WO2020187102A1 - 气液分离装置 - Google Patents

气液分离装置 Download PDF

Info

Publication number
WO2020187102A1
WO2020187102A1 PCT/CN2020/078711 CN2020078711W WO2020187102A1 WO 2020187102 A1 WO2020187102 A1 WO 2020187102A1 CN 2020078711 W CN2020078711 W CN 2020078711W WO 2020187102 A1 WO2020187102 A1 WO 2020187102A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
interface
gas
channel
opening
Prior art date
Application number
PCT/CN2020/078711
Other languages
English (en)
French (fr)
Inventor
祁照岗
邵春宇
黄宁杰
Original Assignee
浙江三花智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花智能控制股份有限公司 filed Critical 浙江三花智能控制股份有限公司
Priority to US17/437,408 priority Critical patent/US20220163245A1/en
Priority to EP20773729.7A priority patent/EP3936794B1/en
Publication of WO2020187102A1 publication Critical patent/WO2020187102A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor

Definitions

  • This application relates to the field of air conditioning technology, and in particular to a gas-liquid separation device.
  • the gas-liquid separation device in the conventional automobile air conditioning heat pump system is placed between the outlet of the heat exchanger outside the vehicle and the inlet of the compressor, mainly to prevent the phenomenon of "liquid hammer” and to filter the dry refrigerant. Moreover, the gas-liquid separation device usually has only one inlet and one outlet.
  • a gas-liquid separation device includes:
  • a barrel the barrel has a first cavity, a second cavity, and a third cavity, the first cavity communicates with the second cavity, and the second cavity communicates with the third cavity ;
  • An external interface the external interface includes a first interface, a second interface, and a third interface, the first interface communicates with the first cavity, and the second interface communicates with the second cavity;
  • An adapter the adapter is at least partially arranged in the cylinder, the adapter is provided with a first channel and a second channel, and the lower end of the second channel is connected to the first channel Are located in the third cavity, the lower end of the second channel is lower than the lower end of the first channel, and the second channel communicates with the first cavity and the third cavity ,
  • the third interface is selectively communicated with or disconnected from the third cavity through the first channel;
  • a gas-liquid separator the gas-liquid separator is located in the third cavity and used to separate the gas-liquid two-phase refrigerant entering the third cavity from the second cavity;
  • the first channel is closed, so that the third interface is disconnected from the third cavity, the first interface serves as an inlet, and the The second interface is used as an exit;
  • the first channel is opened, so that the third interface is in communication with the third cavity;
  • the second interface serves as an inlet and is connected to the second groove
  • the first port communicating with the channel serves as the outlet of the separated liquid phase refrigerant
  • the third port communicating with the first channel serves as the outlet of the separated gas phase refrigerant, or, the first interface
  • the second interface serves as an outlet for liquid-phase refrigerant or an outlet for gas-liquid two-phase refrigerant
  • the third interface communicating with the first channel serves as an outlet for separated gas-phase refrigerant.
  • the gas-liquid separation device provided by the present application has three interfaces, which can realize two working states of one in and one out and one in and two out, which can be applied to the application of different working modes of the air conditioning system, such as Cooling mode and heating mode.
  • Fig. 1 is a schematic diagram of a three-dimensional structure of a gas-liquid separation device according to an exemplary embodiment of the present application.
  • Fig. 2 is an exploded view of the gas-liquid separation device shown in Fig. 1 from a perspective.
  • Fig. 3 is an exploded view of the gas-liquid separation device shown in Fig. 1 from another perspective.
  • Figure 4 shows another exploded view of the gas-liquid separation device.
  • Fig. 5A is a schematic structural view of the gas-liquid separation device shown in Fig. 1 from a perspective.
  • Fig. 5B is a sectional view taken along B-B' in the gas-liquid separation device shown in Fig. 5A.
  • FIG. 6A is a schematic structural diagram of the gas-liquid separation device shown in FIG. 1 from another perspective.
  • Fig. 6B is a cross-sectional view taken along C-C' in the gas-liquid separator device shown in Fig. 6A.
  • Fig. 7A is a cross-sectional view of the gas-liquid separation device in the first cavity of an exemplary embodiment of the present application.
  • Fig. 7B is a cross-sectional view of the gas-liquid separation device in the second cavity of an exemplary embodiment of the present application.
  • Fig. 8A is a cross-sectional view of the gas-liquid separation device in the first cavity of another exemplary embodiment of the present application.
  • Fig. 8B is a cross-sectional view of the gas-liquid separation device in the second cavity of another exemplary embodiment of the present application.
  • Fig. 9 is a partial schematic diagram of a refrigeration system working under a working condition in an exemplary embodiment of the present application.
  • Fig. 10 is a partial schematic diagram of the refrigeration system of an exemplary embodiment of the present application working under another working condition.
  • Fig. 1 is a schematic structural diagram of a gas-liquid separation device 100 according to an exemplary embodiment of the present application.
  • the gas-liquid separation device 100 can be applied to various refrigeration systems, and is suitable for many fields such as household air conditioners, commercial air conditioners, and automobile air conditioners.
  • the gas-liquid separation device can also be integrated with a heat exchanger in a refrigeration system, for example, it can be integrated with an outdoor heat exchanger in an automobile air conditioner.
  • the gas-liquid separation device 100 includes a cylinder 14, an external interface, an adapter, and a gas-liquid separation component.
  • the barrel 14 has a first cavity 5, a second cavity 6, and a third cavity 9.
  • the first cavity 5 communicates with the second cavity 6, and the second cavity 6 communicates with the third cavity 9.
  • the external interface includes a first interface 1, a second interface 2 and a third interface 3.
  • the first interface 1 communicates with the first cavity 5, and the second interface 2 communicates with the second cavity 6.
  • the adapter is at least partially disposed in the cylinder 14.
  • the adapter is provided with a first channel 120 and a second channel 130, and the lower end of the second channel 130 is lower than the first channel 120 At the lower end of, the second channel 130 communicates with the first cavity 5 and the third cavity 9, and the third interface 3 is selectively connected or disconnected with the third cavity 9 through the first channel 120.
  • the gas-liquid separator is located in the third cavity 9. Wherein, when the gas-liquid separation device is in the first working state, the first channel 120 is closed, so that the third port 3 is disconnected from the third cavity 9; the first port 1 is used as an inlet, and the second port 2 is used as an outlet.
  • the first channel 120 is opened so that the third port 3 is connected to the third cavity 9; the gas-liquid separator separates gas-liquid two-phase refrigerant; the second port 2 serves as an inlet, The first interface 1 and the third interface 3 serve as outlets; specifically, the first interface 1 serves as a liquid phase refrigerant outlet, and the third interface 3 serves as a gas phase refrigerant outlet.
  • the gas-liquid separation device when the gas-liquid separation device is in the second working state, the first channel 120 is opened, so that the third interface 3 communicates with the third cavity 9; the gas-liquid separator separates the gas-liquid two-phase refrigerant;
  • the first interface 1 serves as an inlet, the second interface 2 and the third interface 3 serve as outlets; specifically, the second interface 2 serves as a liquid phase refrigerant outlet, and the third interface 3 serves as a gas phase refrigerant outlet.
  • the first working state may be a cooling working condition of the air conditioning system
  • the second working state may be a heating working condition of the air conditioning system.
  • the gas-liquid separation device 100 can be applied to different working modes of the refrigeration system, such as the cooling mode, heating mode, and defrosting mode of the air conditioning system, so that the application of the gas-liquid separation device 100 is more extensive and flexible.
  • the adapter includes a first connector 12 and a second connector 13, the second connector 13 partially penetrates the first connector 12, and the lumen of the first connector 12 at least partially forms a first channel 120.
  • the lumen of the second connector 13 at least partially forms a second channel 130.
  • the lower end of the second channel 130 is lower than the lower end of the first channel 120.
  • the upper end of the second connector 13 is provided with a first opening 131.
  • the first connecting pipe 12 is provided with a second opening 121 corresponding to the first opening 131.
  • the first opening 131 is provided inside the second opening 121 so that the first opening 131 communicates with the first cavity 5 through the second opening 121.
  • the lower end of the first connecting pipe 12 and the lower end of the second connecting pipe 13 both extend into the third cavity 9.
  • the lower end of the second connecting pipe 13 is lower than the lower end of the first connecting pipe 12, that is, the lower end of the second connecting pipe 13 extends downward beyond the lower end of the first connecting pipe 12, so that the second connecting pipe 13 and the first connecting pipe 12 can simultaneously circulate refrigeration in different states Agent.
  • the inventor(s) have obtained through a large number of experiments that in some embodiments, the distance between the lower end of the second connecting pipe 13 and the bottom of the cylinder 14 is 10mm-20mm, which can better improve the working performance of the gas-liquid separation device.
  • the cross section of the second connecting pipe 13 is circular.
  • the inventor(s) have obtained through a large number of experiments that, in some embodiments, the diameter of the second nozzle 13 ranges from 5 mm to 15 mm, which can better improve the working performance of the gas-liquid separation device.
  • the cross section of the second connecting pipe 13 may also have other shapes, such as a rectangle, an ellipse, etc., which is not limited in this application, and can be set according to a specific application environment.
  • the cross-section of the first connecting pipe 12 may also be a circle, a rectangle, an ellipse, etc., which is not limited in this application, and can be set according to a specific application environment.
  • the cross-sections of the first connecting pipe 12 and the second connecting pipe 13 are both circular.
  • the first connector 12 and the second connector 13 are eccentrically arranged, that is, the central axis of the first connector 12 and the central axis of the second connector 13 do not overlap.
  • This arrangement is conducive to the alignment of the first opening 131 and the second opening 121; on the other hand, it is conducive to the formation of a larger overall space 132 between the first connecting pipe 12 and the second connecting pipe 13, thereby facilitating gas-phase refrigeration Flow of agent.
  • FIG. 7B In the illustrated embodiment of the present application, the outer wall of the second connecting tube 13 abuts against the inner wall of the first connecting tube 12, thereby facilitating the positioning of the second connecting tube 13.
  • the gas-liquid separator is a spiral blade 11 surrounding the outer wall of the adapter.
  • the outer ring of the spiral blade 11 abuts against the inner wall of the cylinder 14, and the inner ring of the spiral blade abuts against the outer wall of the first connecting tube 12, and the inner wall of the cylinder 14 and the first connecting tube A spiral channel is formed between the outer walls of 12, which is beneficial to extend the flow channel of the fluid to better realize the gas-liquid separation of the refrigerant.
  • the inventor(s) have obtained through a large number of experiments that in some embodiments, when the number of turns of the spiral blade 11 is 1 to 2 turns, the gas-liquid separation device 100 has a better gas-liquid separation effect.
  • the second cavity 6 is located under the first cavity 5
  • the third cavity 9 is located under the second cavity 6, and the third interface 3 is provided at the upper end of the first connecting pipe 12.
  • the upper end of the first connecting pipe 12 extends out of the barrel 14, and correspondingly, the third interface 3 is provided outside the barrel 14.
  • a first channel 7 is provided between the first cavity 5 and the second cavity 6, that is, the refrigerant can pass through the first channel 7 between the first cavity 5 and the second cavity 6. Circulate between.
  • a second channel 10 is provided between the second cavity 6 and the third cavity 9, that is, the refrigerant can circulate between the second cavity 6 and the third cavity 9 through the second channel 10.
  • the first channel 7 and the second channel 10 are arranged on different sides, that is, the first channel 7 and the second channel 10 are not arranged up and down, which is beneficial to increase the distance of the refrigerant flowing.
  • a first spacer 15 and a second spacer 17 are provided between the adapter and the inner wall of the cylinder 14.
  • the first spacer 15 includes a ring-shaped first partition 152 and a partition block 151 arranged on the first partition 152 and extending longitudinally (for example, up and down).
  • a first through hole 1521 is provided in the middle of the ring-shaped first partition 152 to provide an adapter (such as the first connecting pipe 12).
  • the inner wall of the isolation block 151 abuts against the outer wall of the first connecting pipe 12, and the outer wall of the isolation block 151 abuts against the inner wall of the cylinder 14.
  • the arrangement of the spacer block 151 prevents the first cavity 5 from penetrating the outer side of the adapter circumferentially; that is, the first cavity 5 is arranged around the circumferential side of the adapter but cannot completely surround the circumferential side of the adapter.
  • the isolation block 151 is blocked.
  • the first partition 152 is located between the first cavity 5 and the second cavity 6 to isolate the first cavity 5 and the second cavity 6.
  • the aforementioned first passage 7 may be a through hole provided on the first partition 152.
  • the second partition 17 is an annular second partition.
  • the second spacer 17 is arranged between the second cavity 6 and the third cavity 9 to isolate the second cavity 6 and the third cavity 9.
  • a second through hole 171 is provided in the middle of the second spacer 17 to provide an adapter (such as the first connecting pipe 12).
  • the aforementioned second channel 10 may be a through hole provided on the second spacer 17.
  • the first interface 1 and the second interface 2 are directly opened on the wall of the barrel 14. Corresponding to the up and down positions of the first cavity 5 and the second cavity 6, the first interface 1 is located above the second interface 2.
  • the first interface 1 and the second interface 2 are both provided on the same side of the barrel wall of the cylinder body 14 so as to facilitate the connection of pipes and the like to the first interface 1 and the second interface 2.
  • the same side mentioned here can be understood as the first interface 1 is located directly above the second interface 2, and tolerances due to process and other reasons should also be understood to be within this protection scope.
  • the first interface 1 may not be located directly above the second interface 2, which is not limited in this application, and can be set according to a specific environment.
  • the first interface 1 and the second interface 2 may not be directly provided on the cylinder wall, but are connected to the outside of the cylinder 14 through other pipe fittings and other equipment.
  • the adapter has a switch 16 for controlling the communication or disconnection of the third interface 3 and the third cavity 9.
  • the switch member 16 may be an external valve arranged on the first connecting pipe 12 close to the third interface 3.
  • the side wall of the upper part of the first connecting pipe 12 near the third interface 3 is provided with an opening 122 for installing the external valve.
  • the switch element 16 is a valve element that is controlled by an electric signal to open or close the valve body passage.
  • the valve body passage of the switch element 16 forms at least a part of the first channel 120.
  • the first channel 120 connects the third interface 3 and the third cavity 9.
  • the third interface 3 is separated from the third cavity 9, and the switch 16 is at least partially located outside the cylinder 14.
  • the first cavity 5 is provided with a first opening and closing door 4 that extends up and down and is rotatable.
  • the opening and closing of the first opening and closing door 4 can be used to control the opening and closing between the first passage 7 and the first interface 1.
  • FIG. 7A When the first opening and closing door 4 is opened, the first port 1 is in communication with the first opening 131, and the first port 1 is also in communication with the first passage 7.
  • FIG. 8A when the first opening and closing door 4 is closed, the first opening 131 and the first interface 1 are located on the same side of the first opening and closing door 4, the first interface 1 and the first passage 7 are not connected, and The first opening 131 does not communicate with the first passage 7 either.
  • the switch 16 disconnects the third interface 3 from the third cavity 9; the first opening and closing door 4 is opened, and the first cavity 5 and the second cavity 6 are in communication through the first passage 7.
  • the switch 16 connects the third interface 3 and the third cavity 9; and when the second interface 2 is used as an inlet, the first interface 1 and the second When the three interface 3 is used as an outlet, the first opening and closing door 4 is closed, so that the first connecting pipe 12 connects the third interface 3 and the third cavity 9, and the second connecting pipe 13 connects the third cavity 9 and the first cavity 5.
  • the second cavity 6 is provided with a second opening and closing door 8 that extends up and down and is rotatable.
  • the closing of the second opening and closing door 8 can be used to increase the distance of the refrigerant flowing in the second cavity 6.
  • a flow passage is formed between the second interface 2 and the second passage 10 through the second opening and closing door 8 in the closed state; when the second opening and closing door 8 is closed, the first A channel 7 and the second interface 2 form a flow channel bypassing the position where the second opening and closing door 8 is in the closed state.
  • the first opening and closing door 4 In the first working state, the first opening and closing door 4 is opened, and the second opening and closing door 8 is closed. In the second working state and when the second interface 2 is used as an inlet and the first interface 1 and the third interface 3 are used as outlets, the first opening and closing door 4 is closed and the second opening and closing door 8 is opened.
  • the second opening and closing door 8 is located directly below the first opening and closing door 4, and similarly, tolerances due to workmanship and other reasons should be understood to also fall within this protection scope.
  • the second opening and closing door 8 may not be provided directly below the first opening and closing door 4, which is not limited in this application, and can be set according to specific circumstances.
  • the first interface 1 is an inlet
  • the second interface 2 is an outlet
  • the third interface 3 is closed by an external valve 16.
  • the refrigerant usually a gas-liquid two-phase or liquid-phase refrigerant, which may come from a certain process of the heat exchanger
  • the flow of the refrigerant can top Open the first opening and closing door 4 and rotate it to position a (see Figure 7A), so that the refrigerant enters the first cavity 5, and then passes through the first cavity between the first cavity 5 and the second cavity 6.
  • a channel 7 enters the second cavity 6. Due to the pressure difference, the refrigerant pushes the second opening and closing door 8 to the position b'(please refer to Fig. 7B). After that, the refrigerant roughly wraps around the outer circumference of the first connecting pipe 12 and flows out through the second port 2. For the gas-liquid separation device integrated with the heat exchanger, the outflowing refrigerant can enter the next process of the heat exchanger.
  • the above-mentioned gas-liquid separation device 100 includes two embodiments in the second working state (heating working state).
  • the second interface 2 Is the inlet
  • the first port 1 is the outlet of the liquid phase refrigerant
  • the third port 3 is the outlet of the gas phase refrigerant and is opened by the external valve 16
  • the first port 1 is the inlet
  • the second port 2 It is the outlet of the liquid phase refrigerant or the outlet of the gas-liquid two-phase refrigerant
  • the third interface 3 is the outlet of the gas phase refrigerant and is opened by the external valve 16.
  • the refrigerant (generally a gas-liquid two-phase or gas phase, the refrigerant may also come out of a certain process of the heat exchanger) enters the gas-liquid separation device 100 through the second interface 2, and then is ejected.
  • the second opening and closing door 8 reaches the position a′ (please refer to FIG. 8B ), so that the refrigerant enters the second cavity 6.
  • Part of the refrigerant enters the first cavity 5 through the first passage 7 between the first cavity 5 and the second cavity 6.
  • the refrigerant pushes the first opening and closing door 4 to the position b (please refer to Figure 8A), so that the space in the first cavity 5 directly connected to the first passage 7 is a no-flow space ("dead zone"). ”) to prevent the refrigerant flowing out of the first passage 7 from flowing out of the first port 1.
  • the refrigerant roughly wraps around the outer circumference of the first connecting pipe 12, and then enters the third cavity 9 through the second passage 10 between the second cavity 6 and the third cavity 9, and then flows inside the third cavity 9
  • the spiral passage formed by the spiral blade 11 flows downward, so that the refrigerant realizes the gas-liquid two-phase separation under the action of centrifugal force.
  • the separated gas-phase refrigerant in the third cavity 9 flows upward through the channel inside the first connecting pipe 12 and finally flows out through the third interface 3.
  • the refrigerant flowing out of the third interface 3 may be further delivered to the heat exchanger outlet.
  • the separated liquid phase refrigerant in the third cavity 9 is located at the lower part of the cylinder 14, flows upward through the channel inside the second connecting pipe 13, enters the first cavity 5, and then flows out through the first interface 1.
  • the refrigerant flowing out of the first interface can enter the next process of the heat exchanger.
  • the flow direction of the refrigerant in the second working state (heating working condition) is opposite to that in the first working state (refrigerating working condition).
  • the inlet and outlet can be reversed and the gas-liquid separation in the middle process of the heat exchanger can be realized. More liquid phase refrigerant enters the heat exchanger to evaporate, thereby increasing the system's heating capacity.
  • the refrigerant (generally a gas-liquid two-phase or a gas phase, the refrigerant may also come out of a certain process of the heat exchanger) enters the gas-liquid separation device 100 through the first interface 1, and then is ejected.
  • the first opening and closing door 4 is rotated to the position a (please refer to FIG. 7A ), so that the refrigerant enters the first cavity 5.
  • Part of the refrigerant enters the second cavity 6 through the first passage 7 between the first cavity 5 and the second cavity 6; part of the refrigerant enters the third cavity 9 through the first opening 131 at the upper end of the second connector 13 .
  • the refrigerant entering the second cavity 6 from the first passage 7 pushes the second opening and closing door 8 to the position b'(see Fig. 7B). Thereafter, part of the liquid phase refrigerant or gas-liquid two-phase refrigerant entering the second cavity 6 flows out through the second interface 2, and another part of the refrigerant entering the second cavity 6 flows into the third cavity through the second passage 10 ⁇ 9 ⁇ .
  • the two refrigerants entering the third cavity 9 are balanced according to the pressure in the respective flow paths.
  • the gas-phase refrigerant separated in the third cavity 9 flows upward through the channel inside the first connecting pipe 12 and flows out through the third interface 3.
  • the first interface 1 is set as the inlet
  • the second interface 2 and the third interface 3 are set as the outlet, which can also achieve the effect of one inlet and two outlets.
  • this application also provides a refrigeration system.
  • the gas-liquid separation device 100 is integrated in the heat exchanger 200.
  • the heat exchanger 200 includes two relatively independent heat exchange units 201 and 202.
  • the first interface 1 and the second interface 2 of the gas-liquid separation device 100 are integrated with the heat exchanger 200 through a multi-way valve 300.
  • the solid line in the multi-way valve 300 indicates a part of the pipeline through which the multi-way valve 300 is connected, that is, the pipeline through which refrigerant can circulate, and the dashed line indicates a part of the pipeline through which the multi-way valve 300 is disconnected, that is, the refrigerant cannot flow The pipeline.
  • Figure 9 illustrates a partial schematic diagram of the refrigeration system working under the first working condition.
  • the first operating condition can be understood as a cooling operating condition, a defrosting operating condition, and other operating conditions. Accordingly, the gas-liquid separation device 100 is in the first operating state.
  • Fig. 10 shows a partial schematic diagram of the refrigeration system working under the second working condition.
  • the second operating condition can be understood as a heating operating condition and other operating conditions, and accordingly, the gas-liquid separation device 100 is in the second operating state.
  • the gas-liquid separation device 100 when integrated into the heat exchanger 200, can realize the gas-liquid separation in the intermediate process of the heat exchanger under the second working condition of the refrigeration system.
  • the gaseous refrigerant and the gaseous refrigerant separated by the gas-liquid separation device 100 and flowing out through the third interface 3 can enter the next device of the refrigeration system together, so that there is more refrigerant in the refrigeration system to increase the heating capacity of the system , Thereby improving the heat exchange efficiency of the air conditioning system.
  • the inventor(s) found that when the gas-liquid separation device 100 described in the above embodiment is applied to a refrigeration system, its heating capacity is significantly increased. For example, the inventor(s) have obtained through a large number of experiments that when working at -20°C, the heating capacity can be increased by 35%.
  • the refrigeration system using the gas-liquid separation device 100 does not need to use a supplemental gas enthalpy cycle to achieve a good improvement in system performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本申请提供一种气液分离装置,其包括筒体、外接口、转接件及气液分离件。筒体具有第一腔体、第二腔体及第三腔体,第一腔体连通第二腔体,第二腔体连通第三腔体;外接口包括第一接口、第二接口及第三接口,第一接口与第一腔体连通,第二接口与第二腔体连通;转接件至少部分设于筒体内,转接件可连通第三接口与第三腔体;气液分离件位于第三腔体内;其中,气液分离装置在第一工作状态时,转接件断开第三接口与第三腔体,第一接口作为进口,第二接口作为出口;气液分离装置在第二工作状态时,转接件连通第三接口与第三腔体,第二接口作为进口,第一接口和第三接口作为出口,气液分离件分离气液两相制冷剂。

Description

气液分离装置
相关申请的交叉引用
本申请要求于2019年3月15日提交的、申请号为201910198325.8、发明名称为“气液分离装置”的中国专利申请的优先权,该中国专利申请的全文以引用的方式并入本申请中。
技术领域
本申请涉及空调技术领域,尤其涉及一种气液分离装置。
背景技术
常规汽车空调用热泵系统中气液分离装置放置在车外换热器出口与压缩机入口之间,主要是为了防止出现“液击”现象和过滤干燥制冷剂。而且气液分离装置通常只有一个进口,一个出口。
发明内容
根据本申请实施例的第一方面,提供一种气液分离装置。所述气液分离装置包括:
筒体,所述筒体具有第一腔体、第二腔体及第三腔体,所述第一腔体连通所述第二腔体,所述第二腔体连通所述第三腔体;
外接口,所述外接口包括第一接口、第二接口及第三接口,所述第一接口与所述第一腔体连通,所述第二接口与所述第二腔体连通;
转接件,所述转接件至少部分设于所述筒体内,所述转接件设有第一槽道以及第二槽道,所述第二槽道的下端与所述第一槽道的下端均位于所述第三腔 体内,所述第二槽道的下端低于所述第一槽道的下端,所述第二槽道连通所述第一腔体与所述第三腔体,所述第三接口通过所述第一槽道选择性地与所述第三腔体连通或者断开;以及
气液分离件,所述气液分离件位于所述第三腔体内,用以分离进入从所述第二腔体进入所述第三腔体中的气液两相制冷剂;
其中,所述气液分离装置在第一工作状态时,所述第一槽道关闭,使得所述第三接口与所述第三腔体断开,所述第一接口作为进口,所述第二接口作为出口;
所述气液分离装置在第二工作状态时,所述第一槽道打开,使得所述第三接口与所述第三腔体连通;所述第二接口作为进口,与所述第二槽道连通的所述第一接口作为分离后的液相制冷剂的出口,与所述第一槽道连通的所述第三接口作为分离后的气相制冷剂的出口,或者,所述第一接口作为进口,所述第二接口作为液相制冷剂的出口或者气液两相制冷剂的出口,与所述第一槽道连通的所述第三接口作为分离后的气相制冷剂的出口。
由以上技术方案可见,本申请提供的气液分离装置,具有三个接口,可实现一进一出和一进两出的两种工作状态,可适用于空调系统的不同工作模式的应用,比如制冷模式和制热模式。
附图说明
图1是本申请一示例性实施例气液分离装置的立体结构示意图。
图2是图1所示气液分离装置一个视角的分解图。
图3是图1所示气液分离装置另一视角的分解图。
图4图1所示气液分离装置又一分解图。
图5A是图1所示气液分离装置一个视角的结构示意图。
图5B是图5A所示气液分离装置中沿B-B’所剖的剖视图。
图6A是图1所示气液分离装置另一视角的结构示意图。
图6B是图6A所示气液分离器装置中沿C-C’所剖的剖视图。
图7A是本申请一示例性实施例气液分离装置在第一腔体的截面剖视图。
图7B是本申请一示例性实施例气液分离装置在第二腔体的截面剖视图。
图8A是本申请另一示例性实施例气液分离装置在第一腔体的截面剖视图。
图8B是本申请另一示例性实施例气液分离装置在第二腔体的截面剖视图。
图9是本申请一示例性实施例制冷系统在一种工况下工作的局部示意图。
图10是本申请一示例性实施例制冷系统在另一种工况下工作的局部示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。本申请中所提到的“若干”均包括两个及两个以上。
下面结合附图,对本发明示例性实施例进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
图1是本申请一示例性实施例气液分离装置100的结构示意图。该气液分离装置100可应用于各种制冷系统,适用于家用空调、商用空调以及汽车空调等众多领域。该气液分离装置还可与制冷系统中的换热器集成,比如可与汽车空调中的室外换热器集成。
请参照图1所示,并在必要时结合图2至图8B。该气液分离装置100包括筒体14、外接口、转接件及气液分离件。筒体14具有第一腔体5、第二腔体6及第三腔体9,第一腔体5连通第二腔体6,第二腔体6连通第三腔体9。外接口包括第一接口1、第二接口2及第三接口3,第一接口1与第一腔体5连通,第二接口2与第二腔体6连通。请参图5B所示,转接件至少部分设于筒体14内,转接件设有第一槽道120以及第二槽道130,第二槽道130的下端低于第一槽道120的下端,第二槽道130连通第一腔体5与第三腔体9,第三接口3通过所述第一槽道120选择性地与第三腔体9连通或者断开。气液分离件位于第三腔体9内。其中,气液分离装置在第一工作状态时,第一槽道120关闭,使得第三接口3与第三腔体9断开;第一接口1作为进口,第二接口2作为出口。气液分离装置在第二工作状态时,第一槽道120打开,使得第三接口3与第三腔体9连通;气液分离件分离气液两相制冷剂;第二接口2作为进口,第一接口1和第三接口3作为出口;具体地,第一接口1作为液相制冷剂出口,第三接口3作为气相制冷剂出口。当然在其他实施例中,气液分离装置在第二工作状态时,第一槽道120打开,使得第三接口3与第三腔体9连通;气液分离件分离气液两相制冷剂;第一接口1作为进口,第二接口2和第三接口3作为出口;具体地,第二接口2作为液相制冷剂出口,第三接口3作为气相制冷剂出口。第一工作状态可以为空调系统的制冷工况,第二工作状态可以为空调系统的制热工况。如此设置,使得气液分离装置100可适用于制冷系统的不同工作模式,比如空调系统的制冷模式、制热模式、除霜模式等,从而使得气液分离装置100的应用更加广泛更加灵活。
进一步,在一些实施例中,转接件包括第一接管12和第二接管13,第二接管13部分穿设于第一接管12内,第一接管12的管腔至少部分形成第一槽道120, 第二接管13的管腔至少部分形成第二槽道130。第二槽道130的下端低于第一槽道120的下端。当第一槽道120打开时,第三接口3通过第一槽道120与第三腔体9连通;当第一槽道120关闭时,第三接口3与第三腔体9断开。请参图5B所示,在本申请图示的实施例中,第二接管13至少部分穿设于第一接管12内。
具体地,在一些实施例中,第二接管13上端开设有第一开口131。相应地,第一接管12开设有与第一开口131对应的第二开口121。第一开口131设于第二开口121内侧,使得第一开口131通过第二开口121而与第一腔体5连通。
进一步,在一些实施例中,第一接管12的下端和第二接管13的下端均伸入第三腔体9内。第二接管13的下端低于第一接管12的下端,即第二接管13的下端向下延伸超过第一接管12的下端,以便第二接管13和第一接管12可以同时流通不同状态的制冷剂。
发明人(们)通过大量试验得出,在一些实施例中,第二接管13的下端与筒体14底部直径的距离为10mm~20mm,能够更好地提高气液分离装置的工作性能。
在一些可选实施例中,第二接管13的横截面为圆形。发明人(们)通过大量试验得出,在一些实施例中,第二接管13的直径范围为5mm~15mm,能够更好地提高气液分离装置的工作性能。当然,在其他一些实施例中,第二接管13的横截面也可为其他形状,比如矩形、椭圆等,本申请对此不做限定,可根据具体应用环境进行设置。
当然,第一接管12的横截面也可为圆形、矩形、椭圆等,本申请对此不做限定,可根据具体应用环境进行设置。
请参图7A及图7B所示,在本申请图示的实施例中,第一接管12与第二接管13的横截面均为圆形。第一接管12与第二接管13偏心设置,即第一接管12的中心轴与第二接管13的中心轴不重叠。如此设置,一方面有利于第一开口131与第二开口121进行对齐;另一方面,有利于在第一接管12与第二接管13之间形成较大的整体空间132,从而有利于气相制冷剂的流动。请参图7B所示, 在本申请图示的实施例中,第二接管13的外壁抵靠在第一接管12的内壁上,从而便于实现对第二接管13的定位。
在一些实施例中,气液分离件为环绕于转接件外壁的螺旋叶片11。
进一步,在一些实施例中,螺旋叶片11的外圈抵接于筒体14的内壁,螺旋叶片的内圈抵接于所述第一接管12的外壁,在筒体14的内壁及第一接管12的外壁之间形成螺旋通道,从而有利于延长流体的流道,以更好的实现制冷剂的气液分离。
发明人(们)通过大量试验得出,在一些实施例中,螺旋叶片11环绕的圈数为1~2圈时,气液分离装置100的气液分离效果较佳。
进一步,在一些实施例中,第二腔体6位于第一腔体5之下,第三腔体9位于第二腔体6之下,第三接口3设于第一接管12的上端。在一些实施例中,第一接管12上端伸出筒体14,相应地,第三接口3设于筒体14之外。
进一步,在一些实施例中,第一腔体5与第二腔体6之间设有第一通道7,即制冷剂能够通过第一通道7在第一腔体5与第二腔体6之间流通。第二腔体6与第三腔体9之间设有第二通道10,即制冷剂能够通过第二通道10在第二腔体6与第三腔体9之间流通。在一些可选实施例中,第一通道7和第二通道10设于不同侧,即第一通道7和第二通道10并没有上下对齐设置,有利于增加制冷剂流动的距离。
具体地,在一可选实施例中,转接件与筒体14的内壁之间设有第一隔离件15和第二隔离件17。其中,第一隔离件15包括环状的第一隔板152及设于第一隔板152之上且呈纵向(例如上下方向)延伸的隔离块151。环状第一隔板152中间设有第一通孔1521,以设置转接件(比如第一接管12)。请参图5B所述,隔离块151的内壁抵靠在所述第一接管12的外壁上,隔离块151的外壁抵靠在筒体14的内壁上。隔离块151的设置,使得第一腔体5无法周向贯通于转接件外侧;即第一腔体5围绕转接件周侧设置而并不能完全环绕转接件的周侧,其中一部分被隔离块151封堵住。第一隔板152位于第一腔体5和第二腔体6之间,以隔离出第一腔体5和第二腔体6。相应地,上述第一通道7可以是 设于第一隔板152上的通孔。第二隔离件17为环状的第二隔板。该第二隔离件17设于第二腔体6和第三腔体9之间,以隔离第二腔体6和第三腔体9。第二隔离件17中间设有第二通孔171,以设置转接件(比如第一接管12)。相应地,上述第二通道10可以是设于该第二隔离件17之上的通孔。
在一些实施例中,上述第一接口1、第二接口2直接开设于筒体14的筒壁。与第一腔体5和第二腔体6的上下位置相对应,则第一接口1位于第二接口2的上方。可选的,第一接口1与第二接口2均设于筒体14的筒壁的同侧,以便于向第一接口1和第二接口2接入管件等。此处所述的同侧可理解为第一接口1设于第二接口2的正上方,由于工艺等原因导致的公差,应当理解也在此保护范围内。当然,在其他一些实施例中,第一接口1也可不设于第二接口2的正上方,本申请对此不做限定,可根据具体环境进行设置。此外,第一接口1、第二接口2也可不直接开设于筒壁,而是通过其他管件等设备外接于筒体14之外。
进一步,转接件具有控制第三接口3与第三腔体9连通或断开的开关件16。
在一些实施例中,该开关件16可以是设置在第一接管12上靠近第三接口3的外接阀。结合图4和图5B,第一接管12上部靠近第三接口3处的侧壁开设有开口122,以安装该外接阀。
具体的,开关件16为受电信号控制打开或关闭阀体通道的阀件,开关件16的阀体通道形成第一槽道120的至少一部分,阀体通道在打开状态时,第一槽道120连通第三接口3与第三腔体9,阀体通道在闭合状态时,第三接口3与第三腔体9相隔断,开关件16至少部分位于筒体14之外。
进一步,在一些实施例中,第一腔体5内设有上下延伸且可转动的第一开合门4。该第一开合门4的开闭可用于控制第一通道7与第一接口1之间的开闭。请参图7A所示,当第一开合门4打开时,第一接口1与第一开口131连通,第一接口1与第一通道7也连通。请参图8A所示,当第一开合门4闭合时,第一开口131和第一接口1位于第一开合门4的同一侧,第一接口1与第一通道7不连通,且第一开口131与第一通道7也不连通。请参图7A、图7B以及图5B所示,在第一工作状态时,开关件16断开第三接口3与第三腔体9的连通;第 一开合门4打开,第一腔体5和第二腔体6通过第一通道7连通。请参图8A、图8B以及图5B所示,在第二工作状态时,开关件16连通第三接口3与第三腔体9;且当第二接口2作为进口,第一接口1和第三接口3作为出口时,第一开合门4关闭,使得第一接管12连通第三接口3与第三腔体9,第二接管13连通第三腔体9和第一腔体5。
进一步,在一些实施例中,第二腔体6内设有上下延伸且可转动的第二开合门8。第二开合门8的关闭可用于增加第二腔体6内制冷剂流动的距离。在第二开合门8打开时,第二接口2与第二通道10之间形成穿过第二开合门8位于关闭状态所在位置的流动通道;在第二开合门8关闭时,第一通道7与第二接口2之间形成绕过第二开合门8位于关闭状态所在位置的流动通道。
在第一工作状态时,第一开合门4打开,第二开合门8关闭。在第二工作状态且当第二接口2作为进口,第一接口1和第三接口3作为出口时,第一开合门4关闭,第二开合门8打开。
在一些可选实施例中,第二开合门8位于第一开合门4的正下方处,同样,由于工艺等原因导致的公差,应当理解也在此保护范围内。当然,在其他一些实施例中,第二开合门8也可不设于第一开合门4的正下方处,本申请对此不做限定,可根据具体环境进行设置。
请结合图7A和图7B,上述气液分离装置100在第一工作状态(制冷工况)下,第一接口1为进口,第二接口2为出口,第三接口3通过外接阀16关闭。此时,制冷剂(通常为气液两相或液相的制冷剂,可以是从换热器某一流程出来的)通过第一接口1进入到气液分离装置100,制冷剂的流动能够顶开第一开合门4,使其旋转至位置a(请参图7A所示),从而制冷剂进入第一腔体5,进而通过第一腔体5与第二腔体6之间的第一通道7进入第二腔体6。由于压力差,制冷剂将第二开合门8顶至位置b’处(请参图7B所示)。此后制冷剂大致绕第一接管12外周侧一圈后通过第二接口2流出。对于与换热器集成的气液分离装置而言,流出的制冷剂可进入换热器下一流程。
请结合图5A至图6B、图8A和图8B,上述气液分离装置100在第二工作 状态(制热工况)时包括两种实施例,其中在第一实施例中,第二接口2为进口,第一接口1为液相制冷剂的出口,第三接口3为气相制冷剂的出口且通过外接阀16打开;在第二实施例中,第一接口1为进口,第二接口2为液相制冷剂的出口或者气液两相制冷剂的出口,第三接口3为气相制冷剂的出口且通过外接阀16打开。在第一实施例中,制冷剂(一般为气液两相或气相,该制冷剂也可是从换热器某一流程出来的)通过第二接口2进入到气液分离装置100,而后顶开第二开合门8至位置a’(请参图8B所示),以使制冷剂进入第二腔体6。部分制冷剂通过第一腔体5与第二腔体6之间的第一通道7进入第一腔体5。由于压力差,制冷剂将第一开合门4顶至位置b(请参图8A所示),使第一腔体5中与第一通道7直接连通的空间为不流动空间(“死区”),以阻止从第一通道7流出来的制冷剂自第一接口1流出。此时制冷剂大致绕第一接管12外周侧一圈后通过第二腔体6和第三腔体9之间的第二通道10进入第三腔体9,并在第三腔体9内沿着螺旋叶片11形成的螺旋通道向下流动,从而制冷剂在离心力的作用下实现气液两相分离。第三腔体9中分离后的气相制冷剂通过第一接管12内部的通道向上流动,并最终通过第三接口3流出。在一些实施例中,该第三接口3流出的制冷剂可进一步被输送到换热器出口。而第三腔体9中分离后的液相制冷剂位于筒体14的下部,通过第二接管13内部的通道向上流动而进入到第一腔体5,再通过第一接口1流出。在一些实施例中,该第一接口流出的制冷剂可进入换热器的下一流程。第二工作状态(制热工况)下与第一工作状态(制冷工况)下制冷剂的流动方向相反,可以实现进出口反向,可以实现换热器中间过程中的气液分离,让更多的液相制冷剂进入到换热器蒸发,从而提高系统制热量。
在第二实施例中,制冷剂(一般为气液两相或气相,该制冷剂也可是从换热器某一流程出来的)通过第一接口1进入到气液分离装置100,而后顶开第一开合门4,使其旋转至位置a(请参图7A所示),从而制冷剂进入第一腔体5。一部分制冷剂通过第一腔体5与第二腔体6之间的第一通道7进入第二腔体6;一部分制冷剂通过第二接管13上端的第一开口131进入第三腔体9中。由于压 力差,自第一通道7进入到第二腔体6中的制冷剂将第二开合门8顶至位置b’处(请参图7B所示)。此后,进入第二腔体6中的部分液相制冷剂或者气液两相制冷剂通过第二接口2流出,进入第二腔体6中的另一部分制冷剂经第二通道10流入第三腔体9中。两路进入第三腔体9中制冷剂根据各自流路中的压力进行平衡。最后,在第三腔体9中分离后的气相制冷剂通过第一接管12内部的通道向上流动,并通过第三接口3流出。在第二实施例中,第二工作状态(制热工况)将第一接口1设置为进口,第二接口2和第三接口3设置为出口,也能够实现一进两出的效果。
此外,本申请还提供一种制冷系统。如图9和图10所示的制冷系统的局部示意图中。该制冷系统中,气液分离装置100集成于换热器200。换热器200包括两个相对独立的换热单元201和202。气液分离装置100的第一接口1和第二接口2通过多通阀300与换热器200集成。多通阀300中实线示意出多通阀300连通的部分管路,即制冷剂能够流通的管路,而虚线示意出多通阀300断开连通的部分管路,即制冷剂不能够流通的管路。
图9示意出制冷系统在第一工况下工作的局部示意图。该第一工况可以理解为制冷工况、除霜工况等工况,相应地,气液分离装置100处于第一工作状态。图10示意出制冷系统在第二工况下工作的局部示意图。该第二工况可以理解为制热工况等工况,相应地,气液分离装置100处于第二工作状态。
该气液分离装置100,在集成到换热器200中时,在制冷系统的第二工况时,可以实现换热器中间过程中的气液分离,其中经过换热单元201换热后的气态制冷剂与经过气液分离装置100分离并通过第三接口3流出的气态制冷剂能够共同进入制冷系统的下一装置,以使制冷系统中具有更多的制冷剂,以提高系统的制热量,从而提高空调系统的换热效率。
发明人(们)发现,上述实施例所述的气液分离装置100应用于制冷系统时,其制热量明显提高。比如,发明人(们)通过大量试验得出,在-20℃下工作时,可提高制热量35%。且使用该气液分离装置100的制冷系统,不需要使用补气增焓循环就可以很好地实现系统性能的提升。
以上所述仅是本申请的较佳实施例而已,并非对本申请做任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (16)

  1. 一种气液分离装置,其特征在于,包括:
    筒体(14),所述筒体(14)具有第一腔体(5)、第二腔体(6)及第三腔体(9),所述第一腔体(5)连通所述第二腔体(6),所述第二腔体(6)连通所述第三腔体(9);
    外接口,所述外接口包括第一接口(1)、第二接口(2)及第三接口(3),所述第一接口(1)与所述第一腔体(5)连通,所述第二接口(2)与所述第二腔体(6)连通;
    转接件,所述转接件至少部分设于所述筒体(14)内,所述转接件设有第一槽道(120)以及第二槽道(130),所述第二槽道(130)的下端与所述第一槽道(120)的下端均位于所述第三腔体(9)内,所述第二槽道(130)的下端低于所述第一槽道(120)的下端,所述第二槽道(130)连通所述第一腔体(5)与所述第三腔体(9),所述第三接口(3)通过所述第一槽道(120)选择性地与所述第三腔体(9)连通或者断开;以及
    气液分离件,所述气液分离件位于所述第三腔体(9)内,用以分离从所述第二腔体(6)进入所述第三腔体(9)中的气液两相制冷剂;
    其中,所述气液分离装置在第一工作状态时,所述第一槽道(120)关闭,使得所述第三接口(3)与所述第三腔体(9)断开;所述第一接口(1)作为进口,所述第二接口(2)作为出口;
    所述气液分离装置在第二工作状态时,所述第一槽道(120)打开,使得所述第三接口(3)与所述第三腔体(9)连通;所述第二接口(2)作为进口,与所述第二槽道(130)连通的所述第一接口(1)作为分离后的液相制冷剂的出口,与所述第一槽道(120)连通的所述第三接口(3)作为分离后的气相制冷剂的出口,或者,所述第一接口(1)作为进口,所述第二接口(2)作为液相制冷剂的出口或者气液两相制冷剂的出口,与所述第一槽道(120)连通的所述第三接口(3)作为分离后的气相制冷剂的出口。
  2. 如权利要求1所述的气液分离装置,其特征在于,所述转接件包括第一接管(12)和第二接管(13),所述第二接管(13)的部分穿设于所述第一接管(12)内,所述第一接管(12)的管腔至少部分形成所述第一槽道(120),所述第二接管(13)的管腔至少部分形成所述第二槽道(130)。
  3. 如权利要求2所述的气液分离装置,其特征在于,所述第二腔体(6)位于所述第一腔体(5)之下,所述第三腔体(9)位于所述第二腔体(6)之下,所述第一接管(2)的上端从所述第一腔体(5)伸出并向远离所述第三腔体(9)的方向延伸;所述第三接口(3)设于所述第一接管(12)的上端。
  4. 如权利要求2所述的气液分离装置,其特征在于,所述气液分离件为环绕于所述转接件的外壁的螺旋叶片(11)。
  5. 如权利要求4所述的气液分离装置,其特征在于,所述螺旋叶片(11)的外圈抵接于所述筒体(14)的内壁,所述螺旋叶片(11)的内圈抵接于所述第一接管(12)的外壁,以在所述筒体(14)的内壁及所述第一接管(12)的外壁之间形成用以供制冷剂流动的螺旋通道。
  6. 如权利要求2所述的气液分离装置,其特征在于,所述第二接管(13)与所述第一接管(12)偏心设置。
  7. 如权利要求1至6任一项所述的气液分离装置,其特征在于,所述第一腔体(5)与所述第二腔体(6)之间设有第一通道(7),所述第二腔体(6)与所述第三腔体(9)之间设有第二通道(10)。
  8. 如权利要求7所述的气液分离装置,其特征在于,所述转接件具有控制所述第三接口(3)与所述第三腔体(9)连通或断开的开关件(16)。
  9. 如权利要求8所述的气液分离装置,其特征在于,所述开关件(16)为受电信号控制打开或关闭阀体通道的阀件,所述阀体通道形成所述第一槽道(120)的至少一部分,所述阀体通道在打开状态时,所述第一槽道(120)连通所述第三接口(3)与所述第三腔体(9);所述阀体通道在闭合状态时,所 述第三接口(3)与所述第三腔体(9)相隔断,所述开关件(16)至少部分位于筒体(14)之外。
  10. 如权利要求8所述的气液分离装置,其特征在于,所述第一腔体(5)内设有上下延伸且可转动的第一开合门(4);所述第一开合门(4)具有打开状态和关闭状态,在第一开合门(4)打开时,所述第一接口(1)与第一通道(7)通过所述第一腔体(5)相连通;在第一开合门(4)关闭时,所述第一接口(1)与所述第一通道(7)通过第一开合门(4)相隔断;
    在所述第一工作状态时,所述开关件(16)断开所述第三接口(3)与所述第三腔体(9);所述第一开合门(4)打开,所述第一腔体(5)和所述第二接口(2)连通;
    在所述第二工作状态时,所述开关件(16)连通所述第三接口(3)与所述第三腔体(9);且所述第二接口(2)作为进口,所述第一接口(1)和所述第三接口(3)作为出口;所述第一开合门(4)关闭,以阻止从所述第一通道(7)流向第一腔体(5)的制冷剂从所述第一接口(1)流出;
    所述第二腔体(6)和所述第三腔体(9)通过所述第二通道(10)连通,使自所述第二接口(2)进入到所述第二腔体(6)中的制冷剂通过所述第二通道(10)流向所述第三腔体(9);
    所述第一接管(12)连通所述第三腔体(9)与所述第三接口(3),使分离后的气相制冷剂能够经所述第一槽道(120)从所述第三接口(3)流出;
    所述第二接管(13)连通所述第三腔体(9)和所述第一腔体(5),使分离后的液相制冷剂能够经所述第二槽道(130)从所述第一接口(1)流出。
  11. 如权利要求10所述的气液分离装置,其特征在于,所述第二腔体(6)内设有上下延伸且可转动的第二开合门(8);所述第二开合门(8)具有打开状态和关闭状态,在第二开合门(8)打开时,所述第二接口(2)与所述第二通道(10)之间形成穿过所述第二开合门(8)位于关闭状态所在位置的流动通道;在第二开合门(8)关闭时,所述第一通道(7)与所述第二接口(2)之间 形成绕过第二开合门(8)位于关闭状态所在位置的流动通道;
    在所述第一工作状态时,所述第一开合门(4)打开,所述第二开合门(8)关闭;在所述第二工作状态时,所述第一开合门(4)关闭,所述第二开合门(8)打开。
  12. 如权利要求8所述的气液分离装置,其特征在于,所述第一腔体(5)内设有上下延伸且可转动的第一开合门(4);在第一开合门(4)打开时,所述第一接口(1)与第一通道(7)通过所述第一腔体(5)相连通;
    在所述第一工作状态时,所述开关件(16)断开所述第三接口(3)与所述第三腔体(9);所述第一开合门(4)打开,所述第一腔体(5)和所述第二接口(2)连通;
    在所述第二工作状态时,所述开关件(16)连通所述第三接口(3)与所述第三腔体(9);且所述第一接口(1)作为进口,所述第二接口(2)和所述第三接口(3)作为出口;
    所述第一开合门(4)打开,所述第一腔体(5)和所述第二腔体(6)通过所述第一通道(7)连通,使自所述第一接口(1)进入到所述第一腔体(5)中的制冷剂通过所述第一通道(7)流向所述第二腔体(6);
    进入所述第二腔体(6)中的至少部分制冷剂通过所述第二通道(10)流向所述第三腔体(9);
    所述第一接管(12)连通所述第三腔体(9)与所述第三接口(3),使分离后的气相制冷剂能够经所述第一槽道(120)从所述第三接口(3)流出。
  13. 如权利要求12所述的气液分离装置,其特征在于,所述第二腔体(6)内设有上下延伸且可转动的第二开合门(8);在第二开合门(8)关闭时,所述第一通道(7)与所述第二接口(2)之间形成绕过第二开合门(8)位于关闭状态所在位置的流动通道;
    在第一工作状态时,所述第一开合门(4)打开,所述第二开合门(8)关闭;在第二工作状态时,所述第一开合门(4)打开,所述第二开合门(8)关 闭。
  14. 如权利要求7所述的气液分离装置,其特征在于,所述气液分离装置还包括位于所述第一接管(12)的外壁与所述筒体(14)的内壁之间的第一隔离件(15)和第二隔离件(17),其中:
    所述第一隔离件(15)包括环状的第一隔板(152),所述第一隔板(152)的中间设有用以设置所述第一接管(12)的第一通孔(1521),所述第一隔板(152)位于所述第一腔体(5)和所述第二腔体(6)之间,所述第一通道(7)为设于所述第一隔板(152)的通孔;
    所述第二隔离件(17)为环状的第二隔板,所述第二隔离件(17)的中间设有用以设置所述第一接管(12)的第二通孔(171),所述第二隔离件(17)位于所述第二腔体(6)和所述第三腔体(9)之间,所述第二通道(10)为设于所述第二隔离件(17)的通孔。
  15. 如权利要求14所述的气液分离装置,其特征在于,所述第一通道(7)与所述第二通道(10)上下不对齐。
  16. 如权利要求14所述的气液分离装置,其特征在于,所述第一隔离件(15)包括位于所述第一腔体(5)内的隔离块(151),所述隔离块(151)的内壁抵靠在所述第一接管(12)的外壁上,所述隔离块(151)的外壁抵靠在所述筒体(14)的内壁上,使得所述第一腔体(5)无法周向贯通于所述第一接管(12)的外侧。
PCT/CN2020/078711 2019-03-15 2020-03-11 气液分离装置 WO2020187102A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/437,408 US20220163245A1 (en) 2019-03-15 2020-03-11 Gas-liquid separation device
EP20773729.7A EP3936794B1 (en) 2019-03-15 2020-03-11 Gas-liquid separating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910198325.8 2019-03-15
CN201910198325.8A CN111692784B (zh) 2019-03-15 2019-03-15 气液分离装置

Publications (1)

Publication Number Publication Date
WO2020187102A1 true WO2020187102A1 (zh) 2020-09-24

Family

ID=72475377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078711 WO2020187102A1 (zh) 2019-03-15 2020-03-11 气液分离装置

Country Status (4)

Country Link
US (1) US20220163245A1 (zh)
EP (1) EP3936794B1 (zh)
CN (1) CN111692784B (zh)
WO (1) WO2020187102A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204963284U (zh) * 2015-08-20 2016-01-13 广东美的制冷设备有限公司 冷暖型空调系统和单冷型空调系统
CN205002455U (zh) * 2015-09-01 2016-01-27 浙江三花股份有限公司 气液分离器及其出口管固定组件
CN107965941A (zh) * 2017-12-26 2018-04-27 王雪峰 一种内转换型水源热泵机组
CN109405372A (zh) * 2018-10-31 2019-03-01 上海爱斯达克汽车空调系统有限公司 节流多口热力膨胀阀组件及交通工具

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1661685A (en) * 1927-03-15 1928-03-06 Guy O Marchant Oil and gas separator
US1752215A (en) * 1928-04-09 1930-03-25 Smith Separator Company Oil and gas separator
US1863111A (en) * 1928-05-25 1932-06-14 Oil Well Supply Co Oil and gas separator
US2016641A (en) * 1933-09-15 1935-10-08 Lincoln Abe Oil and gas separator
US2163095A (en) * 1938-03-21 1939-06-20 Edward C Kopp Oil and gas separator
US2229860A (en) * 1938-11-14 1941-01-28 Mccurdy Howard Helical centrifugal separator
US2343682A (en) * 1938-11-14 1944-03-07 Mccurdy Howard Helical centrifugal separator
US2300129A (en) * 1940-11-04 1942-10-27 Mccurdy Howard Helical flow separator
US4757696A (en) * 1987-06-17 1988-07-19 Tecumseh Products Company Suction accumulator having slide valve
JP3922080B2 (ja) * 2002-04-19 2007-05-30 株式会社デンソー 受液器一体型凝縮器
US7891201B1 (en) * 2006-09-29 2011-02-22 Carrier Corporation Refrigerant vapor compression system with flash tank receiver
JP5539996B2 (ja) * 2008-10-01 2014-07-02 キャリア コーポレイション 遷臨界冷媒サイクルにおける液体および蒸気の分離
US8940068B2 (en) * 2010-01-27 2015-01-27 Cummins Filtration Ip Inc. Magnetically driven rotating separator
JP4695215B1 (ja) * 2010-03-05 2011-06-08 独立行政法人石油天然ガス・金属鉱物資源機構 気液分離器及び流量計測装置
KR101870776B1 (ko) * 2011-11-24 2018-06-27 한온시스템 주식회사 응축기
JP5929780B2 (ja) * 2013-02-18 2016-06-08 株式会社デンソー エンジン湿式後処理装置用の気液分離装置
CN104457038B (zh) * 2013-09-16 2017-02-22 丹佛斯微通道换热器(嘉兴)有限公司 换热器
CN103604254B (zh) * 2013-11-12 2016-07-06 清华大学 一种内置气液两相流分流结构
CN204630193U (zh) * 2015-01-29 2015-09-09 苏州蒂珀克制冷科技有限公司 一种新的气液分离器装置
CN105241134B (zh) * 2015-10-16 2018-07-17 珠海格力电器股份有限公司 气液分离器、空调系统及空调系统的运行方法
CN106196776A (zh) * 2016-08-19 2016-12-07 重庆美的通用制冷设备有限公司 气液分离器及具有其的热泵机组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204963284U (zh) * 2015-08-20 2016-01-13 广东美的制冷设备有限公司 冷暖型空调系统和单冷型空调系统
CN205002455U (zh) * 2015-09-01 2016-01-27 浙江三花股份有限公司 气液分离器及其出口管固定组件
CN107965941A (zh) * 2017-12-26 2018-04-27 王雪峰 一种内转换型水源热泵机组
CN109405372A (zh) * 2018-10-31 2019-03-01 上海爱斯达克汽车空调系统有限公司 节流多口热力膨胀阀组件及交通工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3936794A4 *

Also Published As

Publication number Publication date
EP3936794A4 (en) 2022-04-20
CN111692784B (zh) 2021-05-28
EP3936794A1 (en) 2022-01-12
CN111692784A (zh) 2020-09-22
US20220163245A1 (en) 2022-05-26
EP3936794B1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2017063613A1 (zh) 气液分离器、空调系统及空调系统的运行方法
WO2011160501A1 (zh) 换热器
CN104180442B (zh) 空调系统
CN114165946A (zh) 换热器和空调器
WO2019080523A1 (zh) 压缩机、制冷系统及空调器
EP3719414A1 (en) Outdoor heat exchanger and air-conditioner having the same
KR20180104416A (ko) 공기조화시스템
EP3848654B1 (en) Air conditioner having a gas-liquid separator
KR101126711B1 (ko) 이중 스풀밸브가 적용된 냉난방 공기조화기용 사방밸브
CN112146467A (zh) 微通道换热器和空调器
WO2020187102A1 (zh) 气液分离装置
CN108800393A (zh) 空调系统
KR20060096950A (ko) 배관의 연결 및 분리가 용이한 냉매배관
EP3182038A1 (en) Outdoor unit of multi-split air conditioner and multi-split air conditioner having same
CN208779748U (zh) 空调系统
KR20140107751A (ko) 볼 밸브 어셈블리 및 이를 구비하는 공기조화기
CN216644630U (zh) 双向节流阀、第一空调系统及第二空调系统
CN106247667B (zh) 制冷系统及其控制方法
KR101891965B1 (ko) 분리가능한 이동식 공조기기
CN107806717B (zh) 制冷系统和具有其的空调器、热泵
CN112781285B (zh) 流体控制组件及热管理系统
CN109386983A (zh) 两管制喷气增焓室外机及多联机系统
CN205783943U (zh) 空调系统
CN217357638U (zh) 换热器和空调器
CN112393471B (zh) 气液分离器及空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020773729

Country of ref document: EP