit board
color
display screen
Prior art date
Application number
PCT/CN2020/079852
Other languages
English (en)
French (fr)
Inventor
唐中帜
贺真
蔡明�
司合帅
胡邦红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20773741.2A priority Critical patent/EP3933544A4/en
Publication of WO2020187218A1 publication Critical patent/WO2020187218A1/zh
Priority to US17/477,686 priority patent/US11567382B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/14Materials and properties photochromic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0277Details of the structure or mounting of specific components for a printed circuit board assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0267Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by controlling user interface components
    • H04W52/027Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by controlling user interface components by controlling a display operation or backlight unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of terminal technology, and more specifically, to a terminal.
  • terminals are equipped with front screens.
  • terminals such as smart phones, tablet computers, notebook computers, smart TVs, and smart watches are equipped with front screens.
  • the external structure of the terminal mainly includes a shell and a front screen arranged on the shell. From the perspective of appearance consistency, designing a terminal with the same color of the front screen and the shell has become one of the future development directions.
  • the current technology can be used to achieve the same color of the front screen and the shell. For example, assuming that the shell of the terminal is red, when the terminal is in a standby state, the processor of the terminal may send a control instruction to the front screen, and the control instruction is used to instruct the front screen to display red. When the front screen receives the control command, the front screen will display red.
  • the front screen when the terminal is in the standby state, the front screen needs to be always in the running state and display the target color, so that the color of the front screen is consistent with the color of the housing.
  • the above technical solution will cause the front screen to consume a large amount of power when the terminal is in a standby state, thereby shortening the use time of the terminal.
  • the embodiment of the present application provides a terminal, which enables the front screen of the terminal to display a target color while consuming less power.
  • an embodiment of the present application provides a terminal, which includes a housing, a front screen, a circuit board, and a power supply.
  • the front screen is arranged on the casing, the circuit board and the power supply are arranged in the casing, and the power supply is electrically connected with the circuit board.
  • the front screen includes strengthened glass, a color-changing layer and a display screen stacked in sequence, the color-changing layer is electrically connected to the circuit board, and the color-changing layer is used to change color when receiving power from the circuit board.
  • a color-changing layer is provided in the front screen, and the color-changing layer can change color when receiving power from the circuit board. Since the color change layer is only used for color change and cannot display complex images, the power consumption of the color change layer is much lower than the power consumption of the display screen. Therefore, the terminal provided by the embodiment of the present application can make the terminal consume less power.
  • the front screen displays the target color.
  • the color changing layer is an electrochromic combination layer;
  • the electrochromic combination layer includes a first transparent conductive layer, an ion storage layer, an ion conductor layer, an electrochromic layer, and a second transparent layer that are sequentially stacked.
  • Conductive layer both the first transparent conductive layer and the second transparent conductive layer are electrically connected to the circuit board.
  • the initial state of the electrochromic layer is a transparent state.
  • the first transparent conductive layer receives a voltage
  • the first electric ions stored in the ion storage layer enter the electrochromic layer through the ion conductor layer.
  • the electrochromic layer receives the first electric ions
  • the electrochromic layer changes from the transparent state to the target color.
  • the electrochromic layer is the target color and the first transparent conductive layer does not receive voltage
  • the electrochromic layer will maintain the target color.
  • the electrochromic layer is the target color and the second transparent conductive layer receives a voltage
  • the first ion in the electrochromic layer will pass through the ion conductor layer back to the ion storage layer, and the electrochromic layer will be converted from the target color to Transparent state.
  • the electrochromic layer When the electrochromic layer is in a transparent state and neither the first transparent conductive layer nor the second transparent conductive layer receives a voltage, the electrochromic layer will remain in a transparent state. According to the working principle of the electrochromic combination layer, it can be known that the electrochromic layer can display the target color while consuming less electricity, and the electrochromic layer can also be restored to a transparent state while consuming less electricity.
  • the front screen further includes a silicon dioxide layer, an optical adhesive layer and a touch control panel; the first transparent conductive layer of the electrochromic combination layer is fixed on the strengthened glass; the first silicon dioxide layer The surface is fixed on the second transparent conductive layer of the electrochromic composite layer; the second surface of the silicon dioxide layer is bonded to the first surface of the display screen by an optical adhesive layer; the second surface of the display screen is attached to the touch control board Together.
  • the silicon dioxide layer can play an insulating role.
  • the silicon dioxide layer can prevent the current on the electrochromic combination layer from entering the display screen and the touch control panel.
  • the silicon dioxide layer and the optical adhesive layer have better adhesion properties.
  • the thickness of the electrochromic combination layer is less than or equal to 10 microns.
  • the thickness of the electrochromic combination layer can be controlled within 10 microns.
  • the color changing layer is a monochromatic conversion liquid crystal layer
  • the front screen also includes a first optical adhesive layer, a second optical adhesive layer and a touch control panel; the first surface of the monochromatic conversion liquid crystal layer and strengthened glass
  • the second surface of the monochromatic conversion liquid crystal layer is bonded to the first surface of the display screen by the second optical glue layer; the second surface of the display screen is bonded to the touch control board.
  • the monochromatic conversion liquid crystal layer when the monochromatic conversion liquid crystal layer does not receive a voltage, the monochromatic conversion liquid crystal layer is in a transparent state.
  • the monochromatic conversion liquid crystal layer receives a voltage, the monochromatic conversion liquid crystal layer is converted from a transparent state to a target color.
  • the monochrome conversion liquid crystal layer can only switch between the target color and the transparent state. Since the monochrome conversion liquid crystal layer can display a single color, the power consumption of the monochrome conversion liquid crystal layer With a small amount, the monochrome conversion liquid crystal layer can display the target color while consuming less power, and the monochrome conversion liquid crystal layer can also be restored to a transparent state without consuming power.
  • the thickness of the monochromatic conversion liquid crystal layer is less than or equal to 0.1 mm.
  • the thickness of the monochromatic conversion liquid crystal layer can be controlled within 0.1 mm.
  • an embodiment of the present application provides a terminal, which includes a housing and a front screen; the front screen is arranged on the housing; the front screen includes strengthened glass, a photochromic layer, and a display screen stacked in sequence; The emitted light irradiates into the photochromic layer, and the photochromic layer is used to change color when receiving light from the display screen.
  • the photochromic layer when the photochromic layer does not receive light from the display screen, the photochromic layer is the target color.
  • the photochromic layer is converted from the target color to a transparent state. According to the working principle of the photochromic layer, it can be converted from the transparent state to the target color when the photochromic layer receives the light emitted by the display screen.
  • the photochromic layer does not receive the light emitted by the display screen. It can be converted from the target color to the transparent state, and the photochromic layer does not consume power at all when switching between the transparent state and the target color.
  • the front screen further includes an optical glue layer and a touch control panel; the first surface of the photochromic layer is fixed on the strengthened glass; the second surface of the photochromic layer is connected to the second surface of the display screen. One surface is bonded by an optical adhesive layer; the second surface of the display screen is bonded to the touch control board.
  • the thickness of the photochromic layer is less than or equal to 0.05 mm.
  • the thickness of the photochromic layer can be controlled within 0.05 mm.
  • the material of the photochromic layer is a photosensitive material.
  • FIG. 1 shows a schematic diagram of a terminal provided by an embodiment of this application
  • FIG. 2 shows a schematic diagram of a front screen provided by an embodiment of this application
  • FIG. 3 shows a schematic diagram of a specific structure of the electrochromic combination layer 22 in FIG. 2;
  • FIG. 4 shows a schematic diagram of another front screen provided by an embodiment of this application.
  • FIG. 5 shows a schematic diagram of another front screen provided by an embodiment of this application.
  • FIG. 6 shows a schematic diagram of a mobile terminal provided by an embodiment of this application.
  • FIG. 7 shows a schematic diagram of a display provided by an embodiment of this application.
  • FIG. 8 shows a schematic diagram of a notebook computer provided by an embodiment of this application.
  • FIG. 9 shows a schematic diagram of a smart TV provided by an embodiment of this application.
  • FIG. 10 shows a schematic diagram of a wearable device provided by an embodiment of this application.
  • FIG. 1 shows a schematic diagram of a terminal provided in an embodiment of this application.
  • the terminal includes a housing 1, a front panel 2, a circuit board 3, and a power source 4.
  • the front panel 2 is arranged on the housing 1, and the circuit board 3 and the power source 4 are both arranged in the housing 1.
  • the power source 4 is electrically connected to the circuit board 3.
  • FIG. 2 shows a schematic diagram of a front screen provided in an embodiment of this application.
  • the front screen 2 includes a strengthened glass 21, an electrochromic combination layer 22, a silicon dioxide layer 23, an optical adhesive layer 24, a display screen 25, and a touch control panel stacked in sequence 26.
  • the electrochromic combination layer 22 is electrically connected to the circuit board 3, and the electrochromic combination layer 22 is used to change color when receiving power from the circuit board 3.
  • the strengthened glass 21 can increase the strength of the front screen to protect the safety of the electrochromic combination layer 22, the display screen 25 and the touch control panel 26.
  • the electrochromic combination layer 22 can be switched with the target color in a transparent state.
  • the silicon dioxide layer 23 can play an insulating role. When a voltage is applied to the electrochromic combination layer 22, the silicon dioxide layer 23 can prevent the current on the electrochromic combination layer 22 from entering the display screen 25 and the touch control board 26; Moreover, the silicon dioxide layer 23 and the optical adhesive layer 24 have better adhesion properties; in addition, the silicon dioxide layer 23 can be disposed on the electrochromic composite layer 22 by means of physical vapor deposition.
  • the optical adhesive layer 24 can bond the silicon dioxide layer 23 and the display screen 25 together.
  • the display screen 25 can display images.
  • the touch control panel 26 can receive touch commands input by the user.
  • the thickness of the electrochromic combination layer 22 may be controlled within 10 microns.
  • the initial state of the electrochromic combination layer 22 is a transparent state.
  • the electrochromic combination layer 22 receives the voltage provided by the circuit board 3
  • the electrochromic combination layer 22 The combined layer 22 is converted from a transparent state to a target color.
  • the electrochromic combination layer 22 is the target color and the electrochromic combination layer 22 does not receive the voltage provided by the circuit board 3, the electrochromic combination layer 22 maintains the target color.
  • the electrochromic combination layer 22 is the target color and the second end of the electrochromic combination layer 22 receives the voltage provided by the circuit board 3, the electrochromic combination layer 22 changes from the target color to a transparent state.
  • the electrochromic combination layer 22 When the electrochromic combination layer 22 is in a transparent state and the electrochromic combination layer 22 does not receive the voltage provided by the circuit board 3, the electrochromic combination layer 22 will remain in the transparent state. According to the working principle of the electrochromic combination layer 22, it can be seen that the electrochromic combination layer 22 can display the target color while consuming less power, and the electrochromic combination layer 22 can also be restored with less power consumption. To transparent state.
  • the display screen 25 may be a screen such as an LCD or an OLED.
  • the full English name of LCD is Liquid crystal display
  • the Chinese definition is liquid crystal display.
  • the English full name of OLED is Organic light-emitting diode
  • the Chinese definition is organic light-emitting diode.
  • the electrochromic composite layer 22 may be disposed on the strengthened glass 21 by means of physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • the physical vapor deposition technology is to use a physical method to vaporize the material of the electrochromic combination layer 22 into gaseous atoms under vacuum conditions, and deposit the gaseous atoms on the surface of the strengthened glass 21, and the film finally forms the electrochromic combination Layer 22.
  • disposing the electrochromic composite layer 22 on the strengthened glass 21 is not limited to physical vapor deposition, and other methods can also be used.
  • FIG. 3 shows a schematic diagram of the specific structure of the electrochromic combination layer 22 in FIG. 2.
  • FIG. 3 shows only a specific structure of the electrochromic combination layer 22.
  • the electrochromic combination layer 22 is not limited to the structure shown in FIG. 3, and the electrochromic combination layer 22 can also be of other types. structure.
  • the electrochromic composite layer 22 shown in FIG. 3 includes a first transparent conductive layer 221, an ion storage layer 222, an ion conductor layer 223, an electrochromic layer 224, and a second transparent conductive layer 225 stacked in sequence. Both the layer 221 and the second transparent conductive layer 225 are electrically connected to the circuit board 3.
  • the initial state of the electrochromic layer 224 is a transparent state, and when the first transparent conductive layer 221 receives the voltage provided by the circuit board 3, the second stored in the ion storage layer 222 An electric ion enters the electrochromic layer 224 through the ion conductor layer 223.
  • the electrochromic layer 224 receives the first electric ions, the electrochromic layer 224 changes from a transparent state to a target color.
  • the electrochromic layer 224 is the target color and the first transparent conductive layer 221 does not receive the voltage provided by the circuit board 3, the electrochromic layer 224 will maintain the target color.
  • the electrochromic layer 224 When the electrochromic layer 224 is the target color and the second transparent conductive layer 225 receives the voltage provided by the circuit board 3, the first electric ions in the electrochromic layer 224 will pass through the ion conductor layer 223 and return to the ion storage layer 222.
  • the electrochromic layer 224 changes from the target color to a transparent state.
  • the electrochromic layer 224 When the electrochromic layer 224 is in a transparent state and neither the first transparent conductive layer 221 nor the second transparent conductive layer 225 receives the voltage provided by the circuit board 3, the electrochromic layer 224 will remain in the transparent state.
  • the electrochromic layer 224 can display the target color while consuming less power, and the electrochromic layer 224 can also be restored to transparent while consuming less power. status.
  • the first transparent conductive layer 221 and the second transparent conductive layer 225 may specifically be AZO, which is an abbreviation for aluminum-doped zinc oxide (ZnO) transparent conductive glass.
  • the ion storage layer 222 may specifically be vanadium pentoxide (V 2 O 5 ).
  • the ion conductor layer 223 may specifically be lithium tantalate (LiTaO3).
  • FIG. 4 shows a schematic diagram of another front screen provided in an embodiment of the present application.
  • the front screen 2 includes a strengthened glass 31, a first optical adhesive layer 32, a monochromatic conversion liquid crystal layer 33, a second optical adhesive layer 34, a display screen 35 and Touch control panel 36.
  • the monochromatic conversion liquid crystal layer 33 is electrically connected to the circuit board 3, and the monochromatic conversion liquid crystal layer 33 is used to change color when the circuit board 3 receives power.
  • the strengthened glass 31 can increase the strength of the front screen to protect the safety of the monochrome conversion liquid crystal layer 33, the display screen 35 and the touch control panel 36.
  • the monochromatic conversion liquid crystal layer 33 can be switched between a transparent state and a target color.
  • the first optical glue layer 32 can bond the strengthened glass 31 and the monochromatic conversion liquid crystal layer 33 together.
  • the second optical adhesive layer 34 can bond the monochromatic conversion liquid crystal layer 33 and the display screen 35 together.
  • the display screen 35 can display images.
  • the touch control panel 36 can receive touch commands input by the user.
  • the monochromatic conversion liquid crystal layer 33 when the monochromatic conversion liquid crystal layer 33 does not receive the voltage provided by the circuit board 3, the monochromatic conversion liquid crystal layer 33 is in a transparent state.
  • the monochromatic conversion liquid crystal layer 33 receives the voltage provided by the circuit board 3, the monochromatic conversion liquid crystal layer 33 is converted from the transparent state to the target color. According to the working principle of the monochrome conversion liquid crystal layer 33, the monochrome conversion liquid crystal layer 33 can only switch between the target color and the transparent state.
  • the monochrome conversion liquid crystal layer 33 can display a single color, the monochrome conversion liquid crystal layer The power consumption of 33 is low, and the monochrome conversion liquid crystal layer 33 can display the target color while consuming less power, and the monochrome conversion liquid crystal layer 33 can also be restored to a transparent state without consuming power.
  • the display screen 25 may be a screen such as an LCD or an OLED.
  • the thickness of the monochromatic conversion liquid crystal layer 33 may be controlled within 0.1 mm.
  • FIG. 5 shows a schematic diagram of another front screen provided in an embodiment of the present application.
  • the front screen shown in FIG. 5 includes a strengthened glass 41, a photochromic layer 42, an optical adhesive layer 43, a display screen 44 and a touch control panel 45 stacked in sequence.
  • the light emitted by the display screen 44 can be irradiated into the photochromic layer 42, and the photochromic layer 42 is used to change color when the light emitted by the display screen 44 is received.
  • the strengthened glass 41 can increase the strength of the front screen to protect the photochromic layer 42, the display screen 44 and the touch control panel 45.
  • the photochromic layer 42 can be switched between a transparent state and a target color.
  • the material of the photochromic layer 42 may be a photosensitive material, for example, photosensitive ink.
  • the optical adhesive layer 43 can bond the photochromic layer 42 and the display screen 44 together.
  • the display 44 can display images.
  • the touch control panel 45 can receive touch commands input by the user.
  • the photochromic layer 42 when the photochromic layer 42 does not receive the light emitted by the display screen 44, the photochromic layer 42 is the target color.
  • the photochromic layer 42 changes from the target color to a transparent state. It can be known from the working principle of the photochromic layer 42 that the photochromic layer 42 can be converted from a transparent state to the target color when it receives the light emitted by the display screen 44.
  • the photochromic layer 42 does not receive the display The light emitted by the screen 44 can be converted from the target color to a transparent state, and the photochromic layer 42 does not consume power at all during the process of switching between the transparent state and the target color.
  • the display screen 44 may be a screen such as an LCD or an OLED.
  • the thickness of the photochromic layer 42 may be controlled within 0.05 mm.
  • the photochromic layer 42 may be disposed on the strengthened glass 41 by means of physical vapor deposition.
  • the physical vapor deposition technology is to use a physical method to vaporize the material of the photochromic layer 42 into gaseous atoms under vacuum conditions, and deposit the gaseous atoms on the surface of the strengthened glass 41, and the film finally forms the photochromic Layer 42.
  • disposing the photochromic layer 42 on the strengthened glass 41 is not limited to physical vapor deposition, and other methods can also be used.
  • the target color may be one color, for example, the target color may be a single color such as red, yellow, or green.
  • the target color may also be a color formed by a combination of several colors.
  • the target color may be a gradient color formed by a combination of red, yellow, or green.
  • FIG. 6 shows a schematic diagram of a mobile terminal provided in an embodiment of this application.
  • the mobile terminal shown in FIG. 6 includes a housing 101, a front screen 102, a circuit board and a power supply, and the circuit board and the power supply are not shown in FIG. 6.
  • the front screen 102 is arranged on the housing 101, the circuit board and the power supply are both arranged in the housing 101, and the power supply is electrically connected to the circuit board.
  • the front screen 102 may be the front screen 2 in the embodiment shown in FIGS. 1 to 5.
  • the front screen 102 please refer to the description of the front screen 2 in the embodiment shown in FIGS. 1 to 5.
  • the housing 101 may include a middle frame and a back cover, and the front screen 102 and the back cover are respectively fixed on both sides of the middle frame.
  • the front screen 102 includes a strengthened glass 21, an electrochromic combination layer 22, and a dioxide
  • the mobile terminal is a smart phone
  • the smart phone includes a housing 101, a front screen 102, a circuit board, and a power supply as shown in FIG. 6, and the specific structure of the front screen 102 is as shown in FIG.
  • the casing 101 of the smartphone is blue.
  • the electrochromic combination layer 22 is in a transparent state.
  • the circuit board of the smart phone When the display screen 25 is in the closed state, the circuit board of the smart phone will apply a voltage to the first end of the electrochromic combination layer 22, and the electrochromic combination layer 22 will be converted from the transparent state to blue, thereby making the color of the front screen 102 The same color as the housing 101.
  • the electrochromic combination layer 22 When the electrochromic combination layer 22 is blue and the electrochromic combination layer 22 does not receive the voltage provided by the circuit board, the electrochromic combination layer 22 will remain blue, so the electrochromic combination layer 22 will not consume extra Power.
  • the circuit board of the smart phone When the display screen 25 is in the on state, the circuit board of the smart phone will apply a voltage to the second end of the electrochromic combination layer 22, and the electrochromic combination layer 22 will change from blue to transparent, so that the front screen 102 only shows The image displayed on the display 25. Therefore, the front screen 102 can display blue when consuming less power, which is consistent with the housing 101, and the front screen 102 can be restored to a transparent state while consuming less power.
  • the front screen 102 includes a strengthened glass 31, a first optical adhesive layer 32, and a monochromatic The conversion liquid crystal layer 33, the second optical adhesive layer 34, the display screen 35 and the touch control panel 36.
  • the mobile terminal is a smart phone
  • the smart phone includes a housing 101, a front screen 102, a circuit board, and a power supply as shown in FIG. 6, and the specific structure of the front screen 102 is as shown in FIG.
  • the casing 101 of the smartphone is blue.
  • the monochrome conversion liquid crystal layer 33 is in a transparent state.
  • the circuit board of the smart phone When the display screen 35 is in the closed state, the circuit board of the smart phone will apply a voltage to the monochrome conversion liquid crystal layer 33, and the monochrome conversion liquid crystal layer 33 will be converted from a transparent state to blue, so that the color of the front screen 102 and the housing 101 The colors are the same.
  • the circuit board of the smart phone When the display screen 35 is in the on state, the circuit board of the smart phone will stop applying voltage to the monochromatic conversion liquid crystal layer 33, and the monochromatic conversion liquid crystal layer 33 will change from blue to transparent, so that the front screen 102 only shows the display screen. 35 displayed images.
  • the front panel 102 can display blue with less power consumption, which is consistent with the housing 101. Moreover, the front screen 102 can be restored to a transparent state without consuming power.
  • the front screen 102 includes a strengthened glass 41, a photochromic layer 42, and an optical glue that are sequentially stacked.
  • the smart phone includes a housing 101, a front screen 102, a circuit board, and a power supply as shown in FIG. 6, and the specific structure of the front screen 102 is as shown in FIG.
  • the casing 101 of the smartphone is blue.
  • the photochromic layer 42 cannot receive the light emitted by the display screen 44, and the photochromic layer 42 is the target color.
  • the photochromic layer 42 will receive the light emitted by the display screen 44, and the photochromic layer 42 will change from blue to transparent. Therefore, the front screen 102 can display blue without power consumption, which is consistent with the housing 101, and the front screen 102 can also be restored to a transparent state without power consumption.
  • FIG. 7 is a schematic diagram of a display provided by an embodiment of the present application.
  • the display shown in FIG. 7 includes a housing 201, a front screen 202, a bracket 203, a circuit board and a power supply.
  • the circuit board and power supply are not shown in FIG. 7.
  • the front screen 202 is arranged on the housing 201, and the bracket 203 is connected to the housing 201.
  • the colors of the housing 201 and the bracket 203 are the target colors.
  • the front screen 202 may be the front screen in the embodiment shown in FIGS. 1 to 5.
  • For the description of the front screen 202 please refer to the description of the front screen in the embodiment shown in FIGS. 1 to 5.
  • FIG. 8 is a schematic diagram of a notebook computer provided in an embodiment of this application.
  • the notebook computer shown in FIG. 8 includes a display device 301, a connecting part 302, a host 303, a circuit board and a power supply.
  • the circuit board and the power supply are not shown in FIG. 8.
  • the display device 301 and the host 303 are connected together by the connecting part 302,
  • the display device 301 includes a housing 304 and a front screen 305 arranged on the housing 304.
  • the circuit board and the power supply are arranged inside the host 303.
  • the colors of the housing 304, the connecting part 302 and the host 303 are the target colors.
  • the front screen 305 may be the front screen in the embodiment shown in FIGS. 1 to 5.
  • For the description of the front screen 305 please refer to the description of the front screen in the embodiment shown in FIGS. 1 to 5.
  • FIG. 9 shows a schematic diagram of a smart TV provided in an embodiment of the present application.
  • the smart TV shown in FIG. 9 includes a housing 401, a front screen 402, a bracket 403, a circuit board and a power supply.
  • the circuit board and power supply are not shown in FIG. 9.
  • the front screen 402 is arranged on the housing 401, and the bracket 403 is connected to the housing 401.
  • the circuit board and the power supply are arranged inside the housing 401, and the colors of the housing 401 and the bracket 403 are the target colors.
  • the front screen 402 may be the front screen in the embodiment shown in FIGS. 1 to 5.
  • the front screen 402 please refer to the description of the front screen in the embodiment shown in FIGS. 1 to 5.
  • FIG. 10 shows a schematic diagram of a wearable device provided by an embodiment of this application.
  • the wearable device shown in FIG. 10 includes a housing 501, a front screen 502, a circuit board, and a power supply.
  • the circuit board and power supply are not shown in FIG. 10.
  • the front screen 502 is arranged on the housing 501, and the circuit board and power supply are arranged on the housing 501. Inside, the color of the housing 501 is the target color.
  • the front screen 502 may be the front screen in the embodiment shown in FIGS. 1 to 5.
  • the front screen 502 please refer to the description of the front screen in the embodiment shown in FIGS. 1 to 5.
  • the wearable device may be a device such as a smart watch or a smart bracelet.
  • the mentioned target color may be one color, for example, the target color may be a single color such as red, yellow, or green.
  • the target color may also be a color formed by a combination of several colors.
  • the target color may be a gradient color formed by a combination of red, yellow, or green.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本申请实施例公开了一种终端,该终端包括外壳、前屏、电路板和电源。前屏设置在外壳上,电路板和电源均设置在外壳内,电源与电路板电连接。前屏包括依次叠放的强化玻璃、变色层和显示屏,变色层与电路板电连接,变色层用于在接收到电路板的供电时变色。在前屏内设置了变色层,而且该变色层可以在接收到电路板的供电时变色。由于变色层仅用于变色,无法显示复杂的图像,变色层的耗电量远低于显示屏的耗电量,所以本申请实施例提供的终端可以在消耗较少电量的情况下,使得终端的前屏显示某种颜色。

Description

一种终端
本申请要求于2019年3月20日提交中国专利局、申请号为201920353704.5、发明名称为“一种终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及终端技术领域,更具体的说,涉及终端。
背景技术
目前,随着技术的发展,越来越多的终端上设置有前屏,例如,智能手机、平板电脑、笔记本电脑、智能电视和智能手表等终端均设置有前屏。终端的外部结构主要包括外壳和设置在该外壳上的前屏,从外观一致性的角度考虑,设计出前屏的颜色与外壳的颜色相同的终端已成为未来的发展方向之一。
在不考虑耗电量的情况下,利用当前的技术可以实现前屏的颜色与外壳的颜色相同。例如,假设终端的外壳为红色,在终端处于待机状态时,终端的处理器可以向前屏发送控制指令,该控制指令用于指示前屏显示红色。在前屏接收到该控制指令时,前屏会显示红色。
上述技术方案在终端处于待机状态时,需要前屏始终处于运行状态并显示目标颜色,以使前屏的颜色与外壳的颜色保持一致。但是,上述技术方案会使得前屏在终端处于待机状态下消耗大量的电能,从而缩短了终端的使用时长。
发明内容
本申请实施例提供一种终端,在消耗较少电量的情况下,使得终端的前屏显示目标颜色。
本申请实施例是这样实现的:
第一方面,本申请实施例提供了一种终端,该终端包括外壳、前屏、电路板和电源。前屏设置在外壳上,电路板和电源均设置在外壳内,电源与电路板电连接。前屏包括依次叠放的强化玻璃、变色层和显示屏,变色层与电路板电连接,变色层用于在接收到电路板的供电时变色。
在第一方面中,在前屏内设置了变色层,而且该变色层可以在接收到电路板的供电时变色。由于变色层仅用于变色,无法显示复杂的图像,变色层的耗电量远低于显示屏的耗电量,所以本申请实施例提供的终端可以在消耗较少电量的情况下,使得终端的前屏显示目标颜色。
在一种可能的实现方式中,变色层为电致变色组合层;电致变色组合层包括依次叠放的第一透明导电层、离子存储层、离子导体层、电致变色层和第二透明导电层;第一透明导电层和第二透明导电层均与电路板电连接。
其中,电致变色层的初始状态为透明状态,在第一透明导电层接收到电压时,离子存储层内存储的第一电离子经过离子导体层进入电致变色层。在电致变色层接收到第一电离子时,电致变色层由透明状态转换为目标颜色。在电致变色层为目标颜色且第一透明导电层未接收到电压时,电致变色层会维持在目标颜色。在电致变色层为目标颜色且第二透明导电层接收到电压时,电致变色层内的第一电离子会经过离子导体 层回到离子存储层,电致变色层会由目标颜色转换为透明状态。在电致变色层为透明状态且第一透明导电层和第二透明导电层均未接收到电压时,电致变色层会维持在透明状态下。通过电致变色组合层的工作原理可知,电致变色层可以在消耗较少电量的情况下显示目标颜色,而且,电致变色层还可以在消耗较少电量的情况下恢复至透明状态。
在一种可能的实现方式中,前屏还包括二氧化硅层、光学胶层和触感控制板;电致变色组合层的第一透明导电层固定在强化玻璃上;二氧化硅层的第一表面固定在电致变色组合层的第二透明导电层上;二氧化硅层的第二表面与显示屏的第一表面通过光学胶层粘接;显示屏的第二表面与触感控制板相贴合。
其中,二氧化硅层可以起到绝缘的作用,在电致变色组合层上加电压时,二氧化硅层可以避免电致变色组合层上的电流进入显示屏和触感控制板。而且,二氧化硅层与光学胶层具有更好的粘接性能。
在一种可能的实现方式中,电致变色组合层的厚度小于或等于10微米。
其中,为了避免前屏整体的厚度太大,可以将电致变色组合层的厚度控制在10微米以内。
在一种可能的实现方式中,变色层为单色转换液晶层;前屏还包括第一光学胶层、第二光学胶层和触感控制板;单色转换液晶层的第一表面与强化玻璃通过第一光学胶层粘接;单色转换液晶层的第二表面与显示屏的第一表面通过第二光学胶层粘接;显示屏的第二表面与触感控制板相贴合。
其中,在单色转换液晶层未接收到电压时,单色转换液晶层为透明状态。在单色转换液晶层接收到电压时,单色转换液晶层由透明状态转换为目标颜色。通过单色转换液晶层的工作原理可知,单色转换液晶层只能够在目标颜色与透明状态之间相互转换,由于单色转换液晶层能够显示的颜色单一,所以单色转换液晶层的耗电量少,单色转换液晶层可以在消耗较少电量的情况下显示目标颜色,而且,单色转换液晶层还可以在不消耗电量的情况下恢复至透明状态。
在一种可能的实现方式中,单色转换液晶层的厚度小于或等于0.1毫米。
其中,为了避免前屏整体的厚度太大,可以将单色转换液晶层的厚度控制在0.1毫米以内。
第二方面,本申请实施例提供了一种终端,该终端包括外壳和前屏;前屏设置在外壳上;前屏包括依次叠放的强化玻璃、光致可变色层和显示屏;显示屏发出的光照射进光致可变色层,光致可变色层用于在接收到显示屏发出的光线时变色。
在第二方面中,在光致可变色层未接收到显示屏发出的光线时,光致可变色层为目标颜色。在光致可变色层为目标颜色且光致可变色层接收到显示屏发出的光线时,光致可变色层由目标颜色转换为透明状态。通过光致可变色层的工作原理可知,光致可变色层在接收到显示屏发出的光线便可以由透明状态转换为目标颜色,而且,光致可变色层在未接收到显示屏发出的光线便可以由目标颜色转换为透明状态,光致可变色层在透明状态与目标颜色之间进行切换的过程中完全不消耗电量。
在一种可能的实现方式中,前屏还包括光学胶层和触感控制板;光致可变色层的第一表面固定在强化玻璃上;光致可变色层的第二表面与显示屏的第一表面通过光学 胶层粘接;显示屏的第二表面与触感控制板相贴合。
在一种可能的实现方式中,光致可变色层的厚度小于或等于0.05毫米。
其中,为了避免前屏整体的厚度太大,可以将光致可变色层的厚度控制在0.05毫米以内。
在一种可能的实现方式中,光致可变色层的材料为感光材料。
附图说明
图1所示的为本申请实施例提供的一种终端的示意图;
图2所示的为本申请实施例提供的一种前屏的示意图;
图3所示的为图2中的电致变色组合层22的具体结构示意图;
图4所示的为本申请实施例提供的另一种前屏的示意图;
图5所示的为本申请实施例提供的又一种前屏的示意图;
图6所示的为本申请实施例提供的一种移动终端的示意图;
图7所示的为本申请实施例提供的一种显示器的示意图;
图8所示的为本申请实施例提供的一种笔记本电脑的示意图;
图9所示的为本申请实施例提供的一种智能电视的示意图;
图10所示的为本申请实施例提供的一种可穿戴设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
请参见图1所示,图1所示的为本申请实施例提供的一种终端的示意图。在图1所示的实施例中,终端包括外壳1、前屏2、电路板3和电源4,其中,前屏2设置在外壳1上,电路板3和电源4均设置在外壳1内,电源4与电路板3电连接。
请结合图1和图2所示,图2所示的为本申请实施例提供的一种前屏的示意图。在图1和图2所示的实施例中,前屏2包括依次叠放的强化玻璃21、电致变色组合层22、二氧化硅层23、光学胶层24、显示屏25和触感控制板26。其中,电致变色组合层22与电路板3电连接,电致变色组合层22用于在接收到电路板3的供电时变色。
在图1和图2所示的实施例中,强化玻璃21可以增加前屏的强度,以保护电致变色组合层22、显示屏25和触感控制板26的安全。电致变色组合层22可以在透明状态与目标颜色进行切换。二氧化硅层23可以起到绝缘的作用,在电致变色组合层22上加电压时,二氧化硅层23可以避免电致变色组合层22上的电流进入显示屏25和触感控制板26;而且,二氧化硅层23与光学胶层24具有更好的粘接性能;另外,二氧化硅层23可以采用物理气相沉积的方式设置在电致变色组合层22上。光学胶层24可以将二氧化硅层23与显示屏25粘接在一起。显示屏25可以显示图像。触感控制板26可以接收用户输入的触控指令。
在图1和图2所示的实施例中,为了避免前屏2整体的厚度太大,可以将电致变色组合层22的厚度控制在10微米以内。
在图1和图2所示的实施例中,电致变色组合层22的初始状态为透明状态,在电致变色组合层22的第一端接收到电路板3提供的电压时,电致变色组合层22由透明状态转换为目标颜色。在电致变色组合层22为目标颜色且电致变色组合层22未接收到电路板3提供的电压时,电致变色组合层22会维持目标颜色。在电致变色组合层 22为目标颜色且电致变色组合层22的第二端接收到电路板3提供的电压时,电致变色组合层22由目标颜色转换为透明状态。在电致变色组合层22为透明状态且电致变色组合层22未接收到电路板3提供的电压时,电致变色组合层22会维持在透明状态下。通过电致变色组合层22的工作原理可知,电致变色组合层22可以在消耗较少电量的情况下显示目标颜色,而且,电致变色组合层22还可以在消耗较少电量的情况下恢复至透明状态。
在图1和图2所示的实施例中,显示屏25可以为LCD或OLED等屏幕。其中,LCD的英文全称为Liquid crystal display,中文释义为液晶显示器。OLED的英文全称为Organic light-emitting diode,中文释义为有机发光二极管。
在图1和图2所示的实施例中,可以采用物理气相沉积(Physical vapor deposition,PVD)的方式将电致变色组合层22设置在强化玻璃21上。具体的,物理气相沉积技术为在真空条件下采用物理方法将电致变色组合层22的材料气化成气态原子,并将气态原子在强化玻璃21的表面沉积薄膜,该薄膜最终形成电致变色组合层22。当然,将电致变色组合层22设置在强化玻璃21上,并不局限于物理气相沉积,还可以采用其他的方式。
请参见图1至图3所示,图3所示的为图2中的电致变色组合层22的具体结构示意图。图3所示的仅是电致变色组合层22的一种具体结构,当然,电致变色组合层22并不局限于图3所示的结构,电致变色组合层22还可以为其他类型的结构。图3所示的电致变色组合层22包括依次叠放的第一透明导电层221、离子存储层222、离子导体层223、电致变色层224和第二透明导电层225,第一透明导电层221和第二透明导电层225均与电路板3电连接。
在图1至图3所示的实施例中,电致变色层224的初始状态为透明状态,在第一透明导电层221接收到电路板3提供的电压时,离子存储层222内存储的第一电离子经过离子导体层223进入电致变色层224。在电致变色层224接收到第一电离子时,电致变色层224由透明状态转换为目标颜色。在电致变色层224为目标颜色且第一透明导电层221未接收到电路板3提供的电压时,电致变色层224会维持在目标颜色。在电致变色层224为目标颜色且第二透明导电层225接收到电路板3提供的电压时,电致变色层224内的第一电离子会经过离子导体层223回到离子存储层222,电致变色层224会由目标颜色转换为透明状态。在电致变色层224为透明状态且第一透明导电层221和第二透明导电层225均未接收到电路板3提供的电压时,电致变色层224会维持在透明状态下。通过电致变色组合层22的工作原理可知,电致变色层224可以在消耗较少电量的情况下显示目标颜色,而且,电致变色层224还可以在消耗较少电量的情况下恢复至透明状态。
在图1至图3所示的实施例中,第一透明导电层221和第二透明导电层225具体可以为AZO,AZO是铝掺杂的氧化锌(ZnO)透明导电玻璃的简称。离子存储层222具体可以为五氧化二钒(V 2O 5)。离子导体层223具体可以为钽酸锂(LiTaO3)。
请结合图1和图4所示,图4所示的为本申请实施例提供的另一种前屏的示意图。在图1和图4所示的实施例中,前屏2包括依次叠放的强化玻璃31、第一光学胶层32、单色转换液晶层33、第二光学胶层34、显示屏35和触感控制板36。其中,单色转换 液晶层33与电路板3电连接,单色转换液晶层33用于在接收到电路板3的供电时变色。
在图1和图4所示的实施例中,强化玻璃31可以增加前屏的强度,以保护单色转换液晶层33、显示屏35和触感控制板36的安全。单色转换液晶层33可以在透明状态与目标颜色之间进行切换。第一光学胶层32可以将强化玻璃31与单色转换液晶层33粘接在一起。第二光学胶层34可以将单色转换液晶层33与显示屏35粘接在一起。显示屏35可以显示图像。触感控制板36可以接收用户输入的触控指令。
在图1和图4所示的实施例中,在单色转换液晶层33未接收到电路板3提供的电压时,单色转换液晶层33为透明状态。在单色转换液晶层33接收到电路板3提供的电压时,单色转换液晶层33由透明状态转换为目标颜色。通过单色转换液晶层33的工作原理可知,单色转换液晶层33只能够在目标颜色与透明状态之间相互转换,由于单色转换液晶层33能够显示的颜色单一,所以单色转换液晶层33的耗电量少,单色转换液晶层33可以在消耗较少电量的情况下显示目标颜色,而且,单色转换液晶层33还可以在不消耗电量的情况下恢复至透明状态。
在图1和图4所示的实施例中,显示屏25可以为LCD或OLED等屏幕。另外,为了避免前屏2整体的厚度太大,可以将单色转换液晶层33的厚度控制在0.1毫米以内。
请参见图1和图5所示,图5所示的为本申请实施例提供的又一种前屏的示意图。图5所示的前屏包括依次叠放的强化玻璃41、光致可变色层42、光学胶层43、显示屏44和触感控制板45。其中,显示屏44发出的光可以照射进光致可变色层42,光致可变色层42用于在接收到显示屏44发出的光线时变色。
在图1和图5所示的实施例中,强化玻璃41可以增加前屏的强度,以保护光致可变色层42、显示屏44和触感控制板45的安全。光致可变色层42可以在透明状态与目标颜色之间进行切换。光致可变色层42的材料可以为感光材料,例如,感光油墨。光学胶层43可以将光致可变色层42与显示屏44粘接在一起。显示屏44可以显示图像。触感控制板45可以接收用户输入的触控指令。
在图1和图5所示的实施例中,在光致可变色层42未接收到显示屏44发出的光线时,光致可变色层42为目标颜色。在光致可变色层42为目标颜色且光致可变色层42接收到显示屏44发出的光线时,光致可变色层42由目标颜色转换为透明状态。通过光致可变色层42的工作原理可知,光致可变色层42在接收到显示屏44发出的光线便可以由透明状态转换为目标颜色,而且,光致可变色层42在未接收到显示屏44发出的光线便可以由目标颜色转换为透明状态,光致可变色层42在透明状态与目标颜色之间进行切换的过程中完全不消耗电量。
在图1和图5所示的实施例中,显示屏44可以为LCD或OLED等屏幕。另外,为了避免前屏2整体的厚度太大,可以将光致可变色层42的厚度控制在0.05毫米以内。
在图1和图5所示的实施例中,可以采用物理气相沉积的方式将光致可变色层42设置在强化玻璃41上。具体的,物理气相沉积技术为在真空条件下采用物理方法将光致可变色层42的材料气化成气态原子,并将气态原子在强化玻璃41的表面沉积薄膜,该薄膜最终形成光致可变色层42。当然,将光致可变色层42设置在强化玻璃41上,并不局限于物理气相沉积,还可以采用其他的方式。
在图1至图5所示的实施例中,目标颜色可以为一种颜色,例如,目标颜色可以为红色、黄色或绿色等单一颜色。目标颜色也可以为几种颜色组合而成的颜色,例如,目标颜色可以为由红色、黄色或绿色等颜色组合而成的渐变色。
请参见图6所示,图6所示的为本申请实施例提供的一种移动终端的示意图。图6所示的移动终端包括外壳101、前屏102、电路板和电源,电路板和电源在图6中未示出。前屏102设置在外壳101上,电路板和电源均设置在外壳101内,电源与电路板电连接。其中,前屏102可以为图1至图5所示的实施例中的前屏2,关于前屏102的说明请参见图1至图5所示的实施例中对前屏2的说明。
在图6所示的实施例中,外壳101可以包括中框和后盖,前屏102和后盖分别固定在中框的两侧。
请结合图2和图6所示,如果图6所示的前屏102的具体结构如图2所示,那么前屏102包括依次叠放的强化玻璃21、电致变色组合层22、二氧化硅层23、光学胶层24、显示屏25和触感控制板26。
下面结合具体的应用场景来介绍图2和图6所示的实施例。例如,假设移动终端为智能手机,智能手机包括如图6所示的外壳101、前屏102、电路板和电源,前屏102的具体结构如图2所示的结构。假设智能手机的外壳101为蓝色。在显示屏25处于开启状态时,电致变色组合层22为透明状态。在显示屏25处于关闭状态时,智能手机的电路板会向电致变色组合层22的第一端施加电压,电致变色组合层22由透明状态转换为蓝色,从而使得前屏102的颜色与外壳101的颜色相同。在电致变色组合层22为蓝色且电致变色组合层22未接收到的电路板提供的电压时,电致变色组合层22会维持蓝色,所以电致变色组合层22不会消耗额外的电量。在显示屏25处于开启状态时,智能手机的电路板会向电致变色组合层22的第二端施加电压,电致变色组合层22由蓝色转换为透明状态,从而使得前屏102仅呈现显示屏25显示的图像。因此,前屏102可以在消耗较少电量的情况下显示蓝色,与外壳101保持一致,而且,前屏102还可以在消耗较少电量的情况下恢复至透明状态。
请结合图4和图6所示,如果图6所示的前屏102的具体结构如图4所示,那么前屏102包括依次叠放的强化玻璃31、第一光学胶层32、单色转换液晶层33、第二光学胶层34、显示屏35和触感控制板36。
下面结合具体的应用场景来介绍图4和图6所示的实施例。例如,假设移动终端为智能手机,智能手机包括如图6所示的外壳101、前屏102、电路板和电源,前屏102的具体结构如图4所示的结构。假设智能手机的外壳101为蓝色。在显示屏35处于开启状态时,单色转换液晶层33为透明状态。在显示屏35处于关闭状态时,智能手机的电路板会向单色转换液晶层33施加电压,单色转换液晶层33会由透明状态转换为蓝色,从而使得前屏102的颜色与外壳101的颜色相同。在显示屏35处于开启状态时,智能手机的电路板会停止向单色转换液晶层33施加电压,单色转换液晶层33会由蓝色转换为透明状态,从而使得前屏102仅呈现显示屏35显示的图像。因此,由于单色转换液晶层33能够显示的颜色单一,单色转换液晶层33的耗电量少,所以前屏102可以在消耗较少电量的情况下显示蓝色,与外壳101保持一致,而且,前屏102还可以在不消耗电量的情况下恢复至透明状态。
请结合图5和图6所示,如果图6所示的前屏102的具体结构如图5所示,那么前屏102包括依次叠放的强化玻璃41、光致可变色层42、光学胶层43、显示屏44和触感控制板45。
下面结合具体的应用场景来介绍图5和图6所示的实施例。例如,假设移动终端为智能手机,智能手机包括如图6所示的外壳101、前屏102、电路板和电源,前屏102的具体结构如图5所示的结构。假设智能手机的外壳101为蓝色。在显示屏44处于关闭状态时,光致可变色层42无法接收到显示屏44发出的光线,光致可变色层42为目标颜色。在显示屏44处于开启状态时,光致可变色层42会接收到显示屏44发出的光线,光致可变色层42会由蓝色转换为透明状态。因此,前屏102可以在不消耗电量情况下显示蓝色,与外壳101保持一致,而且,前屏102还可以在不消耗电量的情况下恢复至透明状态。
请参见图7所示,图7所示的为本申请实施例提供的一种显示器的示意图。图7所示的显示器包括外壳201、前屏202、支架203、电路板和电源,电路板和电源在图7中未示出,前屏202设置在外壳201上,支架203与外壳201连接,外壳201和支架203的颜色为目标颜色。其中,前屏202可以为图1至图5所示的实施例中的前屏,关于前屏202的说明请参见图1至图5所示的实施例中对前屏的说明。
请参见图8所示,图8所示的为本申请实施例提供的一种笔记本电脑的示意图。图8所示的笔记本电脑包括显示设备301、连接部件302、主机303、电路板和电源,电路板和电源在图8中未示出,显示设备301与主机303通过连接部件302连接在一起,显示设备301包括外壳304和设置在外壳304上的前屏305,电路板和电源设置在主机303的内部,外壳304、连接部件302和主机303的颜色为目标颜色。其中,前屏305可以为图1至图5所示的实施例中的前屏,关于前屏305的说明请参见图1至图5所示的实施例中对前屏的说明。
请参见图9所示,图9所示的为本申请实施例提供的一种智能电视的示意图。图9所示的智能电视包括外壳401、前屏402、支架403、电路板和电源,电路板和电源在图9中未示出,前屏402设置在外壳401上,支架403与外壳401连接,电路板和电源设置在外壳401的内部,外壳401和支架403的颜色为目标颜色。其中,前屏402可以为图1至图5所示的实施例中的前屏,关于前屏402的说明请参见图1至图5所示的实施例中对前屏的说明。
请参见图10所示,图10所示的为本申请实施例提供的一种可穿戴设备的示意图。图10所示的可穿戴设备包括外壳501、前屏502、电路板和电源,电路板和电源在图10中未示出,前屏502设置在外壳501上,电路板和电源设置在外壳501内,外壳501的颜色为目标颜色。其中,前屏502可以为图1至图5所示的实施例中的前屏,关于前屏502的说明请参见图1至图5所示的实施例中对前屏的说明。
在图10所示的实施例中,可穿戴设备可以为智能手表或智能手环等设备。
在图6至图10所示的实施例中,提到的目标颜色可以为一种颜色,例如,目标颜色可以为红色、黄色或绿色等单一颜色。目标颜色也可以为几种颜色组合而成的颜色,例如,目标颜色可以为由红色、黄色或绿色等颜色组合而成的渐变色。

Claims (10)

  1. 一种终端,其特征在于,所述终端包括外壳、前屏、电路板和电源;
    所述前屏设置在所述外壳上,所述电路板和所述电源均设置在所述外壳内,所述电源与所述电路板电连接;
    所述前屏包括依次叠放的强化玻璃、变色层和显示屏;
    所述变色层与所述电路板电连接,所述变色层用于在接收到所述电路板的供电时变色。
  2. 根据权利要求1所述的终端,其特征在于,所述变色层为电致变色组合层;
    所述电致变色组合层包括依次叠放的第一透明导电层、离子存储层、离子导体层、电致变色层和第二透明导电层;
    所述第一透明导电层和所述第二透明导电层均与所述电路板电连接。
  3. 根据权利要求2所述的终端,所述前屏还包括二氧化硅层、光学胶层和触感控制板;
    所述电致变色组合层的第一透明导电层固定在所述强化玻璃上;
    所述二氧化硅层的第一表面固定在所述电致变色组合层的第二透明导电层上;
    所述二氧化硅层的第二表面与所述显示屏的第一表面通过所述光学胶层粘接;
    所述显示屏的第二表面与所述触感控制板相贴合。
  4. 根据权利要求2或3所述的终端,其特征在于,所述电致变色组合层的厚度小于或等于10微米。
  5. 根据权利要求1所述的终端,其特征在于,所述变色层为单色转换液晶层;
    所述前屏还包括第一光学胶层、第二光学胶层和触感控制板;
    所述单色转换液晶层的第一表面与所述强化玻璃通过第一光学胶层粘接;
    所述单色转换液晶层的第二表面与所述显示屏的第一表面通过第二光学胶层粘接;
    所述显示屏的第二表面与所述触感控制板相贴合。
  6. 根据权利要求5所述的终端,其特征在于,所述单色转换液晶层的厚度小于或等于0.1毫米。
  7. 一种终端,其特征在于,所述终端包括外壳和前屏;
    所述前屏设置在所述外壳上;
    所述前屏包括依次叠放的强化玻璃、光致可变色层和显示屏;
    所述显示屏发出的光照射进所述光致可变色层,所述光致可变色层用于在接收到所述显示屏发出的光线时变色。
  8. 根据权利要求7所述的终端,所述前屏还包括光学胶层和触感控制板;
    所述光致可变色层的第一表面固定在所述强化玻璃上;
    所述光致可变色层的第二表面与所述显示屏的第一表面通过所述光学胶层粘接;
    所述显示屏的第二表面与所述触感控制板相贴合。
  9. 根据权利要求7或8所述的终端,其特征在于,所述光致可变色层的厚度小于或等于0.05毫米。
  10. 根据权利要求7至9任意一项所述的终端,其特征在于,所述光致可变色层的材料为感光材料。
PCT/CN2020/079852 2019-03-20 2020-03-18 一种终端 WO2020187218A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20773741.2A EP3933544A4 (en) 2019-03-20 2020-03-18 TERMINAL
US17/477,686 US11567382B2 (en) 2019-03-20 2021-09-17 Terminal with a color changing screen layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920353704.5 2019-03-20
CN201920353704.5U CN209784854U (zh) 2019-03-20 2019-03-20 一种终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/477,686 Continuation US11567382B2 (en) 2019-03-20 2021-09-17 Terminal with a color changing screen layer

Publications (1)

Publication Number Publication Date
WO2020187218A1 true WO2020187218A1 (zh) 2020-09-24

Family

ID=68798548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079852 WO2020187218A1 (zh) 2019-03-20 2020-03-18 一种终端

Country Status (4)

Country Link
US (1) US11567382B2 (zh)
EP (1) EP3933544A4 (zh)
CN (1) CN209784854U (zh)
WO (1) WO2020187218A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209784854U (zh) 2019-03-20 2019-12-13 华为技术有限公司 一种终端
CN112859473A (zh) * 2021-03-17 2021-05-28 宁波伯宇科技有限公司 一种透明显示屏幕

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174939A (ja) * 1999-12-20 2001-06-29 Noritsu Koki Co Ltd 写真処理装置
CN204178653U (zh) * 2014-11-17 2015-02-25 北京维信诺科技有限公司 具有简易显示功能的oled照明屏
CN204314582U (zh) * 2015-01-05 2015-05-06 何哲贤 一种彩面液晶显示屏
CN204631404U (zh) * 2015-06-06 2015-09-09 芜湖华宇彩晶科技有限公司 一种彩色显示模组
CN107818732A (zh) * 2017-11-21 2018-03-20 京东方科技集团股份有限公司 一种显示单元、显示面板及显示装置
CN107945682A (zh) * 2017-12-29 2018-04-20 深圳市德彩光电有限公司 一种led显示屏
CN109459902A (zh) * 2018-11-20 2019-03-12 Oppo(重庆)智能科技有限公司 电子设备的显示屏盖板、电子设备及电子设备的控制方法
CN208819534U (zh) * 2019-03-28 2019-05-03 北京小米移动软件有限公司 一种终端
CN208953851U (zh) * 2018-08-30 2019-06-07 信利光电股份有限公司 一种可实现一体黑的盖板
CN209784854U (zh) * 2019-03-20 2019-12-13 华为技术有限公司 一种终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107770308A (zh) * 2017-09-30 2018-03-06 联想(北京)有限公司 电子设备和显示方法
CN109116656B (zh) * 2018-09-03 2021-06-29 Oppo广东移动通信有限公司 电子设备、电致变色部控制方法及存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174939A (ja) * 1999-12-20 2001-06-29 Noritsu Koki Co Ltd 写真処理装置
CN204178653U (zh) * 2014-11-17 2015-02-25 北京维信诺科技有限公司 具有简易显示功能的oled照明屏
CN204314582U (zh) * 2015-01-05 2015-05-06 何哲贤 一种彩面液晶显示屏
CN204631404U (zh) * 2015-06-06 2015-09-09 芜湖华宇彩晶科技有限公司 一种彩色显示模组
CN107818732A (zh) * 2017-11-21 2018-03-20 京东方科技集团股份有限公司 一种显示单元、显示面板及显示装置
CN107945682A (zh) * 2017-12-29 2018-04-20 深圳市德彩光电有限公司 一种led显示屏
CN208953851U (zh) * 2018-08-30 2019-06-07 信利光电股份有限公司 一种可实现一体黑的盖板
CN109459902A (zh) * 2018-11-20 2019-03-12 Oppo(重庆)智能科技有限公司 电子设备的显示屏盖板、电子设备及电子设备的控制方法
CN209784854U (zh) * 2019-03-20 2019-12-13 华为技术有限公司 一种终端
CN208819534U (zh) * 2019-03-28 2019-05-03 北京小米移动软件有限公司 一种终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3933544A4

Also Published As

Publication number Publication date
CN209784854U (zh) 2019-12-13
US11567382B2 (en) 2023-01-31
US20220004034A1 (en) 2022-01-06
EP3933544A1 (en) 2022-01-05
EP3933544A4 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
US11131887B2 (en) Display apparatus, panel switching method and electronic device
US11139349B2 (en) Display apparatus, panel switching method and electronic device
KR102641273B1 (ko) 터치 센서 및 터치 패널
US11287690B2 (en) Display panel and display device
US11567382B2 (en) Terminal with a color changing screen layer
WO2019161571A1 (zh) 移动终端及其显示方法
JP2022033879A (ja) 発光装置、電子機器
CN110928096B (zh) 电致变色器件、壳体和电子设备
JP2015228367A (ja) 半導体装置、入出力装置、及び電子機器
CN102314005A (zh) 显示装置
CN110740592A (zh) 壳体、电子设备
WO2022161344A1 (zh) 电子设备及显示模组
WO2022161405A1 (zh) 电子设备及显示模组
CN109164659B (zh) 电致变色装置及其制备方法、电子设备
WO2022161396A1 (zh) 电子设备及显示模组
TWI818069B (zh) 輸入感測單元及包含其之顯示裝置
WO2022161351A1 (zh) 电子设备及显示模组
CN108415612A (zh) 触控装置、触控显示面板、显示装置及其控制方法
US11906833B1 (en) Display module and spliced display device
CN113504685A (zh) 壳体和电子设备
CN110456579A (zh) 显示模组及电子设备
CN113794027B (zh) 电池盖及电子设备
CN113325602B (zh) 悬浮显示装置及电子设备
CN112379554A (zh) 电致变色器件、制备方法以及电子设备
CN113097284A (zh) 一种显示面板、显示装置和制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773741

Country of ref document: EP

Effective date: 20210930