WO2020186611A1 - 基于压力传感器和造影图像计算瞬时无波形比率的方法 - Google Patents

基于压力传感器和造影图像计算瞬时无波形比率的方法 Download PDF

Info

Publication number
WO2020186611A1
WO2020186611A1 PCT/CN2019/086609 CN2019086609W WO2020186611A1 WO 2020186611 A1 WO2020186611 A1 WO 2020186611A1 CN 2019086609 W CN2019086609 W CN 2019086609W WO 2020186611 A1 WO2020186611 A1 WO 2020186611A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
time
value
waveform
pressure value
Prior art date
Application number
PCT/CN2019/086609
Other languages
English (en)
French (fr)
Inventor
霍云飞
刘广志
吴星云
Original Assignee
苏州润迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润迈德医疗科技有限公司 filed Critical 苏州润迈德医疗科技有限公司
Priority to EP19920153.4A priority Critical patent/EP3943002A4/en
Priority to JP2021547747A priority patent/JP7212970B2/ja
Publication of WO2020186611A1 publication Critical patent/WO2020186611A1/zh
Priority to US17/398,353 priority patent/US20210361176A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0275Measuring blood flow using tracers, e.g. dye dilution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6869Heart
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Definitions

  • the present invention relates to the field of coronary artery imaging evaluation, in particular to a method for calculating the instantaneous non-waveform ratio based on a pressure sensor and an angiographic image.
  • Instantaneous wave-free ratio can provide a method of measuring intra-coronary pressure similar to Fractional Flow Reserve (FFR).
  • FFR Fractional Flow Reserve
  • iFR does not require vasodilators, is simple to operate, and will be more used in coronary intervention therapy.
  • the ADVISE study found that during a certain period of the diastolic period (called the no-wave phase), the microvascular resistance in the coronary artery is relatively stable and the lowest, and during the period of coronary artery congestion made by vasodilators such as adenosine The average resistance reached is similar.
  • iFR P dWave-free period /P aWave-free period
  • P dWave-free period the average pressure of the distal coronary artery of the stenotic lesion during the absence of waveform.
  • P aWave-free period during the absence of waveform Mean aortic pressure.
  • the calculation time of the instantaneous wave-free period 25% of the time after the start of the wave-free period in the diastolic period, and the calculation stops at 5 ms before the start of the systolic period)
  • the existing instantaneous wave-free ratio (iFR) measurement method is mainly: the pressure guide wire is measured in the resting state of the end diastole to determine the iFR. It is necessary to rely on the pressure guide wire for measurement, and the end of the blood vessel needs to be involved in the pressure guide wire measurement, which is not only difficult, but also causes errors in the process of collecting pressure, which makes the accuracy of the calculated iFR not high.
  • the purpose of the present invention is to provide a method for calculating the instantaneous non-waveform ratio based on the pressure sensor and the contrast image, which can accurately obtain the stable pressure value after the contrast agent is created, and accurately combine the pressure waveform with the contrast image Obtain the average blood flow velocity of a cardiac cycle, which can greatly improve the accuracy of iFR.
  • S01 Collect the pressure of the coronary ostium of the heart through the blood pressure sensor in real time, and store the pressure value in the data link table.
  • the data link table is indexed by time and stored in the form of key-value pairs of time and real-time pressure;
  • S02 Obtain the contrast time according to the contrast image, use the contrast time as the index value to find the corresponding data from the data queue according to the time index, filter out multiple cycles of stable pressure waveforms, and use the average of the four non-waveform pressure values as no waveform Pressure value Pa; Obtain the time Tn of the end of diastole in a period, that is, the period without waveform according to the time index of a period;
  • the step S01 further includes: accumulating n points from the first point according to the time and real-time pressure value in the data link list, and obtaining the peak pressure value from the first point through the comparison and sorting method, The trough pressure value and the non-waveform pressure value, continuously record the peak pressure value, the trough pressure value and the non-waveform pressure value to form a queue corresponding to the peak pressure value, the trough pressure value and the non-waveform pressure value indexed by time, until the nth point After the calculation is completed, take n points from the saved data link list sequentially according to the time index for calculation, and so on.
  • one cycle is calculated from one peak pressure value to the next peak pressure value, and the average value of the four peak pressure values is used as the systolic pressure, and the average value of the four trough pressure values is used as the diastolic pressure.
  • the average time Tm of each cycle is the time of one cycle.
  • the stable pressure waveform in the step S02 is that the relative difference between the peak values of successive multiple cycles is within 4 mmHg.
  • the stable pressure value after the contrast agent can be accurately obtained, and the average blood flow velocity of a cardiac cycle can be accurately obtained through the combination of the pressure waveform and the contrast image, which can greatly improve the accuracy of iFR.
  • Figure 1 is a schematic diagram of the instantaneous wave-free ratio (iFR);
  • Figure 2 is a flow chart of the method for calculating the instantaneous non-waveform ratio based on the pressure sensor and the contrast image of the present invention.
  • the method for calculating the instantaneous non-waveform ratio based on the pressure sensor and the contrast image of the present invention includes the following steps:
  • the pressure of the coronary ostium of the heart is collected by the blood pressure sensor in real time.
  • the pressure sensor is connected to the aorta through the pressure tube and the surgical catheter to keep the pressure sensor and the heart level consistent.
  • the pressure chip of the pressure sensor senses pressure fluctuations and generates an electrical signal.
  • the signal is transmitted to the acquisition chip of the control unit through the cable.
  • the acquisition chip converts the electrical signal into a pressure value and filters it to form a stable pressure waveform.
  • the data processing chip of the control unit stores the pressure value in a data link table.
  • the data link table is indexed by time and stored in the form of time and real-time pressure key-value pairs.
  • the data processing chip accumulates n points from the first point according to the time in the data link list and the real-time pressure value.
  • the number of n is the position at least 4 seconds passed from the first point according to the time index, about 4 Above the cardiac cycle.
  • Obtain the peak pressure value, trough pressure value and non-waveform pressure value from the first point through the comparison and sorting algorithm (calculation time during the non-waveform period: 25% of the time after the start of the non-waveform period in the diastole, and before the start of the systolic period 5ms time to stop calculation), continuously record the peak pressure value, trough pressure value and non-waveform pressure value to form a queue corresponding to the peak pressure value, trough pressure value and non-waveform pressure value indexed by time, until the nth point calculation is completed Then from the data linked list saved in step 3, take n points backward for calculation according to the time index, and so on.
  • the pressure of the contrast vessel When calculating iFR, it is necessary to obtain the pressure of the contrast vessel. First, obtain the contrast time from the contrast image, and use the contrast time as the index value to find the corresponding data from the data queue in step 4 according to the time index, and then filter out from this data.
  • the criterion of the stable pressure is that the relative difference of the peak value of the continuous 4 cycles is within 4mmHg.
  • the method in step 5 follows the method in step 5 to obtain the non-waveform pressure value Pa. Because the bolus injection of the contrast agent at the time of imaging will cause the pressure fluctuation to disappear, according to the periodic data queue continuously recorded in step 4, the stable value of the pressure recovery fluctuation after the bolus injection can be accurately obtained. This ensures that the acquired physiological parameters of the patient's pressure are the parameters corresponding to the time of the radiography.
  • the heart rate obtained in step 6 and the time Tn of the period without waveform can be used.
  • the first frame of the specified contrast agent flowing out of the catheter port is positioned to the last frame after a time Tn, the position of the catheter port of the first frame is marked as the starting point of the blood vessel, and the last frame of contrast agent flows to the farthest point as a blood vessel The end point of this segment of the blood vessel.
  • the true blood flow velocity of a cardiac cycle can be accurately obtained when calculating the flow velocity.
  • ⁇ P calculated from the inlet blood flow velocity V for a section of the blood vessel in step 7 through computational fluid dynamics, where ⁇ P is the pressure drop from the entrance of the coronary artery to the distal end of the coronary artery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Theoretical Computer Science (AREA)
  • Vascular Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Primary Health Care (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明公开了一种基于压力传感器和造影图像计算瞬时无波形比率的方法,包括:通过血压传感器实时采集心脏冠脉口的压力,将压力数值存储至数据链表,数据链表以时间为索引,以时间和实时压力键值对的形式保存;以造影时间为索引值从数据队列里按照时间索引找到对应的数据,以四个无波形压力值的平均值作为无波形压力值Pa;根据一个周期的时间索引获取一个周期内的舒张期末期即无波形时期的时间Tn;从两个体位的造影图像中获取一段血管的长度L,得到血流速度V;计算压力降ΔP,得到血管远端压力Pd=Pa-ΔP,进一步得到瞬时无波形比率。可以精准得到压力值,准确获取一个心动周期的血流速度,大大提高FFR的准确性。

Description

基于压力传感器和造影图像计算瞬时无波形比率的方法 技术领域
本发明涉及冠状动脉影像学评价领域,具体地涉及一种基于压力传感器和造影图像计算瞬时无波形比率的方法。
背景技术
瞬时无波形比率(iFR)能提供和血流储备分数(FFR)类似的冠状动脉内压力测量方法。iFR不需要血管扩张剂、操作简单,将会更多的应用在冠状动脉介入治疗。ADVISE研究发现,当心脏舒张期的某段时间(称之为无波形期),冠脉内微血管阻力相对是最稳定且是最低的,和腺苷等血管扩张药物所做成的冠脉充血期间达到的平均阻力相类似。如图1所示,即iFR=P dWave-free period/P aWave-free period(P dWave-free period:在无波形期间狭窄病变远端冠脉平均压。P aWave-free period:在无波形期间主动脉平均压。瞬时无波形时期的运算时间:舒张期内无波形时期开始后25%的时间,到收缩期开始前5ms的时间停止计算)。
目前,现有的瞬时无波型比率(iFR)的测量方法主要为:压力导丝静息态下测量舒张末期来确定iFR。需要依靠压力导丝进行测量,压力导丝测量时需要介入血管末端,不仅难度大,而且在采集压力的过程中会造成误差,从而使得计算出来的iFR的准确性不高。
发明内容
为了解决上述的技术问题,本发明目的是:提供了一种基于压力传感器和造影图像计算瞬时无波形比率的方法,可以精准得到打造影剂后平稳的压力值,通过压力波形与造影图像结合准确获取一个心动周期的平均血流速度,从而可以大大提高iFR的准确性。
本发明的技术方案是:
一种基于压力传感器和造影图像计算瞬时无波形比率的方法,其特征在于,包括以下步骤:
S01:通过血压传感器实时采集心脏冠脉口的压力,将压力数值存储至 数据链表,数据链表以时间为索引,以时间和实时压力键值对的形式保存;
S02:根据造影图像获取造影时间,以造影时间为索引值从数据队列里按照时间索引找到对应的数据,筛选出多个周期的稳定压力波形,以四个无波形压力值的平均值作为无波形压力值Pa;根据一个周期的时间索引获取一个周期内的舒张期末期即无波形时期的时间Tn;
S03:从一体位的造影图像中指定造影剂流出导管口的第一帧经过一个时间Tn定位到最后一帧,标记第一帧的导管口位置为血管起始点,标记最后一帧造影剂流动到最远处作为血管的结束点,分割这一段血管;从另一体位造影图像中获取一段血管,对两个体位进行三维合成后得到这段血管的真实长度L,得到血流速度V=L/Tn;
S04:在步骤S03中的一段血管以入口血流速度V计算冠脉入口到冠脉远端的压力降ΔP,计算血管远端压力Pd=Pa-ΔP,根据iFR=Pd/Pa进一步计算得到瞬时无波形比率。
优选的技术方案中,所述步骤S01还包括,根据数据链表中的时间和实时压力值从第一个点开始累计n个点,通过对比排序方法获取从第一个点开始的波峰压力值、波谷压力值和无波形压力值,连续记录波峰压力值、波谷压力值和无波形压力值形成一个以时间为索引对应波峰压力值、波谷压力值和无波形压力值的队列,直到第n个点计算完成,再从保存的数据链表里按时间索引依次往后取n个点进行计算,以此类推。
优选的技术方案中,将一个波峰压力值到下一个波峰压力值计算为一个周期,将四个波峰压力值的平均值作为收缩压,将四个波谷压力值的平均值作为舒张压,以四个周期的平均时间Tm为一个周期的时间。
优选的技术方案中,所述步骤S02中稳定压力波形为连续多个周期的波峰值的相对差在4mmHg以内。
与现有技术相比,本发明的优点是:
可以精准得到打造影剂后平稳的压力值,通过压力波形与造影图像结合准确获取一个心动周期的平均血流速度,从而可以大大提高iFR的准确性。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为瞬时无波型比率(iFR)的示意图;
图2为本发明基于压力传感器和造影图像计算瞬时无波形比率的方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
如图2所示,本发明的一种基于压力传感器和造影图像计算瞬时无波形比率的方法,包括以下步骤:
1、通过血压传感器实时采集心脏冠脉口的压力,压力传感器通过压力管和手术导管与主动脉连通,保持压力传感器与心脏水平高度一致。
2、压力传感器的压力芯片感受压力波动产生电信号,信号通过电缆线传输到操控单元的采集芯片,采集芯片将电信号转换成压力数值并进行滤波形成稳定的压力波形。
3、操控单元的数据处理芯片将压力数值存储到一个数据链表里,数据链表以时间为索引,以时间、实时压力键值对的形式保存。
4、数据处理芯片根据数据链表里的时间和实时压力值从第一个点开始累计n个点,n的个数是根据时间索引从第一个点至少经过4秒的位置,大约为4个心动周期以上。通过对比排序算法获取从第一个点开始的波峰压力值、波谷压力值和无波形压力值(无波形时期的运算时间:舒张期内无波形时期开始后25%的时间,到收缩期开始前5ms的时间停止计算),连续记录波峰压力值、波谷压力值和无波形压力值形成一个以时间为索引对应波峰压力值、波谷压力值和无波形压力值的队列,直到第n个点计算完成再从步骤3保存的数据链表里按时间索引依次往后取n个点进行计算,以此类推。
5、从步骤4存储的数据队列进一步计算收缩压、舒张压、无波形压力和心率,以一个波峰到下一个波峰计算为一个周期,以四个波峰的平均作为收缩压,以四个波谷平均值作为舒张压,以四个无波形压力值的平均值作为无波形压力值。以四个周期的平均时间Tm计算心率。心率=60/Tm。根据 一个周期的时间索引获取一个周期内的舒张期末期即无波形时期的时间Tn。可用于获取收缩压、舒张压和平均压和心率等参数,为后续步骤提供更精准的数据。
6、在计算iFR时需要获取造影血管的压力,首先从造影图像里获取造影时间,以造影时间为索引值从步骤4的数据队列里按照时间索引找到对应的数据,从此数据开始往后筛选出4个周期的稳定压力波形,稳定压力的判断标准为连续4个周期的波峰值的相对差在4mmHg以内。按照步骤5的方法即可获取无波形压力值Pa。因为造影时刻推注造影剂会造成压力波动消失,根据步骤4连续记录的周期数据队列可以精准的获取停止推注造影剂后压力恢复波动的稳定值。这样保证获取到的患者压力生理参数为造影时刻对应的参数。
7、在计算流速时可根据步骤6获取的心率及无波形时期的时间Tn。从造影图像里指定造影剂流出导管口的第一帧经过一个时间Tn定位到最后一帧,标记第一帧的导管口位置为血管起始点,标记最后一帧造影剂流动到最远处作为血管的结束点,分割这一段血管。另一个体位造影同样可以获取一段血管,两个体位做三维合成后得到这段血管的真实长度L,血流速度V=L/Tn。这样保证流速计算时可以准确获得一个心动周期的平均血流速度。具体的三维合成的可以参见201610681191.1,本发明在此不再赘述。
8、通过计算流体力学得到步骤7的一段血管以入口血流速度V计算的ΔP,ΔP为冠脉入口到冠脉远端的压力降。通过步骤6获得了血管入口压力Pa,血管远端压力Pd=Pa-ΔP。通过瞬时无波型比率计算公式iFR=Pd/Pa计算得到瞬时无波型比率。
ΔP的具体计算方法可以参见201610681191.1,本发明在此不再赘述。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (4)

  1. 一种基于压力传感器和造影图像计算瞬时无波形比率的方法,其特征在于,包括以下步骤:
    S01:通过血压传感器实时采集心脏冠脉口的压力,将压力数值存储至数据链表,数据链表以时间为索引,以时间和实时压力键值对的形式保存;
    S02:根据造影图像获取造影时间,以造影时间为索引值从数据队列里按照时间索引找到对应的数据,筛选出多个周期的稳定压力波形,以四个无波形压力值的平均值作为无波形压力值Pa;根据一个周期的时间索引获取一个周期内的舒张期末期即无波形时期的时间Tn;
    S03:从一体位的造影图像中指定造影剂流出导管口的第一帧经过一个时间Tn定位到最后一帧,标记第一帧的导管口位置为血管起始点,标记最后一帧造影剂流动到最远处作为血管的结束点,分割这一段血管;从另一体位造影图像中获取一段血管,对两个体位进行三维合成后得到这段血管的真实长度L,得到血流速度V=L/Tn;
    S04:在步骤S03中的一段血管以入口血流速度V计算冠脉入口到冠脉远端的压力降ΔP,计算血管远端压力Pd=Pa-ΔP,根据iFR=Pd/Pa进一步计算得到瞬时无波形比率。
  2. 根据权利要求1所述的基于压力传感器和造影图像计算瞬时无波形比率的方法,其特征在于,所述步骤S01还包括,根据数据链表中的时间和实时压力值从第一个点开始累计n个点,通过对比排序方法获取从第一个点开始的波峰压力值、波谷压力值和无波形压力值,连续记录波峰压力值、波谷压力值和无波形压力值形成一个以时间为索引对应波峰压力值、波谷压力值和无波形压力值的队列,直到第n个点计算完成,再从保存的数据链表里按时间索引依次往后取n个点进行计算,以此类推。
  3. 根据权利要求1所述的基于压力传感器和造影图像计算瞬时无波形比率的方法,其特征在于,将一个波峰压力值到下一个波峰压力值计算为一个周期,将四个波峰压力值的平均值作为收缩压,将四个波谷压力值的平均值作为舒张压,以四个周期的平均时间Tm为一个周期的时间。
  4. 根据权利要求1所述的基于压力传感器和造影图像计算瞬时无波形比率的方法,其特征在于,所述步骤S02中稳定压力波形为连续多个周期的波峰值的相对差在4mmHg以内。
PCT/CN2019/086609 2019-03-19 2019-05-13 基于压力传感器和造影图像计算瞬时无波形比率的方法 WO2020186611A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19920153.4A EP3943002A4 (en) 2019-03-19 2019-05-13 PROCEDURE FOR CALCULATION OF INSTANT WAVE-FREE RATIO USING PRESSURE SENSOR AND CONTRAST IMAGE
JP2021547747A JP7212970B2 (ja) 2019-03-19 2019-05-13 圧力センサ及び造影画像に基づく瞬時血流予備量比の計算方法
US17/398,353 US20210361176A1 (en) 2019-03-19 2021-08-10 Method for calculating instantaneous wave-free ratio based on pressure sensor and angiogram images

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910206541.2A CN109770888A (zh) 2019-03-19 2019-03-19 基于压力传感器和造影图像计算瞬时无波形比率的方法
CN201910206541.2 2019-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/398,353 Continuation US20210361176A1 (en) 2019-03-19 2021-08-10 Method for calculating instantaneous wave-free ratio based on pressure sensor and angiogram images

Publications (1)

Publication Number Publication Date
WO2020186611A1 true WO2020186611A1 (zh) 2020-09-24

Family

ID=66489600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086609 WO2020186611A1 (zh) 2019-03-19 2019-05-13 基于压力传感器和造影图像计算瞬时无波形比率的方法

Country Status (5)

Country Link
US (1) US20210361176A1 (zh)
EP (1) EP3943002A4 (zh)
JP (1) JP7212970B2 (zh)
CN (1) CN109770888A (zh)
WO (1) WO2020186611A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110384493A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的系统以及冠脉分析系统
CN110393516A (zh) * 2018-09-19 2019-11-01 苏州润迈德医疗科技有限公司 基于影像和压力传感器计算微循环指标的方法装置及系统
CN109805949B (zh) * 2019-03-19 2020-05-22 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算血流储备分数的方法
JP7532402B2 (ja) 2019-04-01 2024-08-13 キャスワークス リミテッド 血管造影画像選択のための方法および装置
CN110353645A (zh) * 2019-08-19 2019-10-22 苏州润迈德医疗科技有限公司 测量无波形期压力、比率方法、装置、系统及存储介质
WO2021042477A1 (zh) * 2019-09-05 2021-03-11 苏州润迈德医疗科技有限公司 测量冠状动脉血管评定参数的简化方法、装置及系统
WO2021046990A1 (zh) 2019-09-09 2021-03-18 苏州润迈德医疗科技有限公司 基于影像和压力传感器计算微循环指标的方法装置及系统
US12039685B2 (en) 2019-09-23 2024-07-16 Cathworks Ltd. Methods, apparatus, and system for synchronization between a three-dimensional vascular model and an imaging device
CN110786842B (zh) * 2019-11-04 2022-10-04 苏州润迈德医疗科技有限公司 测量舒张期血流速度的方法、装置、系统及存储介质
CN110786840B (zh) * 2019-11-04 2021-06-08 苏州润迈德医疗科技有限公司 基于生理参数获取血管评定参数的方法、装置及存储介质
CN110786839A (zh) * 2019-11-22 2020-02-14 中山大学 瞬时无波形比值的生成方法、装置、设备及介质
CN112494016B (zh) * 2019-12-31 2024-02-02 深圳北芯生命科技股份有限公司 用于处理压力信号的主机
CN113558591B (zh) * 2019-12-31 2023-10-31 深圳北芯生命科技股份有限公司 具有显影环的血管内压力测量系统
CN113576439B (zh) * 2020-05-08 2023-06-13 深圳北芯生命科技股份有限公司 处理血管压力信号的主机
CN112494019A (zh) * 2020-11-26 2021-03-16 苏州润迈德医疗科技有限公司 基于主动脉压力提取平稳压力波形的方法及存储介质
CN112494020B (zh) * 2020-11-26 2024-01-23 苏州润迈德医疗科技有限公司 获取感兴趣的主动脉压力曲线的方法及存储介质
CN112494022A (zh) * 2020-11-26 2021-03-16 苏州润迈德医疗科技有限公司 获取冠状动脉血管评价参数的方法及存储介质
CN112494021A (zh) * 2020-11-26 2021-03-16 苏州润迈德医疗科技有限公司 主动脉压力波形图像的生成方法及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106327487A (zh) * 2016-08-18 2017-01-11 苏州润心医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
WO2017187269A1 (en) * 2016-04-29 2017-11-02 Siemens Healthcare Gmbh Enhanced personalized evaluation of coronary artery disease using an integration of multiple medical imaging techniques
CN107580470A (zh) * 2015-01-15 2018-01-12 皇家飞利浦有限公司 瞬时流量储备‑计算机断层摄影
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法
CN108573488A (zh) * 2018-03-27 2018-09-25 杭州脉流科技有限公司 一种计算瞬时无波形比率的装置
CN109363651A (zh) * 2018-09-19 2019-02-22 苏州润迈德医疗科技有限公司 一种用于测量血流储备分数时获取主动脉压的装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11064964B2 (en) * 2007-03-08 2021-07-20 Sync-Rx, Ltd Determining a characteristic of a lumen by measuring velocity of a contrast agent
JP6134789B2 (ja) * 2012-06-26 2017-05-24 シンク−アールエックス,リミティド 管腔器官における流れに関連する画像処理
US9247918B2 (en) * 2012-07-09 2016-02-02 Siemens Aktiengesellschaft Computation of hemodynamic quantities from angiographic data
JP2015107310A (ja) * 2013-10-23 2015-06-11 セイコーエプソン株式会社 血圧計測装置および血圧計測方法
KR20150077684A (ko) * 2013-12-30 2015-07-08 삼성전자주식회사 생체 신호 기반 기능 운용 방법 및 이를 지원하는 전자 장치
EP3116382B1 (en) * 2014-03-11 2022-05-04 The Johns Hopkins University A method for estimating flow rates and pressure gradients in arterial networks from patient specific computed tomography angiogram-based contrast distribution data
ES2730752T3 (es) * 2014-08-27 2019-11-12 St Jude Medical Systems Ab Sistema para evaluar un sistema cardíaco determinando la ratio Pd/Pa (presión distal/presión arterial) mínima
JP6657217B2 (ja) * 2014-12-08 2020-03-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 異常な心拍波形を検出し生理学的測定計算を行う装置、システム及び方法
CN107920764B (zh) * 2015-07-17 2021-09-21 皇家飞利浦有限公司 用于评估脉管的设备、系统和方法
RU2717885C1 (ru) * 2015-09-29 2020-03-26 Конинклейке Филипс Н.В. Оценка потока, сопротивления или давления на основании измерений давления или потока и ангиографии
CN105326486B (zh) * 2015-12-08 2017-08-25 博动医学影像科技(上海)有限公司 血管压力差与血流储备分数的计算方法及系统
CN109716446B (zh) * 2016-09-28 2023-10-03 光学实验室成像公司 利用血管表象的支架规划系统及方法
JP7032111B2 (ja) * 2016-11-28 2022-03-08 キヤノンメディカルシステムズ株式会社 医用画像処理装置、x線ct装置及び医用画像処理プログラム
US10748451B2 (en) * 2016-12-15 2020-08-18 Duke University Methods and systems for generating fluid simulation models
EP3403582B1 (en) * 2017-05-15 2023-06-07 Pie Medical Imaging BV Method and apparatus for determining blood velocity in x-ray angiography images
CN107730540B (zh) * 2017-10-09 2020-11-17 全景恒升(北京)科学技术有限公司 基于高精度匹配模型的冠脉参数的计算方法
US10580526B2 (en) * 2018-01-12 2020-03-03 Shenzhen Keya Medical Technology Corporation System and method for calculating vessel flow parameters based on angiography

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107580470A (zh) * 2015-01-15 2018-01-12 皇家飞利浦有限公司 瞬时流量储备‑计算机断层摄影
WO2017187269A1 (en) * 2016-04-29 2017-11-02 Siemens Healthcare Gmbh Enhanced personalized evaluation of coronary artery disease using an integration of multiple medical imaging techniques
CN106327487A (zh) * 2016-08-18 2017-01-11 苏州润心医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN108573488A (zh) * 2018-03-27 2018-09-25 杭州脉流科技有限公司 一种计算瞬时无波形比率的装置
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法
CN109363651A (zh) * 2018-09-19 2019-02-22 苏州润迈德医疗科技有限公司 一种用于测量血流储备分数时获取主动脉压的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943002A4

Also Published As

Publication number Publication date
EP3943002A1 (en) 2022-01-26
JP7212970B2 (ja) 2023-01-26
CN109770888A (zh) 2019-05-21
JP2022520471A (ja) 2022-03-30
US20210361176A1 (en) 2021-11-25
EP3943002A4 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2020186611A1 (zh) 基于压力传感器和造影图像计算瞬时无波形比率的方法
WO2020186612A1 (zh) 基于压力传感器和造影图像计算血流储备分数的方法
JP7041152B2 (ja) 改善されたフィルタリングを備えた血行動態モニタ
CN111166317B (zh) 基于造影图像计算造影血流储备分数和静息态压力比值的方法
JP6976011B2 (ja) 血管拡張剤を必要としない冠血流予備量比を測定する方法
CN112384137A (zh) 基于造影图像获取静息态下血管评定参数的方法及装置
JP2023025260A (ja) 最小の遠位側圧力/動脈圧(pd/pa)比を決定することによって心臓系を評価するためのシステム及び方法
CN104116503B (zh) 一种无创连续血压的测量装置
CN112204609B (zh) 使用图像数据进行流量测量
US11576639B2 (en) Method, system, device and medium for determining a blood flow velocity in a vessel
JP2021529015A (ja) ハイブリッドな画像−侵襲性−圧力血行動態機能評価
CN111466900B (zh) 使用血压来跟踪心脏循环事件的系统及方法
CN108742570B (zh) 基于冠脉优势类型获取血管压力差的装置
CN113180614B (zh) 无导丝ffr、无导丝imr和无导丝cfr的检测方法
CN111166315B (zh) 基于造影图像计算瞬时无波型比率和静息态舒张期压力比率的方法
CN111166316B (zh) 基于造影图像计算造影瞬时无波型比率和造影舒张期压力比率的方法
CA3164482A1 (en) Noninvasive diagnostics of proximal heart health biomarkers
WO2020025780A1 (en) Blood flow measurement based on vessel-map slope
WO2021223248A1 (zh) 使用血压来跟踪心脏循环事件的系统及方法
CN116807514B (zh) 血管成像系统、方法、设备、电子设备及存储介质
US20210401310A1 (en) Medical device for determining a cardiac output-dependent parameter
WO2023089866A1 (ja) 圧波形の標準化処理装置及び標準化処理方法
CN117243573A (zh) 筛选敏感人群、提高消融灵敏度的方法、系统和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019920153

Country of ref document: EP

Effective date: 20211019